Remove unused declarations
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GNU Emacs.
8
9 GNU Emacs is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
13
14 GNU Emacs is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28 #include <setjmp.h>
29
30 /* Note on some machines this defines `vector' as a typedef,
31 so make sure we don't use that name in this file. */
32 #undef vector
33 #define vector *****
34
35 #include "lisp.h"
36 #include "commands.h"
37 #include "character.h"
38 #include "coding.h"
39 #include "buffer.h"
40 #include "keyboard.h"
41 #include "keymap.h"
42 #include "intervals.h"
43 #include "frame.h"
44 #include "window.h"
45 #include "blockinput.h"
46 #ifdef HAVE_MENUS
47 #if defined (HAVE_X_WINDOWS)
48 #include "xterm.h"
49 #endif
50 #endif /* HAVE_MENUS */
51
52 #ifndef NULL
53 #define NULL ((POINTER_TYPE *)0)
54 #endif
55
56 /* Nonzero enables use of dialog boxes for questions
57 asked by mouse commands. */
58 int use_dialog_box;
59
60 /* Nonzero enables use of a file dialog for file name
61 questions asked by mouse commands. */
62 int use_file_dialog;
63
64 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
65 Lisp_Object Qyes_or_no_p_history;
66 Lisp_Object Qcursor_in_echo_area;
67 Lisp_Object Qwidget_type;
68 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
69
70 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
71
72 extern long get_random (void);
73 extern void seed_random (long);
74
75 #ifndef HAVE_UNISTD_H
76 extern long time ();
77 #endif
78 \f
79 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
80 doc: /* Return the argument unchanged. */)
81 (Lisp_Object arg)
82 {
83 return arg;
84 }
85
86 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
87 doc: /* Return a pseudo-random number.
88 All integers representable in Lisp are equally likely.
89 On most systems, this is 29 bits' worth.
90 With positive integer LIMIT, return random number in interval [0,LIMIT).
91 With argument t, set the random number seed from the current time and pid.
92 Other values of LIMIT are ignored. */)
93 (Lisp_Object limit)
94 {
95 EMACS_INT val;
96 Lisp_Object lispy_val;
97 unsigned long denominator;
98
99 if (EQ (limit, Qt))
100 seed_random (getpid () + time (NULL));
101 if (NATNUMP (limit) && XFASTINT (limit) != 0)
102 {
103 /* Try to take our random number from the higher bits of VAL,
104 not the lower, since (says Gentzel) the low bits of `random'
105 are less random than the higher ones. We do this by using the
106 quotient rather than the remainder. At the high end of the RNG
107 it's possible to get a quotient larger than n; discarding
108 these values eliminates the bias that would otherwise appear
109 when using a large n. */
110 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
111 do
112 val = get_random () / denominator;
113 while (val >= XFASTINT (limit));
114 }
115 else
116 val = get_random ();
117 XSETINT (lispy_val, val);
118 return lispy_val;
119 }
120 \f
121 /* Random data-structure functions */
122
123 DEFUN ("length", Flength, Slength, 1, 1, 0,
124 doc: /* Return the length of vector, list or string SEQUENCE.
125 A byte-code function object is also allowed.
126 If the string contains multibyte characters, this is not necessarily
127 the number of bytes in the string; it is the number of characters.
128 To get the number of bytes, use `string-bytes'. */)
129 (register Lisp_Object sequence)
130 {
131 register Lisp_Object val;
132 register int i;
133
134 if (STRINGP (sequence))
135 XSETFASTINT (val, SCHARS (sequence));
136 else if (VECTORP (sequence))
137 XSETFASTINT (val, ASIZE (sequence));
138 else if (CHAR_TABLE_P (sequence))
139 XSETFASTINT (val, MAX_CHAR);
140 else if (BOOL_VECTOR_P (sequence))
141 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
142 else if (COMPILEDP (sequence))
143 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
144 else if (CONSP (sequence))
145 {
146 i = 0;
147 while (CONSP (sequence))
148 {
149 sequence = XCDR (sequence);
150 ++i;
151
152 if (!CONSP (sequence))
153 break;
154
155 sequence = XCDR (sequence);
156 ++i;
157 QUIT;
158 }
159
160 CHECK_LIST_END (sequence, sequence);
161
162 val = make_number (i);
163 }
164 else if (NILP (sequence))
165 XSETFASTINT (val, 0);
166 else
167 wrong_type_argument (Qsequencep, sequence);
168
169 return val;
170 }
171
172 /* This does not check for quits. That is safe since it must terminate. */
173
174 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
175 doc: /* Return the length of a list, but avoid error or infinite loop.
176 This function never gets an error. If LIST is not really a list,
177 it returns 0. If LIST is circular, it returns a finite value
178 which is at least the number of distinct elements. */)
179 (Lisp_Object list)
180 {
181 Lisp_Object tail, halftail, length;
182 int len = 0;
183
184 /* halftail is used to detect circular lists. */
185 halftail = list;
186 for (tail = list; CONSP (tail); tail = XCDR (tail))
187 {
188 if (EQ (tail, halftail) && len != 0)
189 break;
190 len++;
191 if ((len & 1) == 0)
192 halftail = XCDR (halftail);
193 }
194
195 XSETINT (length, len);
196 return length;
197 }
198
199 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
200 doc: /* Return the number of bytes in STRING.
201 If STRING is multibyte, this may be greater than the length of STRING. */)
202 (Lisp_Object string)
203 {
204 CHECK_STRING (string);
205 return make_number (SBYTES (string));
206 }
207
208 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
209 doc: /* Return t if two strings have identical contents.
210 Case is significant, but text properties are ignored.
211 Symbols are also allowed; their print names are used instead. */)
212 (register Lisp_Object s1, Lisp_Object s2)
213 {
214 if (SYMBOLP (s1))
215 s1 = SYMBOL_NAME (s1);
216 if (SYMBOLP (s2))
217 s2 = SYMBOL_NAME (s2);
218 CHECK_STRING (s1);
219 CHECK_STRING (s2);
220
221 if (SCHARS (s1) != SCHARS (s2)
222 || SBYTES (s1) != SBYTES (s2)
223 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
224 return Qnil;
225 return Qt;
226 }
227
228 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
229 doc: /* Compare the contents of two strings, converting to multibyte if needed.
230 In string STR1, skip the first START1 characters and stop at END1.
231 In string STR2, skip the first START2 characters and stop at END2.
232 END1 and END2 default to the full lengths of the respective strings.
233
234 Case is significant in this comparison if IGNORE-CASE is nil.
235 Unibyte strings are converted to multibyte for comparison.
236
237 The value is t if the strings (or specified portions) match.
238 If string STR1 is less, the value is a negative number N;
239 - 1 - N is the number of characters that match at the beginning.
240 If string STR1 is greater, the value is a positive number N;
241 N - 1 is the number of characters that match at the beginning. */)
242 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
243 {
244 register EMACS_INT end1_char, end2_char;
245 register EMACS_INT i1, i1_byte, i2, i2_byte;
246
247 CHECK_STRING (str1);
248 CHECK_STRING (str2);
249 if (NILP (start1))
250 start1 = make_number (0);
251 if (NILP (start2))
252 start2 = make_number (0);
253 CHECK_NATNUM (start1);
254 CHECK_NATNUM (start2);
255 if (! NILP (end1))
256 CHECK_NATNUM (end1);
257 if (! NILP (end2))
258 CHECK_NATNUM (end2);
259
260 i1 = XINT (start1);
261 i2 = XINT (start2);
262
263 i1_byte = string_char_to_byte (str1, i1);
264 i2_byte = string_char_to_byte (str2, i2);
265
266 end1_char = SCHARS (str1);
267 if (! NILP (end1) && end1_char > XINT (end1))
268 end1_char = XINT (end1);
269
270 end2_char = SCHARS (str2);
271 if (! NILP (end2) && end2_char > XINT (end2))
272 end2_char = XINT (end2);
273
274 while (i1 < end1_char && i2 < end2_char)
275 {
276 /* When we find a mismatch, we must compare the
277 characters, not just the bytes. */
278 int c1, c2;
279
280 if (STRING_MULTIBYTE (str1))
281 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
282 else
283 {
284 c1 = SREF (str1, i1++);
285 MAKE_CHAR_MULTIBYTE (c1);
286 }
287
288 if (STRING_MULTIBYTE (str2))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
290 else
291 {
292 c2 = SREF (str2, i2++);
293 MAKE_CHAR_MULTIBYTE (c2);
294 }
295
296 if (c1 == c2)
297 continue;
298
299 if (! NILP (ignore_case))
300 {
301 Lisp_Object tem;
302
303 tem = Fupcase (make_number (c1));
304 c1 = XINT (tem);
305 tem = Fupcase (make_number (c2));
306 c2 = XINT (tem);
307 }
308
309 if (c1 == c2)
310 continue;
311
312 /* Note that I1 has already been incremented
313 past the character that we are comparing;
314 hence we don't add or subtract 1 here. */
315 if (c1 < c2)
316 return make_number (- i1 + XINT (start1));
317 else
318 return make_number (i1 - XINT (start1));
319 }
320
321 if (i1 < end1_char)
322 return make_number (i1 - XINT (start1) + 1);
323 if (i2 < end2_char)
324 return make_number (- i1 + XINT (start1) - 1);
325
326 return Qt;
327 }
328
329 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
330 doc: /* Return t if first arg string is less than second in lexicographic order.
331 Case is significant.
332 Symbols are also allowed; their print names are used instead. */)
333 (register Lisp_Object s1, Lisp_Object s2)
334 {
335 register EMACS_INT end;
336 register EMACS_INT i1, i1_byte, i2, i2_byte;
337
338 if (SYMBOLP (s1))
339 s1 = SYMBOL_NAME (s1);
340 if (SYMBOLP (s2))
341 s2 = SYMBOL_NAME (s2);
342 CHECK_STRING (s1);
343 CHECK_STRING (s2);
344
345 i1 = i1_byte = i2 = i2_byte = 0;
346
347 end = SCHARS (s1);
348 if (end > SCHARS (s2))
349 end = SCHARS (s2);
350
351 while (i1 < end)
352 {
353 /* When we find a mismatch, we must compare the
354 characters, not just the bytes. */
355 int c1, c2;
356
357 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
358 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
359
360 if (c1 != c2)
361 return c1 < c2 ? Qt : Qnil;
362 }
363 return i1 < SCHARS (s2) ? Qt : Qnil;
364 }
365 \f
366 static Lisp_Object concat (int nargs, Lisp_Object *args,
367 enum Lisp_Type target_type, int last_special);
368
369 /* ARGSUSED */
370 Lisp_Object
371 concat2 (Lisp_Object s1, Lisp_Object s2)
372 {
373 Lisp_Object args[2];
374 args[0] = s1;
375 args[1] = s2;
376 return concat (2, args, Lisp_String, 0);
377 }
378
379 /* ARGSUSED */
380 Lisp_Object
381 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
382 {
383 Lisp_Object args[3];
384 args[0] = s1;
385 args[1] = s2;
386 args[2] = s3;
387 return concat (3, args, Lisp_String, 0);
388 }
389
390 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
391 doc: /* Concatenate all the arguments and make the result a list.
392 The result is a list whose elements are the elements of all the arguments.
393 Each argument may be a list, vector or string.
394 The last argument is not copied, just used as the tail of the new list.
395 usage: (append &rest SEQUENCES) */)
396 (int nargs, Lisp_Object *args)
397 {
398 return concat (nargs, args, Lisp_Cons, 1);
399 }
400
401 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
402 doc: /* Concatenate all the arguments and make the result a string.
403 The result is a string whose elements are the elements of all the arguments.
404 Each argument may be a string or a list or vector of characters (integers).
405 usage: (concat &rest SEQUENCES) */)
406 (int nargs, Lisp_Object *args)
407 {
408 return concat (nargs, args, Lisp_String, 0);
409 }
410
411 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
412 doc: /* Concatenate all the arguments and make the result a vector.
413 The result is a vector whose elements are the elements of all the arguments.
414 Each argument may be a list, vector or string.
415 usage: (vconcat &rest SEQUENCES) */)
416 (int nargs, Lisp_Object *args)
417 {
418 return concat (nargs, args, Lisp_Vectorlike, 0);
419 }
420
421
422 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
423 doc: /* Return a copy of a list, vector, string or char-table.
424 The elements of a list or vector are not copied; they are shared
425 with the original. */)
426 (Lisp_Object arg)
427 {
428 if (NILP (arg)) return arg;
429
430 if (CHAR_TABLE_P (arg))
431 {
432 return copy_char_table (arg);
433 }
434
435 if (BOOL_VECTOR_P (arg))
436 {
437 Lisp_Object val;
438 int size_in_chars
439 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
440 / BOOL_VECTOR_BITS_PER_CHAR);
441
442 val = Fmake_bool_vector (Flength (arg), Qnil);
443 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
444 size_in_chars);
445 return val;
446 }
447
448 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
449 wrong_type_argument (Qsequencep, arg);
450
451 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
452 }
453
454 /* This structure holds information of an argument of `concat' that is
455 a string and has text properties to be copied. */
456 struct textprop_rec
457 {
458 int argnum; /* refer to ARGS (arguments of `concat') */
459 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
460 EMACS_INT to; /* refer to VAL (the target string) */
461 };
462
463 static Lisp_Object
464 concat (int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)
465 {
466 Lisp_Object val;
467 register Lisp_Object tail;
468 register Lisp_Object this;
469 EMACS_INT toindex;
470 EMACS_INT toindex_byte = 0;
471 register EMACS_INT result_len;
472 register EMACS_INT result_len_byte;
473 register int argnum;
474 Lisp_Object last_tail;
475 Lisp_Object prev;
476 int some_multibyte;
477 /* When we make a multibyte string, we can't copy text properties
478 while concatinating each string because the length of resulting
479 string can't be decided until we finish the whole concatination.
480 So, we record strings that have text properties to be copied
481 here, and copy the text properties after the concatination. */
482 struct textprop_rec *textprops = NULL;
483 /* Number of elements in textprops. */
484 int num_textprops = 0;
485 USE_SAFE_ALLOCA;
486
487 tail = Qnil;
488
489 /* In append, the last arg isn't treated like the others */
490 if (last_special && nargs > 0)
491 {
492 nargs--;
493 last_tail = args[nargs];
494 }
495 else
496 last_tail = Qnil;
497
498 /* Check each argument. */
499 for (argnum = 0; argnum < nargs; argnum++)
500 {
501 this = args[argnum];
502 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
503 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
504 wrong_type_argument (Qsequencep, this);
505 }
506
507 /* Compute total length in chars of arguments in RESULT_LEN.
508 If desired output is a string, also compute length in bytes
509 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
510 whether the result should be a multibyte string. */
511 result_len_byte = 0;
512 result_len = 0;
513 some_multibyte = 0;
514 for (argnum = 0; argnum < nargs; argnum++)
515 {
516 EMACS_INT len;
517 this = args[argnum];
518 len = XFASTINT (Flength (this));
519 if (target_type == Lisp_String)
520 {
521 /* We must count the number of bytes needed in the string
522 as well as the number of characters. */
523 EMACS_INT i;
524 Lisp_Object ch;
525 EMACS_INT this_len_byte;
526
527 if (VECTORP (this))
528 for (i = 0; i < len; i++)
529 {
530 ch = AREF (this, i);
531 CHECK_CHARACTER (ch);
532 this_len_byte = CHAR_BYTES (XINT (ch));
533 result_len_byte += this_len_byte;
534 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
535 some_multibyte = 1;
536 }
537 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
538 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
539 else if (CONSP (this))
540 for (; CONSP (this); this = XCDR (this))
541 {
542 ch = XCAR (this);
543 CHECK_CHARACTER (ch);
544 this_len_byte = CHAR_BYTES (XINT (ch));
545 result_len_byte += this_len_byte;
546 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
547 some_multibyte = 1;
548 }
549 else if (STRINGP (this))
550 {
551 if (STRING_MULTIBYTE (this))
552 {
553 some_multibyte = 1;
554 result_len_byte += SBYTES (this);
555 }
556 else
557 result_len_byte += count_size_as_multibyte (SDATA (this),
558 SCHARS (this));
559 }
560 }
561
562 result_len += len;
563 if (result_len < 0)
564 error ("String overflow");
565 }
566
567 if (! some_multibyte)
568 result_len_byte = result_len;
569
570 /* Create the output object. */
571 if (target_type == Lisp_Cons)
572 val = Fmake_list (make_number (result_len), Qnil);
573 else if (target_type == Lisp_Vectorlike)
574 val = Fmake_vector (make_number (result_len), Qnil);
575 else if (some_multibyte)
576 val = make_uninit_multibyte_string (result_len, result_len_byte);
577 else
578 val = make_uninit_string (result_len);
579
580 /* In `append', if all but last arg are nil, return last arg. */
581 if (target_type == Lisp_Cons && EQ (val, Qnil))
582 return last_tail;
583
584 /* Copy the contents of the args into the result. */
585 if (CONSP (val))
586 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
587 else
588 toindex = 0, toindex_byte = 0;
589
590 prev = Qnil;
591 if (STRINGP (val))
592 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
593
594 for (argnum = 0; argnum < nargs; argnum++)
595 {
596 Lisp_Object thislen;
597 EMACS_INT thisleni = 0;
598 register EMACS_INT thisindex = 0;
599 register EMACS_INT thisindex_byte = 0;
600
601 this = args[argnum];
602 if (!CONSP (this))
603 thislen = Flength (this), thisleni = XINT (thislen);
604
605 /* Between strings of the same kind, copy fast. */
606 if (STRINGP (this) && STRINGP (val)
607 && STRING_MULTIBYTE (this) == some_multibyte)
608 {
609 EMACS_INT thislen_byte = SBYTES (this);
610
611 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
612 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
613 {
614 textprops[num_textprops].argnum = argnum;
615 textprops[num_textprops].from = 0;
616 textprops[num_textprops++].to = toindex;
617 }
618 toindex_byte += thislen_byte;
619 toindex += thisleni;
620 }
621 /* Copy a single-byte string to a multibyte string. */
622 else if (STRINGP (this) && STRINGP (val))
623 {
624 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
625 {
626 textprops[num_textprops].argnum = argnum;
627 textprops[num_textprops].from = 0;
628 textprops[num_textprops++].to = toindex;
629 }
630 toindex_byte += copy_text (SDATA (this),
631 SDATA (val) + toindex_byte,
632 SCHARS (this), 0, 1);
633 toindex += thisleni;
634 }
635 else
636 /* Copy element by element. */
637 while (1)
638 {
639 register Lisp_Object elt;
640
641 /* Fetch next element of `this' arg into `elt', or break if
642 `this' is exhausted. */
643 if (NILP (this)) break;
644 if (CONSP (this))
645 elt = XCAR (this), this = XCDR (this);
646 else if (thisindex >= thisleni)
647 break;
648 else if (STRINGP (this))
649 {
650 int c;
651 if (STRING_MULTIBYTE (this))
652 {
653 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
654 thisindex,
655 thisindex_byte);
656 XSETFASTINT (elt, c);
657 }
658 else
659 {
660 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
661 if (some_multibyte
662 && !ASCII_CHAR_P (XINT (elt))
663 && XINT (elt) < 0400)
664 {
665 c = BYTE8_TO_CHAR (XINT (elt));
666 XSETINT (elt, c);
667 }
668 }
669 }
670 else if (BOOL_VECTOR_P (this))
671 {
672 int byte;
673 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
674 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
675 elt = Qt;
676 else
677 elt = Qnil;
678 thisindex++;
679 }
680 else
681 {
682 elt = AREF (this, thisindex);
683 thisindex++;
684 }
685
686 /* Store this element into the result. */
687 if (toindex < 0)
688 {
689 XSETCAR (tail, elt);
690 prev = tail;
691 tail = XCDR (tail);
692 }
693 else if (VECTORP (val))
694 {
695 ASET (val, toindex, elt);
696 toindex++;
697 }
698 else
699 {
700 CHECK_NUMBER (elt);
701 if (some_multibyte)
702 toindex_byte += CHAR_STRING (XINT (elt),
703 SDATA (val) + toindex_byte);
704 else
705 SSET (val, toindex_byte++, XINT (elt));
706 toindex++;
707 }
708 }
709 }
710 if (!NILP (prev))
711 XSETCDR (prev, last_tail);
712
713 if (num_textprops > 0)
714 {
715 Lisp_Object props;
716 EMACS_INT last_to_end = -1;
717
718 for (argnum = 0; argnum < num_textprops; argnum++)
719 {
720 this = args[textprops[argnum].argnum];
721 props = text_property_list (this,
722 make_number (0),
723 make_number (SCHARS (this)),
724 Qnil);
725 /* If successive arguments have properites, be sure that the
726 value of `composition' property be the copy. */
727 if (last_to_end == textprops[argnum].to)
728 make_composition_value_copy (props);
729 add_text_properties_from_list (val, props,
730 make_number (textprops[argnum].to));
731 last_to_end = textprops[argnum].to + SCHARS (this);
732 }
733 }
734
735 SAFE_FREE ();
736 return val;
737 }
738 \f
739 static Lisp_Object string_char_byte_cache_string;
740 static EMACS_INT string_char_byte_cache_charpos;
741 static EMACS_INT string_char_byte_cache_bytepos;
742
743 void
744 clear_string_char_byte_cache (void)
745 {
746 string_char_byte_cache_string = Qnil;
747 }
748
749 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
750
751 EMACS_INT
752 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
753 {
754 EMACS_INT i_byte;
755 EMACS_INT best_below, best_below_byte;
756 EMACS_INT best_above, best_above_byte;
757
758 best_below = best_below_byte = 0;
759 best_above = SCHARS (string);
760 best_above_byte = SBYTES (string);
761 if (best_above == best_above_byte)
762 return char_index;
763
764 if (EQ (string, string_char_byte_cache_string))
765 {
766 if (string_char_byte_cache_charpos < char_index)
767 {
768 best_below = string_char_byte_cache_charpos;
769 best_below_byte = string_char_byte_cache_bytepos;
770 }
771 else
772 {
773 best_above = string_char_byte_cache_charpos;
774 best_above_byte = string_char_byte_cache_bytepos;
775 }
776 }
777
778 if (char_index - best_below < best_above - char_index)
779 {
780 unsigned char *p = SDATA (string) + best_below_byte;
781
782 while (best_below < char_index)
783 {
784 p += BYTES_BY_CHAR_HEAD (*p);
785 best_below++;
786 }
787 i_byte = p - SDATA (string);
788 }
789 else
790 {
791 unsigned char *p = SDATA (string) + best_above_byte;
792
793 while (best_above > char_index)
794 {
795 p--;
796 while (!CHAR_HEAD_P (*p)) p--;
797 best_above--;
798 }
799 i_byte = p - SDATA (string);
800 }
801
802 string_char_byte_cache_bytepos = i_byte;
803 string_char_byte_cache_charpos = char_index;
804 string_char_byte_cache_string = string;
805
806 return i_byte;
807 }
808 \f
809 /* Return the character index corresponding to BYTE_INDEX in STRING. */
810
811 EMACS_INT
812 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
813 {
814 EMACS_INT i, i_byte;
815 EMACS_INT best_below, best_below_byte;
816 EMACS_INT best_above, best_above_byte;
817
818 best_below = best_below_byte = 0;
819 best_above = SCHARS (string);
820 best_above_byte = SBYTES (string);
821 if (best_above == best_above_byte)
822 return byte_index;
823
824 if (EQ (string, string_char_byte_cache_string))
825 {
826 if (string_char_byte_cache_bytepos < byte_index)
827 {
828 best_below = string_char_byte_cache_charpos;
829 best_below_byte = string_char_byte_cache_bytepos;
830 }
831 else
832 {
833 best_above = string_char_byte_cache_charpos;
834 best_above_byte = string_char_byte_cache_bytepos;
835 }
836 }
837
838 if (byte_index - best_below_byte < best_above_byte - byte_index)
839 {
840 unsigned char *p = SDATA (string) + best_below_byte;
841 unsigned char *pend = SDATA (string) + byte_index;
842
843 while (p < pend)
844 {
845 p += BYTES_BY_CHAR_HEAD (*p);
846 best_below++;
847 }
848 i = best_below;
849 i_byte = p - SDATA (string);
850 }
851 else
852 {
853 unsigned char *p = SDATA (string) + best_above_byte;
854 unsigned char *pbeg = SDATA (string) + byte_index;
855
856 while (p > pbeg)
857 {
858 p--;
859 while (!CHAR_HEAD_P (*p)) p--;
860 best_above--;
861 }
862 i = best_above;
863 i_byte = p - SDATA (string);
864 }
865
866 string_char_byte_cache_bytepos = i_byte;
867 string_char_byte_cache_charpos = i;
868 string_char_byte_cache_string = string;
869
870 return i;
871 }
872 \f
873 /* Convert STRING to a multibyte string. */
874
875 static Lisp_Object
876 string_make_multibyte (Lisp_Object string)
877 {
878 unsigned char *buf;
879 EMACS_INT nbytes;
880 Lisp_Object ret;
881 USE_SAFE_ALLOCA;
882
883 if (STRING_MULTIBYTE (string))
884 return string;
885
886 nbytes = count_size_as_multibyte (SDATA (string),
887 SCHARS (string));
888 /* If all the chars are ASCII, they won't need any more bytes
889 once converted. In that case, we can return STRING itself. */
890 if (nbytes == SBYTES (string))
891 return string;
892
893 SAFE_ALLOCA (buf, unsigned char *, nbytes);
894 copy_text (SDATA (string), buf, SBYTES (string),
895 0, 1);
896
897 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
898 SAFE_FREE ();
899
900 return ret;
901 }
902
903
904 /* Convert STRING (if unibyte) to a multibyte string without changing
905 the number of characters. Characters 0200 trough 0237 are
906 converted to eight-bit characters. */
907
908 Lisp_Object
909 string_to_multibyte (Lisp_Object string)
910 {
911 unsigned char *buf;
912 EMACS_INT nbytes;
913 Lisp_Object ret;
914 USE_SAFE_ALLOCA;
915
916 if (STRING_MULTIBYTE (string))
917 return string;
918
919 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
920 /* If all the chars are ASCII, they won't need any more bytes once
921 converted. */
922 if (nbytes == SBYTES (string))
923 return make_multibyte_string (SDATA (string), nbytes, nbytes);
924
925 SAFE_ALLOCA (buf, unsigned char *, nbytes);
926 memcpy (buf, SDATA (string), SBYTES (string));
927 str_to_multibyte (buf, nbytes, SBYTES (string));
928
929 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
930 SAFE_FREE ();
931
932 return ret;
933 }
934
935
936 /* Convert STRING to a single-byte string. */
937
938 Lisp_Object
939 string_make_unibyte (Lisp_Object string)
940 {
941 EMACS_INT nchars;
942 unsigned char *buf;
943 Lisp_Object ret;
944 USE_SAFE_ALLOCA;
945
946 if (! STRING_MULTIBYTE (string))
947 return string;
948
949 nchars = SCHARS (string);
950
951 SAFE_ALLOCA (buf, unsigned char *, nchars);
952 copy_text (SDATA (string), buf, SBYTES (string),
953 1, 0);
954
955 ret = make_unibyte_string (buf, nchars);
956 SAFE_FREE ();
957
958 return ret;
959 }
960
961 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
962 1, 1, 0,
963 doc: /* Return the multibyte equivalent of STRING.
964 If STRING is unibyte and contains non-ASCII characters, the function
965 `unibyte-char-to-multibyte' is used to convert each unibyte character
966 to a multibyte character. In this case, the returned string is a
967 newly created string with no text properties. If STRING is multibyte
968 or entirely ASCII, it is returned unchanged. In particular, when
969 STRING is unibyte and entirely ASCII, the returned string is unibyte.
970 \(When the characters are all ASCII, Emacs primitives will treat the
971 string the same way whether it is unibyte or multibyte.) */)
972 (Lisp_Object string)
973 {
974 CHECK_STRING (string);
975
976 return string_make_multibyte (string);
977 }
978
979 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
980 1, 1, 0,
981 doc: /* Return the unibyte equivalent of STRING.
982 Multibyte character codes are converted to unibyte according to
983 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
984 If the lookup in the translation table fails, this function takes just
985 the low 8 bits of each character. */)
986 (Lisp_Object string)
987 {
988 CHECK_STRING (string);
989
990 return string_make_unibyte (string);
991 }
992
993 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
994 1, 1, 0,
995 doc: /* Return a unibyte string with the same individual bytes as STRING.
996 If STRING is unibyte, the result is STRING itself.
997 Otherwise it is a newly created string, with no text properties.
998 If STRING is multibyte and contains a character of charset
999 `eight-bit', it is converted to the corresponding single byte. */)
1000 (Lisp_Object string)
1001 {
1002 CHECK_STRING (string);
1003
1004 if (STRING_MULTIBYTE (string))
1005 {
1006 EMACS_INT bytes = SBYTES (string);
1007 unsigned char *str = (unsigned char *) xmalloc (bytes);
1008
1009 memcpy (str, SDATA (string), bytes);
1010 bytes = str_as_unibyte (str, bytes);
1011 string = make_unibyte_string (str, bytes);
1012 xfree (str);
1013 }
1014 return string;
1015 }
1016
1017 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1018 1, 1, 0,
1019 doc: /* Return a multibyte string with the same individual bytes as STRING.
1020 If STRING is multibyte, the result is STRING itself.
1021 Otherwise it is a newly created string, with no text properties.
1022
1023 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1024 part of a correct utf-8 sequence), it is converted to the corresponding
1025 multibyte character of charset `eight-bit'.
1026 See also `string-to-multibyte'.
1027
1028 Beware, this often doesn't really do what you think it does.
1029 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1030 If you're not sure, whether to use `string-as-multibyte' or
1031 `string-to-multibyte', use `string-to-multibyte'. */)
1032 (Lisp_Object string)
1033 {
1034 CHECK_STRING (string);
1035
1036 if (! STRING_MULTIBYTE (string))
1037 {
1038 Lisp_Object new_string;
1039 EMACS_INT nchars, nbytes;
1040
1041 parse_str_as_multibyte (SDATA (string),
1042 SBYTES (string),
1043 &nchars, &nbytes);
1044 new_string = make_uninit_multibyte_string (nchars, nbytes);
1045 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1046 if (nbytes != SBYTES (string))
1047 str_as_multibyte (SDATA (new_string), nbytes,
1048 SBYTES (string), NULL);
1049 string = new_string;
1050 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1051 }
1052 return string;
1053 }
1054
1055 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1056 1, 1, 0,
1057 doc: /* Return a multibyte string with the same individual chars as STRING.
1058 If STRING is multibyte, the result is STRING itself.
1059 Otherwise it is a newly created string, with no text properties.
1060
1061 If STRING is unibyte and contains an 8-bit byte, it is converted to
1062 the corresponding multibyte character of charset `eight-bit'.
1063
1064 This differs from `string-as-multibyte' by converting each byte of a correct
1065 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1066 correct sequence. */)
1067 (Lisp_Object string)
1068 {
1069 CHECK_STRING (string);
1070
1071 return string_to_multibyte (string);
1072 }
1073
1074 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1075 1, 1, 0,
1076 doc: /* Return a unibyte string with the same individual chars as STRING.
1077 If STRING is unibyte, the result is STRING itself.
1078 Otherwise it is a newly created string, with no text properties,
1079 where each `eight-bit' character is converted to the corresponding byte.
1080 If STRING contains a non-ASCII, non-`eight-bit' character,
1081 an error is signaled. */)
1082 (Lisp_Object string)
1083 {
1084 CHECK_STRING (string);
1085
1086 if (STRING_MULTIBYTE (string))
1087 {
1088 EMACS_INT chars = SCHARS (string);
1089 unsigned char *str = (unsigned char *) xmalloc (chars);
1090 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1091
1092 if (converted < chars)
1093 error ("Can't convert the %dth character to unibyte", converted);
1094 string = make_unibyte_string (str, chars);
1095 xfree (str);
1096 }
1097 return string;
1098 }
1099
1100 \f
1101 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1102 doc: /* Return a copy of ALIST.
1103 This is an alist which represents the same mapping from objects to objects,
1104 but does not share the alist structure with ALIST.
1105 The objects mapped (cars and cdrs of elements of the alist)
1106 are shared, however.
1107 Elements of ALIST that are not conses are also shared. */)
1108 (Lisp_Object alist)
1109 {
1110 register Lisp_Object tem;
1111
1112 CHECK_LIST (alist);
1113 if (NILP (alist))
1114 return alist;
1115 alist = concat (1, &alist, Lisp_Cons, 0);
1116 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1117 {
1118 register Lisp_Object car;
1119 car = XCAR (tem);
1120
1121 if (CONSP (car))
1122 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1123 }
1124 return alist;
1125 }
1126
1127 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1128 doc: /* Return a new string whose contents are a substring of STRING.
1129 The returned string consists of the characters between index FROM
1130 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1131 zero-indexed: 0 means the first character of STRING. Negative values
1132 are counted from the end of STRING. If TO is nil, the substring runs
1133 to the end of STRING.
1134
1135 The STRING argument may also be a vector. In that case, the return
1136 value is a new vector that contains the elements between index FROM
1137 \(inclusive) and index TO (exclusive) of that vector argument. */)
1138 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1139 {
1140 Lisp_Object res;
1141 EMACS_INT size;
1142 EMACS_INT size_byte = 0;
1143 EMACS_INT from_char, to_char;
1144 EMACS_INT from_byte = 0, to_byte = 0;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 {
1151 size = SCHARS (string);
1152 size_byte = SBYTES (string);
1153 }
1154 else
1155 size = ASIZE (string);
1156
1157 if (NILP (to))
1158 {
1159 to_char = size;
1160 to_byte = size_byte;
1161 }
1162 else
1163 {
1164 CHECK_NUMBER (to);
1165
1166 to_char = XINT (to);
1167 if (to_char < 0)
1168 to_char += size;
1169
1170 if (STRINGP (string))
1171 to_byte = string_char_to_byte (string, to_char);
1172 }
1173
1174 from_char = XINT (from);
1175 if (from_char < 0)
1176 from_char += size;
1177 if (STRINGP (string))
1178 from_byte = string_char_to_byte (string, from_char);
1179
1180 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1181 args_out_of_range_3 (string, make_number (from_char),
1182 make_number (to_char));
1183
1184 if (STRINGP (string))
1185 {
1186 res = make_specified_string (SDATA (string) + from_byte,
1187 to_char - from_char, to_byte - from_byte,
1188 STRING_MULTIBYTE (string));
1189 copy_text_properties (make_number (from_char), make_number (to_char),
1190 string, make_number (0), res, Qnil);
1191 }
1192 else
1193 res = Fvector (to_char - from_char, &AREF (string, from_char));
1194
1195 return res;
1196 }
1197
1198
1199 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1200 doc: /* Return a substring of STRING, without text properties.
1201 It starts at index FROM and ends before TO.
1202 TO may be nil or omitted; then the substring runs to the end of STRING.
1203 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1204 If FROM or TO is negative, it counts from the end.
1205
1206 With one argument, just copy STRING without its properties. */)
1207 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1208 {
1209 EMACS_INT size, size_byte;
1210 EMACS_INT from_char, to_char;
1211 EMACS_INT from_byte, to_byte;
1212
1213 CHECK_STRING (string);
1214
1215 size = SCHARS (string);
1216 size_byte = SBYTES (string);
1217
1218 if (NILP (from))
1219 from_char = from_byte = 0;
1220 else
1221 {
1222 CHECK_NUMBER (from);
1223 from_char = XINT (from);
1224 if (from_char < 0)
1225 from_char += size;
1226
1227 from_byte = string_char_to_byte (string, from_char);
1228 }
1229
1230 if (NILP (to))
1231 {
1232 to_char = size;
1233 to_byte = size_byte;
1234 }
1235 else
1236 {
1237 CHECK_NUMBER (to);
1238
1239 to_char = XINT (to);
1240 if (to_char < 0)
1241 to_char += size;
1242
1243 to_byte = string_char_to_byte (string, to_char);
1244 }
1245
1246 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1247 args_out_of_range_3 (string, make_number (from_char),
1248 make_number (to_char));
1249
1250 return make_specified_string (SDATA (string) + from_byte,
1251 to_char - from_char, to_byte - from_byte,
1252 STRING_MULTIBYTE (string));
1253 }
1254
1255 /* Extract a substring of STRING, giving start and end positions
1256 both in characters and in bytes. */
1257
1258 Lisp_Object
1259 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1260 EMACS_INT to, EMACS_INT to_byte)
1261 {
1262 Lisp_Object res;
1263 EMACS_INT size;
1264 EMACS_INT size_byte;
1265
1266 CHECK_VECTOR_OR_STRING (string);
1267
1268 if (STRINGP (string))
1269 {
1270 size = SCHARS (string);
1271 size_byte = SBYTES (string);
1272 }
1273 else
1274 size = ASIZE (string);
1275
1276 if (!(0 <= from && from <= to && to <= size))
1277 args_out_of_range_3 (string, make_number (from), make_number (to));
1278
1279 if (STRINGP (string))
1280 {
1281 res = make_specified_string (SDATA (string) + from_byte,
1282 to - from, to_byte - from_byte,
1283 STRING_MULTIBYTE (string));
1284 copy_text_properties (make_number (from), make_number (to),
1285 string, make_number (0), res, Qnil);
1286 }
1287 else
1288 res = Fvector (to - from, &AREF (string, from));
1289
1290 return res;
1291 }
1292 \f
1293 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1294 doc: /* Take cdr N times on LIST, return the result. */)
1295 (Lisp_Object n, Lisp_Object list)
1296 {
1297 register int i, num;
1298 CHECK_NUMBER (n);
1299 num = XINT (n);
1300 for (i = 0; i < num && !NILP (list); i++)
1301 {
1302 QUIT;
1303 CHECK_LIST_CONS (list, list);
1304 list = XCDR (list);
1305 }
1306 return list;
1307 }
1308
1309 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1310 doc: /* Return the Nth element of LIST.
1311 N counts from zero. If LIST is not that long, nil is returned. */)
1312 (Lisp_Object n, Lisp_Object list)
1313 {
1314 return Fcar (Fnthcdr (n, list));
1315 }
1316
1317 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1318 doc: /* Return element of SEQUENCE at index N. */)
1319 (register Lisp_Object sequence, Lisp_Object n)
1320 {
1321 CHECK_NUMBER (n);
1322 if (CONSP (sequence) || NILP (sequence))
1323 return Fcar (Fnthcdr (n, sequence));
1324
1325 /* Faref signals a "not array" error, so check here. */
1326 CHECK_ARRAY (sequence, Qsequencep);
1327 return Faref (sequence, n);
1328 }
1329
1330 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1331 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt, Lisp_Object list)
1334 {
1335 register Lisp_Object tail;
1336 for (tail = list; CONSP (tail); tail = XCDR (tail))
1337 {
1338 register Lisp_Object tem;
1339 CHECK_LIST_CONS (tail, list);
1340 tem = XCAR (tail);
1341 if (! NILP (Fequal (elt, tem)))
1342 return tail;
1343 QUIT;
1344 }
1345 return Qnil;
1346 }
1347
1348 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1349 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1350 The value is actually the tail of LIST whose car is ELT. */)
1351 (register Lisp_Object elt, Lisp_Object list)
1352 {
1353 while (1)
1354 {
1355 if (!CONSP (list) || EQ (XCAR (list), elt))
1356 break;
1357
1358 list = XCDR (list);
1359 if (!CONSP (list) || EQ (XCAR (list), elt))
1360 break;
1361
1362 list = XCDR (list);
1363 if (!CONSP (list) || EQ (XCAR (list), elt))
1364 break;
1365
1366 list = XCDR (list);
1367 QUIT;
1368 }
1369
1370 CHECK_LIST (list);
1371 return list;
1372 }
1373
1374 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1375 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1376 The value is actually the tail of LIST whose car is ELT. */)
1377 (register Lisp_Object elt, Lisp_Object list)
1378 {
1379 register Lisp_Object tail;
1380
1381 if (!FLOATP (elt))
1382 return Fmemq (elt, list);
1383
1384 for (tail = list; CONSP (tail); tail = XCDR (tail))
1385 {
1386 register Lisp_Object tem;
1387 CHECK_LIST_CONS (tail, list);
1388 tem = XCAR (tail);
1389 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1390 return tail;
1391 QUIT;
1392 }
1393 return Qnil;
1394 }
1395
1396 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1397 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1398 The value is actually the first element of LIST whose car is KEY.
1399 Elements of LIST that are not conses are ignored. */)
1400 (Lisp_Object key, Lisp_Object list)
1401 {
1402 while (1)
1403 {
1404 if (!CONSP (list)
1405 || (CONSP (XCAR (list))
1406 && EQ (XCAR (XCAR (list)), key)))
1407 break;
1408
1409 list = XCDR (list);
1410 if (!CONSP (list)
1411 || (CONSP (XCAR (list))
1412 && EQ (XCAR (XCAR (list)), key)))
1413 break;
1414
1415 list = XCDR (list);
1416 if (!CONSP (list)
1417 || (CONSP (XCAR (list))
1418 && EQ (XCAR (XCAR (list)), key)))
1419 break;
1420
1421 list = XCDR (list);
1422 QUIT;
1423 }
1424
1425 return CAR (list);
1426 }
1427
1428 /* Like Fassq but never report an error and do not allow quits.
1429 Use only on lists known never to be circular. */
1430
1431 Lisp_Object
1432 assq_no_quit (Lisp_Object key, Lisp_Object list)
1433 {
1434 while (CONSP (list)
1435 && (!CONSP (XCAR (list))
1436 || !EQ (XCAR (XCAR (list)), key)))
1437 list = XCDR (list);
1438
1439 return CAR_SAFE (list);
1440 }
1441
1442 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1443 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1444 The value is actually the first element of LIST whose car equals KEY. */)
1445 (Lisp_Object key, Lisp_Object list)
1446 {
1447 Lisp_Object car;
1448
1449 while (1)
1450 {
1451 if (!CONSP (list)
1452 || (CONSP (XCAR (list))
1453 && (car = XCAR (XCAR (list)),
1454 EQ (car, key) || !NILP (Fequal (car, key)))))
1455 break;
1456
1457 list = XCDR (list);
1458 if (!CONSP (list)
1459 || (CONSP (XCAR (list))
1460 && (car = XCAR (XCAR (list)),
1461 EQ (car, key) || !NILP (Fequal (car, key)))))
1462 break;
1463
1464 list = XCDR (list);
1465 if (!CONSP (list)
1466 || (CONSP (XCAR (list))
1467 && (car = XCAR (XCAR (list)),
1468 EQ (car, key) || !NILP (Fequal (car, key)))))
1469 break;
1470
1471 list = XCDR (list);
1472 QUIT;
1473 }
1474
1475 return CAR (list);
1476 }
1477
1478 /* Like Fassoc but never report an error and do not allow quits.
1479 Use only on lists known never to be circular. */
1480
1481 Lisp_Object
1482 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1483 {
1484 while (CONSP (list)
1485 && (!CONSP (XCAR (list))
1486 || (!EQ (XCAR (XCAR (list)), key)
1487 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1488 list = XCDR (list);
1489
1490 return CONSP (list) ? XCAR (list) : Qnil;
1491 }
1492
1493 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1494 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1495 The value is actually the first element of LIST whose cdr is KEY. */)
1496 (register Lisp_Object key, Lisp_Object list)
1497 {
1498 while (1)
1499 {
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && EQ (XCDR (XCAR (list)), key)))
1503 break;
1504
1505 list = XCDR (list);
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCDR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && EQ (XCDR (XCAR (list)), key)))
1515 break;
1516
1517 list = XCDR (list);
1518 QUIT;
1519 }
1520
1521 return CAR (list);
1522 }
1523
1524 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1525 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1526 The value is actually the first element of LIST whose cdr equals KEY. */)
1527 (Lisp_Object key, Lisp_Object list)
1528 {
1529 Lisp_Object cdr;
1530
1531 while (1)
1532 {
1533 if (!CONSP (list)
1534 || (CONSP (XCAR (list))
1535 && (cdr = XCDR (XCAR (list)),
1536 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1537 break;
1538
1539 list = XCDR (list);
1540 if (!CONSP (list)
1541 || (CONSP (XCAR (list))
1542 && (cdr = XCDR (XCAR (list)),
1543 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1544 break;
1545
1546 list = XCDR (list);
1547 if (!CONSP (list)
1548 || (CONSP (XCAR (list))
1549 && (cdr = XCDR (XCAR (list)),
1550 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1551 break;
1552
1553 list = XCDR (list);
1554 QUIT;
1555 }
1556
1557 return CAR (list);
1558 }
1559 \f
1560 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1561 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1562 The modified LIST is returned. Comparison is done with `eq'.
1563 If the first member of LIST is ELT, there is no way to remove it by side effect;
1564 therefore, write `(setq foo (delq element foo))'
1565 to be sure of changing the value of `foo'. */)
1566 (register Lisp_Object elt, Lisp_Object list)
1567 {
1568 register Lisp_Object tail, prev;
1569 register Lisp_Object tem;
1570
1571 tail = list;
1572 prev = Qnil;
1573 while (!NILP (tail))
1574 {
1575 CHECK_LIST_CONS (tail, list);
1576 tem = XCAR (tail);
1577 if (EQ (elt, tem))
1578 {
1579 if (NILP (prev))
1580 list = XCDR (tail);
1581 else
1582 Fsetcdr (prev, XCDR (tail));
1583 }
1584 else
1585 prev = tail;
1586 tail = XCDR (tail);
1587 QUIT;
1588 }
1589 return list;
1590 }
1591
1592 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1593 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1594 SEQ must be a list, a vector, or a string.
1595 The modified SEQ is returned. Comparison is done with `equal'.
1596 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1597 is not a side effect; it is simply using a different sequence.
1598 Therefore, write `(setq foo (delete element foo))'
1599 to be sure of changing the value of `foo'. */)
1600 (Lisp_Object elt, Lisp_Object seq)
1601 {
1602 if (VECTORP (seq))
1603 {
1604 EMACS_INT i, n;
1605
1606 for (i = n = 0; i < ASIZE (seq); ++i)
1607 if (NILP (Fequal (AREF (seq, i), elt)))
1608 ++n;
1609
1610 if (n != ASIZE (seq))
1611 {
1612 struct Lisp_Vector *p = allocate_vector (n);
1613
1614 for (i = n = 0; i < ASIZE (seq); ++i)
1615 if (NILP (Fequal (AREF (seq, i), elt)))
1616 p->contents[n++] = AREF (seq, i);
1617
1618 XSETVECTOR (seq, p);
1619 }
1620 }
1621 else if (STRINGP (seq))
1622 {
1623 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1624 int c;
1625
1626 for (i = nchars = nbytes = ibyte = 0;
1627 i < SCHARS (seq);
1628 ++i, ibyte += cbytes)
1629 {
1630 if (STRING_MULTIBYTE (seq))
1631 {
1632 c = STRING_CHAR (SDATA (seq) + ibyte);
1633 cbytes = CHAR_BYTES (c);
1634 }
1635 else
1636 {
1637 c = SREF (seq, i);
1638 cbytes = 1;
1639 }
1640
1641 if (!INTEGERP (elt) || c != XINT (elt))
1642 {
1643 ++nchars;
1644 nbytes += cbytes;
1645 }
1646 }
1647
1648 if (nchars != SCHARS (seq))
1649 {
1650 Lisp_Object tem;
1651
1652 tem = make_uninit_multibyte_string (nchars, nbytes);
1653 if (!STRING_MULTIBYTE (seq))
1654 STRING_SET_UNIBYTE (tem);
1655
1656 for (i = nchars = nbytes = ibyte = 0;
1657 i < SCHARS (seq);
1658 ++i, ibyte += cbytes)
1659 {
1660 if (STRING_MULTIBYTE (seq))
1661 {
1662 c = STRING_CHAR (SDATA (seq) + ibyte);
1663 cbytes = CHAR_BYTES (c);
1664 }
1665 else
1666 {
1667 c = SREF (seq, i);
1668 cbytes = 1;
1669 }
1670
1671 if (!INTEGERP (elt) || c != XINT (elt))
1672 {
1673 unsigned char *from = SDATA (seq) + ibyte;
1674 unsigned char *to = SDATA (tem) + nbytes;
1675 EMACS_INT n;
1676
1677 ++nchars;
1678 nbytes += cbytes;
1679
1680 for (n = cbytes; n--; )
1681 *to++ = *from++;
1682 }
1683 }
1684
1685 seq = tem;
1686 }
1687 }
1688 else
1689 {
1690 Lisp_Object tail, prev;
1691
1692 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1693 {
1694 CHECK_LIST_CONS (tail, seq);
1695
1696 if (!NILP (Fequal (elt, XCAR (tail))))
1697 {
1698 if (NILP (prev))
1699 seq = XCDR (tail);
1700 else
1701 Fsetcdr (prev, XCDR (tail));
1702 }
1703 else
1704 prev = tail;
1705 QUIT;
1706 }
1707 }
1708
1709 return seq;
1710 }
1711
1712 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1713 doc: /* Reverse LIST by modifying cdr pointers.
1714 Return the reversed list. */)
1715 (Lisp_Object list)
1716 {
1717 register Lisp_Object prev, tail, next;
1718
1719 if (NILP (list)) return list;
1720 prev = Qnil;
1721 tail = list;
1722 while (!NILP (tail))
1723 {
1724 QUIT;
1725 CHECK_LIST_CONS (tail, list);
1726 next = XCDR (tail);
1727 Fsetcdr (tail, prev);
1728 prev = tail;
1729 tail = next;
1730 }
1731 return prev;
1732 }
1733
1734 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1735 doc: /* Reverse LIST, copying. Return the reversed list.
1736 See also the function `nreverse', which is used more often. */)
1737 (Lisp_Object list)
1738 {
1739 Lisp_Object new;
1740
1741 for (new = Qnil; CONSP (list); list = XCDR (list))
1742 {
1743 QUIT;
1744 new = Fcons (XCAR (list), new);
1745 }
1746 CHECK_LIST_END (list, list);
1747 return new;
1748 }
1749 \f
1750 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1751
1752 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1753 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1754 Returns the sorted list. LIST is modified by side effects.
1755 PREDICATE is called with two elements of LIST, and should return non-nil
1756 if the first element should sort before the second. */)
1757 (Lisp_Object list, Lisp_Object predicate)
1758 {
1759 Lisp_Object front, back;
1760 register Lisp_Object len, tem;
1761 struct gcpro gcpro1, gcpro2;
1762 register int length;
1763
1764 front = list;
1765 len = Flength (list);
1766 length = XINT (len);
1767 if (length < 2)
1768 return list;
1769
1770 XSETINT (len, (length / 2) - 1);
1771 tem = Fnthcdr (len, list);
1772 back = Fcdr (tem);
1773 Fsetcdr (tem, Qnil);
1774
1775 GCPRO2 (front, back);
1776 front = Fsort (front, predicate);
1777 back = Fsort (back, predicate);
1778 UNGCPRO;
1779 return merge (front, back, predicate);
1780 }
1781
1782 Lisp_Object
1783 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1784 {
1785 Lisp_Object value;
1786 register Lisp_Object tail;
1787 Lisp_Object tem;
1788 register Lisp_Object l1, l2;
1789 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1790
1791 l1 = org_l1;
1792 l2 = org_l2;
1793 tail = Qnil;
1794 value = Qnil;
1795
1796 /* It is sufficient to protect org_l1 and org_l2.
1797 When l1 and l2 are updated, we copy the new values
1798 back into the org_ vars. */
1799 GCPRO4 (org_l1, org_l2, pred, value);
1800
1801 while (1)
1802 {
1803 if (NILP (l1))
1804 {
1805 UNGCPRO;
1806 if (NILP (tail))
1807 return l2;
1808 Fsetcdr (tail, l2);
1809 return value;
1810 }
1811 if (NILP (l2))
1812 {
1813 UNGCPRO;
1814 if (NILP (tail))
1815 return l1;
1816 Fsetcdr (tail, l1);
1817 return value;
1818 }
1819 tem = call2 (pred, Fcar (l2), Fcar (l1));
1820 if (NILP (tem))
1821 {
1822 tem = l1;
1823 l1 = Fcdr (l1);
1824 org_l1 = l1;
1825 }
1826 else
1827 {
1828 tem = l2;
1829 l2 = Fcdr (l2);
1830 org_l2 = l2;
1831 }
1832 if (NILP (tail))
1833 value = tem;
1834 else
1835 Fsetcdr (tail, tem);
1836 tail = tem;
1837 }
1838 }
1839
1840 \f
1841 /* This does not check for quits. That is safe since it must terminate. */
1842
1843 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1844 doc: /* Extract a value from a property list.
1845 PLIST is a property list, which is a list of the form
1846 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1847 corresponding to the given PROP, or nil if PROP is not one of the
1848 properties on the list. This function never signals an error. */)
1849 (Lisp_Object plist, Lisp_Object prop)
1850 {
1851 Lisp_Object tail, halftail;
1852
1853 /* halftail is used to detect circular lists. */
1854 tail = halftail = plist;
1855 while (CONSP (tail) && CONSP (XCDR (tail)))
1856 {
1857 if (EQ (prop, XCAR (tail)))
1858 return XCAR (XCDR (tail));
1859
1860 tail = XCDR (XCDR (tail));
1861 halftail = XCDR (halftail);
1862 if (EQ (tail, halftail))
1863 break;
1864
1865 #if 0 /* Unsafe version. */
1866 /* This function can be called asynchronously
1867 (setup_coding_system). Don't QUIT in that case. */
1868 if (!interrupt_input_blocked)
1869 QUIT;
1870 #endif
1871 }
1872
1873 return Qnil;
1874 }
1875
1876 DEFUN ("get", Fget, Sget, 2, 2, 0,
1877 doc: /* Return the value of SYMBOL's PROPNAME property.
1878 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1879 (Lisp_Object symbol, Lisp_Object propname)
1880 {
1881 CHECK_SYMBOL (symbol);
1882 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1883 }
1884
1885 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1886 doc: /* Change value in PLIST of PROP to VAL.
1887 PLIST is a property list, which is a list of the form
1888 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1889 If PROP is already a property on the list, its value is set to VAL,
1890 otherwise the new PROP VAL pair is added. The new plist is returned;
1891 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1892 The PLIST is modified by side effects. */)
1893 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1894 {
1895 register Lisp_Object tail, prev;
1896 Lisp_Object newcell;
1897 prev = Qnil;
1898 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1899 tail = XCDR (XCDR (tail)))
1900 {
1901 if (EQ (prop, XCAR (tail)))
1902 {
1903 Fsetcar (XCDR (tail), val);
1904 return plist;
1905 }
1906
1907 prev = tail;
1908 QUIT;
1909 }
1910 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1911 if (NILP (prev))
1912 return newcell;
1913 else
1914 Fsetcdr (XCDR (prev), newcell);
1915 return plist;
1916 }
1917
1918 DEFUN ("put", Fput, Sput, 3, 3, 0,
1919 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1920 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1921 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1922 {
1923 CHECK_SYMBOL (symbol);
1924 XSYMBOL (symbol)->plist
1925 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1926 return value;
1927 }
1928 \f
1929 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1930 doc: /* Extract a value from a property list, comparing with `equal'.
1931 PLIST is a property list, which is a list of the form
1932 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1933 corresponding to the given PROP, or nil if PROP is not
1934 one of the properties on the list. */)
1935 (Lisp_Object plist, Lisp_Object prop)
1936 {
1937 Lisp_Object tail;
1938
1939 for (tail = plist;
1940 CONSP (tail) && CONSP (XCDR (tail));
1941 tail = XCDR (XCDR (tail)))
1942 {
1943 if (! NILP (Fequal (prop, XCAR (tail))))
1944 return XCAR (XCDR (tail));
1945
1946 QUIT;
1947 }
1948
1949 CHECK_LIST_END (tail, prop);
1950
1951 return Qnil;
1952 }
1953
1954 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1955 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1956 PLIST is a property list, which is a list of the form
1957 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1958 If PROP is already a property on the list, its value is set to VAL,
1959 otherwise the new PROP VAL pair is added. The new plist is returned;
1960 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1961 The PLIST is modified by side effects. */)
1962 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1963 {
1964 register Lisp_Object tail, prev;
1965 Lisp_Object newcell;
1966 prev = Qnil;
1967 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1968 tail = XCDR (XCDR (tail)))
1969 {
1970 if (! NILP (Fequal (prop, XCAR (tail))))
1971 {
1972 Fsetcar (XCDR (tail), val);
1973 return plist;
1974 }
1975
1976 prev = tail;
1977 QUIT;
1978 }
1979 newcell = Fcons (prop, Fcons (val, Qnil));
1980 if (NILP (prev))
1981 return newcell;
1982 else
1983 Fsetcdr (XCDR (prev), newcell);
1984 return plist;
1985 }
1986 \f
1987 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1988 doc: /* Return t if the two args are the same Lisp object.
1989 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1990 (Lisp_Object obj1, Lisp_Object obj2)
1991 {
1992 if (FLOATP (obj1))
1993 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1994 else
1995 return EQ (obj1, obj2) ? Qt : Qnil;
1996 }
1997
1998 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1999 doc: /* Return t if two Lisp objects have similar structure and contents.
2000 They must have the same data type.
2001 Conses are compared by comparing the cars and the cdrs.
2002 Vectors and strings are compared element by element.
2003 Numbers are compared by value, but integers cannot equal floats.
2004 (Use `=' if you want integers and floats to be able to be equal.)
2005 Symbols must match exactly. */)
2006 (register Lisp_Object o1, Lisp_Object o2)
2007 {
2008 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2009 }
2010
2011 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2012 doc: /* Return t if two Lisp objects have similar structure and contents.
2013 This is like `equal' except that it compares the text properties
2014 of strings. (`equal' ignores text properties.) */)
2015 (register Lisp_Object o1, Lisp_Object o2)
2016 {
2017 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2018 }
2019
2020 /* DEPTH is current depth of recursion. Signal an error if it
2021 gets too deep.
2022 PROPS, if non-nil, means compare string text properties too. */
2023
2024 static int
2025 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2026 {
2027 if (depth > 200)
2028 error ("Stack overflow in equal");
2029
2030 tail_recurse:
2031 QUIT;
2032 if (EQ (o1, o2))
2033 return 1;
2034 if (XTYPE (o1) != XTYPE (o2))
2035 return 0;
2036
2037 switch (XTYPE (o1))
2038 {
2039 case Lisp_Float:
2040 {
2041 double d1, d2;
2042
2043 d1 = extract_float (o1);
2044 d2 = extract_float (o2);
2045 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2046 though they are not =. */
2047 return d1 == d2 || (d1 != d1 && d2 != d2);
2048 }
2049
2050 case Lisp_Cons:
2051 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2052 return 0;
2053 o1 = XCDR (o1);
2054 o2 = XCDR (o2);
2055 goto tail_recurse;
2056
2057 case Lisp_Misc:
2058 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2059 return 0;
2060 if (OVERLAYP (o1))
2061 {
2062 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2063 depth + 1, props)
2064 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2065 depth + 1, props))
2066 return 0;
2067 o1 = XOVERLAY (o1)->plist;
2068 o2 = XOVERLAY (o2)->plist;
2069 goto tail_recurse;
2070 }
2071 if (MARKERP (o1))
2072 {
2073 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2074 && (XMARKER (o1)->buffer == 0
2075 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2076 }
2077 break;
2078
2079 case Lisp_Vectorlike:
2080 {
2081 register int i;
2082 EMACS_INT size = ASIZE (o1);
2083 /* Pseudovectors have the type encoded in the size field, so this test
2084 actually checks that the objects have the same type as well as the
2085 same size. */
2086 if (ASIZE (o2) != size)
2087 return 0;
2088 /* Boolvectors are compared much like strings. */
2089 if (BOOL_VECTOR_P (o1))
2090 {
2091 int size_in_chars
2092 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2093 / BOOL_VECTOR_BITS_PER_CHAR);
2094
2095 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2096 return 0;
2097 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2098 size_in_chars))
2099 return 0;
2100 return 1;
2101 }
2102 if (WINDOW_CONFIGURATIONP (o1))
2103 return compare_window_configurations (o1, o2, 0);
2104
2105 /* Aside from them, only true vectors, char-tables, compiled
2106 functions, and fonts (font-spec, font-entity, font-ojbect)
2107 are sensible to compare, so eliminate the others now. */
2108 if (size & PSEUDOVECTOR_FLAG)
2109 {
2110 if (!(size & (PVEC_COMPILED
2111 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2112 return 0;
2113 size &= PSEUDOVECTOR_SIZE_MASK;
2114 }
2115 for (i = 0; i < size; i++)
2116 {
2117 Lisp_Object v1, v2;
2118 v1 = AREF (o1, i);
2119 v2 = AREF (o2, i);
2120 if (!internal_equal (v1, v2, depth + 1, props))
2121 return 0;
2122 }
2123 return 1;
2124 }
2125 break;
2126
2127 case Lisp_String:
2128 if (SCHARS (o1) != SCHARS (o2))
2129 return 0;
2130 if (SBYTES (o1) != SBYTES (o2))
2131 return 0;
2132 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2133 return 0;
2134 if (props && !compare_string_intervals (o1, o2))
2135 return 0;
2136 return 1;
2137
2138 default:
2139 break;
2140 }
2141
2142 return 0;
2143 }
2144 \f
2145
2146 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2147 doc: /* Store each element of ARRAY with ITEM.
2148 ARRAY is a vector, string, char-table, or bool-vector. */)
2149 (Lisp_Object array, Lisp_Object item)
2150 {
2151 register EMACS_INT size, index;
2152 int charval;
2153
2154 if (VECTORP (array))
2155 {
2156 register Lisp_Object *p = XVECTOR (array)->contents;
2157 size = ASIZE (array);
2158 for (index = 0; index < size; index++)
2159 p[index] = item;
2160 }
2161 else if (CHAR_TABLE_P (array))
2162 {
2163 int i;
2164
2165 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2166 XCHAR_TABLE (array)->contents[i] = item;
2167 XCHAR_TABLE (array)->defalt = item;
2168 }
2169 else if (STRINGP (array))
2170 {
2171 register unsigned char *p = SDATA (array);
2172 CHECK_NUMBER (item);
2173 charval = XINT (item);
2174 size = SCHARS (array);
2175 if (STRING_MULTIBYTE (array))
2176 {
2177 unsigned char str[MAX_MULTIBYTE_LENGTH];
2178 int len = CHAR_STRING (charval, str);
2179 EMACS_INT size_byte = SBYTES (array);
2180 unsigned char *p1 = p, *endp = p + size_byte;
2181 int i;
2182
2183 if (size != size_byte)
2184 while (p1 < endp)
2185 {
2186 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2187 if (len != this_len)
2188 error ("Attempt to change byte length of a string");
2189 p1 += this_len;
2190 }
2191 for (i = 0; i < size_byte; i++)
2192 *p++ = str[i % len];
2193 }
2194 else
2195 for (index = 0; index < size; index++)
2196 p[index] = charval;
2197 }
2198 else if (BOOL_VECTOR_P (array))
2199 {
2200 register unsigned char *p = XBOOL_VECTOR (array)->data;
2201 int size_in_chars
2202 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2203 / BOOL_VECTOR_BITS_PER_CHAR);
2204
2205 charval = (! NILP (item) ? -1 : 0);
2206 for (index = 0; index < size_in_chars - 1; index++)
2207 p[index] = charval;
2208 if (index < size_in_chars)
2209 {
2210 /* Mask out bits beyond the vector size. */
2211 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2212 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2213 p[index] = charval;
2214 }
2215 }
2216 else
2217 wrong_type_argument (Qarrayp, array);
2218 return array;
2219 }
2220
2221 DEFUN ("clear-string", Fclear_string, Sclear_string,
2222 1, 1, 0,
2223 doc: /* Clear the contents of STRING.
2224 This makes STRING unibyte and may change its length. */)
2225 (Lisp_Object string)
2226 {
2227 EMACS_INT len;
2228 CHECK_STRING (string);
2229 len = SBYTES (string);
2230 memset (SDATA (string), 0, len);
2231 STRING_SET_CHARS (string, len);
2232 STRING_SET_UNIBYTE (string);
2233 return Qnil;
2234 }
2235 \f
2236 /* ARGSUSED */
2237 Lisp_Object
2238 nconc2 (Lisp_Object s1, Lisp_Object s2)
2239 {
2240 Lisp_Object args[2];
2241 args[0] = s1;
2242 args[1] = s2;
2243 return Fnconc (2, args);
2244 }
2245
2246 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2247 doc: /* Concatenate any number of lists by altering them.
2248 Only the last argument is not altered, and need not be a list.
2249 usage: (nconc &rest LISTS) */)
2250 (int nargs, Lisp_Object *args)
2251 {
2252 register int argnum;
2253 register Lisp_Object tail, tem, val;
2254
2255 val = tail = Qnil;
2256
2257 for (argnum = 0; argnum < nargs; argnum++)
2258 {
2259 tem = args[argnum];
2260 if (NILP (tem)) continue;
2261
2262 if (NILP (val))
2263 val = tem;
2264
2265 if (argnum + 1 == nargs) break;
2266
2267 CHECK_LIST_CONS (tem, tem);
2268
2269 while (CONSP (tem))
2270 {
2271 tail = tem;
2272 tem = XCDR (tail);
2273 QUIT;
2274 }
2275
2276 tem = args[argnum + 1];
2277 Fsetcdr (tail, tem);
2278 if (NILP (tem))
2279 args[argnum + 1] = tail;
2280 }
2281
2282 return val;
2283 }
2284 \f
2285 /* This is the guts of all mapping functions.
2286 Apply FN to each element of SEQ, one by one,
2287 storing the results into elements of VALS, a C vector of Lisp_Objects.
2288 LENI is the length of VALS, which should also be the length of SEQ. */
2289
2290 static void
2291 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2292 {
2293 register Lisp_Object tail;
2294 Lisp_Object dummy;
2295 register EMACS_INT i;
2296 struct gcpro gcpro1, gcpro2, gcpro3;
2297
2298 if (vals)
2299 {
2300 /* Don't let vals contain any garbage when GC happens. */
2301 for (i = 0; i < leni; i++)
2302 vals[i] = Qnil;
2303
2304 GCPRO3 (dummy, fn, seq);
2305 gcpro1.var = vals;
2306 gcpro1.nvars = leni;
2307 }
2308 else
2309 GCPRO2 (fn, seq);
2310 /* We need not explicitly protect `tail' because it is used only on lists, and
2311 1) lists are not relocated and 2) the list is marked via `seq' so will not
2312 be freed */
2313
2314 if (VECTORP (seq))
2315 {
2316 for (i = 0; i < leni; i++)
2317 {
2318 dummy = call1 (fn, AREF (seq, i));
2319 if (vals)
2320 vals[i] = dummy;
2321 }
2322 }
2323 else if (BOOL_VECTOR_P (seq))
2324 {
2325 for (i = 0; i < leni; i++)
2326 {
2327 int byte;
2328 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2329 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2330 dummy = call1 (fn, dummy);
2331 if (vals)
2332 vals[i] = dummy;
2333 }
2334 }
2335 else if (STRINGP (seq))
2336 {
2337 EMACS_INT i_byte;
2338
2339 for (i = 0, i_byte = 0; i < leni;)
2340 {
2341 int c;
2342 EMACS_INT i_before = i;
2343
2344 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2345 XSETFASTINT (dummy, c);
2346 dummy = call1 (fn, dummy);
2347 if (vals)
2348 vals[i_before] = dummy;
2349 }
2350 }
2351 else /* Must be a list, since Flength did not get an error */
2352 {
2353 tail = seq;
2354 for (i = 0; i < leni && CONSP (tail); i++)
2355 {
2356 dummy = call1 (fn, XCAR (tail));
2357 if (vals)
2358 vals[i] = dummy;
2359 tail = XCDR (tail);
2360 }
2361 }
2362
2363 UNGCPRO;
2364 }
2365
2366 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2367 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2368 In between each pair of results, stick in SEPARATOR. Thus, " " as
2369 SEPARATOR results in spaces between the values returned by FUNCTION.
2370 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2371 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2372 {
2373 Lisp_Object len;
2374 register EMACS_INT leni;
2375 int nargs;
2376 register Lisp_Object *args;
2377 register EMACS_INT i;
2378 struct gcpro gcpro1;
2379 Lisp_Object ret;
2380 USE_SAFE_ALLOCA;
2381
2382 len = Flength (sequence);
2383 if (CHAR_TABLE_P (sequence))
2384 wrong_type_argument (Qlistp, sequence);
2385 leni = XINT (len);
2386 nargs = leni + leni - 1;
2387 if (nargs < 0) return empty_unibyte_string;
2388
2389 SAFE_ALLOCA_LISP (args, nargs);
2390
2391 GCPRO1 (separator);
2392 mapcar1 (leni, args, function, sequence);
2393 UNGCPRO;
2394
2395 for (i = leni - 1; i > 0; i--)
2396 args[i + i] = args[i];
2397
2398 for (i = 1; i < nargs; i += 2)
2399 args[i] = separator;
2400
2401 ret = Fconcat (nargs, args);
2402 SAFE_FREE ();
2403
2404 return ret;
2405 }
2406
2407 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2408 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2409 The result is a list just as long as SEQUENCE.
2410 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2411 (Lisp_Object function, Lisp_Object sequence)
2412 {
2413 register Lisp_Object len;
2414 register EMACS_INT leni;
2415 register Lisp_Object *args;
2416 Lisp_Object ret;
2417 USE_SAFE_ALLOCA;
2418
2419 len = Flength (sequence);
2420 if (CHAR_TABLE_P (sequence))
2421 wrong_type_argument (Qlistp, sequence);
2422 leni = XFASTINT (len);
2423
2424 SAFE_ALLOCA_LISP (args, leni);
2425
2426 mapcar1 (leni, args, function, sequence);
2427
2428 ret = Flist (leni, args);
2429 SAFE_FREE ();
2430
2431 return ret;
2432 }
2433
2434 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2435 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2436 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2437 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2438 (Lisp_Object function, Lisp_Object sequence)
2439 {
2440 register EMACS_INT leni;
2441
2442 leni = XFASTINT (Flength (sequence));
2443 if (CHAR_TABLE_P (sequence))
2444 wrong_type_argument (Qlistp, sequence);
2445 mapcar1 (leni, 0, function, sequence);
2446
2447 return sequence;
2448 }
2449 \f
2450 /* This is how C code calls `yes-or-no-p' and allows the user
2451 to redefined it.
2452
2453 Anything that calls this function must protect from GC! */
2454
2455 Lisp_Object
2456 do_yes_or_no_p (Lisp_Object prompt)
2457 {
2458 return call1 (intern ("yes-or-no-p"), prompt);
2459 }
2460
2461 /* Anything that calls this function must protect from GC! */
2462
2463 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2464 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2465 Takes one argument, which is the string to display to ask the question.
2466 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2467 The user must confirm the answer with RET,
2468 and can edit it until it has been confirmed.
2469
2470 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2471 is nil, and `use-dialog-box' is non-nil. */)
2472 (Lisp_Object prompt)
2473 {
2474 register Lisp_Object ans;
2475 Lisp_Object args[2];
2476 struct gcpro gcpro1;
2477
2478 CHECK_STRING (prompt);
2479
2480 #ifdef HAVE_MENUS
2481 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2482 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2483 && use_dialog_box
2484 && have_menus_p ())
2485 {
2486 Lisp_Object pane, menu, obj;
2487 redisplay_preserve_echo_area (4);
2488 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2489 Fcons (Fcons (build_string ("No"), Qnil),
2490 Qnil));
2491 GCPRO1 (pane);
2492 menu = Fcons (prompt, pane);
2493 obj = Fx_popup_dialog (Qt, menu, Qnil);
2494 UNGCPRO;
2495 return obj;
2496 }
2497 #endif /* HAVE_MENUS */
2498
2499 args[0] = prompt;
2500 args[1] = build_string ("(yes or no) ");
2501 prompt = Fconcat (2, args);
2502
2503 GCPRO1 (prompt);
2504
2505 while (1)
2506 {
2507 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2508 Qyes_or_no_p_history, Qnil,
2509 Qnil));
2510 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2511 {
2512 UNGCPRO;
2513 return Qt;
2514 }
2515 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2516 {
2517 UNGCPRO;
2518 return Qnil;
2519 }
2520
2521 Fding (Qnil);
2522 Fdiscard_input ();
2523 message ("Please answer yes or no.");
2524 Fsleep_for (make_number (2), Qnil);
2525 }
2526 }
2527 \f
2528 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2529 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2530
2531 Each of the three load averages is multiplied by 100, then converted
2532 to integer.
2533
2534 When USE-FLOATS is non-nil, floats will be used instead of integers.
2535 These floats are not multiplied by 100.
2536
2537 If the 5-minute or 15-minute load averages are not available, return a
2538 shortened list, containing only those averages which are available.
2539
2540 An error is thrown if the load average can't be obtained. In some
2541 cases making it work would require Emacs being installed setuid or
2542 setgid so that it can read kernel information, and that usually isn't
2543 advisable. */)
2544 (Lisp_Object use_floats)
2545 {
2546 double load_ave[3];
2547 int loads = getloadavg (load_ave, 3);
2548 Lisp_Object ret = Qnil;
2549
2550 if (loads < 0)
2551 error ("load-average not implemented for this operating system");
2552
2553 while (loads-- > 0)
2554 {
2555 Lisp_Object load = (NILP (use_floats) ?
2556 make_number ((int) (100.0 * load_ave[loads]))
2557 : make_float (load_ave[loads]));
2558 ret = Fcons (load, ret);
2559 }
2560
2561 return ret;
2562 }
2563 \f
2564 Lisp_Object Vfeatures, Qsubfeatures;
2565
2566 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2567 doc: /* Return t if FEATURE is present in this Emacs.
2568
2569 Use this to conditionalize execution of lisp code based on the
2570 presence or absence of Emacs or environment extensions.
2571 Use `provide' to declare that a feature is available. This function
2572 looks at the value of the variable `features'. The optional argument
2573 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2574 (Lisp_Object feature, Lisp_Object subfeature)
2575 {
2576 register Lisp_Object tem;
2577 CHECK_SYMBOL (feature);
2578 tem = Fmemq (feature, Vfeatures);
2579 if (!NILP (tem) && !NILP (subfeature))
2580 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2581 return (NILP (tem)) ? Qnil : Qt;
2582 }
2583
2584 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2585 doc: /* Announce that FEATURE is a feature of the current Emacs.
2586 The optional argument SUBFEATURES should be a list of symbols listing
2587 particular subfeatures supported in this version of FEATURE. */)
2588 (Lisp_Object feature, Lisp_Object subfeatures)
2589 {
2590 register Lisp_Object tem;
2591 CHECK_SYMBOL (feature);
2592 CHECK_LIST (subfeatures);
2593 if (!NILP (Vautoload_queue))
2594 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2595 Vautoload_queue);
2596 tem = Fmemq (feature, Vfeatures);
2597 if (NILP (tem))
2598 Vfeatures = Fcons (feature, Vfeatures);
2599 if (!NILP (subfeatures))
2600 Fput (feature, Qsubfeatures, subfeatures);
2601 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2602
2603 /* Run any load-hooks for this file. */
2604 tem = Fassq (feature, Vafter_load_alist);
2605 if (CONSP (tem))
2606 Fprogn (XCDR (tem));
2607
2608 return feature;
2609 }
2610 \f
2611 /* `require' and its subroutines. */
2612
2613 /* List of features currently being require'd, innermost first. */
2614
2615 Lisp_Object require_nesting_list;
2616
2617 Lisp_Object
2618 require_unwind (Lisp_Object old_value)
2619 {
2620 return require_nesting_list = old_value;
2621 }
2622
2623 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2624 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2625 If FEATURE is not a member of the list `features', then the feature
2626 is not loaded; so load the file FILENAME.
2627 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2628 and `load' will try to load this name appended with the suffix `.elc' or
2629 `.el', in that order. The name without appended suffix will not be used.
2630 If the optional third argument NOERROR is non-nil,
2631 then return nil if the file is not found instead of signaling an error.
2632 Normally the return value is FEATURE.
2633 The normal messages at start and end of loading FILENAME are suppressed. */)
2634 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2635 {
2636 register Lisp_Object tem;
2637 struct gcpro gcpro1, gcpro2;
2638 int from_file = load_in_progress;
2639
2640 CHECK_SYMBOL (feature);
2641
2642 /* Record the presence of `require' in this file
2643 even if the feature specified is already loaded.
2644 But not more than once in any file,
2645 and not when we aren't loading or reading from a file. */
2646 if (!from_file)
2647 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2648 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2649 from_file = 1;
2650
2651 if (from_file)
2652 {
2653 tem = Fcons (Qrequire, feature);
2654 if (NILP (Fmember (tem, Vcurrent_load_list)))
2655 LOADHIST_ATTACH (tem);
2656 }
2657 tem = Fmemq (feature, Vfeatures);
2658
2659 if (NILP (tem))
2660 {
2661 int count = SPECPDL_INDEX ();
2662 int nesting = 0;
2663
2664 /* This is to make sure that loadup.el gives a clear picture
2665 of what files are preloaded and when. */
2666 if (! NILP (Vpurify_flag))
2667 error ("(require %s) while preparing to dump",
2668 SDATA (SYMBOL_NAME (feature)));
2669
2670 /* A certain amount of recursive `require' is legitimate,
2671 but if we require the same feature recursively 3 times,
2672 signal an error. */
2673 tem = require_nesting_list;
2674 while (! NILP (tem))
2675 {
2676 if (! NILP (Fequal (feature, XCAR (tem))))
2677 nesting++;
2678 tem = XCDR (tem);
2679 }
2680 if (nesting > 3)
2681 error ("Recursive `require' for feature `%s'",
2682 SDATA (SYMBOL_NAME (feature)));
2683
2684 /* Update the list for any nested `require's that occur. */
2685 record_unwind_protect (require_unwind, require_nesting_list);
2686 require_nesting_list = Fcons (feature, require_nesting_list);
2687
2688 /* Value saved here is to be restored into Vautoload_queue */
2689 record_unwind_protect (un_autoload, Vautoload_queue);
2690 Vautoload_queue = Qt;
2691
2692 /* Load the file. */
2693 GCPRO2 (feature, filename);
2694 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2695 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2696 UNGCPRO;
2697
2698 /* If load failed entirely, return nil. */
2699 if (NILP (tem))
2700 return unbind_to (count, Qnil);
2701
2702 tem = Fmemq (feature, Vfeatures);
2703 if (NILP (tem))
2704 error ("Required feature `%s' was not provided",
2705 SDATA (SYMBOL_NAME (feature)));
2706
2707 /* Once loading finishes, don't undo it. */
2708 Vautoload_queue = Qt;
2709 feature = unbind_to (count, feature);
2710 }
2711
2712 return feature;
2713 }
2714 \f
2715 /* Primitives for work of the "widget" library.
2716 In an ideal world, this section would not have been necessary.
2717 However, lisp function calls being as slow as they are, it turns
2718 out that some functions in the widget library (wid-edit.el) are the
2719 bottleneck of Widget operation. Here is their translation to C,
2720 for the sole reason of efficiency. */
2721
2722 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2723 doc: /* Return non-nil if PLIST has the property PROP.
2724 PLIST is a property list, which is a list of the form
2725 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2726 Unlike `plist-get', this allows you to distinguish between a missing
2727 property and a property with the value nil.
2728 The value is actually the tail of PLIST whose car is PROP. */)
2729 (Lisp_Object plist, Lisp_Object prop)
2730 {
2731 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2732 {
2733 QUIT;
2734 plist = XCDR (plist);
2735 plist = CDR (plist);
2736 }
2737 return plist;
2738 }
2739
2740 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2741 doc: /* In WIDGET, set PROPERTY to VALUE.
2742 The value can later be retrieved with `widget-get'. */)
2743 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2744 {
2745 CHECK_CONS (widget);
2746 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2747 return value;
2748 }
2749
2750 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2751 doc: /* In WIDGET, get the value of PROPERTY.
2752 The value could either be specified when the widget was created, or
2753 later with `widget-put'. */)
2754 (Lisp_Object widget, Lisp_Object property)
2755 {
2756 Lisp_Object tmp;
2757
2758 while (1)
2759 {
2760 if (NILP (widget))
2761 return Qnil;
2762 CHECK_CONS (widget);
2763 tmp = Fplist_member (XCDR (widget), property);
2764 if (CONSP (tmp))
2765 {
2766 tmp = XCDR (tmp);
2767 return CAR (tmp);
2768 }
2769 tmp = XCAR (widget);
2770 if (NILP (tmp))
2771 return Qnil;
2772 widget = Fget (tmp, Qwidget_type);
2773 }
2774 }
2775
2776 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2777 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2778 ARGS are passed as extra arguments to the function.
2779 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2780 (int nargs, Lisp_Object *args)
2781 {
2782 /* This function can GC. */
2783 Lisp_Object newargs[3];
2784 struct gcpro gcpro1, gcpro2;
2785 Lisp_Object result;
2786
2787 newargs[0] = Fwidget_get (args[0], args[1]);
2788 newargs[1] = args[0];
2789 newargs[2] = Flist (nargs - 2, args + 2);
2790 GCPRO2 (newargs[0], newargs[2]);
2791 result = Fapply (3, newargs);
2792 UNGCPRO;
2793 return result;
2794 }
2795
2796 #ifdef HAVE_LANGINFO_CODESET
2797 #include <langinfo.h>
2798 #endif
2799
2800 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2801 doc: /* Access locale data ITEM for the current C locale, if available.
2802 ITEM should be one of the following:
2803
2804 `codeset', returning the character set as a string (locale item CODESET);
2805
2806 `days', returning a 7-element vector of day names (locale items DAY_n);
2807
2808 `months', returning a 12-element vector of month names (locale items MON_n);
2809
2810 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2811 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2812
2813 If the system can't provide such information through a call to
2814 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2815
2816 See also Info node `(libc)Locales'.
2817
2818 The data read from the system are decoded using `locale-coding-system'. */)
2819 (Lisp_Object item)
2820 {
2821 char *str = NULL;
2822 #ifdef HAVE_LANGINFO_CODESET
2823 Lisp_Object val;
2824 if (EQ (item, Qcodeset))
2825 {
2826 str = nl_langinfo (CODESET);
2827 return build_string (str);
2828 }
2829 #ifdef DAY_1
2830 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2831 {
2832 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2833 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2834 int i;
2835 struct gcpro gcpro1;
2836 GCPRO1 (v);
2837 synchronize_system_time_locale ();
2838 for (i = 0; i < 7; i++)
2839 {
2840 str = nl_langinfo (days[i]);
2841 val = make_unibyte_string (str, strlen (str));
2842 /* Fixme: Is this coding system necessarily right, even if
2843 it is consistent with CODESET? If not, what to do? */
2844 Faset (v, make_number (i),
2845 code_convert_string_norecord (val, Vlocale_coding_system,
2846 0));
2847 }
2848 UNGCPRO;
2849 return v;
2850 }
2851 #endif /* DAY_1 */
2852 #ifdef MON_1
2853 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2854 {
2855 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2856 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2857 MON_8, MON_9, MON_10, MON_11, MON_12};
2858 int i;
2859 struct gcpro gcpro1;
2860 GCPRO1 (v);
2861 synchronize_system_time_locale ();
2862 for (i = 0; i < 12; i++)
2863 {
2864 str = nl_langinfo (months[i]);
2865 val = make_unibyte_string (str, strlen (str));
2866 Faset (v, make_number (i),
2867 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2868 }
2869 UNGCPRO;
2870 return v;
2871 }
2872 #endif /* MON_1 */
2873 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2874 but is in the locale files. This could be used by ps-print. */
2875 #ifdef PAPER_WIDTH
2876 else if (EQ (item, Qpaper))
2877 {
2878 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2879 make_number (nl_langinfo (PAPER_HEIGHT)));
2880 }
2881 #endif /* PAPER_WIDTH */
2882 #endif /* HAVE_LANGINFO_CODESET*/
2883 return Qnil;
2884 }
2885 \f
2886 /* base64 encode/decode functions (RFC 2045).
2887 Based on code from GNU recode. */
2888
2889 #define MIME_LINE_LENGTH 76
2890
2891 #define IS_ASCII(Character) \
2892 ((Character) < 128)
2893 #define IS_BASE64(Character) \
2894 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2895 #define IS_BASE64_IGNORABLE(Character) \
2896 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2897 || (Character) == '\f' || (Character) == '\r')
2898
2899 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2900 character or return retval if there are no characters left to
2901 process. */
2902 #define READ_QUADRUPLET_BYTE(retval) \
2903 do \
2904 { \
2905 if (i == length) \
2906 { \
2907 if (nchars_return) \
2908 *nchars_return = nchars; \
2909 return (retval); \
2910 } \
2911 c = from[i++]; \
2912 } \
2913 while (IS_BASE64_IGNORABLE (c))
2914
2915 /* Table of characters coding the 64 values. */
2916 static const char base64_value_to_char[64] =
2917 {
2918 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2919 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2920 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2921 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2922 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2923 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2924 '8', '9', '+', '/' /* 60-63 */
2925 };
2926
2927 /* Table of base64 values for first 128 characters. */
2928 static const short base64_char_to_value[128] =
2929 {
2930 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2931 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2932 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2933 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2934 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2935 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2936 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2937 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2938 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2939 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2940 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2941 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2942 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2943 };
2944
2945 /* The following diagram shows the logical steps by which three octets
2946 get transformed into four base64 characters.
2947
2948 .--------. .--------. .--------.
2949 |aaaaaabb| |bbbbcccc| |ccdddddd|
2950 `--------' `--------' `--------'
2951 6 2 4 4 2 6
2952 .--------+--------+--------+--------.
2953 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2954 `--------+--------+--------+--------'
2955
2956 .--------+--------+--------+--------.
2957 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2958 `--------+--------+--------+--------'
2959
2960 The octets are divided into 6 bit chunks, which are then encoded into
2961 base64 characters. */
2962
2963
2964 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2965 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2966 EMACS_INT *);
2967
2968 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2969 2, 3, "r",
2970 doc: /* Base64-encode the region between BEG and END.
2971 Return the length of the encoded text.
2972 Optional third argument NO-LINE-BREAK means do not break long lines
2973 into shorter lines. */)
2974 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2975 {
2976 char *encoded;
2977 EMACS_INT allength, length;
2978 EMACS_INT ibeg, iend, encoded_length;
2979 EMACS_INT old_pos = PT;
2980 USE_SAFE_ALLOCA;
2981
2982 validate_region (&beg, &end);
2983
2984 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2985 iend = CHAR_TO_BYTE (XFASTINT (end));
2986 move_gap_both (XFASTINT (beg), ibeg);
2987
2988 /* We need to allocate enough room for encoding the text.
2989 We need 33 1/3% more space, plus a newline every 76
2990 characters, and then we round up. */
2991 length = iend - ibeg;
2992 allength = length + length/3 + 1;
2993 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2994
2995 SAFE_ALLOCA (encoded, char *, allength);
2996 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
2997 NILP (no_line_break),
2998 !NILP (current_buffer->enable_multibyte_characters));
2999 if (encoded_length > allength)
3000 abort ();
3001
3002 if (encoded_length < 0)
3003 {
3004 /* The encoding wasn't possible. */
3005 SAFE_FREE ();
3006 error ("Multibyte character in data for base64 encoding");
3007 }
3008
3009 /* Now we have encoded the region, so we insert the new contents
3010 and delete the old. (Insert first in order to preserve markers.) */
3011 SET_PT_BOTH (XFASTINT (beg), ibeg);
3012 insert (encoded, encoded_length);
3013 SAFE_FREE ();
3014 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3015
3016 /* If point was outside of the region, restore it exactly; else just
3017 move to the beginning of the region. */
3018 if (old_pos >= XFASTINT (end))
3019 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3020 else if (old_pos > XFASTINT (beg))
3021 old_pos = XFASTINT (beg);
3022 SET_PT (old_pos);
3023
3024 /* We return the length of the encoded text. */
3025 return make_number (encoded_length);
3026 }
3027
3028 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3029 1, 2, 0,
3030 doc: /* Base64-encode STRING and return the result.
3031 Optional second argument NO-LINE-BREAK means do not break long lines
3032 into shorter lines. */)
3033 (Lisp_Object string, Lisp_Object no_line_break)
3034 {
3035 EMACS_INT allength, length, encoded_length;
3036 char *encoded;
3037 Lisp_Object encoded_string;
3038 USE_SAFE_ALLOCA;
3039
3040 CHECK_STRING (string);
3041
3042 /* We need to allocate enough room for encoding the text.
3043 We need 33 1/3% more space, plus a newline every 76
3044 characters, and then we round up. */
3045 length = SBYTES (string);
3046 allength = length + length/3 + 1;
3047 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3048
3049 /* We need to allocate enough room for decoding the text. */
3050 SAFE_ALLOCA (encoded, char *, allength);
3051
3052 encoded_length = base64_encode_1 (SDATA (string),
3053 encoded, length, NILP (no_line_break),
3054 STRING_MULTIBYTE (string));
3055 if (encoded_length > allength)
3056 abort ();
3057
3058 if (encoded_length < 0)
3059 {
3060 /* The encoding wasn't possible. */
3061 SAFE_FREE ();
3062 error ("Multibyte character in data for base64 encoding");
3063 }
3064
3065 encoded_string = make_unibyte_string (encoded, encoded_length);
3066 SAFE_FREE ();
3067
3068 return encoded_string;
3069 }
3070
3071 static EMACS_INT
3072 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3073 int line_break, int multibyte)
3074 {
3075 int counter = 0;
3076 EMACS_INT i = 0;
3077 char *e = to;
3078 int c;
3079 unsigned int value;
3080 int bytes;
3081
3082 while (i < length)
3083 {
3084 if (multibyte)
3085 {
3086 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3087 if (CHAR_BYTE8_P (c))
3088 c = CHAR_TO_BYTE8 (c);
3089 else if (c >= 256)
3090 return -1;
3091 i += bytes;
3092 }
3093 else
3094 c = from[i++];
3095
3096 /* Wrap line every 76 characters. */
3097
3098 if (line_break)
3099 {
3100 if (counter < MIME_LINE_LENGTH / 4)
3101 counter++;
3102 else
3103 {
3104 *e++ = '\n';
3105 counter = 1;
3106 }
3107 }
3108
3109 /* Process first byte of a triplet. */
3110
3111 *e++ = base64_value_to_char[0x3f & c >> 2];
3112 value = (0x03 & c) << 4;
3113
3114 /* Process second byte of a triplet. */
3115
3116 if (i == length)
3117 {
3118 *e++ = base64_value_to_char[value];
3119 *e++ = '=';
3120 *e++ = '=';
3121 break;
3122 }
3123
3124 if (multibyte)
3125 {
3126 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3127 if (CHAR_BYTE8_P (c))
3128 c = CHAR_TO_BYTE8 (c);
3129 else if (c >= 256)
3130 return -1;
3131 i += bytes;
3132 }
3133 else
3134 c = from[i++];
3135
3136 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3137 value = (0x0f & c) << 2;
3138
3139 /* Process third byte of a triplet. */
3140
3141 if (i == length)
3142 {
3143 *e++ = base64_value_to_char[value];
3144 *e++ = '=';
3145 break;
3146 }
3147
3148 if (multibyte)
3149 {
3150 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3151 if (CHAR_BYTE8_P (c))
3152 c = CHAR_TO_BYTE8 (c);
3153 else if (c >= 256)
3154 return -1;
3155 i += bytes;
3156 }
3157 else
3158 c = from[i++];
3159
3160 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3161 *e++ = base64_value_to_char[0x3f & c];
3162 }
3163
3164 return e - to;
3165 }
3166
3167
3168 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3169 2, 2, "r",
3170 doc: /* Base64-decode the region between BEG and END.
3171 Return the length of the decoded text.
3172 If the region can't be decoded, signal an error and don't modify the buffer. */)
3173 (Lisp_Object beg, Lisp_Object end)
3174 {
3175 EMACS_INT ibeg, iend, length, allength;
3176 char *decoded;
3177 EMACS_INT old_pos = PT;
3178 EMACS_INT decoded_length;
3179 EMACS_INT inserted_chars;
3180 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3181 USE_SAFE_ALLOCA;
3182
3183 validate_region (&beg, &end);
3184
3185 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3186 iend = CHAR_TO_BYTE (XFASTINT (end));
3187
3188 length = iend - ibeg;
3189
3190 /* We need to allocate enough room for decoding the text. If we are
3191 working on a multibyte buffer, each decoded code may occupy at
3192 most two bytes. */
3193 allength = multibyte ? length * 2 : length;
3194 SAFE_ALLOCA (decoded, char *, allength);
3195
3196 move_gap_both (XFASTINT (beg), ibeg);
3197 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3198 multibyte, &inserted_chars);
3199 if (decoded_length > allength)
3200 abort ();
3201
3202 if (decoded_length < 0)
3203 {
3204 /* The decoding wasn't possible. */
3205 SAFE_FREE ();
3206 error ("Invalid base64 data");
3207 }
3208
3209 /* Now we have decoded the region, so we insert the new contents
3210 and delete the old. (Insert first in order to preserve markers.) */
3211 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3212 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3213 SAFE_FREE ();
3214
3215 /* Delete the original text. */
3216 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3217 iend + decoded_length, 1);
3218
3219 /* If point was outside of the region, restore it exactly; else just
3220 move to the beginning of the region. */
3221 if (old_pos >= XFASTINT (end))
3222 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3223 else if (old_pos > XFASTINT (beg))
3224 old_pos = XFASTINT (beg);
3225 SET_PT (old_pos > ZV ? ZV : old_pos);
3226
3227 return make_number (inserted_chars);
3228 }
3229
3230 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3231 1, 1, 0,
3232 doc: /* Base64-decode STRING and return the result. */)
3233 (Lisp_Object string)
3234 {
3235 char *decoded;
3236 EMACS_INT length, decoded_length;
3237 Lisp_Object decoded_string;
3238 USE_SAFE_ALLOCA;
3239
3240 CHECK_STRING (string);
3241
3242 length = SBYTES (string);
3243 /* We need to allocate enough room for decoding the text. */
3244 SAFE_ALLOCA (decoded, char *, length);
3245
3246 /* The decoded result should be unibyte. */
3247 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3248 0, NULL);
3249 if (decoded_length > length)
3250 abort ();
3251 else if (decoded_length >= 0)
3252 decoded_string = make_unibyte_string (decoded, decoded_length);
3253 else
3254 decoded_string = Qnil;
3255
3256 SAFE_FREE ();
3257 if (!STRINGP (decoded_string))
3258 error ("Invalid base64 data");
3259
3260 return decoded_string;
3261 }
3262
3263 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3264 MULTIBYTE is nonzero, the decoded result should be in multibyte
3265 form. If NCHARS_RETRUN is not NULL, store the number of produced
3266 characters in *NCHARS_RETURN. */
3267
3268 static EMACS_INT
3269 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3270 int multibyte, EMACS_INT *nchars_return)
3271 {
3272 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3273 char *e = to;
3274 unsigned char c;
3275 unsigned long value;
3276 EMACS_INT nchars = 0;
3277
3278 while (1)
3279 {
3280 /* Process first byte of a quadruplet. */
3281
3282 READ_QUADRUPLET_BYTE (e-to);
3283
3284 if (!IS_BASE64 (c))
3285 return -1;
3286 value = base64_char_to_value[c] << 18;
3287
3288 /* Process second byte of a quadruplet. */
3289
3290 READ_QUADRUPLET_BYTE (-1);
3291
3292 if (!IS_BASE64 (c))
3293 return -1;
3294 value |= base64_char_to_value[c] << 12;
3295
3296 c = (unsigned char) (value >> 16);
3297 if (multibyte && c >= 128)
3298 e += BYTE8_STRING (c, e);
3299 else
3300 *e++ = c;
3301 nchars++;
3302
3303 /* Process third byte of a quadruplet. */
3304
3305 READ_QUADRUPLET_BYTE (-1);
3306
3307 if (c == '=')
3308 {
3309 READ_QUADRUPLET_BYTE (-1);
3310
3311 if (c != '=')
3312 return -1;
3313 continue;
3314 }
3315
3316 if (!IS_BASE64 (c))
3317 return -1;
3318 value |= base64_char_to_value[c] << 6;
3319
3320 c = (unsigned char) (0xff & value >> 8);
3321 if (multibyte && c >= 128)
3322 e += BYTE8_STRING (c, e);
3323 else
3324 *e++ = c;
3325 nchars++;
3326
3327 /* Process fourth byte of a quadruplet. */
3328
3329 READ_QUADRUPLET_BYTE (-1);
3330
3331 if (c == '=')
3332 continue;
3333
3334 if (!IS_BASE64 (c))
3335 return -1;
3336 value |= base64_char_to_value[c];
3337
3338 c = (unsigned char) (0xff & value);
3339 if (multibyte && c >= 128)
3340 e += BYTE8_STRING (c, e);
3341 else
3342 *e++ = c;
3343 nchars++;
3344 }
3345 }
3346
3347
3348 \f
3349 /***********************************************************************
3350 ***** *****
3351 ***** Hash Tables *****
3352 ***** *****
3353 ***********************************************************************/
3354
3355 /* Implemented by gerd@gnu.org. This hash table implementation was
3356 inspired by CMUCL hash tables. */
3357
3358 /* Ideas:
3359
3360 1. For small tables, association lists are probably faster than
3361 hash tables because they have lower overhead.
3362
3363 For uses of hash tables where the O(1) behavior of table
3364 operations is not a requirement, it might therefore be a good idea
3365 not to hash. Instead, we could just do a linear search in the
3366 key_and_value vector of the hash table. This could be done
3367 if a `:linear-search t' argument is given to make-hash-table. */
3368
3369
3370 /* The list of all weak hash tables. Don't staticpro this one. */
3371
3372 struct Lisp_Hash_Table *weak_hash_tables;
3373
3374 /* Various symbols. */
3375
3376 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3377 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3378 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3379
3380 /* Function prototypes. */
3381
3382 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3383 static int get_key_arg (Lisp_Object, int, Lisp_Object *, char *);
3384 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3385 static int cmpfn_eql (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3386 Lisp_Object, unsigned);
3387 static int cmpfn_equal (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3388 Lisp_Object, unsigned);
3389 static int cmpfn_user_defined (struct Lisp_Hash_Table *, Lisp_Object,
3390 unsigned, Lisp_Object, unsigned);
3391 static unsigned hashfn_eq (struct Lisp_Hash_Table *, Lisp_Object);
3392 static unsigned hashfn_eql (struct Lisp_Hash_Table *, Lisp_Object);
3393 static unsigned hashfn_equal (struct Lisp_Hash_Table *, Lisp_Object);
3394 static unsigned hashfn_user_defined (struct Lisp_Hash_Table *,
3395 Lisp_Object);
3396 static unsigned sxhash_string (unsigned char *, int);
3397 static unsigned sxhash_list (Lisp_Object, int);
3398 static unsigned sxhash_vector (Lisp_Object, int);
3399 static unsigned sxhash_bool_vector (Lisp_Object);
3400 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3401
3402
3403 \f
3404 /***********************************************************************
3405 Utilities
3406 ***********************************************************************/
3407
3408 /* If OBJ is a Lisp hash table, return a pointer to its struct
3409 Lisp_Hash_Table. Otherwise, signal an error. */
3410
3411 static struct Lisp_Hash_Table *
3412 check_hash_table (Lisp_Object obj)
3413 {
3414 CHECK_HASH_TABLE (obj);
3415 return XHASH_TABLE (obj);
3416 }
3417
3418
3419 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3420 number. */
3421
3422 int
3423 next_almost_prime (int n)
3424 {
3425 if (n % 2 == 0)
3426 n += 1;
3427 if (n % 3 == 0)
3428 n += 2;
3429 if (n % 7 == 0)
3430 n += 4;
3431 return n;
3432 }
3433
3434
3435 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3436 which USED[I] is non-zero. If found at index I in ARGS, set
3437 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3438 -1. This function is used to extract a keyword/argument pair from
3439 a DEFUN parameter list. */
3440
3441 static int
3442 get_key_arg (Lisp_Object key, int nargs, Lisp_Object *args, char *used)
3443 {
3444 int i;
3445
3446 for (i = 0; i < nargs - 1; ++i)
3447 if (!used[i] && EQ (args[i], key))
3448 break;
3449
3450 if (i >= nargs - 1)
3451 i = -1;
3452 else
3453 {
3454 used[i++] = 1;
3455 used[i] = 1;
3456 }
3457
3458 return i;
3459 }
3460
3461
3462 /* Return a Lisp vector which has the same contents as VEC but has
3463 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3464 vector that are not copied from VEC are set to INIT. */
3465
3466 Lisp_Object
3467 larger_vector (Lisp_Object vec, int new_size, Lisp_Object init)
3468 {
3469 struct Lisp_Vector *v;
3470 int i, old_size;
3471
3472 xassert (VECTORP (vec));
3473 old_size = ASIZE (vec);
3474 xassert (new_size >= old_size);
3475
3476 v = allocate_vector (new_size);
3477 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3478 for (i = old_size; i < new_size; ++i)
3479 v->contents[i] = init;
3480 XSETVECTOR (vec, v);
3481 return vec;
3482 }
3483
3484
3485 /***********************************************************************
3486 Low-level Functions
3487 ***********************************************************************/
3488
3489 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3490 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3491 KEY2 are the same. */
3492
3493 static int
3494 cmpfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3495 {
3496 return (FLOATP (key1)
3497 && FLOATP (key2)
3498 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3499 }
3500
3501
3502 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3503 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3504 KEY2 are the same. */
3505
3506 static int
3507 cmpfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3508 {
3509 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3510 }
3511
3512
3513 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3514 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3515 if KEY1 and KEY2 are the same. */
3516
3517 static int
3518 cmpfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3519 {
3520 if (hash1 == hash2)
3521 {
3522 Lisp_Object args[3];
3523
3524 args[0] = h->user_cmp_function;
3525 args[1] = key1;
3526 args[2] = key2;
3527 return !NILP (Ffuncall (3, args));
3528 }
3529 else
3530 return 0;
3531 }
3532
3533
3534 /* Value is a hash code for KEY for use in hash table H which uses
3535 `eq' to compare keys. The hash code returned is guaranteed to fit
3536 in a Lisp integer. */
3537
3538 static unsigned
3539 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3540 {
3541 unsigned hash = XUINT (key) ^ XTYPE (key);
3542 xassert ((hash & ~INTMASK) == 0);
3543 return hash;
3544 }
3545
3546
3547 /* Value is a hash code for KEY for use in hash table H which uses
3548 `eql' to compare keys. The hash code returned is guaranteed to fit
3549 in a Lisp integer. */
3550
3551 static unsigned
3552 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3553 {
3554 unsigned hash;
3555 if (FLOATP (key))
3556 hash = sxhash (key, 0);
3557 else
3558 hash = XUINT (key) ^ XTYPE (key);
3559 xassert ((hash & ~INTMASK) == 0);
3560 return hash;
3561 }
3562
3563
3564 /* Value is a hash code for KEY for use in hash table H which uses
3565 `equal' to compare keys. The hash code returned is guaranteed to fit
3566 in a Lisp integer. */
3567
3568 static unsigned
3569 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3570 {
3571 unsigned hash = sxhash (key, 0);
3572 xassert ((hash & ~INTMASK) == 0);
3573 return hash;
3574 }
3575
3576
3577 /* Value is a hash code for KEY for use in hash table H which uses as
3578 user-defined function to compare keys. The hash code returned is
3579 guaranteed to fit in a Lisp integer. */
3580
3581 static unsigned
3582 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3583 {
3584 Lisp_Object args[2], hash;
3585
3586 args[0] = h->user_hash_function;
3587 args[1] = key;
3588 hash = Ffuncall (2, args);
3589 if (!INTEGERP (hash))
3590 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3591 return XUINT (hash);
3592 }
3593
3594
3595 /* Create and initialize a new hash table.
3596
3597 TEST specifies the test the hash table will use to compare keys.
3598 It must be either one of the predefined tests `eq', `eql' or
3599 `equal' or a symbol denoting a user-defined test named TEST with
3600 test and hash functions USER_TEST and USER_HASH.
3601
3602 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3603
3604 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3605 new size when it becomes full is computed by adding REHASH_SIZE to
3606 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3607 table's new size is computed by multiplying its old size with
3608 REHASH_SIZE.
3609
3610 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3611 be resized when the ratio of (number of entries in the table) /
3612 (table size) is >= REHASH_THRESHOLD.
3613
3614 WEAK specifies the weakness of the table. If non-nil, it must be
3615 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3616
3617 Lisp_Object
3618 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3619 Lisp_Object rehash_threshold, Lisp_Object weak,
3620 Lisp_Object user_test, Lisp_Object user_hash)
3621 {
3622 struct Lisp_Hash_Table *h;
3623 Lisp_Object table;
3624 int index_size, i, sz;
3625
3626 /* Preconditions. */
3627 xassert (SYMBOLP (test));
3628 xassert (INTEGERP (size) && XINT (size) >= 0);
3629 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3630 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3631 xassert (FLOATP (rehash_threshold)
3632 && XFLOATINT (rehash_threshold) > 0
3633 && XFLOATINT (rehash_threshold) <= 1.0);
3634
3635 if (XFASTINT (size) == 0)
3636 size = make_number (1);
3637
3638 /* Allocate a table and initialize it. */
3639 h = allocate_hash_table ();
3640
3641 /* Initialize hash table slots. */
3642 sz = XFASTINT (size);
3643
3644 h->test = test;
3645 if (EQ (test, Qeql))
3646 {
3647 h->cmpfn = cmpfn_eql;
3648 h->hashfn = hashfn_eql;
3649 }
3650 else if (EQ (test, Qeq))
3651 {
3652 h->cmpfn = NULL;
3653 h->hashfn = hashfn_eq;
3654 }
3655 else if (EQ (test, Qequal))
3656 {
3657 h->cmpfn = cmpfn_equal;
3658 h->hashfn = hashfn_equal;
3659 }
3660 else
3661 {
3662 h->user_cmp_function = user_test;
3663 h->user_hash_function = user_hash;
3664 h->cmpfn = cmpfn_user_defined;
3665 h->hashfn = hashfn_user_defined;
3666 }
3667
3668 h->weak = weak;
3669 h->rehash_threshold = rehash_threshold;
3670 h->rehash_size = rehash_size;
3671 h->count = 0;
3672 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3673 h->hash = Fmake_vector (size, Qnil);
3674 h->next = Fmake_vector (size, Qnil);
3675 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3676 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3677 h->index = Fmake_vector (make_number (index_size), Qnil);
3678
3679 /* Set up the free list. */
3680 for (i = 0; i < sz - 1; ++i)
3681 HASH_NEXT (h, i) = make_number (i + 1);
3682 h->next_free = make_number (0);
3683
3684 XSET_HASH_TABLE (table, h);
3685 xassert (HASH_TABLE_P (table));
3686 xassert (XHASH_TABLE (table) == h);
3687
3688 /* Maybe add this hash table to the list of all weak hash tables. */
3689 if (NILP (h->weak))
3690 h->next_weak = NULL;
3691 else
3692 {
3693 h->next_weak = weak_hash_tables;
3694 weak_hash_tables = h;
3695 }
3696
3697 return table;
3698 }
3699
3700
3701 /* Return a copy of hash table H1. Keys and values are not copied,
3702 only the table itself is. */
3703
3704 static Lisp_Object
3705 copy_hash_table (struct Lisp_Hash_Table *h1)
3706 {
3707 Lisp_Object table;
3708 struct Lisp_Hash_Table *h2;
3709 struct Lisp_Vector *next;
3710
3711 h2 = allocate_hash_table ();
3712 next = h2->vec_next;
3713 memcpy (h2, h1, sizeof *h2);
3714 h2->vec_next = next;
3715 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3716 h2->hash = Fcopy_sequence (h1->hash);
3717 h2->next = Fcopy_sequence (h1->next);
3718 h2->index = Fcopy_sequence (h1->index);
3719 XSET_HASH_TABLE (table, h2);
3720
3721 /* Maybe add this hash table to the list of all weak hash tables. */
3722 if (!NILP (h2->weak))
3723 {
3724 h2->next_weak = weak_hash_tables;
3725 weak_hash_tables = h2;
3726 }
3727
3728 return table;
3729 }
3730
3731
3732 /* Resize hash table H if it's too full. If H cannot be resized
3733 because it's already too large, throw an error. */
3734
3735 static INLINE void
3736 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3737 {
3738 if (NILP (h->next_free))
3739 {
3740 int old_size = HASH_TABLE_SIZE (h);
3741 int i, new_size, index_size;
3742 EMACS_INT nsize;
3743
3744 if (INTEGERP (h->rehash_size))
3745 new_size = old_size + XFASTINT (h->rehash_size);
3746 else
3747 new_size = old_size * XFLOATINT (h->rehash_size);
3748 new_size = max (old_size + 1, new_size);
3749 index_size = next_almost_prime ((int)
3750 (new_size
3751 / XFLOATINT (h->rehash_threshold)));
3752 /* Assignment to EMACS_INT stops GCC whining about limited range
3753 of data type. */
3754 nsize = max (index_size, 2 * new_size);
3755 if (nsize > MOST_POSITIVE_FIXNUM)
3756 error ("Hash table too large to resize");
3757
3758 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3759 h->next = larger_vector (h->next, new_size, Qnil);
3760 h->hash = larger_vector (h->hash, new_size, Qnil);
3761 h->index = Fmake_vector (make_number (index_size), Qnil);
3762
3763 /* Update the free list. Do it so that new entries are added at
3764 the end of the free list. This makes some operations like
3765 maphash faster. */
3766 for (i = old_size; i < new_size - 1; ++i)
3767 HASH_NEXT (h, i) = make_number (i + 1);
3768
3769 if (!NILP (h->next_free))
3770 {
3771 Lisp_Object last, next;
3772
3773 last = h->next_free;
3774 while (next = HASH_NEXT (h, XFASTINT (last)),
3775 !NILP (next))
3776 last = next;
3777
3778 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3779 }
3780 else
3781 XSETFASTINT (h->next_free, old_size);
3782
3783 /* Rehash. */
3784 for (i = 0; i < old_size; ++i)
3785 if (!NILP (HASH_HASH (h, i)))
3786 {
3787 unsigned hash_code = XUINT (HASH_HASH (h, i));
3788 int start_of_bucket = hash_code % ASIZE (h->index);
3789 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3790 HASH_INDEX (h, start_of_bucket) = make_number (i);
3791 }
3792 }
3793 }
3794
3795
3796 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3797 the hash code of KEY. Value is the index of the entry in H
3798 matching KEY, or -1 if not found. */
3799
3800 int
3801 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, unsigned int *hash)
3802 {
3803 unsigned hash_code;
3804 int start_of_bucket;
3805 Lisp_Object idx;
3806
3807 hash_code = h->hashfn (h, key);
3808 if (hash)
3809 *hash = hash_code;
3810
3811 start_of_bucket = hash_code % ASIZE (h->index);
3812 idx = HASH_INDEX (h, start_of_bucket);
3813
3814 /* We need not gcpro idx since it's either an integer or nil. */
3815 while (!NILP (idx))
3816 {
3817 int i = XFASTINT (idx);
3818 if (EQ (key, HASH_KEY (h, i))
3819 || (h->cmpfn
3820 && h->cmpfn (h, key, hash_code,
3821 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3822 break;
3823 idx = HASH_NEXT (h, i);
3824 }
3825
3826 return NILP (idx) ? -1 : XFASTINT (idx);
3827 }
3828
3829
3830 /* Put an entry into hash table H that associates KEY with VALUE.
3831 HASH is a previously computed hash code of KEY.
3832 Value is the index of the entry in H matching KEY. */
3833
3834 int
3835 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value, unsigned int hash)
3836 {
3837 int start_of_bucket, i;
3838
3839 xassert ((hash & ~INTMASK) == 0);
3840
3841 /* Increment count after resizing because resizing may fail. */
3842 maybe_resize_hash_table (h);
3843 h->count++;
3844
3845 /* Store key/value in the key_and_value vector. */
3846 i = XFASTINT (h->next_free);
3847 h->next_free = HASH_NEXT (h, i);
3848 HASH_KEY (h, i) = key;
3849 HASH_VALUE (h, i) = value;
3850
3851 /* Remember its hash code. */
3852 HASH_HASH (h, i) = make_number (hash);
3853
3854 /* Add new entry to its collision chain. */
3855 start_of_bucket = hash % ASIZE (h->index);
3856 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3857 HASH_INDEX (h, start_of_bucket) = make_number (i);
3858 return i;
3859 }
3860
3861
3862 /* Remove the entry matching KEY from hash table H, if there is one. */
3863
3864 static void
3865 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3866 {
3867 unsigned hash_code;
3868 int start_of_bucket;
3869 Lisp_Object idx, prev;
3870
3871 hash_code = h->hashfn (h, key);
3872 start_of_bucket = hash_code % ASIZE (h->index);
3873 idx = HASH_INDEX (h, start_of_bucket);
3874 prev = Qnil;
3875
3876 /* We need not gcpro idx, prev since they're either integers or nil. */
3877 while (!NILP (idx))
3878 {
3879 int i = XFASTINT (idx);
3880
3881 if (EQ (key, HASH_KEY (h, i))
3882 || (h->cmpfn
3883 && h->cmpfn (h, key, hash_code,
3884 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3885 {
3886 /* Take entry out of collision chain. */
3887 if (NILP (prev))
3888 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3889 else
3890 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3891
3892 /* Clear slots in key_and_value and add the slots to
3893 the free list. */
3894 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3895 HASH_NEXT (h, i) = h->next_free;
3896 h->next_free = make_number (i);
3897 h->count--;
3898 xassert (h->count >= 0);
3899 break;
3900 }
3901 else
3902 {
3903 prev = idx;
3904 idx = HASH_NEXT (h, i);
3905 }
3906 }
3907 }
3908
3909
3910 /* Clear hash table H. */
3911
3912 static void
3913 hash_clear (struct Lisp_Hash_Table *h)
3914 {
3915 if (h->count > 0)
3916 {
3917 int i, size = HASH_TABLE_SIZE (h);
3918
3919 for (i = 0; i < size; ++i)
3920 {
3921 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3922 HASH_KEY (h, i) = Qnil;
3923 HASH_VALUE (h, i) = Qnil;
3924 HASH_HASH (h, i) = Qnil;
3925 }
3926
3927 for (i = 0; i < ASIZE (h->index); ++i)
3928 ASET (h->index, i, Qnil);
3929
3930 h->next_free = make_number (0);
3931 h->count = 0;
3932 }
3933 }
3934
3935
3936 \f
3937 /************************************************************************
3938 Weak Hash Tables
3939 ************************************************************************/
3940
3941 void
3942 init_weak_hash_tables (void)
3943 {
3944 weak_hash_tables = NULL;
3945 }
3946
3947 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3948 entries from the table that don't survive the current GC.
3949 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3950 non-zero if anything was marked. */
3951
3952 static int
3953 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3954 {
3955 int bucket, n, marked;
3956
3957 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3958 marked = 0;
3959
3960 for (bucket = 0; bucket < n; ++bucket)
3961 {
3962 Lisp_Object idx, next, prev;
3963
3964 /* Follow collision chain, removing entries that
3965 don't survive this garbage collection. */
3966 prev = Qnil;
3967 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3968 {
3969 int i = XFASTINT (idx);
3970 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3971 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3972 int remove_p;
3973
3974 if (EQ (h->weak, Qkey))
3975 remove_p = !key_known_to_survive_p;
3976 else if (EQ (h->weak, Qvalue))
3977 remove_p = !value_known_to_survive_p;
3978 else if (EQ (h->weak, Qkey_or_value))
3979 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3980 else if (EQ (h->weak, Qkey_and_value))
3981 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3982 else
3983 abort ();
3984
3985 next = HASH_NEXT (h, i);
3986
3987 if (remove_entries_p)
3988 {
3989 if (remove_p)
3990 {
3991 /* Take out of collision chain. */
3992 if (NILP (prev))
3993 HASH_INDEX (h, bucket) = next;
3994 else
3995 HASH_NEXT (h, XFASTINT (prev)) = next;
3996
3997 /* Add to free list. */
3998 HASH_NEXT (h, i) = h->next_free;
3999 h->next_free = idx;
4000
4001 /* Clear key, value, and hash. */
4002 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4003 HASH_HASH (h, i) = Qnil;
4004
4005 h->count--;
4006 }
4007 else
4008 {
4009 prev = idx;
4010 }
4011 }
4012 else
4013 {
4014 if (!remove_p)
4015 {
4016 /* Make sure key and value survive. */
4017 if (!key_known_to_survive_p)
4018 {
4019 mark_object (HASH_KEY (h, i));
4020 marked = 1;
4021 }
4022
4023 if (!value_known_to_survive_p)
4024 {
4025 mark_object (HASH_VALUE (h, i));
4026 marked = 1;
4027 }
4028 }
4029 }
4030 }
4031 }
4032
4033 return marked;
4034 }
4035
4036 /* Remove elements from weak hash tables that don't survive the
4037 current garbage collection. Remove weak tables that don't survive
4038 from Vweak_hash_tables. Called from gc_sweep. */
4039
4040 void
4041 sweep_weak_hash_tables (void)
4042 {
4043 struct Lisp_Hash_Table *h, *used, *next;
4044 int marked;
4045
4046 /* Mark all keys and values that are in use. Keep on marking until
4047 there is no more change. This is necessary for cases like
4048 value-weak table A containing an entry X -> Y, where Y is used in a
4049 key-weak table B, Z -> Y. If B comes after A in the list of weak
4050 tables, X -> Y might be removed from A, although when looking at B
4051 one finds that it shouldn't. */
4052 do
4053 {
4054 marked = 0;
4055 for (h = weak_hash_tables; h; h = h->next_weak)
4056 {
4057 if (h->size & ARRAY_MARK_FLAG)
4058 marked |= sweep_weak_table (h, 0);
4059 }
4060 }
4061 while (marked);
4062
4063 /* Remove tables and entries that aren't used. */
4064 for (h = weak_hash_tables, used = NULL; h; h = next)
4065 {
4066 next = h->next_weak;
4067
4068 if (h->size & ARRAY_MARK_FLAG)
4069 {
4070 /* TABLE is marked as used. Sweep its contents. */
4071 if (h->count > 0)
4072 sweep_weak_table (h, 1);
4073
4074 /* Add table to the list of used weak hash tables. */
4075 h->next_weak = used;
4076 used = h;
4077 }
4078 }
4079
4080 weak_hash_tables = used;
4081 }
4082
4083
4084 \f
4085 /***********************************************************************
4086 Hash Code Computation
4087 ***********************************************************************/
4088
4089 /* Maximum depth up to which to dive into Lisp structures. */
4090
4091 #define SXHASH_MAX_DEPTH 3
4092
4093 /* Maximum length up to which to take list and vector elements into
4094 account. */
4095
4096 #define SXHASH_MAX_LEN 7
4097
4098 /* Combine two integers X and Y for hashing. */
4099
4100 #define SXHASH_COMBINE(X, Y) \
4101 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4102 + (unsigned)(Y))
4103
4104
4105 /* Return a hash for string PTR which has length LEN. The hash
4106 code returned is guaranteed to fit in a Lisp integer. */
4107
4108 static unsigned
4109 sxhash_string (unsigned char *ptr, int len)
4110 {
4111 unsigned char *p = ptr;
4112 unsigned char *end = p + len;
4113 unsigned char c;
4114 unsigned hash = 0;
4115
4116 while (p != end)
4117 {
4118 c = *p++;
4119 if (c >= 0140)
4120 c -= 40;
4121 hash = ((hash << 4) + (hash >> 28) + c);
4122 }
4123
4124 return hash & INTMASK;
4125 }
4126
4127
4128 /* Return a hash for list LIST. DEPTH is the current depth in the
4129 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4130
4131 static unsigned
4132 sxhash_list (Lisp_Object list, int depth)
4133 {
4134 unsigned hash = 0;
4135 int i;
4136
4137 if (depth < SXHASH_MAX_DEPTH)
4138 for (i = 0;
4139 CONSP (list) && i < SXHASH_MAX_LEN;
4140 list = XCDR (list), ++i)
4141 {
4142 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4143 hash = SXHASH_COMBINE (hash, hash2);
4144 }
4145
4146 if (!NILP (list))
4147 {
4148 unsigned hash2 = sxhash (list, depth + 1);
4149 hash = SXHASH_COMBINE (hash, hash2);
4150 }
4151
4152 return hash;
4153 }
4154
4155
4156 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4157 the Lisp structure. */
4158
4159 static unsigned
4160 sxhash_vector (Lisp_Object vec, int depth)
4161 {
4162 unsigned hash = ASIZE (vec);
4163 int i, n;
4164
4165 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4166 for (i = 0; i < n; ++i)
4167 {
4168 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4169 hash = SXHASH_COMBINE (hash, hash2);
4170 }
4171
4172 return hash;
4173 }
4174
4175
4176 /* Return a hash for bool-vector VECTOR. */
4177
4178 static unsigned
4179 sxhash_bool_vector (Lisp_Object vec)
4180 {
4181 unsigned hash = XBOOL_VECTOR (vec)->size;
4182 int i, n;
4183
4184 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4185 for (i = 0; i < n; ++i)
4186 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4187
4188 return hash;
4189 }
4190
4191
4192 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4193 structure. Value is an unsigned integer clipped to INTMASK. */
4194
4195 unsigned
4196 sxhash (Lisp_Object obj, int depth)
4197 {
4198 unsigned hash;
4199
4200 if (depth > SXHASH_MAX_DEPTH)
4201 return 0;
4202
4203 switch (XTYPE (obj))
4204 {
4205 case_Lisp_Int:
4206 hash = XUINT (obj);
4207 break;
4208
4209 case Lisp_Misc:
4210 hash = XUINT (obj);
4211 break;
4212
4213 case Lisp_Symbol:
4214 obj = SYMBOL_NAME (obj);
4215 /* Fall through. */
4216
4217 case Lisp_String:
4218 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4219 break;
4220
4221 /* This can be everything from a vector to an overlay. */
4222 case Lisp_Vectorlike:
4223 if (VECTORP (obj))
4224 /* According to the CL HyperSpec, two arrays are equal only if
4225 they are `eq', except for strings and bit-vectors. In
4226 Emacs, this works differently. We have to compare element
4227 by element. */
4228 hash = sxhash_vector (obj, depth);
4229 else if (BOOL_VECTOR_P (obj))
4230 hash = sxhash_bool_vector (obj);
4231 else
4232 /* Others are `equal' if they are `eq', so let's take their
4233 address as hash. */
4234 hash = XUINT (obj);
4235 break;
4236
4237 case Lisp_Cons:
4238 hash = sxhash_list (obj, depth);
4239 break;
4240
4241 case Lisp_Float:
4242 {
4243 double val = XFLOAT_DATA (obj);
4244 unsigned char *p = (unsigned char *) &val;
4245 unsigned char *e = p + sizeof val;
4246 for (hash = 0; p < e; ++p)
4247 hash = SXHASH_COMBINE (hash, *p);
4248 break;
4249 }
4250
4251 default:
4252 abort ();
4253 }
4254
4255 return hash & INTMASK;
4256 }
4257
4258
4259 \f
4260 /***********************************************************************
4261 Lisp Interface
4262 ***********************************************************************/
4263
4264
4265 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4266 doc: /* Compute a hash code for OBJ and return it as integer. */)
4267 (Lisp_Object obj)
4268 {
4269 unsigned hash = sxhash (obj, 0);
4270 return make_number (hash);
4271 }
4272
4273
4274 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4275 doc: /* Create and return a new hash table.
4276
4277 Arguments are specified as keyword/argument pairs. The following
4278 arguments are defined:
4279
4280 :test TEST -- TEST must be a symbol that specifies how to compare
4281 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4282 `equal'. User-supplied test and hash functions can be specified via
4283 `define-hash-table-test'.
4284
4285 :size SIZE -- A hint as to how many elements will be put in the table.
4286 Default is 65.
4287
4288 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4289 fills up. If REHASH-SIZE is an integer, increase the size by that
4290 amount. If it is a float, it must be > 1.0, and the new size is the
4291 old size multiplied by that factor. Default is 1.5.
4292
4293 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4294 Resize the hash table when the ratio (number of entries / table size)
4295 is greater than or equal to THRESHOLD. Default is 0.8.
4296
4297 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4298 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4299 returned is a weak table. Key/value pairs are removed from a weak
4300 hash table when there are no non-weak references pointing to their
4301 key, value, one of key or value, or both key and value, depending on
4302 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4303 is nil.
4304
4305 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4306 (int nargs, Lisp_Object *args)
4307 {
4308 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4309 Lisp_Object user_test, user_hash;
4310 char *used;
4311 int i;
4312
4313 /* The vector `used' is used to keep track of arguments that
4314 have been consumed. */
4315 used = (char *) alloca (nargs * sizeof *used);
4316 memset (used, 0, nargs * sizeof *used);
4317
4318 /* See if there's a `:test TEST' among the arguments. */
4319 i = get_key_arg (QCtest, nargs, args, used);
4320 test = i < 0 ? Qeql : args[i];
4321 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4322 {
4323 /* See if it is a user-defined test. */
4324 Lisp_Object prop;
4325
4326 prop = Fget (test, Qhash_table_test);
4327 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4328 signal_error ("Invalid hash table test", test);
4329 user_test = XCAR (prop);
4330 user_hash = XCAR (XCDR (prop));
4331 }
4332 else
4333 user_test = user_hash = Qnil;
4334
4335 /* See if there's a `:size SIZE' argument. */
4336 i = get_key_arg (QCsize, nargs, args, used);
4337 size = i < 0 ? Qnil : args[i];
4338 if (NILP (size))
4339 size = make_number (DEFAULT_HASH_SIZE);
4340 else if (!INTEGERP (size) || XINT (size) < 0)
4341 signal_error ("Invalid hash table size", size);
4342
4343 /* Look for `:rehash-size SIZE'. */
4344 i = get_key_arg (QCrehash_size, nargs, args, used);
4345 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4346 if (!NUMBERP (rehash_size)
4347 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4348 || XFLOATINT (rehash_size) <= 1.0)
4349 signal_error ("Invalid hash table rehash size", rehash_size);
4350
4351 /* Look for `:rehash-threshold THRESHOLD'. */
4352 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4353 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4354 if (!FLOATP (rehash_threshold)
4355 || XFLOATINT (rehash_threshold) <= 0.0
4356 || XFLOATINT (rehash_threshold) > 1.0)
4357 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4358
4359 /* Look for `:weakness WEAK'. */
4360 i = get_key_arg (QCweakness, nargs, args, used);
4361 weak = i < 0 ? Qnil : args[i];
4362 if (EQ (weak, Qt))
4363 weak = Qkey_and_value;
4364 if (!NILP (weak)
4365 && !EQ (weak, Qkey)
4366 && !EQ (weak, Qvalue)
4367 && !EQ (weak, Qkey_or_value)
4368 && !EQ (weak, Qkey_and_value))
4369 signal_error ("Invalid hash table weakness", weak);
4370
4371 /* Now, all args should have been used up, or there's a problem. */
4372 for (i = 0; i < nargs; ++i)
4373 if (!used[i])
4374 signal_error ("Invalid argument list", args[i]);
4375
4376 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4377 user_test, user_hash);
4378 }
4379
4380
4381 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4382 doc: /* Return a copy of hash table TABLE. */)
4383 (Lisp_Object table)
4384 {
4385 return copy_hash_table (check_hash_table (table));
4386 }
4387
4388
4389 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4390 doc: /* Return the number of elements in TABLE. */)
4391 (Lisp_Object table)
4392 {
4393 return make_number (check_hash_table (table)->count);
4394 }
4395
4396
4397 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4398 Shash_table_rehash_size, 1, 1, 0,
4399 doc: /* Return the current rehash size of TABLE. */)
4400 (Lisp_Object table)
4401 {
4402 return check_hash_table (table)->rehash_size;
4403 }
4404
4405
4406 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4407 Shash_table_rehash_threshold, 1, 1, 0,
4408 doc: /* Return the current rehash threshold of TABLE. */)
4409 (Lisp_Object table)
4410 {
4411 return check_hash_table (table)->rehash_threshold;
4412 }
4413
4414
4415 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4416 doc: /* Return the size of TABLE.
4417 The size can be used as an argument to `make-hash-table' to create
4418 a hash table than can hold as many elements as TABLE holds
4419 without need for resizing. */)
4420 (Lisp_Object table)
4421 {
4422 struct Lisp_Hash_Table *h = check_hash_table (table);
4423 return make_number (HASH_TABLE_SIZE (h));
4424 }
4425
4426
4427 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4428 doc: /* Return the test TABLE uses. */)
4429 (Lisp_Object table)
4430 {
4431 return check_hash_table (table)->test;
4432 }
4433
4434
4435 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4436 1, 1, 0,
4437 doc: /* Return the weakness of TABLE. */)
4438 (Lisp_Object table)
4439 {
4440 return check_hash_table (table)->weak;
4441 }
4442
4443
4444 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4445 doc: /* Return t if OBJ is a Lisp hash table object. */)
4446 (Lisp_Object obj)
4447 {
4448 return HASH_TABLE_P (obj) ? Qt : Qnil;
4449 }
4450
4451
4452 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4453 doc: /* Clear hash table TABLE and return it. */)
4454 (Lisp_Object table)
4455 {
4456 hash_clear (check_hash_table (table));
4457 /* Be compatible with XEmacs. */
4458 return table;
4459 }
4460
4461
4462 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4463 doc: /* Look up KEY in TABLE and return its associated value.
4464 If KEY is not found, return DFLT which defaults to nil. */)
4465 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4466 {
4467 struct Lisp_Hash_Table *h = check_hash_table (table);
4468 int i = hash_lookup (h, key, NULL);
4469 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4470 }
4471
4472
4473 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4474 doc: /* Associate KEY with VALUE in hash table TABLE.
4475 If KEY is already present in table, replace its current value with
4476 VALUE. */)
4477 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4478 {
4479 struct Lisp_Hash_Table *h = check_hash_table (table);
4480 int i;
4481 unsigned hash;
4482
4483 i = hash_lookup (h, key, &hash);
4484 if (i >= 0)
4485 HASH_VALUE (h, i) = value;
4486 else
4487 hash_put (h, key, value, hash);
4488
4489 return value;
4490 }
4491
4492
4493 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4494 doc: /* Remove KEY from TABLE. */)
4495 (Lisp_Object key, Lisp_Object table)
4496 {
4497 struct Lisp_Hash_Table *h = check_hash_table (table);
4498 hash_remove_from_table (h, key);
4499 return Qnil;
4500 }
4501
4502
4503 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4504 doc: /* Call FUNCTION for all entries in hash table TABLE.
4505 FUNCTION is called with two arguments, KEY and VALUE. */)
4506 (Lisp_Object function, Lisp_Object table)
4507 {
4508 struct Lisp_Hash_Table *h = check_hash_table (table);
4509 Lisp_Object args[3];
4510 int i;
4511
4512 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4513 if (!NILP (HASH_HASH (h, i)))
4514 {
4515 args[0] = function;
4516 args[1] = HASH_KEY (h, i);
4517 args[2] = HASH_VALUE (h, i);
4518 Ffuncall (3, args);
4519 }
4520
4521 return Qnil;
4522 }
4523
4524
4525 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4526 Sdefine_hash_table_test, 3, 3, 0,
4527 doc: /* Define a new hash table test with name NAME, a symbol.
4528
4529 In hash tables created with NAME specified as test, use TEST to
4530 compare keys, and HASH for computing hash codes of keys.
4531
4532 TEST must be a function taking two arguments and returning non-nil if
4533 both arguments are the same. HASH must be a function taking one
4534 argument and return an integer that is the hash code of the argument.
4535 Hash code computation should use the whole value range of integers,
4536 including negative integers. */)
4537 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4538 {
4539 return Fput (name, Qhash_table_test, list2 (test, hash));
4540 }
4541
4542
4543 \f
4544 /************************************************************************
4545 MD5
4546 ************************************************************************/
4547
4548 #include "md5.h"
4549
4550 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4551 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4552
4553 A message digest is a cryptographic checksum of a document, and the
4554 algorithm to calculate it is defined in RFC 1321.
4555
4556 The two optional arguments START and END are character positions
4557 specifying for which part of OBJECT the message digest should be
4558 computed. If nil or omitted, the digest is computed for the whole
4559 OBJECT.
4560
4561 The MD5 message digest is computed from the result of encoding the
4562 text in a coding system, not directly from the internal Emacs form of
4563 the text. The optional fourth argument CODING-SYSTEM specifies which
4564 coding system to encode the text with. It should be the same coding
4565 system that you used or will use when actually writing the text into a
4566 file.
4567
4568 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4569 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4570 system would be chosen by default for writing this text into a file.
4571
4572 If OBJECT is a string, the most preferred coding system (see the
4573 command `prefer-coding-system') is used.
4574
4575 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4576 guesswork fails. Normally, an error is signaled in such case. */)
4577 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4578 {
4579 unsigned char digest[16];
4580 unsigned char value[33];
4581 int i;
4582 EMACS_INT size;
4583 EMACS_INT size_byte = 0;
4584 EMACS_INT start_char = 0, end_char = 0;
4585 EMACS_INT start_byte = 0, end_byte = 0;
4586 register EMACS_INT b, e;
4587 register struct buffer *bp;
4588 EMACS_INT temp;
4589
4590 if (STRINGP (object))
4591 {
4592 if (NILP (coding_system))
4593 {
4594 /* Decide the coding-system to encode the data with. */
4595
4596 if (STRING_MULTIBYTE (object))
4597 /* use default, we can't guess correct value */
4598 coding_system = preferred_coding_system ();
4599 else
4600 coding_system = Qraw_text;
4601 }
4602
4603 if (NILP (Fcoding_system_p (coding_system)))
4604 {
4605 /* Invalid coding system. */
4606
4607 if (!NILP (noerror))
4608 coding_system = Qraw_text;
4609 else
4610 xsignal1 (Qcoding_system_error, coding_system);
4611 }
4612
4613 if (STRING_MULTIBYTE (object))
4614 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4615
4616 size = SCHARS (object);
4617 size_byte = SBYTES (object);
4618
4619 if (!NILP (start))
4620 {
4621 CHECK_NUMBER (start);
4622
4623 start_char = XINT (start);
4624
4625 if (start_char < 0)
4626 start_char += size;
4627
4628 start_byte = string_char_to_byte (object, start_char);
4629 }
4630
4631 if (NILP (end))
4632 {
4633 end_char = size;
4634 end_byte = size_byte;
4635 }
4636 else
4637 {
4638 CHECK_NUMBER (end);
4639
4640 end_char = XINT (end);
4641
4642 if (end_char < 0)
4643 end_char += size;
4644
4645 end_byte = string_char_to_byte (object, end_char);
4646 }
4647
4648 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4649 args_out_of_range_3 (object, make_number (start_char),
4650 make_number (end_char));
4651 }
4652 else
4653 {
4654 struct buffer *prev = current_buffer;
4655
4656 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4657
4658 CHECK_BUFFER (object);
4659
4660 bp = XBUFFER (object);
4661 if (bp != current_buffer)
4662 set_buffer_internal (bp);
4663
4664 if (NILP (start))
4665 b = BEGV;
4666 else
4667 {
4668 CHECK_NUMBER_COERCE_MARKER (start);
4669 b = XINT (start);
4670 }
4671
4672 if (NILP (end))
4673 e = ZV;
4674 else
4675 {
4676 CHECK_NUMBER_COERCE_MARKER (end);
4677 e = XINT (end);
4678 }
4679
4680 if (b > e)
4681 temp = b, b = e, e = temp;
4682
4683 if (!(BEGV <= b && e <= ZV))
4684 args_out_of_range (start, end);
4685
4686 if (NILP (coding_system))
4687 {
4688 /* Decide the coding-system to encode the data with.
4689 See fileio.c:Fwrite-region */
4690
4691 if (!NILP (Vcoding_system_for_write))
4692 coding_system = Vcoding_system_for_write;
4693 else
4694 {
4695 int force_raw_text = 0;
4696
4697 coding_system = XBUFFER (object)->buffer_file_coding_system;
4698 if (NILP (coding_system)
4699 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4700 {
4701 coding_system = Qnil;
4702 if (NILP (current_buffer->enable_multibyte_characters))
4703 force_raw_text = 1;
4704 }
4705
4706 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4707 {
4708 /* Check file-coding-system-alist. */
4709 Lisp_Object args[4], val;
4710
4711 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4712 args[3] = Fbuffer_file_name(object);
4713 val = Ffind_operation_coding_system (4, args);
4714 if (CONSP (val) && !NILP (XCDR (val)))
4715 coding_system = XCDR (val);
4716 }
4717
4718 if (NILP (coding_system)
4719 && !NILP (XBUFFER (object)->buffer_file_coding_system))
4720 {
4721 /* If we still have not decided a coding system, use the
4722 default value of buffer-file-coding-system. */
4723 coding_system = XBUFFER (object)->buffer_file_coding_system;
4724 }
4725
4726 if (!force_raw_text
4727 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4728 /* Confirm that VAL can surely encode the current region. */
4729 coding_system = call4 (Vselect_safe_coding_system_function,
4730 make_number (b), make_number (e),
4731 coding_system, Qnil);
4732
4733 if (force_raw_text)
4734 coding_system = Qraw_text;
4735 }
4736
4737 if (NILP (Fcoding_system_p (coding_system)))
4738 {
4739 /* Invalid coding system. */
4740
4741 if (!NILP (noerror))
4742 coding_system = Qraw_text;
4743 else
4744 xsignal1 (Qcoding_system_error, coding_system);
4745 }
4746 }
4747
4748 object = make_buffer_string (b, e, 0);
4749 if (prev != current_buffer)
4750 set_buffer_internal (prev);
4751 /* Discard the unwind protect for recovering the current
4752 buffer. */
4753 specpdl_ptr--;
4754
4755 if (STRING_MULTIBYTE (object))
4756 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4757 }
4758
4759 md5_buffer (SDATA (object) + start_byte,
4760 SBYTES (object) - (size_byte - end_byte),
4761 digest);
4762
4763 for (i = 0; i < 16; i++)
4764 sprintf (&value[2 * i], "%02x", digest[i]);
4765 value[32] = '\0';
4766
4767 return make_string (value, 32);
4768 }
4769
4770 \f
4771 void
4772 syms_of_fns (void)
4773 {
4774 /* Hash table stuff. */
4775 Qhash_table_p = intern_c_string ("hash-table-p");
4776 staticpro (&Qhash_table_p);
4777 Qeq = intern_c_string ("eq");
4778 staticpro (&Qeq);
4779 Qeql = intern_c_string ("eql");
4780 staticpro (&Qeql);
4781 Qequal = intern_c_string ("equal");
4782 staticpro (&Qequal);
4783 QCtest = intern_c_string (":test");
4784 staticpro (&QCtest);
4785 QCsize = intern_c_string (":size");
4786 staticpro (&QCsize);
4787 QCrehash_size = intern_c_string (":rehash-size");
4788 staticpro (&QCrehash_size);
4789 QCrehash_threshold = intern_c_string (":rehash-threshold");
4790 staticpro (&QCrehash_threshold);
4791 QCweakness = intern_c_string (":weakness");
4792 staticpro (&QCweakness);
4793 Qkey = intern_c_string ("key");
4794 staticpro (&Qkey);
4795 Qvalue = intern_c_string ("value");
4796 staticpro (&Qvalue);
4797 Qhash_table_test = intern_c_string ("hash-table-test");
4798 staticpro (&Qhash_table_test);
4799 Qkey_or_value = intern_c_string ("key-or-value");
4800 staticpro (&Qkey_or_value);
4801 Qkey_and_value = intern_c_string ("key-and-value");
4802 staticpro (&Qkey_and_value);
4803
4804 defsubr (&Ssxhash);
4805 defsubr (&Smake_hash_table);
4806 defsubr (&Scopy_hash_table);
4807 defsubr (&Shash_table_count);
4808 defsubr (&Shash_table_rehash_size);
4809 defsubr (&Shash_table_rehash_threshold);
4810 defsubr (&Shash_table_size);
4811 defsubr (&Shash_table_test);
4812 defsubr (&Shash_table_weakness);
4813 defsubr (&Shash_table_p);
4814 defsubr (&Sclrhash);
4815 defsubr (&Sgethash);
4816 defsubr (&Sputhash);
4817 defsubr (&Sremhash);
4818 defsubr (&Smaphash);
4819 defsubr (&Sdefine_hash_table_test);
4820
4821 Qstring_lessp = intern_c_string ("string-lessp");
4822 staticpro (&Qstring_lessp);
4823 Qprovide = intern_c_string ("provide");
4824 staticpro (&Qprovide);
4825 Qrequire = intern_c_string ("require");
4826 staticpro (&Qrequire);
4827 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4828 staticpro (&Qyes_or_no_p_history);
4829 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4830 staticpro (&Qcursor_in_echo_area);
4831 Qwidget_type = intern_c_string ("widget-type");
4832 staticpro (&Qwidget_type);
4833
4834 staticpro (&string_char_byte_cache_string);
4835 string_char_byte_cache_string = Qnil;
4836
4837 require_nesting_list = Qnil;
4838 staticpro (&require_nesting_list);
4839
4840 Fset (Qyes_or_no_p_history, Qnil);
4841
4842 DEFVAR_LISP ("features", &Vfeatures,
4843 doc: /* A list of symbols which are the features of the executing Emacs.
4844 Used by `featurep' and `require', and altered by `provide'. */);
4845 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4846 Qsubfeatures = intern_c_string ("subfeatures");
4847 staticpro (&Qsubfeatures);
4848
4849 #ifdef HAVE_LANGINFO_CODESET
4850 Qcodeset = intern_c_string ("codeset");
4851 staticpro (&Qcodeset);
4852 Qdays = intern_c_string ("days");
4853 staticpro (&Qdays);
4854 Qmonths = intern_c_string ("months");
4855 staticpro (&Qmonths);
4856 Qpaper = intern_c_string ("paper");
4857 staticpro (&Qpaper);
4858 #endif /* HAVE_LANGINFO_CODESET */
4859
4860 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
4861 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4862 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4863 invoked by mouse clicks and mouse menu items.
4864
4865 On some platforms, file selection dialogs are also enabled if this is
4866 non-nil. */);
4867 use_dialog_box = 1;
4868
4869 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
4870 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4871 This applies to commands from menus and tool bar buttons even when
4872 they are initiated from the keyboard. If `use-dialog-box' is nil,
4873 that disables the use of a file dialog, regardless of the value of
4874 this variable. */);
4875 use_file_dialog = 1;
4876
4877 defsubr (&Sidentity);
4878 defsubr (&Srandom);
4879 defsubr (&Slength);
4880 defsubr (&Ssafe_length);
4881 defsubr (&Sstring_bytes);
4882 defsubr (&Sstring_equal);
4883 defsubr (&Scompare_strings);
4884 defsubr (&Sstring_lessp);
4885 defsubr (&Sappend);
4886 defsubr (&Sconcat);
4887 defsubr (&Svconcat);
4888 defsubr (&Scopy_sequence);
4889 defsubr (&Sstring_make_multibyte);
4890 defsubr (&Sstring_make_unibyte);
4891 defsubr (&Sstring_as_multibyte);
4892 defsubr (&Sstring_as_unibyte);
4893 defsubr (&Sstring_to_multibyte);
4894 defsubr (&Sstring_to_unibyte);
4895 defsubr (&Scopy_alist);
4896 defsubr (&Ssubstring);
4897 defsubr (&Ssubstring_no_properties);
4898 defsubr (&Snthcdr);
4899 defsubr (&Snth);
4900 defsubr (&Selt);
4901 defsubr (&Smember);
4902 defsubr (&Smemq);
4903 defsubr (&Smemql);
4904 defsubr (&Sassq);
4905 defsubr (&Sassoc);
4906 defsubr (&Srassq);
4907 defsubr (&Srassoc);
4908 defsubr (&Sdelq);
4909 defsubr (&Sdelete);
4910 defsubr (&Snreverse);
4911 defsubr (&Sreverse);
4912 defsubr (&Ssort);
4913 defsubr (&Splist_get);
4914 defsubr (&Sget);
4915 defsubr (&Splist_put);
4916 defsubr (&Sput);
4917 defsubr (&Slax_plist_get);
4918 defsubr (&Slax_plist_put);
4919 defsubr (&Seql);
4920 defsubr (&Sequal);
4921 defsubr (&Sequal_including_properties);
4922 defsubr (&Sfillarray);
4923 defsubr (&Sclear_string);
4924 defsubr (&Snconc);
4925 defsubr (&Smapcar);
4926 defsubr (&Smapc);
4927 defsubr (&Smapconcat);
4928 defsubr (&Syes_or_no_p);
4929 defsubr (&Sload_average);
4930 defsubr (&Sfeaturep);
4931 defsubr (&Srequire);
4932 defsubr (&Sprovide);
4933 defsubr (&Splist_member);
4934 defsubr (&Swidget_put);
4935 defsubr (&Swidget_get);
4936 defsubr (&Swidget_apply);
4937 defsubr (&Sbase64_encode_region);
4938 defsubr (&Sbase64_decode_region);
4939 defsubr (&Sbase64_encode_string);
4940 defsubr (&Sbase64_decode_string);
4941 defsubr (&Smd5);
4942 defsubr (&Slocale_info);
4943 }
4944
4945
4946 void
4947 init_fns (void)
4948 {
4949 }
4950
4951 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
4952 (do not change this comment) */