use dynwind_begin and dynwind_end
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <unistd.h>
24 #include <time.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42
43 Lisp_Object Qstring_lessp;
44 static Lisp_Object Qprovide, Qrequire;
45 static Lisp_Object Qyes_or_no_p_history;
46 Lisp_Object Qcursor_in_echo_area;
47 static Lisp_Object Qwidget_type;
48 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
49
50 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
51 \f
52 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
53 doc: /* Return the argument unchanged. */)
54 (Lisp_Object arg)
55 {
56 return arg;
57 }
58
59 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
60 doc: /* Return a pseudo-random number.
61 All integers representable in Lisp, i.e. between `most-negative-fixnum'
62 and `most-positive-fixnum', inclusive, are equally likely.
63
64 With positive integer LIMIT, return random number in interval [0,LIMIT).
65 With argument t, set the random number seed from the current time and pid.
66 With a string argument, set the seed based on the string's contents.
67 Other values of LIMIT are ignored.
68
69 See Info node `(elisp)Random Numbers' for more details. */)
70 (Lisp_Object limit)
71 {
72 EMACS_INT val;
73
74 if (EQ (limit, Qt))
75 init_random ();
76 else if (STRINGP (limit))
77 seed_random (SSDATA (limit), SBYTES (limit));
78
79 val = get_random ();
80 if (INTEGERP (limit) && 0 < XINT (limit))
81 while (true)
82 {
83 /* Return the remainder, except reject the rare case where
84 get_random returns a number so close to INTMASK that the
85 remainder isn't random. */
86 EMACS_INT remainder = val % XINT (limit);
87 if (val - remainder <= INTMASK - XINT (limit) + 1)
88 return make_number (remainder);
89 val = get_random ();
90 }
91 return make_number (val);
92 }
93 \f
94 /* Heuristic on how many iterations of a tight loop can be safely done
95 before it's time to do a QUIT. This must be a power of 2. */
96 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
97
98 /* Random data-structure functions. */
99
100 static void
101 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
102 {
103 CHECK_TYPE (NILP (x), Qlistp, y);
104 }
105
106 DEFUN ("length", Flength, Slength, 1, 1, 0,
107 doc: /* Return the length of vector, list or string SEQUENCE.
108 A byte-code function object is also allowed.
109 If the string contains multibyte characters, this is not necessarily
110 the number of bytes in the string; it is the number of characters.
111 To get the number of bytes, use `string-bytes'. */)
112 (register Lisp_Object sequence)
113 {
114 register Lisp_Object val;
115
116 if (STRINGP (sequence))
117 XSETFASTINT (val, SCHARS (sequence));
118 else if (VECTORP (sequence))
119 XSETFASTINT (val, ASIZE (sequence));
120 else if (CHAR_TABLE_P (sequence))
121 XSETFASTINT (val, MAX_CHAR);
122 else if (BOOL_VECTOR_P (sequence))
123 XSETFASTINT (val, bool_vector_size (sequence));
124 else if (COMPILEDP (sequence))
125 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
126 else if (CONSP (sequence))
127 {
128 EMACS_INT i = 0;
129
130 do
131 {
132 ++i;
133 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
134 {
135 if (MOST_POSITIVE_FIXNUM < i)
136 error ("List too long");
137 QUIT;
138 }
139 sequence = XCDR (sequence);
140 }
141 while (CONSP (sequence));
142
143 CHECK_LIST_END (sequence, sequence);
144
145 val = make_number (i);
146 }
147 else if (NILP (sequence))
148 XSETFASTINT (val, 0);
149 else
150 wrong_type_argument (Qsequencep, sequence);
151
152 return val;
153 }
154
155 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
156 doc: /* Return the length of a list, but avoid error or infinite loop.
157 This function never gets an error. If LIST is not really a list,
158 it returns 0. If LIST is circular, it returns a finite value
159 which is at least the number of distinct elements. */)
160 (Lisp_Object list)
161 {
162 Lisp_Object tail, halftail;
163 double hilen = 0;
164 uintmax_t lolen = 1;
165
166 if (! CONSP (list))
167 return make_number (0);
168
169 /* halftail is used to detect circular lists. */
170 for (tail = halftail = list; ; )
171 {
172 tail = XCDR (tail);
173 if (! CONSP (tail))
174 break;
175 if (EQ (tail, halftail))
176 break;
177 lolen++;
178 if ((lolen & 1) == 0)
179 {
180 halftail = XCDR (halftail);
181 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
182 {
183 QUIT;
184 if (lolen == 0)
185 hilen += UINTMAX_MAX + 1.0;
186 }
187 }
188 }
189
190 /* If the length does not fit into a fixnum, return a float.
191 On all known practical machines this returns an upper bound on
192 the true length. */
193 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
194 }
195
196 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
197 doc: /* Return the number of bytes in STRING.
198 If STRING is multibyte, this may be greater than the length of STRING. */)
199 (Lisp_Object string)
200 {
201 CHECK_STRING (string);
202 return make_number (SBYTES (string));
203 }
204
205 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
206 doc: /* Return t if two strings have identical contents.
207 Case is significant, but text properties are ignored.
208 Symbols are also allowed; their print names are used instead. */)
209 (register Lisp_Object s1, Lisp_Object s2)
210 {
211 if (SYMBOLP (s1))
212 s1 = SYMBOL_NAME (s1);
213 if (SYMBOLP (s2))
214 s2 = SYMBOL_NAME (s2);
215 CHECK_STRING (s1);
216 CHECK_STRING (s2);
217
218 if (SCHARS (s1) != SCHARS (s2)
219 || SBYTES (s1) != SBYTES (s2)
220 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
221 return Qnil;
222 return Qt;
223 }
224
225 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
226 doc: /* Compare the contents of two strings, converting to multibyte if needed.
227 The arguments START1, END1, START2, and END2, if non-nil, are
228 positions specifying which parts of STR1 or STR2 to compare. In
229 string STR1, compare the part between START1 (inclusive) and END1
230 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
231 the string; if END1 is nil, it defaults to the length of the string.
232 Likewise, in string STR2, compare the part between START2 and END2.
233 Like in `substring', negative values are counted from the end.
234
235 The strings are compared by the numeric values of their characters.
236 For instance, STR1 is "less than" STR2 if its first differing
237 character has a smaller numeric value. If IGNORE-CASE is non-nil,
238 characters are converted to lower-case before comparing them. Unibyte
239 strings are converted to multibyte for comparison.
240
241 The value is t if the strings (or specified portions) match.
242 If string STR1 is less, the value is a negative number N;
243 - 1 - N is the number of characters that match at the beginning.
244 If string STR1 is greater, the value is a positive number N;
245 N - 1 is the number of characters that match at the beginning. */)
246 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2,
247 Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
248 {
249 ptrdiff_t from1, to1, from2, to2, i1, i1_byte, i2, i2_byte;
250
251 CHECK_STRING (str1);
252 CHECK_STRING (str2);
253
254 validate_subarray (str1, start1, end1, SCHARS (str1), &from1, &to1);
255 validate_subarray (str2, start2, end2, SCHARS (str2), &from2, &to2);
256
257 i1 = from1;
258 i2 = from2;
259
260 i1_byte = string_char_to_byte (str1, i1);
261 i2_byte = string_char_to_byte (str2, i2);
262
263 while (i1 < to1 && i2 < to2)
264 {
265 /* When we find a mismatch, we must compare the
266 characters, not just the bytes. */
267 int c1, c2;
268
269 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c1, str1, i1, i1_byte);
270 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c2, str2, i2, i2_byte);
271
272 if (c1 == c2)
273 continue;
274
275 if (! NILP (ignore_case))
276 {
277 c1 = XINT (Fupcase (make_number (c1)));
278 c2 = XINT (Fupcase (make_number (c2)));
279 }
280
281 if (c1 == c2)
282 continue;
283
284 /* Note that I1 has already been incremented
285 past the character that we are comparing;
286 hence we don't add or subtract 1 here. */
287 if (c1 < c2)
288 return make_number (- i1 + from1);
289 else
290 return make_number (i1 - from1);
291 }
292
293 if (i1 < to1)
294 return make_number (i1 - from1 + 1);
295 if (i2 < to2)
296 return make_number (- i1 + from1 - 1);
297
298 return Qt;
299 }
300
301 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
302 doc: /* Return t if first arg string is less than second in lexicographic order.
303 Case is significant.
304 Symbols are also allowed; their print names are used instead. */)
305 (register Lisp_Object s1, Lisp_Object s2)
306 {
307 register ptrdiff_t end;
308 register ptrdiff_t i1, i1_byte, i2, i2_byte;
309
310 if (SYMBOLP (s1))
311 s1 = SYMBOL_NAME (s1);
312 if (SYMBOLP (s2))
313 s2 = SYMBOL_NAME (s2);
314 CHECK_STRING (s1);
315 CHECK_STRING (s2);
316
317 i1 = i1_byte = i2 = i2_byte = 0;
318
319 end = SCHARS (s1);
320 if (end > SCHARS (s2))
321 end = SCHARS (s2);
322
323 while (i1 < end)
324 {
325 /* When we find a mismatch, we must compare the
326 characters, not just the bytes. */
327 int c1, c2;
328
329 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
330 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
331
332 if (c1 != c2)
333 return c1 < c2 ? Qt : Qnil;
334 }
335 return i1 < SCHARS (s2) ? Qt : Qnil;
336 }
337 \f
338 enum concat_target_type
339 {
340 concat_cons,
341 concat_string,
342 concat_vector
343 };
344
345 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
346 enum concat_target_type target_type, bool last_special);
347
348 /* ARGSUSED */
349 Lisp_Object
350 concat2 (Lisp_Object s1, Lisp_Object s2)
351 {
352 Lisp_Object args[2];
353 args[0] = s1;
354 args[1] = s2;
355 return concat (2, args, concat_string, 0);
356 }
357
358 /* ARGSUSED */
359 Lisp_Object
360 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
361 {
362 Lisp_Object args[3];
363 args[0] = s1;
364 args[1] = s2;
365 args[2] = s3;
366 return concat (3, args, concat_string, 0);
367 }
368
369 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
370 doc: /* Concatenate all the arguments and make the result a list.
371 The result is a list whose elements are the elements of all the arguments.
372 Each argument may be a list, vector or string.
373 The last argument is not copied, just used as the tail of the new list.
374 usage: (append &rest SEQUENCES) */)
375 (ptrdiff_t nargs, Lisp_Object *args)
376 {
377 return concat (nargs, args, concat_cons, 1);
378 }
379
380 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
381 doc: /* Concatenate all the arguments and make the result a string.
382 The result is a string whose elements are the elements of all the arguments.
383 Each argument may be a string or a list or vector of characters (integers).
384 usage: (concat &rest SEQUENCES) */)
385 (ptrdiff_t nargs, Lisp_Object *args)
386 {
387 return concat (nargs, args, concat_string, 0);
388 }
389
390 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
391 doc: /* Concatenate all the arguments and make the result a vector.
392 The result is a vector whose elements are the elements of all the arguments.
393 Each argument may be a list, vector or string.
394 usage: (vconcat &rest SEQUENCES) */)
395 (ptrdiff_t nargs, Lisp_Object *args)
396 {
397 return concat (nargs, args, concat_vector, 0);
398 }
399
400
401 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
402 doc: /* Return a copy of a list, vector, string or char-table.
403 The elements of a list or vector are not copied; they are shared
404 with the original. */)
405 (Lisp_Object arg)
406 {
407 if (NILP (arg)) return arg;
408
409 if (CHAR_TABLE_P (arg))
410 {
411 return copy_char_table (arg);
412 }
413
414 if (BOOL_VECTOR_P (arg))
415 {
416 EMACS_INT nbits = bool_vector_size (arg);
417 ptrdiff_t nbytes = bool_vector_bytes (nbits);
418 Lisp_Object val = make_uninit_bool_vector (nbits);
419 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
420 return val;
421 }
422
423 if (CONSP (arg))
424 return concat (1, &arg, concat_cons, 0);
425 else if (STRINGP (arg))
426 return concat (1, &arg, concat_string, 0);
427 else if (VECTORP (arg))
428 return concat (1, &arg, concat_vector, 0);
429 else
430 wrong_type_argument (Qsequencep, arg);
431 }
432
433 /* This structure holds information of an argument of `concat' that is
434 a string and has text properties to be copied. */
435 struct textprop_rec
436 {
437 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
438 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
439 ptrdiff_t to; /* refer to VAL (the target string) */
440 };
441
442 static Lisp_Object
443 concat (ptrdiff_t nargs, Lisp_Object *args,
444 enum concat_target_type target_type, bool last_special)
445 {
446 Lisp_Object val;
447 Lisp_Object tail;
448 Lisp_Object this;
449 ptrdiff_t toindex;
450 ptrdiff_t toindex_byte = 0;
451 EMACS_INT result_len;
452 EMACS_INT result_len_byte;
453 ptrdiff_t argnum;
454 Lisp_Object last_tail;
455 Lisp_Object prev;
456 bool some_multibyte;
457 /* When we make a multibyte string, we can't copy text properties
458 while concatenating each string because the length of resulting
459 string can't be decided until we finish the whole concatenation.
460 So, we record strings that have text properties to be copied
461 here, and copy the text properties after the concatenation. */
462 struct textprop_rec *textprops = NULL;
463 /* Number of elements in textprops. */
464 ptrdiff_t num_textprops = 0;
465 USE_SAFE_ALLOCA;
466
467 tail = Qnil;
468
469 /* In append, the last arg isn't treated like the others */
470 if (last_special && nargs > 0)
471 {
472 nargs--;
473 last_tail = args[nargs];
474 }
475 else
476 last_tail = Qnil;
477
478 /* Check each argument. */
479 for (argnum = 0; argnum < nargs; argnum++)
480 {
481 this = args[argnum];
482 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
483 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
484 wrong_type_argument (Qsequencep, this);
485 }
486
487 /* Compute total length in chars of arguments in RESULT_LEN.
488 If desired output is a string, also compute length in bytes
489 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
490 whether the result should be a multibyte string. */
491 result_len_byte = 0;
492 result_len = 0;
493 some_multibyte = 0;
494 for (argnum = 0; argnum < nargs; argnum++)
495 {
496 EMACS_INT len;
497 this = args[argnum];
498 len = XFASTINT (Flength (this));
499 if (target_type == concat_string)
500 {
501 /* We must count the number of bytes needed in the string
502 as well as the number of characters. */
503 ptrdiff_t i;
504 Lisp_Object ch;
505 int c;
506 ptrdiff_t this_len_byte;
507
508 if (VECTORP (this) || COMPILEDP (this))
509 for (i = 0; i < len; i++)
510 {
511 ch = AREF (this, i);
512 CHECK_CHARACTER (ch);
513 c = XFASTINT (ch);
514 this_len_byte = CHAR_BYTES (c);
515 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
516 string_overflow ();
517 result_len_byte += this_len_byte;
518 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
519 some_multibyte = 1;
520 }
521 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
522 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
523 else if (CONSP (this))
524 for (; CONSP (this); this = XCDR (this))
525 {
526 ch = XCAR (this);
527 CHECK_CHARACTER (ch);
528 c = XFASTINT (ch);
529 this_len_byte = CHAR_BYTES (c);
530 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
531 string_overflow ();
532 result_len_byte += this_len_byte;
533 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
534 some_multibyte = 1;
535 }
536 else if (STRINGP (this))
537 {
538 if (STRING_MULTIBYTE (this))
539 {
540 some_multibyte = 1;
541 this_len_byte = SBYTES (this);
542 }
543 else
544 this_len_byte = count_size_as_multibyte (SDATA (this),
545 SCHARS (this));
546 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
547 string_overflow ();
548 result_len_byte += this_len_byte;
549 }
550 }
551
552 result_len += len;
553 if (MOST_POSITIVE_FIXNUM < result_len)
554 memory_full (SIZE_MAX);
555 }
556
557 if (! some_multibyte)
558 result_len_byte = result_len;
559
560 /* Create the output object. */
561 if (target_type == concat_cons)
562 val = Fmake_list (make_number (result_len), Qnil);
563 else if (target_type == concat_vector)
564 val = Fmake_vector (make_number (result_len), Qnil);
565 else if (some_multibyte)
566 val = make_uninit_multibyte_string (result_len, result_len_byte);
567 else
568 val = make_uninit_string (result_len);
569
570 /* In `append', if all but last arg are nil, return last arg. */
571 if (target_type == concat_cons && EQ (val, Qnil))
572 return last_tail;
573
574 /* Copy the contents of the args into the result. */
575 if (CONSP (val))
576 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
577 else
578 toindex = 0, toindex_byte = 0;
579
580 prev = Qnil;
581 if (STRINGP (val))
582 SAFE_NALLOCA (textprops, 1, nargs);
583
584 for (argnum = 0; argnum < nargs; argnum++)
585 {
586 Lisp_Object thislen;
587 ptrdiff_t thisleni = 0;
588 register ptrdiff_t thisindex = 0;
589 register ptrdiff_t thisindex_byte = 0;
590
591 this = args[argnum];
592 if (!CONSP (this))
593 thislen = Flength (this), thisleni = XINT (thislen);
594
595 /* Between strings of the same kind, copy fast. */
596 if (STRINGP (this) && STRINGP (val)
597 && STRING_MULTIBYTE (this) == some_multibyte)
598 {
599 ptrdiff_t thislen_byte = SBYTES (this);
600
601 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
602 if (string_intervals (this))
603 {
604 textprops[num_textprops].argnum = argnum;
605 textprops[num_textprops].from = 0;
606 textprops[num_textprops++].to = toindex;
607 }
608 toindex_byte += thislen_byte;
609 toindex += thisleni;
610 }
611 /* Copy a single-byte string to a multibyte string. */
612 else if (STRINGP (this) && STRINGP (val))
613 {
614 if (string_intervals (this))
615 {
616 textprops[num_textprops].argnum = argnum;
617 textprops[num_textprops].from = 0;
618 textprops[num_textprops++].to = toindex;
619 }
620 toindex_byte += copy_text (SDATA (this),
621 SDATA (val) + toindex_byte,
622 SCHARS (this), 0, 1);
623 toindex += thisleni;
624 }
625 else
626 /* Copy element by element. */
627 while (1)
628 {
629 register Lisp_Object elt;
630
631 /* Fetch next element of `this' arg into `elt', or break if
632 `this' is exhausted. */
633 if (NILP (this)) break;
634 if (CONSP (this))
635 elt = XCAR (this), this = XCDR (this);
636 else if (thisindex >= thisleni)
637 break;
638 else if (STRINGP (this))
639 {
640 int c;
641 if (STRING_MULTIBYTE (this))
642 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
643 thisindex,
644 thisindex_byte);
645 else
646 {
647 c = SREF (this, thisindex); thisindex++;
648 if (some_multibyte && !ASCII_CHAR_P (c))
649 c = BYTE8_TO_CHAR (c);
650 }
651 XSETFASTINT (elt, c);
652 }
653 else if (BOOL_VECTOR_P (this))
654 {
655 elt = bool_vector_ref (this, thisindex);
656 thisindex++;
657 }
658 else
659 {
660 elt = AREF (this, thisindex);
661 thisindex++;
662 }
663
664 /* Store this element into the result. */
665 if (toindex < 0)
666 {
667 XSETCAR (tail, elt);
668 prev = tail;
669 tail = XCDR (tail);
670 }
671 else if (VECTORP (val))
672 {
673 ASET (val, toindex, elt);
674 toindex++;
675 }
676 else
677 {
678 int c;
679 CHECK_CHARACTER (elt);
680 c = XFASTINT (elt);
681 if (some_multibyte)
682 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
683 else
684 SSET (val, toindex_byte++, c);
685 toindex++;
686 }
687 }
688 }
689 if (!NILP (prev))
690 XSETCDR (prev, last_tail);
691
692 if (num_textprops > 0)
693 {
694 Lisp_Object props;
695 ptrdiff_t last_to_end = -1;
696
697 for (argnum = 0; argnum < num_textprops; argnum++)
698 {
699 this = args[textprops[argnum].argnum];
700 props = text_property_list (this,
701 make_number (0),
702 make_number (SCHARS (this)),
703 Qnil);
704 /* If successive arguments have properties, be sure that the
705 value of `composition' property be the copy. */
706 if (last_to_end == textprops[argnum].to)
707 make_composition_value_copy (props);
708 add_text_properties_from_list (val, props,
709 make_number (textprops[argnum].to));
710 last_to_end = textprops[argnum].to + SCHARS (this);
711 }
712 }
713
714 SAFE_FREE ();
715 return val;
716 }
717 \f
718 static Lisp_Object string_char_byte_cache_string;
719 static ptrdiff_t string_char_byte_cache_charpos;
720 static ptrdiff_t string_char_byte_cache_bytepos;
721
722 void
723 clear_string_char_byte_cache (void)
724 {
725 string_char_byte_cache_string = Qnil;
726 }
727
728 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
729
730 ptrdiff_t
731 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
732 {
733 ptrdiff_t i_byte;
734 ptrdiff_t best_below, best_below_byte;
735 ptrdiff_t best_above, best_above_byte;
736
737 best_below = best_below_byte = 0;
738 best_above = SCHARS (string);
739 best_above_byte = SBYTES (string);
740 if (best_above == best_above_byte)
741 return char_index;
742
743 if (EQ (string, string_char_byte_cache_string))
744 {
745 if (string_char_byte_cache_charpos < char_index)
746 {
747 best_below = string_char_byte_cache_charpos;
748 best_below_byte = string_char_byte_cache_bytepos;
749 }
750 else
751 {
752 best_above = string_char_byte_cache_charpos;
753 best_above_byte = string_char_byte_cache_bytepos;
754 }
755 }
756
757 if (char_index - best_below < best_above - char_index)
758 {
759 unsigned char *p = SDATA (string) + best_below_byte;
760
761 while (best_below < char_index)
762 {
763 p += BYTES_BY_CHAR_HEAD (*p);
764 best_below++;
765 }
766 i_byte = p - SDATA (string);
767 }
768 else
769 {
770 unsigned char *p = SDATA (string) + best_above_byte;
771
772 while (best_above > char_index)
773 {
774 p--;
775 while (!CHAR_HEAD_P (*p)) p--;
776 best_above--;
777 }
778 i_byte = p - SDATA (string);
779 }
780
781 string_char_byte_cache_bytepos = i_byte;
782 string_char_byte_cache_charpos = char_index;
783 string_char_byte_cache_string = string;
784
785 return i_byte;
786 }
787 \f
788 /* Return the character index corresponding to BYTE_INDEX in STRING. */
789
790 ptrdiff_t
791 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
792 {
793 ptrdiff_t i, i_byte;
794 ptrdiff_t best_below, best_below_byte;
795 ptrdiff_t best_above, best_above_byte;
796
797 best_below = best_below_byte = 0;
798 best_above = SCHARS (string);
799 best_above_byte = SBYTES (string);
800 if (best_above == best_above_byte)
801 return byte_index;
802
803 if (EQ (string, string_char_byte_cache_string))
804 {
805 if (string_char_byte_cache_bytepos < byte_index)
806 {
807 best_below = string_char_byte_cache_charpos;
808 best_below_byte = string_char_byte_cache_bytepos;
809 }
810 else
811 {
812 best_above = string_char_byte_cache_charpos;
813 best_above_byte = string_char_byte_cache_bytepos;
814 }
815 }
816
817 if (byte_index - best_below_byte < best_above_byte - byte_index)
818 {
819 unsigned char *p = SDATA (string) + best_below_byte;
820 unsigned char *pend = SDATA (string) + byte_index;
821
822 while (p < pend)
823 {
824 p += BYTES_BY_CHAR_HEAD (*p);
825 best_below++;
826 }
827 i = best_below;
828 i_byte = p - SDATA (string);
829 }
830 else
831 {
832 unsigned char *p = SDATA (string) + best_above_byte;
833 unsigned char *pbeg = SDATA (string) + byte_index;
834
835 while (p > pbeg)
836 {
837 p--;
838 while (!CHAR_HEAD_P (*p)) p--;
839 best_above--;
840 }
841 i = best_above;
842 i_byte = p - SDATA (string);
843 }
844
845 string_char_byte_cache_bytepos = i_byte;
846 string_char_byte_cache_charpos = i;
847 string_char_byte_cache_string = string;
848
849 return i;
850 }
851 \f
852 /* Convert STRING to a multibyte string. */
853
854 static Lisp_Object
855 string_make_multibyte (Lisp_Object string)
856 {
857 unsigned char *buf;
858 ptrdiff_t nbytes;
859 Lisp_Object ret;
860 USE_SAFE_ALLOCA;
861
862 if (STRING_MULTIBYTE (string))
863 return string;
864
865 nbytes = count_size_as_multibyte (SDATA (string),
866 SCHARS (string));
867 /* If all the chars are ASCII, they won't need any more bytes
868 once converted. In that case, we can return STRING itself. */
869 if (nbytes == SBYTES (string))
870 return string;
871
872 buf = SAFE_ALLOCA (nbytes);
873 copy_text (SDATA (string), buf, SBYTES (string),
874 0, 1);
875
876 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
877 SAFE_FREE ();
878
879 return ret;
880 }
881
882
883 /* Convert STRING (if unibyte) to a multibyte string without changing
884 the number of characters. Characters 0200 trough 0237 are
885 converted to eight-bit characters. */
886
887 Lisp_Object
888 string_to_multibyte (Lisp_Object string)
889 {
890 unsigned char *buf;
891 ptrdiff_t nbytes;
892 Lisp_Object ret;
893 USE_SAFE_ALLOCA;
894
895 if (STRING_MULTIBYTE (string))
896 return string;
897
898 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
899 /* If all the chars are ASCII, they won't need any more bytes once
900 converted. */
901 if (nbytes == SBYTES (string))
902 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
903
904 buf = SAFE_ALLOCA (nbytes);
905 memcpy (buf, SDATA (string), SBYTES (string));
906 str_to_multibyte (buf, nbytes, SBYTES (string));
907
908 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
909 SAFE_FREE ();
910
911 return ret;
912 }
913
914
915 /* Convert STRING to a single-byte string. */
916
917 Lisp_Object
918 string_make_unibyte (Lisp_Object string)
919 {
920 ptrdiff_t nchars;
921 unsigned char *buf;
922 Lisp_Object ret;
923 USE_SAFE_ALLOCA;
924
925 if (! STRING_MULTIBYTE (string))
926 return string;
927
928 nchars = SCHARS (string);
929
930 buf = SAFE_ALLOCA (nchars);
931 copy_text (SDATA (string), buf, SBYTES (string),
932 1, 0);
933
934 ret = make_unibyte_string ((char *) buf, nchars);
935 SAFE_FREE ();
936
937 return ret;
938 }
939
940 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
941 1, 1, 0,
942 doc: /* Return the multibyte equivalent of STRING.
943 If STRING is unibyte and contains non-ASCII characters, the function
944 `unibyte-char-to-multibyte' is used to convert each unibyte character
945 to a multibyte character. In this case, the returned string is a
946 newly created string with no text properties. If STRING is multibyte
947 or entirely ASCII, it is returned unchanged. In particular, when
948 STRING is unibyte and entirely ASCII, the returned string is unibyte.
949 \(When the characters are all ASCII, Emacs primitives will treat the
950 string the same way whether it is unibyte or multibyte.) */)
951 (Lisp_Object string)
952 {
953 CHECK_STRING (string);
954
955 return string_make_multibyte (string);
956 }
957
958 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
959 1, 1, 0,
960 doc: /* Return the unibyte equivalent of STRING.
961 Multibyte character codes are converted to unibyte according to
962 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
963 If the lookup in the translation table fails, this function takes just
964 the low 8 bits of each character. */)
965 (Lisp_Object string)
966 {
967 CHECK_STRING (string);
968
969 return string_make_unibyte (string);
970 }
971
972 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
973 1, 1, 0,
974 doc: /* Return a unibyte string with the same individual bytes as STRING.
975 If STRING is unibyte, the result is STRING itself.
976 Otherwise it is a newly created string, with no text properties.
977 If STRING is multibyte and contains a character of charset
978 `eight-bit', it is converted to the corresponding single byte. */)
979 (Lisp_Object string)
980 {
981 CHECK_STRING (string);
982
983 if (STRING_MULTIBYTE (string))
984 {
985 unsigned char *str = (unsigned char *) xlispstrdup (string);
986 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
987
988 string = make_unibyte_string ((char *) str, bytes);
989 xfree (str);
990 }
991 return string;
992 }
993
994 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
995 1, 1, 0,
996 doc: /* Return a multibyte string with the same individual bytes as STRING.
997 If STRING is multibyte, the result is STRING itself.
998 Otherwise it is a newly created string, with no text properties.
999
1000 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1001 part of a correct utf-8 sequence), it is converted to the corresponding
1002 multibyte character of charset `eight-bit'.
1003 See also `string-to-multibyte'.
1004
1005 Beware, this often doesn't really do what you think it does.
1006 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1007 If you're not sure, whether to use `string-as-multibyte' or
1008 `string-to-multibyte', use `string-to-multibyte'. */)
1009 (Lisp_Object string)
1010 {
1011 CHECK_STRING (string);
1012
1013 if (! STRING_MULTIBYTE (string))
1014 {
1015 Lisp_Object new_string;
1016 ptrdiff_t nchars, nbytes;
1017
1018 parse_str_as_multibyte (SDATA (string),
1019 SBYTES (string),
1020 &nchars, &nbytes);
1021 new_string = make_uninit_multibyte_string (nchars, nbytes);
1022 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1023 if (nbytes != SBYTES (string))
1024 str_as_multibyte (SDATA (new_string), nbytes,
1025 SBYTES (string), NULL);
1026 string = new_string;
1027 set_string_intervals (string, NULL);
1028 }
1029 return string;
1030 }
1031
1032 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1033 1, 1, 0,
1034 doc: /* Return a multibyte string with the same individual chars as STRING.
1035 If STRING is multibyte, the result is STRING itself.
1036 Otherwise it is a newly created string, with no text properties.
1037
1038 If STRING is unibyte and contains an 8-bit byte, it is converted to
1039 the corresponding multibyte character of charset `eight-bit'.
1040
1041 This differs from `string-as-multibyte' by converting each byte of a correct
1042 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1043 correct sequence. */)
1044 (Lisp_Object string)
1045 {
1046 CHECK_STRING (string);
1047
1048 return string_to_multibyte (string);
1049 }
1050
1051 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1052 1, 1, 0,
1053 doc: /* Return a unibyte string with the same individual chars as STRING.
1054 If STRING is unibyte, the result is STRING itself.
1055 Otherwise it is a newly created string, with no text properties,
1056 where each `eight-bit' character is converted to the corresponding byte.
1057 If STRING contains a non-ASCII, non-`eight-bit' character,
1058 an error is signaled. */)
1059 (Lisp_Object string)
1060 {
1061 CHECK_STRING (string);
1062
1063 if (STRING_MULTIBYTE (string))
1064 {
1065 ptrdiff_t chars = SCHARS (string);
1066 unsigned char *str = xmalloc_atomic (chars);
1067 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1068
1069 if (converted < chars)
1070 error ("Can't convert the %"pD"dth character to unibyte", converted);
1071 string = make_unibyte_string ((char *) str, chars);
1072 xfree (str);
1073 }
1074 return string;
1075 }
1076
1077 \f
1078 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1079 doc: /* Return a copy of ALIST.
1080 This is an alist which represents the same mapping from objects to objects,
1081 but does not share the alist structure with ALIST.
1082 The objects mapped (cars and cdrs of elements of the alist)
1083 are shared, however.
1084 Elements of ALIST that are not conses are also shared. */)
1085 (Lisp_Object alist)
1086 {
1087 register Lisp_Object tem;
1088
1089 CHECK_LIST (alist);
1090 if (NILP (alist))
1091 return alist;
1092 alist = concat (1, &alist, concat_cons, 0);
1093 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1094 {
1095 register Lisp_Object car;
1096 car = XCAR (tem);
1097
1098 if (CONSP (car))
1099 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1100 }
1101 return alist;
1102 }
1103
1104 /* Check that ARRAY can have a valid subarray [FROM..TO),
1105 given that its size is SIZE.
1106 If FROM is nil, use 0; if TO is nil, use SIZE.
1107 Count negative values backwards from the end.
1108 Set *IFROM and *ITO to the two indexes used. */
1109
1110 void
1111 validate_subarray (Lisp_Object array, Lisp_Object from, Lisp_Object to,
1112 ptrdiff_t size, ptrdiff_t *ifrom, ptrdiff_t *ito)
1113 {
1114 EMACS_INT f, t;
1115
1116 if (INTEGERP (from))
1117 {
1118 f = XINT (from);
1119 if (f < 0)
1120 f += size;
1121 }
1122 else if (NILP (from))
1123 f = 0;
1124 else
1125 wrong_type_argument (Qintegerp, from);
1126
1127 if (INTEGERP (to))
1128 {
1129 t = XINT (to);
1130 if (t < 0)
1131 t += size;
1132 }
1133 else if (NILP (to))
1134 t = size;
1135 else
1136 wrong_type_argument (Qintegerp, to);
1137
1138 if (! (0 <= f && f <= t && t <= size))
1139 args_out_of_range_3 (array, from, to);
1140
1141 *ifrom = f;
1142 *ito = t;
1143 }
1144
1145 DEFUN ("substring", Fsubstring, Ssubstring, 1, 3, 0,
1146 doc: /* Return a new string whose contents are a substring of STRING.
1147 The returned string consists of the characters between index FROM
1148 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1149 zero-indexed: 0 means the first character of STRING. Negative values
1150 are counted from the end of STRING. If TO is nil, the substring runs
1151 to the end of STRING.
1152
1153 The STRING argument may also be a vector. In that case, the return
1154 value is a new vector that contains the elements between index FROM
1155 \(inclusive) and index TO (exclusive) of that vector argument.
1156
1157 With one argument, just copy STRING (with properties, if any). */)
1158 (Lisp_Object string, Lisp_Object from, Lisp_Object to)
1159 {
1160 Lisp_Object res;
1161 ptrdiff_t size, ifrom, ito;
1162
1163 if (STRINGP (string))
1164 size = SCHARS (string);
1165 else if (VECTORP (string))
1166 size = ASIZE (string);
1167 else
1168 wrong_type_argument (Qarrayp, string);
1169
1170 validate_subarray (string, from, to, size, &ifrom, &ito);
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t from_byte
1175 = !ifrom ? 0 : string_char_to_byte (string, ifrom);
1176 ptrdiff_t to_byte
1177 = ito == size ? SBYTES (string) : string_char_to_byte (string, ito);
1178 res = make_specified_string (SSDATA (string) + from_byte,
1179 ito - ifrom, to_byte - from_byte,
1180 STRING_MULTIBYTE (string));
1181 copy_text_properties (make_number (ifrom), make_number (ito),
1182 string, make_number (0), res, Qnil);
1183 }
1184 else
1185 res = Fvector (ito - ifrom, aref_addr (string, ifrom));
1186
1187 return res;
1188 }
1189
1190
1191 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1192 doc: /* Return a substring of STRING, without text properties.
1193 It starts at index FROM and ends before TO.
1194 TO may be nil or omitted; then the substring runs to the end of STRING.
1195 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1196 If FROM or TO is negative, it counts from the end.
1197
1198 With one argument, just copy STRING without its properties. */)
1199 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1200 {
1201 ptrdiff_t from_char, to_char, from_byte, to_byte, size;
1202
1203 CHECK_STRING (string);
1204
1205 size = SCHARS (string);
1206 validate_subarray (string, from, to, size, &from_char, &to_char);
1207
1208 from_byte = !from_char ? 0 : string_char_to_byte (string, from_char);
1209 to_byte =
1210 to_char == size ? SBYTES (string) : string_char_to_byte (string, to_char);
1211 return make_specified_string (SSDATA (string) + from_byte,
1212 to_char - from_char, to_byte - from_byte,
1213 STRING_MULTIBYTE (string));
1214 }
1215
1216 /* Extract a substring of STRING, giving start and end positions
1217 both in characters and in bytes. */
1218
1219 Lisp_Object
1220 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1221 ptrdiff_t to, ptrdiff_t to_byte)
1222 {
1223 Lisp_Object res;
1224 ptrdiff_t size;
1225
1226 CHECK_VECTOR_OR_STRING (string);
1227
1228 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1229
1230 if (!(0 <= from && from <= to && to <= size))
1231 args_out_of_range_3 (string, make_number (from), make_number (to));
1232
1233 if (STRINGP (string))
1234 {
1235 res = make_specified_string (SSDATA (string) + from_byte,
1236 to - from, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238 copy_text_properties (make_number (from), make_number (to),
1239 string, make_number (0), res, Qnil);
1240 }
1241 else
1242 res = Fvector (to - from, aref_addr (string, from));
1243
1244 return res;
1245 }
1246 \f
1247 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1248 doc: /* Take cdr N times on LIST, return the result. */)
1249 (Lisp_Object n, Lisp_Object list)
1250 {
1251 EMACS_INT i, num;
1252 CHECK_NUMBER (n);
1253 num = XINT (n);
1254 for (i = 0; i < num && !NILP (list); i++)
1255 {
1256 QUIT;
1257 CHECK_LIST_CONS (list, list);
1258 list = XCDR (list);
1259 }
1260 return list;
1261 }
1262
1263 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1264 doc: /* Return the Nth element of LIST.
1265 N counts from zero. If LIST is not that long, nil is returned. */)
1266 (Lisp_Object n, Lisp_Object list)
1267 {
1268 return Fcar (Fnthcdr (n, list));
1269 }
1270
1271 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1272 doc: /* Return element of SEQUENCE at index N. */)
1273 (register Lisp_Object sequence, Lisp_Object n)
1274 {
1275 CHECK_NUMBER (n);
1276 if (CONSP (sequence) || NILP (sequence))
1277 return Fcar (Fnthcdr (n, sequence));
1278
1279 /* Faref signals a "not array" error, so check here. */
1280 CHECK_ARRAY (sequence, Qsequencep);
1281 return Faref (sequence, n);
1282 }
1283
1284 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1285 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1286 The value is actually the tail of LIST whose car is ELT. */)
1287 (register Lisp_Object elt, Lisp_Object list)
1288 {
1289 register Lisp_Object tail;
1290 for (tail = list; CONSP (tail); tail = XCDR (tail))
1291 {
1292 register Lisp_Object tem;
1293 CHECK_LIST_CONS (tail, list);
1294 tem = XCAR (tail);
1295 if (! NILP (Fequal (elt, tem)))
1296 return tail;
1297 QUIT;
1298 }
1299 return Qnil;
1300 }
1301
1302 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1303 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1304 The value is actually the tail of LIST whose car is ELT. */)
1305 (register Lisp_Object elt, Lisp_Object list)
1306 {
1307 while (1)
1308 {
1309 if (!CONSP (list) || EQ (XCAR (list), elt))
1310 break;
1311
1312 list = XCDR (list);
1313 if (!CONSP (list) || EQ (XCAR (list), elt))
1314 break;
1315
1316 list = XCDR (list);
1317 if (!CONSP (list) || EQ (XCAR (list), elt))
1318 break;
1319
1320 list = XCDR (list);
1321 QUIT;
1322 }
1323
1324 CHECK_LIST (list);
1325 return list;
1326 }
1327
1328 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1329 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1330 The value is actually the tail of LIST whose car is ELT. */)
1331 (register Lisp_Object elt, Lisp_Object list)
1332 {
1333 register Lisp_Object tail;
1334
1335 for (tail = list; CONSP (tail); tail = XCDR (tail))
1336 {
1337 register Lisp_Object tem;
1338 CHECK_LIST_CONS (tail, list);
1339 tem = XCAR (tail);
1340 if (!NILP (Feql (elt, tem)))
1341 return tail;
1342 QUIT;
1343 }
1344 return Qnil;
1345 }
1346
1347 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1348 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1349 The value is actually the first element of LIST whose car is KEY.
1350 Elements of LIST that are not conses are ignored. */)
1351 (Lisp_Object key, Lisp_Object list)
1352 {
1353 while (1)
1354 {
1355 if (!CONSP (list)
1356 || (CONSP (XCAR (list))
1357 && EQ (XCAR (XCAR (list)), key)))
1358 break;
1359
1360 list = XCDR (list);
1361 if (!CONSP (list)
1362 || (CONSP (XCAR (list))
1363 && EQ (XCAR (XCAR (list)), key)))
1364 break;
1365
1366 list = XCDR (list);
1367 if (!CONSP (list)
1368 || (CONSP (XCAR (list))
1369 && EQ (XCAR (XCAR (list)), key)))
1370 break;
1371
1372 list = XCDR (list);
1373 QUIT;
1374 }
1375
1376 return CAR (list);
1377 }
1378
1379 /* Like Fassq but never report an error and do not allow quits.
1380 Use only on lists known never to be circular. */
1381
1382 Lisp_Object
1383 assq_no_quit (Lisp_Object key, Lisp_Object list)
1384 {
1385 while (CONSP (list)
1386 && (!CONSP (XCAR (list))
1387 || !EQ (XCAR (XCAR (list)), key)))
1388 list = XCDR (list);
1389
1390 return CAR_SAFE (list);
1391 }
1392
1393 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1394 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1395 The value is actually the first element of LIST whose car equals KEY. */)
1396 (Lisp_Object key, Lisp_Object list)
1397 {
1398 Lisp_Object car;
1399
1400 while (1)
1401 {
1402 if (!CONSP (list)
1403 || (CONSP (XCAR (list))
1404 && (car = XCAR (XCAR (list)),
1405 EQ (car, key) || !NILP (Fequal (car, key)))))
1406 break;
1407
1408 list = XCDR (list);
1409 if (!CONSP (list)
1410 || (CONSP (XCAR (list))
1411 && (car = XCAR (XCAR (list)),
1412 EQ (car, key) || !NILP (Fequal (car, key)))))
1413 break;
1414
1415 list = XCDR (list);
1416 if (!CONSP (list)
1417 || (CONSP (XCAR (list))
1418 && (car = XCAR (XCAR (list)),
1419 EQ (car, key) || !NILP (Fequal (car, key)))))
1420 break;
1421
1422 list = XCDR (list);
1423 QUIT;
1424 }
1425
1426 return CAR (list);
1427 }
1428
1429 /* Like Fassoc but never report an error and do not allow quits.
1430 Use only on lists known never to be circular. */
1431
1432 Lisp_Object
1433 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1434 {
1435 while (CONSP (list)
1436 && (!CONSP (XCAR (list))
1437 || (!EQ (XCAR (XCAR (list)), key)
1438 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1439 list = XCDR (list);
1440
1441 return CONSP (list) ? XCAR (list) : Qnil;
1442 }
1443
1444 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1445 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1446 The value is actually the first element of LIST whose cdr is KEY. */)
1447 (register Lisp_Object key, Lisp_Object list)
1448 {
1449 while (1)
1450 {
1451 if (!CONSP (list)
1452 || (CONSP (XCAR (list))
1453 && EQ (XCDR (XCAR (list)), key)))
1454 break;
1455
1456 list = XCDR (list);
1457 if (!CONSP (list)
1458 || (CONSP (XCAR (list))
1459 && EQ (XCDR (XCAR (list)), key)))
1460 break;
1461
1462 list = XCDR (list);
1463 if (!CONSP (list)
1464 || (CONSP (XCAR (list))
1465 && EQ (XCDR (XCAR (list)), key)))
1466 break;
1467
1468 list = XCDR (list);
1469 QUIT;
1470 }
1471
1472 return CAR (list);
1473 }
1474
1475 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1476 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1477 The value is actually the first element of LIST whose cdr equals KEY. */)
1478 (Lisp_Object key, Lisp_Object list)
1479 {
1480 Lisp_Object cdr;
1481
1482 while (1)
1483 {
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && (cdr = XCDR (XCAR (list)),
1487 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1488 break;
1489
1490 list = XCDR (list);
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && (cdr = XCDR (XCAR (list)),
1494 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1495 break;
1496
1497 list = XCDR (list);
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && (cdr = XCDR (XCAR (list)),
1501 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1502 break;
1503
1504 list = XCDR (list);
1505 QUIT;
1506 }
1507
1508 return CAR (list);
1509 }
1510 \f
1511 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1512 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1513 More precisely, this function skips any members `eq' to ELT at the
1514 front of LIST, then removes members `eq' to ELT from the remaining
1515 sublist by modifying its list structure, then returns the resulting
1516 list.
1517
1518 Write `(setq foo (delq element foo))' to be sure of correctly changing
1519 the value of a list `foo'. */)
1520 (register Lisp_Object elt, Lisp_Object list)
1521 {
1522 Lisp_Object tail, tortoise, prev = Qnil;
1523 bool skip;
1524
1525 FOR_EACH_TAIL (tail, list, tortoise, skip)
1526 {
1527 Lisp_Object tem = XCAR (tail);
1528 if (EQ (elt, tem))
1529 {
1530 if (NILP (prev))
1531 list = XCDR (tail);
1532 else
1533 Fsetcdr (prev, XCDR (tail));
1534 }
1535 else
1536 prev = tail;
1537 }
1538 return list;
1539 }
1540
1541 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1542 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1543 SEQ must be a sequence (i.e. a list, a vector, or a string).
1544 The return value is a sequence of the same type.
1545
1546 If SEQ is a list, this behaves like `delq', except that it compares
1547 with `equal' instead of `eq'. In particular, it may remove elements
1548 by altering the list structure.
1549
1550 If SEQ is not a list, deletion is never performed destructively;
1551 instead this function creates and returns a new vector or string.
1552
1553 Write `(setq foo (delete element foo))' to be sure of correctly
1554 changing the value of a sequence `foo'. */)
1555 (Lisp_Object elt, Lisp_Object seq)
1556 {
1557 if (VECTORP (seq))
1558 {
1559 ptrdiff_t i, n;
1560
1561 for (i = n = 0; i < ASIZE (seq); ++i)
1562 if (NILP (Fequal (AREF (seq, i), elt)))
1563 ++n;
1564
1565 if (n != ASIZE (seq))
1566 {
1567 struct Lisp_Vector *p = allocate_vector (n);
1568
1569 for (i = n = 0; i < ASIZE (seq); ++i)
1570 if (NILP (Fequal (AREF (seq, i), elt)))
1571 p->contents[n++] = AREF (seq, i);
1572
1573 XSETVECTOR (seq, p);
1574 }
1575 }
1576 else if (STRINGP (seq))
1577 {
1578 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1579 int c;
1580
1581 for (i = nchars = nbytes = ibyte = 0;
1582 i < SCHARS (seq);
1583 ++i, ibyte += cbytes)
1584 {
1585 if (STRING_MULTIBYTE (seq))
1586 {
1587 c = STRING_CHAR (SDATA (seq) + ibyte);
1588 cbytes = CHAR_BYTES (c);
1589 }
1590 else
1591 {
1592 c = SREF (seq, i);
1593 cbytes = 1;
1594 }
1595
1596 if (!INTEGERP (elt) || c != XINT (elt))
1597 {
1598 ++nchars;
1599 nbytes += cbytes;
1600 }
1601 }
1602
1603 if (nchars != SCHARS (seq))
1604 {
1605 Lisp_Object tem;
1606
1607 tem = make_uninit_multibyte_string (nchars, nbytes);
1608 if (!STRING_MULTIBYTE (seq))
1609 STRING_SET_UNIBYTE (tem);
1610
1611 for (i = nchars = nbytes = ibyte = 0;
1612 i < SCHARS (seq);
1613 ++i, ibyte += cbytes)
1614 {
1615 if (STRING_MULTIBYTE (seq))
1616 {
1617 c = STRING_CHAR (SDATA (seq) + ibyte);
1618 cbytes = CHAR_BYTES (c);
1619 }
1620 else
1621 {
1622 c = SREF (seq, i);
1623 cbytes = 1;
1624 }
1625
1626 if (!INTEGERP (elt) || c != XINT (elt))
1627 {
1628 unsigned char *from = SDATA (seq) + ibyte;
1629 unsigned char *to = SDATA (tem) + nbytes;
1630 ptrdiff_t n;
1631
1632 ++nchars;
1633 nbytes += cbytes;
1634
1635 for (n = cbytes; n--; )
1636 *to++ = *from++;
1637 }
1638 }
1639
1640 seq = tem;
1641 }
1642 }
1643 else
1644 {
1645 Lisp_Object tail, prev;
1646
1647 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1648 {
1649 CHECK_LIST_CONS (tail, seq);
1650
1651 if (!NILP (Fequal (elt, XCAR (tail))))
1652 {
1653 if (NILP (prev))
1654 seq = XCDR (tail);
1655 else
1656 Fsetcdr (prev, XCDR (tail));
1657 }
1658 else
1659 prev = tail;
1660 QUIT;
1661 }
1662 }
1663
1664 return seq;
1665 }
1666
1667 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1668 doc: /* Reverse order of items in a list, vector or string SEQ.
1669 If SEQ is a list, it should be nil-terminated.
1670 This function may destructively modify SEQ to produce the value. */)
1671 (Lisp_Object seq)
1672 {
1673 if (NILP (seq))
1674 return seq;
1675 else if (STRINGP (seq))
1676 return Freverse (seq);
1677 else if (CONSP (seq))
1678 {
1679 Lisp_Object prev, tail, next;
1680
1681 for (prev = Qnil, tail = seq; !NILP (tail); tail = next)
1682 {
1683 QUIT;
1684 CHECK_LIST_CONS (tail, tail);
1685 next = XCDR (tail);
1686 Fsetcdr (tail, prev);
1687 prev = tail;
1688 }
1689 seq = prev;
1690 }
1691 else if (VECTORP (seq))
1692 {
1693 ptrdiff_t i, size = ASIZE (seq);
1694
1695 for (i = 0; i < size / 2; i++)
1696 {
1697 Lisp_Object tem = AREF (seq, i);
1698 ASET (seq, i, AREF (seq, size - i - 1));
1699 ASET (seq, size - i - 1, tem);
1700 }
1701 }
1702 else if (BOOL_VECTOR_P (seq))
1703 {
1704 ptrdiff_t i, size = bool_vector_size (seq);
1705
1706 for (i = 0; i < size / 2; i++)
1707 {
1708 bool tem = bool_vector_bitref (seq, i);
1709 bool_vector_set (seq, i, bool_vector_bitref (seq, size - i - 1));
1710 bool_vector_set (seq, size - i - 1, tem);
1711 }
1712 }
1713 else
1714 wrong_type_argument (Qarrayp, seq);
1715 return seq;
1716 }
1717
1718 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1719 doc: /* Return the reversed copy of list, vector, or string SEQ.
1720 See also the function `nreverse', which is used more often. */)
1721 (Lisp_Object seq)
1722 {
1723 Lisp_Object new;
1724
1725 if (NILP (seq))
1726 return Qnil;
1727 else if (CONSP (seq))
1728 {
1729 for (new = Qnil; CONSP (seq); seq = XCDR (seq))
1730 {
1731 QUIT;
1732 new = Fcons (XCAR (seq), new);
1733 }
1734 CHECK_LIST_END (seq, seq);
1735 }
1736 else if (VECTORP (seq))
1737 {
1738 ptrdiff_t i, size = ASIZE (seq);
1739
1740 new = make_uninit_vector (size);
1741 for (i = 0; i < size; i++)
1742 ASET (new, i, AREF (seq, size - i - 1));
1743 }
1744 else if (BOOL_VECTOR_P (seq))
1745 {
1746 ptrdiff_t i;
1747 EMACS_INT nbits = bool_vector_size (seq);
1748
1749 new = make_uninit_bool_vector (nbits);
1750 for (i = 0; i < nbits; i++)
1751 bool_vector_set (new, i, bool_vector_bitref (seq, nbits - i - 1));
1752 }
1753 else if (STRINGP (seq))
1754 {
1755 ptrdiff_t size = SCHARS (seq), bytes = SBYTES (seq);
1756
1757 if (size == bytes)
1758 {
1759 ptrdiff_t i;
1760
1761 new = make_uninit_string (size);
1762 for (i = 0; i < size; i++)
1763 SSET (new, i, SREF (seq, size - i - 1));
1764 }
1765 else
1766 {
1767 unsigned char *p, *q;
1768
1769 new = make_uninit_multibyte_string (size, bytes);
1770 p = SDATA (seq), q = SDATA (new) + bytes;
1771 while (q > SDATA (new))
1772 {
1773 int ch, len;
1774
1775 ch = STRING_CHAR_AND_LENGTH (p, len);
1776 p += len, q -= len;
1777 CHAR_STRING (ch, q);
1778 }
1779 }
1780 }
1781 else
1782 wrong_type_argument (Qsequencep, seq);
1783 return new;
1784 }
1785 \f
1786 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1787 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1788 Returns the sorted list. LIST is modified by side effects.
1789 PREDICATE is called with two elements of LIST, and should return non-nil
1790 if the first element should sort before the second. */)
1791 (Lisp_Object list, Lisp_Object predicate)
1792 {
1793 Lisp_Object front, back;
1794 register Lisp_Object len, tem;
1795 struct gcpro gcpro1, gcpro2;
1796 EMACS_INT length;
1797
1798 front = list;
1799 len = Flength (list);
1800 length = XINT (len);
1801 if (length < 2)
1802 return list;
1803
1804 XSETINT (len, (length / 2) - 1);
1805 tem = Fnthcdr (len, list);
1806 back = Fcdr (tem);
1807 Fsetcdr (tem, Qnil);
1808
1809 GCPRO2 (front, back);
1810 front = Fsort (front, predicate);
1811 back = Fsort (back, predicate);
1812 UNGCPRO;
1813 return merge (front, back, predicate);
1814 }
1815
1816 Lisp_Object
1817 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1818 {
1819 Lisp_Object value;
1820 register Lisp_Object tail;
1821 Lisp_Object tem;
1822 register Lisp_Object l1, l2;
1823 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1824
1825 l1 = org_l1;
1826 l2 = org_l2;
1827 tail = Qnil;
1828 value = Qnil;
1829
1830 /* It is sufficient to protect org_l1 and org_l2.
1831 When l1 and l2 are updated, we copy the new values
1832 back into the org_ vars. */
1833 GCPRO4 (org_l1, org_l2, pred, value);
1834
1835 while (1)
1836 {
1837 if (NILP (l1))
1838 {
1839 UNGCPRO;
1840 if (NILP (tail))
1841 return l2;
1842 Fsetcdr (tail, l2);
1843 return value;
1844 }
1845 if (NILP (l2))
1846 {
1847 UNGCPRO;
1848 if (NILP (tail))
1849 return l1;
1850 Fsetcdr (tail, l1);
1851 return value;
1852 }
1853 tem = call2 (pred, Fcar (l2), Fcar (l1));
1854 if (NILP (tem))
1855 {
1856 tem = l1;
1857 l1 = Fcdr (l1);
1858 org_l1 = l1;
1859 }
1860 else
1861 {
1862 tem = l2;
1863 l2 = Fcdr (l2);
1864 org_l2 = l2;
1865 }
1866 if (NILP (tail))
1867 value = tem;
1868 else
1869 Fsetcdr (tail, tem);
1870 tail = tem;
1871 }
1872 }
1873
1874 \f
1875 /* This does not check for quits. That is safe since it must terminate. */
1876
1877 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1878 doc: /* Extract a value from a property list.
1879 PLIST is a property list, which is a list of the form
1880 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1881 corresponding to the given PROP, or nil if PROP is not one of the
1882 properties on the list. This function never signals an error. */)
1883 (Lisp_Object plist, Lisp_Object prop)
1884 {
1885 Lisp_Object tail, halftail;
1886
1887 /* halftail is used to detect circular lists. */
1888 tail = halftail = plist;
1889 while (CONSP (tail) && CONSP (XCDR (tail)))
1890 {
1891 if (EQ (prop, XCAR (tail)))
1892 return XCAR (XCDR (tail));
1893
1894 tail = XCDR (XCDR (tail));
1895 halftail = XCDR (halftail);
1896 if (EQ (tail, halftail))
1897 break;
1898 }
1899
1900 return Qnil;
1901 }
1902
1903 DEFUN ("get", Fget, Sget, 2, 2, 0,
1904 doc: /* Return the value of SYMBOL's PROPNAME property.
1905 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1906 (Lisp_Object symbol, Lisp_Object propname)
1907 {
1908 CHECK_SYMBOL (symbol);
1909 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1910 }
1911
1912 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1913 doc: /* Change value in PLIST of PROP to VAL.
1914 PLIST is a property list, which is a list of the form
1915 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1916 If PROP is already a property on the list, its value is set to VAL,
1917 otherwise the new PROP VAL pair is added. The new plist is returned;
1918 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1919 The PLIST is modified by side effects. */)
1920 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1921 {
1922 register Lisp_Object tail, prev;
1923 Lisp_Object newcell;
1924 prev = Qnil;
1925 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1926 tail = XCDR (XCDR (tail)))
1927 {
1928 if (EQ (prop, XCAR (tail)))
1929 {
1930 Fsetcar (XCDR (tail), val);
1931 return plist;
1932 }
1933
1934 prev = tail;
1935 QUIT;
1936 }
1937 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1938 if (NILP (prev))
1939 return newcell;
1940 else
1941 Fsetcdr (XCDR (prev), newcell);
1942 return plist;
1943 }
1944
1945 DEFUN ("put", Fput, Sput, 3, 3, 0,
1946 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1947 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1948 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1949 {
1950 CHECK_SYMBOL (symbol);
1951 set_symbol_plist
1952 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1953 return value;
1954 }
1955 \f
1956 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1957 doc: /* Extract a value from a property list, comparing with `equal'.
1958 PLIST is a property list, which is a list of the form
1959 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1960 corresponding to the given PROP, or nil if PROP is not
1961 one of the properties on the list. */)
1962 (Lisp_Object plist, Lisp_Object prop)
1963 {
1964 Lisp_Object tail;
1965
1966 for (tail = plist;
1967 CONSP (tail) && CONSP (XCDR (tail));
1968 tail = XCDR (XCDR (tail)))
1969 {
1970 if (! NILP (Fequal (prop, XCAR (tail))))
1971 return XCAR (XCDR (tail));
1972
1973 QUIT;
1974 }
1975
1976 CHECK_LIST_END (tail, prop);
1977
1978 return Qnil;
1979 }
1980
1981 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1982 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1983 PLIST is a property list, which is a list of the form
1984 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1985 If PROP is already a property on the list, its value is set to VAL,
1986 otherwise the new PROP VAL pair is added. The new plist is returned;
1987 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1988 The PLIST is modified by side effects. */)
1989 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1990 {
1991 register Lisp_Object tail, prev;
1992 Lisp_Object newcell;
1993 prev = Qnil;
1994 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1995 tail = XCDR (XCDR (tail)))
1996 {
1997 if (! NILP (Fequal (prop, XCAR (tail))))
1998 {
1999 Fsetcar (XCDR (tail), val);
2000 return plist;
2001 }
2002
2003 prev = tail;
2004 QUIT;
2005 }
2006 newcell = list2 (prop, val);
2007 if (NILP (prev))
2008 return newcell;
2009 else
2010 Fsetcdr (XCDR (prev), newcell);
2011 return plist;
2012 }
2013 \f
2014 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2015 doc: /* Return t if the two args are the same Lisp object.
2016 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2017 (Lisp_Object obj1, Lisp_Object obj2)
2018 {
2019 return scm_is_true (scm_eqv_p (obj1, obj2)) ? Qt : Qnil;
2020 }
2021
2022 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2023 doc: /* Return t if two Lisp objects have similar structure and contents.
2024 They must have the same data type.
2025 Conses are compared by comparing the cars and the cdrs.
2026 Vectors and strings are compared element by element.
2027 Numbers are compared by value, but integers cannot equal floats.
2028 (Use `=' if you want integers and floats to be able to be equal.)
2029 Symbols must match exactly. */)
2030 (register Lisp_Object o1, Lisp_Object o2)
2031 {
2032 return scm_is_true (scm_equal_p (o1, o2)) ? Qt : Qnil;
2033 }
2034
2035 SCM compare_text_properties = SCM_BOOL_F;
2036
2037 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2038 doc: /* Return t if two Lisp objects have similar structure and contents.
2039 This is like `equal' except that it compares the text properties
2040 of strings. (`equal' ignores text properties.) */)
2041 (register Lisp_Object o1, Lisp_Object o2)
2042 {
2043 Lisp_Object tem;
2044
2045 scm_dynwind_begin (0);
2046 scm_dynwind_fluid (compare_text_properties, SCM_BOOL_T);
2047 tem = Fequal (o1, o2);
2048 scm_dynwind_end ();
2049 return tem;
2050 }
2051
2052 static SCM
2053 misc_equal_p (SCM o1, SCM o2)
2054 {
2055 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2056 return SCM_BOOL_F;
2057 if (OVERLAYP (o1))
2058 {
2059 if (NILP (Fequal (OVERLAY_START (o1), OVERLAY_START (o2)))
2060 || NILP (Fequal (OVERLAY_END (o1), OVERLAY_END (o2))))
2061 return SCM_BOOL_F;
2062 return scm_equal_p (XOVERLAY (o1)->plist, XOVERLAY (o2)->plist);
2063 }
2064 if (MARKERP (o1))
2065 {
2066 struct Lisp_Marker *m1 = XMARKER (o1), *m2 = XMARKER (o2);
2067 return scm_from_bool (m1->buffer == m2->buffer
2068 && (m1->buffer == 0
2069 || m1->bytepos == m2->bytepos));
2070 }
2071 return SCM_BOOL_F;
2072 }
2073
2074 static SCM
2075 vectorlike_equal_p (SCM o1, SCM o2)
2076 {
2077 int i;
2078 ptrdiff_t size = ASIZE (o1);
2079 /* Pseudovectors have the type encoded in the size field, so this
2080 test actually checks that the objects have the same type as well
2081 as the same size. */
2082 if (ASIZE (o2) != size)
2083 return SCM_BOOL_F;
2084 /* Boolvectors are compared much like strings. */
2085 if (BOOL_VECTOR_P (o1))
2086 {
2087 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2088 return SCM_BOOL_F;
2089 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2090 ((XBOOL_VECTOR (o1)->size
2091 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2092 / BOOL_VECTOR_BITS_PER_CHAR)))
2093 return SCM_BOOL_F;
2094 return SCM_BOOL_T;
2095 }
2096 if (WINDOW_CONFIGURATIONP (o1))
2097 return scm_from_bool (compare_window_configurations (o1, o2, 0));
2098
2099 /* Aside from them, only true vectors, char-tables, compiled
2100 functions, and fonts (font-spec, font-entity, font-object) are
2101 sensible to compare, so eliminate the others now. */
2102 if (size & PSEUDOVECTOR_FLAG)
2103 {
2104 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2105 < PVEC_COMPILED)
2106 return SCM_BOOL_F;
2107 size &= PSEUDOVECTOR_SIZE_MASK;
2108 }
2109 for (i = 0; i < size; i++)
2110 {
2111 Lisp_Object v1, v2;
2112 v1 = AREF (o1, i);
2113 v2 = AREF (o2, i);
2114 if (scm_is_false (scm_equal_p (v1, v2)))
2115 return SCM_BOOL_F;
2116 }
2117 return SCM_BOOL_T;
2118 }
2119
2120 static SCM
2121 string_equal_p (SCM o1, SCM o2)
2122 {
2123 if (SCHARS (o1) != SCHARS (o2))
2124 return SCM_BOOL_F;
2125 if (SBYTES (o1) != SBYTES (o2))
2126 return SCM_BOOL_F;
2127 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2128 return SCM_BOOL_F;
2129 if (scm_is_true (scm_fluid_ref (compare_text_properties))
2130 && !compare_string_intervals (o1, o2))
2131 return SCM_BOOL_F;
2132 return SCM_BOOL_T;
2133 }
2134 \f
2135
2136 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2137 doc: /* Store each element of ARRAY with ITEM.
2138 ARRAY is a vector, string, char-table, or bool-vector. */)
2139 (Lisp_Object array, Lisp_Object item)
2140 {
2141 register ptrdiff_t size, idx;
2142
2143 if (VECTORP (array))
2144 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2145 ASET (array, idx, item);
2146 else if (CHAR_TABLE_P (array))
2147 {
2148 int i;
2149
2150 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2151 set_char_table_contents (array, i, item);
2152 set_char_table_defalt (array, item);
2153 }
2154 else if (STRINGP (array))
2155 {
2156 register unsigned char *p = SDATA (array);
2157 int charval;
2158 CHECK_CHARACTER (item);
2159 charval = XFASTINT (item);
2160 size = SCHARS (array);
2161 if (STRING_MULTIBYTE (array))
2162 {
2163 unsigned char str[MAX_MULTIBYTE_LENGTH];
2164 int len = CHAR_STRING (charval, str);
2165 ptrdiff_t size_byte = SBYTES (array);
2166
2167 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2168 || SCHARS (array) * len != size_byte)
2169 error ("Attempt to change byte length of a string");
2170 for (idx = 0; idx < size_byte; idx++)
2171 *p++ = str[idx % len];
2172 }
2173 else
2174 for (idx = 0; idx < size; idx++)
2175 p[idx] = charval;
2176 }
2177 else if (BOOL_VECTOR_P (array))
2178 return bool_vector_fill (array, item);
2179 else
2180 wrong_type_argument (Qarrayp, array);
2181 return array;
2182 }
2183
2184 DEFUN ("clear-string", Fclear_string, Sclear_string,
2185 1, 1, 0,
2186 doc: /* Clear the contents of STRING.
2187 This makes STRING unibyte and may change its length. */)
2188 (Lisp_Object string)
2189 {
2190 ptrdiff_t len;
2191 CHECK_STRING (string);
2192 len = SBYTES (string);
2193 memset (SDATA (string), 0, len);
2194 STRING_SET_CHARS (string, len);
2195 STRING_SET_UNIBYTE (string);
2196 return Qnil;
2197 }
2198 \f
2199 /* ARGSUSED */
2200 Lisp_Object
2201 nconc2 (Lisp_Object s1, Lisp_Object s2)
2202 {
2203 Lisp_Object args[2];
2204 args[0] = s1;
2205 args[1] = s2;
2206 return Fnconc (2, args);
2207 }
2208
2209 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2210 doc: /* Concatenate any number of lists by altering them.
2211 Only the last argument is not altered, and need not be a list.
2212 usage: (nconc &rest LISTS) */)
2213 (ptrdiff_t nargs, Lisp_Object *args)
2214 {
2215 ptrdiff_t argnum;
2216 register Lisp_Object tail, tem, val;
2217
2218 val = tail = Qnil;
2219
2220 for (argnum = 0; argnum < nargs; argnum++)
2221 {
2222 tem = args[argnum];
2223 if (NILP (tem)) continue;
2224
2225 if (NILP (val))
2226 val = tem;
2227
2228 if (argnum + 1 == nargs) break;
2229
2230 CHECK_LIST_CONS (tem, tem);
2231
2232 while (CONSP (tem))
2233 {
2234 tail = tem;
2235 tem = XCDR (tail);
2236 QUIT;
2237 }
2238
2239 tem = args[argnum + 1];
2240 Fsetcdr (tail, tem);
2241 if (NILP (tem))
2242 args[argnum + 1] = tail;
2243 }
2244
2245 return val;
2246 }
2247 \f
2248 /* This is the guts of all mapping functions.
2249 Apply FN to each element of SEQ, one by one,
2250 storing the results into elements of VALS, a C vector of Lisp_Objects.
2251 LENI is the length of VALS, which should also be the length of SEQ. */
2252
2253 static void
2254 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2255 {
2256 register Lisp_Object tail;
2257 Lisp_Object dummy;
2258 register EMACS_INT i;
2259 struct gcpro gcpro1, gcpro2, gcpro3;
2260
2261 if (vals)
2262 {
2263 /* Don't let vals contain any garbage when GC happens. */
2264 for (i = 0; i < leni; i++)
2265 vals[i] = Qnil;
2266
2267 GCPRO3 (dummy, fn, seq);
2268 gcpro1.var = vals;
2269 gcpro1.nvars = leni;
2270 }
2271 else
2272 GCPRO2 (fn, seq);
2273 /* We need not explicitly protect `tail' because it is used only on lists, and
2274 1) lists are not relocated and 2) the list is marked via `seq' so will not
2275 be freed */
2276
2277 if (VECTORP (seq) || COMPILEDP (seq))
2278 {
2279 for (i = 0; i < leni; i++)
2280 {
2281 dummy = call1 (fn, AREF (seq, i));
2282 if (vals)
2283 vals[i] = dummy;
2284 }
2285 }
2286 else if (BOOL_VECTOR_P (seq))
2287 {
2288 for (i = 0; i < leni; i++)
2289 {
2290 dummy = call1 (fn, bool_vector_ref (seq, i));
2291 if (vals)
2292 vals[i] = dummy;
2293 }
2294 }
2295 else if (STRINGP (seq))
2296 {
2297 ptrdiff_t i_byte;
2298
2299 for (i = 0, i_byte = 0; i < leni;)
2300 {
2301 int c;
2302 ptrdiff_t i_before = i;
2303
2304 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2305 XSETFASTINT (dummy, c);
2306 dummy = call1 (fn, dummy);
2307 if (vals)
2308 vals[i_before] = dummy;
2309 }
2310 }
2311 else /* Must be a list, since Flength did not get an error */
2312 {
2313 tail = seq;
2314 for (i = 0; i < leni && CONSP (tail); i++)
2315 {
2316 dummy = call1 (fn, XCAR (tail));
2317 if (vals)
2318 vals[i] = dummy;
2319 tail = XCDR (tail);
2320 }
2321 }
2322
2323 UNGCPRO;
2324 }
2325
2326 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2327 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2328 In between each pair of results, stick in SEPARATOR. Thus, " " as
2329 SEPARATOR results in spaces between the values returned by FUNCTION.
2330 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2331 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2332 {
2333 Lisp_Object len;
2334 register EMACS_INT leni;
2335 EMACS_INT nargs;
2336 ptrdiff_t i;
2337 register Lisp_Object *args;
2338 struct gcpro gcpro1;
2339 Lisp_Object ret;
2340 USE_SAFE_ALLOCA;
2341
2342 len = Flength (sequence);
2343 if (CHAR_TABLE_P (sequence))
2344 wrong_type_argument (Qlistp, sequence);
2345 leni = XINT (len);
2346 nargs = leni + leni - 1;
2347 if (nargs < 0) return empty_unibyte_string;
2348
2349 SAFE_ALLOCA_LISP (args, nargs);
2350
2351 GCPRO1 (separator);
2352 mapcar1 (leni, args, function, sequence);
2353 UNGCPRO;
2354
2355 for (i = leni - 1; i > 0; i--)
2356 args[i + i] = args[i];
2357
2358 for (i = 1; i < nargs; i += 2)
2359 args[i] = separator;
2360
2361 ret = Fconcat (nargs, args);
2362 SAFE_FREE ();
2363
2364 return ret;
2365 }
2366
2367 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2368 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2369 The result is a list just as long as SEQUENCE.
2370 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2371 (Lisp_Object function, Lisp_Object sequence)
2372 {
2373 register Lisp_Object len;
2374 register EMACS_INT leni;
2375 register Lisp_Object *args;
2376 Lisp_Object ret;
2377 USE_SAFE_ALLOCA;
2378
2379 len = Flength (sequence);
2380 if (CHAR_TABLE_P (sequence))
2381 wrong_type_argument (Qlistp, sequence);
2382 leni = XFASTINT (len);
2383
2384 SAFE_ALLOCA_LISP (args, leni);
2385
2386 mapcar1 (leni, args, function, sequence);
2387
2388 ret = Flist (leni, args);
2389 SAFE_FREE ();
2390
2391 return ret;
2392 }
2393
2394 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2395 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2396 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2397 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2398 (Lisp_Object function, Lisp_Object sequence)
2399 {
2400 register EMACS_INT leni;
2401
2402 leni = XFASTINT (Flength (sequence));
2403 if (CHAR_TABLE_P (sequence))
2404 wrong_type_argument (Qlistp, sequence);
2405 mapcar1 (leni, 0, function, sequence);
2406
2407 return sequence;
2408 }
2409 \f
2410 /* This is how C code calls `yes-or-no-p' and allows the user
2411 to redefined it.
2412
2413 Anything that calls this function must protect from GC! */
2414
2415 Lisp_Object
2416 do_yes_or_no_p (Lisp_Object prompt)
2417 {
2418 return call1 (intern ("yes-or-no-p"), prompt);
2419 }
2420
2421 /* Anything that calls this function must protect from GC! */
2422
2423 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2424 doc: /* Ask user a yes-or-no question.
2425 Return t if answer is yes, and nil if the answer is no.
2426 PROMPT is the string to display to ask the question. It should end in
2427 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2428
2429 The user must confirm the answer with RET, and can edit it until it
2430 has been confirmed.
2431
2432 If dialog boxes are supported, a dialog box will be used
2433 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2434 (Lisp_Object prompt)
2435 {
2436 register Lisp_Object ans;
2437 Lisp_Object args[2];
2438 struct gcpro gcpro1;
2439
2440 CHECK_STRING (prompt);
2441
2442 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2443 && use_dialog_box)
2444 {
2445 Lisp_Object pane, menu, obj;
2446 redisplay_preserve_echo_area (4);
2447 pane = list2 (Fcons (build_string ("Yes"), Qt),
2448 Fcons (build_string ("No"), Qnil));
2449 GCPRO1 (pane);
2450 menu = Fcons (prompt, pane);
2451 obj = Fx_popup_dialog (Qt, menu, Qnil);
2452 UNGCPRO;
2453 return obj;
2454 }
2455
2456 args[0] = prompt;
2457 args[1] = build_string ("(yes or no) ");
2458 prompt = Fconcat (2, args);
2459
2460 GCPRO1 (prompt);
2461
2462 while (1)
2463 {
2464 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2465 Qyes_or_no_p_history, Qnil,
2466 Qnil));
2467 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2468 {
2469 UNGCPRO;
2470 return Qt;
2471 }
2472 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2473 {
2474 UNGCPRO;
2475 return Qnil;
2476 }
2477
2478 Fding (Qnil);
2479 Fdiscard_input ();
2480 message1 ("Please answer yes or no.");
2481 Fsleep_for (make_number (2), Qnil);
2482 }
2483 }
2484 \f
2485 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2486 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2487
2488 Each of the three load averages is multiplied by 100, then converted
2489 to integer.
2490
2491 When USE-FLOATS is non-nil, floats will be used instead of integers.
2492 These floats are not multiplied by 100.
2493
2494 If the 5-minute or 15-minute load averages are not available, return a
2495 shortened list, containing only those averages which are available.
2496
2497 An error is thrown if the load average can't be obtained. In some
2498 cases making it work would require Emacs being installed setuid or
2499 setgid so that it can read kernel information, and that usually isn't
2500 advisable. */)
2501 (Lisp_Object use_floats)
2502 {
2503 double load_ave[3];
2504 int loads = getloadavg (load_ave, 3);
2505 Lisp_Object ret = Qnil;
2506
2507 if (loads < 0)
2508 error ("load-average not implemented for this operating system");
2509
2510 while (loads-- > 0)
2511 {
2512 Lisp_Object load = (NILP (use_floats)
2513 ? make_number (100.0 * load_ave[loads])
2514 : make_float (load_ave[loads]));
2515 ret = Fcons (load, ret);
2516 }
2517
2518 return ret;
2519 }
2520 \f
2521 static Lisp_Object Qsubfeatures;
2522
2523 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2524 doc: /* Return t if FEATURE is present in this Emacs.
2525
2526 Use this to conditionalize execution of lisp code based on the
2527 presence or absence of Emacs or environment extensions.
2528 Use `provide' to declare that a feature is available. This function
2529 looks at the value of the variable `features'. The optional argument
2530 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2531 (Lisp_Object feature, Lisp_Object subfeature)
2532 {
2533 register Lisp_Object tem;
2534 CHECK_SYMBOL (feature);
2535 tem = Fmemq (feature, Vfeatures);
2536 if (!NILP (tem) && !NILP (subfeature))
2537 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2538 return (NILP (tem)) ? Qnil : Qt;
2539 }
2540
2541 static Lisp_Object Qfuncall;
2542
2543 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2544 doc: /* Announce that FEATURE is a feature of the current Emacs.
2545 The optional argument SUBFEATURES should be a list of symbols listing
2546 particular subfeatures supported in this version of FEATURE. */)
2547 (Lisp_Object feature, Lisp_Object subfeatures)
2548 {
2549 register Lisp_Object tem;
2550 CHECK_SYMBOL (feature);
2551 CHECK_LIST (subfeatures);
2552 if (!NILP (Vautoload_queue))
2553 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2554 Vautoload_queue);
2555 tem = Fmemq (feature, Vfeatures);
2556 if (NILP (tem))
2557 Vfeatures = Fcons (feature, Vfeatures);
2558 if (!NILP (subfeatures))
2559 Fput (feature, Qsubfeatures, subfeatures);
2560 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2561
2562 /* Run any load-hooks for this file. */
2563 tem = Fassq (feature, Vafter_load_alist);
2564 if (CONSP (tem))
2565 Fmapc (Qfuncall, XCDR (tem));
2566
2567 return feature;
2568 }
2569 \f
2570 /* `require' and its subroutines. */
2571
2572 /* List of features currently being require'd, innermost first. */
2573
2574 static Lisp_Object require_nesting_list;
2575
2576 static void
2577 require_unwind (Lisp_Object old_value)
2578 {
2579 require_nesting_list = old_value;
2580 }
2581
2582 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2583 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2584 If FEATURE is not a member of the list `features', then the feature
2585 is not loaded; so load the file FILENAME.
2586 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2587 and `load' will try to load this name appended with the suffix `.elc' or
2588 `.el', in that order. The name without appended suffix will not be used.
2589 See `get-load-suffixes' for the complete list of suffixes.
2590 If the optional third argument NOERROR is non-nil,
2591 then return nil if the file is not found instead of signaling an error.
2592 Normally the return value is FEATURE.
2593 The normal messages at start and end of loading FILENAME are suppressed. */)
2594 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2595 {
2596 Lisp_Object tem;
2597 struct gcpro gcpro1, gcpro2;
2598 bool from_file = load_in_progress;
2599
2600 CHECK_SYMBOL (feature);
2601
2602 /* Record the presence of `require' in this file
2603 even if the feature specified is already loaded.
2604 But not more than once in any file,
2605 and not when we aren't loading or reading from a file. */
2606 if (!from_file)
2607 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2608 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2609 from_file = 1;
2610
2611 if (from_file)
2612 {
2613 tem = Fcons (Qrequire, feature);
2614 if (NILP (Fmember (tem, Vcurrent_load_list)))
2615 LOADHIST_ATTACH (tem);
2616 }
2617 tem = Fmemq (feature, Vfeatures);
2618
2619 if (NILP (tem))
2620 {
2621 dynwind_begin ();
2622 int nesting = 0;
2623
2624 /* This is to make sure that loadup.el gives a clear picture
2625 of what files are preloaded and when. */
2626 if (! NILP (Vpurify_flag))
2627 error ("(require %s) while preparing to dump",
2628 SDATA (SYMBOL_NAME (feature)));
2629
2630 /* A certain amount of recursive `require' is legitimate,
2631 but if we require the same feature recursively 3 times,
2632 signal an error. */
2633 tem = require_nesting_list;
2634 while (! NILP (tem))
2635 {
2636 if (! NILP (Fequal (feature, XCAR (tem))))
2637 nesting++;
2638 tem = XCDR (tem);
2639 }
2640 if (nesting > 3)
2641 error ("Recursive `require' for feature `%s'",
2642 SDATA (SYMBOL_NAME (feature)));
2643
2644 /* Update the list for any nested `require's that occur. */
2645 record_unwind_protect (require_unwind, require_nesting_list);
2646 require_nesting_list = Fcons (feature, require_nesting_list);
2647
2648 /* Value saved here is to be restored into Vautoload_queue */
2649 record_unwind_protect (un_autoload, Vautoload_queue);
2650 Vautoload_queue = Qt;
2651
2652 /* Load the file. */
2653 GCPRO2 (feature, filename);
2654 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2655 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2656 UNGCPRO;
2657
2658 /* If load failed entirely, return nil. */
2659 if (NILP (tem)){
2660
2661 dynwind_end ();
2662 return Qnil;
2663 }
2664
2665 tem = Fmemq (feature, Vfeatures);
2666 if (NILP (tem))
2667 error ("Required feature `%s' was not provided",
2668 SDATA (SYMBOL_NAME (feature)));
2669
2670 /* Once loading finishes, don't undo it. */
2671 Vautoload_queue = Qt;
2672 dynwind_end ();
2673 }
2674
2675 return feature;
2676 }
2677 \f
2678 /* Primitives for work of the "widget" library.
2679 In an ideal world, this section would not have been necessary.
2680 However, lisp function calls being as slow as they are, it turns
2681 out that some functions in the widget library (wid-edit.el) are the
2682 bottleneck of Widget operation. Here is their translation to C,
2683 for the sole reason of efficiency. */
2684
2685 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2686 doc: /* Return non-nil if PLIST has the property PROP.
2687 PLIST is a property list, which is a list of the form
2688 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2689 Unlike `plist-get', this allows you to distinguish between a missing
2690 property and a property with the value nil.
2691 The value is actually the tail of PLIST whose car is PROP. */)
2692 (Lisp_Object plist, Lisp_Object prop)
2693 {
2694 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2695 {
2696 QUIT;
2697 plist = XCDR (plist);
2698 plist = CDR (plist);
2699 }
2700 return plist;
2701 }
2702
2703 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2704 doc: /* In WIDGET, set PROPERTY to VALUE.
2705 The value can later be retrieved with `widget-get'. */)
2706 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2707 {
2708 CHECK_CONS (widget);
2709 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2710 return value;
2711 }
2712
2713 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2714 doc: /* In WIDGET, get the value of PROPERTY.
2715 The value could either be specified when the widget was created, or
2716 later with `widget-put'. */)
2717 (Lisp_Object widget, Lisp_Object property)
2718 {
2719 Lisp_Object tmp;
2720
2721 while (1)
2722 {
2723 if (NILP (widget))
2724 return Qnil;
2725 CHECK_CONS (widget);
2726 tmp = Fplist_member (XCDR (widget), property);
2727 if (CONSP (tmp))
2728 {
2729 tmp = XCDR (tmp);
2730 return CAR (tmp);
2731 }
2732 tmp = XCAR (widget);
2733 if (NILP (tmp))
2734 return Qnil;
2735 widget = Fget (tmp, Qwidget_type);
2736 }
2737 }
2738
2739 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2740 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2741 ARGS are passed as extra arguments to the function.
2742 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2743 (ptrdiff_t nargs, Lisp_Object *args)
2744 {
2745 /* This function can GC. */
2746 Lisp_Object newargs[3];
2747 struct gcpro gcpro1, gcpro2;
2748 Lisp_Object result;
2749
2750 newargs[0] = Fwidget_get (args[0], args[1]);
2751 newargs[1] = args[0];
2752 newargs[2] = Flist (nargs - 2, args + 2);
2753 GCPRO2 (newargs[0], newargs[2]);
2754 result = Fapply (3, newargs);
2755 UNGCPRO;
2756 return result;
2757 }
2758
2759 #ifdef HAVE_LANGINFO_CODESET
2760 #include <langinfo.h>
2761 #endif
2762
2763 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2764 doc: /* Access locale data ITEM for the current C locale, if available.
2765 ITEM should be one of the following:
2766
2767 `codeset', returning the character set as a string (locale item CODESET);
2768
2769 `days', returning a 7-element vector of day names (locale items DAY_n);
2770
2771 `months', returning a 12-element vector of month names (locale items MON_n);
2772
2773 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2774 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2775
2776 If the system can't provide such information through a call to
2777 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2778
2779 See also Info node `(libc)Locales'.
2780
2781 The data read from the system are decoded using `locale-coding-system'. */)
2782 (Lisp_Object item)
2783 {
2784 char *str = NULL;
2785 #ifdef HAVE_LANGINFO_CODESET
2786 Lisp_Object val;
2787 if (EQ (item, Qcodeset))
2788 {
2789 str = nl_langinfo (CODESET);
2790 return build_string (str);
2791 }
2792 #ifdef DAY_1
2793 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2794 {
2795 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2796 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2797 int i;
2798 struct gcpro gcpro1;
2799 GCPRO1 (v);
2800 synchronize_system_time_locale ();
2801 for (i = 0; i < 7; i++)
2802 {
2803 str = nl_langinfo (days[i]);
2804 val = build_unibyte_string (str);
2805 /* Fixme: Is this coding system necessarily right, even if
2806 it is consistent with CODESET? If not, what to do? */
2807 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2808 0));
2809 }
2810 UNGCPRO;
2811 return v;
2812 }
2813 #endif /* DAY_1 */
2814 #ifdef MON_1
2815 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2816 {
2817 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2818 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2819 MON_8, MON_9, MON_10, MON_11, MON_12};
2820 int i;
2821 struct gcpro gcpro1;
2822 GCPRO1 (v);
2823 synchronize_system_time_locale ();
2824 for (i = 0; i < 12; i++)
2825 {
2826 str = nl_langinfo (months[i]);
2827 val = build_unibyte_string (str);
2828 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2829 0));
2830 }
2831 UNGCPRO;
2832 return v;
2833 }
2834 #endif /* MON_1 */
2835 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2836 but is in the locale files. This could be used by ps-print. */
2837 #ifdef PAPER_WIDTH
2838 else if (EQ (item, Qpaper))
2839 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2840 #endif /* PAPER_WIDTH */
2841 #endif /* HAVE_LANGINFO_CODESET*/
2842 return Qnil;
2843 }
2844 \f
2845 /* base64 encode/decode functions (RFC 2045).
2846 Based on code from GNU recode. */
2847
2848 #define MIME_LINE_LENGTH 76
2849
2850 #define IS_ASCII(Character) \
2851 ((Character) < 128)
2852 #define IS_BASE64(Character) \
2853 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2854 #define IS_BASE64_IGNORABLE(Character) \
2855 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2856 || (Character) == '\f' || (Character) == '\r')
2857
2858 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2859 character or return retval if there are no characters left to
2860 process. */
2861 #define READ_QUADRUPLET_BYTE(retval) \
2862 do \
2863 { \
2864 if (i == length) \
2865 { \
2866 if (nchars_return) \
2867 *nchars_return = nchars; \
2868 return (retval); \
2869 } \
2870 c = from[i++]; \
2871 } \
2872 while (IS_BASE64_IGNORABLE (c))
2873
2874 /* Table of characters coding the 64 values. */
2875 static const char base64_value_to_char[64] =
2876 {
2877 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2878 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2879 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2880 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2881 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2882 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2883 '8', '9', '+', '/' /* 60-63 */
2884 };
2885
2886 /* Table of base64 values for first 128 characters. */
2887 static const short base64_char_to_value[128] =
2888 {
2889 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2890 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2891 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2892 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2893 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2894 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2895 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2896 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2897 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2898 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2899 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2900 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2901 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2902 };
2903
2904 /* The following diagram shows the logical steps by which three octets
2905 get transformed into four base64 characters.
2906
2907 .--------. .--------. .--------.
2908 |aaaaaabb| |bbbbcccc| |ccdddddd|
2909 `--------' `--------' `--------'
2910 6 2 4 4 2 6
2911 .--------+--------+--------+--------.
2912 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2913 `--------+--------+--------+--------'
2914
2915 .--------+--------+--------+--------.
2916 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2917 `--------+--------+--------+--------'
2918
2919 The octets are divided into 6 bit chunks, which are then encoded into
2920 base64 characters. */
2921
2922
2923 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2924 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2925 ptrdiff_t *);
2926
2927 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2928 2, 3, "r",
2929 doc: /* Base64-encode the region between BEG and END.
2930 Return the length of the encoded text.
2931 Optional third argument NO-LINE-BREAK means do not break long lines
2932 into shorter lines. */)
2933 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2934 {
2935 char *encoded;
2936 ptrdiff_t allength, length;
2937 ptrdiff_t ibeg, iend, encoded_length;
2938 ptrdiff_t old_pos = PT;
2939 USE_SAFE_ALLOCA;
2940
2941 validate_region (&beg, &end);
2942
2943 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2944 iend = CHAR_TO_BYTE (XFASTINT (end));
2945 move_gap_both (XFASTINT (beg), ibeg);
2946
2947 /* We need to allocate enough room for encoding the text.
2948 We need 33 1/3% more space, plus a newline every 76
2949 characters, and then we round up. */
2950 length = iend - ibeg;
2951 allength = length + length/3 + 1;
2952 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2953
2954 encoded = SAFE_ALLOCA (allength);
2955 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2956 encoded, length, NILP (no_line_break),
2957 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2958 if (encoded_length > allength)
2959 emacs_abort ();
2960
2961 if (encoded_length < 0)
2962 {
2963 /* The encoding wasn't possible. */
2964 SAFE_FREE ();
2965 error ("Multibyte character in data for base64 encoding");
2966 }
2967
2968 /* Now we have encoded the region, so we insert the new contents
2969 and delete the old. (Insert first in order to preserve markers.) */
2970 SET_PT_BOTH (XFASTINT (beg), ibeg);
2971 insert (encoded, encoded_length);
2972 SAFE_FREE ();
2973 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2974
2975 /* If point was outside of the region, restore it exactly; else just
2976 move to the beginning of the region. */
2977 if (old_pos >= XFASTINT (end))
2978 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2979 else if (old_pos > XFASTINT (beg))
2980 old_pos = XFASTINT (beg);
2981 SET_PT (old_pos);
2982
2983 /* We return the length of the encoded text. */
2984 return make_number (encoded_length);
2985 }
2986
2987 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2988 1, 2, 0,
2989 doc: /* Base64-encode STRING and return the result.
2990 Optional second argument NO-LINE-BREAK means do not break long lines
2991 into shorter lines. */)
2992 (Lisp_Object string, Lisp_Object no_line_break)
2993 {
2994 ptrdiff_t allength, length, encoded_length;
2995 char *encoded;
2996 Lisp_Object encoded_string;
2997 USE_SAFE_ALLOCA;
2998
2999 CHECK_STRING (string);
3000
3001 /* We need to allocate enough room for encoding the text.
3002 We need 33 1/3% more space, plus a newline every 76
3003 characters, and then we round up. */
3004 length = SBYTES (string);
3005 allength = length + length/3 + 1;
3006 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3007
3008 /* We need to allocate enough room for decoding the text. */
3009 encoded = SAFE_ALLOCA (allength);
3010
3011 encoded_length = base64_encode_1 (SSDATA (string),
3012 encoded, length, NILP (no_line_break),
3013 STRING_MULTIBYTE (string));
3014 if (encoded_length > allength)
3015 emacs_abort ();
3016
3017 if (encoded_length < 0)
3018 {
3019 /* The encoding wasn't possible. */
3020 SAFE_FREE ();
3021 error ("Multibyte character in data for base64 encoding");
3022 }
3023
3024 encoded_string = make_unibyte_string (encoded, encoded_length);
3025 SAFE_FREE ();
3026
3027 return encoded_string;
3028 }
3029
3030 static ptrdiff_t
3031 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3032 bool line_break, bool multibyte)
3033 {
3034 int counter = 0;
3035 ptrdiff_t i = 0;
3036 char *e = to;
3037 int c;
3038 unsigned int value;
3039 int bytes;
3040
3041 while (i < length)
3042 {
3043 if (multibyte)
3044 {
3045 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3046 if (CHAR_BYTE8_P (c))
3047 c = CHAR_TO_BYTE8 (c);
3048 else if (c >= 256)
3049 return -1;
3050 i += bytes;
3051 }
3052 else
3053 c = from[i++];
3054
3055 /* Wrap line every 76 characters. */
3056
3057 if (line_break)
3058 {
3059 if (counter < MIME_LINE_LENGTH / 4)
3060 counter++;
3061 else
3062 {
3063 *e++ = '\n';
3064 counter = 1;
3065 }
3066 }
3067
3068 /* Process first byte of a triplet. */
3069
3070 *e++ = base64_value_to_char[0x3f & c >> 2];
3071 value = (0x03 & c) << 4;
3072
3073 /* Process second byte of a triplet. */
3074
3075 if (i == length)
3076 {
3077 *e++ = base64_value_to_char[value];
3078 *e++ = '=';
3079 *e++ = '=';
3080 break;
3081 }
3082
3083 if (multibyte)
3084 {
3085 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3086 if (CHAR_BYTE8_P (c))
3087 c = CHAR_TO_BYTE8 (c);
3088 else if (c >= 256)
3089 return -1;
3090 i += bytes;
3091 }
3092 else
3093 c = from[i++];
3094
3095 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3096 value = (0x0f & c) << 2;
3097
3098 /* Process third byte of a triplet. */
3099
3100 if (i == length)
3101 {
3102 *e++ = base64_value_to_char[value];
3103 *e++ = '=';
3104 break;
3105 }
3106
3107 if (multibyte)
3108 {
3109 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3110 if (CHAR_BYTE8_P (c))
3111 c = CHAR_TO_BYTE8 (c);
3112 else if (c >= 256)
3113 return -1;
3114 i += bytes;
3115 }
3116 else
3117 c = from[i++];
3118
3119 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3120 *e++ = base64_value_to_char[0x3f & c];
3121 }
3122
3123 return e - to;
3124 }
3125
3126
3127 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3128 2, 2, "r",
3129 doc: /* Base64-decode the region between BEG and END.
3130 Return the length of the decoded text.
3131 If the region can't be decoded, signal an error and don't modify the buffer. */)
3132 (Lisp_Object beg, Lisp_Object end)
3133 {
3134 ptrdiff_t ibeg, iend, length, allength;
3135 char *decoded;
3136 ptrdiff_t old_pos = PT;
3137 ptrdiff_t decoded_length;
3138 ptrdiff_t inserted_chars;
3139 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3140 USE_SAFE_ALLOCA;
3141
3142 validate_region (&beg, &end);
3143
3144 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3145 iend = CHAR_TO_BYTE (XFASTINT (end));
3146
3147 length = iend - ibeg;
3148
3149 /* We need to allocate enough room for decoding the text. If we are
3150 working on a multibyte buffer, each decoded code may occupy at
3151 most two bytes. */
3152 allength = multibyte ? length * 2 : length;
3153 decoded = SAFE_ALLOCA (allength);
3154
3155 move_gap_both (XFASTINT (beg), ibeg);
3156 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3157 decoded, length,
3158 multibyte, &inserted_chars);
3159 if (decoded_length > allength)
3160 emacs_abort ();
3161
3162 if (decoded_length < 0)
3163 {
3164 /* The decoding wasn't possible. */
3165 SAFE_FREE ();
3166 error ("Invalid base64 data");
3167 }
3168
3169 /* Now we have decoded the region, so we insert the new contents
3170 and delete the old. (Insert first in order to preserve markers.) */
3171 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3172 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3173 SAFE_FREE ();
3174
3175 /* Delete the original text. */
3176 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3177 iend + decoded_length, 1);
3178
3179 /* If point was outside of the region, restore it exactly; else just
3180 move to the beginning of the region. */
3181 if (old_pos >= XFASTINT (end))
3182 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3183 else if (old_pos > XFASTINT (beg))
3184 old_pos = XFASTINT (beg);
3185 SET_PT (old_pos > ZV ? ZV : old_pos);
3186
3187 return make_number (inserted_chars);
3188 }
3189
3190 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3191 1, 1, 0,
3192 doc: /* Base64-decode STRING and return the result. */)
3193 (Lisp_Object string)
3194 {
3195 char *decoded;
3196 ptrdiff_t length, decoded_length;
3197 Lisp_Object decoded_string;
3198 USE_SAFE_ALLOCA;
3199
3200 CHECK_STRING (string);
3201
3202 length = SBYTES (string);
3203 /* We need to allocate enough room for decoding the text. */
3204 decoded = SAFE_ALLOCA (length);
3205
3206 /* The decoded result should be unibyte. */
3207 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3208 0, NULL);
3209 if (decoded_length > length)
3210 emacs_abort ();
3211 else if (decoded_length >= 0)
3212 decoded_string = make_unibyte_string (decoded, decoded_length);
3213 else
3214 decoded_string = Qnil;
3215
3216 SAFE_FREE ();
3217 if (!STRINGP (decoded_string))
3218 error ("Invalid base64 data");
3219
3220 return decoded_string;
3221 }
3222
3223 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3224 MULTIBYTE, the decoded result should be in multibyte
3225 form. If NCHARS_RETURN is not NULL, store the number of produced
3226 characters in *NCHARS_RETURN. */
3227
3228 static ptrdiff_t
3229 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3230 bool multibyte, ptrdiff_t *nchars_return)
3231 {
3232 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3233 char *e = to;
3234 unsigned char c;
3235 unsigned long value;
3236 ptrdiff_t nchars = 0;
3237
3238 while (1)
3239 {
3240 /* Process first byte of a quadruplet. */
3241
3242 READ_QUADRUPLET_BYTE (e-to);
3243
3244 if (!IS_BASE64 (c))
3245 return -1;
3246 value = base64_char_to_value[c] << 18;
3247
3248 /* Process second byte of a quadruplet. */
3249
3250 READ_QUADRUPLET_BYTE (-1);
3251
3252 if (!IS_BASE64 (c))
3253 return -1;
3254 value |= base64_char_to_value[c] << 12;
3255
3256 c = (unsigned char) (value >> 16);
3257 if (multibyte && c >= 128)
3258 e += BYTE8_STRING (c, e);
3259 else
3260 *e++ = c;
3261 nchars++;
3262
3263 /* Process third byte of a quadruplet. */
3264
3265 READ_QUADRUPLET_BYTE (-1);
3266
3267 if (c == '=')
3268 {
3269 READ_QUADRUPLET_BYTE (-1);
3270
3271 if (c != '=')
3272 return -1;
3273 continue;
3274 }
3275
3276 if (!IS_BASE64 (c))
3277 return -1;
3278 value |= base64_char_to_value[c] << 6;
3279
3280 c = (unsigned char) (0xff & value >> 8);
3281 if (multibyte && c >= 128)
3282 e += BYTE8_STRING (c, e);
3283 else
3284 *e++ = c;
3285 nchars++;
3286
3287 /* Process fourth byte of a quadruplet. */
3288
3289 READ_QUADRUPLET_BYTE (-1);
3290
3291 if (c == '=')
3292 continue;
3293
3294 if (!IS_BASE64 (c))
3295 return -1;
3296 value |= base64_char_to_value[c];
3297
3298 c = (unsigned char) (0xff & value);
3299 if (multibyte && c >= 128)
3300 e += BYTE8_STRING (c, e);
3301 else
3302 *e++ = c;
3303 nchars++;
3304 }
3305 }
3306
3307
3308 \f
3309 /***********************************************************************
3310 ***** *****
3311 ***** Hash Tables *****
3312 ***** *****
3313 ***********************************************************************/
3314
3315 /* Implemented by gerd@gnu.org. This hash table implementation was
3316 inspired by CMUCL hash tables. */
3317
3318 /* Ideas:
3319
3320 1. For small tables, association lists are probably faster than
3321 hash tables because they have lower overhead.
3322
3323 For uses of hash tables where the O(1) behavior of table
3324 operations is not a requirement, it might therefore be a good idea
3325 not to hash. Instead, we could just do a linear search in the
3326 key_and_value vector of the hash table. This could be done
3327 if a `:linear-search t' argument is given to make-hash-table. */
3328
3329 /* Various symbols. */
3330
3331 static Lisp_Object Qhash_table_p;
3332 static Lisp_Object Qkey, Qvalue, Qeql;
3333 Lisp_Object Qeq, Qequal;
3334 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3335 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3336
3337 \f
3338 /***********************************************************************
3339 Utilities
3340 ***********************************************************************/
3341
3342 static void
3343 CHECK_HASH_TABLE (Lisp_Object x)
3344 {
3345 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3346 }
3347
3348 static void
3349 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3350 {
3351 h->key_and_value = key_and_value;
3352 }
3353 static void
3354 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3355 {
3356 h->next = next;
3357 }
3358 static void
3359 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3360 {
3361 gc_aset (h->next, idx, val);
3362 }
3363 static void
3364 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3365 {
3366 h->hash = hash;
3367 }
3368 static void
3369 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3370 {
3371 gc_aset (h->hash, idx, val);
3372 }
3373 static void
3374 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3375 {
3376 h->index = index;
3377 }
3378 static void
3379 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3380 {
3381 gc_aset (h->index, idx, val);
3382 }
3383
3384 /* If OBJ is a Lisp hash table, return a pointer to its struct
3385 Lisp_Hash_Table. Otherwise, signal an error. */
3386
3387 static struct Lisp_Hash_Table *
3388 check_hash_table (Lisp_Object obj)
3389 {
3390 CHECK_HASH_TABLE (obj);
3391 return XHASH_TABLE (obj);
3392 }
3393
3394
3395 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3396 number. A number is "almost" a prime number if it is not divisible
3397 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3398
3399 EMACS_INT
3400 next_almost_prime (EMACS_INT n)
3401 {
3402 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3403 for (n |= 1; ; n += 2)
3404 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3405 return n;
3406 }
3407
3408
3409 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3410 which USED[I] is non-zero. If found at index I in ARGS, set
3411 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3412 0. This function is used to extract a keyword/argument pair from
3413 a DEFUN parameter list. */
3414
3415 static ptrdiff_t
3416 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3417 {
3418 ptrdiff_t i;
3419
3420 for (i = 1; i < nargs; i++)
3421 if (!used[i - 1] && EQ (args[i - 1], key))
3422 {
3423 used[i - 1] = 1;
3424 used[i] = 1;
3425 return i;
3426 }
3427
3428 return 0;
3429 }
3430
3431
3432 /* Return a Lisp vector which has the same contents as VEC but has
3433 at least INCR_MIN more entries, where INCR_MIN is positive.
3434 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3435 than NITEMS_MAX. Entries in the resulting
3436 vector that are not copied from VEC are set to nil. */
3437
3438 Lisp_Object
3439 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3440 {
3441 struct Lisp_Vector *v;
3442 ptrdiff_t i, incr, incr_max, old_size, new_size;
3443 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3444 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3445 ? nitems_max : C_language_max);
3446 eassert (VECTORP (vec));
3447 eassert (0 < incr_min && -1 <= nitems_max);
3448 old_size = ASIZE (vec);
3449 incr_max = n_max - old_size;
3450 incr = max (incr_min, min (old_size >> 1, incr_max));
3451 if (incr_max < incr)
3452 memory_full (SIZE_MAX);
3453 new_size = old_size + incr;
3454 v = allocate_vector (new_size);
3455 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3456 for (i = old_size; i < new_size; ++i)
3457 v->contents[i] = Qnil;
3458 XSETVECTOR (vec, v);
3459 return vec;
3460 }
3461
3462
3463 /***********************************************************************
3464 Low-level Functions
3465 ***********************************************************************/
3466
3467 static struct hash_table_test hashtest_eq;
3468 struct hash_table_test hashtest_eql, hashtest_equal;
3469
3470 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3471 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3472 KEY2 are the same. */
3473
3474 static bool
3475 cmpfn_eql (struct hash_table_test *ht,
3476 Lisp_Object key1,
3477 Lisp_Object key2)
3478 {
3479 return (FLOATP (key1)
3480 && FLOATP (key2)
3481 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3482 }
3483
3484
3485 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3486 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3487 KEY2 are the same. */
3488
3489 static bool
3490 cmpfn_equal (struct hash_table_test *ht,
3491 Lisp_Object key1,
3492 Lisp_Object key2)
3493 {
3494 return !NILP (Fequal (key1, key2));
3495 }
3496
3497
3498 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3499 HASH2 in hash table H using H->user_cmp_function. Value is true
3500 if KEY1 and KEY2 are the same. */
3501
3502 static bool
3503 cmpfn_user_defined (struct hash_table_test *ht,
3504 Lisp_Object key1,
3505 Lisp_Object key2)
3506 {
3507 Lisp_Object args[3];
3508
3509 args[0] = ht->user_cmp_function;
3510 args[1] = key1;
3511 args[2] = key2;
3512 return !NILP (Ffuncall (3, args));
3513 }
3514
3515
3516 /* Value is a hash code for KEY for use in hash table H which uses
3517 `eq' to compare keys. The hash code returned is guaranteed to fit
3518 in a Lisp integer. */
3519
3520 static EMACS_UINT
3521 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3522 {
3523 return scm_ihashq (key, MOST_POSITIVE_FIXNUM);
3524 }
3525
3526 /* Value is a hash code for KEY for use in hash table H which uses
3527 `eql' to compare keys. The hash code returned is guaranteed to fit
3528 in a Lisp integer. */
3529
3530 static EMACS_UINT
3531 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3532 {
3533 return scm_ihashv (key, MOST_POSITIVE_FIXNUM);
3534 }
3535
3536 /* Value is a hash code for KEY for use in hash table H which uses
3537 `equal' to compare keys. The hash code returned is guaranteed to fit
3538 in a Lisp integer. */
3539
3540 static EMACS_UINT
3541 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3542 {
3543 return scm_ihash (key, MOST_POSITIVE_FIXNUM);
3544 }
3545
3546 /* Value is a hash code for KEY for use in hash table H which uses as
3547 user-defined function to compare keys. The hash code returned is
3548 guaranteed to fit in a Lisp integer. */
3549
3550 static EMACS_UINT
3551 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3552 {
3553 Lisp_Object args[2], hash;
3554
3555 args[0] = ht->user_hash_function;
3556 args[1] = key;
3557 hash = Ffuncall (2, args);
3558 return hashfn_eq (ht, hash);
3559 }
3560
3561 /* An upper bound on the size of a hash table index. It must fit in
3562 ptrdiff_t and be a valid Emacs fixnum. */
3563 #define INDEX_SIZE_BOUND \
3564 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3565
3566 /* Create and initialize a new hash table.
3567
3568 TEST specifies the test the hash table will use to compare keys.
3569 It must be either one of the predefined tests `eq', `eql' or
3570 `equal' or a symbol denoting a user-defined test named TEST with
3571 test and hash functions USER_TEST and USER_HASH.
3572
3573 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3574
3575 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3576 new size when it becomes full is computed by adding REHASH_SIZE to
3577 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3578 table's new size is computed by multiplying its old size with
3579 REHASH_SIZE.
3580
3581 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3582 be resized when the ratio of (number of entries in the table) /
3583 (table size) is >= REHASH_THRESHOLD.
3584
3585 WEAK specifies the weakness of the table. If non-nil, it must be
3586 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3587
3588 Lisp_Object
3589 make_hash_table (struct hash_table_test test,
3590 Lisp_Object size, Lisp_Object rehash_size,
3591 Lisp_Object rehash_threshold, Lisp_Object weak)
3592 {
3593 struct Lisp_Hash_Table *h;
3594 Lisp_Object table;
3595 EMACS_INT index_size, sz;
3596 ptrdiff_t i;
3597 double index_float;
3598
3599 /* Preconditions. */
3600 eassert (SYMBOLP (test.name));
3601 eassert (INTEGERP (size) && XINT (size) >= 0);
3602 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3603 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3604 eassert (FLOATP (rehash_threshold)
3605 && 0 < XFLOAT_DATA (rehash_threshold)
3606 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3607
3608 if (XFASTINT (size) == 0)
3609 size = make_number (1);
3610
3611 sz = XFASTINT (size);
3612 index_float = sz / XFLOAT_DATA (rehash_threshold);
3613 index_size = (index_float < INDEX_SIZE_BOUND + 1
3614 ? next_almost_prime (index_float)
3615 : INDEX_SIZE_BOUND + 1);
3616 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3617 error ("Hash table too large");
3618
3619 /* Allocate a table and initialize it. */
3620 h = allocate_hash_table ();
3621
3622 /* Initialize hash table slots. */
3623 h->test = test;
3624 h->weak = weak;
3625 h->rehash_threshold = rehash_threshold;
3626 h->rehash_size = rehash_size;
3627 h->count = 0;
3628 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3629 h->hash = Fmake_vector (size, Qnil);
3630 h->next = Fmake_vector (size, Qnil);
3631 h->index = Fmake_vector (make_number (index_size), Qnil);
3632
3633 /* Set up the free list. */
3634 for (i = 0; i < sz - 1; ++i)
3635 set_hash_next_slot (h, i, make_number (i + 1));
3636 h->next_free = make_number (0);
3637
3638 XSET_HASH_TABLE (table, h);
3639 eassert (HASH_TABLE_P (table));
3640 eassert (XHASH_TABLE (table) == h);
3641
3642 return table;
3643 }
3644
3645
3646 /* Return a copy of hash table H1. Keys and values are not copied,
3647 only the table itself is. */
3648
3649 static Lisp_Object
3650 copy_hash_table (struct Lisp_Hash_Table *h1)
3651 {
3652 Lisp_Object table;
3653 struct Lisp_Hash_Table *h2;
3654
3655 h2 = allocate_hash_table ();
3656 *h2 = *h1;
3657 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3658 h2->hash = Fcopy_sequence (h1->hash);
3659 h2->next = Fcopy_sequence (h1->next);
3660 h2->index = Fcopy_sequence (h1->index);
3661 XSET_HASH_TABLE (table, h2);
3662
3663 return table;
3664 }
3665
3666
3667 /* Resize hash table H if it's too full. If H cannot be resized
3668 because it's already too large, throw an error. */
3669
3670 static void
3671 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3672 {
3673 if (NILP (h->next_free))
3674 {
3675 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3676 EMACS_INT new_size, index_size, nsize;
3677 ptrdiff_t i;
3678 double index_float;
3679
3680 if (INTEGERP (h->rehash_size))
3681 new_size = old_size + XFASTINT (h->rehash_size);
3682 else
3683 {
3684 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3685 if (float_new_size < INDEX_SIZE_BOUND + 1)
3686 {
3687 new_size = float_new_size;
3688 if (new_size <= old_size)
3689 new_size = old_size + 1;
3690 }
3691 else
3692 new_size = INDEX_SIZE_BOUND + 1;
3693 }
3694 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3695 index_size = (index_float < INDEX_SIZE_BOUND + 1
3696 ? next_almost_prime (index_float)
3697 : INDEX_SIZE_BOUND + 1);
3698 nsize = max (index_size, 2 * new_size);
3699 if (INDEX_SIZE_BOUND < nsize)
3700 error ("Hash table too large to resize");
3701
3702 #ifdef ENABLE_CHECKING
3703 if (HASH_TABLE_P (Vpurify_flag)
3704 && XHASH_TABLE (Vpurify_flag) == h)
3705 {
3706 Lisp_Object args[2];
3707 args[0] = build_string ("Growing hash table to: %d");
3708 args[1] = make_number (new_size);
3709 Fmessage (2, args);
3710 }
3711 #endif
3712
3713 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3714 2 * (new_size - old_size), -1));
3715 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3716 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3717 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3718
3719 /* Update the free list. Do it so that new entries are added at
3720 the end of the free list. This makes some operations like
3721 maphash faster. */
3722 for (i = old_size; i < new_size - 1; ++i)
3723 set_hash_next_slot (h, i, make_number (i + 1));
3724
3725 if (!NILP (h->next_free))
3726 {
3727 Lisp_Object last, next;
3728
3729 last = h->next_free;
3730 while (next = HASH_NEXT (h, XFASTINT (last)),
3731 !NILP (next))
3732 last = next;
3733
3734 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3735 }
3736 else
3737 XSETFASTINT (h->next_free, old_size);
3738
3739 /* Rehash. */
3740 for (i = 0; i < old_size; ++i)
3741 if (!NILP (HASH_HASH (h, i)))
3742 {
3743 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3744 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3745 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3746 set_hash_index_slot (h, start_of_bucket, make_number (i));
3747 }
3748 }
3749 }
3750
3751
3752 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3753 the hash code of KEY. Value is the index of the entry in H
3754 matching KEY, or -1 if not found. */
3755
3756 ptrdiff_t
3757 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3758 {
3759 EMACS_UINT hash_code;
3760 ptrdiff_t start_of_bucket;
3761 Lisp_Object idx;
3762
3763 hash_code = h->test.hashfn (&h->test, key);
3764 eassert ((hash_code & ~INTMASK) == 0);
3765 if (hash)
3766 *hash = hash_code;
3767
3768 start_of_bucket = hash_code % ASIZE (h->index);
3769 idx = HASH_INDEX (h, start_of_bucket);
3770
3771 /* We need not gcpro idx since it's either an integer or nil. */
3772 while (!NILP (idx))
3773 {
3774 ptrdiff_t i = XFASTINT (idx);
3775 if (EQ (key, HASH_KEY (h, i))
3776 || (h->test.cmpfn
3777 && hash_code == XUINT (HASH_HASH (h, i))
3778 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3779 break;
3780 idx = HASH_NEXT (h, i);
3781 }
3782
3783 return NILP (idx) ? -1 : XFASTINT (idx);
3784 }
3785
3786
3787 /* Put an entry into hash table H that associates KEY with VALUE.
3788 HASH is a previously computed hash code of KEY.
3789 Value is the index of the entry in H matching KEY. */
3790
3791 ptrdiff_t
3792 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3793 EMACS_UINT hash)
3794 {
3795 ptrdiff_t start_of_bucket, i;
3796
3797 eassert ((hash & ~INTMASK) == 0);
3798
3799 /* Increment count after resizing because resizing may fail. */
3800 maybe_resize_hash_table (h);
3801 h->count++;
3802
3803 /* Store key/value in the key_and_value vector. */
3804 i = XFASTINT (h->next_free);
3805 h->next_free = HASH_NEXT (h, i);
3806 set_hash_key_slot (h, i, key);
3807 set_hash_value_slot (h, i, value);
3808
3809 /* Remember its hash code. */
3810 set_hash_hash_slot (h, i, make_number (hash));
3811
3812 /* Add new entry to its collision chain. */
3813 start_of_bucket = hash % ASIZE (h->index);
3814 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3815 set_hash_index_slot (h, start_of_bucket, make_number (i));
3816 return i;
3817 }
3818
3819
3820 /* Remove the entry matching KEY from hash table H, if there is one. */
3821
3822 static void
3823 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3824 {
3825 EMACS_UINT hash_code;
3826 ptrdiff_t start_of_bucket;
3827 Lisp_Object idx, prev;
3828
3829 hash_code = h->test.hashfn (&h->test, key);
3830 eassert ((hash_code & ~INTMASK) == 0);
3831 start_of_bucket = hash_code % ASIZE (h->index);
3832 idx = HASH_INDEX (h, start_of_bucket);
3833 prev = Qnil;
3834
3835 /* We need not gcpro idx, prev since they're either integers or nil. */
3836 while (!NILP (idx))
3837 {
3838 ptrdiff_t i = XFASTINT (idx);
3839
3840 if (EQ (key, HASH_KEY (h, i))
3841 || (h->test.cmpfn
3842 && hash_code == XUINT (HASH_HASH (h, i))
3843 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3844 {
3845 /* Take entry out of collision chain. */
3846 if (NILP (prev))
3847 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3848 else
3849 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3850
3851 /* Clear slots in key_and_value and add the slots to
3852 the free list. */
3853 set_hash_key_slot (h, i, Qnil);
3854 set_hash_value_slot (h, i, Qnil);
3855 set_hash_hash_slot (h, i, Qnil);
3856 set_hash_next_slot (h, i, h->next_free);
3857 h->next_free = make_number (i);
3858 h->count--;
3859 eassert (h->count >= 0);
3860 break;
3861 }
3862 else
3863 {
3864 prev = idx;
3865 idx = HASH_NEXT (h, i);
3866 }
3867 }
3868 }
3869
3870
3871 /* Clear hash table H. */
3872
3873 static void
3874 hash_clear (struct Lisp_Hash_Table *h)
3875 {
3876 if (h->count > 0)
3877 {
3878 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3879
3880 for (i = 0; i < size; ++i)
3881 {
3882 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3883 set_hash_key_slot (h, i, Qnil);
3884 set_hash_value_slot (h, i, Qnil);
3885 set_hash_hash_slot (h, i, Qnil);
3886 }
3887
3888 for (i = 0; i < ASIZE (h->index); ++i)
3889 ASET (h->index, i, Qnil);
3890
3891 h->next_free = make_number (0);
3892 h->count = 0;
3893 }
3894 }
3895
3896
3897 \f
3898 /***********************************************************************
3899 Hash Code Computation
3900 ***********************************************************************/
3901
3902 /* Return a hash for string PTR which has length LEN. The hash value
3903 can be any EMACS_UINT value. */
3904
3905 EMACS_UINT
3906 hash_string (char const *ptr, ptrdiff_t len)
3907 {
3908 char const *p = ptr;
3909 char const *end = p + len;
3910 unsigned char c;
3911 EMACS_UINT hash = 0;
3912
3913 while (p != end)
3914 {
3915 c = *p++;
3916 hash = sxhash_combine (hash, c);
3917 }
3918
3919 return hash;
3920 }
3921
3922 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
3923 structure. Value is an unsigned integer clipped to INTMASK. */
3924
3925 EMACS_UINT
3926 sxhash (Lisp_Object obj, int depth)
3927 {
3928 return scm_ihash (obj, MOST_POSITIVE_FIXNUM);
3929 }
3930
3931
3932 \f
3933 /***********************************************************************
3934 Lisp Interface
3935 ***********************************************************************/
3936
3937
3938 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
3939 doc: /* Compute a hash code for OBJ and return it as integer. */)
3940 (Lisp_Object obj)
3941 {
3942 EMACS_UINT hash = sxhash (obj, 0);
3943 return make_number (hash);
3944 }
3945
3946
3947 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
3948 doc: /* Create and return a new hash table.
3949
3950 Arguments are specified as keyword/argument pairs. The following
3951 arguments are defined:
3952
3953 :test TEST -- TEST must be a symbol that specifies how to compare
3954 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
3955 `equal'. User-supplied test and hash functions can be specified via
3956 `define-hash-table-test'.
3957
3958 :size SIZE -- A hint as to how many elements will be put in the table.
3959 Default is 65.
3960
3961 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
3962 fills up. If REHASH-SIZE is an integer, increase the size by that
3963 amount. If it is a float, it must be > 1.0, and the new size is the
3964 old size multiplied by that factor. Default is 1.5.
3965
3966 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
3967 Resize the hash table when the ratio (number of entries / table size)
3968 is greater than or equal to THRESHOLD. Default is 0.8.
3969
3970 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
3971 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
3972 returned is a weak table. Key/value pairs are removed from a weak
3973 hash table when there are no non-weak references pointing to their
3974 key, value, one of key or value, or both key and value, depending on
3975 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
3976 is nil.
3977
3978 usage: (make-hash-table &rest KEYWORD-ARGS) */)
3979 (ptrdiff_t nargs, Lisp_Object *args)
3980 {
3981 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3982 struct hash_table_test testdesc;
3983 char *used;
3984 ptrdiff_t i;
3985
3986 /* The vector `used' is used to keep track of arguments that
3987 have been consumed. */
3988 used = alloca (nargs * sizeof *used);
3989 memset (used, 0, nargs * sizeof *used);
3990
3991 /* See if there's a `:test TEST' among the arguments. */
3992 i = get_key_arg (QCtest, nargs, args, used);
3993 test = i ? args[i] : Qeql;
3994 if (EQ (test, Qeq))
3995 testdesc = hashtest_eq;
3996 else if (EQ (test, Qeql))
3997 testdesc = hashtest_eql;
3998 else if (EQ (test, Qequal))
3999 testdesc = hashtest_equal;
4000 else
4001 {
4002 /* See if it is a user-defined test. */
4003 Lisp_Object prop;
4004
4005 prop = Fget (test, Qhash_table_test);
4006 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4007 signal_error ("Invalid hash table test", test);
4008 testdesc.name = test;
4009 testdesc.user_cmp_function = XCAR (prop);
4010 testdesc.user_hash_function = XCAR (XCDR (prop));
4011 testdesc.hashfn = hashfn_user_defined;
4012 testdesc.cmpfn = cmpfn_user_defined;
4013 }
4014
4015 /* See if there's a `:size SIZE' argument. */
4016 i = get_key_arg (QCsize, nargs, args, used);
4017 size = i ? args[i] : Qnil;
4018 if (NILP (size))
4019 size = make_number (DEFAULT_HASH_SIZE);
4020 else if (!INTEGERP (size) || XINT (size) < 0)
4021 signal_error ("Invalid hash table size", size);
4022
4023 /* Look for `:rehash-size SIZE'. */
4024 i = get_key_arg (QCrehash_size, nargs, args, used);
4025 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4026 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4027 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4028 signal_error ("Invalid hash table rehash size", rehash_size);
4029
4030 /* Look for `:rehash-threshold THRESHOLD'. */
4031 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4032 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4033 if (! (FLOATP (rehash_threshold)
4034 && 0 < XFLOAT_DATA (rehash_threshold)
4035 && XFLOAT_DATA (rehash_threshold) <= 1))
4036 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4037
4038 /* Look for `:weakness WEAK'. */
4039 i = get_key_arg (QCweakness, nargs, args, used);
4040 weak = i ? args[i] : Qnil;
4041 if (EQ (weak, Qt))
4042 weak = Qkey_and_value;
4043 if (!NILP (weak)
4044 && !EQ (weak, Qkey)
4045 && !EQ (weak, Qvalue)
4046 && !EQ (weak, Qkey_or_value)
4047 && !EQ (weak, Qkey_and_value))
4048 signal_error ("Invalid hash table weakness", weak);
4049
4050 /* Now, all args should have been used up, or there's a problem. */
4051 for (i = 0; i < nargs; ++i)
4052 if (!used[i])
4053 signal_error ("Invalid argument list", args[i]);
4054
4055 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4056 }
4057
4058
4059 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4060 doc: /* Return a copy of hash table TABLE. */)
4061 (Lisp_Object table)
4062 {
4063 return copy_hash_table (check_hash_table (table));
4064 }
4065
4066
4067 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4068 doc: /* Return the number of elements in TABLE. */)
4069 (Lisp_Object table)
4070 {
4071 return make_number (check_hash_table (table)->count);
4072 }
4073
4074
4075 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4076 Shash_table_rehash_size, 1, 1, 0,
4077 doc: /* Return the current rehash size of TABLE. */)
4078 (Lisp_Object table)
4079 {
4080 return check_hash_table (table)->rehash_size;
4081 }
4082
4083
4084 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4085 Shash_table_rehash_threshold, 1, 1, 0,
4086 doc: /* Return the current rehash threshold of TABLE. */)
4087 (Lisp_Object table)
4088 {
4089 return check_hash_table (table)->rehash_threshold;
4090 }
4091
4092
4093 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4094 doc: /* Return the size of TABLE.
4095 The size can be used as an argument to `make-hash-table' to create
4096 a hash table than can hold as many elements as TABLE holds
4097 without need for resizing. */)
4098 (Lisp_Object table)
4099 {
4100 struct Lisp_Hash_Table *h = check_hash_table (table);
4101 return make_number (HASH_TABLE_SIZE (h));
4102 }
4103
4104
4105 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4106 doc: /* Return the test TABLE uses. */)
4107 (Lisp_Object table)
4108 {
4109 return check_hash_table (table)->test.name;
4110 }
4111
4112
4113 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4114 1, 1, 0,
4115 doc: /* Return the weakness of TABLE. */)
4116 (Lisp_Object table)
4117 {
4118 return check_hash_table (table)->weak;
4119 }
4120
4121
4122 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4123 doc: /* Return t if OBJ is a Lisp hash table object. */)
4124 (Lisp_Object obj)
4125 {
4126 return HASH_TABLE_P (obj) ? Qt : Qnil;
4127 }
4128
4129
4130 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4131 doc: /* Clear hash table TABLE and return it. */)
4132 (Lisp_Object table)
4133 {
4134 hash_clear (check_hash_table (table));
4135 /* Be compatible with XEmacs. */
4136 return table;
4137 }
4138
4139
4140 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4141 doc: /* Look up KEY in TABLE and return its associated value.
4142 If KEY is not found, return DFLT which defaults to nil. */)
4143 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4144 {
4145 struct Lisp_Hash_Table *h = check_hash_table (table);
4146 ptrdiff_t i = hash_lookup (h, key, NULL);
4147 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4148 }
4149
4150
4151 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4152 doc: /* Associate KEY with VALUE in hash table TABLE.
4153 If KEY is already present in table, replace its current value with
4154 VALUE. In any case, return VALUE. */)
4155 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4156 {
4157 struct Lisp_Hash_Table *h = check_hash_table (table);
4158 ptrdiff_t i;
4159 EMACS_UINT hash;
4160
4161 i = hash_lookup (h, key, &hash);
4162 if (i >= 0)
4163 set_hash_value_slot (h, i, value);
4164 else
4165 hash_put (h, key, value, hash);
4166
4167 return value;
4168 }
4169
4170
4171 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4172 doc: /* Remove KEY from TABLE. */)
4173 (Lisp_Object key, Lisp_Object table)
4174 {
4175 struct Lisp_Hash_Table *h = check_hash_table (table);
4176 hash_remove_from_table (h, key);
4177 return Qnil;
4178 }
4179
4180
4181 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4182 doc: /* Call FUNCTION for all entries in hash table TABLE.
4183 FUNCTION is called with two arguments, KEY and VALUE.
4184 `maphash' always returns nil. */)
4185 (Lisp_Object function, Lisp_Object table)
4186 {
4187 struct Lisp_Hash_Table *h = check_hash_table (table);
4188 Lisp_Object args[3];
4189 ptrdiff_t i;
4190
4191 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4192 if (!NILP (HASH_HASH (h, i)))
4193 {
4194 args[0] = function;
4195 args[1] = HASH_KEY (h, i);
4196 args[2] = HASH_VALUE (h, i);
4197 Ffuncall (3, args);
4198 }
4199
4200 return Qnil;
4201 }
4202
4203
4204 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4205 Sdefine_hash_table_test, 3, 3, 0,
4206 doc: /* Define a new hash table test with name NAME, a symbol.
4207
4208 In hash tables created with NAME specified as test, use TEST to
4209 compare keys, and HASH for computing hash codes of keys.
4210
4211 TEST must be a function taking two arguments and returning non-nil if
4212 both arguments are the same. HASH must be a function taking one
4213 argument and returning an object that is the hash code of the argument.
4214 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4215 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4216 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4217 {
4218 return Fput (name, Qhash_table_test, list2 (test, hash));
4219 }
4220
4221
4222 \f
4223 /************************************************************************
4224 MD5, SHA-1, and SHA-2
4225 ************************************************************************/
4226
4227 #include "md5.h"
4228 #include "sha1.h"
4229 #include "sha256.h"
4230 #include "sha512.h"
4231
4232 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4233
4234 static Lisp_Object
4235 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start,
4236 Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror,
4237 Lisp_Object binary)
4238 {
4239 int i;
4240 ptrdiff_t size, start_char = 0, start_byte, end_char = 0, end_byte;
4241 register EMACS_INT b, e;
4242 register struct buffer *bp;
4243 EMACS_INT temp;
4244 int digest_size;
4245 void *(*hash_func) (const char *, size_t, void *);
4246 Lisp_Object digest;
4247
4248 CHECK_SYMBOL (algorithm);
4249
4250 if (STRINGP (object))
4251 {
4252 if (NILP (coding_system))
4253 {
4254 /* Decide the coding-system to encode the data with. */
4255
4256 if (STRING_MULTIBYTE (object))
4257 /* use default, we can't guess correct value */
4258 coding_system = preferred_coding_system ();
4259 else
4260 coding_system = Qraw_text;
4261 }
4262
4263 if (NILP (Fcoding_system_p (coding_system)))
4264 {
4265 /* Invalid coding system. */
4266
4267 if (!NILP (noerror))
4268 coding_system = Qraw_text;
4269 else
4270 xsignal1 (Qcoding_system_error, coding_system);
4271 }
4272
4273 if (STRING_MULTIBYTE (object))
4274 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4275
4276 size = SCHARS (object);
4277 validate_subarray (object, start, end, size, &start_char, &end_char);
4278
4279 start_byte = !start_char ? 0 : string_char_to_byte (object, start_char);
4280 end_byte = (end_char == size
4281 ? SBYTES (object)
4282 : string_char_to_byte (object, end_char));
4283 }
4284 else
4285 {
4286 dynwind_begin ();
4287
4288 record_unwind_current_buffer ();
4289
4290 CHECK_BUFFER (object);
4291
4292 bp = XBUFFER (object);
4293 set_buffer_internal (bp);
4294
4295 if (NILP (start))
4296 b = BEGV;
4297 else
4298 {
4299 CHECK_NUMBER_COERCE_MARKER (start);
4300 b = XINT (start);
4301 }
4302
4303 if (NILP (end))
4304 e = ZV;
4305 else
4306 {
4307 CHECK_NUMBER_COERCE_MARKER (end);
4308 e = XINT (end);
4309 }
4310
4311 if (b > e)
4312 temp = b, b = e, e = temp;
4313
4314 if (!(BEGV <= b && e <= ZV))
4315 args_out_of_range (start, end);
4316
4317 if (NILP (coding_system))
4318 {
4319 /* Decide the coding-system to encode the data with.
4320 See fileio.c:Fwrite-region */
4321
4322 if (!NILP (Vcoding_system_for_write))
4323 coding_system = Vcoding_system_for_write;
4324 else
4325 {
4326 bool force_raw_text = 0;
4327
4328 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4329 if (NILP (coding_system)
4330 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4331 {
4332 coding_system = Qnil;
4333 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4334 force_raw_text = 1;
4335 }
4336
4337 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4338 {
4339 /* Check file-coding-system-alist. */
4340 Lisp_Object args[4], val;
4341
4342 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4343 args[3] = Fbuffer_file_name (object);
4344 val = Ffind_operation_coding_system (4, args);
4345 if (CONSP (val) && !NILP (XCDR (val)))
4346 coding_system = XCDR (val);
4347 }
4348
4349 if (NILP (coding_system)
4350 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4351 {
4352 /* If we still have not decided a coding system, use the
4353 default value of buffer-file-coding-system. */
4354 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4355 }
4356
4357 if (!force_raw_text
4358 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4359 /* Confirm that VAL can surely encode the current region. */
4360 coding_system = call4 (Vselect_safe_coding_system_function,
4361 make_number (b), make_number (e),
4362 coding_system, Qnil);
4363
4364 if (force_raw_text)
4365 coding_system = Qraw_text;
4366 }
4367
4368 if (NILP (Fcoding_system_p (coding_system)))
4369 {
4370 /* Invalid coding system. */
4371
4372 if (!NILP (noerror))
4373 coding_system = Qraw_text;
4374 else
4375 xsignal1 (Qcoding_system_error, coding_system);
4376 }
4377 }
4378
4379 object = make_buffer_string (b, e, 0);
4380 dynwind_end ();
4381
4382 if (STRING_MULTIBYTE (object))
4383 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4384 start_byte = 0;
4385 end_byte = SBYTES (object);
4386 }
4387
4388 if (EQ (algorithm, Qmd5))
4389 {
4390 digest_size = MD5_DIGEST_SIZE;
4391 hash_func = md5_buffer;
4392 }
4393 else if (EQ (algorithm, Qsha1))
4394 {
4395 digest_size = SHA1_DIGEST_SIZE;
4396 hash_func = sha1_buffer;
4397 }
4398 else if (EQ (algorithm, Qsha224))
4399 {
4400 digest_size = SHA224_DIGEST_SIZE;
4401 hash_func = sha224_buffer;
4402 }
4403 else if (EQ (algorithm, Qsha256))
4404 {
4405 digest_size = SHA256_DIGEST_SIZE;
4406 hash_func = sha256_buffer;
4407 }
4408 else if (EQ (algorithm, Qsha384))
4409 {
4410 digest_size = SHA384_DIGEST_SIZE;
4411 hash_func = sha384_buffer;
4412 }
4413 else if (EQ (algorithm, Qsha512))
4414 {
4415 digest_size = SHA512_DIGEST_SIZE;
4416 hash_func = sha512_buffer;
4417 }
4418 else
4419 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4420
4421 /* allocate 2 x digest_size so that it can be re-used to hold the
4422 hexified value */
4423 digest = make_uninit_string (digest_size * 2);
4424
4425 hash_func (SSDATA (object) + start_byte,
4426 end_byte - start_byte,
4427 SSDATA (digest));
4428
4429 if (NILP (binary))
4430 {
4431 unsigned char *p = SDATA (digest);
4432 for (i = digest_size - 1; i >= 0; i--)
4433 {
4434 static char const hexdigit[16] = "0123456789abcdef";
4435 int p_i = p[i];
4436 p[2 * i] = hexdigit[p_i >> 4];
4437 p[2 * i + 1] = hexdigit[p_i & 0xf];
4438 }
4439 return digest;
4440 }
4441 else
4442 return make_unibyte_string (SSDATA (digest), digest_size);
4443 }
4444
4445 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4446 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4447
4448 A message digest is a cryptographic checksum of a document, and the
4449 algorithm to calculate it is defined in RFC 1321.
4450
4451 The two optional arguments START and END are character positions
4452 specifying for which part of OBJECT the message digest should be
4453 computed. If nil or omitted, the digest is computed for the whole
4454 OBJECT.
4455
4456 The MD5 message digest is computed from the result of encoding the
4457 text in a coding system, not directly from the internal Emacs form of
4458 the text. The optional fourth argument CODING-SYSTEM specifies which
4459 coding system to encode the text with. It should be the same coding
4460 system that you used or will use when actually writing the text into a
4461 file.
4462
4463 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4464 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4465 system would be chosen by default for writing this text into a file.
4466
4467 If OBJECT is a string, the most preferred coding system (see the
4468 command `prefer-coding-system') is used.
4469
4470 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4471 guesswork fails. Normally, an error is signaled in such case. */)
4472 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4473 {
4474 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4475 }
4476
4477 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4478 doc: /* Return the secure hash of OBJECT, a buffer or string.
4479 ALGORITHM is a symbol specifying the hash to use:
4480 md5, sha1, sha224, sha256, sha384 or sha512.
4481
4482 The two optional arguments START and END are positions specifying for
4483 which part of OBJECT to compute the hash. If nil or omitted, uses the
4484 whole OBJECT.
4485
4486 If BINARY is non-nil, returns a string in binary form. */)
4487 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4488 {
4489 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4490 }
4491 \f
4492 void
4493 init_fns_once (void)
4494 {
4495 compare_text_properties = scm_make_fluid ();
4496 scm_set_smob_equalp (lisp_misc_tag, misc_equal_p);
4497 scm_set_smob_equalp (lisp_string_tag, string_equal_p);
4498 scm_set_smob_equalp (lisp_vectorlike_tag, vectorlike_equal_p);
4499 }
4500
4501 void
4502 syms_of_fns (void)
4503 {
4504 #include "fns.x"
4505
4506 DEFSYM (Qmd5, "md5");
4507 DEFSYM (Qsha1, "sha1");
4508 DEFSYM (Qsha224, "sha224");
4509 DEFSYM (Qsha256, "sha256");
4510 DEFSYM (Qsha384, "sha384");
4511 DEFSYM (Qsha512, "sha512");
4512
4513 /* Hash table stuff. */
4514 DEFSYM (Qhash_table_p, "hash-table-p");
4515 DEFSYM (Qeq, "eq");
4516 DEFSYM (Qeql, "eql");
4517 DEFSYM (Qequal, "equal");
4518 DEFSYM (QCtest, ":test");
4519 DEFSYM (QCsize, ":size");
4520 DEFSYM (QCrehash_size, ":rehash-size");
4521 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4522 DEFSYM (QCweakness, ":weakness");
4523 DEFSYM (Qkey, "key");
4524 DEFSYM (Qvalue, "value");
4525 DEFSYM (Qhash_table_test, "hash-table-test");
4526 DEFSYM (Qkey_or_value, "key-or-value");
4527 DEFSYM (Qkey_and_value, "key-and-value");
4528
4529 DEFSYM (Qstring_lessp, "string-lessp");
4530 DEFSYM (Qprovide, "provide");
4531 DEFSYM (Qrequire, "require");
4532 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4533 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4534 DEFSYM (Qwidget_type, "widget-type");
4535
4536 staticpro (&string_char_byte_cache_string);
4537 string_char_byte_cache_string = Qnil;
4538
4539 require_nesting_list = Qnil;
4540 staticpro (&require_nesting_list);
4541
4542 Fset (Qyes_or_no_p_history, Qnil);
4543
4544 DEFVAR_LISP ("features", Vfeatures,
4545 doc: /* A list of symbols which are the features of the executing Emacs.
4546 Used by `featurep' and `require', and altered by `provide'. */);
4547 Vfeatures = list1 (intern_c_string ("emacs"));
4548 DEFSYM (Qsubfeatures, "subfeatures");
4549 DEFSYM (Qfuncall, "funcall");
4550
4551 #ifdef HAVE_LANGINFO_CODESET
4552 DEFSYM (Qcodeset, "codeset");
4553 DEFSYM (Qdays, "days");
4554 DEFSYM (Qmonths, "months");
4555 DEFSYM (Qpaper, "paper");
4556 #endif /* HAVE_LANGINFO_CODESET */
4557
4558 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4559 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4560 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4561 invoked by mouse clicks and mouse menu items.
4562
4563 On some platforms, file selection dialogs are also enabled if this is
4564 non-nil. */);
4565 use_dialog_box = 1;
4566
4567 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4568 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4569 This applies to commands from menus and tool bar buttons even when
4570 they are initiated from the keyboard. If `use-dialog-box' is nil,
4571 that disables the use of a file dialog, regardless of the value of
4572 this variable. */);
4573 use_file_dialog = 1;
4574
4575 hashtest_eq.name = Qeq;
4576 hashtest_eq.user_hash_function = Qnil;
4577 hashtest_eq.user_cmp_function = Qnil;
4578 hashtest_eq.cmpfn = 0;
4579 hashtest_eq.hashfn = hashfn_eq;
4580
4581 hashtest_eql.name = Qeql;
4582 hashtest_eql.user_hash_function = Qnil;
4583 hashtest_eql.user_cmp_function = Qnil;
4584 hashtest_eql.cmpfn = cmpfn_eql;
4585 hashtest_eql.hashfn = hashfn_eql;
4586
4587 hashtest_equal.name = Qequal;
4588 hashtest_equal.user_hash_function = Qnil;
4589 hashtest_equal.user_cmp_function = Qnil;
4590 hashtest_equal.cmpfn = cmpfn_equal;
4591 hashtest_equal.hashfn = hashfn_equal;
4592 }