(iso-languages): For Portuguese ~c and
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 #ifdef emacs
31 /* Converts the pointer to the char to BEG-based offset from the start. */
32 #define PTR_TO_OFFSET(d) \
33 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
34 ? (d) - string1 : (d) - (string2 - size1))
35 #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
36 #else
37 #define PTR_TO_OFFSET(d) 0
38 #endif
39
40 #ifdef HAVE_CONFIG_H
41 #include <config.h>
42 #endif
43
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 #include <sys/types.h>
46
47 /* This is for other GNU distributions with internationalized messages. */
48 #if HAVE_LIBINTL_H || defined (_LIBC)
49 # include <libintl.h>
50 #else
51 # define gettext(msgid) (msgid)
52 #endif
53
54 #ifndef gettext_noop
55 /* This define is so xgettext can find the internationalizable
56 strings. */
57 #define gettext_noop(String) String
58 #endif
59
60 /* The `emacs' switch turns on certain matching commands
61 that make sense only in Emacs. */
62 #ifdef emacs
63
64 #include "lisp.h"
65 #include "buffer.h"
66
67 /* Make syntax table lookup grant data in gl_state. */
68 #define SYNTAX_ENTRY_VIA_PROPERTY
69
70 #include "syntax.h"
71 #include "charset.h"
72 #include "category.h"
73
74 #define malloc xmalloc
75 #define realloc xrealloc
76 #define free xfree
77
78 #else /* not emacs */
79
80 /* If we are not linking with Emacs proper,
81 we can't use the relocating allocator
82 even if config.h says that we can. */
83 #undef REL_ALLOC
84
85 #if defined (STDC_HEADERS) || defined (_LIBC)
86 #include <stdlib.h>
87 #else
88 char *malloc ();
89 char *realloc ();
90 #endif
91
92 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
93 If nothing else has been done, use the method below. */
94 #ifdef INHIBIT_STRING_HEADER
95 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
96 #if !defined (bzero) && !defined (bcopy)
97 #undef INHIBIT_STRING_HEADER
98 #endif
99 #endif
100 #endif
101
102 /* This is the normal way of making sure we have a bcopy and a bzero.
103 This is used in most programs--a few other programs avoid this
104 by defining INHIBIT_STRING_HEADER. */
105 #ifndef INHIBIT_STRING_HEADER
106 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
107 #include <string.h>
108 #ifndef bcmp
109 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
110 #endif
111 #ifndef bcopy
112 #define bcopy(s, d, n) memcpy ((d), (s), (n))
113 #endif
114 #ifndef bzero
115 #define bzero(s, n) memset ((s), 0, (n))
116 #endif
117 #else
118 #include <strings.h>
119 #endif
120 #endif
121
122 /* Define the syntax stuff for \<, \>, etc. */
123
124 /* This must be nonzero for the wordchar and notwordchar pattern
125 commands in re_match_2. */
126 #ifndef Sword
127 #define Sword 1
128 #endif
129
130 #ifdef SWITCH_ENUM_BUG
131 #define SWITCH_ENUM_CAST(x) ((int)(x))
132 #else
133 #define SWITCH_ENUM_CAST(x) (x)
134 #endif
135
136 #ifdef SYNTAX_TABLE
137
138 extern char *re_syntax_table;
139
140 #else /* not SYNTAX_TABLE */
141
142 /* How many characters in the character set. */
143 #define CHAR_SET_SIZE 256
144
145 static char re_syntax_table[CHAR_SET_SIZE];
146
147 static void
148 init_syntax_once ()
149 {
150 register int c;
151 static int done = 0;
152
153 if (done)
154 return;
155
156 bzero (re_syntax_table, sizeof re_syntax_table);
157
158 for (c = 'a'; c <= 'z'; c++)
159 re_syntax_table[c] = Sword;
160
161 for (c = 'A'; c <= 'Z'; c++)
162 re_syntax_table[c] = Sword;
163
164 for (c = '0'; c <= '9'; c++)
165 re_syntax_table[c] = Sword;
166
167 re_syntax_table['_'] = Sword;
168
169 done = 1;
170 }
171
172 #endif /* not SYNTAX_TABLE */
173
174 #define SYNTAX(c) re_syntax_table[c]
175
176 /* Dummy macros for non-Emacs environments. */
177 #define BASE_LEADING_CODE_P(c) (0)
178 #define WORD_BOUNDARY_P(c1, c2) (0)
179 #define CHAR_HEAD_P(p) (1)
180 #define SINGLE_BYTE_CHAR_P(c) (1)
181 #define SAME_CHARSET_P(c1, c2) (1)
182 #define MULTIBYTE_FORM_LENGTH(p, s) (1)
183 #define STRING_CHAR(p, s) (*(p))
184 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
185 #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
186 (c = ((p) == (end1) ? *(str2) : *(p)))
187 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
188 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
189 #endif /* not emacs */
190 \f
191 /* Get the interface, including the syntax bits. */
192 #include "regex.h"
193
194 /* isalpha etc. are used for the character classes. */
195 #include <ctype.h>
196
197 /* Jim Meyering writes:
198
199 "... Some ctype macros are valid only for character codes that
200 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
201 using /bin/cc or gcc but without giving an ansi option). So, all
202 ctype uses should be through macros like ISPRINT... If
203 STDC_HEADERS is defined, then autoconf has verified that the ctype
204 macros don't need to be guarded with references to isascii. ...
205 Defining isascii to 1 should let any compiler worth its salt
206 eliminate the && through constant folding." */
207
208 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
209 #define ISASCII(c) 1
210 #else
211 #define ISASCII(c) isascii(c)
212 #endif
213
214 #ifdef isblank
215 #define ISBLANK(c) (ISASCII (c) && isblank (c))
216 #else
217 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
218 #endif
219 #ifdef isgraph
220 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
221 #else
222 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
223 #endif
224
225 #define ISPRINT(c) (ISASCII (c) && isprint (c))
226 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
227 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
228 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
229 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
230 #define ISLOWER(c) (ISASCII (c) && islower (c))
231 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
232 #define ISSPACE(c) (ISASCII (c) && isspace (c))
233 #define ISUPPER(c) (ISASCII (c) && isupper (c))
234 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
235
236 #ifndef NULL
237 #define NULL (void *)0
238 #endif
239
240 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
241 since ours (we hope) works properly with all combinations of
242 machines, compilers, `char' and `unsigned char' argument types.
243 (Per Bothner suggested the basic approach.) */
244 #undef SIGN_EXTEND_CHAR
245 #if __STDC__
246 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
247 #else /* not __STDC__ */
248 /* As in Harbison and Steele. */
249 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
250 #endif
251 \f
252 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
253 use `alloca' instead of `malloc'. This is because using malloc in
254 re_search* or re_match* could cause memory leaks when C-g is used in
255 Emacs; also, malloc is slower and causes storage fragmentation. On
256 the other hand, malloc is more portable, and easier to debug.
257
258 Because we sometimes use alloca, some routines have to be macros,
259 not functions -- `alloca'-allocated space disappears at the end of the
260 function it is called in. */
261
262 #ifdef REGEX_MALLOC
263
264 #define REGEX_ALLOCATE malloc
265 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
266 #define REGEX_FREE free
267
268 #else /* not REGEX_MALLOC */
269
270 /* Emacs already defines alloca, sometimes. */
271 #ifndef alloca
272
273 /* Make alloca work the best possible way. */
274 #ifdef __GNUC__
275 #define alloca __builtin_alloca
276 #else /* not __GNUC__ */
277 #if HAVE_ALLOCA_H
278 #include <alloca.h>
279 #else /* not __GNUC__ or HAVE_ALLOCA_H */
280 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
281 #ifndef _AIX /* Already did AIX, up at the top. */
282 char *alloca ();
283 #endif /* not _AIX */
284 #endif
285 #endif /* not HAVE_ALLOCA_H */
286 #endif /* not __GNUC__ */
287
288 #endif /* not alloca */
289
290 #define REGEX_ALLOCATE alloca
291
292 /* Assumes a `char *destination' variable. */
293 #define REGEX_REALLOCATE(source, osize, nsize) \
294 (destination = (char *) alloca (nsize), \
295 bcopy (source, destination, osize), \
296 destination)
297
298 /* No need to do anything to free, after alloca. */
299 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
300
301 #endif /* not REGEX_MALLOC */
302
303 /* Define how to allocate the failure stack. */
304
305 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
306
307 #define REGEX_ALLOCATE_STACK(size) \
308 r_alloc (&failure_stack_ptr, (size))
309 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
310 r_re_alloc (&failure_stack_ptr, (nsize))
311 #define REGEX_FREE_STACK(ptr) \
312 r_alloc_free (&failure_stack_ptr)
313
314 #else /* not using relocating allocator */
315
316 #ifdef REGEX_MALLOC
317
318 #define REGEX_ALLOCATE_STACK malloc
319 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
320 #define REGEX_FREE_STACK free
321
322 #else /* not REGEX_MALLOC */
323
324 #define REGEX_ALLOCATE_STACK alloca
325
326 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
327 REGEX_REALLOCATE (source, osize, nsize)
328 /* No need to explicitly free anything. */
329 #define REGEX_FREE_STACK(arg)
330
331 #endif /* not REGEX_MALLOC */
332 #endif /* not using relocating allocator */
333
334
335 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
336 `string1' or just past its end. This works if PTR is NULL, which is
337 a good thing. */
338 #define FIRST_STRING_P(ptr) \
339 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
340
341 /* (Re)Allocate N items of type T using malloc, or fail. */
342 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
343 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
344 #define RETALLOC_IF(addr, n, t) \
345 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
346 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
347
348 #define BYTEWIDTH 8 /* In bits. */
349
350 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
351
352 #undef MAX
353 #undef MIN
354 #define MAX(a, b) ((a) > (b) ? (a) : (b))
355 #define MIN(a, b) ((a) < (b) ? (a) : (b))
356
357 typedef char boolean;
358 #define false 0
359 #define true 1
360
361 static int re_match_2_internal ();
362 \f
363 /* These are the command codes that appear in compiled regular
364 expressions. Some opcodes are followed by argument bytes. A
365 command code can specify any interpretation whatsoever for its
366 arguments. Zero bytes may appear in the compiled regular expression. */
367
368 typedef enum
369 {
370 no_op = 0,
371
372 /* Succeed right away--no more backtracking. */
373 succeed,
374
375 /* Followed by one byte giving n, then by n literal bytes. */
376 exactn,
377
378 /* Matches any (more or less) character. */
379 anychar,
380
381 /* Matches any one char belonging to specified set. First
382 following byte is number of bitmap bytes. Then come bytes
383 for a bitmap saying which chars are in. Bits in each byte
384 are ordered low-bit-first. A character is in the set if its
385 bit is 1. A character too large to have a bit in the map is
386 automatically not in the set. */
387 charset,
388
389 /* Same parameters as charset, but match any character that is
390 not one of those specified. */
391 charset_not,
392
393 /* Start remembering the text that is matched, for storing in a
394 register. Followed by one byte with the register number, in
395 the range 0 to one less than the pattern buffer's re_nsub
396 field. Then followed by one byte with the number of groups
397 inner to this one. (This last has to be part of the
398 start_memory only because we need it in the on_failure_jump
399 of re_match_2.) */
400 start_memory,
401
402 /* Stop remembering the text that is matched and store it in a
403 memory register. Followed by one byte with the register
404 number, in the range 0 to one less than `re_nsub' in the
405 pattern buffer, and one byte with the number of inner groups,
406 just like `start_memory'. (We need the number of inner
407 groups here because we don't have any easy way of finding the
408 corresponding start_memory when we're at a stop_memory.) */
409 stop_memory,
410
411 /* Match a duplicate of something remembered. Followed by one
412 byte containing the register number. */
413 duplicate,
414
415 /* Fail unless at beginning of line. */
416 begline,
417
418 /* Fail unless at end of line. */
419 endline,
420
421 /* Succeeds if at beginning of buffer (if emacs) or at beginning
422 of string to be matched (if not). */
423 begbuf,
424
425 /* Analogously, for end of buffer/string. */
426 endbuf,
427
428 /* Followed by two byte relative address to which to jump. */
429 jump,
430
431 /* Same as jump, but marks the end of an alternative. */
432 jump_past_alt,
433
434 /* Followed by two-byte relative address of place to resume at
435 in case of failure. */
436 on_failure_jump,
437
438 /* Like on_failure_jump, but pushes a placeholder instead of the
439 current string position when executed. */
440 on_failure_keep_string_jump,
441
442 /* Throw away latest failure point and then jump to following
443 two-byte relative address. */
444 pop_failure_jump,
445
446 /* Change to pop_failure_jump if know won't have to backtrack to
447 match; otherwise change to jump. This is used to jump
448 back to the beginning of a repeat. If what follows this jump
449 clearly won't match what the repeat does, such that we can be
450 sure that there is no use backtracking out of repetitions
451 already matched, then we change it to a pop_failure_jump.
452 Followed by two-byte address. */
453 maybe_pop_jump,
454
455 /* Jump to following two-byte address, and push a dummy failure
456 point. This failure point will be thrown away if an attempt
457 is made to use it for a failure. A `+' construct makes this
458 before the first repeat. Also used as an intermediary kind
459 of jump when compiling an alternative. */
460 dummy_failure_jump,
461
462 /* Push a dummy failure point and continue. Used at the end of
463 alternatives. */
464 push_dummy_failure,
465
466 /* Followed by two-byte relative address and two-byte number n.
467 After matching N times, jump to the address upon failure. */
468 succeed_n,
469
470 /* Followed by two-byte relative address, and two-byte number n.
471 Jump to the address N times, then fail. */
472 jump_n,
473
474 /* Set the following two-byte relative address to the
475 subsequent two-byte number. The address *includes* the two
476 bytes of number. */
477 set_number_at,
478
479 wordchar, /* Matches any word-constituent character. */
480 notwordchar, /* Matches any char that is not a word-constituent. */
481
482 wordbeg, /* Succeeds if at word beginning. */
483 wordend, /* Succeeds if at word end. */
484
485 wordbound, /* Succeeds if at a word boundary. */
486 notwordbound /* Succeeds if not at a word boundary. */
487
488 #ifdef emacs
489 ,before_dot, /* Succeeds if before point. */
490 at_dot, /* Succeeds if at point. */
491 after_dot, /* Succeeds if after point. */
492
493 /* Matches any character whose syntax is specified. Followed by
494 a byte which contains a syntax code, e.g., Sword. */
495 syntaxspec,
496
497 /* Matches any character whose syntax is not that specified. */
498 notsyntaxspec,
499
500 /* Matches any character whose category-set contains the specified
501 category. The operator is followed by a byte which contains a
502 category code (mnemonic ASCII character). */
503 categoryspec,
504
505 /* Matches any character whose category-set does not contain the
506 specified category. The operator is followed by a byte which
507 contains the category code (mnemonic ASCII character). */
508 notcategoryspec
509 #endif /* emacs */
510 } re_opcode_t;
511 \f
512 /* Common operations on the compiled pattern. */
513
514 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
515
516 #define STORE_NUMBER(destination, number) \
517 do { \
518 (destination)[0] = (number) & 0377; \
519 (destination)[1] = (number) >> 8; \
520 } while (0)
521
522 /* Same as STORE_NUMBER, except increment DESTINATION to
523 the byte after where the number is stored. Therefore, DESTINATION
524 must be an lvalue. */
525
526 #define STORE_NUMBER_AND_INCR(destination, number) \
527 do { \
528 STORE_NUMBER (destination, number); \
529 (destination) += 2; \
530 } while (0)
531
532 /* Put into DESTINATION a number stored in two contiguous bytes starting
533 at SOURCE. */
534
535 #define EXTRACT_NUMBER(destination, source) \
536 do { \
537 (destination) = *(source) & 0377; \
538 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
539 } while (0)
540
541 #ifdef DEBUG
542 static void
543 extract_number (dest, source)
544 int *dest;
545 unsigned char *source;
546 {
547 int temp = SIGN_EXTEND_CHAR (*(source + 1));
548 *dest = *source & 0377;
549 *dest += temp << 8;
550 }
551
552 #ifndef EXTRACT_MACROS /* To debug the macros. */
553 #undef EXTRACT_NUMBER
554 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
555 #endif /* not EXTRACT_MACROS */
556
557 #endif /* DEBUG */
558
559 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
560 SOURCE must be an lvalue. */
561
562 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
563 do { \
564 EXTRACT_NUMBER (destination, source); \
565 (source) += 2; \
566 } while (0)
567
568 #ifdef DEBUG
569 static void
570 extract_number_and_incr (destination, source)
571 int *destination;
572 unsigned char **source;
573 {
574 extract_number (destination, *source);
575 *source += 2;
576 }
577
578 #ifndef EXTRACT_MACROS
579 #undef EXTRACT_NUMBER_AND_INCR
580 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
581 extract_number_and_incr (&dest, &src)
582 #endif /* not EXTRACT_MACROS */
583
584 #endif /* DEBUG */
585 \f
586 /* Store a multibyte character in three contiguous bytes starting
587 DESTINATION, and increment DESTINATION to the byte after where the
588 character is stored. Therefore, DESTINATION must be an lvalue. */
589
590 #define STORE_CHARACTER_AND_INCR(destination, character) \
591 do { \
592 (destination)[0] = (character) & 0377; \
593 (destination)[1] = ((character) >> 8) & 0377; \
594 (destination)[2] = (character) >> 16; \
595 (destination) += 3; \
596 } while (0)
597
598 /* Put into DESTINATION a character stored in three contiguous bytes
599 starting at SOURCE. */
600
601 #define EXTRACT_CHARACTER(destination, source) \
602 do { \
603 (destination) = ((source)[0] \
604 | ((source)[1] << 8) \
605 | ((source)[2] << 16)); \
606 } while (0)
607
608
609 /* Macros for charset. */
610
611 /* Size of bitmap of charset P in bytes. P is a start of charset,
612 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
613 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
614
615 /* Nonzero if charset P has range table. */
616 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
617
618 /* Return the address of range table of charset P. But not the start
619 of table itself, but the before where the number of ranges is
620 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
621 #define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
622
623 /* Test if C is listed in the bitmap of charset P. */
624 #define CHARSET_LOOKUP_BITMAP(p, c) \
625 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
626 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
627
628 /* Return the address of end of RANGE_TABLE. COUNT is number of
629 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
630 is start of range and end of range. `* 3' is size of each start
631 and end. */
632 #define CHARSET_RANGE_TABLE_END(range_table, count) \
633 ((range_table) + (count) * 2 * 3)
634
635 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
636 COUNT is number of ranges in RANGE_TABLE. */
637 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
638 do \
639 { \
640 int range_start, range_end; \
641 unsigned char *p; \
642 unsigned char *range_table_end \
643 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
644 \
645 for (p = (range_table); p < range_table_end; p += 2 * 3) \
646 { \
647 EXTRACT_CHARACTER (range_start, p); \
648 EXTRACT_CHARACTER (range_end, p + 3); \
649 \
650 if (range_start <= (c) && (c) <= range_end) \
651 { \
652 (not) = !(not); \
653 break; \
654 } \
655 } \
656 } \
657 while (0)
658
659 /* Test if C is in range table of CHARSET. The flag NOT is negated if
660 C is listed in it. */
661 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
662 do \
663 { \
664 /* Number of ranges in range table. */ \
665 int count; \
666 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
667 \
668 EXTRACT_NUMBER_AND_INCR (count, range_table); \
669 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
670 } \
671 while (0)
672 \f
673 /* If DEBUG is defined, Regex prints many voluminous messages about what
674 it is doing (if the variable `debug' is nonzero). If linked with the
675 main program in `iregex.c', you can enter patterns and strings
676 interactively. And if linked with the main program in `main.c' and
677 the other test files, you can run the already-written tests. */
678
679 #ifdef DEBUG
680
681 /* We use standard I/O for debugging. */
682 #include <stdio.h>
683
684 /* It is useful to test things that ``must'' be true when debugging. */
685 #include <assert.h>
686
687 static int debug = 0;
688
689 #define DEBUG_STATEMENT(e) e
690 #define DEBUG_PRINT1(x) if (debug) printf (x)
691 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
692 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
693 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
694 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
695 if (debug) print_partial_compiled_pattern (s, e)
696 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
697 if (debug) print_double_string (w, s1, sz1, s2, sz2)
698
699
700 /* Print the fastmap in human-readable form. */
701
702 void
703 print_fastmap (fastmap)
704 char *fastmap;
705 {
706 unsigned was_a_range = 0;
707 unsigned i = 0;
708
709 while (i < (1 << BYTEWIDTH))
710 {
711 if (fastmap[i++])
712 {
713 was_a_range = 0;
714 putchar (i - 1);
715 while (i < (1 << BYTEWIDTH) && fastmap[i])
716 {
717 was_a_range = 1;
718 i++;
719 }
720 if (was_a_range)
721 {
722 printf ("-");
723 putchar (i - 1);
724 }
725 }
726 }
727 putchar ('\n');
728 }
729
730
731 /* Print a compiled pattern string in human-readable form, starting at
732 the START pointer into it and ending just before the pointer END. */
733
734 void
735 print_partial_compiled_pattern (start, end)
736 unsigned char *start;
737 unsigned char *end;
738 {
739 int mcnt, mcnt2;
740 unsigned char *p = start;
741 unsigned char *pend = end;
742
743 if (start == NULL)
744 {
745 printf ("(null)\n");
746 return;
747 }
748
749 /* Loop over pattern commands. */
750 while (p < pend)
751 {
752 printf ("%d:\t", p - start);
753
754 switch ((re_opcode_t) *p++)
755 {
756 case no_op:
757 printf ("/no_op");
758 break;
759
760 case exactn:
761 mcnt = *p++;
762 printf ("/exactn/%d", mcnt);
763 do
764 {
765 putchar ('/');
766 putchar (*p++);
767 }
768 while (--mcnt);
769 break;
770
771 case start_memory:
772 mcnt = *p++;
773 printf ("/start_memory/%d/%d", mcnt, *p++);
774 break;
775
776 case stop_memory:
777 mcnt = *p++;
778 printf ("/stop_memory/%d/%d", mcnt, *p++);
779 break;
780
781 case duplicate:
782 printf ("/duplicate/%d", *p++);
783 break;
784
785 case anychar:
786 printf ("/anychar");
787 break;
788
789 case charset:
790 case charset_not:
791 {
792 register int c, last = -100;
793 register int in_range = 0;
794
795 printf ("/charset [%s",
796 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
797
798 assert (p + *p < pend);
799
800 for (c = 0; c < 256; c++)
801 if (c / 8 < *p
802 && (p[1 + (c/8)] & (1 << (c % 8))))
803 {
804 /* Are we starting a range? */
805 if (last + 1 == c && ! in_range)
806 {
807 putchar ('-');
808 in_range = 1;
809 }
810 /* Have we broken a range? */
811 else if (last + 1 != c && in_range)
812 {
813 putchar (last);
814 in_range = 0;
815 }
816
817 if (! in_range)
818 putchar (c);
819
820 last = c;
821 }
822
823 if (in_range)
824 putchar (last);
825
826 putchar (']');
827
828 p += 1 + *p;
829 }
830 break;
831
832 case begline:
833 printf ("/begline");
834 break;
835
836 case endline:
837 printf ("/endline");
838 break;
839
840 case on_failure_jump:
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_jump to %d", p + mcnt - start);
843 break;
844
845 case on_failure_keep_string_jump:
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
848 break;
849
850 case dummy_failure_jump:
851 extract_number_and_incr (&mcnt, &p);
852 printf ("/dummy_failure_jump to %d", p + mcnt - start);
853 break;
854
855 case push_dummy_failure:
856 printf ("/push_dummy_failure");
857 break;
858
859 case maybe_pop_jump:
860 extract_number_and_incr (&mcnt, &p);
861 printf ("/maybe_pop_jump to %d", p + mcnt - start);
862 break;
863
864 case pop_failure_jump:
865 extract_number_and_incr (&mcnt, &p);
866 printf ("/pop_failure_jump to %d", p + mcnt - start);
867 break;
868
869 case jump_past_alt:
870 extract_number_and_incr (&mcnt, &p);
871 printf ("/jump_past_alt to %d", p + mcnt - start);
872 break;
873
874 case jump:
875 extract_number_and_incr (&mcnt, &p);
876 printf ("/jump to %d", p + mcnt - start);
877 break;
878
879 case succeed_n:
880 extract_number_and_incr (&mcnt, &p);
881 extract_number_and_incr (&mcnt2, &p);
882 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
883 break;
884
885 case jump_n:
886 extract_number_and_incr (&mcnt, &p);
887 extract_number_and_incr (&mcnt2, &p);
888 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
889 break;
890
891 case set_number_at:
892 extract_number_and_incr (&mcnt, &p);
893 extract_number_and_incr (&mcnt2, &p);
894 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
895 break;
896
897 case wordbound:
898 printf ("/wordbound");
899 break;
900
901 case notwordbound:
902 printf ("/notwordbound");
903 break;
904
905 case wordbeg:
906 printf ("/wordbeg");
907 break;
908
909 case wordend:
910 printf ("/wordend");
911
912 #ifdef emacs
913 case before_dot:
914 printf ("/before_dot");
915 break;
916
917 case at_dot:
918 printf ("/at_dot");
919 break;
920
921 case after_dot:
922 printf ("/after_dot");
923 break;
924
925 case syntaxspec:
926 printf ("/syntaxspec");
927 mcnt = *p++;
928 printf ("/%d", mcnt);
929 break;
930
931 case notsyntaxspec:
932 printf ("/notsyntaxspec");
933 mcnt = *p++;
934 printf ("/%d", mcnt);
935 break;
936 #endif /* emacs */
937
938 case wordchar:
939 printf ("/wordchar");
940 break;
941
942 case notwordchar:
943 printf ("/notwordchar");
944 break;
945
946 case begbuf:
947 printf ("/begbuf");
948 break;
949
950 case endbuf:
951 printf ("/endbuf");
952 break;
953
954 default:
955 printf ("?%d", *(p-1));
956 }
957
958 putchar ('\n');
959 }
960
961 printf ("%d:\tend of pattern.\n", p - start);
962 }
963
964
965 void
966 print_compiled_pattern (bufp)
967 struct re_pattern_buffer *bufp;
968 {
969 unsigned char *buffer = bufp->buffer;
970
971 print_partial_compiled_pattern (buffer, buffer + bufp->used);
972 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
973
974 if (bufp->fastmap_accurate && bufp->fastmap)
975 {
976 printf ("fastmap: ");
977 print_fastmap (bufp->fastmap);
978 }
979
980 printf ("re_nsub: %d\t", bufp->re_nsub);
981 printf ("regs_alloc: %d\t", bufp->regs_allocated);
982 printf ("can_be_null: %d\t", bufp->can_be_null);
983 printf ("newline_anchor: %d\n", bufp->newline_anchor);
984 printf ("no_sub: %d\t", bufp->no_sub);
985 printf ("not_bol: %d\t", bufp->not_bol);
986 printf ("not_eol: %d\t", bufp->not_eol);
987 printf ("syntax: %d\n", bufp->syntax);
988 /* Perhaps we should print the translate table? */
989 }
990
991
992 void
993 print_double_string (where, string1, size1, string2, size2)
994 const char *where;
995 const char *string1;
996 const char *string2;
997 int size1;
998 int size2;
999 {
1000 unsigned this_char;
1001
1002 if (where == NULL)
1003 printf ("(null)");
1004 else
1005 {
1006 if (FIRST_STRING_P (where))
1007 {
1008 for (this_char = where - string1; this_char < size1; this_char++)
1009 putchar (string1[this_char]);
1010
1011 where = string2;
1012 }
1013
1014 for (this_char = where - string2; this_char < size2; this_char++)
1015 putchar (string2[this_char]);
1016 }
1017 }
1018
1019 #else /* not DEBUG */
1020
1021 #undef assert
1022 #define assert(e)
1023
1024 #define DEBUG_STATEMENT(e)
1025 #define DEBUG_PRINT1(x)
1026 #define DEBUG_PRINT2(x1, x2)
1027 #define DEBUG_PRINT3(x1, x2, x3)
1028 #define DEBUG_PRINT4(x1, x2, x3, x4)
1029 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1030 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1031
1032 #endif /* not DEBUG */
1033 \f
1034 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1035 also be assigned to arbitrarily: each pattern buffer stores its own
1036 syntax, so it can be changed between regex compilations. */
1037 /* This has no initializer because initialized variables in Emacs
1038 become read-only after dumping. */
1039 reg_syntax_t re_syntax_options;
1040
1041
1042 /* Specify the precise syntax of regexps for compilation. This provides
1043 for compatibility for various utilities which historically have
1044 different, incompatible syntaxes.
1045
1046 The argument SYNTAX is a bit mask comprised of the various bits
1047 defined in regex.h. We return the old syntax. */
1048
1049 reg_syntax_t
1050 re_set_syntax (syntax)
1051 reg_syntax_t syntax;
1052 {
1053 reg_syntax_t ret = re_syntax_options;
1054
1055 re_syntax_options = syntax;
1056 return ret;
1057 }
1058 \f
1059 /* This table gives an error message for each of the error codes listed
1060 in regex.h. Obviously the order here has to be same as there.
1061 POSIX doesn't require that we do anything for REG_NOERROR,
1062 but why not be nice? */
1063
1064 static const char *re_error_msgid[] =
1065 {
1066 gettext_noop ("Success"), /* REG_NOERROR */
1067 gettext_noop ("No match"), /* REG_NOMATCH */
1068 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1069 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1070 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1071 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1072 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1073 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1074 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1075 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1076 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1077 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1078 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1079 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1080 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1081 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1082 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1083 };
1084 \f
1085 /* Avoiding alloca during matching, to placate r_alloc. */
1086
1087 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1088 searching and matching functions should not call alloca. On some
1089 systems, alloca is implemented in terms of malloc, and if we're
1090 using the relocating allocator routines, then malloc could cause a
1091 relocation, which might (if the strings being searched are in the
1092 ralloc heap) shift the data out from underneath the regexp
1093 routines.
1094
1095 Here's another reason to avoid allocation: Emacs
1096 processes input from X in a signal handler; processing X input may
1097 call malloc; if input arrives while a matching routine is calling
1098 malloc, then we're scrod. But Emacs can't just block input while
1099 calling matching routines; then we don't notice interrupts when
1100 they come in. So, Emacs blocks input around all regexp calls
1101 except the matching calls, which it leaves unprotected, in the
1102 faith that they will not malloc. */
1103
1104 /* Normally, this is fine. */
1105 #define MATCH_MAY_ALLOCATE
1106
1107 /* When using GNU C, we are not REALLY using the C alloca, no matter
1108 what config.h may say. So don't take precautions for it. */
1109 #ifdef __GNUC__
1110 #undef C_ALLOCA
1111 #endif
1112
1113 /* The match routines may not allocate if (1) they would do it with malloc
1114 and (2) it's not safe for them to use malloc.
1115 Note that if REL_ALLOC is defined, matching would not use malloc for the
1116 failure stack, but we would still use it for the register vectors;
1117 so REL_ALLOC should not affect this. */
1118 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1119 #undef MATCH_MAY_ALLOCATE
1120 #endif
1121
1122 \f
1123 /* Failure stack declarations and macros; both re_compile_fastmap and
1124 re_match_2 use a failure stack. These have to be macros because of
1125 REGEX_ALLOCATE_STACK. */
1126
1127
1128 /* Approximate number of failure points for which to initially allocate space
1129 when matching. If this number is exceeded, we allocate more
1130 space, so it is not a hard limit. */
1131 #ifndef INIT_FAILURE_ALLOC
1132 #define INIT_FAILURE_ALLOC 20
1133 #endif
1134
1135 /* Roughly the maximum number of failure points on the stack. Would be
1136 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1137 This is a variable only so users of regex can assign to it; we never
1138 change it ourselves. */
1139 #if defined (MATCH_MAY_ALLOCATE)
1140 /* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1141 whose default stack limit is 2mb. In order for a larger
1142 value to work reliably, you have to try to make it accord
1143 with the process stack limit. */
1144 int re_max_failures = 40000;
1145 #else
1146 int re_max_failures = 4000;
1147 #endif
1148
1149 union fail_stack_elt
1150 {
1151 unsigned char *pointer;
1152 int integer;
1153 };
1154
1155 typedef union fail_stack_elt fail_stack_elt_t;
1156
1157 typedef struct
1158 {
1159 fail_stack_elt_t *stack;
1160 unsigned size;
1161 unsigned avail; /* Offset of next open position. */
1162 } fail_stack_type;
1163
1164 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1165 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1166 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1167
1168
1169 /* Define macros to initialize and free the failure stack.
1170 Do `return -2' if the alloc fails. */
1171
1172 #ifdef MATCH_MAY_ALLOCATE
1173 #define INIT_FAIL_STACK() \
1174 do { \
1175 fail_stack.stack = (fail_stack_elt_t *) \
1176 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1177 * sizeof (fail_stack_elt_t)); \
1178 \
1179 if (fail_stack.stack == NULL) \
1180 return -2; \
1181 \
1182 fail_stack.size = INIT_FAILURE_ALLOC; \
1183 fail_stack.avail = 0; \
1184 } while (0)
1185
1186 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1187 #else
1188 #define INIT_FAIL_STACK() \
1189 do { \
1190 fail_stack.avail = 0; \
1191 } while (0)
1192
1193 #define RESET_FAIL_STACK()
1194 #endif
1195
1196
1197 /* Double the size of FAIL_STACK, up to a limit
1198 which allows approximately `re_max_failures' items.
1199
1200 Return 1 if succeeds, and 0 if either ran out of memory
1201 allocating space for it or it was already too large.
1202
1203 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1204
1205 /* Factor to increase the failure stack size by
1206 when we increase it.
1207 This used to be 2, but 2 was too wasteful
1208 because the old discarded stacks added up to as much space
1209 were as ultimate, maximum-size stack. */
1210 #define FAIL_STACK_GROWTH_FACTOR 4
1211
1212 #define GROW_FAIL_STACK(fail_stack) \
1213 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1214 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1215 ? 0 \
1216 : ((fail_stack).stack \
1217 = (fail_stack_elt_t *) \
1218 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1219 (fail_stack).size * sizeof (fail_stack_elt_t), \
1220 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1221 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1222 * FAIL_STACK_GROWTH_FACTOR))), \
1223 \
1224 (fail_stack).stack == NULL \
1225 ? 0 \
1226 : ((fail_stack).size \
1227 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1228 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1229 * FAIL_STACK_GROWTH_FACTOR)) \
1230 / sizeof (fail_stack_elt_t)), \
1231 1)))
1232
1233
1234 /* Push pointer POINTER on FAIL_STACK.
1235 Return 1 if was able to do so and 0 if ran out of memory allocating
1236 space to do so. */
1237 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1238 ((FAIL_STACK_FULL () \
1239 && !GROW_FAIL_STACK (FAIL_STACK)) \
1240 ? 0 \
1241 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1242 1))
1243
1244 /* Push a pointer value onto the failure stack.
1245 Assumes the variable `fail_stack'. Probably should only
1246 be called from within `PUSH_FAILURE_POINT'. */
1247 #define PUSH_FAILURE_POINTER(item) \
1248 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1249
1250 /* This pushes an integer-valued item onto the failure stack.
1251 Assumes the variable `fail_stack'. Probably should only
1252 be called from within `PUSH_FAILURE_POINT'. */
1253 #define PUSH_FAILURE_INT(item) \
1254 fail_stack.stack[fail_stack.avail++].integer = (item)
1255
1256 /* Push a fail_stack_elt_t value onto the failure stack.
1257 Assumes the variable `fail_stack'. Probably should only
1258 be called from within `PUSH_FAILURE_POINT'. */
1259 #define PUSH_FAILURE_ELT(item) \
1260 fail_stack.stack[fail_stack.avail++] = (item)
1261
1262 /* These three POP... operations complement the three PUSH... operations.
1263 All assume that `fail_stack' is nonempty. */
1264 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1265 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1266 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1267
1268 /* Used to omit pushing failure point id's when we're not debugging. */
1269 #ifdef DEBUG
1270 #define DEBUG_PUSH PUSH_FAILURE_INT
1271 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1272 #else
1273 #define DEBUG_PUSH(item)
1274 #define DEBUG_POP(item_addr)
1275 #endif
1276
1277
1278 /* Push the information about the state we will need
1279 if we ever fail back to it.
1280
1281 Requires variables fail_stack, regstart, regend, reg_info, and
1282 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1283 declared.
1284
1285 Does `return FAILURE_CODE' if runs out of memory. */
1286
1287 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1288 do { \
1289 char *destination; \
1290 /* Must be int, so when we don't save any registers, the arithmetic \
1291 of 0 + -1 isn't done as unsigned. */ \
1292 int this_reg; \
1293 \
1294 DEBUG_STATEMENT (failure_id++); \
1295 DEBUG_STATEMENT (nfailure_points_pushed++); \
1296 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1297 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1298 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1299 \
1300 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1301 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1302 \
1303 /* Ensure we have enough space allocated for what we will push. */ \
1304 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1305 { \
1306 if (!GROW_FAIL_STACK (fail_stack)) \
1307 return failure_code; \
1308 \
1309 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1310 (fail_stack).size); \
1311 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1312 } \
1313 \
1314 /* Push the info, starting with the registers. */ \
1315 DEBUG_PRINT1 ("\n"); \
1316 \
1317 if (1) \
1318 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1319 this_reg++) \
1320 { \
1321 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1322 DEBUG_STATEMENT (num_regs_pushed++); \
1323 \
1324 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1325 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1326 \
1327 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1328 PUSH_FAILURE_POINTER (regend[this_reg]); \
1329 \
1330 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1331 DEBUG_PRINT2 (" match_null=%d", \
1332 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1333 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1334 DEBUG_PRINT2 (" matched_something=%d", \
1335 MATCHED_SOMETHING (reg_info[this_reg])); \
1336 DEBUG_PRINT2 (" ever_matched=%d", \
1337 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1338 DEBUG_PRINT1 ("\n"); \
1339 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1340 } \
1341 \
1342 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1343 PUSH_FAILURE_INT (lowest_active_reg); \
1344 \
1345 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1346 PUSH_FAILURE_INT (highest_active_reg); \
1347 \
1348 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1349 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1350 PUSH_FAILURE_POINTER (pattern_place); \
1351 \
1352 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1353 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1354 size2); \
1355 DEBUG_PRINT1 ("'\n"); \
1356 PUSH_FAILURE_POINTER (string_place); \
1357 \
1358 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1359 DEBUG_PUSH (failure_id); \
1360 } while (0)
1361
1362 /* This is the number of items that are pushed and popped on the stack
1363 for each register. */
1364 #define NUM_REG_ITEMS 3
1365
1366 /* Individual items aside from the registers. */
1367 #ifdef DEBUG
1368 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1369 #else
1370 #define NUM_NONREG_ITEMS 4
1371 #endif
1372
1373 /* Estimate the size of data pushed by a typical failure stack entry.
1374 An estimate is all we need, because all we use this for
1375 is to choose a limit for how big to make the failure stack. */
1376
1377 #define TYPICAL_FAILURE_SIZE 20
1378
1379 /* This is how many items we actually use for a failure point.
1380 It depends on the regexp. */
1381 #define NUM_FAILURE_ITEMS \
1382 (((0 \
1383 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1384 * NUM_REG_ITEMS) \
1385 + NUM_NONREG_ITEMS)
1386
1387 /* How many items can still be added to the stack without overflowing it. */
1388 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1389
1390
1391 /* Pops what PUSH_FAIL_STACK pushes.
1392
1393 We restore into the parameters, all of which should be lvalues:
1394 STR -- the saved data position.
1395 PAT -- the saved pattern position.
1396 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1397 REGSTART, REGEND -- arrays of string positions.
1398 REG_INFO -- array of information about each subexpression.
1399
1400 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1401 `pend', `string1', `size1', `string2', and `size2'. */
1402
1403 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1404 { \
1405 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1406 int this_reg; \
1407 const unsigned char *string_temp; \
1408 \
1409 assert (!FAIL_STACK_EMPTY ()); \
1410 \
1411 /* Remove failure points and point to how many regs pushed. */ \
1412 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1413 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1414 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1415 \
1416 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1417 \
1418 DEBUG_POP (&failure_id); \
1419 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1420 \
1421 /* If the saved string location is NULL, it came from an \
1422 on_failure_keep_string_jump opcode, and we want to throw away the \
1423 saved NULL, thus retaining our current position in the string. */ \
1424 string_temp = POP_FAILURE_POINTER (); \
1425 if (string_temp != NULL) \
1426 str = (const char *) string_temp; \
1427 \
1428 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1429 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1430 DEBUG_PRINT1 ("'\n"); \
1431 \
1432 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1433 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1434 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1435 \
1436 /* Restore register info. */ \
1437 high_reg = (unsigned) POP_FAILURE_INT (); \
1438 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1439 \
1440 low_reg = (unsigned) POP_FAILURE_INT (); \
1441 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1442 \
1443 if (1) \
1444 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1445 { \
1446 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1447 \
1448 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1449 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1450 \
1451 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1452 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1453 \
1454 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1455 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1456 } \
1457 else \
1458 { \
1459 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1460 { \
1461 reg_info[this_reg].word.integer = 0; \
1462 regend[this_reg] = 0; \
1463 regstart[this_reg] = 0; \
1464 } \
1465 highest_active_reg = high_reg; \
1466 } \
1467 \
1468 set_regs_matched_done = 0; \
1469 DEBUG_STATEMENT (nfailure_points_popped++); \
1470 } /* POP_FAILURE_POINT */
1471
1472
1473 \f
1474 /* Structure for per-register (a.k.a. per-group) information.
1475 Other register information, such as the
1476 starting and ending positions (which are addresses), and the list of
1477 inner groups (which is a bits list) are maintained in separate
1478 variables.
1479
1480 We are making a (strictly speaking) nonportable assumption here: that
1481 the compiler will pack our bit fields into something that fits into
1482 the type of `word', i.e., is something that fits into one item on the
1483 failure stack. */
1484
1485 typedef union
1486 {
1487 fail_stack_elt_t word;
1488 struct
1489 {
1490 /* This field is one if this group can match the empty string,
1491 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1492 #define MATCH_NULL_UNSET_VALUE 3
1493 unsigned match_null_string_p : 2;
1494 unsigned is_active : 1;
1495 unsigned matched_something : 1;
1496 unsigned ever_matched_something : 1;
1497 } bits;
1498 } register_info_type;
1499
1500 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1501 #define IS_ACTIVE(R) ((R).bits.is_active)
1502 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1503 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1504
1505
1506 /* Call this when have matched a real character; it sets `matched' flags
1507 for the subexpressions which we are currently inside. Also records
1508 that those subexprs have matched. */
1509 #define SET_REGS_MATCHED() \
1510 do \
1511 { \
1512 if (!set_regs_matched_done) \
1513 { \
1514 unsigned r; \
1515 set_regs_matched_done = 1; \
1516 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1517 { \
1518 MATCHED_SOMETHING (reg_info[r]) \
1519 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1520 = 1; \
1521 } \
1522 } \
1523 } \
1524 while (0)
1525
1526 /* Registers are set to a sentinel when they haven't yet matched. */
1527 static char reg_unset_dummy;
1528 #define REG_UNSET_VALUE (&reg_unset_dummy)
1529 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1530 \f
1531 /* Subroutine declarations and macros for regex_compile. */
1532
1533 static void store_op1 (), store_op2 ();
1534 static void insert_op1 (), insert_op2 ();
1535 static boolean at_begline_loc_p (), at_endline_loc_p ();
1536 static boolean group_in_compile_stack ();
1537 static reg_errcode_t compile_range ();
1538
1539 /* Fetch the next character in the uncompiled pattern---translating it
1540 if necessary. Also cast from a signed character in the constant
1541 string passed to us by the user to an unsigned char that we can use
1542 as an array index (in, e.g., `translate'). */
1543 #ifndef PATFETCH
1544 #define PATFETCH(c) \
1545 do {if (p == pend) return REG_EEND; \
1546 c = (unsigned char) *p++; \
1547 if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c); \
1548 } while (0)
1549 #endif
1550
1551 /* Fetch the next character in the uncompiled pattern, with no
1552 translation. */
1553 #define PATFETCH_RAW(c) \
1554 do {if (p == pend) return REG_EEND; \
1555 c = (unsigned char) *p++; \
1556 } while (0)
1557
1558 /* Go backwards one character in the pattern. */
1559 #define PATUNFETCH p--
1560
1561
1562 /* If `translate' is non-null, return translate[D], else just D. We
1563 cast the subscript to translate because some data is declared as
1564 `char *', to avoid warnings when a string constant is passed. But
1565 when we use a character as a subscript we must make it unsigned. */
1566 #ifndef TRANSLATE
1567 #define TRANSLATE(d) \
1568 (RE_TRANSLATE_P (translate) \
1569 ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
1570 #endif
1571
1572
1573 /* Macros for outputting the compiled pattern into `buffer'. */
1574
1575 /* If the buffer isn't allocated when it comes in, use this. */
1576 #define INIT_BUF_SIZE 32
1577
1578 /* Make sure we have at least N more bytes of space in buffer. */
1579 #define GET_BUFFER_SPACE(n) \
1580 while (b - bufp->buffer + (n) > bufp->allocated) \
1581 EXTEND_BUFFER ()
1582
1583 /* Make sure we have one more byte of buffer space and then add C to it. */
1584 #define BUF_PUSH(c) \
1585 do { \
1586 GET_BUFFER_SPACE (1); \
1587 *b++ = (unsigned char) (c); \
1588 } while (0)
1589
1590
1591 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1592 #define BUF_PUSH_2(c1, c2) \
1593 do { \
1594 GET_BUFFER_SPACE (2); \
1595 *b++ = (unsigned char) (c1); \
1596 *b++ = (unsigned char) (c2); \
1597 } while (0)
1598
1599
1600 /* As with BUF_PUSH_2, except for three bytes. */
1601 #define BUF_PUSH_3(c1, c2, c3) \
1602 do { \
1603 GET_BUFFER_SPACE (3); \
1604 *b++ = (unsigned char) (c1); \
1605 *b++ = (unsigned char) (c2); \
1606 *b++ = (unsigned char) (c3); \
1607 } while (0)
1608
1609
1610 /* Store a jump with opcode OP at LOC to location TO. We store a
1611 relative address offset by the three bytes the jump itself occupies. */
1612 #define STORE_JUMP(op, loc, to) \
1613 store_op1 (op, loc, (to) - (loc) - 3)
1614
1615 /* Likewise, for a two-argument jump. */
1616 #define STORE_JUMP2(op, loc, to, arg) \
1617 store_op2 (op, loc, (to) - (loc) - 3, arg)
1618
1619 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1620 #define INSERT_JUMP(op, loc, to) \
1621 insert_op1 (op, loc, (to) - (loc) - 3, b)
1622
1623 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1624 #define INSERT_JUMP2(op, loc, to, arg) \
1625 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1626
1627
1628 /* This is not an arbitrary limit: the arguments which represent offsets
1629 into the pattern are two bytes long. So if 2^16 bytes turns out to
1630 be too small, many things would have to change. */
1631 #define MAX_BUF_SIZE (1L << 16)
1632
1633
1634 /* Extend the buffer by twice its current size via realloc and
1635 reset the pointers that pointed into the old block to point to the
1636 correct places in the new one. If extending the buffer results in it
1637 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1638 #define EXTEND_BUFFER() \
1639 do { \
1640 unsigned char *old_buffer = bufp->buffer; \
1641 if (bufp->allocated == MAX_BUF_SIZE) \
1642 return REG_ESIZE; \
1643 bufp->allocated <<= 1; \
1644 if (bufp->allocated > MAX_BUF_SIZE) \
1645 bufp->allocated = MAX_BUF_SIZE; \
1646 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1647 if (bufp->buffer == NULL) \
1648 return REG_ESPACE; \
1649 /* If the buffer moved, move all the pointers into it. */ \
1650 if (old_buffer != bufp->buffer) \
1651 { \
1652 b = (b - old_buffer) + bufp->buffer; \
1653 begalt = (begalt - old_buffer) + bufp->buffer; \
1654 if (fixup_alt_jump) \
1655 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1656 if (laststart) \
1657 laststart = (laststart - old_buffer) + bufp->buffer; \
1658 if (pending_exact) \
1659 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1660 } \
1661 } while (0)
1662
1663
1664 /* Since we have one byte reserved for the register number argument to
1665 {start,stop}_memory, the maximum number of groups we can report
1666 things about is what fits in that byte. */
1667 #define MAX_REGNUM 255
1668
1669 /* But patterns can have more than `MAX_REGNUM' registers. We just
1670 ignore the excess. */
1671 typedef unsigned regnum_t;
1672
1673
1674 /* Macros for the compile stack. */
1675
1676 /* Since offsets can go either forwards or backwards, this type needs to
1677 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1678 typedef int pattern_offset_t;
1679
1680 typedef struct
1681 {
1682 pattern_offset_t begalt_offset;
1683 pattern_offset_t fixup_alt_jump;
1684 pattern_offset_t inner_group_offset;
1685 pattern_offset_t laststart_offset;
1686 regnum_t regnum;
1687 } compile_stack_elt_t;
1688
1689
1690 typedef struct
1691 {
1692 compile_stack_elt_t *stack;
1693 unsigned size;
1694 unsigned avail; /* Offset of next open position. */
1695 } compile_stack_type;
1696
1697
1698 #define INIT_COMPILE_STACK_SIZE 32
1699
1700 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1701 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1702
1703 /* The next available element. */
1704 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1705
1706
1707 /* Structure to manage work area for range table. */
1708 struct range_table_work_area
1709 {
1710 int *table; /* actual work area. */
1711 int allocated; /* allocated size for work area in bytes. */
1712 int used; /* actually used size in words. */
1713 };
1714
1715 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1716 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1717 do { \
1718 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1719 { \
1720 (work_area).allocated += 16 * sizeof (int); \
1721 if ((work_area).table) \
1722 (work_area).table \
1723 = (int *) realloc ((work_area).table, (work_area).allocated); \
1724 else \
1725 (work_area).table \
1726 = (int *) malloc ((work_area).allocated); \
1727 if ((work_area).table == 0) \
1728 FREE_STACK_RETURN (REG_ESPACE); \
1729 } \
1730 } while (0)
1731
1732 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1733 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1734 do { \
1735 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1736 (work_area).table[(work_area).used++] = (range_start); \
1737 (work_area).table[(work_area).used++] = (range_end); \
1738 } while (0)
1739
1740 /* Free allocated memory for WORK_AREA. */
1741 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1742 do { \
1743 if ((work_area).table) \
1744 free ((work_area).table); \
1745 } while (0)
1746
1747 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1748 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1749 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1750
1751
1752 /* Set the bit for character C in a list. */
1753 #define SET_LIST_BIT(c) \
1754 (b[((unsigned char) (c)) / BYTEWIDTH] \
1755 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1756
1757
1758 /* Get the next unsigned number in the uncompiled pattern. */
1759 #define GET_UNSIGNED_NUMBER(num) \
1760 { if (p != pend) \
1761 { \
1762 PATFETCH (c); \
1763 while (ISDIGIT (c)) \
1764 { \
1765 if (num < 0) \
1766 num = 0; \
1767 num = num * 10 + c - '0'; \
1768 if (p == pend) \
1769 break; \
1770 PATFETCH (c); \
1771 } \
1772 } \
1773 }
1774
1775 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1776
1777 #define IS_CHAR_CLASS(string) \
1778 (STREQ (string, "alpha") || STREQ (string, "upper") \
1779 || STREQ (string, "lower") || STREQ (string, "digit") \
1780 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1781 || STREQ (string, "space") || STREQ (string, "print") \
1782 || STREQ (string, "punct") || STREQ (string, "graph") \
1783 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1784 \f
1785 #ifndef MATCH_MAY_ALLOCATE
1786
1787 /* If we cannot allocate large objects within re_match_2_internal,
1788 we make the fail stack and register vectors global.
1789 The fail stack, we grow to the maximum size when a regexp
1790 is compiled.
1791 The register vectors, we adjust in size each time we
1792 compile a regexp, according to the number of registers it needs. */
1793
1794 static fail_stack_type fail_stack;
1795
1796 /* Size with which the following vectors are currently allocated.
1797 That is so we can make them bigger as needed,
1798 but never make them smaller. */
1799 static int regs_allocated_size;
1800
1801 static const char ** regstart, ** regend;
1802 static const char ** old_regstart, ** old_regend;
1803 static const char **best_regstart, **best_regend;
1804 static register_info_type *reg_info;
1805 static const char **reg_dummy;
1806 static register_info_type *reg_info_dummy;
1807
1808 /* Make the register vectors big enough for NUM_REGS registers,
1809 but don't make them smaller. */
1810
1811 static
1812 regex_grow_registers (num_regs)
1813 int num_regs;
1814 {
1815 if (num_regs > regs_allocated_size)
1816 {
1817 RETALLOC_IF (regstart, num_regs, const char *);
1818 RETALLOC_IF (regend, num_regs, const char *);
1819 RETALLOC_IF (old_regstart, num_regs, const char *);
1820 RETALLOC_IF (old_regend, num_regs, const char *);
1821 RETALLOC_IF (best_regstart, num_regs, const char *);
1822 RETALLOC_IF (best_regend, num_regs, const char *);
1823 RETALLOC_IF (reg_info, num_regs, register_info_type);
1824 RETALLOC_IF (reg_dummy, num_regs, const char *);
1825 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1826
1827 regs_allocated_size = num_regs;
1828 }
1829 }
1830
1831 #endif /* not MATCH_MAY_ALLOCATE */
1832 \f
1833 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1834 Returns one of error codes defined in `regex.h', or zero for success.
1835
1836 Assumes the `allocated' (and perhaps `buffer') and `translate'
1837 fields are set in BUFP on entry.
1838
1839 If it succeeds, results are put in BUFP (if it returns an error, the
1840 contents of BUFP are undefined):
1841 `buffer' is the compiled pattern;
1842 `syntax' is set to SYNTAX;
1843 `used' is set to the length of the compiled pattern;
1844 `fastmap_accurate' is zero;
1845 `re_nsub' is the number of subexpressions in PATTERN;
1846 `not_bol' and `not_eol' are zero;
1847
1848 The `fastmap' and `newline_anchor' fields are neither
1849 examined nor set. */
1850
1851 /* Return, freeing storage we allocated. */
1852 #define FREE_STACK_RETURN(value) \
1853 do { \
1854 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1855 free (compile_stack.stack); \
1856 return value; \
1857 } while (0)
1858
1859 static reg_errcode_t
1860 regex_compile (pattern, size, syntax, bufp)
1861 const char *pattern;
1862 int size;
1863 reg_syntax_t syntax;
1864 struct re_pattern_buffer *bufp;
1865 {
1866 /* We fetch characters from PATTERN here. Even though PATTERN is
1867 `char *' (i.e., signed), we declare these variables as unsigned, so
1868 they can be reliably used as array indices. */
1869 register unsigned int c, c1;
1870
1871 /* A random temporary spot in PATTERN. */
1872 const char *p1;
1873
1874 /* Points to the end of the buffer, where we should append. */
1875 register unsigned char *b;
1876
1877 /* Keeps track of unclosed groups. */
1878 compile_stack_type compile_stack;
1879
1880 /* Points to the current (ending) position in the pattern. */
1881 #ifdef AIX
1882 /* `const' makes AIX compiler fail. */
1883 char *p = pattern;
1884 #else
1885 const char *p = pattern;
1886 #endif
1887 const char *pend = pattern + size;
1888
1889 /* How to translate the characters in the pattern. */
1890 RE_TRANSLATE_TYPE translate = bufp->translate;
1891
1892 /* Address of the count-byte of the most recently inserted `exactn'
1893 command. This makes it possible to tell if a new exact-match
1894 character can be added to that command or if the character requires
1895 a new `exactn' command. */
1896 unsigned char *pending_exact = 0;
1897
1898 /* Address of start of the most recently finished expression.
1899 This tells, e.g., postfix * where to find the start of its
1900 operand. Reset at the beginning of groups and alternatives. */
1901 unsigned char *laststart = 0;
1902
1903 /* Address of beginning of regexp, or inside of last group. */
1904 unsigned char *begalt;
1905
1906 /* Place in the uncompiled pattern (i.e., the {) to
1907 which to go back if the interval is invalid. */
1908 const char *beg_interval;
1909
1910 /* Address of the place where a forward jump should go to the end of
1911 the containing expression. Each alternative of an `or' -- except the
1912 last -- ends with a forward jump of this sort. */
1913 unsigned char *fixup_alt_jump = 0;
1914
1915 /* Counts open-groups as they are encountered. Remembered for the
1916 matching close-group on the compile stack, so the same register
1917 number is put in the stop_memory as the start_memory. */
1918 regnum_t regnum = 0;
1919
1920 /* Work area for range table of charset. */
1921 struct range_table_work_area range_table_work;
1922
1923 #ifdef DEBUG
1924 DEBUG_PRINT1 ("\nCompiling pattern: ");
1925 if (debug)
1926 {
1927 unsigned debug_count;
1928
1929 for (debug_count = 0; debug_count < size; debug_count++)
1930 putchar (pattern[debug_count]);
1931 putchar ('\n');
1932 }
1933 #endif /* DEBUG */
1934
1935 /* Initialize the compile stack. */
1936 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1937 if (compile_stack.stack == NULL)
1938 return REG_ESPACE;
1939
1940 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1941 compile_stack.avail = 0;
1942
1943 range_table_work.table = 0;
1944 range_table_work.allocated = 0;
1945
1946 /* Initialize the pattern buffer. */
1947 bufp->syntax = syntax;
1948 bufp->fastmap_accurate = 0;
1949 bufp->not_bol = bufp->not_eol = 0;
1950
1951 /* Set `used' to zero, so that if we return an error, the pattern
1952 printer (for debugging) will think there's no pattern. We reset it
1953 at the end. */
1954 bufp->used = 0;
1955
1956 /* Always count groups, whether or not bufp->no_sub is set. */
1957 bufp->re_nsub = 0;
1958
1959 #ifdef emacs
1960 /* bufp->multibyte is set before regex_compile is called, so don't alter
1961 it. */
1962 #else /* not emacs */
1963 /* Nothing is recognized as a multibyte character. */
1964 bufp->multibyte = 0;
1965 #endif
1966
1967 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1968 /* Initialize the syntax table. */
1969 init_syntax_once ();
1970 #endif
1971
1972 if (bufp->allocated == 0)
1973 {
1974 if (bufp->buffer)
1975 { /* If zero allocated, but buffer is non-null, try to realloc
1976 enough space. This loses if buffer's address is bogus, but
1977 that is the user's responsibility. */
1978 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1979 }
1980 else
1981 { /* Caller did not allocate a buffer. Do it for them. */
1982 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1983 }
1984 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1985
1986 bufp->allocated = INIT_BUF_SIZE;
1987 }
1988
1989 begalt = b = bufp->buffer;
1990
1991 /* Loop through the uncompiled pattern until we're at the end. */
1992 while (p != pend)
1993 {
1994 PATFETCH (c);
1995
1996 switch (c)
1997 {
1998 case '^':
1999 {
2000 if ( /* If at start of pattern, it's an operator. */
2001 p == pattern + 1
2002 /* If context independent, it's an operator. */
2003 || syntax & RE_CONTEXT_INDEP_ANCHORS
2004 /* Otherwise, depends on what's come before. */
2005 || at_begline_loc_p (pattern, p, syntax))
2006 BUF_PUSH (begline);
2007 else
2008 goto normal_char;
2009 }
2010 break;
2011
2012
2013 case '$':
2014 {
2015 if ( /* If at end of pattern, it's an operator. */
2016 p == pend
2017 /* If context independent, it's an operator. */
2018 || syntax & RE_CONTEXT_INDEP_ANCHORS
2019 /* Otherwise, depends on what's next. */
2020 || at_endline_loc_p (p, pend, syntax))
2021 BUF_PUSH (endline);
2022 else
2023 goto normal_char;
2024 }
2025 break;
2026
2027
2028 case '+':
2029 case '?':
2030 if ((syntax & RE_BK_PLUS_QM)
2031 || (syntax & RE_LIMITED_OPS))
2032 goto normal_char;
2033 handle_plus:
2034 case '*':
2035 /* If there is no previous pattern... */
2036 if (!laststart)
2037 {
2038 if (syntax & RE_CONTEXT_INVALID_OPS)
2039 FREE_STACK_RETURN (REG_BADRPT);
2040 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2041 goto normal_char;
2042 }
2043
2044 {
2045 /* Are we optimizing this jump? */
2046 boolean keep_string_p = false;
2047
2048 /* 1 means zero (many) matches is allowed. */
2049 char zero_times_ok = 0, many_times_ok = 0;
2050
2051 /* If there is a sequence of repetition chars, collapse it
2052 down to just one (the right one). We can't combine
2053 interval operators with these because of, e.g., `a{2}*',
2054 which should only match an even number of `a's. */
2055
2056 for (;;)
2057 {
2058 zero_times_ok |= c != '+';
2059 many_times_ok |= c != '?';
2060
2061 if (p == pend)
2062 break;
2063
2064 PATFETCH (c);
2065
2066 if (c == '*'
2067 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2068 ;
2069
2070 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2071 {
2072 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2073
2074 PATFETCH (c1);
2075 if (!(c1 == '+' || c1 == '?'))
2076 {
2077 PATUNFETCH;
2078 PATUNFETCH;
2079 break;
2080 }
2081
2082 c = c1;
2083 }
2084 else
2085 {
2086 PATUNFETCH;
2087 break;
2088 }
2089
2090 /* If we get here, we found another repeat character. */
2091 }
2092
2093 /* Star, etc. applied to an empty pattern is equivalent
2094 to an empty pattern. */
2095 if (!laststart)
2096 break;
2097
2098 /* Now we know whether or not zero matches is allowed
2099 and also whether or not two or more matches is allowed. */
2100 if (many_times_ok)
2101 { /* More than one repetition is allowed, so put in at the
2102 end a backward relative jump from `b' to before the next
2103 jump we're going to put in below (which jumps from
2104 laststart to after this jump).
2105
2106 But if we are at the `*' in the exact sequence `.*\n',
2107 insert an unconditional jump backwards to the .,
2108 instead of the beginning of the loop. This way we only
2109 push a failure point once, instead of every time
2110 through the loop. */
2111 assert (p - 1 > pattern);
2112
2113 /* Allocate the space for the jump. */
2114 GET_BUFFER_SPACE (3);
2115
2116 /* We know we are not at the first character of the pattern,
2117 because laststart was nonzero. And we've already
2118 incremented `p', by the way, to be the character after
2119 the `*'. Do we have to do something analogous here
2120 for null bytes, because of RE_DOT_NOT_NULL? */
2121 if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
2122 && zero_times_ok
2123 && p < pend
2124 && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
2125 && !(syntax & RE_DOT_NEWLINE))
2126 { /* We have .*\n. */
2127 STORE_JUMP (jump, b, laststart);
2128 keep_string_p = true;
2129 }
2130 else
2131 /* Anything else. */
2132 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2133
2134 /* We've added more stuff to the buffer. */
2135 b += 3;
2136 }
2137
2138 /* On failure, jump from laststart to b + 3, which will be the
2139 end of the buffer after this jump is inserted. */
2140 GET_BUFFER_SPACE (3);
2141 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2142 : on_failure_jump,
2143 laststart, b + 3);
2144 pending_exact = 0;
2145 b += 3;
2146
2147 if (!zero_times_ok)
2148 {
2149 /* At least one repetition is required, so insert a
2150 `dummy_failure_jump' before the initial
2151 `on_failure_jump' instruction of the loop. This
2152 effects a skip over that instruction the first time
2153 we hit that loop. */
2154 GET_BUFFER_SPACE (3);
2155 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2156 b += 3;
2157 }
2158 }
2159 break;
2160
2161
2162 case '.':
2163 laststart = b;
2164 BUF_PUSH (anychar);
2165 break;
2166
2167
2168 case '[':
2169 {
2170 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2171
2172 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2173
2174 /* Ensure that we have enough space to push a charset: the
2175 opcode, the length count, and the bitset; 34 bytes in all. */
2176 GET_BUFFER_SPACE (34);
2177
2178 laststart = b;
2179
2180 /* We test `*p == '^' twice, instead of using an if
2181 statement, so we only need one BUF_PUSH. */
2182 BUF_PUSH (*p == '^' ? charset_not : charset);
2183 if (*p == '^')
2184 p++;
2185
2186 /* Remember the first position in the bracket expression. */
2187 p1 = p;
2188
2189 /* Push the number of bytes in the bitmap. */
2190 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2191
2192 /* Clear the whole map. */
2193 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2194
2195 /* charset_not matches newline according to a syntax bit. */
2196 if ((re_opcode_t) b[-2] == charset_not
2197 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2198 SET_LIST_BIT ('\n');
2199
2200 /* Read in characters and ranges, setting map bits. */
2201 for (;;)
2202 {
2203 int len;
2204 boolean escaped_char = false;
2205
2206 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2207
2208 PATFETCH (c);
2209
2210 /* \ might escape characters inside [...] and [^...]. */
2211 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2212 {
2213 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2214
2215 PATFETCH (c);
2216 escaped_char = true;
2217 }
2218 else
2219 {
2220 /* Could be the end of the bracket expression. If it's
2221 not (i.e., when the bracket expression is `[]' so
2222 far), the ']' character bit gets set way below. */
2223 if (c == ']' && p != p1 + 1)
2224 break;
2225 }
2226
2227 /* If C indicates start of multibyte char, get the
2228 actual character code in C, and set the pattern
2229 pointer P to the next character boundary. */
2230 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2231 {
2232 PATUNFETCH;
2233 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2234 p += len;
2235 }
2236 /* What should we do for the character which is
2237 greater than 0x7F, but not BASE_LEADING_CODE_P?
2238 XXX */
2239
2240 /* See if we're at the beginning of a possible character
2241 class. */
2242
2243 else if (!escaped_char &&
2244 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2245 {
2246 /* Leave room for the null. */
2247 char str[CHAR_CLASS_MAX_LENGTH + 1];
2248
2249 PATFETCH (c);
2250 c1 = 0;
2251
2252 /* If pattern is `[[:'. */
2253 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2254
2255 for (;;)
2256 {
2257 PATFETCH (c);
2258 if (c == ':' || c == ']' || p == pend
2259 || c1 == CHAR_CLASS_MAX_LENGTH)
2260 break;
2261 str[c1++] = c;
2262 }
2263 str[c1] = '\0';
2264
2265 /* If isn't a word bracketed by `[:' and `:]':
2266 undo the ending character, the letters, and
2267 leave the leading `:' and `[' (but set bits for
2268 them). */
2269 if (c == ':' && *p == ']')
2270 {
2271 int ch;
2272 boolean is_alnum = STREQ (str, "alnum");
2273 boolean is_alpha = STREQ (str, "alpha");
2274 boolean is_blank = STREQ (str, "blank");
2275 boolean is_cntrl = STREQ (str, "cntrl");
2276 boolean is_digit = STREQ (str, "digit");
2277 boolean is_graph = STREQ (str, "graph");
2278 boolean is_lower = STREQ (str, "lower");
2279 boolean is_print = STREQ (str, "print");
2280 boolean is_punct = STREQ (str, "punct");
2281 boolean is_space = STREQ (str, "space");
2282 boolean is_upper = STREQ (str, "upper");
2283 boolean is_xdigit = STREQ (str, "xdigit");
2284
2285 if (!IS_CHAR_CLASS (str))
2286 FREE_STACK_RETURN (REG_ECTYPE);
2287
2288 /* Throw away the ] at the end of the character
2289 class. */
2290 PATFETCH (c);
2291
2292 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2293
2294 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2295 {
2296 int translated = TRANSLATE (ch);
2297 /* This was split into 3 if's to
2298 avoid an arbitrary limit in some compiler. */
2299 if ( (is_alnum && ISALNUM (ch))
2300 || (is_alpha && ISALPHA (ch))
2301 || (is_blank && ISBLANK (ch))
2302 || (is_cntrl && ISCNTRL (ch)))
2303 SET_LIST_BIT (translated);
2304 if ( (is_digit && ISDIGIT (ch))
2305 || (is_graph && ISGRAPH (ch))
2306 || (is_lower && ISLOWER (ch))
2307 || (is_print && ISPRINT (ch)))
2308 SET_LIST_BIT (translated);
2309 if ( (is_punct && ISPUNCT (ch))
2310 || (is_space && ISSPACE (ch))
2311 || (is_upper && ISUPPER (ch))
2312 || (is_xdigit && ISXDIGIT (ch)))
2313 SET_LIST_BIT (translated);
2314 }
2315
2316 /* Repeat the loop. */
2317 continue;
2318 }
2319 else
2320 {
2321 c1++;
2322 while (c1--)
2323 PATUNFETCH;
2324 SET_LIST_BIT ('[');
2325
2326 /* Because the `:' may starts the range, we
2327 can't simply set bit and repeat the loop.
2328 Instead, just set it to C and handle below. */
2329 c = ':';
2330 }
2331 }
2332
2333 if (p < pend && p[0] == '-' && p[1] != ']')
2334 {
2335
2336 /* Discard the `-'. */
2337 PATFETCH (c1);
2338
2339 /* Fetch the character which ends the range. */
2340 PATFETCH (c1);
2341 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
2342 {
2343 PATUNFETCH;
2344 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2345 p += len;
2346 }
2347
2348 if (SINGLE_BYTE_CHAR_P (c)
2349 && ! SINGLE_BYTE_CHAR_P (c1))
2350 {
2351 /* Handle a range such as \177-\377 in multibyte mode.
2352 Split that into two ranges,,
2353 the low one ending at 0237, and the high one
2354 starting at ...040. */
2355 int c1_base = (c1 & ~0177) | 040;
2356 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2357 c1 = 0237;
2358 }
2359 else if (!SAME_CHARSET_P (c, c1))
2360 FREE_STACK_RETURN (REG_ERANGE);
2361 }
2362 else
2363 /* Range from C to C. */
2364 c1 = c;
2365
2366 /* Set the range ... */
2367 if (SINGLE_BYTE_CHAR_P (c))
2368 /* ... into bitmap. */
2369 {
2370 unsigned this_char;
2371 int range_start = c, range_end = c1;
2372
2373 /* If the start is after the end, the range is empty. */
2374 if (range_start > range_end)
2375 {
2376 if (syntax & RE_NO_EMPTY_RANGES)
2377 FREE_STACK_RETURN (REG_ERANGE);
2378 /* Else, repeat the loop. */
2379 }
2380 else
2381 {
2382 for (this_char = range_start; this_char <= range_end;
2383 this_char++)
2384 SET_LIST_BIT (TRANSLATE (this_char));
2385 }
2386 }
2387 else
2388 /* ... into range table. */
2389 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2390 }
2391
2392 /* Discard any (non)matching list bytes that are all 0 at the
2393 end of the map. Decrease the map-length byte too. */
2394 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2395 b[-1]--;
2396 b += b[-1];
2397
2398 /* Build real range table from work area. */
2399 if (RANGE_TABLE_WORK_USED (range_table_work))
2400 {
2401 int i;
2402 int used = RANGE_TABLE_WORK_USED (range_table_work);
2403
2404 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2405 bytes for COUNT and three bytes for each character. */
2406 GET_BUFFER_SPACE (2 + used * 3);
2407
2408 /* Indicate the existence of range table. */
2409 laststart[1] |= 0x80;
2410
2411 STORE_NUMBER_AND_INCR (b, used / 2);
2412 for (i = 0; i < used; i++)
2413 STORE_CHARACTER_AND_INCR
2414 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2415 }
2416 }
2417 break;
2418
2419
2420 case '(':
2421 if (syntax & RE_NO_BK_PARENS)
2422 goto handle_open;
2423 else
2424 goto normal_char;
2425
2426
2427 case ')':
2428 if (syntax & RE_NO_BK_PARENS)
2429 goto handle_close;
2430 else
2431 goto normal_char;
2432
2433
2434 case '\n':
2435 if (syntax & RE_NEWLINE_ALT)
2436 goto handle_alt;
2437 else
2438 goto normal_char;
2439
2440
2441 case '|':
2442 if (syntax & RE_NO_BK_VBAR)
2443 goto handle_alt;
2444 else
2445 goto normal_char;
2446
2447
2448 case '{':
2449 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2450 goto handle_interval;
2451 else
2452 goto normal_char;
2453
2454
2455 case '\\':
2456 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2457
2458 /* Do not translate the character after the \, so that we can
2459 distinguish, e.g., \B from \b, even if we normally would
2460 translate, e.g., B to b. */
2461 PATFETCH_RAW (c);
2462
2463 switch (c)
2464 {
2465 case '(':
2466 if (syntax & RE_NO_BK_PARENS)
2467 goto normal_backslash;
2468
2469 handle_open:
2470 bufp->re_nsub++;
2471 regnum++;
2472
2473 if (COMPILE_STACK_FULL)
2474 {
2475 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2476 compile_stack_elt_t);
2477 if (compile_stack.stack == NULL) return REG_ESPACE;
2478
2479 compile_stack.size <<= 1;
2480 }
2481
2482 /* These are the values to restore when we hit end of this
2483 group. They are all relative offsets, so that if the
2484 whole pattern moves because of realloc, they will still
2485 be valid. */
2486 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2487 COMPILE_STACK_TOP.fixup_alt_jump
2488 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2489 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2490 COMPILE_STACK_TOP.regnum = regnum;
2491
2492 /* We will eventually replace the 0 with the number of
2493 groups inner to this one. But do not push a
2494 start_memory for groups beyond the last one we can
2495 represent in the compiled pattern. */
2496 if (regnum <= MAX_REGNUM)
2497 {
2498 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2499 BUF_PUSH_3 (start_memory, regnum, 0);
2500 }
2501
2502 compile_stack.avail++;
2503
2504 fixup_alt_jump = 0;
2505 laststart = 0;
2506 begalt = b;
2507 /* If we've reached MAX_REGNUM groups, then this open
2508 won't actually generate any code, so we'll have to
2509 clear pending_exact explicitly. */
2510 pending_exact = 0;
2511 break;
2512
2513
2514 case ')':
2515 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2516
2517 if (COMPILE_STACK_EMPTY)
2518 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2519 goto normal_backslash;
2520 else
2521 FREE_STACK_RETURN (REG_ERPAREN);
2522
2523 handle_close:
2524 if (fixup_alt_jump)
2525 { /* Push a dummy failure point at the end of the
2526 alternative for a possible future
2527 `pop_failure_jump' to pop. See comments at
2528 `push_dummy_failure' in `re_match_2'. */
2529 BUF_PUSH (push_dummy_failure);
2530
2531 /* We allocated space for this jump when we assigned
2532 to `fixup_alt_jump', in the `handle_alt' case below. */
2533 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2534 }
2535
2536 /* See similar code for backslashed left paren above. */
2537 if (COMPILE_STACK_EMPTY)
2538 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2539 goto normal_char;
2540 else
2541 FREE_STACK_RETURN (REG_ERPAREN);
2542
2543 /* Since we just checked for an empty stack above, this
2544 ``can't happen''. */
2545 assert (compile_stack.avail != 0);
2546 {
2547 /* We don't just want to restore into `regnum', because
2548 later groups should continue to be numbered higher,
2549 as in `(ab)c(de)' -- the second group is #2. */
2550 regnum_t this_group_regnum;
2551
2552 compile_stack.avail--;
2553 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2554 fixup_alt_jump
2555 = COMPILE_STACK_TOP.fixup_alt_jump
2556 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2557 : 0;
2558 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2559 this_group_regnum = COMPILE_STACK_TOP.regnum;
2560 /* If we've reached MAX_REGNUM groups, then this open
2561 won't actually generate any code, so we'll have to
2562 clear pending_exact explicitly. */
2563 pending_exact = 0;
2564
2565 /* We're at the end of the group, so now we know how many
2566 groups were inside this one. */
2567 if (this_group_regnum <= MAX_REGNUM)
2568 {
2569 unsigned char *inner_group_loc
2570 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2571
2572 *inner_group_loc = regnum - this_group_regnum;
2573 BUF_PUSH_3 (stop_memory, this_group_regnum,
2574 regnum - this_group_regnum);
2575 }
2576 }
2577 break;
2578
2579
2580 case '|': /* `\|'. */
2581 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2582 goto normal_backslash;
2583 handle_alt:
2584 if (syntax & RE_LIMITED_OPS)
2585 goto normal_char;
2586
2587 /* Insert before the previous alternative a jump which
2588 jumps to this alternative if the former fails. */
2589 GET_BUFFER_SPACE (3);
2590 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2591 pending_exact = 0;
2592 b += 3;
2593
2594 /* The alternative before this one has a jump after it
2595 which gets executed if it gets matched. Adjust that
2596 jump so it will jump to this alternative's analogous
2597 jump (put in below, which in turn will jump to the next
2598 (if any) alternative's such jump, etc.). The last such
2599 jump jumps to the correct final destination. A picture:
2600 _____ _____
2601 | | | |
2602 | v | v
2603 a | b | c
2604
2605 If we are at `b', then fixup_alt_jump right now points to a
2606 three-byte space after `a'. We'll put in the jump, set
2607 fixup_alt_jump to right after `b', and leave behind three
2608 bytes which we'll fill in when we get to after `c'. */
2609
2610 if (fixup_alt_jump)
2611 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2612
2613 /* Mark and leave space for a jump after this alternative,
2614 to be filled in later either by next alternative or
2615 when know we're at the end of a series of alternatives. */
2616 fixup_alt_jump = b;
2617 GET_BUFFER_SPACE (3);
2618 b += 3;
2619
2620 laststart = 0;
2621 begalt = b;
2622 break;
2623
2624
2625 case '{':
2626 /* If \{ is a literal. */
2627 if (!(syntax & RE_INTERVALS)
2628 /* If we're at `\{' and it's not the open-interval
2629 operator. */
2630 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2631 || (p - 2 == pattern && p == pend))
2632 goto normal_backslash;
2633
2634 handle_interval:
2635 {
2636 /* If got here, then the syntax allows intervals. */
2637
2638 /* At least (most) this many matches must be made. */
2639 int lower_bound = -1, upper_bound = -1;
2640
2641 beg_interval = p - 1;
2642
2643 if (p == pend)
2644 {
2645 if (syntax & RE_NO_BK_BRACES)
2646 goto unfetch_interval;
2647 else
2648 FREE_STACK_RETURN (REG_EBRACE);
2649 }
2650
2651 GET_UNSIGNED_NUMBER (lower_bound);
2652
2653 if (c == ',')
2654 {
2655 GET_UNSIGNED_NUMBER (upper_bound);
2656 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2657 }
2658 else
2659 /* Interval such as `{1}' => match exactly once. */
2660 upper_bound = lower_bound;
2661
2662 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2663 || lower_bound > upper_bound)
2664 {
2665 if (syntax & RE_NO_BK_BRACES)
2666 goto unfetch_interval;
2667 else
2668 FREE_STACK_RETURN (REG_BADBR);
2669 }
2670
2671 if (!(syntax & RE_NO_BK_BRACES))
2672 {
2673 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2674
2675 PATFETCH (c);
2676 }
2677
2678 if (c != '}')
2679 {
2680 if (syntax & RE_NO_BK_BRACES)
2681 goto unfetch_interval;
2682 else
2683 FREE_STACK_RETURN (REG_BADBR);
2684 }
2685
2686 /* We just parsed a valid interval. */
2687
2688 /* If it's invalid to have no preceding re. */
2689 if (!laststart)
2690 {
2691 if (syntax & RE_CONTEXT_INVALID_OPS)
2692 FREE_STACK_RETURN (REG_BADRPT);
2693 else if (syntax & RE_CONTEXT_INDEP_OPS)
2694 laststart = b;
2695 else
2696 goto unfetch_interval;
2697 }
2698
2699 /* If the upper bound is zero, don't want to succeed at
2700 all; jump from `laststart' to `b + 3', which will be
2701 the end of the buffer after we insert the jump. */
2702 if (upper_bound == 0)
2703 {
2704 GET_BUFFER_SPACE (3);
2705 INSERT_JUMP (jump, laststart, b + 3);
2706 b += 3;
2707 }
2708
2709 /* Otherwise, we have a nontrivial interval. When
2710 we're all done, the pattern will look like:
2711 set_number_at <jump count> <upper bound>
2712 set_number_at <succeed_n count> <lower bound>
2713 succeed_n <after jump addr> <succeed_n count>
2714 <body of loop>
2715 jump_n <succeed_n addr> <jump count>
2716 (The upper bound and `jump_n' are omitted if
2717 `upper_bound' is 1, though.) */
2718 else
2719 { /* If the upper bound is > 1, we need to insert
2720 more at the end of the loop. */
2721 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2722
2723 GET_BUFFER_SPACE (nbytes);
2724
2725 /* Initialize lower bound of the `succeed_n', even
2726 though it will be set during matching by its
2727 attendant `set_number_at' (inserted next),
2728 because `re_compile_fastmap' needs to know.
2729 Jump to the `jump_n' we might insert below. */
2730 INSERT_JUMP2 (succeed_n, laststart,
2731 b + 5 + (upper_bound > 1) * 5,
2732 lower_bound);
2733 b += 5;
2734
2735 /* Code to initialize the lower bound. Insert
2736 before the `succeed_n'. The `5' is the last two
2737 bytes of this `set_number_at', plus 3 bytes of
2738 the following `succeed_n'. */
2739 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2740 b += 5;
2741
2742 if (upper_bound > 1)
2743 { /* More than one repetition is allowed, so
2744 append a backward jump to the `succeed_n'
2745 that starts this interval.
2746
2747 When we've reached this during matching,
2748 we'll have matched the interval once, so
2749 jump back only `upper_bound - 1' times. */
2750 STORE_JUMP2 (jump_n, b, laststart + 5,
2751 upper_bound - 1);
2752 b += 5;
2753
2754 /* The location we want to set is the second
2755 parameter of the `jump_n'; that is `b-2' as
2756 an absolute address. `laststart' will be
2757 the `set_number_at' we're about to insert;
2758 `laststart+3' the number to set, the source
2759 for the relative address. But we are
2760 inserting into the middle of the pattern --
2761 so everything is getting moved up by 5.
2762 Conclusion: (b - 2) - (laststart + 3) + 5,
2763 i.e., b - laststart.
2764
2765 We insert this at the beginning of the loop
2766 so that if we fail during matching, we'll
2767 reinitialize the bounds. */
2768 insert_op2 (set_number_at, laststart, b - laststart,
2769 upper_bound - 1, b);
2770 b += 5;
2771 }
2772 }
2773 pending_exact = 0;
2774 beg_interval = NULL;
2775 }
2776 break;
2777
2778 unfetch_interval:
2779 /* If an invalid interval, match the characters as literals. */
2780 assert (beg_interval);
2781 p = beg_interval;
2782 beg_interval = NULL;
2783
2784 /* normal_char and normal_backslash need `c'. */
2785 PATFETCH (c);
2786
2787 if (!(syntax & RE_NO_BK_BRACES))
2788 {
2789 if (p > pattern && p[-1] == '\\')
2790 goto normal_backslash;
2791 }
2792 goto normal_char;
2793
2794 #ifdef emacs
2795 /* There is no way to specify the before_dot and after_dot
2796 operators. rms says this is ok. --karl */
2797 case '=':
2798 BUF_PUSH (at_dot);
2799 break;
2800
2801 case 's':
2802 laststart = b;
2803 PATFETCH (c);
2804 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2805 break;
2806
2807 case 'S':
2808 laststart = b;
2809 PATFETCH (c);
2810 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2811 break;
2812
2813 case 'c':
2814 laststart = b;
2815 PATFETCH_RAW (c);
2816 BUF_PUSH_2 (categoryspec, c);
2817 break;
2818
2819 case 'C':
2820 laststart = b;
2821 PATFETCH_RAW (c);
2822 BUF_PUSH_2 (notcategoryspec, c);
2823 break;
2824 #endif /* emacs */
2825
2826
2827 case 'w':
2828 laststart = b;
2829 BUF_PUSH (wordchar);
2830 break;
2831
2832
2833 case 'W':
2834 laststart = b;
2835 BUF_PUSH (notwordchar);
2836 break;
2837
2838
2839 case '<':
2840 BUF_PUSH (wordbeg);
2841 break;
2842
2843 case '>':
2844 BUF_PUSH (wordend);
2845 break;
2846
2847 case 'b':
2848 BUF_PUSH (wordbound);
2849 break;
2850
2851 case 'B':
2852 BUF_PUSH (notwordbound);
2853 break;
2854
2855 case '`':
2856 BUF_PUSH (begbuf);
2857 break;
2858
2859 case '\'':
2860 BUF_PUSH (endbuf);
2861 break;
2862
2863 case '1': case '2': case '3': case '4': case '5':
2864 case '6': case '7': case '8': case '9':
2865 if (syntax & RE_NO_BK_REFS)
2866 goto normal_char;
2867
2868 c1 = c - '0';
2869
2870 if (c1 > regnum)
2871 FREE_STACK_RETURN (REG_ESUBREG);
2872
2873 /* Can't back reference to a subexpression if inside of it. */
2874 if (group_in_compile_stack (compile_stack, c1))
2875 goto normal_char;
2876
2877 laststart = b;
2878 BUF_PUSH_2 (duplicate, c1);
2879 break;
2880
2881
2882 case '+':
2883 case '?':
2884 if (syntax & RE_BK_PLUS_QM)
2885 goto handle_plus;
2886 else
2887 goto normal_backslash;
2888
2889 default:
2890 normal_backslash:
2891 /* You might think it would be useful for \ to mean
2892 not to translate; but if we don't translate it
2893 it will never match anything. */
2894 c = TRANSLATE (c);
2895 goto normal_char;
2896 }
2897 break;
2898
2899
2900 default:
2901 /* Expects the character in `c'. */
2902 normal_char:
2903 p1 = p - 1; /* P1 points the head of C. */
2904 #ifdef emacs
2905 if (bufp->multibyte)
2906 {
2907 c = STRING_CHAR (p1, pend - p1);
2908 c = TRANSLATE (c);
2909 /* Set P to the next character boundary. */
2910 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2911 }
2912 #endif
2913 /* If no exactn currently being built. */
2914 if (!pending_exact
2915
2916 /* If last exactn not at current position. */
2917 || pending_exact + *pending_exact + 1 != b
2918
2919 /* We have only one byte following the exactn for the count. */
2920 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
2921
2922 /* If followed by a repetition operator. */
2923 || (p != pend && (*p == '*' || *p == '^'))
2924 || ((syntax & RE_BK_PLUS_QM)
2925 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
2926 : p != pend && (*p == '+' || *p == '?'))
2927 || ((syntax & RE_INTERVALS)
2928 && ((syntax & RE_NO_BK_BRACES)
2929 ? p != pend && *p == '{'
2930 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
2931 {
2932 /* Start building a new exactn. */
2933
2934 laststart = b;
2935
2936 BUF_PUSH_2 (exactn, 0);
2937 pending_exact = b - 1;
2938 }
2939
2940 #ifdef emacs
2941 if (! SINGLE_BYTE_CHAR_P (c))
2942 {
2943 unsigned char work[4], *str;
2944 int i = CHAR_STRING (c, work, str);
2945 int j;
2946 for (j = 0; j < i; j++)
2947 {
2948 BUF_PUSH (str[j]);
2949 (*pending_exact)++;
2950 }
2951 }
2952 else
2953 #endif
2954 {
2955 BUF_PUSH (c);
2956 (*pending_exact)++;
2957 }
2958 break;
2959 } /* switch (c) */
2960 } /* while p != pend */
2961
2962
2963 /* Through the pattern now. */
2964
2965 if (fixup_alt_jump)
2966 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2967
2968 if (!COMPILE_STACK_EMPTY)
2969 FREE_STACK_RETURN (REG_EPAREN);
2970
2971 /* If we don't want backtracking, force success
2972 the first time we reach the end of the compiled pattern. */
2973 if (syntax & RE_NO_POSIX_BACKTRACKING)
2974 BUF_PUSH (succeed);
2975
2976 free (compile_stack.stack);
2977
2978 /* We have succeeded; set the length of the buffer. */
2979 bufp->used = b - bufp->buffer;
2980
2981 #ifdef DEBUG
2982 if (debug)
2983 {
2984 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2985 print_compiled_pattern (bufp);
2986 }
2987 #endif /* DEBUG */
2988
2989 #ifndef MATCH_MAY_ALLOCATE
2990 /* Initialize the failure stack to the largest possible stack. This
2991 isn't necessary unless we're trying to avoid calling alloca in
2992 the search and match routines. */
2993 {
2994 int num_regs = bufp->re_nsub + 1;
2995
2996 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
2997 {
2998 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
2999
3000 #ifdef emacs
3001 if (! fail_stack.stack)
3002 fail_stack.stack
3003 = (fail_stack_elt_t *) xmalloc (fail_stack.size
3004 * sizeof (fail_stack_elt_t));
3005 else
3006 fail_stack.stack
3007 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3008 (fail_stack.size
3009 * sizeof (fail_stack_elt_t)));
3010 #else /* not emacs */
3011 if (! fail_stack.stack)
3012 fail_stack.stack
3013 = (fail_stack_elt_t *) malloc (fail_stack.size
3014 * sizeof (fail_stack_elt_t));
3015 else
3016 fail_stack.stack
3017 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3018 (fail_stack.size
3019 * sizeof (fail_stack_elt_t)));
3020 #endif /* not emacs */
3021 }
3022
3023 regex_grow_registers (num_regs);
3024 }
3025 #endif /* not MATCH_MAY_ALLOCATE */
3026
3027 return REG_NOERROR;
3028 } /* regex_compile */
3029 \f
3030 /* Subroutines for `regex_compile'. */
3031
3032 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3033
3034 static void
3035 store_op1 (op, loc, arg)
3036 re_opcode_t op;
3037 unsigned char *loc;
3038 int arg;
3039 {
3040 *loc = (unsigned char) op;
3041 STORE_NUMBER (loc + 1, arg);
3042 }
3043
3044
3045 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3046
3047 static void
3048 store_op2 (op, loc, arg1, arg2)
3049 re_opcode_t op;
3050 unsigned char *loc;
3051 int arg1, arg2;
3052 {
3053 *loc = (unsigned char) op;
3054 STORE_NUMBER (loc + 1, arg1);
3055 STORE_NUMBER (loc + 3, arg2);
3056 }
3057
3058
3059 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3060 for OP followed by two-byte integer parameter ARG. */
3061
3062 static void
3063 insert_op1 (op, loc, arg, end)
3064 re_opcode_t op;
3065 unsigned char *loc;
3066 int arg;
3067 unsigned char *end;
3068 {
3069 register unsigned char *pfrom = end;
3070 register unsigned char *pto = end + 3;
3071
3072 while (pfrom != loc)
3073 *--pto = *--pfrom;
3074
3075 store_op1 (op, loc, arg);
3076 }
3077
3078
3079 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3080
3081 static void
3082 insert_op2 (op, loc, arg1, arg2, end)
3083 re_opcode_t op;
3084 unsigned char *loc;
3085 int arg1, arg2;
3086 unsigned char *end;
3087 {
3088 register unsigned char *pfrom = end;
3089 register unsigned char *pto = end + 5;
3090
3091 while (pfrom != loc)
3092 *--pto = *--pfrom;
3093
3094 store_op2 (op, loc, arg1, arg2);
3095 }
3096
3097
3098 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3099 after an alternative or a begin-subexpression. We assume there is at
3100 least one character before the ^. */
3101
3102 static boolean
3103 at_begline_loc_p (pattern, p, syntax)
3104 const char *pattern, *p;
3105 reg_syntax_t syntax;
3106 {
3107 const char *prev = p - 2;
3108 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3109
3110 return
3111 /* After a subexpression? */
3112 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3113 /* After an alternative? */
3114 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3115 }
3116
3117
3118 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3119 at least one character after the $, i.e., `P < PEND'. */
3120
3121 static boolean
3122 at_endline_loc_p (p, pend, syntax)
3123 const char *p, *pend;
3124 int syntax;
3125 {
3126 const char *next = p;
3127 boolean next_backslash = *next == '\\';
3128 const char *next_next = p + 1 < pend ? p + 1 : 0;
3129
3130 return
3131 /* Before a subexpression? */
3132 (syntax & RE_NO_BK_PARENS ? *next == ')'
3133 : next_backslash && next_next && *next_next == ')')
3134 /* Before an alternative? */
3135 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3136 : next_backslash && next_next && *next_next == '|');
3137 }
3138
3139
3140 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3141 false if it's not. */
3142
3143 static boolean
3144 group_in_compile_stack (compile_stack, regnum)
3145 compile_stack_type compile_stack;
3146 regnum_t regnum;
3147 {
3148 int this_element;
3149
3150 for (this_element = compile_stack.avail - 1;
3151 this_element >= 0;
3152 this_element--)
3153 if (compile_stack.stack[this_element].regnum == regnum)
3154 return true;
3155
3156 return false;
3157 }
3158 \f
3159 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3160 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3161 characters can start a string that matches the pattern. This fastmap
3162 is used by re_search to skip quickly over impossible starting points.
3163
3164 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3165 area as BUFP->fastmap.
3166
3167 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3168 the pattern buffer.
3169
3170 Returns 0 if we succeed, -2 if an internal error. */
3171
3172 int
3173 re_compile_fastmap (bufp)
3174 struct re_pattern_buffer *bufp;
3175 {
3176 int i, j, k;
3177 #ifdef MATCH_MAY_ALLOCATE
3178 fail_stack_type fail_stack;
3179 #endif
3180 #ifndef REGEX_MALLOC
3181 char *destination;
3182 #endif
3183 /* We don't push any register information onto the failure stack. */
3184 unsigned num_regs = 0;
3185
3186 register char *fastmap = bufp->fastmap;
3187 unsigned char *pattern = bufp->buffer;
3188 unsigned long size = bufp->used;
3189 unsigned char *p = pattern;
3190 register unsigned char *pend = pattern + size;
3191
3192 /* This holds the pointer to the failure stack, when
3193 it is allocated relocatably. */
3194 fail_stack_elt_t *failure_stack_ptr;
3195
3196 /* Assume that each path through the pattern can be null until
3197 proven otherwise. We set this false at the bottom of switch
3198 statement, to which we get only if a particular path doesn't
3199 match the empty string. */
3200 boolean path_can_be_null = true;
3201
3202 /* We aren't doing a `succeed_n' to begin with. */
3203 boolean succeed_n_p = false;
3204
3205 /* If all elements for base leading-codes in fastmap is set, this
3206 flag is set true. */
3207 boolean match_any_multibyte_characters = false;
3208
3209 /* Maximum code of simple (single byte) character. */
3210 int simple_char_max;
3211
3212 assert (fastmap != NULL && p != NULL);
3213
3214 INIT_FAIL_STACK ();
3215 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3216 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3217 bufp->can_be_null = 0;
3218
3219 while (1)
3220 {
3221 if (p == pend || *p == succeed)
3222 {
3223 /* We have reached the (effective) end of pattern. */
3224 if (!FAIL_STACK_EMPTY ())
3225 {
3226 bufp->can_be_null |= path_can_be_null;
3227
3228 /* Reset for next path. */
3229 path_can_be_null = true;
3230
3231 p = fail_stack.stack[--fail_stack.avail].pointer;
3232
3233 continue;
3234 }
3235 else
3236 break;
3237 }
3238
3239 /* We should never be about to go beyond the end of the pattern. */
3240 assert (p < pend);
3241
3242 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3243 {
3244
3245 /* I guess the idea here is to simply not bother with a fastmap
3246 if a backreference is used, since it's too hard to figure out
3247 the fastmap for the corresponding group. Setting
3248 `can_be_null' stops `re_search_2' from using the fastmap, so
3249 that is all we do. */
3250 case duplicate:
3251 bufp->can_be_null = 1;
3252 goto done;
3253
3254
3255 /* Following are the cases which match a character. These end
3256 with `break'. */
3257
3258 case exactn:
3259 fastmap[p[1]] = 1;
3260 break;
3261
3262
3263 #ifndef emacs
3264 case charset:
3265 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3266 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3267 fastmap[j] = 1;
3268 break;
3269
3270
3271 case charset_not:
3272 /* Chars beyond end of map must be allowed. */
3273 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3274 fastmap[j] = 1;
3275
3276 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3277 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3278 fastmap[j] = 1;
3279 break;
3280
3281
3282 case wordchar:
3283 for (j = 0; j < (1 << BYTEWIDTH); j++)
3284 if (SYNTAX (j) == Sword)
3285 fastmap[j] = 1;
3286 break;
3287
3288
3289 case notwordchar:
3290 for (j = 0; j < (1 << BYTEWIDTH); j++)
3291 if (SYNTAX (j) != Sword)
3292 fastmap[j] = 1;
3293 break;
3294 #else /* emacs */
3295 case charset:
3296 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3297 j >= 0; j--)
3298 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3299 fastmap[j] = 1;
3300
3301 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3302 && match_any_multibyte_characters == false)
3303 {
3304 /* Set fastmap[I] 1 where I is a base leading code of each
3305 multibyte character in the range table. */
3306 int c, count;
3307
3308 /* Make P points the range table. */
3309 p += CHARSET_BITMAP_SIZE (&p[-2]);
3310
3311 /* Extract the number of ranges in range table into
3312 COUNT. */
3313 EXTRACT_NUMBER_AND_INCR (count, p);
3314 for (; count > 0; count--, p += 2 * 3) /* XXX */
3315 {
3316 /* Extract the start of each range. */
3317 EXTRACT_CHARACTER (c, p);
3318 j = CHAR_CHARSET (c);
3319 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3320 }
3321 }
3322 break;
3323
3324
3325 case charset_not:
3326 /* Chars beyond end of map must be allowed. End of map is
3327 `127' if bufp->multibyte is nonzero. */
3328 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3329 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3330 j < simple_char_max; j++)
3331 fastmap[j] = 1;
3332
3333 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3334 j >= 0; j--)
3335 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3336 fastmap[j] = 1;
3337
3338 if (bufp->multibyte)
3339 /* Any character set can possibly contain a character
3340 which doesn't match the specified set of characters. */
3341 {
3342 set_fastmap_for_multibyte_characters:
3343 if (match_any_multibyte_characters == false)
3344 {
3345 for (j = 0x80; j < 0xA0; j++) /* XXX */
3346 if (BASE_LEADING_CODE_P (j))
3347 fastmap[j] = 1;
3348 match_any_multibyte_characters = true;
3349 }
3350 }
3351 break;
3352
3353
3354 case wordchar:
3355 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3356 for (j = 0; j < simple_char_max; j++)
3357 if (SYNTAX (j) == Sword)
3358 fastmap[j] = 1;
3359
3360 if (bufp->multibyte)
3361 /* Any character set can possibly contain a character
3362 whose syntax is `Sword'. */
3363 goto set_fastmap_for_multibyte_characters;
3364 break;
3365
3366
3367 case notwordchar:
3368 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3369 for (j = 0; j < simple_char_max; j++)
3370 if (SYNTAX (j) != Sword)
3371 fastmap[j] = 1;
3372
3373 if (bufp->multibyte)
3374 /* Any character set can possibly contain a character
3375 whose syntax is not `Sword'. */
3376 goto set_fastmap_for_multibyte_characters;
3377 break;
3378 #endif
3379
3380 case anychar:
3381 {
3382 int fastmap_newline = fastmap['\n'];
3383
3384 /* `.' matches anything, except perhaps newline.
3385 Even in a multibyte buffer, it should match any
3386 conceivable byte value for the fastmap. */
3387 if (bufp->multibyte)
3388 match_any_multibyte_characters = true;
3389
3390 simple_char_max = (1 << BYTEWIDTH);
3391 for (j = 0; j < simple_char_max; j++)
3392 fastmap[j] = 1;
3393
3394 /* ... except perhaps newline. */
3395 if (!(bufp->syntax & RE_DOT_NEWLINE))
3396 fastmap['\n'] = fastmap_newline;
3397
3398 /* Return if we have already set `can_be_null'; if we have,
3399 then the fastmap is irrelevant. Something's wrong here. */
3400 else if (bufp->can_be_null)
3401 goto done;
3402
3403 /* Otherwise, have to check alternative paths. */
3404 break;
3405 }
3406
3407 #ifdef emacs
3408 case wordbound:
3409 case notwordbound:
3410 case wordbeg:
3411 case wordend:
3412 case notsyntaxspec:
3413 case syntaxspec:
3414 /* This match depends on text properties. These end with
3415 aborting optimizations. */
3416 bufp->can_be_null = 1;
3417 goto done;
3418 #if 0
3419 k = *p++;
3420 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3421 for (j = 0; j < simple_char_max; j++)
3422 if (SYNTAX (j) == (enum syntaxcode) k)
3423 fastmap[j] = 1;
3424
3425 if (bufp->multibyte)
3426 /* Any character set can possibly contain a character
3427 whose syntax is K. */
3428 goto set_fastmap_for_multibyte_characters;
3429 break;
3430
3431 case notsyntaxspec:
3432 k = *p++;
3433 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3434 for (j = 0; j < simple_char_max; j++)
3435 if (SYNTAX (j) != (enum syntaxcode) k)
3436 fastmap[j] = 1;
3437
3438 if (bufp->multibyte)
3439 /* Any character set can possibly contain a character
3440 whose syntax is not K. */
3441 goto set_fastmap_for_multibyte_characters;
3442 break;
3443 #endif
3444
3445
3446 case categoryspec:
3447 k = *p++;
3448 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3449 for (j = 0; j < simple_char_max; j++)
3450 if (CHAR_HAS_CATEGORY (j, k))
3451 fastmap[j] = 1;
3452
3453 if (bufp->multibyte)
3454 /* Any character set can possibly contain a character
3455 whose category is K. */
3456 goto set_fastmap_for_multibyte_characters;
3457 break;
3458
3459
3460 case notcategoryspec:
3461 k = *p++;
3462 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3463 for (j = 0; j < simple_char_max; j++)
3464 if (!CHAR_HAS_CATEGORY (j, k))
3465 fastmap[j] = 1;
3466
3467 if (bufp->multibyte)
3468 /* Any character set can possibly contain a character
3469 whose category is not K. */
3470 goto set_fastmap_for_multibyte_characters;
3471 break;
3472
3473 /* All cases after this match the empty string. These end with
3474 `continue'. */
3475
3476
3477 case before_dot:
3478 case at_dot:
3479 case after_dot:
3480 continue;
3481 #endif /* emacs */
3482
3483
3484 case no_op:
3485 case begline:
3486 case endline:
3487 case begbuf:
3488 case endbuf:
3489 #ifndef emacs
3490 case wordbound:
3491 case notwordbound:
3492 case wordbeg:
3493 case wordend:
3494 #endif
3495 case push_dummy_failure:
3496 continue;
3497
3498
3499 case jump_n:
3500 case pop_failure_jump:
3501 case maybe_pop_jump:
3502 case jump:
3503 case jump_past_alt:
3504 case dummy_failure_jump:
3505 EXTRACT_NUMBER_AND_INCR (j, p);
3506 p += j;
3507 if (j > 0)
3508 continue;
3509
3510 /* Jump backward implies we just went through the body of a
3511 loop and matched nothing. Opcode jumped to should be
3512 `on_failure_jump' or `succeed_n'. Just treat it like an
3513 ordinary jump. For a * loop, it has pushed its failure
3514 point already; if so, discard that as redundant. */
3515 if ((re_opcode_t) *p != on_failure_jump
3516 && (re_opcode_t) *p != succeed_n)
3517 continue;
3518
3519 p++;
3520 EXTRACT_NUMBER_AND_INCR (j, p);
3521 p += j;
3522
3523 /* If what's on the stack is where we are now, pop it. */
3524 if (!FAIL_STACK_EMPTY ()
3525 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3526 fail_stack.avail--;
3527
3528 continue;
3529
3530
3531 case on_failure_jump:
3532 case on_failure_keep_string_jump:
3533 handle_on_failure_jump:
3534 EXTRACT_NUMBER_AND_INCR (j, p);
3535
3536 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3537 end of the pattern. We don't want to push such a point,
3538 since when we restore it above, entering the switch will
3539 increment `p' past the end of the pattern. We don't need
3540 to push such a point since we obviously won't find any more
3541 fastmap entries beyond `pend'. Such a pattern can match
3542 the null string, though. */
3543 if (p + j < pend)
3544 {
3545 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3546 {
3547 RESET_FAIL_STACK ();
3548 return -2;
3549 }
3550 }
3551 else
3552 bufp->can_be_null = 1;
3553
3554 if (succeed_n_p)
3555 {
3556 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3557 succeed_n_p = false;
3558 }
3559
3560 continue;
3561
3562
3563 case succeed_n:
3564 /* Get to the number of times to succeed. */
3565 p += 2;
3566
3567 /* Increment p past the n for when k != 0. */
3568 EXTRACT_NUMBER_AND_INCR (k, p);
3569 if (k == 0)
3570 {
3571 p -= 4;
3572 succeed_n_p = true; /* Spaghetti code alert. */
3573 goto handle_on_failure_jump;
3574 }
3575 continue;
3576
3577
3578 case set_number_at:
3579 p += 4;
3580 continue;
3581
3582
3583 case start_memory:
3584 case stop_memory:
3585 p += 2;
3586 continue;
3587
3588
3589 default:
3590 abort (); /* We have listed all the cases. */
3591 } /* switch *p++ */
3592
3593 /* Getting here means we have found the possible starting
3594 characters for one path of the pattern -- and that the empty
3595 string does not match. We need not follow this path further.
3596 Instead, look at the next alternative (remembered on the
3597 stack), or quit if no more. The test at the top of the loop
3598 does these things. */
3599 path_can_be_null = false;
3600 p = pend;
3601 } /* while p */
3602
3603 /* Set `can_be_null' for the last path (also the first path, if the
3604 pattern is empty). */
3605 bufp->can_be_null |= path_can_be_null;
3606
3607 done:
3608 RESET_FAIL_STACK ();
3609 return 0;
3610 } /* re_compile_fastmap */
3611 \f
3612 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3613 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3614 this memory for recording register information. STARTS and ENDS
3615 must be allocated using the malloc library routine, and must each
3616 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3617
3618 If NUM_REGS == 0, then subsequent matches should allocate their own
3619 register data.
3620
3621 Unless this function is called, the first search or match using
3622 PATTERN_BUFFER will allocate its own register data, without
3623 freeing the old data. */
3624
3625 void
3626 re_set_registers (bufp, regs, num_regs, starts, ends)
3627 struct re_pattern_buffer *bufp;
3628 struct re_registers *regs;
3629 unsigned num_regs;
3630 regoff_t *starts, *ends;
3631 {
3632 if (num_regs)
3633 {
3634 bufp->regs_allocated = REGS_REALLOCATE;
3635 regs->num_regs = num_regs;
3636 regs->start = starts;
3637 regs->end = ends;
3638 }
3639 else
3640 {
3641 bufp->regs_allocated = REGS_UNALLOCATED;
3642 regs->num_regs = 0;
3643 regs->start = regs->end = (regoff_t *) 0;
3644 }
3645 }
3646 \f
3647 /* Searching routines. */
3648
3649 /* Like re_search_2, below, but only one string is specified, and
3650 doesn't let you say where to stop matching. */
3651
3652 int
3653 re_search (bufp, string, size, startpos, range, regs)
3654 struct re_pattern_buffer *bufp;
3655 const char *string;
3656 int size, startpos, range;
3657 struct re_registers *regs;
3658 {
3659 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3660 regs, size);
3661 }
3662
3663 /* End address of virtual concatenation of string. */
3664 #define STOP_ADDR_VSTRING(P) \
3665 (((P) >= size1 ? string2 + size2 : string1 + size1))
3666
3667 /* Address of POS in the concatenation of virtual string. */
3668 #define POS_ADDR_VSTRING(POS) \
3669 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3670
3671 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3672 virtual concatenation of STRING1 and STRING2, starting first at index
3673 STARTPOS, then at STARTPOS + 1, and so on.
3674
3675 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3676
3677 RANGE is how far to scan while trying to match. RANGE = 0 means try
3678 only at STARTPOS; in general, the last start tried is STARTPOS +
3679 RANGE.
3680
3681 In REGS, return the indices of the virtual concatenation of STRING1
3682 and STRING2 that matched the entire BUFP->buffer and its contained
3683 subexpressions.
3684
3685 Do not consider matching one past the index STOP in the virtual
3686 concatenation of STRING1 and STRING2.
3687
3688 We return either the position in the strings at which the match was
3689 found, -1 if no match, or -2 if error (such as failure
3690 stack overflow). */
3691
3692 int
3693 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3694 struct re_pattern_buffer *bufp;
3695 const char *string1, *string2;
3696 int size1, size2;
3697 int startpos;
3698 int range;
3699 struct re_registers *regs;
3700 int stop;
3701 {
3702 int val;
3703 register char *fastmap = bufp->fastmap;
3704 register RE_TRANSLATE_TYPE translate = bufp->translate;
3705 int total_size = size1 + size2;
3706 int endpos = startpos + range;
3707 int anchored_start = 0;
3708
3709 /* Nonzero if we have to concern multibyte character. */
3710 int multibyte = bufp->multibyte;
3711
3712 /* Check for out-of-range STARTPOS. */
3713 if (startpos < 0 || startpos > total_size)
3714 return -1;
3715
3716 /* Fix up RANGE if it might eventually take us outside
3717 the virtual concatenation of STRING1 and STRING2.
3718 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3719 if (endpos < 0)
3720 range = 0 - startpos;
3721 else if (endpos > total_size)
3722 range = total_size - startpos;
3723
3724 /* If the search isn't to be a backwards one, don't waste time in a
3725 search for a pattern anchored at beginning of buffer. */
3726 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3727 {
3728 if (startpos > 0)
3729 return -1;
3730 else
3731 range = 0;
3732 }
3733
3734 #ifdef emacs
3735 /* In a forward search for something that starts with \=.
3736 don't keep searching past point. */
3737 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3738 {
3739 range = PT_BYTE - BEGV_BYTE - startpos;
3740 if (range < 0)
3741 return -1;
3742 }
3743 #endif /* emacs */
3744
3745 /* Update the fastmap now if not correct already. */
3746 if (fastmap && !bufp->fastmap_accurate)
3747 if (re_compile_fastmap (bufp) == -2)
3748 return -2;
3749
3750 /* See whether the pattern is anchored. */
3751 if (bufp->buffer[0] == begline)
3752 anchored_start = 1;
3753
3754 #ifdef emacs
3755 gl_state.object = re_match_object;
3756 {
3757 int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
3758 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos);
3759
3760 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3761 }
3762 #endif
3763
3764 /* Loop through the string, looking for a place to start matching. */
3765 for (;;)
3766 {
3767 /* If the pattern is anchored,
3768 skip quickly past places we cannot match.
3769 We don't bother to treat startpos == 0 specially
3770 because that case doesn't repeat. */
3771 if (anchored_start && startpos > 0)
3772 {
3773 if (! (bufp->newline_anchor
3774 && ((startpos <= size1 ? string1[startpos - 1]
3775 : string2[startpos - size1 - 1])
3776 == '\n')))
3777 goto advance;
3778 }
3779
3780 /* If a fastmap is supplied, skip quickly over characters that
3781 cannot be the start of a match. If the pattern can match the
3782 null string, however, we don't need to skip characters; we want
3783 the first null string. */
3784 if (fastmap && startpos < total_size && !bufp->can_be_null)
3785 {
3786 register const char *d;
3787 register unsigned int buf_ch;
3788
3789 d = POS_ADDR_VSTRING (startpos);
3790
3791 if (range > 0) /* Searching forwards. */
3792 {
3793 register int lim = 0;
3794 int irange = range;
3795
3796 if (startpos < size1 && startpos + range >= size1)
3797 lim = range - (size1 - startpos);
3798
3799 /* Written out as an if-else to avoid testing `translate'
3800 inside the loop. */
3801 if (RE_TRANSLATE_P (translate))
3802 {
3803 if (multibyte)
3804 while (range > lim)
3805 {
3806 int buf_charlen;
3807
3808 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3809 buf_charlen);
3810
3811 buf_ch = RE_TRANSLATE (translate, buf_ch);
3812 if (buf_ch >= 0400
3813 || fastmap[buf_ch])
3814 break;
3815
3816 range -= buf_charlen;
3817 d += buf_charlen;
3818 }
3819 else
3820 while (range > lim
3821 && !fastmap[(unsigned char)
3822 RE_TRANSLATE (translate, (unsigned char) *d)])
3823 {
3824 d++;
3825 range--;
3826 }
3827 }
3828 else
3829 while (range > lim && !fastmap[(unsigned char) *d])
3830 {
3831 d++;
3832 range--;
3833 }
3834
3835 startpos += irange - range;
3836 }
3837 else /* Searching backwards. */
3838 {
3839 int room = (size1 == 0 || startpos >= size1
3840 ? size2 + size1 - startpos
3841 : size1 - startpos);
3842
3843 buf_ch = STRING_CHAR (d, room);
3844 if (RE_TRANSLATE_P (translate))
3845 buf_ch = RE_TRANSLATE (translate, buf_ch);
3846
3847 if (! (buf_ch >= 0400
3848 || fastmap[buf_ch]))
3849 goto advance;
3850 }
3851 }
3852
3853 /* If can't match the null string, and that's all we have left, fail. */
3854 if (range >= 0 && startpos == total_size && fastmap
3855 && !bufp->can_be_null)
3856 return -1;
3857
3858 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3859 startpos, regs, stop);
3860 #ifndef REGEX_MALLOC
3861 #ifdef C_ALLOCA
3862 alloca (0);
3863 #endif
3864 #endif
3865
3866 if (val >= 0)
3867 return startpos;
3868
3869 if (val == -2)
3870 return -2;
3871
3872 advance:
3873 if (!range)
3874 break;
3875 else if (range > 0)
3876 {
3877 /* Update STARTPOS to the next character boundary. */
3878 if (multibyte)
3879 {
3880 const unsigned char *p
3881 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3882 const unsigned char *pend
3883 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
3884 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3885
3886 range -= len;
3887 if (range < 0)
3888 break;
3889 startpos += len;
3890 }
3891 else
3892 {
3893 range--;
3894 startpos++;
3895 }
3896 }
3897 else
3898 {
3899 range++;
3900 startpos--;
3901
3902 /* Update STARTPOS to the previous character boundary. */
3903 if (multibyte)
3904 {
3905 const unsigned char *p
3906 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3907 int len = 0;
3908
3909 /* Find the head of multibyte form. */
3910 while (!CHAR_HEAD_P (*p))
3911 p--, len++;
3912
3913 /* Adjust it. */
3914 #if 0 /* XXX */
3915 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3916 ;
3917 else
3918 #endif
3919 {
3920 range += len;
3921 if (range > 0)
3922 break;
3923
3924 startpos -= len;
3925 }
3926 }
3927 }
3928 }
3929 return -1;
3930 } /* re_search_2 */
3931 \f
3932 /* Declarations and macros for re_match_2. */
3933
3934 static int bcmp_translate ();
3935 static boolean alt_match_null_string_p (),
3936 common_op_match_null_string_p (),
3937 group_match_null_string_p ();
3938
3939 /* This converts PTR, a pointer into one of the search strings `string1'
3940 and `string2' into an offset from the beginning of that string. */
3941 #define POINTER_TO_OFFSET(ptr) \
3942 (FIRST_STRING_P (ptr) \
3943 ? ((regoff_t) ((ptr) - string1)) \
3944 : ((regoff_t) ((ptr) - string2 + size1)))
3945
3946 /* Macros for dealing with the split strings in re_match_2. */
3947
3948 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3949
3950 /* Call before fetching a character with *d. This switches over to
3951 string2 if necessary. */
3952 #define PREFETCH() \
3953 while (d == dend) \
3954 { \
3955 /* End of string2 => fail. */ \
3956 if (dend == end_match_2) \
3957 goto fail; \
3958 /* End of string1 => advance to string2. */ \
3959 d = string2; \
3960 dend = end_match_2; \
3961 }
3962
3963
3964 /* Test if at very beginning or at very end of the virtual concatenation
3965 of `string1' and `string2'. If only one string, it's `string2'. */
3966 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3967 #define AT_STRINGS_END(d) ((d) == end2)
3968
3969
3970 /* Test if D points to a character which is word-constituent. We have
3971 two special cases to check for: if past the end of string1, look at
3972 the first character in string2; and if before the beginning of
3973 string2, look at the last character in string1. */
3974 #define WORDCHAR_P(d) \
3975 (SYNTAX ((d) == end1 ? *string2 \
3976 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3977 == Sword)
3978
3979 /* Disabled due to a compiler bug -- see comment at case wordbound */
3980
3981 /* The comment at case wordbound is following one, but we don't use
3982 AT_WORD_BOUNDARY anymore to support multibyte form.
3983
3984 The DEC Alpha C compiler 3.x generates incorrect code for the
3985 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3986 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
3987 macro and introducing temporary variables works around the bug. */
3988
3989 #if 0
3990 /* Test if the character before D and the one at D differ with respect
3991 to being word-constituent. */
3992 #define AT_WORD_BOUNDARY(d) \
3993 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3994 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3995 #endif
3996
3997 /* Free everything we malloc. */
3998 #ifdef MATCH_MAY_ALLOCATE
3999 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4000 #define FREE_VARIABLES() \
4001 do { \
4002 REGEX_FREE_STACK (fail_stack.stack); \
4003 FREE_VAR (regstart); \
4004 FREE_VAR (regend); \
4005 FREE_VAR (old_regstart); \
4006 FREE_VAR (old_regend); \
4007 FREE_VAR (best_regstart); \
4008 FREE_VAR (best_regend); \
4009 FREE_VAR (reg_info); \
4010 FREE_VAR (reg_dummy); \
4011 FREE_VAR (reg_info_dummy); \
4012 } while (0)
4013 #else
4014 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4015 #endif /* not MATCH_MAY_ALLOCATE */
4016
4017 /* These values must meet several constraints. They must not be valid
4018 register values; since we have a limit of 255 registers (because
4019 we use only one byte in the pattern for the register number), we can
4020 use numbers larger than 255. They must differ by 1, because of
4021 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4022 be larger than the value for the highest register, so we do not try
4023 to actually save any registers when none are active. */
4024 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4025 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4026 \f
4027 /* Matching routines. */
4028
4029 #ifndef emacs /* Emacs never uses this. */
4030 /* re_match is like re_match_2 except it takes only a single string. */
4031
4032 int
4033 re_match (bufp, string, size, pos, regs)
4034 struct re_pattern_buffer *bufp;
4035 const char *string;
4036 int size, pos;
4037 struct re_registers *regs;
4038 {
4039 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4040 pos, regs, size);
4041 alloca (0);
4042 return result;
4043 }
4044 #endif /* not emacs */
4045
4046 #ifdef emacs
4047 /* In Emacs, this is the string or buffer in which we
4048 are matching. It is used for looking up syntax properties. */
4049 Lisp_Object re_match_object;
4050 #endif
4051
4052 /* re_match_2 matches the compiled pattern in BUFP against the
4053 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4054 and SIZE2, respectively). We start matching at POS, and stop
4055 matching at STOP.
4056
4057 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4058 store offsets for the substring each group matched in REGS. See the
4059 documentation for exactly how many groups we fill.
4060
4061 We return -1 if no match, -2 if an internal error (such as the
4062 failure stack overflowing). Otherwise, we return the length of the
4063 matched substring. */
4064
4065 int
4066 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4067 struct re_pattern_buffer *bufp;
4068 const char *string1, *string2;
4069 int size1, size2;
4070 int pos;
4071 struct re_registers *regs;
4072 int stop;
4073 {
4074 int result;
4075
4076 #ifdef emacs
4077 int charpos;
4078 int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
4079 gl_state.object = re_match_object;
4080 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos);
4081 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4082 #endif
4083
4084 result = re_match_2_internal (bufp, string1, size1, string2, size2,
4085 pos, regs, stop);
4086 alloca (0);
4087 return result;
4088 }
4089
4090 /* This is a separate function so that we can force an alloca cleanup
4091 afterwards. */
4092 static int
4093 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4094 struct re_pattern_buffer *bufp;
4095 const char *string1, *string2;
4096 int size1, size2;
4097 int pos;
4098 struct re_registers *regs;
4099 int stop;
4100 {
4101 /* General temporaries. */
4102 int mcnt;
4103 unsigned char *p1;
4104
4105 /* Just past the end of the corresponding string. */
4106 const char *end1, *end2;
4107
4108 /* Pointers into string1 and string2, just past the last characters in
4109 each to consider matching. */
4110 const char *end_match_1, *end_match_2;
4111
4112 /* Where we are in the data, and the end of the current string. */
4113 const char *d, *dend;
4114
4115 /* Where we are in the pattern, and the end of the pattern. */
4116 unsigned char *p = bufp->buffer;
4117 register unsigned char *pend = p + bufp->used;
4118
4119 /* Mark the opcode just after a start_memory, so we can test for an
4120 empty subpattern when we get to the stop_memory. */
4121 unsigned char *just_past_start_mem = 0;
4122
4123 /* We use this to map every character in the string. */
4124 RE_TRANSLATE_TYPE translate = bufp->translate;
4125
4126 /* Nonzero if we have to concern multibyte character. */
4127 int multibyte = bufp->multibyte;
4128
4129 /* Failure point stack. Each place that can handle a failure further
4130 down the line pushes a failure point on this stack. It consists of
4131 restart, regend, and reg_info for all registers corresponding to
4132 the subexpressions we're currently inside, plus the number of such
4133 registers, and, finally, two char *'s. The first char * is where
4134 to resume scanning the pattern; the second one is where to resume
4135 scanning the strings. If the latter is zero, the failure point is
4136 a ``dummy''; if a failure happens and the failure point is a dummy,
4137 it gets discarded and the next next one is tried. */
4138 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4139 fail_stack_type fail_stack;
4140 #endif
4141 #ifdef DEBUG
4142 static unsigned failure_id = 0;
4143 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4144 #endif
4145
4146 /* This holds the pointer to the failure stack, when
4147 it is allocated relocatably. */
4148 fail_stack_elt_t *failure_stack_ptr;
4149
4150 /* We fill all the registers internally, independent of what we
4151 return, for use in backreferences. The number here includes
4152 an element for register zero. */
4153 unsigned num_regs = bufp->re_nsub + 1;
4154
4155 /* The currently active registers. */
4156 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4157 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4158
4159 /* Information on the contents of registers. These are pointers into
4160 the input strings; they record just what was matched (on this
4161 attempt) by a subexpression part of the pattern, that is, the
4162 regnum-th regstart pointer points to where in the pattern we began
4163 matching and the regnum-th regend points to right after where we
4164 stopped matching the regnum-th subexpression. (The zeroth register
4165 keeps track of what the whole pattern matches.) */
4166 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4167 const char **regstart, **regend;
4168 #endif
4169
4170 /* If a group that's operated upon by a repetition operator fails to
4171 match anything, then the register for its start will need to be
4172 restored because it will have been set to wherever in the string we
4173 are when we last see its open-group operator. Similarly for a
4174 register's end. */
4175 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4176 const char **old_regstart, **old_regend;
4177 #endif
4178
4179 /* The is_active field of reg_info helps us keep track of which (possibly
4180 nested) subexpressions we are currently in. The matched_something
4181 field of reg_info[reg_num] helps us tell whether or not we have
4182 matched any of the pattern so far this time through the reg_num-th
4183 subexpression. These two fields get reset each time through any
4184 loop their register is in. */
4185 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4186 register_info_type *reg_info;
4187 #endif
4188
4189 /* The following record the register info as found in the above
4190 variables when we find a match better than any we've seen before.
4191 This happens as we backtrack through the failure points, which in
4192 turn happens only if we have not yet matched the entire string. */
4193 unsigned best_regs_set = false;
4194 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4195 const char **best_regstart, **best_regend;
4196 #endif
4197
4198 /* Logically, this is `best_regend[0]'. But we don't want to have to
4199 allocate space for that if we're not allocating space for anything
4200 else (see below). Also, we never need info about register 0 for
4201 any of the other register vectors, and it seems rather a kludge to
4202 treat `best_regend' differently than the rest. So we keep track of
4203 the end of the best match so far in a separate variable. We
4204 initialize this to NULL so that when we backtrack the first time
4205 and need to test it, it's not garbage. */
4206 const char *match_end = NULL;
4207
4208 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4209 int set_regs_matched_done = 0;
4210
4211 /* Used when we pop values we don't care about. */
4212 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4213 const char **reg_dummy;
4214 register_info_type *reg_info_dummy;
4215 #endif
4216
4217 #ifdef DEBUG
4218 /* Counts the total number of registers pushed. */
4219 unsigned num_regs_pushed = 0;
4220 #endif
4221
4222 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4223
4224 INIT_FAIL_STACK ();
4225
4226 #ifdef MATCH_MAY_ALLOCATE
4227 /* Do not bother to initialize all the register variables if there are
4228 no groups in the pattern, as it takes a fair amount of time. If
4229 there are groups, we include space for register 0 (the whole
4230 pattern), even though we never use it, since it simplifies the
4231 array indexing. We should fix this. */
4232 if (bufp->re_nsub)
4233 {
4234 regstart = REGEX_TALLOC (num_regs, const char *);
4235 regend = REGEX_TALLOC (num_regs, const char *);
4236 old_regstart = REGEX_TALLOC (num_regs, const char *);
4237 old_regend = REGEX_TALLOC (num_regs, const char *);
4238 best_regstart = REGEX_TALLOC (num_regs, const char *);
4239 best_regend = REGEX_TALLOC (num_regs, const char *);
4240 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4241 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4242 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4243
4244 if (!(regstart && regend && old_regstart && old_regend && reg_info
4245 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4246 {
4247 FREE_VARIABLES ();
4248 return -2;
4249 }
4250 }
4251 else
4252 {
4253 /* We must initialize all our variables to NULL, so that
4254 `FREE_VARIABLES' doesn't try to free them. */
4255 regstart = regend = old_regstart = old_regend = best_regstart
4256 = best_regend = reg_dummy = NULL;
4257 reg_info = reg_info_dummy = (register_info_type *) NULL;
4258 }
4259 #endif /* MATCH_MAY_ALLOCATE */
4260
4261 /* The starting position is bogus. */
4262 if (pos < 0 || pos > size1 + size2)
4263 {
4264 FREE_VARIABLES ();
4265 return -1;
4266 }
4267
4268 /* Initialize subexpression text positions to -1 to mark ones that no
4269 start_memory/stop_memory has been seen for. Also initialize the
4270 register information struct. */
4271 for (mcnt = 1; mcnt < num_regs; mcnt++)
4272 {
4273 regstart[mcnt] = regend[mcnt]
4274 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4275
4276 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4277 IS_ACTIVE (reg_info[mcnt]) = 0;
4278 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4279 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4280 }
4281
4282 /* We move `string1' into `string2' if the latter's empty -- but not if
4283 `string1' is null. */
4284 if (size2 == 0 && string1 != NULL)
4285 {
4286 string2 = string1;
4287 size2 = size1;
4288 string1 = 0;
4289 size1 = 0;
4290 }
4291 end1 = string1 + size1;
4292 end2 = string2 + size2;
4293
4294 /* Compute where to stop matching, within the two strings. */
4295 if (stop <= size1)
4296 {
4297 end_match_1 = string1 + stop;
4298 end_match_2 = string2;
4299 }
4300 else
4301 {
4302 end_match_1 = end1;
4303 end_match_2 = string2 + stop - size1;
4304 }
4305
4306 /* `p' scans through the pattern as `d' scans through the data.
4307 `dend' is the end of the input string that `d' points within. `d'
4308 is advanced into the following input string whenever necessary, but
4309 this happens before fetching; therefore, at the beginning of the
4310 loop, `d' can be pointing at the end of a string, but it cannot
4311 equal `string2'. */
4312 if (size1 > 0 && pos <= size1)
4313 {
4314 d = string1 + pos;
4315 dend = end_match_1;
4316 }
4317 else
4318 {
4319 d = string2 + pos - size1;
4320 dend = end_match_2;
4321 }
4322
4323 DEBUG_PRINT1 ("The compiled pattern is: ");
4324 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4325 DEBUG_PRINT1 ("The string to match is: `");
4326 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4327 DEBUG_PRINT1 ("'\n");
4328
4329 /* This loops over pattern commands. It exits by returning from the
4330 function if the match is complete, or it drops through if the match
4331 fails at this starting point in the input data. */
4332 for (;;)
4333 {
4334 DEBUG_PRINT2 ("\n0x%x: ", p);
4335
4336 if (p == pend)
4337 { /* End of pattern means we might have succeeded. */
4338 DEBUG_PRINT1 ("end of pattern ... ");
4339
4340 /* If we haven't matched the entire string, and we want the
4341 longest match, try backtracking. */
4342 if (d != end_match_2)
4343 {
4344 /* 1 if this match ends in the same string (string1 or string2)
4345 as the best previous match. */
4346 boolean same_str_p = (FIRST_STRING_P (match_end)
4347 == MATCHING_IN_FIRST_STRING);
4348 /* 1 if this match is the best seen so far. */
4349 boolean best_match_p;
4350
4351 /* AIX compiler got confused when this was combined
4352 with the previous declaration. */
4353 if (same_str_p)
4354 best_match_p = d > match_end;
4355 else
4356 best_match_p = !MATCHING_IN_FIRST_STRING;
4357
4358 DEBUG_PRINT1 ("backtracking.\n");
4359
4360 if (!FAIL_STACK_EMPTY ())
4361 { /* More failure points to try. */
4362
4363 /* If exceeds best match so far, save it. */
4364 if (!best_regs_set || best_match_p)
4365 {
4366 best_regs_set = true;
4367 match_end = d;
4368
4369 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4370
4371 for (mcnt = 1; mcnt < num_regs; mcnt++)
4372 {
4373 best_regstart[mcnt] = regstart[mcnt];
4374 best_regend[mcnt] = regend[mcnt];
4375 }
4376 }
4377 goto fail;
4378 }
4379
4380 /* If no failure points, don't restore garbage. And if
4381 last match is real best match, don't restore second
4382 best one. */
4383 else if (best_regs_set && !best_match_p)
4384 {
4385 restore_best_regs:
4386 /* Restore best match. It may happen that `dend ==
4387 end_match_1' while the restored d is in string2.
4388 For example, the pattern `x.*y.*z' against the
4389 strings `x-' and `y-z-', if the two strings are
4390 not consecutive in memory. */
4391 DEBUG_PRINT1 ("Restoring best registers.\n");
4392
4393 d = match_end;
4394 dend = ((d >= string1 && d <= end1)
4395 ? end_match_1 : end_match_2);
4396
4397 for (mcnt = 1; mcnt < num_regs; mcnt++)
4398 {
4399 regstart[mcnt] = best_regstart[mcnt];
4400 regend[mcnt] = best_regend[mcnt];
4401 }
4402 }
4403 } /* d != end_match_2 */
4404
4405 succeed_label:
4406 DEBUG_PRINT1 ("Accepting match.\n");
4407
4408 /* If caller wants register contents data back, do it. */
4409 if (regs && !bufp->no_sub)
4410 {
4411 /* Have the register data arrays been allocated? */
4412 if (bufp->regs_allocated == REGS_UNALLOCATED)
4413 { /* No. So allocate them with malloc. We need one
4414 extra element beyond `num_regs' for the `-1' marker
4415 GNU code uses. */
4416 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4417 regs->start = TALLOC (regs->num_regs, regoff_t);
4418 regs->end = TALLOC (regs->num_regs, regoff_t);
4419 if (regs->start == NULL || regs->end == NULL)
4420 {
4421 FREE_VARIABLES ();
4422 return -2;
4423 }
4424 bufp->regs_allocated = REGS_REALLOCATE;
4425 }
4426 else if (bufp->regs_allocated == REGS_REALLOCATE)
4427 { /* Yes. If we need more elements than were already
4428 allocated, reallocate them. If we need fewer, just
4429 leave it alone. */
4430 if (regs->num_regs < num_regs + 1)
4431 {
4432 regs->num_regs = num_regs + 1;
4433 RETALLOC (regs->start, regs->num_regs, regoff_t);
4434 RETALLOC (regs->end, regs->num_regs, regoff_t);
4435 if (regs->start == NULL || regs->end == NULL)
4436 {
4437 FREE_VARIABLES ();
4438 return -2;
4439 }
4440 }
4441 }
4442 else
4443 {
4444 /* These braces fend off a "empty body in an else-statement"
4445 warning under GCC when assert expands to nothing. */
4446 assert (bufp->regs_allocated == REGS_FIXED);
4447 }
4448
4449 /* Convert the pointer data in `regstart' and `regend' to
4450 indices. Register zero has to be set differently,
4451 since we haven't kept track of any info for it. */
4452 if (regs->num_regs > 0)
4453 {
4454 regs->start[0] = pos;
4455 regs->end[0] = (MATCHING_IN_FIRST_STRING
4456 ? ((regoff_t) (d - string1))
4457 : ((regoff_t) (d - string2 + size1)));
4458 }
4459
4460 /* Go through the first `min (num_regs, regs->num_regs)'
4461 registers, since that is all we initialized. */
4462 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4463 {
4464 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4465 regs->start[mcnt] = regs->end[mcnt] = -1;
4466 else
4467 {
4468 regs->start[mcnt]
4469 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4470 regs->end[mcnt]
4471 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4472 }
4473 }
4474
4475 /* If the regs structure we return has more elements than
4476 were in the pattern, set the extra elements to -1. If
4477 we (re)allocated the registers, this is the case,
4478 because we always allocate enough to have at least one
4479 -1 at the end. */
4480 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4481 regs->start[mcnt] = regs->end[mcnt] = -1;
4482 } /* regs && !bufp->no_sub */
4483
4484 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4485 nfailure_points_pushed, nfailure_points_popped,
4486 nfailure_points_pushed - nfailure_points_popped);
4487 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4488
4489 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4490 ? string1
4491 : string2 - size1);
4492
4493 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4494
4495 FREE_VARIABLES ();
4496 return mcnt;
4497 }
4498
4499 /* Otherwise match next pattern command. */
4500 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4501 {
4502 /* Ignore these. Used to ignore the n of succeed_n's which
4503 currently have n == 0. */
4504 case no_op:
4505 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4506 break;
4507
4508 case succeed:
4509 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4510 goto succeed_label;
4511
4512 /* Match the next n pattern characters exactly. The following
4513 byte in the pattern defines n, and the n bytes after that
4514 are the characters to match. */
4515 case exactn:
4516 mcnt = *p++;
4517 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4518
4519 /* This is written out as an if-else so we don't waste time
4520 testing `translate' inside the loop. */
4521 if (RE_TRANSLATE_P (translate))
4522 {
4523 #ifdef emacs
4524 if (multibyte)
4525 do
4526 {
4527 int pat_charlen, buf_charlen;
4528 unsigned int pat_ch, buf_ch;
4529
4530 PREFETCH ();
4531 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4532 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4533
4534 if (RE_TRANSLATE (translate, buf_ch)
4535 != pat_ch)
4536 goto fail;
4537
4538 p += pat_charlen;
4539 d += buf_charlen;
4540 mcnt -= pat_charlen;
4541 }
4542 while (mcnt > 0);
4543 else
4544 #endif /* not emacs */
4545 do
4546 {
4547 PREFETCH ();
4548 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)
4549 != (unsigned char) *p++)
4550 goto fail;
4551 d++;
4552 }
4553 while (--mcnt);
4554 }
4555 else
4556 {
4557 do
4558 {
4559 PREFETCH ();
4560 if (*d++ != (char) *p++) goto fail;
4561 }
4562 while (--mcnt);
4563 }
4564 SET_REGS_MATCHED ();
4565 break;
4566
4567
4568 /* Match any character except possibly a newline or a null. */
4569 case anychar:
4570 {
4571 int buf_charlen;
4572 unsigned int buf_ch;
4573
4574 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4575
4576 PREFETCH ();
4577
4578 #ifdef emacs
4579 if (multibyte)
4580 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4581 else
4582 #endif /* not emacs */
4583 {
4584 buf_ch = (unsigned char) *d;
4585 buf_charlen = 1;
4586 }
4587
4588 buf_ch = TRANSLATE (buf_ch);
4589
4590 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4591 && buf_ch == '\n')
4592 || ((bufp->syntax & RE_DOT_NOT_NULL)
4593 && buf_ch == '\000'))
4594 goto fail;
4595
4596 SET_REGS_MATCHED ();
4597 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4598 d += buf_charlen;
4599 }
4600 break;
4601
4602
4603 case charset:
4604 case charset_not:
4605 {
4606 register unsigned int c;
4607 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4608 int len;
4609
4610 /* Start of actual range_table, or end of bitmap if there is no
4611 range table. */
4612 unsigned char *range_table;
4613
4614 /* Nonzero if there is range table. */
4615 int range_table_exists;
4616
4617 /* Number of ranges of range table. Not in bytes. */
4618 int count;
4619
4620 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4621
4622 PREFETCH ();
4623 c = (unsigned char) *d;
4624
4625 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4626 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4627 if (range_table_exists)
4628 EXTRACT_NUMBER_AND_INCR (count, range_table);
4629 else
4630 count = 0;
4631
4632 if (multibyte && BASE_LEADING_CODE_P (c))
4633 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4634
4635 if (SINGLE_BYTE_CHAR_P (c))
4636 { /* Lookup bitmap. */
4637 c = TRANSLATE (c); /* The character to match. */
4638 len = 1;
4639
4640 /* Cast to `unsigned' instead of `unsigned char' in
4641 case the bit list is a full 32 bytes long. */
4642 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4643 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4644 not = !not;
4645 }
4646 else if (range_table_exists)
4647 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4648
4649 p = CHARSET_RANGE_TABLE_END (range_table, count);
4650
4651 if (!not) goto fail;
4652
4653 SET_REGS_MATCHED ();
4654 d += len;
4655 break;
4656 }
4657
4658
4659 /* The beginning of a group is represented by start_memory.
4660 The arguments are the register number in the next byte, and the
4661 number of groups inner to this one in the next. The text
4662 matched within the group is recorded (in the internal
4663 registers data structure) under the register number. */
4664 case start_memory:
4665 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4666
4667 /* Find out if this group can match the empty string. */
4668 p1 = p; /* To send to group_match_null_string_p. */
4669
4670 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4671 REG_MATCH_NULL_STRING_P (reg_info[*p])
4672 = group_match_null_string_p (&p1, pend, reg_info);
4673
4674 /* Save the position in the string where we were the last time
4675 we were at this open-group operator in case the group is
4676 operated upon by a repetition operator, e.g., with `(a*)*b'
4677 against `ab'; then we want to ignore where we are now in
4678 the string in case this attempt to match fails. */
4679 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4680 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4681 : regstart[*p];
4682 DEBUG_PRINT2 (" old_regstart: %d\n",
4683 POINTER_TO_OFFSET (old_regstart[*p]));
4684
4685 regstart[*p] = d;
4686 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4687
4688 IS_ACTIVE (reg_info[*p]) = 1;
4689 MATCHED_SOMETHING (reg_info[*p]) = 0;
4690
4691 /* Clear this whenever we change the register activity status. */
4692 set_regs_matched_done = 0;
4693
4694 /* This is the new highest active register. */
4695 highest_active_reg = *p;
4696
4697 /* If nothing was active before, this is the new lowest active
4698 register. */
4699 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4700 lowest_active_reg = *p;
4701
4702 /* Move past the register number and inner group count. */
4703 p += 2;
4704 just_past_start_mem = p;
4705
4706 break;
4707
4708
4709 /* The stop_memory opcode represents the end of a group. Its
4710 arguments are the same as start_memory's: the register
4711 number, and the number of inner groups. */
4712 case stop_memory:
4713 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4714
4715 /* We need to save the string position the last time we were at
4716 this close-group operator in case the group is operated
4717 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4718 against `aba'; then we want to ignore where we are now in
4719 the string in case this attempt to match fails. */
4720 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4721 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4722 : regend[*p];
4723 DEBUG_PRINT2 (" old_regend: %d\n",
4724 POINTER_TO_OFFSET (old_regend[*p]));
4725
4726 regend[*p] = d;
4727 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4728
4729 /* This register isn't active anymore. */
4730 IS_ACTIVE (reg_info[*p]) = 0;
4731
4732 /* Clear this whenever we change the register activity status. */
4733 set_regs_matched_done = 0;
4734
4735 /* If this was the only register active, nothing is active
4736 anymore. */
4737 if (lowest_active_reg == highest_active_reg)
4738 {
4739 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4740 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4741 }
4742 else
4743 { /* We must scan for the new highest active register, since
4744 it isn't necessarily one less than now: consider
4745 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4746 new highest active register is 1. */
4747 unsigned char r = *p - 1;
4748 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4749 r--;
4750
4751 /* If we end up at register zero, that means that we saved
4752 the registers as the result of an `on_failure_jump', not
4753 a `start_memory', and we jumped to past the innermost
4754 `stop_memory'. For example, in ((.)*) we save
4755 registers 1 and 2 as a result of the *, but when we pop
4756 back to the second ), we are at the stop_memory 1.
4757 Thus, nothing is active. */
4758 if (r == 0)
4759 {
4760 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4761 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4762 }
4763 else
4764 highest_active_reg = r;
4765 }
4766
4767 /* If just failed to match something this time around with a
4768 group that's operated on by a repetition operator, try to
4769 force exit from the ``loop'', and restore the register
4770 information for this group that we had before trying this
4771 last match. */
4772 if ((!MATCHED_SOMETHING (reg_info[*p])
4773 || just_past_start_mem == p - 1)
4774 && (p + 2) < pend)
4775 {
4776 boolean is_a_jump_n = false;
4777
4778 p1 = p + 2;
4779 mcnt = 0;
4780 switch ((re_opcode_t) *p1++)
4781 {
4782 case jump_n:
4783 is_a_jump_n = true;
4784 case pop_failure_jump:
4785 case maybe_pop_jump:
4786 case jump:
4787 case dummy_failure_jump:
4788 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4789 if (is_a_jump_n)
4790 p1 += 2;
4791 break;
4792
4793 default:
4794 /* do nothing */ ;
4795 }
4796 p1 += mcnt;
4797
4798 /* If the next operation is a jump backwards in the pattern
4799 to an on_failure_jump right before the start_memory
4800 corresponding to this stop_memory, exit from the loop
4801 by forcing a failure after pushing on the stack the
4802 on_failure_jump's jump in the pattern, and d. */
4803 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4804 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4805 {
4806 /* If this group ever matched anything, then restore
4807 what its registers were before trying this last
4808 failed match, e.g., with `(a*)*b' against `ab' for
4809 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4810 against `aba' for regend[3].
4811
4812 Also restore the registers for inner groups for,
4813 e.g., `((a*)(b*))*' against `aba' (register 3 would
4814 otherwise get trashed). */
4815
4816 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4817 {
4818 unsigned r;
4819
4820 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4821
4822 /* Restore this and inner groups' (if any) registers. */
4823 for (r = *p; r < *p + *(p + 1); r++)
4824 {
4825 regstart[r] = old_regstart[r];
4826
4827 /* xx why this test? */
4828 if (old_regend[r] >= regstart[r])
4829 regend[r] = old_regend[r];
4830 }
4831 }
4832 p1++;
4833 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4834 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4835
4836 goto fail;
4837 }
4838 }
4839
4840 /* Move past the register number and the inner group count. */
4841 p += 2;
4842 break;
4843
4844
4845 /* \<digit> has been turned into a `duplicate' command which is
4846 followed by the numeric value of <digit> as the register number. */
4847 case duplicate:
4848 {
4849 register const char *d2, *dend2;
4850 int regno = *p++; /* Get which register to match against. */
4851 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4852
4853 /* Can't back reference a group which we've never matched. */
4854 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4855 goto fail;
4856
4857 /* Where in input to try to start matching. */
4858 d2 = regstart[regno];
4859
4860 /* Where to stop matching; if both the place to start and
4861 the place to stop matching are in the same string, then
4862 set to the place to stop, otherwise, for now have to use
4863 the end of the first string. */
4864
4865 dend2 = ((FIRST_STRING_P (regstart[regno])
4866 == FIRST_STRING_P (regend[regno]))
4867 ? regend[regno] : end_match_1);
4868 for (;;)
4869 {
4870 /* If necessary, advance to next segment in register
4871 contents. */
4872 while (d2 == dend2)
4873 {
4874 if (dend2 == end_match_2) break;
4875 if (dend2 == regend[regno]) break;
4876
4877 /* End of string1 => advance to string2. */
4878 d2 = string2;
4879 dend2 = regend[regno];
4880 }
4881 /* At end of register contents => success */
4882 if (d2 == dend2) break;
4883
4884 /* If necessary, advance to next segment in data. */
4885 PREFETCH ();
4886
4887 /* How many characters left in this segment to match. */
4888 mcnt = dend - d;
4889
4890 /* Want how many consecutive characters we can match in
4891 one shot, so, if necessary, adjust the count. */
4892 if (mcnt > dend2 - d2)
4893 mcnt = dend2 - d2;
4894
4895 /* Compare that many; failure if mismatch, else move
4896 past them. */
4897 if (RE_TRANSLATE_P (translate)
4898 ? bcmp_translate (d, d2, mcnt, translate)
4899 : bcmp (d, d2, mcnt))
4900 goto fail;
4901 d += mcnt, d2 += mcnt;
4902
4903 /* Do this because we've match some characters. */
4904 SET_REGS_MATCHED ();
4905 }
4906 }
4907 break;
4908
4909
4910 /* begline matches the empty string at the beginning of the string
4911 (unless `not_bol' is set in `bufp'), and, if
4912 `newline_anchor' is set, after newlines. */
4913 case begline:
4914 DEBUG_PRINT1 ("EXECUTING begline.\n");
4915
4916 if (AT_STRINGS_BEG (d))
4917 {
4918 if (!bufp->not_bol) break;
4919 }
4920 else if (d[-1] == '\n' && bufp->newline_anchor)
4921 {
4922 break;
4923 }
4924 /* In all other cases, we fail. */
4925 goto fail;
4926
4927
4928 /* endline is the dual of begline. */
4929 case endline:
4930 DEBUG_PRINT1 ("EXECUTING endline.\n");
4931
4932 if (AT_STRINGS_END (d))
4933 {
4934 if (!bufp->not_eol) break;
4935 }
4936
4937 /* We have to ``prefetch'' the next character. */
4938 else if ((d == end1 ? *string2 : *d) == '\n'
4939 && bufp->newline_anchor)
4940 {
4941 break;
4942 }
4943 goto fail;
4944
4945
4946 /* Match at the very beginning of the data. */
4947 case begbuf:
4948 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4949 if (AT_STRINGS_BEG (d))
4950 break;
4951 goto fail;
4952
4953
4954 /* Match at the very end of the data. */
4955 case endbuf:
4956 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4957 if (AT_STRINGS_END (d))
4958 break;
4959 goto fail;
4960
4961
4962 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4963 pushes NULL as the value for the string on the stack. Then
4964 `pop_failure_point' will keep the current value for the
4965 string, instead of restoring it. To see why, consider
4966 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4967 then the . fails against the \n. But the next thing we want
4968 to do is match the \n against the \n; if we restored the
4969 string value, we would be back at the foo.
4970
4971 Because this is used only in specific cases, we don't need to
4972 check all the things that `on_failure_jump' does, to make
4973 sure the right things get saved on the stack. Hence we don't
4974 share its code. The only reason to push anything on the
4975 stack at all is that otherwise we would have to change
4976 `anychar's code to do something besides goto fail in this
4977 case; that seems worse than this. */
4978 case on_failure_keep_string_jump:
4979 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4980
4981 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4982 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4983
4984 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4985 break;
4986
4987
4988 /* Uses of on_failure_jump:
4989
4990 Each alternative starts with an on_failure_jump that points
4991 to the beginning of the next alternative. Each alternative
4992 except the last ends with a jump that in effect jumps past
4993 the rest of the alternatives. (They really jump to the
4994 ending jump of the following alternative, because tensioning
4995 these jumps is a hassle.)
4996
4997 Repeats start with an on_failure_jump that points past both
4998 the repetition text and either the following jump or
4999 pop_failure_jump back to this on_failure_jump. */
5000 case on_failure_jump:
5001 on_failure:
5002 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
5003
5004 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5005 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
5006
5007 /* If this on_failure_jump comes right before a group (i.e.,
5008 the original * applied to a group), save the information
5009 for that group and all inner ones, so that if we fail back
5010 to this point, the group's information will be correct.
5011 For example, in \(a*\)*\1, we need the preceding group,
5012 and in \(zz\(a*\)b*\)\2, we need the inner group. */
5013
5014 /* We can't use `p' to check ahead because we push
5015 a failure point to `p + mcnt' after we do this. */
5016 p1 = p;
5017
5018 /* We need to skip no_op's before we look for the
5019 start_memory in case this on_failure_jump is happening as
5020 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
5021 against aba. */
5022 while (p1 < pend && (re_opcode_t) *p1 == no_op)
5023 p1++;
5024
5025 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5026 {
5027 /* We have a new highest active register now. This will
5028 get reset at the start_memory we are about to get to,
5029 but we will have saved all the registers relevant to
5030 this repetition op, as described above. */
5031 highest_active_reg = *(p1 + 1) + *(p1 + 2);
5032 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5033 lowest_active_reg = *(p1 + 1);
5034 }
5035
5036 DEBUG_PRINT1 (":\n");
5037 PUSH_FAILURE_POINT (p + mcnt, d, -2);
5038 break;
5039
5040
5041 /* A smart repeat ends with `maybe_pop_jump'.
5042 We change it to either `pop_failure_jump' or `jump'. */
5043 case maybe_pop_jump:
5044 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5045 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5046 {
5047 register unsigned char *p2 = p;
5048
5049 /* Compare the beginning of the repeat with what in the
5050 pattern follows its end. If we can establish that there
5051 is nothing that they would both match, i.e., that we
5052 would have to backtrack because of (as in, e.g., `a*a')
5053 then we can change to pop_failure_jump, because we'll
5054 never have to backtrack.
5055
5056 This is not true in the case of alternatives: in
5057 `(a|ab)*' we do need to backtrack to the `ab' alternative
5058 (e.g., if the string was `ab'). But instead of trying to
5059 detect that here, the alternative has put on a dummy
5060 failure point which is what we will end up popping. */
5061
5062 /* Skip over open/close-group commands.
5063 If what follows this loop is a ...+ construct,
5064 look at what begins its body, since we will have to
5065 match at least one of that. */
5066 while (1)
5067 {
5068 if (p2 + 2 < pend
5069 && ((re_opcode_t) *p2 == stop_memory
5070 || (re_opcode_t) *p2 == start_memory))
5071 p2 += 3;
5072 else if (p2 + 6 < pend
5073 && (re_opcode_t) *p2 == dummy_failure_jump)
5074 p2 += 6;
5075 else
5076 break;
5077 }
5078
5079 p1 = p + mcnt;
5080 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5081 to the `maybe_finalize_jump' of this case. Examine what
5082 follows. */
5083
5084 /* If we're at the end of the pattern, we can change. */
5085 if (p2 == pend)
5086 {
5087 /* Consider what happens when matching ":\(.*\)"
5088 against ":/". I don't really understand this code
5089 yet. */
5090 p[-3] = (unsigned char) pop_failure_jump;
5091 DEBUG_PRINT1
5092 (" End of pattern: change to `pop_failure_jump'.\n");
5093 }
5094
5095 else if ((re_opcode_t) *p2 == exactn
5096 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5097 {
5098 register unsigned int c
5099 = *p2 == (unsigned char) endline ? '\n' : p2[2];
5100
5101 if ((re_opcode_t) p1[3] == exactn)
5102 {
5103 if (!(multibyte /* && (c != '\n') */
5104 && BASE_LEADING_CODE_P (c))
5105 ? c != p1[5]
5106 : (STRING_CHAR (&p2[2], pend - &p2[2])
5107 != STRING_CHAR (&p1[5], pend - &p1[5])))
5108 {
5109 p[-3] = (unsigned char) pop_failure_jump;
5110 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5111 c, p1[5]);
5112 }
5113 }
5114
5115 else if ((re_opcode_t) p1[3] == charset
5116 || (re_opcode_t) p1[3] == charset_not)
5117 {
5118 int not = (re_opcode_t) p1[3] == charset_not;
5119
5120 if (multibyte /* && (c != '\n') */
5121 && BASE_LEADING_CODE_P (c))
5122 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5123
5124 /* Test if C is listed in charset (or charset_not)
5125 at `&p1[3]'. */
5126 if (SINGLE_BYTE_CHAR_P (c))
5127 {
5128 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
5129 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5130 not = !not;
5131 }
5132 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5133 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
5134
5135 /* `not' is equal to 1 if c would match, which means
5136 that we can't change to pop_failure_jump. */
5137 if (!not)
5138 {
5139 p[-3] = (unsigned char) pop_failure_jump;
5140 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5141 }
5142 }
5143 }
5144 else if ((re_opcode_t) *p2 == charset)
5145 {
5146 if ((re_opcode_t) p1[3] == exactn)
5147 {
5148 register unsigned int c = p1[5];
5149 int not = 0;
5150
5151 if (multibyte && BASE_LEADING_CODE_P (c))
5152 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5153
5154 /* Test if C is listed in charset at `p2'. */
5155 if (SINGLE_BYTE_CHAR_P (c))
5156 {
5157 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5158 && (p2[2 + c / BYTEWIDTH]
5159 & (1 << (c % BYTEWIDTH))))
5160 not = !not;
5161 }
5162 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5163 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5164
5165 if (!not)
5166 {
5167 p[-3] = (unsigned char) pop_failure_jump;
5168 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5169 }
5170 }
5171
5172 /* It is hard to list up all the character in charset
5173 P2 if it includes multibyte character. Give up in
5174 such case. */
5175 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5176 {
5177 /* Now, we are sure that P2 has no range table.
5178 So, for the size of bitmap in P2, `p2[1]' is
5179 enough. But P1 may have range table, so the
5180 size of bitmap table of P1 is extracted by
5181 using macro `CHARSET_BITMAP_SIZE'.
5182
5183 Since we know that all the character listed in
5184 P2 is ASCII, it is enough to test only bitmap
5185 table of P1. */
5186
5187 if ((re_opcode_t) p1[3] == charset_not)
5188 {
5189 int idx;
5190 /* We win if the charset_not inside the loop lists
5191 every character listed in the charset after. */
5192 for (idx = 0; idx < (int) p2[1]; idx++)
5193 if (! (p2[2 + idx] == 0
5194 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
5195 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5196 break;
5197
5198 if (idx == p2[1])
5199 {
5200 p[-3] = (unsigned char) pop_failure_jump;
5201 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5202 }
5203 }
5204 else if ((re_opcode_t) p1[3] == charset)
5205 {
5206 int idx;
5207 /* We win if the charset inside the loop
5208 has no overlap with the one after the loop. */
5209 for (idx = 0;
5210 (idx < (int) p2[1]
5211 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
5212 idx++)
5213 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5214 break;
5215
5216 if (idx == p2[1]
5217 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
5218 {
5219 p[-3] = (unsigned char) pop_failure_jump;
5220 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5221 }
5222 }
5223 }
5224 }
5225 }
5226 p -= 2; /* Point at relative address again. */
5227 if ((re_opcode_t) p[-1] != pop_failure_jump)
5228 {
5229 p[-1] = (unsigned char) jump;
5230 DEBUG_PRINT1 (" Match => jump.\n");
5231 goto unconditional_jump;
5232 }
5233 /* Note fall through. */
5234
5235
5236 /* The end of a simple repeat has a pop_failure_jump back to
5237 its matching on_failure_jump, where the latter will push a
5238 failure point. The pop_failure_jump takes off failure
5239 points put on by this pop_failure_jump's matching
5240 on_failure_jump; we got through the pattern to here from the
5241 matching on_failure_jump, so didn't fail. */
5242 case pop_failure_jump:
5243 {
5244 /* We need to pass separate storage for the lowest and
5245 highest registers, even though we don't care about the
5246 actual values. Otherwise, we will restore only one
5247 register from the stack, since lowest will == highest in
5248 `pop_failure_point'. */
5249 unsigned dummy_low_reg, dummy_high_reg;
5250 unsigned char *pdummy;
5251 const char *sdummy;
5252
5253 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5254 POP_FAILURE_POINT (sdummy, pdummy,
5255 dummy_low_reg, dummy_high_reg,
5256 reg_dummy, reg_dummy, reg_info_dummy);
5257 }
5258 /* Note fall through. */
5259
5260
5261 /* Unconditionally jump (without popping any failure points). */
5262 case jump:
5263 unconditional_jump:
5264 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5265 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5266 p += mcnt; /* Do the jump. */
5267 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5268 break;
5269
5270
5271 /* We need this opcode so we can detect where alternatives end
5272 in `group_match_null_string_p' et al. */
5273 case jump_past_alt:
5274 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5275 goto unconditional_jump;
5276
5277
5278 /* Normally, the on_failure_jump pushes a failure point, which
5279 then gets popped at pop_failure_jump. We will end up at
5280 pop_failure_jump, also, and with a pattern of, say, `a+', we
5281 are skipping over the on_failure_jump, so we have to push
5282 something meaningless for pop_failure_jump to pop. */
5283 case dummy_failure_jump:
5284 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5285 /* It doesn't matter what we push for the string here. What
5286 the code at `fail' tests is the value for the pattern. */
5287 PUSH_FAILURE_POINT (0, 0, -2);
5288 goto unconditional_jump;
5289
5290
5291 /* At the end of an alternative, we need to push a dummy failure
5292 point in case we are followed by a `pop_failure_jump', because
5293 we don't want the failure point for the alternative to be
5294 popped. For example, matching `(a|ab)*' against `aab'
5295 requires that we match the `ab' alternative. */
5296 case push_dummy_failure:
5297 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5298 /* See comments just above at `dummy_failure_jump' about the
5299 two zeroes. */
5300 PUSH_FAILURE_POINT (0, 0, -2);
5301 break;
5302
5303 /* Have to succeed matching what follows at least n times.
5304 After that, handle like `on_failure_jump'. */
5305 case succeed_n:
5306 EXTRACT_NUMBER (mcnt, p + 2);
5307 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5308
5309 assert (mcnt >= 0);
5310 /* Originally, this is how many times we HAVE to succeed. */
5311 if (mcnt > 0)
5312 {
5313 mcnt--;
5314 p += 2;
5315 STORE_NUMBER_AND_INCR (p, mcnt);
5316 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5317 }
5318 else if (mcnt == 0)
5319 {
5320 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
5321 p[2] = (unsigned char) no_op;
5322 p[3] = (unsigned char) no_op;
5323 goto on_failure;
5324 }
5325 break;
5326
5327 case jump_n:
5328 EXTRACT_NUMBER (mcnt, p + 2);
5329 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5330
5331 /* Originally, this is how many times we CAN jump. */
5332 if (mcnt)
5333 {
5334 mcnt--;
5335 STORE_NUMBER (p + 2, mcnt);
5336 goto unconditional_jump;
5337 }
5338 /* If don't have to jump any more, skip over the rest of command. */
5339 else
5340 p += 4;
5341 break;
5342
5343 case set_number_at:
5344 {
5345 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5346
5347 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5348 p1 = p + mcnt;
5349 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5350 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
5351 STORE_NUMBER (p1, mcnt);
5352 break;
5353 }
5354
5355 case wordbound:
5356 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5357
5358 /* We SUCCEED in one of the following cases: */
5359
5360 /* Case 1: D is at the beginning or the end of string. */
5361 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5362 break;
5363 else
5364 {
5365 /* C1 is the character before D, S1 is the syntax of C1, C2
5366 is the character at D, and S2 is the syntax of C2. */
5367 int c1, c2, s1, s2;
5368 int pos1 = PTR_TO_OFFSET (d - 1);
5369 int charpos;
5370
5371 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5372 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5373 #ifdef emacs
5374 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5375 UPDATE_SYNTAX_TABLE (charpos);
5376 #endif
5377 s1 = SYNTAX (c1);
5378 #ifdef emacs
5379 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5380 #endif
5381 s2 = SYNTAX (c2);
5382
5383 if (/* Case 2: Only one of S1 and S2 is Sword. */
5384 ((s1 == Sword) != (s2 == Sword))
5385 /* Case 3: Both of S1 and S2 are Sword, and macro
5386 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5387 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5388 break;
5389 }
5390 goto fail;
5391
5392 case notwordbound:
5393 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5394
5395 /* We FAIL in one of the following cases: */
5396
5397 /* Case 1: D is at the beginning or the end of string. */
5398 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5399 goto fail;
5400 else
5401 {
5402 /* C1 is the character before D, S1 is the syntax of C1, C2
5403 is the character at D, and S2 is the syntax of C2. */
5404 int c1, c2, s1, s2;
5405 int pos1 = PTR_TO_OFFSET (d - 1);
5406 int charpos;
5407
5408 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5409 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5410 #ifdef emacs
5411 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5412 UPDATE_SYNTAX_TABLE (charpos);
5413 #endif
5414 s1 = SYNTAX (c1);
5415 #ifdef emacs
5416 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5417 #endif
5418 s2 = SYNTAX (c2);
5419
5420 if (/* Case 2: Only one of S1 and S2 is Sword. */
5421 ((s1 == Sword) != (s2 == Sword))
5422 /* Case 3: Both of S1 and S2 are Sword, and macro
5423 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5424 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5425 goto fail;
5426 }
5427 break;
5428
5429 case wordbeg:
5430 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5431
5432 /* We FAIL in one of the following cases: */
5433
5434 /* Case 1: D is at the end of string. */
5435 if (AT_STRINGS_END (d))
5436 goto fail;
5437 else
5438 {
5439 /* C1 is the character before D, S1 is the syntax of C1, C2
5440 is the character at D, and S2 is the syntax of C2. */
5441 int c1, c2, s1, s2;
5442 int pos1 = PTR_TO_OFFSET (d);
5443 int charpos;
5444
5445 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5446 #ifdef emacs
5447 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5448 UPDATE_SYNTAX_TABLE (charpos);
5449 #endif
5450 s2 = SYNTAX (c2);
5451
5452 /* Case 2: S2 is not Sword. */
5453 if (s2 != Sword)
5454 goto fail;
5455
5456 /* Case 3: D is not at the beginning of string ... */
5457 if (!AT_STRINGS_BEG (d))
5458 {
5459 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5460 #ifdef emacs
5461 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5462 #endif
5463 s1 = SYNTAX (c1);
5464
5465 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5466 returns 0. */
5467 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5468 goto fail;
5469 }
5470 }
5471 break;
5472
5473 case wordend:
5474 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5475
5476 /* We FAIL in one of the following cases: */
5477
5478 /* Case 1: D is at the beginning of string. */
5479 if (AT_STRINGS_BEG (d))
5480 goto fail;
5481 else
5482 {
5483 /* C1 is the character before D, S1 is the syntax of C1, C2
5484 is the character at D, and S2 is the syntax of C2. */
5485 int c1, c2, s1, s2;
5486 int pos1 = PTR_TO_OFFSET (d);
5487 int charpos;
5488
5489 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5490 #ifdef emacs
5491 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5492 UPDATE_SYNTAX_TABLE (charpos);
5493 #endif
5494 s1 = SYNTAX (c1);
5495
5496 /* Case 2: S1 is not Sword. */
5497 if (s1 != Sword)
5498 goto fail;
5499
5500 /* Case 3: D is not at the end of string ... */
5501 if (!AT_STRINGS_END (d))
5502 {
5503 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5504 #ifdef emacs
5505 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5506 #endif
5507 s2 = SYNTAX (c2);
5508
5509 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5510 returns 0. */
5511 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5512 goto fail;
5513 }
5514 }
5515 break;
5516
5517 #ifdef emacs
5518 case before_dot:
5519 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5520 if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
5521 goto fail;
5522 break;
5523
5524 case at_dot:
5525 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5526 if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
5527 goto fail;
5528 break;
5529
5530 case after_dot:
5531 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5532 if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
5533 goto fail;
5534 break;
5535
5536 case syntaxspec:
5537 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5538 mcnt = *p++;
5539 goto matchsyntax;
5540
5541 case wordchar:
5542 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5543 mcnt = (int) Sword;
5544 matchsyntax:
5545 PREFETCH ();
5546 #ifdef emacs
5547 {
5548 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5549 UPDATE_SYNTAX_TABLE (pos1);
5550 }
5551 #endif
5552 {
5553 int c, len;
5554
5555 if (multibyte)
5556 /* we must concern about multibyte form, ... */
5557 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5558 else
5559 /* everything should be handled as ASCII, even though it
5560 looks like multibyte form. */
5561 c = *d, len = 1;
5562
5563 if (SYNTAX (c) != (enum syntaxcode) mcnt)
5564 goto fail;
5565 d += len;
5566 }
5567 SET_REGS_MATCHED ();
5568 break;
5569
5570 case notsyntaxspec:
5571 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5572 mcnt = *p++;
5573 goto matchnotsyntax;
5574
5575 case notwordchar:
5576 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5577 mcnt = (int) Sword;
5578 matchnotsyntax:
5579 PREFETCH ();
5580 #ifdef emacs
5581 {
5582 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5583 UPDATE_SYNTAX_TABLE (pos1);
5584 }
5585 #endif
5586 {
5587 int c, len;
5588
5589 if (multibyte)
5590 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5591 else
5592 c = *d, len = 1;
5593
5594 if (SYNTAX (c) == (enum syntaxcode) mcnt)
5595 goto fail;
5596 d += len;
5597 }
5598 SET_REGS_MATCHED ();
5599 break;
5600
5601 case categoryspec:
5602 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5603 mcnt = *p++;
5604 PREFETCH ();
5605 {
5606 int c, len;
5607
5608 if (multibyte)
5609 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5610 else
5611 c = *d, len = 1;
5612
5613 if (!CHAR_HAS_CATEGORY (c, mcnt))
5614 goto fail;
5615 d += len;
5616 }
5617 SET_REGS_MATCHED ();
5618 break;
5619
5620 case notcategoryspec:
5621 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5622 mcnt = *p++;
5623 PREFETCH ();
5624 {
5625 int c, len;
5626
5627 if (multibyte)
5628 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5629 else
5630 c = *d, len = 1;
5631
5632 if (CHAR_HAS_CATEGORY (c, mcnt))
5633 goto fail;
5634 d += len;
5635 }
5636 SET_REGS_MATCHED ();
5637 break;
5638
5639 #else /* not emacs */
5640 case wordchar:
5641 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5642 PREFETCH ();
5643 if (!WORDCHAR_P (d))
5644 goto fail;
5645 SET_REGS_MATCHED ();
5646 d++;
5647 break;
5648
5649 case notwordchar:
5650 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5651 PREFETCH ();
5652 if (WORDCHAR_P (d))
5653 goto fail;
5654 SET_REGS_MATCHED ();
5655 d++;
5656 break;
5657 #endif /* not emacs */
5658
5659 default:
5660 abort ();
5661 }
5662 continue; /* Successfully executed one pattern command; keep going. */
5663
5664
5665 /* We goto here if a matching operation fails. */
5666 fail:
5667 if (!FAIL_STACK_EMPTY ())
5668 { /* A restart point is known. Restore to that state. */
5669 DEBUG_PRINT1 ("\nFAIL:\n");
5670 POP_FAILURE_POINT (d, p,
5671 lowest_active_reg, highest_active_reg,
5672 regstart, regend, reg_info);
5673
5674 /* If this failure point is a dummy, try the next one. */
5675 if (!p)
5676 goto fail;
5677
5678 /* If we failed to the end of the pattern, don't examine *p. */
5679 assert (p <= pend);
5680 if (p < pend)
5681 {
5682 boolean is_a_jump_n = false;
5683
5684 /* If failed to a backwards jump that's part of a repetition
5685 loop, need to pop this failure point and use the next one. */
5686 switch ((re_opcode_t) *p)
5687 {
5688 case jump_n:
5689 is_a_jump_n = true;
5690 case maybe_pop_jump:
5691 case pop_failure_jump:
5692 case jump:
5693 p1 = p + 1;
5694 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5695 p1 += mcnt;
5696
5697 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5698 || (!is_a_jump_n
5699 && (re_opcode_t) *p1 == on_failure_jump))
5700 goto fail;
5701 break;
5702 default:
5703 /* do nothing */ ;
5704 }
5705 }
5706
5707 if (d >= string1 && d <= end1)
5708 dend = end_match_1;
5709 }
5710 else
5711 break; /* Matching at this starting point really fails. */
5712 } /* for (;;) */
5713
5714 if (best_regs_set)
5715 goto restore_best_regs;
5716
5717 FREE_VARIABLES ();
5718
5719 return -1; /* Failure to match. */
5720 } /* re_match_2 */
5721 \f
5722 /* Subroutine definitions for re_match_2. */
5723
5724
5725 /* We are passed P pointing to a register number after a start_memory.
5726
5727 Return true if the pattern up to the corresponding stop_memory can
5728 match the empty string, and false otherwise.
5729
5730 If we find the matching stop_memory, sets P to point to one past its number.
5731 Otherwise, sets P to an undefined byte less than or equal to END.
5732
5733 We don't handle duplicates properly (yet). */
5734
5735 static boolean
5736 group_match_null_string_p (p, end, reg_info)
5737 unsigned char **p, *end;
5738 register_info_type *reg_info;
5739 {
5740 int mcnt;
5741 /* Point to after the args to the start_memory. */
5742 unsigned char *p1 = *p + 2;
5743
5744 while (p1 < end)
5745 {
5746 /* Skip over opcodes that can match nothing, and return true or
5747 false, as appropriate, when we get to one that can't, or to the
5748 matching stop_memory. */
5749
5750 switch ((re_opcode_t) *p1)
5751 {
5752 /* Could be either a loop or a series of alternatives. */
5753 case on_failure_jump:
5754 p1++;
5755 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5756
5757 /* If the next operation is not a jump backwards in the
5758 pattern. */
5759
5760 if (mcnt >= 0)
5761 {
5762 /* Go through the on_failure_jumps of the alternatives,
5763 seeing if any of the alternatives cannot match nothing.
5764 The last alternative starts with only a jump,
5765 whereas the rest start with on_failure_jump and end
5766 with a jump, e.g., here is the pattern for `a|b|c':
5767
5768 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5769 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5770 /exactn/1/c
5771
5772 So, we have to first go through the first (n-1)
5773 alternatives and then deal with the last one separately. */
5774
5775
5776 /* Deal with the first (n-1) alternatives, which start
5777 with an on_failure_jump (see above) that jumps to right
5778 past a jump_past_alt. */
5779
5780 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5781 {
5782 /* `mcnt' holds how many bytes long the alternative
5783 is, including the ending `jump_past_alt' and
5784 its number. */
5785
5786 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5787 reg_info))
5788 return false;
5789
5790 /* Move to right after this alternative, including the
5791 jump_past_alt. */
5792 p1 += mcnt;
5793
5794 /* Break if it's the beginning of an n-th alternative
5795 that doesn't begin with an on_failure_jump. */
5796 if ((re_opcode_t) *p1 != on_failure_jump)
5797 break;
5798
5799 /* Still have to check that it's not an n-th
5800 alternative that starts with an on_failure_jump. */
5801 p1++;
5802 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5803 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5804 {
5805 /* Get to the beginning of the n-th alternative. */
5806 p1 -= 3;
5807 break;
5808 }
5809 }
5810
5811 /* Deal with the last alternative: go back and get number
5812 of the `jump_past_alt' just before it. `mcnt' contains
5813 the length of the alternative. */
5814 EXTRACT_NUMBER (mcnt, p1 - 2);
5815
5816 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5817 return false;
5818
5819 p1 += mcnt; /* Get past the n-th alternative. */
5820 } /* if mcnt > 0 */
5821 break;
5822
5823
5824 case stop_memory:
5825 assert (p1[1] == **p);
5826 *p = p1 + 2;
5827 return true;
5828
5829
5830 default:
5831 if (!common_op_match_null_string_p (&p1, end, reg_info))
5832 return false;
5833 }
5834 } /* while p1 < end */
5835
5836 return false;
5837 } /* group_match_null_string_p */
5838
5839
5840 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5841 It expects P to be the first byte of a single alternative and END one
5842 byte past the last. The alternative can contain groups. */
5843
5844 static boolean
5845 alt_match_null_string_p (p, end, reg_info)
5846 unsigned char *p, *end;
5847 register_info_type *reg_info;
5848 {
5849 int mcnt;
5850 unsigned char *p1 = p;
5851
5852 while (p1 < end)
5853 {
5854 /* Skip over opcodes that can match nothing, and break when we get
5855 to one that can't. */
5856
5857 switch ((re_opcode_t) *p1)
5858 {
5859 /* It's a loop. */
5860 case on_failure_jump:
5861 p1++;
5862 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5863 p1 += mcnt;
5864 break;
5865
5866 default:
5867 if (!common_op_match_null_string_p (&p1, end, reg_info))
5868 return false;
5869 }
5870 } /* while p1 < end */
5871
5872 return true;
5873 } /* alt_match_null_string_p */
5874
5875
5876 /* Deals with the ops common to group_match_null_string_p and
5877 alt_match_null_string_p.
5878
5879 Sets P to one after the op and its arguments, if any. */
5880
5881 static boolean
5882 common_op_match_null_string_p (p, end, reg_info)
5883 unsigned char **p, *end;
5884 register_info_type *reg_info;
5885 {
5886 int mcnt;
5887 boolean ret;
5888 int reg_no;
5889 unsigned char *p1 = *p;
5890
5891 switch ((re_opcode_t) *p1++)
5892 {
5893 case no_op:
5894 case begline:
5895 case endline:
5896 case begbuf:
5897 case endbuf:
5898 case wordbeg:
5899 case wordend:
5900 case wordbound:
5901 case notwordbound:
5902 #ifdef emacs
5903 case before_dot:
5904 case at_dot:
5905 case after_dot:
5906 #endif
5907 break;
5908
5909 case start_memory:
5910 reg_no = *p1;
5911 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5912 ret = group_match_null_string_p (&p1, end, reg_info);
5913
5914 /* Have to set this here in case we're checking a group which
5915 contains a group and a back reference to it. */
5916
5917 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5918 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5919
5920 if (!ret)
5921 return false;
5922 break;
5923
5924 /* If this is an optimized succeed_n for zero times, make the jump. */
5925 case jump:
5926 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5927 if (mcnt >= 0)
5928 p1 += mcnt;
5929 else
5930 return false;
5931 break;
5932
5933 case succeed_n:
5934 /* Get to the number of times to succeed. */
5935 p1 += 2;
5936 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5937
5938 if (mcnt == 0)
5939 {
5940 p1 -= 4;
5941 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5942 p1 += mcnt;
5943 }
5944 else
5945 return false;
5946 break;
5947
5948 case duplicate:
5949 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5950 return false;
5951 break;
5952
5953 case set_number_at:
5954 p1 += 4;
5955
5956 default:
5957 /* All other opcodes mean we cannot match the empty string. */
5958 return false;
5959 }
5960
5961 *p = p1;
5962 return true;
5963 } /* common_op_match_null_string_p */
5964
5965
5966 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5967 bytes; nonzero otherwise. */
5968
5969 static int
5970 bcmp_translate (s1, s2, len, translate)
5971 unsigned char *s1, *s2;
5972 register int len;
5973 RE_TRANSLATE_TYPE translate;
5974 {
5975 register unsigned char *p1 = s1, *p2 = s2;
5976 unsigned char *p1_end = s1 + len;
5977 unsigned char *p2_end = s2 + len;
5978
5979 while (p1 != p1_end && p2 != p2_end)
5980 {
5981 int p1_charlen, p2_charlen;
5982 int p1_ch, p2_ch;
5983
5984 p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5985 p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
5986
5987 if (RE_TRANSLATE (translate, p1_ch)
5988 != RE_TRANSLATE (translate, p2_ch))
5989 return 1;
5990
5991 p1 += p1_charlen, p2 += p2_charlen;
5992 }
5993
5994 if (p1 != p1_end || p2 != p2_end)
5995 return 1;
5996
5997 return 0;
5998 }
5999 \f
6000 /* Entry points for GNU code. */
6001
6002 /* re_compile_pattern is the GNU regular expression compiler: it
6003 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6004 Returns 0 if the pattern was valid, otherwise an error string.
6005
6006 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6007 are set in BUFP on entry.
6008
6009 We call regex_compile to do the actual compilation. */
6010
6011 const char *
6012 re_compile_pattern (pattern, length, bufp)
6013 const char *pattern;
6014 int length;
6015 struct re_pattern_buffer *bufp;
6016 {
6017 reg_errcode_t ret;
6018
6019 /* GNU code is written to assume at least RE_NREGS registers will be set
6020 (and at least one extra will be -1). */
6021 bufp->regs_allocated = REGS_UNALLOCATED;
6022
6023 /* And GNU code determines whether or not to get register information
6024 by passing null for the REGS argument to re_match, etc., not by
6025 setting no_sub. */
6026 bufp->no_sub = 0;
6027
6028 /* Match anchors at newline. */
6029 bufp->newline_anchor = 1;
6030
6031 ret = regex_compile (pattern, length, re_syntax_options, bufp);
6032
6033 if (!ret)
6034 return NULL;
6035 return gettext (re_error_msgid[(int) ret]);
6036 }
6037 \f
6038 /* Entry points compatible with 4.2 BSD regex library. We don't define
6039 them unless specifically requested. */
6040
6041 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
6042
6043 /* BSD has one and only one pattern buffer. */
6044 static struct re_pattern_buffer re_comp_buf;
6045
6046 char *
6047 #ifdef _LIBC
6048 /* Make these definitions weak in libc, so POSIX programs can redefine
6049 these names if they don't use our functions, and still use
6050 regcomp/regexec below without link errors. */
6051 weak_function
6052 #endif
6053 re_comp (s)
6054 const char *s;
6055 {
6056 reg_errcode_t ret;
6057
6058 if (!s)
6059 {
6060 if (!re_comp_buf.buffer)
6061 return gettext ("No previous regular expression");
6062 return 0;
6063 }
6064
6065 if (!re_comp_buf.buffer)
6066 {
6067 re_comp_buf.buffer = (unsigned char *) malloc (200);
6068 if (re_comp_buf.buffer == NULL)
6069 return gettext (re_error_msgid[(int) REG_ESPACE]);
6070 re_comp_buf.allocated = 200;
6071
6072 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6073 if (re_comp_buf.fastmap == NULL)
6074 return gettext (re_error_msgid[(int) REG_ESPACE]);
6075 }
6076
6077 /* Since `re_exec' always passes NULL for the `regs' argument, we
6078 don't need to initialize the pattern buffer fields which affect it. */
6079
6080 /* Match anchors at newlines. */
6081 re_comp_buf.newline_anchor = 1;
6082
6083 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6084
6085 if (!ret)
6086 return NULL;
6087
6088 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6089 return (char *) gettext (re_error_msgid[(int) ret]);
6090 }
6091
6092
6093 int
6094 #ifdef _LIBC
6095 weak_function
6096 #endif
6097 re_exec (s)
6098 const char *s;
6099 {
6100 const int len = strlen (s);
6101 return
6102 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6103 }
6104 #endif /* _REGEX_RE_COMP */
6105 \f
6106 /* POSIX.2 functions. Don't define these for Emacs. */
6107
6108 #ifndef emacs
6109
6110 /* regcomp takes a regular expression as a string and compiles it.
6111
6112 PREG is a regex_t *. We do not expect any fields to be initialized,
6113 since POSIX says we shouldn't. Thus, we set
6114
6115 `buffer' to the compiled pattern;
6116 `used' to the length of the compiled pattern;
6117 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6118 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6119 RE_SYNTAX_POSIX_BASIC;
6120 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6121 `fastmap' and `fastmap_accurate' to zero;
6122 `re_nsub' to the number of subexpressions in PATTERN.
6123
6124 PATTERN is the address of the pattern string.
6125
6126 CFLAGS is a series of bits which affect compilation.
6127
6128 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6129 use POSIX basic syntax.
6130
6131 If REG_NEWLINE is set, then . and [^...] don't match newline.
6132 Also, regexec will try a match beginning after every newline.
6133
6134 If REG_ICASE is set, then we considers upper- and lowercase
6135 versions of letters to be equivalent when matching.
6136
6137 If REG_NOSUB is set, then when PREG is passed to regexec, that
6138 routine will report only success or failure, and nothing about the
6139 registers.
6140
6141 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6142 the return codes and their meanings.) */
6143
6144 int
6145 regcomp (preg, pattern, cflags)
6146 regex_t *preg;
6147 const char *pattern;
6148 int cflags;
6149 {
6150 reg_errcode_t ret;
6151 unsigned syntax
6152 = (cflags & REG_EXTENDED) ?
6153 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6154
6155 /* regex_compile will allocate the space for the compiled pattern. */
6156 preg->buffer = 0;
6157 preg->allocated = 0;
6158 preg->used = 0;
6159
6160 /* Don't bother to use a fastmap when searching. This simplifies the
6161 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6162 characters after newlines into the fastmap. This way, we just try
6163 every character. */
6164 preg->fastmap = 0;
6165
6166 if (cflags & REG_ICASE)
6167 {
6168 unsigned i;
6169
6170 preg->translate
6171 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6172 * sizeof (*(RE_TRANSLATE_TYPE)0));
6173 if (preg->translate == NULL)
6174 return (int) REG_ESPACE;
6175
6176 /* Map uppercase characters to corresponding lowercase ones. */
6177 for (i = 0; i < CHAR_SET_SIZE; i++)
6178 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
6179 }
6180 else
6181 preg->translate = NULL;
6182
6183 /* If REG_NEWLINE is set, newlines are treated differently. */
6184 if (cflags & REG_NEWLINE)
6185 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6186 syntax &= ~RE_DOT_NEWLINE;
6187 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6188 /* It also changes the matching behavior. */
6189 preg->newline_anchor = 1;
6190 }
6191 else
6192 preg->newline_anchor = 0;
6193
6194 preg->no_sub = !!(cflags & REG_NOSUB);
6195
6196 /* POSIX says a null character in the pattern terminates it, so we
6197 can use strlen here in compiling the pattern. */
6198 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6199
6200 /* POSIX doesn't distinguish between an unmatched open-group and an
6201 unmatched close-group: both are REG_EPAREN. */
6202 if (ret == REG_ERPAREN) ret = REG_EPAREN;
6203
6204 return (int) ret;
6205 }
6206
6207
6208 /* regexec searches for a given pattern, specified by PREG, in the
6209 string STRING.
6210
6211 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6212 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6213 least NMATCH elements, and we set them to the offsets of the
6214 corresponding matched substrings.
6215
6216 EFLAGS specifies `execution flags' which affect matching: if
6217 REG_NOTBOL is set, then ^ does not match at the beginning of the
6218 string; if REG_NOTEOL is set, then $ does not match at the end.
6219
6220 We return 0 if we find a match and REG_NOMATCH if not. */
6221
6222 int
6223 regexec (preg, string, nmatch, pmatch, eflags)
6224 const regex_t *preg;
6225 const char *string;
6226 size_t nmatch;
6227 regmatch_t pmatch[];
6228 int eflags;
6229 {
6230 int ret;
6231 struct re_registers regs;
6232 regex_t private_preg;
6233 int len = strlen (string);
6234 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6235
6236 private_preg = *preg;
6237
6238 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6239 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6240
6241 /* The user has told us exactly how many registers to return
6242 information about, via `nmatch'. We have to pass that on to the
6243 matching routines. */
6244 private_preg.regs_allocated = REGS_FIXED;
6245
6246 if (want_reg_info)
6247 {
6248 regs.num_regs = nmatch;
6249 regs.start = TALLOC (nmatch, regoff_t);
6250 regs.end = TALLOC (nmatch, regoff_t);
6251 if (regs.start == NULL || regs.end == NULL)
6252 return (int) REG_NOMATCH;
6253 }
6254
6255 /* Perform the searching operation. */
6256 ret = re_search (&private_preg, string, len,
6257 /* start: */ 0, /* range: */ len,
6258 want_reg_info ? &regs : (struct re_registers *) 0);
6259
6260 /* Copy the register information to the POSIX structure. */
6261 if (want_reg_info)
6262 {
6263 if (ret >= 0)
6264 {
6265 unsigned r;
6266
6267 for (r = 0; r < nmatch; r++)
6268 {
6269 pmatch[r].rm_so = regs.start[r];
6270 pmatch[r].rm_eo = regs.end[r];
6271 }
6272 }
6273
6274 /* If we needed the temporary register info, free the space now. */
6275 free (regs.start);
6276 free (regs.end);
6277 }
6278
6279 /* We want zero return to mean success, unlike `re_search'. */
6280 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6281 }
6282
6283
6284 /* Returns a message corresponding to an error code, ERRCODE, returned
6285 from either regcomp or regexec. We don't use PREG here. */
6286
6287 size_t
6288 regerror (errcode, preg, errbuf, errbuf_size)
6289 int errcode;
6290 const regex_t *preg;
6291 char *errbuf;
6292 size_t errbuf_size;
6293 {
6294 const char *msg;
6295 size_t msg_size;
6296
6297 if (errcode < 0
6298 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6299 /* Only error codes returned by the rest of the code should be passed
6300 to this routine. If we are given anything else, or if other regex
6301 code generates an invalid error code, then the program has a bug.
6302 Dump core so we can fix it. */
6303 abort ();
6304
6305 msg = gettext (re_error_msgid[errcode]);
6306
6307 msg_size = strlen (msg) + 1; /* Includes the null. */
6308
6309 if (errbuf_size != 0)
6310 {
6311 if (msg_size > errbuf_size)
6312 {
6313 strncpy (errbuf, msg, errbuf_size - 1);
6314 errbuf[errbuf_size - 1] = 0;
6315 }
6316 else
6317 strcpy (errbuf, msg);
6318 }
6319
6320 return msg_size;
6321 }
6322
6323
6324 /* Free dynamically allocated space used by PREG. */
6325
6326 void
6327 regfree (preg)
6328 regex_t *preg;
6329 {
6330 if (preg->buffer != NULL)
6331 free (preg->buffer);
6332 preg->buffer = NULL;
6333
6334 preg->allocated = 0;
6335 preg->used = 0;
6336
6337 if (preg->fastmap != NULL)
6338 free (preg->fastmap);
6339 preg->fastmap = NULL;
6340 preg->fastmap_accurate = 0;
6341
6342 if (preg->translate != NULL)
6343 free (preg->translate);
6344 preg->translate = NULL;
6345 }
6346
6347 #endif /* not emacs */