(Fdefine_key): Clarification of formulation.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* List of emulation mode keymap alists. */
79 Lisp_Object Vemulation_mode_map_alists;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
96
97 /* Alist of elements like (DEL . "\d"). */
98 static Lisp_Object exclude_keys;
99
100 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
101 static Lisp_Object command_remapping_vector;
102
103 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
104 in a string key sequence is equivalent to prefixing with this
105 character. */
106 extern Lisp_Object meta_prefix_char;
107
108 extern Lisp_Object Voverriding_local_map;
109
110 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
111 static Lisp_Object where_is_cache;
112 /* Which keymaps are reverse-stored in the cache. */
113 static Lisp_Object where_is_cache_keymaps;
114
115 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
116 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117
118 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
119 static void describe_command P_ ((Lisp_Object, Lisp_Object));
120 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
121 static void describe_map P_ ((Lisp_Object, Lisp_Object,
122 void (*) P_ ((Lisp_Object, Lisp_Object)),
123 int, Lisp_Object, Lisp_Object*, int));
124 static void silly_event_symbol_error P_ ((Lisp_Object));
125 \f
126 /* Keymap object support - constructors and predicates. */
127
128 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
129 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
130 CHARTABLE is a char-table that holds the bindings for the ASCII
131 characters. ALIST is an assoc-list which holds bindings for function keys,
132 mouse events, and any other things that appear in the input stream.
133 All entries in it are initially nil, meaning "command undefined".
134
135 The optional arg STRING supplies a menu name for the keymap
136 in case you use it as a menu with `x-popup-menu'. */)
137 (string)
138 Lisp_Object string;
139 {
140 Lisp_Object tail;
141 if (!NILP (string))
142 tail = Fcons (string, Qnil);
143 else
144 tail = Qnil;
145 return Fcons (Qkeymap,
146 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
147 }
148
149 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
150 doc: /* Construct and return a new sparse keymap.
151 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
152 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
153 which binds the function key or mouse event SYMBOL to DEFINITION.
154 Initially the alist is nil.
155
156 The optional arg STRING supplies a menu name for the keymap
157 in case you use it as a menu with `x-popup-menu'. */)
158 (string)
159 Lisp_Object string;
160 {
161 if (!NILP (string))
162 return Fcons (Qkeymap, Fcons (string, Qnil));
163 return Fcons (Qkeymap, Qnil);
164 }
165
166 /* This function is used for installing the standard key bindings
167 at initialization time.
168
169 For example:
170
171 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
172
173 void
174 initial_define_key (keymap, key, defname)
175 Lisp_Object keymap;
176 int key;
177 char *defname;
178 {
179 store_in_keymap (keymap, make_number (key), intern (defname));
180 }
181
182 void
183 initial_define_lispy_key (keymap, keyname, defname)
184 Lisp_Object keymap;
185 char *keyname;
186 char *defname;
187 {
188 store_in_keymap (keymap, intern (keyname), intern (defname));
189 }
190
191 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
192 doc: /* Return t if OBJECT is a keymap.
193
194 A keymap is a list (keymap . ALIST),
195 or a symbol whose function definition is itself a keymap.
196 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
197 a vector of densely packed bindings for small character codes
198 is also allowed as an element. */)
199 (object)
200 Lisp_Object object;
201 {
202 return (KEYMAPP (object) ? Qt : Qnil);
203 }
204
205 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
206 doc: /* Return the prompt-string of a keymap MAP.
207 If non-nil, the prompt is shown in the echo-area
208 when reading a key-sequence to be looked-up in this keymap. */)
209 (map)
210 Lisp_Object map;
211 {
212 while (CONSP (map))
213 {
214 register Lisp_Object tem;
215 tem = Fcar (map);
216 if (STRINGP (tem))
217 return tem;
218 map = Fcdr (map);
219 }
220 return Qnil;
221 }
222
223 /* Check that OBJECT is a keymap (after dereferencing through any
224 symbols). If it is, return it.
225
226 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
227 is an autoload form, do the autoload and try again.
228 If AUTOLOAD is nonzero, callers must assume GC is possible.
229
230 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
231 is zero as well), return Qt.
232
233 ERROR controls how we respond if OBJECT isn't a keymap.
234 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
235
236 Note that most of the time, we don't want to pursue autoloads.
237 Functions like Faccessible_keymaps which scan entire keymap trees
238 shouldn't load every autoloaded keymap. I'm not sure about this,
239 but it seems to me that only read_key_sequence, Flookup_key, and
240 Fdefine_key should cause keymaps to be autoloaded.
241
242 This function can GC when AUTOLOAD is non-zero, because it calls
243 do_autoload which can GC. */
244
245 Lisp_Object
246 get_keymap (object, error, autoload)
247 Lisp_Object object;
248 int error, autoload;
249 {
250 Lisp_Object tem;
251
252 autoload_retry:
253 if (NILP (object))
254 goto end;
255 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
256 return object;
257
258 tem = indirect_function (object);
259 if (CONSP (tem))
260 {
261 if (EQ (XCAR (tem), Qkeymap))
262 return tem;
263
264 /* Should we do an autoload? Autoload forms for keymaps have
265 Qkeymap as their fifth element. */
266 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
267 {
268 Lisp_Object tail;
269
270 tail = Fnth (make_number (4), tem);
271 if (EQ (tail, Qkeymap))
272 {
273 if (autoload)
274 {
275 struct gcpro gcpro1, gcpro2;
276
277 GCPRO2 (tem, object);
278 do_autoload (tem, object);
279 UNGCPRO;
280
281 goto autoload_retry;
282 }
283 else
284 return Qt;
285 }
286 }
287 }
288
289 end:
290 if (error)
291 wrong_type_argument (Qkeymapp, object);
292 return Qnil;
293 }
294 \f
295 /* Return the parent map of KEYMAP, or nil if it has none.
296 We assume that KEYMAP is a valid keymap. */
297
298 Lisp_Object
299 keymap_parent (keymap, autoload)
300 Lisp_Object keymap;
301 int autoload;
302 {
303 Lisp_Object list;
304
305 keymap = get_keymap (keymap, 1, autoload);
306
307 /* Skip past the initial element `keymap'. */
308 list = XCDR (keymap);
309 for (; CONSP (list); list = XCDR (list))
310 {
311 /* See if there is another `keymap'. */
312 if (KEYMAPP (list))
313 return list;
314 }
315
316 return get_keymap (list, 0, autoload);
317 }
318
319 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
320 doc: /* Return the parent keymap of KEYMAP. */)
321 (keymap)
322 Lisp_Object keymap;
323 {
324 return keymap_parent (keymap, 1);
325 }
326
327 /* Check whether MAP is one of MAPS parents. */
328 int
329 keymap_memberp (map, maps)
330 Lisp_Object map, maps;
331 {
332 if (NILP (map)) return 0;
333 while (KEYMAPP (maps) && !EQ (map, maps))
334 maps = keymap_parent (maps, 0);
335 return (EQ (map, maps));
336 }
337
338 /* Set the parent keymap of MAP to PARENT. */
339
340 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
341 doc: /* Modify KEYMAP to set its parent map to PARENT.
342 PARENT should be nil or another keymap. */)
343 (keymap, parent)
344 Lisp_Object keymap, parent;
345 {
346 Lisp_Object list, prev;
347 struct gcpro gcpro1, gcpro2;
348 int i;
349
350 /* Force a keymap flush for the next call to where-is.
351 Since this can be called from within where-is, we don't set where_is_cache
352 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
353 be changed during where-is, while where_is_cache_keymaps is only used at
354 the very beginning of where-is and can thus be changed here without any
355 adverse effect.
356 This is a very minor correctness (rather than safety) issue. */
357 where_is_cache_keymaps = Qt;
358
359 GCPRO2 (keymap, parent);
360 keymap = get_keymap (keymap, 1, 1);
361
362 if (!NILP (parent))
363 {
364 parent = get_keymap (parent, 1, 1);
365
366 /* Check for cycles. */
367 if (keymap_memberp (keymap, parent))
368 error ("Cyclic keymap inheritance");
369 }
370
371 /* Skip past the initial element `keymap'. */
372 prev = keymap;
373 while (1)
374 {
375 list = XCDR (prev);
376 /* If there is a parent keymap here, replace it.
377 If we came to the end, add the parent in PREV. */
378 if (!CONSP (list) || KEYMAPP (list))
379 {
380 /* If we already have the right parent, return now
381 so that we avoid the loops below. */
382 if (EQ (XCDR (prev), parent))
383 RETURN_UNGCPRO (parent);
384
385 XSETCDR (prev, parent);
386 break;
387 }
388 prev = list;
389 }
390
391 /* Scan through for submaps, and set their parents too. */
392
393 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
394 {
395 /* Stop the scan when we come to the parent. */
396 if (EQ (XCAR (list), Qkeymap))
397 break;
398
399 /* If this element holds a prefix map, deal with it. */
400 if (CONSP (XCAR (list))
401 && CONSP (XCDR (XCAR (list))))
402 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
403 XCDR (XCAR (list)));
404
405 if (VECTORP (XCAR (list)))
406 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
407 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
408 fix_submap_inheritance (keymap, make_number (i),
409 XVECTOR (XCAR (list))->contents[i]);
410
411 if (CHAR_TABLE_P (XCAR (list)))
412 {
413 Lisp_Object indices[3];
414
415 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
416 keymap, 0, indices);
417 }
418 }
419
420 RETURN_UNGCPRO (parent);
421 }
422
423 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
424 if EVENT is also a prefix in MAP's parent,
425 make sure that SUBMAP inherits that definition as its own parent. */
426
427 static void
428 fix_submap_inheritance (map, event, submap)
429 Lisp_Object map, event, submap;
430 {
431 Lisp_Object map_parent, parent_entry;
432
433 /* SUBMAP is a cons that we found as a key binding.
434 Discard the other things found in a menu key binding. */
435
436 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
437
438 /* If it isn't a keymap now, there's no work to do. */
439 if (!CONSP (submap))
440 return;
441
442 map_parent = keymap_parent (map, 0);
443 if (!NILP (map_parent))
444 parent_entry =
445 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
446 else
447 parent_entry = Qnil;
448
449 /* If MAP's parent has something other than a keymap,
450 our own submap shadows it completely. */
451 if (!CONSP (parent_entry))
452 return;
453
454 if (! EQ (parent_entry, submap))
455 {
456 Lisp_Object submap_parent;
457 submap_parent = submap;
458 while (1)
459 {
460 Lisp_Object tem;
461
462 tem = keymap_parent (submap_parent, 0);
463
464 if (KEYMAPP (tem))
465 {
466 if (keymap_memberp (tem, parent_entry))
467 /* Fset_keymap_parent could create a cycle. */
468 return;
469 submap_parent = tem;
470 }
471 else
472 break;
473 }
474 Fset_keymap_parent (submap_parent, parent_entry);
475 }
476 }
477 \f
478 /* Look up IDX in MAP. IDX may be any sort of event.
479 Note that this does only one level of lookup; IDX must be a single
480 event, not a sequence.
481
482 If T_OK is non-zero, bindings for Qt are treated as default
483 bindings; any key left unmentioned by other tables and bindings is
484 given the binding of Qt.
485
486 If T_OK is zero, bindings for Qt are not treated specially.
487
488 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
489
490 Lisp_Object
491 access_keymap (map, idx, t_ok, noinherit, autoload)
492 Lisp_Object map;
493 Lisp_Object idx;
494 int t_ok;
495 int noinherit;
496 int autoload;
497 {
498 Lisp_Object val;
499
500 /* Qunbound in VAL means we have found no binding yet. */
501 val = Qunbound;
502
503 /* If idx is a list (some sort of mouse click, perhaps?),
504 the index we want to use is the car of the list, which
505 ought to be a symbol. */
506 idx = EVENT_HEAD (idx);
507
508 /* If idx is a symbol, it might have modifiers, which need to
509 be put in the canonical order. */
510 if (SYMBOLP (idx))
511 idx = reorder_modifiers (idx);
512 else if (INTEGERP (idx))
513 /* Clobber the high bits that can be present on a machine
514 with more than 24 bits of integer. */
515 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
516
517 /* Handle the special meta -> esc mapping. */
518 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
519 {
520 /* See if there is a meta-map. If there's none, there is
521 no binding for IDX, unless a default binding exists in MAP. */
522 struct gcpro gcpro1;
523 Lisp_Object meta_map;
524 GCPRO1 (map);
525 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
526 t_ok, noinherit, autoload),
527 0, autoload);
528 UNGCPRO;
529 if (CONSP (meta_map))
530 {
531 map = meta_map;
532 idx = make_number (XUINT (idx) & ~meta_modifier);
533 }
534 else if (t_ok)
535 /* Set IDX to t, so that we only find a default binding. */
536 idx = Qt;
537 else
538 /* We know there is no binding. */
539 return Qnil;
540 }
541
542 /* t_binding is where we put a default binding that applies,
543 to use in case we do not find a binding specifically
544 for this key sequence. */
545 {
546 Lisp_Object tail;
547 Lisp_Object t_binding = Qnil;
548 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
549
550 GCPRO4 (map, tail, idx, t_binding);
551
552 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
553 If it is 1, only generic-char bindings are accepted.
554 Otherwise, neither are. */
555 t_ok = t_ok ? 2 : 0;
556
557 for (tail = XCDR (map);
558 (CONSP (tail)
559 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
560 tail = XCDR (tail))
561 {
562 Lisp_Object binding;
563
564 binding = XCAR (tail);
565 if (SYMBOLP (binding))
566 {
567 /* If NOINHERIT, stop finding prefix definitions
568 after we pass a second occurrence of the `keymap' symbol. */
569 if (noinherit && EQ (binding, Qkeymap))
570 RETURN_UNGCPRO (Qnil);
571 }
572 else if (CONSP (binding))
573 {
574 Lisp_Object key = XCAR (binding);
575
576 if (EQ (key, idx))
577 val = XCDR (binding);
578 else if (t_ok
579 && INTEGERP (idx)
580 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
581 && INTEGERP (key)
582 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
583 && !SINGLE_BYTE_CHAR_P (XINT (idx))
584 && !SINGLE_BYTE_CHAR_P (XINT (key))
585 && CHAR_VALID_P (XINT (key), 1)
586 && !CHAR_VALID_P (XINT (key), 0)
587 && (CHAR_CHARSET (XINT (key))
588 == CHAR_CHARSET (XINT (idx))))
589 {
590 /* KEY is the generic character of the charset of IDX.
591 Use KEY's binding if there isn't a binding for IDX
592 itself. */
593 t_binding = XCDR (binding);
594 t_ok = 0;
595 }
596 else if (t_ok > 1 && EQ (key, Qt))
597 {
598 t_binding = XCDR (binding);
599 t_ok = 1;
600 }
601 }
602 else if (VECTORP (binding))
603 {
604 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
605 val = AREF (binding, XFASTINT (idx));
606 }
607 else if (CHAR_TABLE_P (binding))
608 {
609 /* Character codes with modifiers
610 are not included in a char-table.
611 All character codes without modifiers are included. */
612 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
613 {
614 val = Faref (binding, idx);
615 /* `nil' has a special meaning for char-tables, so
616 we use something else to record an explicitly
617 unbound entry. */
618 if (NILP (val))
619 val = Qunbound;
620 }
621 }
622
623 /* If we found a binding, clean it up and return it. */
624 if (!EQ (val, Qunbound))
625 {
626 if (EQ (val, Qt))
627 /* A Qt binding is just like an explicit nil binding
628 (i.e. it shadows any parent binding but not bindings in
629 keymaps of lower precedence). */
630 val = Qnil;
631 val = get_keyelt (val, autoload);
632 if (KEYMAPP (val))
633 fix_submap_inheritance (map, idx, val);
634 RETURN_UNGCPRO (val);
635 }
636 QUIT;
637 }
638 UNGCPRO;
639 return get_keyelt (t_binding, autoload);
640 }
641 }
642
643 /* Given OBJECT which was found in a slot in a keymap,
644 trace indirect definitions to get the actual definition of that slot.
645 An indirect definition is a list of the form
646 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
647 and INDEX is the object to look up in KEYMAP to yield the definition.
648
649 Also if OBJECT has a menu string as the first element,
650 remove that. Also remove a menu help string as second element.
651
652 If AUTOLOAD is nonzero, load autoloadable keymaps
653 that are referred to with indirection. */
654
655 Lisp_Object
656 get_keyelt (object, autoload)
657 Lisp_Object object;
658 int autoload;
659 {
660 while (1)
661 {
662 if (!(CONSP (object)))
663 /* This is really the value. */
664 return object;
665
666 /* If the keymap contents looks like (keymap ...) or (lambda ...)
667 then use itself. */
668 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
669 return object;
670
671 /* If the keymap contents looks like (menu-item name . DEFN)
672 or (menu-item name DEFN ...) then use DEFN.
673 This is a new format menu item. */
674 else if (EQ (XCAR (object), Qmenu_item))
675 {
676 if (CONSP (XCDR (object)))
677 {
678 Lisp_Object tem;
679
680 object = XCDR (XCDR (object));
681 tem = object;
682 if (CONSP (object))
683 object = XCAR (object);
684
685 /* If there's a `:filter FILTER', apply FILTER to the
686 menu-item's definition to get the real definition to
687 use. */
688 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
689 if (EQ (XCAR (tem), QCfilter) && autoload)
690 {
691 Lisp_Object filter;
692 filter = XCAR (XCDR (tem));
693 filter = list2 (filter, list2 (Qquote, object));
694 object = menu_item_eval_property (filter);
695 break;
696 }
697 }
698 else
699 /* Invalid keymap. */
700 return object;
701 }
702
703 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
704 Keymap alist elements like (CHAR MENUSTRING . DEFN)
705 will be used by HierarKey menus. */
706 else if (STRINGP (XCAR (object)))
707 {
708 object = XCDR (object);
709 /* Also remove a menu help string, if any,
710 following the menu item name. */
711 if (CONSP (object) && STRINGP (XCAR (object)))
712 object = XCDR (object);
713 /* Also remove the sublist that caches key equivalences, if any. */
714 if (CONSP (object) && CONSP (XCAR (object)))
715 {
716 Lisp_Object carcar;
717 carcar = XCAR (XCAR (object));
718 if (NILP (carcar) || VECTORP (carcar))
719 object = XCDR (object);
720 }
721 }
722
723 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
724 else
725 {
726 struct gcpro gcpro1;
727 Lisp_Object map;
728 GCPRO1 (object);
729 map = get_keymap (Fcar_safe (object), 0, autoload);
730 UNGCPRO;
731 return (!CONSP (map) ? object /* Invalid keymap */
732 : access_keymap (map, Fcdr (object), 0, 0, autoload));
733 }
734 }
735 }
736
737 static Lisp_Object
738 store_in_keymap (keymap, idx, def)
739 Lisp_Object keymap;
740 register Lisp_Object idx;
741 register Lisp_Object def;
742 {
743 /* Flush any reverse-map cache. */
744 where_is_cache = Qnil;
745 where_is_cache_keymaps = Qt;
746
747 /* If we are preparing to dump, and DEF is a menu element
748 with a menu item indicator, copy it to ensure it is not pure. */
749 if (CONSP (def) && PURE_P (def)
750 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
751 def = Fcons (XCAR (def), XCDR (def));
752
753 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
754 error ("attempt to define a key in a non-keymap");
755
756 /* If idx is a list (some sort of mouse click, perhaps?),
757 the index we want to use is the car of the list, which
758 ought to be a symbol. */
759 idx = EVENT_HEAD (idx);
760
761 /* If idx is a symbol, it might have modifiers, which need to
762 be put in the canonical order. */
763 if (SYMBOLP (idx))
764 idx = reorder_modifiers (idx);
765 else if (INTEGERP (idx))
766 /* Clobber the high bits that can be present on a machine
767 with more than 24 bits of integer. */
768 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
769
770 /* Scan the keymap for a binding of idx. */
771 {
772 Lisp_Object tail;
773
774 /* The cons after which we should insert new bindings. If the
775 keymap has a table element, we record its position here, so new
776 bindings will go after it; this way, the table will stay
777 towards the front of the alist and character lookups in dense
778 keymaps will remain fast. Otherwise, this just points at the
779 front of the keymap. */
780 Lisp_Object insertion_point;
781
782 insertion_point = keymap;
783 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
784 {
785 Lisp_Object elt;
786
787 elt = XCAR (tail);
788 if (VECTORP (elt))
789 {
790 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
791 {
792 ASET (elt, XFASTINT (idx), def);
793 return def;
794 }
795 insertion_point = tail;
796 }
797 else if (CHAR_TABLE_P (elt))
798 {
799 /* Character codes with modifiers
800 are not included in a char-table.
801 All character codes without modifiers are included. */
802 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
803 {
804 Faset (elt, idx,
805 /* `nil' has a special meaning for char-tables, so
806 we use something else to record an explicitly
807 unbound entry. */
808 NILP (def) ? Qt : def);
809 return def;
810 }
811 insertion_point = tail;
812 }
813 else if (CONSP (elt))
814 {
815 if (EQ (idx, XCAR (elt)))
816 {
817 XSETCDR (elt, def);
818 return def;
819 }
820 }
821 else if (EQ (elt, Qkeymap))
822 /* If we find a 'keymap' symbol in the spine of KEYMAP,
823 then we must have found the start of a second keymap
824 being used as the tail of KEYMAP, and a binding for IDX
825 should be inserted before it. */
826 goto keymap_end;
827
828 QUIT;
829 }
830
831 keymap_end:
832 /* We have scanned the entire keymap, and not found a binding for
833 IDX. Let's add one. */
834 XSETCDR (insertion_point,
835 Fcons (Fcons (idx, def), XCDR (insertion_point)));
836 }
837
838 return def;
839 }
840
841 EXFUN (Fcopy_keymap, 1);
842
843 Lisp_Object
844 copy_keymap_item (elt)
845 Lisp_Object elt;
846 {
847 Lisp_Object res, tem;
848
849 if (!CONSP (elt))
850 return elt;
851
852 res = tem = elt;
853
854 /* Is this a new format menu item. */
855 if (EQ (XCAR (tem), Qmenu_item))
856 {
857 /* Copy cell with menu-item marker. */
858 res = elt = Fcons (XCAR (tem), XCDR (tem));
859 tem = XCDR (elt);
860 if (CONSP (tem))
861 {
862 /* Copy cell with menu-item name. */
863 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
864 elt = XCDR (elt);
865 tem = XCDR (elt);
866 }
867 if (CONSP (tem))
868 {
869 /* Copy cell with binding and if the binding is a keymap,
870 copy that. */
871 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
872 elt = XCDR (elt);
873 tem = XCAR (elt);
874 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
875 XSETCAR (elt, Fcopy_keymap (tem));
876 tem = XCDR (elt);
877 if (CONSP (tem) && CONSP (XCAR (tem)))
878 /* Delete cache for key equivalences. */
879 XSETCDR (elt, XCDR (tem));
880 }
881 }
882 else
883 {
884 /* It may be an old fomat menu item.
885 Skip the optional menu string. */
886 if (STRINGP (XCAR (tem)))
887 {
888 /* Copy the cell, since copy-alist didn't go this deep. */
889 res = elt = Fcons (XCAR (tem), XCDR (tem));
890 tem = XCDR (elt);
891 /* Also skip the optional menu help string. */
892 if (CONSP (tem) && STRINGP (XCAR (tem)))
893 {
894 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
895 elt = XCDR (elt);
896 tem = XCDR (elt);
897 }
898 /* There may also be a list that caches key equivalences.
899 Just delete it for the new keymap. */
900 if (CONSP (tem)
901 && CONSP (XCAR (tem))
902 && (NILP (XCAR (XCAR (tem)))
903 || VECTORP (XCAR (XCAR (tem)))))
904 {
905 XSETCDR (elt, XCDR (tem));
906 tem = XCDR (tem);
907 }
908 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
909 XSETCDR (elt, Fcopy_keymap (tem));
910 }
911 else if (EQ (XCAR (tem), Qkeymap))
912 res = Fcopy_keymap (elt);
913 }
914 return res;
915 }
916
917 void
918 copy_keymap_1 (chartable, idx, elt)
919 Lisp_Object chartable, idx, elt;
920 {
921 Faset (chartable, idx, copy_keymap_item (elt));
922 }
923
924 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
925 doc: /* Return a copy of the keymap KEYMAP.
926 The copy starts out with the same definitions of KEYMAP,
927 but changing either the copy or KEYMAP does not affect the other.
928 Any key definitions that are subkeymaps are recursively copied.
929 However, a key definition which is a symbol whose definition is a keymap
930 is not copied. */)
931 (keymap)
932 Lisp_Object keymap;
933 {
934 register Lisp_Object copy, tail;
935 keymap = get_keymap (keymap, 1, 0);
936 copy = tail = Fcons (Qkeymap, Qnil);
937 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
938
939 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
940 {
941 Lisp_Object elt = XCAR (keymap);
942 if (CHAR_TABLE_P (elt))
943 {
944 Lisp_Object indices[3];
945 elt = Fcopy_sequence (elt);
946 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
947 }
948 else if (VECTORP (elt))
949 {
950 int i;
951 elt = Fcopy_sequence (elt);
952 for (i = 0; i < ASIZE (elt); i++)
953 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
954 }
955 else if (CONSP (elt))
956 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
957 XSETCDR (tail, Fcons (elt, Qnil));
958 tail = XCDR (tail);
959 keymap = XCDR (keymap);
960 }
961 XSETCDR (tail, keymap);
962 return copy;
963 }
964 \f
965 /* Simple Keymap mutators and accessors. */
966
967 /* GC is possible in this function if it autoloads a keymap. */
968
969 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
970 doc: /* In KEYMAP, define key sequence KEY as DEF.
971 KEYMAP is a keymap.
972
973 KEY is a string or a vector of symbols and characters meaning a
974 sequence of keystrokes and events. Non-ASCII characters with codes
975 above 127 (such as ISO Latin-1) can be included if you use a vector.
976 Using [t] for KEY creates a default definition, which applies to any
977 event type that has no other definition in this keymap.
978
979 DEF is anything that can be a key's definition:
980 nil (means key is undefined in this keymap),
981 a command (a Lisp function suitable for interactive calling)
982 a string (treated as a keyboard macro),
983 a keymap (to define a prefix key),
984 a symbol. When the key is looked up, the symbol will stand for its
985 function definition, which should at that time be one of the above,
986 or another symbol whose function definition is used, etc.
987 a cons (STRING . DEFN), meaning that DEFN is the definition
988 (DEFN should be a valid definition in its own right),
989 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
990
991 If KEYMAP is a sparse keymap with a binding for KEY, the existing
992 binding is altered. If there is no binding for KEY, the new pair
993 binding KEY to DEF is added at the front of KEYMAP. */)
994 (keymap, key, def)
995 Lisp_Object keymap;
996 Lisp_Object key;
997 Lisp_Object def;
998 {
999 register int idx;
1000 register Lisp_Object c;
1001 register Lisp_Object cmd;
1002 int metized = 0;
1003 int meta_bit;
1004 int length;
1005 struct gcpro gcpro1, gcpro2, gcpro3;
1006
1007 GCPRO3 (keymap, key, def);
1008 keymap = get_keymap (keymap, 1, 1);
1009
1010 if (!VECTORP (key) && !STRINGP (key))
1011 key = wrong_type_argument (Qarrayp, key);
1012
1013 length = XFASTINT (Flength (key));
1014 if (length == 0)
1015 RETURN_UNGCPRO (Qnil);
1016
1017 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1018 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1019
1020 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1021
1022 idx = 0;
1023 while (1)
1024 {
1025 c = Faref (key, make_number (idx));
1026
1027 if (CONSP (c) && lucid_event_type_list_p (c))
1028 c = Fevent_convert_list (c);
1029
1030 if (SYMBOLP (c))
1031 silly_event_symbol_error (c);
1032
1033 if (INTEGERP (c)
1034 && (XINT (c) & meta_bit)
1035 && !metized)
1036 {
1037 c = meta_prefix_char;
1038 metized = 1;
1039 }
1040 else
1041 {
1042 if (INTEGERP (c))
1043 XSETINT (c, XINT (c) & ~meta_bit);
1044
1045 metized = 0;
1046 idx++;
1047 }
1048
1049 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1050 error ("Key sequence contains invalid event");
1051
1052 if (idx == length)
1053 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1054
1055 cmd = access_keymap (keymap, c, 0, 1, 1);
1056
1057 /* If this key is undefined, make it a prefix. */
1058 if (NILP (cmd))
1059 cmd = define_as_prefix (keymap, c);
1060
1061 keymap = get_keymap (cmd, 0, 1);
1062 if (!CONSP (keymap))
1063 /* We must use Fkey_description rather than just passing key to
1064 error; key might be a vector, not a string. */
1065 error ("Key sequence %s uses invalid prefix characters",
1066 SDATA (Fkey_description (key)));
1067 }
1068 }
1069
1070 /* This function may GC (it calls Fkey_binding). */
1071
1072 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1073 doc: /* Return the remapping for command COMMAND in current keymaps.
1074 Returns nil if COMMAND is not remapped (or not a symbol). */)
1075 (command)
1076 Lisp_Object command;
1077 {
1078 if (!SYMBOLP (command))
1079 return Qnil;
1080
1081 ASET (command_remapping_vector, 1, command);
1082 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1083 }
1084
1085 /* Value is number if KEY is too long; nil if valid but has no definition. */
1086 /* GC is possible in this function if it autoloads a keymap. */
1087
1088 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1089 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1090 nil means undefined. See doc of `define-key' for kinds of definitions.
1091
1092 A number as value means KEY is "too long";
1093 that is, characters or symbols in it except for the last one
1094 fail to be a valid sequence of prefix characters in KEYMAP.
1095 The number is how many characters at the front of KEY
1096 it takes to reach a non-prefix command.
1097
1098 Normally, `lookup-key' ignores bindings for t, which act as default
1099 bindings, used when nothing else in the keymap applies; this makes it
1100 usable as a general function for probing keymaps. However, if the
1101 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1102 recognize the default bindings, just as `read-key-sequence' does. */)
1103 (keymap, key, accept_default)
1104 Lisp_Object keymap;
1105 Lisp_Object key;
1106 Lisp_Object accept_default;
1107 {
1108 register int idx;
1109 register Lisp_Object cmd;
1110 register Lisp_Object c;
1111 int length;
1112 int t_ok = !NILP (accept_default);
1113 struct gcpro gcpro1, gcpro2;
1114
1115 GCPRO2 (keymap, key);
1116 keymap = get_keymap (keymap, 1, 1);
1117
1118 if (!VECTORP (key) && !STRINGP (key))
1119 key = wrong_type_argument (Qarrayp, key);
1120
1121 length = XFASTINT (Flength (key));
1122 if (length == 0)
1123 RETURN_UNGCPRO (keymap);
1124
1125 idx = 0;
1126 while (1)
1127 {
1128 c = Faref (key, make_number (idx++));
1129
1130 if (CONSP (c) && lucid_event_type_list_p (c))
1131 c = Fevent_convert_list (c);
1132
1133 /* Turn the 8th bit of string chars into a meta modifier. */
1134 if (XINT (c) & 0x80 && STRINGP (key))
1135 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1136
1137 /* Allow string since binding for `menu-bar-select-buffer'
1138 includes the buffer name in the key sequence. */
1139 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1140 error ("Key sequence contains invalid event");
1141
1142 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1143 if (idx == length)
1144 RETURN_UNGCPRO (cmd);
1145
1146 keymap = get_keymap (cmd, 0, 1);
1147 if (!CONSP (keymap))
1148 RETURN_UNGCPRO (make_number (idx));
1149
1150 QUIT;
1151 }
1152 }
1153
1154 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1155 Assume that currently it does not define C at all.
1156 Return the keymap. */
1157
1158 static Lisp_Object
1159 define_as_prefix (keymap, c)
1160 Lisp_Object keymap, c;
1161 {
1162 Lisp_Object cmd;
1163
1164 cmd = Fmake_sparse_keymap (Qnil);
1165 /* If this key is defined as a prefix in an inherited keymap,
1166 make it a prefix in this map, and make its definition
1167 inherit the other prefix definition. */
1168 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1169 store_in_keymap (keymap, c, cmd);
1170
1171 return cmd;
1172 }
1173
1174 /* Append a key to the end of a key sequence. We always make a vector. */
1175
1176 Lisp_Object
1177 append_key (key_sequence, key)
1178 Lisp_Object key_sequence, key;
1179 {
1180 Lisp_Object args[2];
1181
1182 args[0] = key_sequence;
1183
1184 args[1] = Fcons (key, Qnil);
1185 return Fvconcat (2, args);
1186 }
1187
1188 /* Given a event type C which is a symbol,
1189 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1190
1191 static void
1192 silly_event_symbol_error (c)
1193 Lisp_Object c;
1194 {
1195 Lisp_Object parsed, base, name, assoc;
1196 int modifiers;
1197
1198 parsed = parse_modifiers (c);
1199 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1200 base = XCAR (parsed);
1201 name = Fsymbol_name (base);
1202 /* This alist includes elements such as ("RET" . "\\r"). */
1203 assoc = Fassoc (name, exclude_keys);
1204
1205 if (! NILP (assoc))
1206 {
1207 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1208 char *p = new_mods;
1209 Lisp_Object keystring;
1210 if (modifiers & alt_modifier)
1211 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1212 if (modifiers & ctrl_modifier)
1213 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1214 if (modifiers & hyper_modifier)
1215 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1216 if (modifiers & meta_modifier)
1217 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1218 if (modifiers & shift_modifier)
1219 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1220 if (modifiers & super_modifier)
1221 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1222 *p = 0;
1223
1224 c = reorder_modifiers (c);
1225 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1226
1227 error ((modifiers & ~meta_modifier
1228 ? "To bind the key %s, use [?%s], not [%s]"
1229 : "To bind the key %s, use \"%s\", not [%s]"),
1230 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1231 SDATA (SYMBOL_NAME (c)));
1232 }
1233 }
1234 \f
1235 /* Global, local, and minor mode keymap stuff. */
1236
1237 /* We can't put these variables inside current_minor_maps, since under
1238 some systems, static gets macro-defined to be the empty string.
1239 Ickypoo. */
1240 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1241 static int cmm_size = 0;
1242
1243 /* Error handler used in current_minor_maps. */
1244 static Lisp_Object
1245 current_minor_maps_error ()
1246 {
1247 return Qnil;
1248 }
1249
1250 /* Store a pointer to an array of the keymaps of the currently active
1251 minor modes in *buf, and return the number of maps it contains.
1252
1253 This function always returns a pointer to the same buffer, and may
1254 free or reallocate it, so if you want to keep it for a long time or
1255 hand it out to lisp code, copy it. This procedure will be called
1256 for every key sequence read, so the nice lispy approach (return a
1257 new assoclist, list, what have you) for each invocation would
1258 result in a lot of consing over time.
1259
1260 If we used xrealloc/xmalloc and ran out of memory, they would throw
1261 back to the command loop, which would try to read a key sequence,
1262 which would call this function again, resulting in an infinite
1263 loop. Instead, we'll use realloc/malloc and silently truncate the
1264 list, let the key sequence be read, and hope some other piece of
1265 code signals the error. */
1266 int
1267 current_minor_maps (modeptr, mapptr)
1268 Lisp_Object **modeptr, **mapptr;
1269 {
1270 int i = 0;
1271 int list_number = 0;
1272 Lisp_Object alist, assoc, var, val;
1273 Lisp_Object emulation_alists;
1274 Lisp_Object lists[2];
1275
1276 emulation_alists = Vemulation_mode_map_alists;
1277 lists[0] = Vminor_mode_overriding_map_alist;
1278 lists[1] = Vminor_mode_map_alist;
1279
1280 for (list_number = 0; list_number < 2; list_number++)
1281 {
1282 if (CONSP (emulation_alists))
1283 {
1284 alist = XCAR (emulation_alists);
1285 emulation_alists = XCDR (emulation_alists);
1286 if (SYMBOLP (alist))
1287 alist = find_symbol_value (alist);
1288 list_number = -1;
1289 }
1290 else
1291 alist = lists[list_number];
1292
1293 for ( ; CONSP (alist); alist = XCDR (alist))
1294 if ((assoc = XCAR (alist), CONSP (assoc))
1295 && (var = XCAR (assoc), SYMBOLP (var))
1296 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1297 && !NILP (val))
1298 {
1299 Lisp_Object temp;
1300
1301 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1302 and also an entry in Vminor_mode_map_alist,
1303 ignore the latter. */
1304 if (list_number == 1)
1305 {
1306 val = assq_no_quit (var, lists[0]);
1307 if (!NILP (val))
1308 continue;
1309 }
1310
1311 if (i >= cmm_size)
1312 {
1313 int newsize, allocsize;
1314 Lisp_Object *newmodes, *newmaps;
1315
1316 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1317 allocsize = newsize * sizeof *newmodes;
1318
1319 /* Use malloc here. See the comment above this function.
1320 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1321 BLOCK_INPUT;
1322 newmodes = (Lisp_Object *) malloc (allocsize);
1323 if (newmodes)
1324 {
1325 if (cmm_modes)
1326 {
1327 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1328 free (cmm_modes);
1329 }
1330 cmm_modes = newmodes;
1331 }
1332
1333 newmaps = (Lisp_Object *) malloc (allocsize);
1334 if (newmaps)
1335 {
1336 if (cmm_maps)
1337 {
1338 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1339 free (cmm_maps);
1340 }
1341 cmm_maps = newmaps;
1342 }
1343 UNBLOCK_INPUT;
1344
1345 if (newmodes == NULL || newmaps == NULL)
1346 break;
1347 cmm_size = newsize;
1348 }
1349
1350 /* Get the keymap definition--or nil if it is not defined. */
1351 temp = internal_condition_case_1 (Findirect_function,
1352 XCDR (assoc),
1353 Qerror, current_minor_maps_error);
1354 if (!NILP (temp))
1355 {
1356 cmm_modes[i] = var;
1357 cmm_maps [i] = temp;
1358 i++;
1359 }
1360 }
1361 }
1362
1363 if (modeptr) *modeptr = cmm_modes;
1364 if (mapptr) *mapptr = cmm_maps;
1365 return i;
1366 }
1367
1368 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1369 0, 1, 0,
1370 doc: /* Return a list of the currently active keymaps.
1371 OLP if non-nil indicates that we should obey `overriding-local-map' and
1372 `overriding-terminal-local-map'. */)
1373 (olp)
1374 Lisp_Object olp;
1375 {
1376 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1377
1378 if (!NILP (olp))
1379 {
1380 if (!NILP (Voverriding_local_map))
1381 keymaps = Fcons (Voverriding_local_map, keymaps);
1382 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1383 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1384 }
1385 if (NILP (XCDR (keymaps)))
1386 {
1387 Lisp_Object local;
1388 Lisp_Object *maps;
1389 int nmaps, i;
1390
1391 local = get_local_map (PT, current_buffer, Qlocal_map);
1392 if (!NILP (local))
1393 keymaps = Fcons (local, keymaps);
1394
1395 nmaps = current_minor_maps (0, &maps);
1396
1397 for (i = --nmaps; i >= 0; i--)
1398 if (!NILP (maps[i]))
1399 keymaps = Fcons (maps[i], keymaps);
1400
1401 local = get_local_map (PT, current_buffer, Qkeymap);
1402 if (!NILP (local))
1403 keymaps = Fcons (local, keymaps);
1404 }
1405
1406 return keymaps;
1407 }
1408
1409 /* GC is possible in this function if it autoloads a keymap. */
1410
1411 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1412 doc: /* Return the binding for command KEY in current keymaps.
1413 KEY is a string or vector, a sequence of keystrokes.
1414 The binding is probably a symbol with a function definition.
1415
1416 Normally, `key-binding' ignores bindings for t, which act as default
1417 bindings, used when nothing else in the keymap applies; this makes it
1418 usable as a general function for probing keymaps. However, if the
1419 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1420 recognize the default bindings, just as `read-key-sequence' does.
1421
1422 Like the normal command loop, `key-binding' will remap the command
1423 resulting from looking up KEY by looking up the command in the
1424 current keymaps. However, if the optional third argument NO-REMAP
1425 is non-nil, `key-binding' returns the unmapped command. */)
1426 (key, accept_default, no_remap)
1427 Lisp_Object key, accept_default, no_remap;
1428 {
1429 Lisp_Object *maps, value;
1430 int nmaps, i;
1431 struct gcpro gcpro1;
1432
1433 GCPRO1 (key);
1434
1435 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1436 {
1437 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1438 key, accept_default);
1439 if (! NILP (value) && !INTEGERP (value))
1440 goto done;
1441 }
1442 else if (!NILP (Voverriding_local_map))
1443 {
1444 value = Flookup_key (Voverriding_local_map, key, accept_default);
1445 if (! NILP (value) && !INTEGERP (value))
1446 goto done;
1447 }
1448 else
1449 {
1450 Lisp_Object local;
1451
1452 local = get_local_map (PT, current_buffer, Qkeymap);
1453 if (! NILP (local))
1454 {
1455 value = Flookup_key (local, key, accept_default);
1456 if (! NILP (value) && !INTEGERP (value))
1457 goto done;
1458 }
1459
1460 nmaps = current_minor_maps (0, &maps);
1461 /* Note that all these maps are GCPRO'd
1462 in the places where we found them. */
1463
1464 for (i = 0; i < nmaps; i++)
1465 if (! NILP (maps[i]))
1466 {
1467 value = Flookup_key (maps[i], key, accept_default);
1468 if (! NILP (value) && !INTEGERP (value))
1469 goto done;
1470 }
1471
1472 local = get_local_map (PT, current_buffer, Qlocal_map);
1473 if (! NILP (local))
1474 {
1475 value = Flookup_key (local, key, accept_default);
1476 if (! NILP (value) && !INTEGERP (value))
1477 goto done;
1478 }
1479 }
1480
1481 value = Flookup_key (current_global_map, key, accept_default);
1482
1483 done:
1484 UNGCPRO;
1485 if (NILP (value) || INTEGERP (value))
1486 return Qnil;
1487
1488 /* If the result of the ordinary keymap lookup is an interactive
1489 command, look for a key binding (ie. remapping) for that command. */
1490
1491 if (NILP (no_remap) && SYMBOLP (value))
1492 {
1493 Lisp_Object value1;
1494 if (value1 = Fcommand_remapping (value), !NILP (value1))
1495 value = value1;
1496 }
1497
1498 return value;
1499 }
1500
1501 /* GC is possible in this function if it autoloads a keymap. */
1502
1503 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1504 doc: /* Return the binding for command KEYS in current local keymap only.
1505 KEYS is a string, a sequence of keystrokes.
1506 The binding is probably a symbol with a function definition.
1507
1508 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1509 bindings; see the description of `lookup-key' for more details about this. */)
1510 (keys, accept_default)
1511 Lisp_Object keys, accept_default;
1512 {
1513 register Lisp_Object map;
1514 map = current_buffer->keymap;
1515 if (NILP (map))
1516 return Qnil;
1517 return Flookup_key (map, keys, accept_default);
1518 }
1519
1520 /* GC is possible in this function if it autoloads a keymap. */
1521
1522 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1523 doc: /* Return the binding for command KEYS in current global keymap only.
1524 KEYS is a string, a sequence of keystrokes.
1525 The binding is probably a symbol with a function definition.
1526 This function's return values are the same as those of lookup-key
1527 \(which see).
1528
1529 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1530 bindings; see the description of `lookup-key' for more details about this. */)
1531 (keys, accept_default)
1532 Lisp_Object keys, accept_default;
1533 {
1534 return Flookup_key (current_global_map, keys, accept_default);
1535 }
1536
1537 /* GC is possible in this function if it autoloads a keymap. */
1538
1539 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1540 doc: /* Find the visible minor mode bindings of KEY.
1541 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1542 the symbol which names the minor mode binding KEY, and BINDING is
1543 KEY's definition in that mode. In particular, if KEY has no
1544 minor-mode bindings, return nil. If the first binding is a
1545 non-prefix, all subsequent bindings will be omitted, since they would
1546 be ignored. Similarly, the list doesn't include non-prefix bindings
1547 that come after prefix bindings.
1548
1549 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1550 bindings; see the description of `lookup-key' for more details about this. */)
1551 (key, accept_default)
1552 Lisp_Object key, accept_default;
1553 {
1554 Lisp_Object *modes, *maps;
1555 int nmaps;
1556 Lisp_Object binding;
1557 int i, j;
1558 struct gcpro gcpro1, gcpro2;
1559
1560 nmaps = current_minor_maps (&modes, &maps);
1561 /* Note that all these maps are GCPRO'd
1562 in the places where we found them. */
1563
1564 binding = Qnil;
1565 GCPRO2 (key, binding);
1566
1567 for (i = j = 0; i < nmaps; i++)
1568 if (!NILP (maps[i])
1569 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1570 && !INTEGERP (binding))
1571 {
1572 if (KEYMAPP (binding))
1573 maps[j++] = Fcons (modes[i], binding);
1574 else if (j == 0)
1575 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1576 }
1577
1578 UNGCPRO;
1579 return Flist (j, maps);
1580 }
1581
1582 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1583 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1584 A new sparse keymap is stored as COMMAND's function definition and its value.
1585 If a second optional argument MAPVAR is given, the map is stored as
1586 its value instead of as COMMAND's value; but COMMAND is still defined
1587 as a function.
1588 The third optional argument NAME, if given, supplies a menu name
1589 string for the map. This is required to use the keymap as a menu. */)
1590 (command, mapvar, name)
1591 Lisp_Object command, mapvar, name;
1592 {
1593 Lisp_Object map;
1594 map = Fmake_sparse_keymap (name);
1595 Ffset (command, map);
1596 if (!NILP (mapvar))
1597 Fset (mapvar, map);
1598 else
1599 Fset (command, map);
1600 return command;
1601 }
1602
1603 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1604 doc: /* Select KEYMAP as the global keymap. */)
1605 (keymap)
1606 Lisp_Object keymap;
1607 {
1608 keymap = get_keymap (keymap, 1, 1);
1609 current_global_map = keymap;
1610
1611 return Qnil;
1612 }
1613
1614 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1615 doc: /* Select KEYMAP as the local keymap.
1616 If KEYMAP is nil, that means no local keymap. */)
1617 (keymap)
1618 Lisp_Object keymap;
1619 {
1620 if (!NILP (keymap))
1621 keymap = get_keymap (keymap, 1, 1);
1622
1623 current_buffer->keymap = keymap;
1624
1625 return Qnil;
1626 }
1627
1628 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1629 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1630 ()
1631 {
1632 return current_buffer->keymap;
1633 }
1634
1635 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1636 doc: /* Return the current global keymap. */)
1637 ()
1638 {
1639 return current_global_map;
1640 }
1641
1642 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1643 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1644 ()
1645 {
1646 Lisp_Object *maps;
1647 int nmaps = current_minor_maps (0, &maps);
1648
1649 return Flist (nmaps, maps);
1650 }
1651 \f
1652 /* Help functions for describing and documenting keymaps. */
1653
1654
1655 static void
1656 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1657 Lisp_Object maps, tail, thisseq, key, cmd;
1658 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1659 {
1660 Lisp_Object tem;
1661
1662 cmd = get_keyelt (cmd, 0);
1663 if (NILP (cmd))
1664 return;
1665
1666 tem = get_keymap (cmd, 0, 0);
1667 if (CONSP (tem))
1668 {
1669 cmd = tem;
1670 /* Ignore keymaps that are already added to maps. */
1671 tem = Frassq (cmd, maps);
1672 if (NILP (tem))
1673 {
1674 /* If the last key in thisseq is meta-prefix-char,
1675 turn it into a meta-ized keystroke. We know
1676 that the event we're about to append is an
1677 ascii keystroke since we're processing a
1678 keymap table. */
1679 if (is_metized)
1680 {
1681 int meta_bit = meta_modifier;
1682 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1683 tem = Fcopy_sequence (thisseq);
1684
1685 Faset (tem, last, make_number (XINT (key) | meta_bit));
1686
1687 /* This new sequence is the same length as
1688 thisseq, so stick it in the list right
1689 after this one. */
1690 XSETCDR (tail,
1691 Fcons (Fcons (tem, cmd), XCDR (tail)));
1692 }
1693 else
1694 {
1695 tem = append_key (thisseq, key);
1696 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1697 }
1698 }
1699 }
1700 }
1701
1702 static void
1703 accessible_keymaps_char_table (args, index, cmd)
1704 Lisp_Object args, index, cmd;
1705 {
1706 accessible_keymaps_1 (index, cmd,
1707 XCAR (XCAR (args)),
1708 XCAR (XCDR (args)),
1709 XCDR (XCDR (args)),
1710 XINT (XCDR (XCAR (args))));
1711 }
1712
1713 /* This function cannot GC. */
1714
1715 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1716 1, 2, 0,
1717 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1718 Returns a list of elements of the form (KEYS . MAP), where the sequence
1719 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1720 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1721 An optional argument PREFIX, if non-nil, should be a key sequence;
1722 then the value includes only maps for prefixes that start with PREFIX. */)
1723 (keymap, prefix)
1724 Lisp_Object keymap, prefix;
1725 {
1726 Lisp_Object maps, good_maps, tail;
1727 int prefixlen = 0;
1728
1729 /* no need for gcpro because we don't autoload any keymaps. */
1730
1731 if (!NILP (prefix))
1732 prefixlen = XINT (Flength (prefix));
1733
1734 if (!NILP (prefix))
1735 {
1736 /* If a prefix was specified, start with the keymap (if any) for
1737 that prefix, so we don't waste time considering other prefixes. */
1738 Lisp_Object tem;
1739 tem = Flookup_key (keymap, prefix, Qt);
1740 /* Flookup_key may give us nil, or a number,
1741 if the prefix is not defined in this particular map.
1742 It might even give us a list that isn't a keymap. */
1743 tem = get_keymap (tem, 0, 0);
1744 if (CONSP (tem))
1745 {
1746 /* Convert PREFIX to a vector now, so that later on
1747 we don't have to deal with the possibility of a string. */
1748 if (STRINGP (prefix))
1749 {
1750 int i, i_byte, c;
1751 Lisp_Object copy;
1752
1753 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1754 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1755 {
1756 int i_before = i;
1757
1758 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1759 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1760 c ^= 0200 | meta_modifier;
1761 ASET (copy, i_before, make_number (c));
1762 }
1763 prefix = copy;
1764 }
1765 maps = Fcons (Fcons (prefix, tem), Qnil);
1766 }
1767 else
1768 return Qnil;
1769 }
1770 else
1771 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1772 get_keymap (keymap, 1, 0)),
1773 Qnil);
1774
1775 /* For each map in the list maps,
1776 look at any other maps it points to,
1777 and stick them at the end if they are not already in the list.
1778
1779 This is a breadth-first traversal, where tail is the queue of
1780 nodes, and maps accumulates a list of all nodes visited. */
1781
1782 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1783 {
1784 register Lisp_Object thisseq, thismap;
1785 Lisp_Object last;
1786 /* Does the current sequence end in the meta-prefix-char? */
1787 int is_metized;
1788
1789 thisseq = Fcar (Fcar (tail));
1790 thismap = Fcdr (Fcar (tail));
1791 last = make_number (XINT (Flength (thisseq)) - 1);
1792 is_metized = (XINT (last) >= 0
1793 /* Don't metize the last char of PREFIX. */
1794 && XINT (last) >= prefixlen
1795 && EQ (Faref (thisseq, last), meta_prefix_char));
1796
1797 for (; CONSP (thismap); thismap = XCDR (thismap))
1798 {
1799 Lisp_Object elt;
1800
1801 elt = XCAR (thismap);
1802
1803 QUIT;
1804
1805 if (CHAR_TABLE_P (elt))
1806 {
1807 Lisp_Object indices[3];
1808
1809 map_char_table (accessible_keymaps_char_table, Qnil,
1810 elt, Fcons (Fcons (maps, make_number (is_metized)),
1811 Fcons (tail, thisseq)),
1812 0, indices);
1813 }
1814 else if (VECTORP (elt))
1815 {
1816 register int i;
1817
1818 /* Vector keymap. Scan all the elements. */
1819 for (i = 0; i < ASIZE (elt); i++)
1820 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1821 maps, tail, thisseq, is_metized);
1822
1823 }
1824 else if (CONSP (elt))
1825 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1826 maps, tail, thisseq,
1827 is_metized && INTEGERP (XCAR (elt)));
1828
1829 }
1830 }
1831
1832 if (NILP (prefix))
1833 return maps;
1834
1835 /* Now find just the maps whose access prefixes start with PREFIX. */
1836
1837 good_maps = Qnil;
1838 for (; CONSP (maps); maps = XCDR (maps))
1839 {
1840 Lisp_Object elt, thisseq;
1841 elt = XCAR (maps);
1842 thisseq = XCAR (elt);
1843 /* The access prefix must be at least as long as PREFIX,
1844 and the first elements must match those of PREFIX. */
1845 if (XINT (Flength (thisseq)) >= prefixlen)
1846 {
1847 int i;
1848 for (i = 0; i < prefixlen; i++)
1849 {
1850 Lisp_Object i1;
1851 XSETFASTINT (i1, i);
1852 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1853 break;
1854 }
1855 if (i == prefixlen)
1856 good_maps = Fcons (elt, good_maps);
1857 }
1858 }
1859
1860 return Fnreverse (good_maps);
1861 }
1862 \f
1863 Lisp_Object Qsingle_key_description, Qkey_description;
1864
1865 /* This function cannot GC. */
1866
1867 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1868 doc: /* Return a pretty description of key-sequence KEYS.
1869 Control characters turn into "C-foo" sequences, meta into "M-foo"
1870 spaces are put between sequence elements, etc. */)
1871 (keys)
1872 Lisp_Object keys;
1873 {
1874 int len = 0;
1875 int i, i_byte;
1876 Lisp_Object sep;
1877 Lisp_Object *args = NULL;
1878
1879 if (STRINGP (keys))
1880 {
1881 Lisp_Object vector;
1882 vector = Fmake_vector (Flength (keys), Qnil);
1883 for (i = 0, i_byte = 0; i < SCHARS (keys); )
1884 {
1885 int c;
1886 int i_before = i;
1887
1888 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1889 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1890 c ^= 0200 | meta_modifier;
1891 XSETFASTINT (AREF (vector, i_before), c);
1892 }
1893 keys = vector;
1894 }
1895
1896 if (VECTORP (keys))
1897 {
1898 /* In effect, this computes
1899 (mapconcat 'single-key-description keys " ")
1900 but we shouldn't use mapconcat because it can do GC. */
1901
1902 len = XVECTOR (keys)->size;
1903 sep = build_string (" ");
1904 /* This has one extra element at the end that we don't pass to Fconcat. */
1905 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1906
1907 for (i = 0; i < len; i++)
1908 {
1909 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1910 args[i * 2 + 1] = sep;
1911 }
1912 }
1913 else if (CONSP (keys))
1914 {
1915 /* In effect, this computes
1916 (mapconcat 'single-key-description keys " ")
1917 but we shouldn't use mapconcat because it can do GC. */
1918
1919 len = XFASTINT (Flength (keys));
1920 sep = build_string (" ");
1921 /* This has one extra element at the end that we don't pass to Fconcat. */
1922 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1923
1924 for (i = 0; i < len; i++)
1925 {
1926 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1927 args[i * 2 + 1] = sep;
1928 keys = XCDR (keys);
1929 }
1930 }
1931 else
1932 keys = wrong_type_argument (Qarrayp, keys);
1933
1934 if (len == 0)
1935 return empty_string;
1936 return Fconcat (len * 2 - 1, args);
1937 }
1938
1939 char *
1940 push_key_description (c, p, force_multibyte)
1941 register unsigned int c;
1942 register char *p;
1943 int force_multibyte;
1944 {
1945 unsigned c2;
1946
1947 /* Clear all the meaningless bits above the meta bit. */
1948 c &= meta_modifier | ~ - meta_modifier;
1949 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1950 | meta_modifier | shift_modifier | super_modifier);
1951
1952 if (c & alt_modifier)
1953 {
1954 *p++ = 'A';
1955 *p++ = '-';
1956 c -= alt_modifier;
1957 }
1958 if ((c & ctrl_modifier) != 0
1959 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1960 {
1961 *p++ = 'C';
1962 *p++ = '-';
1963 c &= ~ctrl_modifier;
1964 }
1965 if (c & hyper_modifier)
1966 {
1967 *p++ = 'H';
1968 *p++ = '-';
1969 c -= hyper_modifier;
1970 }
1971 if (c & meta_modifier)
1972 {
1973 *p++ = 'M';
1974 *p++ = '-';
1975 c -= meta_modifier;
1976 }
1977 if (c & shift_modifier)
1978 {
1979 *p++ = 'S';
1980 *p++ = '-';
1981 c -= shift_modifier;
1982 }
1983 if (c & super_modifier)
1984 {
1985 *p++ = 's';
1986 *p++ = '-';
1987 c -= super_modifier;
1988 }
1989 if (c < 040)
1990 {
1991 if (c == 033)
1992 {
1993 *p++ = 'E';
1994 *p++ = 'S';
1995 *p++ = 'C';
1996 }
1997 else if (c == '\t')
1998 {
1999 *p++ = 'T';
2000 *p++ = 'A';
2001 *p++ = 'B';
2002 }
2003 else if (c == Ctl ('M'))
2004 {
2005 *p++ = 'R';
2006 *p++ = 'E';
2007 *p++ = 'T';
2008 }
2009 else
2010 {
2011 /* `C-' already added above. */
2012 if (c > 0 && c <= Ctl ('Z'))
2013 *p++ = c + 0140;
2014 else
2015 *p++ = c + 0100;
2016 }
2017 }
2018 else if (c == 0177)
2019 {
2020 *p++ = 'D';
2021 *p++ = 'E';
2022 *p++ = 'L';
2023 }
2024 else if (c == ' ')
2025 {
2026 *p++ = 'S';
2027 *p++ = 'P';
2028 *p++ = 'C';
2029 }
2030 else if (c < 128
2031 || (NILP (current_buffer->enable_multibyte_characters)
2032 && SINGLE_BYTE_CHAR_P (c)
2033 && !force_multibyte))
2034 {
2035 *p++ = c;
2036 }
2037 else
2038 {
2039 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2040
2041 if (force_multibyte && valid_p)
2042 {
2043 if (SINGLE_BYTE_CHAR_P (c))
2044 c = unibyte_char_to_multibyte (c);
2045 p += CHAR_STRING (c, p);
2046 }
2047 else if (NILP (current_buffer->enable_multibyte_characters)
2048 || valid_p)
2049 {
2050 int bit_offset;
2051 *p++ = '\\';
2052 /* The biggest character code uses 19 bits. */
2053 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2054 {
2055 if (c >= (1 << bit_offset))
2056 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2057 }
2058 }
2059 else
2060 p += CHAR_STRING (c, p);
2061 }
2062
2063 return p;
2064 }
2065
2066 /* This function cannot GC. */
2067
2068 DEFUN ("single-key-description", Fsingle_key_description,
2069 Ssingle_key_description, 1, 2, 0,
2070 doc: /* Return a pretty description of command character KEY.
2071 Control characters turn into C-whatever, etc.
2072 Optional argument NO-ANGLES non-nil means don't put angle brackets
2073 around function keys and event symbols. */)
2074 (key, no_angles)
2075 Lisp_Object key, no_angles;
2076 {
2077 if (CONSP (key) && lucid_event_type_list_p (key))
2078 key = Fevent_convert_list (key);
2079
2080 key = EVENT_HEAD (key);
2081
2082 if (INTEGERP (key)) /* Normal character */
2083 {
2084 unsigned int charset, c1, c2;
2085 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2086
2087 if (SINGLE_BYTE_CHAR_P (without_bits))
2088 charset = 0;
2089 else
2090 SPLIT_CHAR (without_bits, charset, c1, c2);
2091
2092 if (charset
2093 && CHARSET_DEFINED_P (charset)
2094 && ((c1 >= 0 && c1 < 32)
2095 || (c2 >= 0 && c2 < 32)))
2096 {
2097 /* Handle a generic character. */
2098 Lisp_Object name;
2099 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2100 CHECK_STRING (name);
2101 return concat2 (build_string ("Character set "), name);
2102 }
2103 else
2104 {
2105 char tem[KEY_DESCRIPTION_SIZE], *end;
2106 int nbytes, nchars;
2107 Lisp_Object string;
2108
2109 end = push_key_description (XUINT (key), tem, 1);
2110 nbytes = end - tem;
2111 nchars = multibyte_chars_in_text (tem, nbytes);
2112 if (nchars == nbytes)
2113 {
2114 *end = '\0';
2115 string = build_string (tem);
2116 }
2117 else
2118 string = make_multibyte_string (tem, nchars, nbytes);
2119 return string;
2120 }
2121 }
2122 else if (SYMBOLP (key)) /* Function key or event-symbol */
2123 {
2124 if (NILP (no_angles))
2125 {
2126 char *buffer
2127 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2128 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2129 return build_string (buffer);
2130 }
2131 else
2132 return Fsymbol_name (key);
2133 }
2134 else if (STRINGP (key)) /* Buffer names in the menubar. */
2135 return Fcopy_sequence (key);
2136 else
2137 error ("KEY must be an integer, cons, symbol, or string");
2138 return Qnil;
2139 }
2140
2141 char *
2142 push_text_char_description (c, p)
2143 register unsigned int c;
2144 register char *p;
2145 {
2146 if (c >= 0200)
2147 {
2148 *p++ = 'M';
2149 *p++ = '-';
2150 c -= 0200;
2151 }
2152 if (c < 040)
2153 {
2154 *p++ = '^';
2155 *p++ = c + 64; /* 'A' - 1 */
2156 }
2157 else if (c == 0177)
2158 {
2159 *p++ = '^';
2160 *p++ = '?';
2161 }
2162 else
2163 *p++ = c;
2164 return p;
2165 }
2166
2167 /* This function cannot GC. */
2168
2169 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2170 doc: /* Return a pretty description of file-character CHARACTER.
2171 Control characters turn into "^char", etc. */)
2172 (character)
2173 Lisp_Object character;
2174 {
2175 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2176 unsigned char str[6];
2177 int c;
2178
2179 CHECK_NUMBER (character);
2180
2181 c = XINT (character);
2182 if (!SINGLE_BYTE_CHAR_P (c))
2183 {
2184 int len = CHAR_STRING (c, str);
2185
2186 return make_multibyte_string (str, 1, len);
2187 }
2188
2189 *push_text_char_description (c & 0377, str) = 0;
2190
2191 return build_string (str);
2192 }
2193
2194 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2195 a meta bit. */
2196 static int
2197 ascii_sequence_p (seq)
2198 Lisp_Object seq;
2199 {
2200 int i;
2201 int len = XINT (Flength (seq));
2202
2203 for (i = 0; i < len; i++)
2204 {
2205 Lisp_Object ii, elt;
2206
2207 XSETFASTINT (ii, i);
2208 elt = Faref (seq, ii);
2209
2210 if (!INTEGERP (elt)
2211 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2212 return 0;
2213 }
2214
2215 return 1;
2216 }
2217
2218 \f
2219 /* where-is - finding a command in a set of keymaps. */
2220
2221 static Lisp_Object where_is_internal ();
2222 static Lisp_Object where_is_internal_1 ();
2223 static void where_is_internal_2 ();
2224
2225 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2226 Returns the first non-nil binding found in any of those maps. */
2227
2228 static Lisp_Object
2229 shadow_lookup (shadow, key, flag)
2230 Lisp_Object shadow, key, flag;
2231 {
2232 Lisp_Object tail, value;
2233
2234 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2235 {
2236 value = Flookup_key (XCAR (tail), key, flag);
2237 if (!NILP (value) && !NATNUMP (value))
2238 return value;
2239 }
2240 return Qnil;
2241 }
2242
2243 /* This function can GC if Flookup_key autoloads any keymaps. */
2244
2245 static Lisp_Object
2246 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2247 Lisp_Object definition, keymaps;
2248 Lisp_Object firstonly, noindirect, no_remap;
2249 {
2250 Lisp_Object maps = Qnil;
2251 Lisp_Object found, sequences;
2252 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2253 /* 1 means ignore all menu bindings entirely. */
2254 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2255
2256 /* If this command is remapped, then it has no key bindings
2257 of its own. */
2258 if (NILP (no_remap) && SYMBOLP (definition))
2259 {
2260 Lisp_Object tem;
2261 if (tem = Fcommand_remapping (definition), !NILP (tem))
2262 return Qnil;
2263 }
2264
2265 found = keymaps;
2266 while (CONSP (found))
2267 {
2268 maps =
2269 nconc2 (maps,
2270 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2271 found = XCDR (found);
2272 }
2273
2274 GCPRO5 (definition, keymaps, maps, found, sequences);
2275 found = Qnil;
2276 sequences = Qnil;
2277
2278 for (; !NILP (maps); maps = Fcdr (maps))
2279 {
2280 /* Key sequence to reach map, and the map that it reaches */
2281 register Lisp_Object this, map;
2282
2283 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2284 [M-CHAR] sequences, check if last character of the sequence
2285 is the meta-prefix char. */
2286 Lisp_Object last;
2287 int last_is_meta;
2288
2289 this = Fcar (Fcar (maps));
2290 map = Fcdr (Fcar (maps));
2291 last = make_number (XINT (Flength (this)) - 1);
2292 last_is_meta = (XINT (last) >= 0
2293 && EQ (Faref (this, last), meta_prefix_char));
2294
2295 /* if (nomenus && !ascii_sequence_p (this)) */
2296 if (nomenus && XINT (last) >= 0
2297 && !INTEGERP (Faref (this, make_number (0))))
2298 /* If no menu entries should be returned, skip over the
2299 keymaps bound to `menu-bar' and `tool-bar' and other
2300 non-ascii prefixes like `C-down-mouse-2'. */
2301 continue;
2302
2303 QUIT;
2304
2305 while (CONSP (map))
2306 {
2307 /* Because the code we want to run on each binding is rather
2308 large, we don't want to have two separate loop bodies for
2309 sparse keymap bindings and tables; we want to iterate one
2310 loop body over both keymap and vector bindings.
2311
2312 For this reason, if Fcar (map) is a vector, we don't
2313 advance map to the next element until i indicates that we
2314 have finished off the vector. */
2315 Lisp_Object elt, key, binding;
2316 elt = XCAR (map);
2317 map = XCDR (map);
2318
2319 sequences = Qnil;
2320
2321 QUIT;
2322
2323 /* Set key and binding to the current key and binding, and
2324 advance map and i to the next binding. */
2325 if (VECTORP (elt))
2326 {
2327 Lisp_Object sequence;
2328 int i;
2329 /* In a vector, look at each element. */
2330 for (i = 0; i < XVECTOR (elt)->size; i++)
2331 {
2332 binding = AREF (elt, i);
2333 XSETFASTINT (key, i);
2334 sequence = where_is_internal_1 (binding, key, definition,
2335 noindirect, this,
2336 last, nomenus, last_is_meta);
2337 if (!NILP (sequence))
2338 sequences = Fcons (sequence, sequences);
2339 }
2340 }
2341 else if (CHAR_TABLE_P (elt))
2342 {
2343 Lisp_Object indices[3];
2344 Lisp_Object args;
2345
2346 args = Fcons (Fcons (Fcons (definition, noindirect),
2347 Qnil), /* Result accumulator. */
2348 Fcons (Fcons (this, last),
2349 Fcons (make_number (nomenus),
2350 make_number (last_is_meta))));
2351 map_char_table (where_is_internal_2, Qnil, elt, args,
2352 0, indices);
2353 sequences = XCDR (XCAR (args));
2354 }
2355 else if (CONSP (elt))
2356 {
2357 Lisp_Object sequence;
2358
2359 key = XCAR (elt);
2360 binding = XCDR (elt);
2361
2362 sequence = where_is_internal_1 (binding, key, definition,
2363 noindirect, this,
2364 last, nomenus, last_is_meta);
2365 if (!NILP (sequence))
2366 sequences = Fcons (sequence, sequences);
2367 }
2368
2369
2370 while (!NILP (sequences))
2371 {
2372 Lisp_Object sequence, remapped, function;
2373
2374 sequence = XCAR (sequences);
2375 sequences = XCDR (sequences);
2376
2377 /* If the current sequence is a command remapping with
2378 format [remap COMMAND], find the key sequences
2379 which run COMMAND, and use those sequences instead. */
2380 remapped = Qnil;
2381 if (NILP (no_remap)
2382 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2383 && EQ (AREF (sequence, 0), Qremap)
2384 && (function = AREF (sequence, 1), SYMBOLP (function)))
2385 {
2386 Lisp_Object remapped1;
2387
2388 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2389 if (CONSP (remapped1))
2390 {
2391 /* Verify that this key binding actually maps to the
2392 remapped command (see below). */
2393 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2394 continue;
2395 sequence = XCAR (remapped1);
2396 remapped = XCDR (remapped1);
2397 goto record_sequence;
2398 }
2399 }
2400
2401 /* Verify that this key binding is not shadowed by another
2402 binding for the same key, before we say it exists.
2403
2404 Mechanism: look for local definition of this key and if
2405 it is defined and does not match what we found then
2406 ignore this key.
2407
2408 Either nil or number as value from Flookup_key
2409 means undefined. */
2410 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2411 continue;
2412
2413 record_sequence:
2414 /* It is a true unshadowed match. Record it, unless it's already
2415 been seen (as could happen when inheriting keymaps). */
2416 if (NILP (Fmember (sequence, found)))
2417 found = Fcons (sequence, found);
2418
2419 /* If firstonly is Qnon_ascii, then we can return the first
2420 binding we find. If firstonly is not Qnon_ascii but not
2421 nil, then we should return the first ascii-only binding
2422 we find. */
2423 if (EQ (firstonly, Qnon_ascii))
2424 RETURN_UNGCPRO (sequence);
2425 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2426 RETURN_UNGCPRO (sequence);
2427
2428 if (CONSP (remapped))
2429 {
2430 sequence = XCAR (remapped);
2431 remapped = XCDR (remapped);
2432 goto record_sequence;
2433 }
2434 }
2435 }
2436 }
2437
2438 UNGCPRO;
2439
2440 found = Fnreverse (found);
2441
2442 /* firstonly may have been t, but we may have gone all the way through
2443 the keymaps without finding an all-ASCII key sequence. So just
2444 return the best we could find. */
2445 if (!NILP (firstonly))
2446 return Fcar (found);
2447
2448 return found;
2449 }
2450
2451 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2452 doc: /* Return list of keys that invoke DEFINITION.
2453 If KEYMAP is non-nil, search only KEYMAP and the global keymap.
2454 If KEYMAP is nil, search all the currently active keymaps.
2455 If KEYMAP is a list of keymaps, search only those keymaps.
2456
2457 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2458 rather than a list of all possible key sequences.
2459 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2460 no matter what it is.
2461 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,
2462 and entirely reject menu bindings.
2463
2464 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2465 to other keymaps or slots. This makes it possible to search for an
2466 indirect definition itself.
2467
2468 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2469 that invoke a command which is remapped to DEFINITION, but include the
2470 remapped command in the returned list. */)
2471 (definition, keymap, firstonly, noindirect, no_remap)
2472 Lisp_Object definition, keymap;
2473 Lisp_Object firstonly, noindirect, no_remap;
2474 {
2475 Lisp_Object sequences, keymaps;
2476 /* 1 means ignore all menu bindings entirely. */
2477 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2478 Lisp_Object result;
2479
2480 /* Find the relevant keymaps. */
2481 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2482 keymaps = keymap;
2483 else if (!NILP (keymap))
2484 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2485 else
2486 keymaps = Fcurrent_active_maps (Qnil);
2487
2488 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2489 We don't really need to check `keymap'. */
2490 if (nomenus && NILP (noindirect) && NILP (keymap))
2491 {
2492 Lisp_Object *defns;
2493 int i, j, n;
2494 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2495
2496 /* Check heuristic-consistency of the cache. */
2497 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2498 where_is_cache = Qnil;
2499
2500 if (NILP (where_is_cache))
2501 {
2502 /* We need to create the cache. */
2503 Lisp_Object args[2];
2504 where_is_cache = Fmake_hash_table (0, args);
2505 where_is_cache_keymaps = Qt;
2506
2507 /* Fill in the cache. */
2508 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2509 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2510 UNGCPRO;
2511
2512 where_is_cache_keymaps = keymaps;
2513 }
2514
2515 /* We want to process definitions from the last to the first.
2516 Instead of consing, copy definitions to a vector and step
2517 over that vector. */
2518 sequences = Fgethash (definition, where_is_cache, Qnil);
2519 n = XINT (Flength (sequences));
2520 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2521 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2522 defns[i++] = XCAR (sequences);
2523
2524 /* Verify that the key bindings are not shadowed. Note that
2525 the following can GC. */
2526 GCPRO2 (definition, keymaps);
2527 result = Qnil;
2528 j = -1;
2529 for (i = n - 1; i >= 0; --i)
2530 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2531 {
2532 if (ascii_sequence_p (defns[i]))
2533 break;
2534 else if (j < 0)
2535 j = i;
2536 }
2537
2538 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2539 UNGCPRO;
2540 }
2541 else
2542 {
2543 /* Kill the cache so that where_is_internal_1 doesn't think
2544 we're filling it up. */
2545 where_is_cache = Qnil;
2546 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2547 }
2548
2549 return result;
2550 }
2551
2552 /* This is the function that Fwhere_is_internal calls using map_char_table.
2553 ARGS has the form
2554 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2555 .
2556 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2557 Since map_char_table doesn't really use the return value from this function,
2558 we the result append to RESULT, the slot in ARGS.
2559
2560 This function can GC because it calls where_is_internal_1 which can
2561 GC. */
2562
2563 static void
2564 where_is_internal_2 (args, key, binding)
2565 Lisp_Object args, key, binding;
2566 {
2567 Lisp_Object definition, noindirect, this, last;
2568 Lisp_Object result, sequence;
2569 int nomenus, last_is_meta;
2570 struct gcpro gcpro1, gcpro2, gcpro3;
2571
2572 GCPRO3 (args, key, binding);
2573 result = XCDR (XCAR (args));
2574 definition = XCAR (XCAR (XCAR (args)));
2575 noindirect = XCDR (XCAR (XCAR (args)));
2576 this = XCAR (XCAR (XCDR (args)));
2577 last = XCDR (XCAR (XCDR (args)));
2578 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2579 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2580
2581 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2582 this, last, nomenus, last_is_meta);
2583
2584 if (!NILP (sequence))
2585 XSETCDR (XCAR (args), Fcons (sequence, result));
2586
2587 UNGCPRO;
2588 }
2589
2590
2591 /* This function cannot GC. */
2592
2593 static Lisp_Object
2594 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2595 nomenus, last_is_meta)
2596 Lisp_Object binding, key, definition, noindirect, this, last;
2597 int nomenus, last_is_meta;
2598 {
2599 Lisp_Object sequence;
2600
2601 /* Search through indirections unless that's not wanted. */
2602 if (NILP (noindirect))
2603 binding = get_keyelt (binding, 0);
2604
2605 /* End this iteration if this element does not match
2606 the target. */
2607
2608 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2609 || EQ (binding, definition)
2610 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2611 /* Doesn't match. */
2612 return Qnil;
2613
2614 /* We have found a match. Construct the key sequence where we found it. */
2615 if (INTEGERP (key) && last_is_meta)
2616 {
2617 sequence = Fcopy_sequence (this);
2618 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2619 }
2620 else
2621 sequence = append_key (this, key);
2622
2623 if (!NILP (where_is_cache))
2624 {
2625 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2626 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2627 return Qnil;
2628 }
2629 else
2630 return sequence;
2631 }
2632 \f
2633 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2634
2635 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2636 doc: /* Insert the list of all defined keys and their definitions.
2637 The list is inserted in the current buffer, while the bindings are
2638 looked up in BUFFER.
2639 The optional argument PREFIX, if non-nil, should be a key sequence;
2640 then we display only bindings that start with that prefix.
2641 The optional argument MENUS, if non-nil, says to mention menu bindings.
2642 \(Ordinarily these are omitted from the output.) */)
2643 (buffer, prefix, menus)
2644 Lisp_Object buffer, prefix, menus;
2645 {
2646 Lisp_Object outbuf, shadow;
2647 int nomenu = NILP (menus);
2648 register Lisp_Object start1;
2649 struct gcpro gcpro1;
2650
2651 char *alternate_heading
2652 = "\
2653 Keyboard translations:\n\n\
2654 You type Translation\n\
2655 -------- -----------\n";
2656
2657 shadow = Qnil;
2658 GCPRO1 (shadow);
2659
2660 outbuf = Fcurrent_buffer ();
2661
2662 /* Report on alternates for keys. */
2663 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2664 {
2665 int c;
2666 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2667 int translate_len = SCHARS (Vkeyboard_translate_table);
2668
2669 for (c = 0; c < translate_len; c++)
2670 if (translate[c] != c)
2671 {
2672 char buf[KEY_DESCRIPTION_SIZE];
2673 char *bufend;
2674
2675 if (alternate_heading)
2676 {
2677 insert_string (alternate_heading);
2678 alternate_heading = 0;
2679 }
2680
2681 bufend = push_key_description (translate[c], buf, 1);
2682 insert (buf, bufend - buf);
2683 Findent_to (make_number (16), make_number (1));
2684 bufend = push_key_description (c, buf, 1);
2685 insert (buf, bufend - buf);
2686
2687 insert ("\n", 1);
2688 }
2689
2690 insert ("\n", 1);
2691 }
2692
2693 if (!NILP (Vkey_translation_map))
2694 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2695 "Key translations", nomenu, 1, 0);
2696
2697
2698 /* Print the (major mode) local map. */
2699 start1 = Qnil;
2700 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2701 start1 = current_kboard->Voverriding_terminal_local_map;
2702 else if (!NILP (Voverriding_local_map))
2703 start1 = Voverriding_local_map;
2704
2705 if (!NILP (start1))
2706 {
2707 describe_map_tree (start1, 1, shadow, prefix,
2708 "\f\nOverriding Bindings", nomenu, 0, 0);
2709 shadow = Fcons (start1, shadow);
2710 }
2711 else
2712 {
2713 /* Print the minor mode and major mode keymaps. */
2714 int i, nmaps;
2715 Lisp_Object *modes, *maps;
2716
2717 /* Temporarily switch to `buffer', so that we can get that buffer's
2718 minor modes correctly. */
2719 Fset_buffer (buffer);
2720
2721 nmaps = current_minor_maps (&modes, &maps);
2722 Fset_buffer (outbuf);
2723
2724 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2725 XBUFFER (buffer), Qkeymap);
2726 if (!NILP (start1))
2727 {
2728 describe_map_tree (start1, 1, shadow, prefix,
2729 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2730 shadow = Fcons (start1, shadow);
2731 }
2732
2733 /* Print the minor mode maps. */
2734 for (i = 0; i < nmaps; i++)
2735 {
2736 /* The title for a minor mode keymap
2737 is constructed at run time.
2738 We let describe_map_tree do the actual insertion
2739 because it takes care of other features when doing so. */
2740 char *title, *p;
2741
2742 if (!SYMBOLP (modes[i]))
2743 abort();
2744
2745 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2746 *p++ = '\f';
2747 *p++ = '\n';
2748 *p++ = '`';
2749 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2750 SCHARS (SYMBOL_NAME (modes[i])));
2751 p += SCHARS (SYMBOL_NAME (modes[i]));
2752 *p++ = '\'';
2753 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2754 p += sizeof (" Minor Mode Bindings") - 1;
2755 *p = 0;
2756
2757 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2758 shadow = Fcons (maps[i], shadow);
2759 }
2760
2761 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2762 XBUFFER (buffer), Qlocal_map);
2763 if (!NILP (start1))
2764 {
2765 if (EQ (start1, XBUFFER (buffer)->keymap))
2766 describe_map_tree (start1, 1, shadow, prefix,
2767 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2768 else
2769 describe_map_tree (start1, 1, shadow, prefix,
2770 "\f\n`local-map' Property Bindings",
2771 nomenu, 0, 0);
2772
2773 shadow = Fcons (start1, shadow);
2774 }
2775 }
2776
2777 describe_map_tree (current_global_map, 1, shadow, prefix,
2778 "\f\nGlobal Bindings", nomenu, 0, 1);
2779
2780 /* Print the function-key-map translations under this prefix. */
2781 if (!NILP (Vfunction_key_map))
2782 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2783 "\f\nFunction key map translations", nomenu, 1, 0);
2784
2785 UNGCPRO;
2786 return Qnil;
2787 }
2788
2789 /* Insert a description of the key bindings in STARTMAP,
2790 followed by those of all maps reachable through STARTMAP.
2791 If PARTIAL is nonzero, omit certain "uninteresting" commands
2792 (such as `undefined').
2793 If SHADOW is non-nil, it is a list of maps;
2794 don't mention keys which would be shadowed by any of them.
2795 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2796 TITLE, if not 0, is a string to insert at the beginning.
2797 TITLE should not end with a colon or a newline; we supply that.
2798 If NOMENU is not 0, then omit menu-bar commands.
2799
2800 If TRANSL is nonzero, the definitions are actually key translations
2801 so print strings and vectors differently.
2802
2803 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2804 to look through. */
2805
2806 void
2807 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2808 always_title)
2809 Lisp_Object startmap, shadow, prefix;
2810 int partial;
2811 char *title;
2812 int nomenu;
2813 int transl;
2814 int always_title;
2815 {
2816 Lisp_Object maps, orig_maps, seen, sub_shadows;
2817 struct gcpro gcpro1, gcpro2, gcpro3;
2818 int something = 0;
2819 char *key_heading
2820 = "\
2821 key binding\n\
2822 --- -------\n";
2823
2824 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2825 seen = Qnil;
2826 sub_shadows = Qnil;
2827 GCPRO3 (maps, seen, sub_shadows);
2828
2829 if (nomenu)
2830 {
2831 Lisp_Object list;
2832
2833 /* Delete from MAPS each element that is for the menu bar. */
2834 for (list = maps; !NILP (list); list = XCDR (list))
2835 {
2836 Lisp_Object elt, prefix, tem;
2837
2838 elt = Fcar (list);
2839 prefix = Fcar (elt);
2840 if (XVECTOR (prefix)->size >= 1)
2841 {
2842 tem = Faref (prefix, make_number (0));
2843 if (EQ (tem, Qmenu_bar))
2844 maps = Fdelq (elt, maps);
2845 }
2846 }
2847 }
2848
2849 if (!NILP (maps) || always_title)
2850 {
2851 if (title)
2852 {
2853 insert_string (title);
2854 if (!NILP (prefix))
2855 {
2856 insert_string (" Starting With ");
2857 insert1 (Fkey_description (prefix));
2858 }
2859 insert_string (":\n");
2860 }
2861 insert_string (key_heading);
2862 something = 1;
2863 }
2864
2865 for (; !NILP (maps); maps = Fcdr (maps))
2866 {
2867 register Lisp_Object elt, prefix, tail;
2868
2869 elt = Fcar (maps);
2870 prefix = Fcar (elt);
2871
2872 sub_shadows = Qnil;
2873
2874 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2875 {
2876 Lisp_Object shmap;
2877
2878 shmap = XCAR (tail);
2879
2880 /* If the sequence by which we reach this keymap is zero-length,
2881 then the shadow map for this keymap is just SHADOW. */
2882 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
2883 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2884 ;
2885 /* If the sequence by which we reach this keymap actually has
2886 some elements, then the sequence's definition in SHADOW is
2887 what we should use. */
2888 else
2889 {
2890 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2891 if (INTEGERP (shmap))
2892 shmap = Qnil;
2893 }
2894
2895 /* If shmap is not nil and not a keymap,
2896 it completely shadows this map, so don't
2897 describe this map at all. */
2898 if (!NILP (shmap) && !KEYMAPP (shmap))
2899 goto skip;
2900
2901 if (!NILP (shmap))
2902 sub_shadows = Fcons (shmap, sub_shadows);
2903 }
2904
2905 /* Maps we have already listed in this loop shadow this map. */
2906 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2907 {
2908 Lisp_Object tem;
2909 tem = Fequal (Fcar (XCAR (tail)), prefix);
2910 if (!NILP (tem))
2911 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2912 }
2913
2914 describe_map (Fcdr (elt), prefix,
2915 transl ? describe_translation : describe_command,
2916 partial, sub_shadows, &seen, nomenu);
2917
2918 skip: ;
2919 }
2920
2921 if (something)
2922 insert_string ("\n");
2923
2924 UNGCPRO;
2925 }
2926
2927 static int previous_description_column;
2928
2929 static void
2930 describe_command (definition, args)
2931 Lisp_Object definition, args;
2932 {
2933 register Lisp_Object tem1;
2934 int column = (int) current_column (); /* iftc */
2935 int description_column;
2936
2937 /* If column 16 is no good, go to col 32;
2938 but don't push beyond that--go to next line instead. */
2939 if (column > 30)
2940 {
2941 insert_char ('\n');
2942 description_column = 32;
2943 }
2944 else if (column > 14 || (column > 10 && previous_description_column == 32))
2945 description_column = 32;
2946 else
2947 description_column = 16;
2948
2949 Findent_to (make_number (description_column), make_number (1));
2950 previous_description_column = description_column;
2951
2952 if (SYMBOLP (definition))
2953 {
2954 tem1 = SYMBOL_NAME (definition);
2955 insert1 (tem1);
2956 insert_string ("\n");
2957 }
2958 else if (STRINGP (definition) || VECTORP (definition))
2959 insert_string ("Keyboard Macro\n");
2960 else if (KEYMAPP (definition))
2961 insert_string ("Prefix Command\n");
2962 else
2963 insert_string ("??\n");
2964 }
2965
2966 static void
2967 describe_translation (definition, args)
2968 Lisp_Object definition, args;
2969 {
2970 register Lisp_Object tem1;
2971
2972 Findent_to (make_number (16), make_number (1));
2973
2974 if (SYMBOLP (definition))
2975 {
2976 tem1 = SYMBOL_NAME (definition);
2977 insert1 (tem1);
2978 insert_string ("\n");
2979 }
2980 else if (STRINGP (definition) || VECTORP (definition))
2981 {
2982 insert1 (Fkey_description (definition));
2983 insert_string ("\n");
2984 }
2985 else if (KEYMAPP (definition))
2986 insert_string ("Prefix Command\n");
2987 else
2988 insert_string ("??\n");
2989 }
2990
2991 /* Describe the contents of map MAP, assuming that this map itself is
2992 reached by the sequence of prefix keys KEYS (a string or vector).
2993 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2994
2995 static void
2996 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2997 register Lisp_Object map;
2998 Lisp_Object keys;
2999 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3000 int partial;
3001 Lisp_Object shadow;
3002 Lisp_Object *seen;
3003 int nomenu;
3004 {
3005 Lisp_Object elt_prefix;
3006 Lisp_Object tail, definition, event;
3007 Lisp_Object tem;
3008 Lisp_Object suppress;
3009 Lisp_Object kludge;
3010 int first = 1;
3011 struct gcpro gcpro1, gcpro2, gcpro3;
3012
3013 suppress = Qnil;
3014
3015 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
3016 {
3017 /* Call Fkey_description first, to avoid GC bug for the other string. */
3018 tem = Fkey_description (keys);
3019 elt_prefix = concat2 (tem, build_string (" "));
3020 }
3021 else
3022 elt_prefix = Qnil;
3023
3024 if (partial)
3025 suppress = intern ("suppress-keymap");
3026
3027 /* This vector gets used to present single keys to Flookup_key. Since
3028 that is done once per keymap element, we don't want to cons up a
3029 fresh vector every time. */
3030 kludge = Fmake_vector (make_number (1), Qnil);
3031 definition = Qnil;
3032
3033 GCPRO3 (elt_prefix, definition, kludge);
3034
3035 for (tail = map; CONSP (tail); tail = XCDR (tail))
3036 {
3037 QUIT;
3038
3039 if (VECTORP (XCAR (tail))
3040 || CHAR_TABLE_P (XCAR (tail)))
3041 describe_vector (XCAR (tail),
3042 elt_prefix, Qnil, elt_describer, partial, shadow, map,
3043 (int *)0, 0);
3044 else if (CONSP (XCAR (tail)))
3045 {
3046 event = XCAR (XCAR (tail));
3047
3048 /* Ignore bindings whose "keys" are not really valid events.
3049 (We get these in the frames and buffers menu.) */
3050 if (!(SYMBOLP (event) || INTEGERP (event)))
3051 continue;
3052
3053 if (nomenu && EQ (event, Qmenu_bar))
3054 continue;
3055
3056 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3057
3058 /* Don't show undefined commands or suppressed commands. */
3059 if (NILP (definition)) continue;
3060 if (SYMBOLP (definition) && partial)
3061 {
3062 tem = Fget (definition, suppress);
3063 if (!NILP (tem))
3064 continue;
3065 }
3066
3067 /* Don't show a command that isn't really visible
3068 because a local definition of the same key shadows it. */
3069
3070 ASET (kludge, 0, event);
3071 if (!NILP (shadow))
3072 {
3073 tem = shadow_lookup (shadow, kludge, Qt);
3074 if (!NILP (tem)) continue;
3075 }
3076
3077 tem = Flookup_key (map, kludge, Qt);
3078 if (!EQ (tem, definition)) continue;
3079
3080 if (first)
3081 {
3082 previous_description_column = 0;
3083 insert ("\n", 1);
3084 first = 0;
3085 }
3086
3087 if (!NILP (elt_prefix))
3088 insert1 (elt_prefix);
3089
3090 /* THIS gets the string to describe the character EVENT. */
3091 insert1 (Fsingle_key_description (event, Qnil));
3092
3093 /* Print a description of the definition of this character.
3094 elt_describer will take care of spacing out far enough
3095 for alignment purposes. */
3096 (*elt_describer) (definition, Qnil);
3097 }
3098 else if (EQ (XCAR (tail), Qkeymap))
3099 {
3100 /* The same keymap might be in the structure twice, if we're
3101 using an inherited keymap. So skip anything we've already
3102 encountered. */
3103 tem = Fassq (tail, *seen);
3104 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
3105 break;
3106 *seen = Fcons (Fcons (tail, keys), *seen);
3107 }
3108 }
3109
3110 UNGCPRO;
3111 }
3112
3113 static void
3114 describe_vector_princ (elt, fun)
3115 Lisp_Object elt, fun;
3116 {
3117 Findent_to (make_number (16), make_number (1));
3118 call1 (fun, elt);
3119 Fterpri (Qnil);
3120 }
3121
3122 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3123 doc: /* Insert a description of contents of VECTOR.
3124 This is text showing the elements of vector matched against indices. */)
3125 (vector, describer)
3126 Lisp_Object vector, describer;
3127 {
3128 int count = SPECPDL_INDEX ();
3129 if (NILP (describer))
3130 describer = intern ("princ");
3131 specbind (Qstandard_output, Fcurrent_buffer ());
3132 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3133 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3134 Qnil, Qnil, (int *)0, 0);
3135
3136 return unbind_to (count, Qnil);
3137 }
3138
3139 /* Insert in the current buffer a description of the contents of VECTOR.
3140 We call ELT_DESCRIBER to insert the description of one value found
3141 in VECTOR.
3142
3143 ELT_PREFIX describes what "comes before" the keys or indices defined
3144 by this vector. This is a human-readable string whose size
3145 is not necessarily related to the situation.
3146
3147 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3148 leads to this keymap.
3149
3150 If the vector is a chartable, ELT_PREFIX is the vector
3151 of bytes that lead to the character set or portion of a character
3152 set described by this chartable.
3153
3154 If PARTIAL is nonzero, it means do not mention suppressed commands
3155 (that assumes the vector is in a keymap).
3156
3157 SHADOW is a list of keymaps that shadow this map.
3158 If it is non-nil, then we look up the key in those maps
3159 and we don't mention it now if it is defined by any of them.
3160
3161 ENTIRE_MAP is the keymap in which this vector appears.
3162 If the definition in effect in the whole map does not match
3163 the one in this vector, we ignore this one.
3164
3165 When describing a sub-char-table, INDICES is a list of
3166 indices at higher levels in this char-table,
3167 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3168
3169 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3170
3171 void
3172 describe_vector (vector, elt_prefix, args, elt_describer,
3173 partial, shadow, entire_map,
3174 indices, char_table_depth)
3175 register Lisp_Object vector;
3176 Lisp_Object elt_prefix, args;
3177 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3178 int partial;
3179 Lisp_Object shadow;
3180 Lisp_Object entire_map;
3181 int *indices;
3182 int char_table_depth;
3183 {
3184 Lisp_Object definition;
3185 Lisp_Object tem2;
3186 register int i;
3187 Lisp_Object suppress;
3188 Lisp_Object kludge;
3189 int first = 1;
3190 struct gcpro gcpro1, gcpro2, gcpro3;
3191 /* Range of elements to be handled. */
3192 int from, to;
3193 /* A flag to tell if a leaf in this level of char-table is not a
3194 generic character (i.e. a complete multibyte character). */
3195 int complete_char;
3196 int character;
3197 int starting_i;
3198
3199 suppress = Qnil;
3200
3201 if (indices == 0)
3202 indices = (int *) alloca (3 * sizeof (int));
3203
3204 definition = Qnil;
3205
3206 /* This vector gets used to present single keys to Flookup_key. Since
3207 that is done once per vector element, we don't want to cons up a
3208 fresh vector every time. */
3209 kludge = Fmake_vector (make_number (1), Qnil);
3210 GCPRO3 (elt_prefix, definition, kludge);
3211
3212 if (partial)
3213 suppress = intern ("suppress-keymap");
3214
3215 if (CHAR_TABLE_P (vector))
3216 {
3217 if (char_table_depth == 0)
3218 {
3219 /* VECTOR is a top level char-table. */
3220 complete_char = 1;
3221 from = 0;
3222 to = CHAR_TABLE_ORDINARY_SLOTS;
3223 }
3224 else
3225 {
3226 /* VECTOR is a sub char-table. */
3227 if (char_table_depth >= 3)
3228 /* A char-table is never that deep. */
3229 error ("Too deep char table");
3230
3231 complete_char
3232 = (CHARSET_VALID_P (indices[0])
3233 && ((CHARSET_DIMENSION (indices[0]) == 1
3234 && char_table_depth == 1)
3235 || char_table_depth == 2));
3236
3237 /* Meaningful elements are from 32th to 127th. */
3238 from = 32;
3239 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3240 }
3241 }
3242 else
3243 {
3244 /* This does the right thing for ordinary vectors. */
3245
3246 complete_char = 1;
3247 from = 0;
3248 to = XVECTOR (vector)->size;
3249 }
3250
3251 for (i = from; i < to; i++)
3252 {
3253 QUIT;
3254
3255 if (CHAR_TABLE_P (vector))
3256 {
3257 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3258 complete_char = 0;
3259
3260 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3261 && !CHARSET_DEFINED_P (i - 128))
3262 continue;
3263
3264 definition
3265 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3266 }
3267 else
3268 definition = get_keyelt (AREF (vector, i), 0);
3269
3270 if (NILP (definition)) continue;
3271
3272 /* Don't mention suppressed commands. */
3273 if (SYMBOLP (definition) && partial)
3274 {
3275 Lisp_Object tem;
3276
3277 tem = Fget (definition, suppress);
3278
3279 if (!NILP (tem)) continue;
3280 }
3281
3282 /* Set CHARACTER to the character this entry describes, if any.
3283 Also update *INDICES. */
3284 if (CHAR_TABLE_P (vector))
3285 {
3286 indices[char_table_depth] = i;
3287
3288 if (char_table_depth == 0)
3289 {
3290 character = i;
3291 indices[0] = i - 128;
3292 }
3293 else if (complete_char)
3294 {
3295 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3296 }
3297 else
3298 character = 0;
3299 }
3300 else
3301 character = i;
3302
3303 /* If this binding is shadowed by some other map, ignore it. */
3304 if (!NILP (shadow) && complete_char)
3305 {
3306 Lisp_Object tem;
3307
3308 ASET (kludge, 0, make_number (character));
3309 tem = shadow_lookup (shadow, kludge, Qt);
3310
3311 if (!NILP (tem)) continue;
3312 }
3313
3314 /* Ignore this definition if it is shadowed by an earlier
3315 one in the same keymap. */
3316 if (!NILP (entire_map) && complete_char)
3317 {
3318 Lisp_Object tem;
3319
3320 ASET (kludge, 0, make_number (character));
3321 tem = Flookup_key (entire_map, kludge, Qt);
3322
3323 if (!EQ (tem, definition))
3324 continue;
3325 }
3326
3327 if (first)
3328 {
3329 if (char_table_depth == 0)
3330 insert ("\n", 1);
3331 first = 0;
3332 }
3333
3334 /* For a sub char-table, show the depth by indentation.
3335 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3336 if (char_table_depth > 0)
3337 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3338
3339 /* Output the prefix that applies to every entry in this map. */
3340 if (!NILP (elt_prefix))
3341 insert1 (elt_prefix);
3342
3343 /* Insert or describe the character this slot is for,
3344 or a description of what it is for. */
3345 if (SUB_CHAR_TABLE_P (vector))
3346 {
3347 if (complete_char)
3348 insert_char (character);
3349 else
3350 {
3351 /* We need an octal representation for this block of
3352 characters. */
3353 char work[16];
3354 sprintf (work, "(row %d)", i);
3355 insert (work, strlen (work));
3356 }
3357 }
3358 else if (CHAR_TABLE_P (vector))
3359 {
3360 if (complete_char)
3361 insert1 (Fsingle_key_description (make_number (character), Qnil));
3362 else
3363 {
3364 /* Print the information for this character set. */
3365 insert_string ("<");
3366 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3367 if (STRINGP (tem2))
3368 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3369 SBYTES (tem2), 0);
3370 else
3371 insert ("?", 1);
3372 insert (">", 1);
3373 }
3374 }
3375 else
3376 {
3377 insert1 (Fsingle_key_description (make_number (character), Qnil));
3378 }
3379
3380 /* If we find a sub char-table within a char-table,
3381 scan it recursively; it defines the details for
3382 a character set or a portion of a character set. */
3383 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3384 {
3385 insert ("\n", 1);
3386 describe_vector (definition, elt_prefix, args, elt_describer,
3387 partial, shadow, entire_map,
3388 indices, char_table_depth + 1);
3389 continue;
3390 }
3391
3392 starting_i = i;
3393
3394 /* Find all consecutive characters or rows that have the same
3395 definition. But, for elements of a top level char table, if
3396 they are for charsets, we had better describe one by one even
3397 if they have the same definition. */
3398 if (CHAR_TABLE_P (vector))
3399 {
3400 int limit = to;
3401
3402 if (char_table_depth == 0)
3403 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3404
3405 while (i + 1 < limit
3406 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3407 !NILP (tem2))
3408 && !NILP (Fequal (tem2, definition)))
3409 i++;
3410 }
3411 else
3412 while (i + 1 < to
3413 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3414 !NILP (tem2))
3415 && !NILP (Fequal (tem2, definition)))
3416 i++;
3417
3418
3419 /* If we have a range of more than one character,
3420 print where the range reaches to. */
3421
3422 if (i != starting_i)
3423 {
3424 insert (" .. ", 4);
3425
3426 if (!NILP (elt_prefix))
3427 insert1 (elt_prefix);
3428
3429 if (CHAR_TABLE_P (vector))
3430 {
3431 if (char_table_depth == 0)
3432 {
3433 insert1 (Fsingle_key_description (make_number (i), Qnil));
3434 }
3435 else if (complete_char)
3436 {
3437 indices[char_table_depth] = i;
3438 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3439 insert_char (character);
3440 }
3441 else
3442 {
3443 /* We need an octal representation for this block of
3444 characters. */
3445 char work[16];
3446 sprintf (work, "(row %d)", i);
3447 insert (work, strlen (work));
3448 }
3449 }
3450 else
3451 {
3452 insert1 (Fsingle_key_description (make_number (i), Qnil));
3453 }
3454 }
3455
3456 /* Print a description of the definition of this character.
3457 elt_describer will take care of spacing out far enough
3458 for alignment purposes. */
3459 (*elt_describer) (definition, args);
3460 }
3461
3462 /* For (sub) char-table, print `defalt' slot at last. */
3463 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3464 {
3465 insert (" ", char_table_depth * 2);
3466 insert_string ("<<default>>");
3467 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3468 }
3469
3470 UNGCPRO;
3471 }
3472 \f
3473 /* Apropos - finding all symbols whose names match a regexp. */
3474 static Lisp_Object apropos_predicate;
3475 static Lisp_Object apropos_accumulate;
3476
3477 static void
3478 apropos_accum (symbol, string)
3479 Lisp_Object symbol, string;
3480 {
3481 register Lisp_Object tem;
3482
3483 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3484 if (!NILP (tem) && !NILP (apropos_predicate))
3485 tem = call1 (apropos_predicate, symbol);
3486 if (!NILP (tem))
3487 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3488 }
3489
3490 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3491 doc: /* Show all symbols whose names contain match for REGEXP.
3492 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3493 for each symbol and a symbol is mentioned only if that returns non-nil.
3494 Return list of symbols found. */)
3495 (regexp, predicate)
3496 Lisp_Object regexp, predicate;
3497 {
3498 Lisp_Object tem;
3499 struct gcpro gcpro1, gcpro2;
3500 CHECK_STRING (regexp);
3501 apropos_predicate = predicate;
3502 apropos_accumulate = Qnil;
3503 map_obarray (Vobarray, apropos_accum, regexp);
3504 tem = Fsort (apropos_accumulate, Qstring_lessp);
3505 apropos_accumulate = Qnil;
3506 apropos_predicate = Qnil;
3507 return tem;
3508 }
3509 \f
3510 void
3511 syms_of_keymap ()
3512 {
3513 Qkeymap = intern ("keymap");
3514 staticpro (&Qkeymap);
3515 staticpro (&apropos_predicate);
3516 staticpro (&apropos_accumulate);
3517 apropos_predicate = Qnil;
3518 apropos_accumulate = Qnil;
3519
3520 /* Now we are ready to set up this property, so we can
3521 create char tables. */
3522 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3523
3524 /* Initialize the keymaps standardly used.
3525 Each one is the value of a Lisp variable, and is also
3526 pointed to by a C variable */
3527
3528 global_map = Fmake_keymap (Qnil);
3529 Fset (intern ("global-map"), global_map);
3530
3531 current_global_map = global_map;
3532 staticpro (&global_map);
3533 staticpro (&current_global_map);
3534
3535 meta_map = Fmake_keymap (Qnil);
3536 Fset (intern ("esc-map"), meta_map);
3537 Ffset (intern ("ESC-prefix"), meta_map);
3538
3539 control_x_map = Fmake_keymap (Qnil);
3540 Fset (intern ("ctl-x-map"), control_x_map);
3541 Ffset (intern ("Control-X-prefix"), control_x_map);
3542
3543 exclude_keys
3544 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3545 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3546 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3547 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3548 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3549 Qnil)))));
3550 staticpro (&exclude_keys);
3551
3552 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3553 doc: /* List of commands given new key bindings recently.
3554 This is used for internal purposes during Emacs startup;
3555 don't alter it yourself. */);
3556 Vdefine_key_rebound_commands = Qt;
3557
3558 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3559 doc: /* Default keymap to use when reading from the minibuffer. */);
3560 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3561
3562 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3563 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3564 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3565 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3566
3567 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3568 doc: /* Local keymap for minibuffer input with completion. */);
3569 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3570 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3571
3572 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3573 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3574 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3575 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3576 Vminibuffer_local_completion_map);
3577
3578 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3579 doc: /* Alist of keymaps to use for minor modes.
3580 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3581 key sequences and look up bindings iff VARIABLE's value is non-nil.
3582 If two active keymaps bind the same key, the keymap appearing earlier
3583 in the list takes precedence. */);
3584 Vminor_mode_map_alist = Qnil;
3585
3586 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3587 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3588 This variable is an alist just like `minor-mode-map-alist', and it is
3589 used the same way (and before `minor-mode-map-alist'); however,
3590 it is provided for major modes to bind locally. */);
3591 Vminor_mode_overriding_map_alist = Qnil;
3592
3593 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3594 doc: /* List of keymap alists to use for emulations modes.
3595 It is intended for modes or packages using multiple minor-mode keymaps.
3596 Each element is a keymap alist just like `minor-mode-map-alist', or a
3597 symbol with a variable binding which is a keymap alist, and it is used
3598 the same way. The "active" keymaps in each alist are used before
3599 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3600 Vemulation_mode_map_alists = Qnil;
3601
3602
3603 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3604 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3605 This allows Emacs to recognize function keys sent from ASCII
3606 terminals at any point in a key sequence.
3607
3608 The `read-key-sequence' function replaces any subsequence bound by
3609 `function-key-map' with its binding. More precisely, when the active
3610 keymaps have no binding for the current key sequence but
3611 `function-key-map' binds a suffix of the sequence to a vector or string,
3612 `read-key-sequence' replaces the matching suffix with its binding, and
3613 continues with the new sequence.
3614
3615 The events that come from bindings in `function-key-map' are not
3616 themselves looked up in `function-key-map'.
3617
3618 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3619 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3620 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3621 key, typing `ESC O P x' would return [f1 x]. */);
3622 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3623
3624 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3625 doc: /* Keymap of key translations that can override keymaps.
3626 This keymap works like `function-key-map', but comes after that,
3627 and applies even for keys that have ordinary bindings. */);
3628 Vkey_translation_map = Qnil;
3629
3630 Qsingle_key_description = intern ("single-key-description");
3631 staticpro (&Qsingle_key_description);
3632
3633 Qkey_description = intern ("key-description");
3634 staticpro (&Qkey_description);
3635
3636 Qkeymapp = intern ("keymapp");
3637 staticpro (&Qkeymapp);
3638
3639 Qnon_ascii = intern ("non-ascii");
3640 staticpro (&Qnon_ascii);
3641
3642 Qmenu_item = intern ("menu-item");
3643 staticpro (&Qmenu_item);
3644
3645 Qremap = intern ("remap");
3646 staticpro (&Qremap);
3647
3648 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3649 staticpro (&command_remapping_vector);
3650
3651 where_is_cache_keymaps = Qt;
3652 where_is_cache = Qnil;
3653 staticpro (&where_is_cache);
3654 staticpro (&where_is_cache_keymaps);
3655
3656 defsubr (&Skeymapp);
3657 defsubr (&Skeymap_parent);
3658 defsubr (&Skeymap_prompt);
3659 defsubr (&Sset_keymap_parent);
3660 defsubr (&Smake_keymap);
3661 defsubr (&Smake_sparse_keymap);
3662 defsubr (&Scopy_keymap);
3663 defsubr (&Scommand_remapping);
3664 defsubr (&Skey_binding);
3665 defsubr (&Slocal_key_binding);
3666 defsubr (&Sglobal_key_binding);
3667 defsubr (&Sminor_mode_key_binding);
3668 defsubr (&Sdefine_key);
3669 defsubr (&Slookup_key);
3670 defsubr (&Sdefine_prefix_command);
3671 defsubr (&Suse_global_map);
3672 defsubr (&Suse_local_map);
3673 defsubr (&Scurrent_local_map);
3674 defsubr (&Scurrent_global_map);
3675 defsubr (&Scurrent_minor_mode_maps);
3676 defsubr (&Scurrent_active_maps);
3677 defsubr (&Saccessible_keymaps);
3678 defsubr (&Skey_description);
3679 defsubr (&Sdescribe_vector);
3680 defsubr (&Ssingle_key_description);
3681 defsubr (&Stext_char_description);
3682 defsubr (&Swhere_is_internal);
3683 defsubr (&Sdescribe_buffer_bindings);
3684 defsubr (&Sapropos_internal);
3685 }
3686
3687 void
3688 keys_of_keymap ()
3689 {
3690 initial_define_key (global_map, 033, "ESC-prefix");
3691 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3692 }