use dynwind_begin and dynwind_end
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MSDOG and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 if (MARKERP (position))
237 set_point_from_marker (position);
238 else if (INTEGERP (position))
239 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
240 else
241 wrong_type_argument (Qinteger_or_marker_p, position);
242 return position;
243 }
244
245
246 /* Return the start or end position of the region.
247 BEGINNINGP means return the start.
248 If there is no region active, signal an error. */
249
250 static Lisp_Object
251 region_limit (bool beginningp)
252 {
253 Lisp_Object m;
254
255 if (!NILP (Vtransient_mark_mode)
256 && NILP (Vmark_even_if_inactive)
257 && NILP (BVAR (current_buffer, mark_active)))
258 xsignal0 (Qmark_inactive);
259
260 m = Fmarker_position (BVAR (current_buffer, mark));
261 if (NILP (m))
262 error ("The mark is not set now, so there is no region");
263
264 /* Clip to the current narrowing (bug#11770). */
265 return make_number ((PT < XFASTINT (m)) == beginningp
266 ? PT
267 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
268 }
269
270 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
271 doc: /* Return the integer value of point or mark, whichever is smaller. */)
272 (void)
273 {
274 return region_limit (1);
275 }
276
277 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
278 doc: /* Return the integer value of point or mark, whichever is larger. */)
279 (void)
280 {
281 return region_limit (0);
282 }
283
284 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
285 doc: /* Return this buffer's mark, as a marker object.
286 Watch out! Moving this marker changes the mark position.
287 If you set the marker not to point anywhere, the buffer will have no mark. */)
288 (void)
289 {
290 return BVAR (current_buffer, mark);
291 }
292
293 \f
294 /* Find all the overlays in the current buffer that touch position POS.
295 Return the number found, and store them in a vector in VEC
296 of length LEN. */
297
298 static ptrdiff_t
299 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
300 {
301 Lisp_Object overlay, start, end;
302 struct Lisp_Overlay *tail;
303 ptrdiff_t startpos, endpos;
304 ptrdiff_t idx = 0;
305
306 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
307 {
308 XSETMISC (overlay, tail);
309
310 end = OVERLAY_END (overlay);
311 endpos = OVERLAY_POSITION (end);
312 if (endpos < pos)
313 break;
314 start = OVERLAY_START (overlay);
315 startpos = OVERLAY_POSITION (start);
316 if (startpos <= pos)
317 {
318 if (idx < len)
319 vec[idx] = overlay;
320 /* Keep counting overlays even if we can't return them all. */
321 idx++;
322 }
323 }
324
325 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
326 {
327 XSETMISC (overlay, tail);
328
329 start = OVERLAY_START (overlay);
330 startpos = OVERLAY_POSITION (start);
331 if (pos < startpos)
332 break;
333 end = OVERLAY_END (overlay);
334 endpos = OVERLAY_POSITION (end);
335 if (pos <= endpos)
336 {
337 if (idx < len)
338 vec[idx] = overlay;
339 idx++;
340 }
341 }
342
343 return idx;
344 }
345
346 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
347 doc: /* Return the value of POSITION's property PROP, in OBJECT.
348 Almost identical to `get-char-property' except for the following difference:
349 Whereas `get-char-property' returns the property of the char at (i.e. right
350 after) POSITION, this pays attention to properties's stickiness and overlays's
351 advancement settings, in order to find the property of POSITION itself,
352 i.e. the property that a char would inherit if it were inserted
353 at POSITION. */)
354 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
355 {
356 CHECK_NUMBER_COERCE_MARKER (position);
357
358 if (NILP (object))
359 XSETBUFFER (object, current_buffer);
360 else if (WINDOWP (object))
361 object = XWINDOW (object)->contents;
362
363 if (!BUFFERP (object))
364 /* pos-property only makes sense in buffers right now, since strings
365 have no overlays and no notion of insertion for which stickiness
366 could be obeyed. */
367 return Fget_text_property (position, prop, object);
368 else
369 {
370 EMACS_INT posn = XINT (position);
371 ptrdiff_t noverlays;
372 Lisp_Object *overlay_vec, tem;
373 struct buffer *obuf = current_buffer;
374 USE_SAFE_ALLOCA;
375
376 set_buffer_temp (XBUFFER (object));
377
378 /* First try with room for 40 overlays. */
379 noverlays = 40;
380 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
381 noverlays = overlays_around (posn, overlay_vec, noverlays);
382
383 /* If there are more than 40,
384 make enough space for all, and try again. */
385 if (noverlays > 40)
386 {
387 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
388 noverlays = overlays_around (posn, overlay_vec, noverlays);
389 }
390 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
391
392 set_buffer_temp (obuf);
393
394 /* Now check the overlays in order of decreasing priority. */
395 while (--noverlays >= 0)
396 {
397 Lisp_Object ol = overlay_vec[noverlays];
398 tem = Foverlay_get (ol, prop);
399 if (!NILP (tem))
400 {
401 /* Check the overlay is indeed active at point. */
402 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
403 if ((OVERLAY_POSITION (start) == posn
404 && XMARKER (start)->insertion_type == 1)
405 || (OVERLAY_POSITION (finish) == posn
406 && XMARKER (finish)->insertion_type == 0))
407 ; /* The overlay will not cover a char inserted at point. */
408 else
409 {
410 SAFE_FREE ();
411 return tem;
412 }
413 }
414 }
415 SAFE_FREE ();
416
417 { /* Now check the text properties. */
418 int stickiness = text_property_stickiness (prop, position, object);
419 if (stickiness > 0)
420 return Fget_text_property (position, prop, object);
421 else if (stickiness < 0
422 && XINT (position) > BUF_BEGV (XBUFFER (object)))
423 return Fget_text_property (make_number (XINT (position) - 1),
424 prop, object);
425 else
426 return Qnil;
427 }
428 }
429 }
430
431 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
432 the value of point is used instead. If BEG or END is null,
433 means don't store the beginning or end of the field.
434
435 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
436 results; they do not effect boundary behavior.
437
438 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
439 position of a field, then the beginning of the previous field is
440 returned instead of the beginning of POS's field (since the end of a
441 field is actually also the beginning of the next input field, this
442 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
443 non-nil case, if two fields are separated by a field with the special
444 value `boundary', and POS lies within it, then the two separated
445 fields are considered to be adjacent, and POS between them, when
446 finding the beginning and ending of the "merged" field.
447
448 Either BEG or END may be 0, in which case the corresponding value
449 is not stored. */
450
451 static void
452 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
453 Lisp_Object beg_limit,
454 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
455 {
456 /* Fields right before and after the point. */
457 Lisp_Object before_field, after_field;
458 /* True if POS counts as the start of a field. */
459 bool at_field_start = 0;
460 /* True if POS counts as the end of a field. */
461 bool at_field_end = 0;
462
463 if (NILP (pos))
464 XSETFASTINT (pos, PT);
465 else
466 CHECK_NUMBER_COERCE_MARKER (pos);
467
468 after_field
469 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
470 before_field
471 = (XFASTINT (pos) > BEGV
472 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
473 Qfield, Qnil, NULL)
474 /* Using nil here would be a more obvious choice, but it would
475 fail when the buffer starts with a non-sticky field. */
476 : after_field);
477
478 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
479 and POS is at beginning of a field, which can also be interpreted
480 as the end of the previous field. Note that the case where if
481 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
482 more natural one; then we avoid treating the beginning of a field
483 specially. */
484 if (NILP (merge_at_boundary))
485 {
486 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
487 if (!EQ (field, after_field))
488 at_field_end = 1;
489 if (!EQ (field, before_field))
490 at_field_start = 1;
491 if (NILP (field) && at_field_start && at_field_end)
492 /* If an inserted char would have a nil field while the surrounding
493 text is non-nil, we're probably not looking at a
494 zero-length field, but instead at a non-nil field that's
495 not intended for editing (such as comint's prompts). */
496 at_field_end = at_field_start = 0;
497 }
498
499 /* Note about special `boundary' fields:
500
501 Consider the case where the point (`.') is between the fields `x' and `y':
502
503 xxxx.yyyy
504
505 In this situation, if merge_at_boundary is non-nil, consider the
506 `x' and `y' fields as forming one big merged field, and so the end
507 of the field is the end of `y'.
508
509 However, if `x' and `y' are separated by a special `boundary' field
510 (a field with a `field' char-property of 'boundary), then ignore
511 this special field when merging adjacent fields. Here's the same
512 situation, but with a `boundary' field between the `x' and `y' fields:
513
514 xxx.BBBByyyy
515
516 Here, if point is at the end of `x', the beginning of `y', or
517 anywhere in-between (within the `boundary' field), merge all
518 three fields and consider the beginning as being the beginning of
519 the `x' field, and the end as being the end of the `y' field. */
520
521 if (beg)
522 {
523 if (at_field_start)
524 /* POS is at the edge of a field, and we should consider it as
525 the beginning of the following field. */
526 *beg = XFASTINT (pos);
527 else
528 /* Find the previous field boundary. */
529 {
530 Lisp_Object p = pos;
531 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
532 /* Skip a `boundary' field. */
533 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
534 beg_limit);
535
536 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
537 beg_limit);
538 *beg = NILP (p) ? BEGV : XFASTINT (p);
539 }
540 }
541
542 if (end)
543 {
544 if (at_field_end)
545 /* POS is at the edge of a field, and we should consider it as
546 the end of the previous field. */
547 *end = XFASTINT (pos);
548 else
549 /* Find the next field boundary. */
550 {
551 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
552 /* Skip a `boundary' field. */
553 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
554 end_limit);
555
556 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
557 end_limit);
558 *end = NILP (pos) ? ZV : XFASTINT (pos);
559 }
560 }
561 }
562
563 \f
564 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
565 doc: /* Delete the field surrounding POS.
566 A field is a region of text with the same `field' property.
567 If POS is nil, the value of point is used for POS. */)
568 (Lisp_Object pos)
569 {
570 ptrdiff_t beg, end;
571 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
572 if (beg != end)
573 del_range (beg, end);
574 return Qnil;
575 }
576
577 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
578 doc: /* Return the contents of the field surrounding POS as a string.
579 A field is a region of text with the same `field' property.
580 If POS is nil, the value of point is used for POS. */)
581 (Lisp_Object pos)
582 {
583 ptrdiff_t beg, end;
584 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
585 return make_buffer_string (beg, end, 1);
586 }
587
588 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
589 doc: /* Return the contents of the field around POS, without text properties.
590 A field is a region of text with the same `field' property.
591 If POS is nil, the value of point is used for POS. */)
592 (Lisp_Object pos)
593 {
594 ptrdiff_t beg, end;
595 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
596 return make_buffer_string (beg, end, 0);
597 }
598
599 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
600 doc: /* Return the beginning of the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS.
603 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
604 field, then the beginning of the *previous* field is returned.
605 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
606 is before LIMIT, then LIMIT will be returned instead. */)
607 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
608 {
609 ptrdiff_t beg;
610 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
611 return make_number (beg);
612 }
613
614 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
615 doc: /* Return the end of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
619 then the end of the *following* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the end of the field
621 is after LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t end;
625 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
626 return make_number (end);
627 }
628
629 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
630 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
631 A field is a region of text with the same `field' property.
632
633 If NEW-POS is nil, then use the current point instead, and move point
634 to the resulting constrained position, in addition to returning that
635 position.
636
637 If OLD-POS is at the boundary of two fields, then the allowable
638 positions for NEW-POS depends on the value of the optional argument
639 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
640 constrained to the field that has the same `field' char-property
641 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
642 is non-nil, NEW-POS is constrained to the union of the two adjacent
643 fields. Additionally, if two fields are separated by another field with
644 the special value `boundary', then any point within this special field is
645 also considered to be `on the boundary'.
646
647 If the optional argument ONLY-IN-LINE is non-nil and constraining
648 NEW-POS would move it to a different line, NEW-POS is returned
649 unconstrained. This is useful for commands that move by line, like
650 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
651 only in the case where they can still move to the right line.
652
653 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
654 a non-nil property of that name, then any field boundaries are ignored.
655
656 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
657 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
658 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
659 {
660 /* If non-zero, then the original point, before re-positioning. */
661 ptrdiff_t orig_point = 0;
662 bool fwd;
663 Lisp_Object prev_old, prev_new;
664
665 if (NILP (new_pos))
666 /* Use the current point, and afterwards, set it. */
667 {
668 orig_point = PT;
669 XSETFASTINT (new_pos, PT);
670 }
671
672 CHECK_NUMBER_COERCE_MARKER (new_pos);
673 CHECK_NUMBER_COERCE_MARKER (old_pos);
674
675 fwd = (XINT (new_pos) > XINT (old_pos));
676
677 prev_old = make_number (XINT (old_pos) - 1);
678 prev_new = make_number (XINT (new_pos) - 1);
679
680 if (NILP (Vinhibit_field_text_motion)
681 && !EQ (new_pos, old_pos)
682 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
683 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
684 /* To recognize field boundaries, we must also look at the
685 previous positions; we could use `Fget_pos_property'
686 instead, but in itself that would fail inside non-sticky
687 fields (like comint prompts). */
688 || (XFASTINT (new_pos) > BEGV
689 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
690 || (XFASTINT (old_pos) > BEGV
691 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
692 && (NILP (inhibit_capture_property)
693 /* Field boundaries are again a problem; but now we must
694 decide the case exactly, so we need to call
695 `get_pos_property' as well. */
696 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
697 && (XFASTINT (old_pos) <= BEGV
698 || NILP (Fget_char_property
699 (old_pos, inhibit_capture_property, Qnil))
700 || NILP (Fget_char_property
701 (prev_old, inhibit_capture_property, Qnil))))))
702 /* It is possible that NEW_POS is not within the same field as
703 OLD_POS; try to move NEW_POS so that it is. */
704 {
705 ptrdiff_t shortage;
706 Lisp_Object field_bound;
707
708 if (fwd)
709 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
710 else
711 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
712
713 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
714 other side of NEW_POS, which would mean that NEW_POS is
715 already acceptable, and it's not necessary to constrain it
716 to FIELD_BOUND. */
717 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
718 /* NEW_POS should be constrained, but only if either
719 ONLY_IN_LINE is nil (in which case any constraint is OK),
720 or NEW_POS and FIELD_BOUND are on the same line (in which
721 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
722 && (NILP (only_in_line)
723 /* This is the ONLY_IN_LINE case, check that NEW_POS and
724 FIELD_BOUND are on the same line by seeing whether
725 there's an intervening newline or not. */
726 || (find_newline (XFASTINT (new_pos), -1,
727 XFASTINT (field_bound), -1,
728 fwd ? -1 : 1, &shortage, NULL, 1),
729 shortage != 0)))
730 /* Constrain NEW_POS to FIELD_BOUND. */
731 new_pos = field_bound;
732
733 if (orig_point && XFASTINT (new_pos) != orig_point)
734 /* The NEW_POS argument was originally nil, so automatically set PT. */
735 SET_PT (XFASTINT (new_pos));
736 }
737
738 return new_pos;
739 }
740
741 \f
742 DEFUN ("line-beginning-position",
743 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
744 doc: /* Return the character position of the first character on the current line.
745 With optional argument N, scan forward N - 1 lines first.
746 If the scan reaches the end of the buffer, return that position.
747
748 This function ignores text display directionality; it returns the
749 position of the first character in logical order, i.e. the smallest
750 character position on the line.
751
752 This function constrains the returned position to the current field
753 unless that position would be on a different line than the original,
754 unconstrained result. If N is nil or 1, and a front-sticky field
755 starts at point, the scan stops as soon as it starts. To ignore field
756 boundaries, bind `inhibit-field-text-motion' to t.
757
758 This function does not move point. */)
759 (Lisp_Object n)
760 {
761 ptrdiff_t orig, orig_byte, end;
762 dynwind_begin ();
763 specbind (Qinhibit_point_motion_hooks, Qt);
764
765 if (NILP (n))
766 XSETFASTINT (n, 1);
767 else
768 CHECK_NUMBER (n);
769
770 orig = PT;
771 orig_byte = PT_BYTE;
772 Fforward_line (make_number (XINT (n) - 1));
773 end = PT;
774
775 SET_PT_BOTH (orig, orig_byte);
776
777 dynwind_end ();
778
779 /* Return END constrained to the current input field. */
780 return Fconstrain_to_field (make_number (end), make_number (orig),
781 XINT (n) != 1 ? Qt : Qnil,
782 Qt, Qnil);
783 }
784
785 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
786 doc: /* Return the character position of the last character on the current line.
787 With argument N not nil or 1, move forward N - 1 lines first.
788 If scan reaches end of buffer, return that position.
789
790 This function ignores text display directionality; it returns the
791 position of the last character in logical order, i.e. the largest
792 character position on the line.
793
794 This function constrains the returned position to the current field
795 unless that would be on a different line than the original,
796 unconstrained result. If N is nil or 1, and a rear-sticky field ends
797 at point, the scan stops as soon as it starts. To ignore field
798 boundaries bind `inhibit-field-text-motion' to t.
799
800 This function does not move point. */)
801 (Lisp_Object n)
802 {
803 ptrdiff_t clipped_n;
804 ptrdiff_t end_pos;
805 ptrdiff_t orig = PT;
806
807 if (NILP (n))
808 XSETFASTINT (n, 1);
809 else
810 CHECK_NUMBER (n);
811
812 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
813 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
814 NULL);
815
816 /* Return END_POS constrained to the current input field. */
817 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
818 Qnil, Qt, Qnil);
819 }
820
821 /* Save current buffer state for `save-excursion' special form.
822 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
823 offload some work from GC. */
824
825 Lisp_Object
826 save_excursion_save (void)
827 {
828 return make_save_obj_obj_obj_obj
829 (Fpoint_marker (),
830 /* Do not copy the mark if it points to nowhere. */
831 (XMARKER (BVAR (current_buffer, mark))->buffer
832 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
833 : Qnil),
834 /* Selected window if current buffer is shown in it, nil otherwise. */
835 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
836 ? selected_window : Qnil),
837 BVAR (current_buffer, mark_active));
838 }
839
840 /* Restore saved buffer before leaving `save-excursion' special form. */
841
842 void
843 save_excursion_restore (Lisp_Object info)
844 {
845 Lisp_Object tem, tem1, omark, nmark;
846 struct gcpro gcpro1, gcpro2, gcpro3;
847
848 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
849 /* If we're unwinding to top level, saved buffer may be deleted. This
850 means that all of its markers are unchained and so tem is nil. */
851 if (NILP (tem))
852 goto out;
853
854 omark = nmark = Qnil;
855 GCPRO3 (info, omark, nmark);
856
857 Fset_buffer (tem);
858
859 /* Point marker. */
860 tem = XSAVE_OBJECT (info, 0);
861 Fgoto_char (tem);
862 unchain_marker (XMARKER (tem));
863
864 /* Mark marker. */
865 tem = XSAVE_OBJECT (info, 1);
866 omark = Fmarker_position (BVAR (current_buffer, mark));
867 if (NILP (tem))
868 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
869 else
870 {
871 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
872 nmark = Fmarker_position (tem);
873 unchain_marker (XMARKER (tem));
874 }
875
876 /* Mark active. */
877 tem = XSAVE_OBJECT (info, 3);
878 tem1 = BVAR (current_buffer, mark_active);
879 bset_mark_active (current_buffer, tem);
880
881 /* If mark is active now, and either was not active
882 or was at a different place, run the activate hook. */
883 if (! NILP (tem))
884 {
885 if (! EQ (omark, nmark))
886 {
887 tem = intern ("activate-mark-hook");
888 Frun_hooks (1, &tem);
889 }
890 }
891 /* If mark has ceased to be active, run deactivate hook. */
892 else if (! NILP (tem1))
893 {
894 tem = intern ("deactivate-mark-hook");
895 Frun_hooks (1, &tem);
896 }
897
898 /* If buffer was visible in a window, and a different window was
899 selected, and the old selected window is still showing this
900 buffer, restore point in that window. */
901 tem = XSAVE_OBJECT (info, 2);
902 if (WINDOWP (tem)
903 && !EQ (tem, selected_window)
904 && (tem1 = XWINDOW (tem)->contents,
905 (/* Window is live... */
906 BUFFERP (tem1)
907 /* ...and it shows the current buffer. */
908 && XBUFFER (tem1) == current_buffer)))
909 Fset_window_point (tem, make_number (PT));
910
911 UNGCPRO;
912
913 out:
914
915 free_misc (info);
916 }
917
918 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
919 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
920 Executes BODY just like `progn'.
921 The values of point, mark and the current buffer are restored
922 even in case of abnormal exit (throw or error).
923 The state of activation of the mark is also restored.
924
925 This construct does not save `deactivate-mark', and therefore
926 functions that change the buffer will still cause deactivation
927 of the mark at the end of the command. To prevent that, bind
928 `deactivate-mark' with `let'.
929
930 If you only want to save the current buffer but not point nor mark,
931 then just use `save-current-buffer', or even `with-current-buffer'.
932
933 usage: (save-excursion &rest BODY) */)
934 (Lisp_Object args)
935 {
936 register Lisp_Object val;
937 dynwind_begin ();
938
939 record_unwind_protect (save_excursion_restore, save_excursion_save ());
940
941 val = Fprogn (args);
942 dynwind_end ();
943 return val;
944 }
945
946 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
947 doc: /* Record which buffer is current; execute BODY; make that buffer current.
948 BODY is executed just like `progn'.
949 usage: (save-current-buffer &rest BODY) */)
950 (Lisp_Object args)
951 {
952 dynwind_begin ();
953
954 record_unwind_current_buffer ();
955 Lisp_Object tem0 = Fprogn (args);
956 dynwind_end ();
957 return tem0;
958 }
959 \f
960 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
961 doc: /* Return the number of characters in the current buffer.
962 If BUFFER, return the number of characters in that buffer instead. */)
963 (Lisp_Object buffer)
964 {
965 if (NILP (buffer))
966 return make_number (Z - BEG);
967 else
968 {
969 CHECK_BUFFER (buffer);
970 return make_number (BUF_Z (XBUFFER (buffer))
971 - BUF_BEG (XBUFFER (buffer)));
972 }
973 }
974
975 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
976 doc: /* Return the minimum permissible value of point in the current buffer.
977 This is 1, unless narrowing (a buffer restriction) is in effect. */)
978 (void)
979 {
980 Lisp_Object temp;
981 XSETFASTINT (temp, BEGV);
982 return temp;
983 }
984
985 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
986 doc: /* Return a marker to the minimum permissible value of point in this buffer.
987 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
988 (void)
989 {
990 return build_marker (current_buffer, BEGV, BEGV_BYTE);
991 }
992
993 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
994 doc: /* Return the maximum permissible value of point in the current buffer.
995 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
996 is in effect, in which case it is less. */)
997 (void)
998 {
999 Lisp_Object temp;
1000 XSETFASTINT (temp, ZV);
1001 return temp;
1002 }
1003
1004 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1005 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1006 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1007 is in effect, in which case it is less. */)
1008 (void)
1009 {
1010 return build_marker (current_buffer, ZV, ZV_BYTE);
1011 }
1012
1013 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1014 doc: /* Return the position of the gap, in the current buffer.
1015 See also `gap-size'. */)
1016 (void)
1017 {
1018 Lisp_Object temp;
1019 XSETFASTINT (temp, GPT);
1020 return temp;
1021 }
1022
1023 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1024 doc: /* Return the size of the current buffer's gap.
1025 See also `gap-position'. */)
1026 (void)
1027 {
1028 Lisp_Object temp;
1029 XSETFASTINT (temp, GAP_SIZE);
1030 return temp;
1031 }
1032
1033 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1034 doc: /* Return the byte position for character position POSITION.
1035 If POSITION is out of range, the value is nil. */)
1036 (Lisp_Object position)
1037 {
1038 CHECK_NUMBER_COERCE_MARKER (position);
1039 if (XINT (position) < BEG || XINT (position) > Z)
1040 return Qnil;
1041 return make_number (CHAR_TO_BYTE (XINT (position)));
1042 }
1043
1044 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1045 doc: /* Return the character position for byte position BYTEPOS.
1046 If BYTEPOS is out of range, the value is nil. */)
1047 (Lisp_Object bytepos)
1048 {
1049 CHECK_NUMBER (bytepos);
1050 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1051 return Qnil;
1052 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1053 }
1054 \f
1055 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1056 doc: /* Return the character following point, as a number.
1057 At the end of the buffer or accessible region, return 0. */)
1058 (void)
1059 {
1060 Lisp_Object temp;
1061 if (PT >= ZV)
1062 XSETFASTINT (temp, 0);
1063 else
1064 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1065 return temp;
1066 }
1067
1068 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1069 doc: /* Return the character preceding point, as a number.
1070 At the beginning of the buffer or accessible region, return 0. */)
1071 (void)
1072 {
1073 Lisp_Object temp;
1074 if (PT <= BEGV)
1075 XSETFASTINT (temp, 0);
1076 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1077 {
1078 ptrdiff_t pos = PT_BYTE;
1079 DEC_POS (pos);
1080 XSETFASTINT (temp, FETCH_CHAR (pos));
1081 }
1082 else
1083 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1084 return temp;
1085 }
1086
1087 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1088 doc: /* Return t if point is at the beginning of the buffer.
1089 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1090 (void)
1091 {
1092 if (PT == BEGV)
1093 return Qt;
1094 return Qnil;
1095 }
1096
1097 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1098 doc: /* Return t if point is at the end of the buffer.
1099 If the buffer is narrowed, this means the end of the narrowed part. */)
1100 (void)
1101 {
1102 if (PT == ZV)
1103 return Qt;
1104 return Qnil;
1105 }
1106
1107 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1108 doc: /* Return t if point is at the beginning of a line. */)
1109 (void)
1110 {
1111 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1112 return Qt;
1113 return Qnil;
1114 }
1115
1116 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1117 doc: /* Return t if point is at the end of a line.
1118 `End of a line' includes point being at the end of the buffer. */)
1119 (void)
1120 {
1121 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1122 return Qt;
1123 return Qnil;
1124 }
1125
1126 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1127 doc: /* Return character in current buffer at position POS.
1128 POS is an integer or a marker and defaults to point.
1129 If POS is out of range, the value is nil. */)
1130 (Lisp_Object pos)
1131 {
1132 register ptrdiff_t pos_byte;
1133
1134 if (NILP (pos))
1135 {
1136 pos_byte = PT_BYTE;
1137 XSETFASTINT (pos, PT);
1138 }
1139
1140 if (MARKERP (pos))
1141 {
1142 pos_byte = marker_byte_position (pos);
1143 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1144 return Qnil;
1145 }
1146 else
1147 {
1148 CHECK_NUMBER_COERCE_MARKER (pos);
1149 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1150 return Qnil;
1151
1152 pos_byte = CHAR_TO_BYTE (XINT (pos));
1153 }
1154
1155 return make_number (FETCH_CHAR (pos_byte));
1156 }
1157
1158 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1159 doc: /* Return character in current buffer preceding position POS.
1160 POS is an integer or a marker and defaults to point.
1161 If POS is out of range, the value is nil. */)
1162 (Lisp_Object pos)
1163 {
1164 register Lisp_Object val;
1165 register ptrdiff_t pos_byte;
1166
1167 if (NILP (pos))
1168 {
1169 pos_byte = PT_BYTE;
1170 XSETFASTINT (pos, PT);
1171 }
1172
1173 if (MARKERP (pos))
1174 {
1175 pos_byte = marker_byte_position (pos);
1176
1177 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1178 return Qnil;
1179 }
1180 else
1181 {
1182 CHECK_NUMBER_COERCE_MARKER (pos);
1183
1184 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1185 return Qnil;
1186
1187 pos_byte = CHAR_TO_BYTE (XINT (pos));
1188 }
1189
1190 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1191 {
1192 DEC_POS (pos_byte);
1193 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1194 }
1195 else
1196 {
1197 pos_byte--;
1198 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1199 }
1200 return val;
1201 }
1202 \f
1203 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1204 doc: /* Return the name under which the user logged in, as a string.
1205 This is based on the effective uid, not the real uid.
1206 Also, if the environment variables LOGNAME or USER are set,
1207 that determines the value of this function.
1208
1209 If optional argument UID is an integer or a float, return the login name
1210 of the user with that uid, or nil if there is no such user. */)
1211 (Lisp_Object uid)
1212 {
1213 struct passwd *pw;
1214 uid_t id;
1215
1216 /* Set up the user name info if we didn't do it before.
1217 (That can happen if Emacs is dumpable
1218 but you decide to run `temacs -l loadup' and not dump. */
1219 if (INTEGERP (Vuser_login_name))
1220 init_editfns ();
1221
1222 if (NILP (uid))
1223 return Vuser_login_name;
1224
1225 CONS_TO_INTEGER (uid, uid_t, id);
1226 block_input ();
1227 pw = getpwuid (id);
1228 unblock_input ();
1229 return (pw ? build_string (pw->pw_name) : Qnil);
1230 }
1231
1232 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1233 0, 0, 0,
1234 doc: /* Return the name of the user's real uid, as a string.
1235 This ignores the environment variables LOGNAME and USER, so it differs from
1236 `user-login-name' when running under `su'. */)
1237 (void)
1238 {
1239 /* Set up the user name info if we didn't do it before.
1240 (That can happen if Emacs is dumpable
1241 but you decide to run `temacs -l loadup' and not dump. */
1242 if (INTEGERP (Vuser_login_name))
1243 init_editfns ();
1244 return Vuser_real_login_name;
1245 }
1246
1247 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1248 doc: /* Return the effective uid of Emacs.
1249 Value is an integer or a float, depending on the value. */)
1250 (void)
1251 {
1252 uid_t euid = geteuid ();
1253 return make_fixnum_or_float (euid);
1254 }
1255
1256 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1257 doc: /* Return the real uid of Emacs.
1258 Value is an integer or a float, depending on the value. */)
1259 (void)
1260 {
1261 uid_t uid = getuid ();
1262 return make_fixnum_or_float (uid);
1263 }
1264
1265 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1266 doc: /* Return the effective gid of Emacs.
1267 Value is an integer or a float, depending on the value. */)
1268 (void)
1269 {
1270 gid_t egid = getegid ();
1271 return make_fixnum_or_float (egid);
1272 }
1273
1274 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1275 doc: /* Return the real gid of Emacs.
1276 Value is an integer or a float, depending on the value. */)
1277 (void)
1278 {
1279 gid_t gid = getgid ();
1280 return make_fixnum_or_float (gid);
1281 }
1282
1283 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1284 doc: /* Return the full name of the user logged in, as a string.
1285 If the full name corresponding to Emacs's userid is not known,
1286 return "unknown".
1287
1288 If optional argument UID is an integer or float, return the full name
1289 of the user with that uid, or nil if there is no such user.
1290 If UID is a string, return the full name of the user with that login
1291 name, or nil if there is no such user. */)
1292 (Lisp_Object uid)
1293 {
1294 struct passwd *pw;
1295 register char *p, *q;
1296 Lisp_Object full;
1297
1298 if (NILP (uid))
1299 return Vuser_full_name;
1300 else if (NUMBERP (uid))
1301 {
1302 uid_t u;
1303 CONS_TO_INTEGER (uid, uid_t, u);
1304 block_input ();
1305 pw = getpwuid (u);
1306 unblock_input ();
1307 }
1308 else if (STRINGP (uid))
1309 {
1310 block_input ();
1311 pw = getpwnam (SSDATA (uid));
1312 unblock_input ();
1313 }
1314 else
1315 error ("Invalid UID specification");
1316
1317 if (!pw)
1318 return Qnil;
1319
1320 p = USER_FULL_NAME;
1321 /* Chop off everything after the first comma. */
1322 q = strchr (p, ',');
1323 full = make_string (p, q ? q - p : strlen (p));
1324
1325 #ifdef AMPERSAND_FULL_NAME
1326 p = SSDATA (full);
1327 q = strchr (p, '&');
1328 /* Substitute the login name for the &, upcasing the first character. */
1329 if (q)
1330 {
1331 register char *r;
1332 Lisp_Object login;
1333
1334 login = Fuser_login_name (make_number (pw->pw_uid));
1335 r = alloca (strlen (p) + SCHARS (login) + 1);
1336 memcpy (r, p, q - p);
1337 r[q - p] = 0;
1338 strcat (r, SSDATA (login));
1339 r[q - p] = upcase ((unsigned char) r[q - p]);
1340 strcat (r, q + 1);
1341 full = build_string (r);
1342 }
1343 #endif /* AMPERSAND_FULL_NAME */
1344
1345 return full;
1346 }
1347
1348 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1349 doc: /* Return the host name of the machine you are running on, as a string. */)
1350 (void)
1351 {
1352 return Vsystem_name;
1353 }
1354
1355 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1356 doc: /* Return the process ID of Emacs, as a number. */)
1357 (void)
1358 {
1359 pid_t pid = getpid ();
1360 return make_fixnum_or_float (pid);
1361 }
1362
1363 \f
1364
1365 #ifndef TIME_T_MIN
1366 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1367 #endif
1368 #ifndef TIME_T_MAX
1369 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1370 #endif
1371
1372 /* Report that a time value is out of range for Emacs. */
1373 void
1374 time_overflow (void)
1375 {
1376 error ("Specified time is not representable");
1377 }
1378
1379 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1380 static EMACS_INT
1381 hi_time (time_t t)
1382 {
1383 time_t hi = t >> 16;
1384
1385 /* Check for overflow, helping the compiler for common cases where
1386 no runtime check is needed, and taking care not to convert
1387 negative numbers to unsigned before comparing them. */
1388 if (! ((! TYPE_SIGNED (time_t)
1389 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1390 || MOST_NEGATIVE_FIXNUM <= hi)
1391 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1392 || hi <= MOST_POSITIVE_FIXNUM)))
1393 time_overflow ();
1394
1395 return hi;
1396 }
1397
1398 /* Return the bottom 16 bits of the time T. */
1399 static int
1400 lo_time (time_t t)
1401 {
1402 return t & ((1 << 16) - 1);
1403 }
1404
1405 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1406 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1407 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1408 HIGH has the most significant bits of the seconds, while LOW has the
1409 least significant 16 bits. USEC and PSEC are the microsecond and
1410 picosecond counts. */)
1411 (void)
1412 {
1413 return make_lisp_time (current_timespec ());
1414 }
1415
1416 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1417 0, 0, 0,
1418 doc: /* Return the current run time used by Emacs.
1419 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1420 style as (current-time).
1421
1422 On systems that can't determine the run time, `get-internal-run-time'
1423 does the same thing as `current-time'. */)
1424 (void)
1425 {
1426 #ifdef HAVE_GETRUSAGE
1427 struct rusage usage;
1428 time_t secs;
1429 int usecs;
1430
1431 if (getrusage (RUSAGE_SELF, &usage) < 0)
1432 /* This shouldn't happen. What action is appropriate? */
1433 xsignal0 (Qerror);
1434
1435 /* Sum up user time and system time. */
1436 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1437 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1438 if (usecs >= 1000000)
1439 {
1440 usecs -= 1000000;
1441 secs++;
1442 }
1443 return make_lisp_time (make_timespec (secs, usecs * 1000));
1444 #else /* ! HAVE_GETRUSAGE */
1445 #ifdef WINDOWSNT
1446 return w32_get_internal_run_time ();
1447 #else /* ! WINDOWSNT */
1448 return Fcurrent_time ();
1449 #endif /* WINDOWSNT */
1450 #endif /* HAVE_GETRUSAGE */
1451 }
1452 \f
1453
1454 /* Make a Lisp list that represents the time T with fraction TAIL. */
1455 static Lisp_Object
1456 make_time_tail (time_t t, Lisp_Object tail)
1457 {
1458 return Fcons (make_number (hi_time (t)),
1459 Fcons (make_number (lo_time (t)), tail));
1460 }
1461
1462 /* Make a Lisp list that represents the system time T. */
1463 static Lisp_Object
1464 make_time (time_t t)
1465 {
1466 return make_time_tail (t, Qnil);
1467 }
1468
1469 /* Make a Lisp list that represents the Emacs time T. T may be an
1470 invalid time, with a slightly negative tv_nsec value such as
1471 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1472 correspondingly negative picosecond count. */
1473 Lisp_Object
1474 make_lisp_time (struct timespec t)
1475 {
1476 int ns = t.tv_nsec;
1477 return make_time_tail (t.tv_sec, list2i (ns / 1000, ns % 1000 * 1000));
1478 }
1479
1480 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1481 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1482 Return true if successful. */
1483 static bool
1484 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1485 Lisp_Object *plow, Lisp_Object *pusec,
1486 Lisp_Object *ppsec)
1487 {
1488 if (CONSP (specified_time))
1489 {
1490 Lisp_Object low = XCDR (specified_time);
1491 Lisp_Object usec = make_number (0);
1492 Lisp_Object psec = make_number (0);
1493 if (CONSP (low))
1494 {
1495 Lisp_Object low_tail = XCDR (low);
1496 low = XCAR (low);
1497 if (CONSP (low_tail))
1498 {
1499 usec = XCAR (low_tail);
1500 low_tail = XCDR (low_tail);
1501 if (CONSP (low_tail))
1502 psec = XCAR (low_tail);
1503 }
1504 else if (!NILP (low_tail))
1505 usec = low_tail;
1506 }
1507
1508 *phigh = XCAR (specified_time);
1509 *plow = low;
1510 *pusec = usec;
1511 *ppsec = psec;
1512 return 1;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1519 list, generate the corresponding time value.
1520
1521 If RESULT is not null, store into *RESULT the converted time;
1522 this can fail if the converted time does not fit into struct timespec.
1523 If *DRESULT is not null, store into *DRESULT the number of
1524 seconds since the start of the POSIX Epoch.
1525
1526 Return true if successful. */
1527 bool
1528 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1529 Lisp_Object psec,
1530 struct timespec *result, double *dresult)
1531 {
1532 EMACS_INT hi, lo, us, ps;
1533 if (! (INTEGERP (high) && INTEGERP (low)
1534 && INTEGERP (usec) && INTEGERP (psec)))
1535 return 0;
1536 hi = XINT (high);
1537 lo = XINT (low);
1538 us = XINT (usec);
1539 ps = XINT (psec);
1540
1541 /* Normalize out-of-range lower-order components by carrying
1542 each overflow into the next higher-order component. */
1543 us += ps / 1000000 - (ps % 1000000 < 0);
1544 lo += us / 1000000 - (us % 1000000 < 0);
1545 hi += lo >> 16;
1546 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1547 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1548 lo &= (1 << 16) - 1;
1549
1550 if (result)
1551 {
1552 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1553 && hi <= TIME_T_MAX >> 16)
1554 {
1555 /* Return the greatest representable time that is not greater
1556 than the requested time. */
1557 time_t sec = hi;
1558 *result = make_timespec ((sec << 16) + lo, us * 1000 + ps / 1000);
1559 }
1560 else
1561 {
1562 /* Overflow in the highest-order component. */
1563 return 0;
1564 }
1565 }
1566
1567 if (dresult)
1568 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1569
1570 return 1;
1571 }
1572
1573 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1574 If SPECIFIED_TIME is nil, use the current time.
1575
1576 Round the time down to the nearest struct timespec value.
1577 Return seconds since the Epoch.
1578 Signal an error if unsuccessful. */
1579 struct timespec
1580 lisp_time_argument (Lisp_Object specified_time)
1581 {
1582 struct timespec t;
1583 if (NILP (specified_time))
1584 t = current_timespec ();
1585 else
1586 {
1587 Lisp_Object high, low, usec, psec;
1588 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1589 && decode_time_components (high, low, usec, psec, &t, 0)))
1590 error ("Invalid time specification");
1591 }
1592 return t;
1593 }
1594
1595 /* Like lisp_time_argument, except decode only the seconds part,
1596 do not allow out-of-range time stamps, do not check the subseconds part,
1597 and always round down. */
1598 static time_t
1599 lisp_seconds_argument (Lisp_Object specified_time)
1600 {
1601 if (NILP (specified_time))
1602 return time (NULL);
1603 else
1604 {
1605 Lisp_Object high, low, usec, psec;
1606 struct timespec t;
1607 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1608 && decode_time_components (high, low, make_number (0),
1609 make_number (0), &t, 0)))
1610 error ("Invalid time specification");
1611 return t.tv_sec;
1612 }
1613 }
1614
1615 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1616 doc: /* Return the current time, as a float number of seconds since the epoch.
1617 If SPECIFIED-TIME is given, it is the time to convert to float
1618 instead of the current time. The argument should have the form
1619 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1620 you can use times from `current-time' and from `file-attributes'.
1621 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1622 considered obsolete.
1623
1624 WARNING: Since the result is floating point, it may not be exact.
1625 If precise time stamps are required, use either `current-time',
1626 or (if you need time as a string) `format-time-string'. */)
1627 (Lisp_Object specified_time)
1628 {
1629 double t;
1630 if (NILP (specified_time))
1631 {
1632 struct timespec now = current_timespec ();
1633 t = now.tv_sec + now.tv_nsec / 1e9;
1634 }
1635 else
1636 {
1637 Lisp_Object high, low, usec, psec;
1638 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1639 && decode_time_components (high, low, usec, psec, 0, &t)))
1640 error ("Invalid time specification");
1641 }
1642 return make_float (t);
1643 }
1644
1645 /* Write information into buffer S of size MAXSIZE, according to the
1646 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1647 Default to Universal Time if UT, local time otherwise.
1648 Use NS as the number of nanoseconds in the %N directive.
1649 Return the number of bytes written, not including the terminating
1650 '\0'. If S is NULL, nothing will be written anywhere; so to
1651 determine how many bytes would be written, use NULL for S and
1652 ((size_t) -1) for MAXSIZE.
1653
1654 This function behaves like nstrftime, except it allows null
1655 bytes in FORMAT and it does not support nanoseconds. */
1656 static size_t
1657 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1658 size_t format_len, const struct tm *tp, bool ut, int ns)
1659 {
1660 size_t total = 0;
1661
1662 /* Loop through all the null-terminated strings in the format
1663 argument. Normally there's just one null-terminated string, but
1664 there can be arbitrarily many, concatenated together, if the
1665 format contains '\0' bytes. nstrftime stops at the first
1666 '\0' byte so we must invoke it separately for each such string. */
1667 for (;;)
1668 {
1669 size_t len;
1670 size_t result;
1671
1672 if (s)
1673 s[0] = '\1';
1674
1675 result = nstrftime (s, maxsize, format, tp, ut, ns);
1676
1677 if (s)
1678 {
1679 if (result == 0 && s[0] != '\0')
1680 return 0;
1681 s += result + 1;
1682 }
1683
1684 maxsize -= result + 1;
1685 total += result;
1686 len = strlen (format);
1687 if (len == format_len)
1688 return total;
1689 total++;
1690 format += len + 1;
1691 format_len -= len + 1;
1692 }
1693 }
1694
1695 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1696 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1697 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1698 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1699 is also still accepted.
1700 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1701 as Universal Time; nil means describe TIME in the local time zone.
1702 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1703 by text that describes the specified date and time in TIME:
1704
1705 %Y is the year, %y within the century, %C the century.
1706 %G is the year corresponding to the ISO week, %g within the century.
1707 %m is the numeric month.
1708 %b and %h are the locale's abbreviated month name, %B the full name.
1709 (%h is not supported on MS-Windows.)
1710 %d is the day of the month, zero-padded, %e is blank-padded.
1711 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1712 %a is the locale's abbreviated name of the day of week, %A the full name.
1713 %U is the week number starting on Sunday, %W starting on Monday,
1714 %V according to ISO 8601.
1715 %j is the day of the year.
1716
1717 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1718 only blank-padded, %l is like %I blank-padded.
1719 %p is the locale's equivalent of either AM or PM.
1720 %M is the minute.
1721 %S is the second.
1722 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1723 %Z is the time zone name, %z is the numeric form.
1724 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1725
1726 %c is the locale's date and time format.
1727 %x is the locale's "preferred" date format.
1728 %D is like "%m/%d/%y".
1729 %F is the ISO 8601 date format (like "%Y-%m-%d").
1730
1731 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1732 %X is the locale's "preferred" time format.
1733
1734 Finally, %n is a newline, %t is a tab, %% is a literal %.
1735
1736 Certain flags and modifiers are available with some format controls.
1737 The flags are `_', `-', `^' and `#'. For certain characters X,
1738 %_X is like %X, but padded with blanks; %-X is like %X,
1739 but without padding. %^X is like %X, but with all textual
1740 characters up-cased; %#X is like %X, but with letter-case of
1741 all textual characters reversed.
1742 %NX (where N stands for an integer) is like %X,
1743 but takes up at least N (a number) positions.
1744 The modifiers are `E' and `O'. For certain characters X,
1745 %EX is a locale's alternative version of %X;
1746 %OX is like %X, but uses the locale's number symbols.
1747
1748 For example, to produce full ISO 8601 format, use "%FT%T%z".
1749
1750 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1751 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1752 {
1753 struct timespec t = lisp_time_argument (timeval);
1754 struct tm tm;
1755
1756 CHECK_STRING (format_string);
1757 format_string = code_convert_string_norecord (format_string,
1758 Vlocale_coding_system, 1);
1759 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1760 t, ! NILP (universal), &tm);
1761 }
1762
1763 static Lisp_Object
1764 format_time_string (char const *format, ptrdiff_t formatlen,
1765 struct timespec t, bool ut, struct tm *tmp)
1766 {
1767 char buffer[4000];
1768 char *buf = buffer;
1769 ptrdiff_t size = sizeof buffer;
1770 size_t len;
1771 Lisp_Object bufstring;
1772 int ns = t.tv_nsec;
1773 struct tm *tm;
1774 USE_SAFE_ALLOCA;
1775
1776 while (1)
1777 {
1778 time_t *taddr = &t.tv_sec;
1779 block_input ();
1780
1781 synchronize_system_time_locale ();
1782
1783 tm = ut ? gmtime (taddr) : localtime (taddr);
1784 if (! tm)
1785 {
1786 unblock_input ();
1787 time_overflow ();
1788 }
1789 *tmp = *tm;
1790
1791 buf[0] = '\1';
1792 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1793 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1794 break;
1795
1796 /* Buffer was too small, so make it bigger and try again. */
1797 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1798 unblock_input ();
1799 if (STRING_BYTES_BOUND <= len)
1800 string_overflow ();
1801 size = len + 1;
1802 buf = SAFE_ALLOCA (size);
1803 }
1804
1805 unblock_input ();
1806 bufstring = make_unibyte_string (buf, len);
1807 SAFE_FREE ();
1808 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1809 }
1810
1811 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1812 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1813 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1814 as from `current-time' and `file-attributes', or nil to use the
1815 current time. The obsolete form (HIGH . LOW) is also still accepted.
1816 The list has the following nine members: SEC is an integer between 0
1817 and 60; SEC is 60 for a leap second, which only some operating systems
1818 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1819 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1820 integer between 1 and 12. YEAR is an integer indicating the
1821 four-digit year. DOW is the day of week, an integer between 0 and 6,
1822 where 0 is Sunday. DST is t if daylight saving time is in effect,
1823 otherwise nil. ZONE is an integer indicating the number of seconds
1824 east of Greenwich. (Note that Common Lisp has different meanings for
1825 DOW and ZONE.) */)
1826 (Lisp_Object specified_time)
1827 {
1828 time_t time_spec = lisp_seconds_argument (specified_time);
1829 struct tm save_tm;
1830 struct tm *decoded_time;
1831 Lisp_Object list_args[9];
1832
1833 block_input ();
1834 decoded_time = localtime (&time_spec);
1835 if (decoded_time)
1836 save_tm = *decoded_time;
1837 unblock_input ();
1838 if (! (decoded_time
1839 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1840 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1841 time_overflow ();
1842 XSETFASTINT (list_args[0], save_tm.tm_sec);
1843 XSETFASTINT (list_args[1], save_tm.tm_min);
1844 XSETFASTINT (list_args[2], save_tm.tm_hour);
1845 XSETFASTINT (list_args[3], save_tm.tm_mday);
1846 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1847 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1848 cast below avoids overflow in int arithmetics. */
1849 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1850 XSETFASTINT (list_args[6], save_tm.tm_wday);
1851 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1852
1853 block_input ();
1854 decoded_time = gmtime (&time_spec);
1855 if (decoded_time == 0)
1856 list_args[8] = Qnil;
1857 else
1858 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1859 unblock_input ();
1860 return Flist (9, list_args);
1861 }
1862
1863 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1864 the result is representable as an int. Assume OFFSET is small and
1865 nonnegative. */
1866 static int
1867 check_tm_member (Lisp_Object obj, int offset)
1868 {
1869 EMACS_INT n;
1870 CHECK_NUMBER (obj);
1871 n = XINT (obj);
1872 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1873 time_overflow ();
1874 return n - offset;
1875 }
1876
1877 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1878 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1879 This is the reverse operation of `decode-time', which see.
1880 ZONE defaults to the current time zone rule. This can
1881 be a string or t (as from `set-time-zone-rule'), or it can be a list
1882 \(as from `current-time-zone') or an integer (as from `decode-time')
1883 applied without consideration for daylight saving time.
1884
1885 You can pass more than 7 arguments; then the first six arguments
1886 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1887 The intervening arguments are ignored.
1888 This feature lets (apply 'encode-time (decode-time ...)) work.
1889
1890 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1891 for example, a DAY of 0 means the day preceding the given month.
1892 Year numbers less than 100 are treated just like other year numbers.
1893 If you want them to stand for years in this century, you must do that yourself.
1894
1895 Years before 1970 are not guaranteed to work. On some systems,
1896 year values as low as 1901 do work.
1897
1898 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1899 (ptrdiff_t nargs, Lisp_Object *args)
1900 {
1901 time_t value;
1902 struct tm tm;
1903 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1904
1905 tm.tm_sec = check_tm_member (args[0], 0);
1906 tm.tm_min = check_tm_member (args[1], 0);
1907 tm.tm_hour = check_tm_member (args[2], 0);
1908 tm.tm_mday = check_tm_member (args[3], 0);
1909 tm.tm_mon = check_tm_member (args[4], 1);
1910 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1911 tm.tm_isdst = -1;
1912
1913 if (CONSP (zone))
1914 zone = XCAR (zone);
1915 if (NILP (zone))
1916 {
1917 block_input ();
1918 value = mktime (&tm);
1919 unblock_input ();
1920 }
1921 else
1922 {
1923 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1924 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1925 char *old_tzstring;
1926 const char *tzstring;
1927 USE_SAFE_ALLOCA;
1928
1929 if (EQ (zone, Qt))
1930 tzstring = "UTC0";
1931 else if (STRINGP (zone))
1932 tzstring = SSDATA (zone);
1933 else if (INTEGERP (zone))
1934 {
1935 EMACS_INT abszone = eabs (XINT (zone));
1936 EMACS_INT zone_hr = abszone / (60*60);
1937 int zone_min = (abszone/60) % 60;
1938 int zone_sec = abszone % 60;
1939 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
1940 zone_hr, zone_min, zone_sec);
1941 tzstring = tzbuf;
1942 }
1943 else
1944 error ("Invalid time zone specification");
1945
1946 old_tzstring = getenv ("TZ");
1947 if (old_tzstring)
1948 {
1949 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1950 old_tzstring = strcpy (buf, old_tzstring);
1951 }
1952
1953 block_input ();
1954
1955 /* Set TZ before calling mktime; merely adjusting mktime's returned
1956 value doesn't suffice, since that would mishandle leap seconds. */
1957 set_time_zone_rule (tzstring);
1958
1959 value = mktime (&tm);
1960
1961 set_time_zone_rule (old_tzstring);
1962 #ifdef LOCALTIME_CACHE
1963 tzset ();
1964 #endif
1965 unblock_input ();
1966 SAFE_FREE ();
1967 }
1968
1969 if (value == (time_t) -1)
1970 time_overflow ();
1971
1972 return make_time (value);
1973 }
1974
1975 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1976 doc: /* Return the current local time, as a human-readable string.
1977 Programs can use this function to decode a time,
1978 since the number of columns in each field is fixed
1979 if the year is in the range 1000-9999.
1980 The format is `Sun Sep 16 01:03:52 1973'.
1981 However, see also the functions `decode-time' and `format-time-string'
1982 which provide a much more powerful and general facility.
1983
1984 If SPECIFIED-TIME is given, it is a time to format instead of the
1985 current time. The argument should have the form (HIGH LOW . IGNORED).
1986 Thus, you can use times obtained from `current-time' and from
1987 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1988 but this is considered obsolete. */)
1989 (Lisp_Object specified_time)
1990 {
1991 time_t value = lisp_seconds_argument (specified_time);
1992 struct tm *tm;
1993 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1994 int len IF_LINT (= 0);
1995
1996 /* Convert to a string in ctime format, except without the trailing
1997 newline, and without the 4-digit year limit. Don't use asctime
1998 or ctime, as they might dump core if the year is outside the
1999 range -999 .. 9999. */
2000 block_input ();
2001 tm = localtime (&value);
2002 if (tm)
2003 {
2004 static char const wday_name[][4] =
2005 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2006 static char const mon_name[][4] =
2007 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2008 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2009 printmax_t year_base = TM_YEAR_BASE;
2010
2011 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2012 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2013 tm->tm_hour, tm->tm_min, tm->tm_sec,
2014 tm->tm_year + year_base);
2015 }
2016 unblock_input ();
2017 if (! tm)
2018 time_overflow ();
2019
2020 return make_unibyte_string (buf, len);
2021 }
2022
2023 /* Yield A - B, measured in seconds.
2024 This function is copied from the GNU C Library. */
2025 static int
2026 tm_diff (struct tm *a, struct tm *b)
2027 {
2028 /* Compute intervening leap days correctly even if year is negative.
2029 Take care to avoid int overflow in leap day calculations,
2030 but it's OK to assume that A and B are close to each other. */
2031 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2032 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2033 int a100 = a4 / 25 - (a4 % 25 < 0);
2034 int b100 = b4 / 25 - (b4 % 25 < 0);
2035 int a400 = a100 >> 2;
2036 int b400 = b100 >> 2;
2037 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2038 int years = a->tm_year - b->tm_year;
2039 int days = (365 * years + intervening_leap_days
2040 + (a->tm_yday - b->tm_yday));
2041 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2042 + (a->tm_min - b->tm_min))
2043 + (a->tm_sec - b->tm_sec));
2044 }
2045
2046 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2047 doc: /* Return the offset and name for the local time zone.
2048 This returns a list of the form (OFFSET NAME).
2049 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2050 A negative value means west of Greenwich.
2051 NAME is a string giving the name of the time zone.
2052 If SPECIFIED-TIME is given, the time zone offset is determined from it
2053 instead of using the current time. The argument should have the form
2054 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2055 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2056 have the form (HIGH . LOW), but this is considered obsolete.
2057
2058 Some operating systems cannot provide all this information to Emacs;
2059 in this case, `current-time-zone' returns a list containing nil for
2060 the data it can't find. */)
2061 (Lisp_Object specified_time)
2062 {
2063 struct timespec value;
2064 int offset;
2065 struct tm *t;
2066 struct tm localtm;
2067 Lisp_Object zone_offset, zone_name;
2068
2069 zone_offset = Qnil;
2070 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2071 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2072 block_input ();
2073 t = gmtime (&value.tv_sec);
2074 if (t)
2075 offset = tm_diff (&localtm, t);
2076 unblock_input ();
2077
2078 if (t)
2079 {
2080 zone_offset = make_number (offset);
2081 if (SCHARS (zone_name) == 0)
2082 {
2083 /* No local time zone name is available; use "+-NNNN" instead. */
2084 int m = offset / 60;
2085 int am = offset < 0 ? - m : m;
2086 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2087 zone_name = make_formatted_string (buf, "%c%02d%02d",
2088 (offset < 0 ? '-' : '+'),
2089 am / 60, am % 60);
2090 }
2091 }
2092
2093 return list2 (zone_offset, zone_name);
2094 }
2095
2096 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2097 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2098 If TZ is nil, use implementation-defined default time zone information.
2099 If TZ is t, use Universal Time.
2100
2101 Instead of calling this function, you typically want (setenv "TZ" TZ).
2102 That changes both the environment of the Emacs process and the
2103 variable `process-environment', whereas `set-time-zone-rule' affects
2104 only the former. */)
2105 (Lisp_Object tz)
2106 {
2107 const char *tzstring;
2108
2109 if (! (NILP (tz) || EQ (tz, Qt)))
2110 CHECK_STRING (tz);
2111
2112 if (NILP (tz))
2113 tzstring = initial_tz;
2114 else if (EQ (tz, Qt))
2115 tzstring = "UTC0";
2116 else
2117 tzstring = SSDATA (tz);
2118
2119 block_input ();
2120 set_time_zone_rule (tzstring);
2121 unblock_input ();
2122
2123 return Qnil;
2124 }
2125
2126 /* Set the local time zone rule to TZSTRING.
2127
2128 This function is not thread-safe, partly because putenv, unsetenv
2129 and tzset are not, and partly because of the static storage it
2130 updates. Other threads that invoke localtime etc. may be adversely
2131 affected while this function is executing. */
2132
2133 void
2134 set_time_zone_rule (const char *tzstring)
2135 {
2136 /* A buffer holding a string of the form "TZ=value", intended
2137 to be part of the environment. */
2138 static char *tzvalbuf;
2139 static ptrdiff_t tzvalbufsize;
2140
2141 int tzeqlen = sizeof "TZ=" - 1;
2142
2143 #ifdef LOCALTIME_CACHE
2144 /* These two values are known to load tz files in buggy implementations,
2145 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2146 Their values shouldn't matter in non-buggy implementations.
2147 We don't use string literals for these strings,
2148 since if a string in the environment is in readonly
2149 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2150 See Sun bugs 1113095 and 1114114, ``Timezone routines
2151 improperly modify environment''. */
2152
2153 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2154 = { "TZ=GMT+0", "TZ=GMT+1" };
2155
2156 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2157 "US/Pacific" that loads a tz file, then changes to a value like
2158 "XXX0" that does not load a tz file, and then changes back to
2159 its original value, the last change is (incorrectly) ignored.
2160 Also, if TZ changes twice in succession to values that do
2161 not load a tz file, tzset can dump core (see Sun bug#1225179).
2162 The following code works around these bugs. */
2163
2164 if (tzstring)
2165 {
2166 /* Temporarily set TZ to a value that loads a tz file
2167 and that differs from tzstring. */
2168 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2169 xputenv (set_time_zone_rule_tz[eq0]);
2170 }
2171 else
2172 {
2173 /* The implied tzstring is unknown, so temporarily set TZ to
2174 two different values that each load a tz file. */
2175 xputenv (set_time_zone_rule_tz[0]);
2176 tzset ();
2177 xputenv (set_time_zone_rule_tz[1]);
2178 }
2179 tzset ();
2180 tzvalbuf_in_environ = 0;
2181 #endif
2182
2183 if (!tzstring)
2184 {
2185 unsetenv ("TZ");
2186 tzvalbuf_in_environ = 0;
2187 }
2188 else
2189 {
2190 ptrdiff_t tzstringlen = strlen (tzstring);
2191
2192 if (tzvalbufsize <= tzeqlen + tzstringlen)
2193 {
2194 unsetenv ("TZ");
2195 tzvalbuf_in_environ = 0;
2196 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2197 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2198 memcpy (tzvalbuf, "TZ=", tzeqlen);
2199 }
2200
2201 strcpy (tzvalbuf + tzeqlen, tzstring);
2202
2203 if (!tzvalbuf_in_environ)
2204 {
2205 xputenv (tzvalbuf);
2206 tzvalbuf_in_environ = 1;
2207 }
2208 }
2209
2210 #ifdef LOCALTIME_CACHE
2211 tzset ();
2212 #endif
2213 }
2214 \f
2215 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2216 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2217 type of object is Lisp_String). INHERIT is passed to
2218 INSERT_FROM_STRING_FUNC as the last argument. */
2219
2220 static void
2221 general_insert_function (void (*insert_func)
2222 (const char *, ptrdiff_t),
2223 void (*insert_from_string_func)
2224 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2225 ptrdiff_t, ptrdiff_t, bool),
2226 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2227 {
2228 ptrdiff_t argnum;
2229 Lisp_Object val;
2230
2231 for (argnum = 0; argnum < nargs; argnum++)
2232 {
2233 val = args[argnum];
2234 if (CHARACTERP (val))
2235 {
2236 int c = XFASTINT (val);
2237 unsigned char str[MAX_MULTIBYTE_LENGTH];
2238 int len;
2239
2240 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2241 len = CHAR_STRING (c, str);
2242 else
2243 {
2244 str[0] = CHAR_TO_BYTE8 (c);
2245 len = 1;
2246 }
2247 (*insert_func) ((char *) str, len);
2248 }
2249 else if (STRINGP (val))
2250 {
2251 (*insert_from_string_func) (val, 0, 0,
2252 SCHARS (val),
2253 SBYTES (val),
2254 inherit);
2255 }
2256 else
2257 wrong_type_argument (Qchar_or_string_p, val);
2258 }
2259 }
2260
2261 void
2262 insert1 (Lisp_Object arg)
2263 {
2264 Finsert (1, &arg);
2265 }
2266
2267
2268 /* Callers passing one argument to Finsert need not gcpro the
2269 argument "array", since the only element of the array will
2270 not be used after calling insert or insert_from_string, so
2271 we don't care if it gets trashed. */
2272
2273 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2274 doc: /* Insert the arguments, either strings or characters, at point.
2275 Point and before-insertion markers move forward to end up
2276 after the inserted text.
2277 Any other markers at the point of insertion remain before the text.
2278
2279 If the current buffer is multibyte, unibyte strings are converted
2280 to multibyte for insertion (see `string-make-multibyte').
2281 If the current buffer is unibyte, multibyte strings are converted
2282 to unibyte for insertion (see `string-make-unibyte').
2283
2284 When operating on binary data, it may be necessary to preserve the
2285 original bytes of a unibyte string when inserting it into a multibyte
2286 buffer; to accomplish this, apply `string-as-multibyte' to the string
2287 and insert the result.
2288
2289 usage: (insert &rest ARGS) */)
2290 (ptrdiff_t nargs, Lisp_Object *args)
2291 {
2292 general_insert_function (insert, insert_from_string, 0, nargs, args);
2293 return Qnil;
2294 }
2295
2296 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2297 0, MANY, 0,
2298 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2299 Point and before-insertion markers move forward to end up
2300 after the inserted text.
2301 Any other markers at the point of insertion remain before the text.
2302
2303 If the current buffer is multibyte, unibyte strings are converted
2304 to multibyte for insertion (see `unibyte-char-to-multibyte').
2305 If the current buffer is unibyte, multibyte strings are converted
2306 to unibyte for insertion.
2307
2308 usage: (insert-and-inherit &rest ARGS) */)
2309 (ptrdiff_t nargs, Lisp_Object *args)
2310 {
2311 general_insert_function (insert_and_inherit, insert_from_string, 1,
2312 nargs, args);
2313 return Qnil;
2314 }
2315
2316 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2317 doc: /* Insert strings or characters at point, relocating markers after the text.
2318 Point and markers move forward to end up after the inserted text.
2319
2320 If the current buffer is multibyte, unibyte strings are converted
2321 to multibyte for insertion (see `unibyte-char-to-multibyte').
2322 If the current buffer is unibyte, multibyte strings are converted
2323 to unibyte for insertion.
2324
2325 If an overlay begins at the insertion point, the inserted text falls
2326 outside the overlay; if a nonempty overlay ends at the insertion
2327 point, the inserted text falls inside that overlay.
2328
2329 usage: (insert-before-markers &rest ARGS) */)
2330 (ptrdiff_t nargs, Lisp_Object *args)
2331 {
2332 general_insert_function (insert_before_markers,
2333 insert_from_string_before_markers, 0,
2334 nargs, args);
2335 return Qnil;
2336 }
2337
2338 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2339 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2340 doc: /* Insert text at point, relocating markers and inheriting properties.
2341 Point and markers move forward to end up after the inserted text.
2342
2343 If the current buffer is multibyte, unibyte strings are converted
2344 to multibyte for insertion (see `unibyte-char-to-multibyte').
2345 If the current buffer is unibyte, multibyte strings are converted
2346 to unibyte for insertion.
2347
2348 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2349 (ptrdiff_t nargs, Lisp_Object *args)
2350 {
2351 general_insert_function (insert_before_markers_and_inherit,
2352 insert_from_string_before_markers, 1,
2353 nargs, args);
2354 return Qnil;
2355 }
2356 \f
2357 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2358 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2359 (prefix-numeric-value current-prefix-arg)\
2360 t))",
2361 doc: /* Insert COUNT copies of CHARACTER.
2362 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2363 of these ways:
2364
2365 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2366 Completion is available; if you type a substring of the name
2367 preceded by an asterisk `*', Emacs shows all names which include
2368 that substring, not necessarily at the beginning of the name.
2369
2370 - As a hexadecimal code point, e.g. 263A. Note that code points in
2371 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2372 the Unicode code space).
2373
2374 - As a code point with a radix specified with #, e.g. #o21430
2375 (octal), #x2318 (hex), or #10r8984 (decimal).
2376
2377 If called interactively, COUNT is given by the prefix argument. If
2378 omitted or nil, it defaults to 1.
2379
2380 Inserting the character(s) relocates point and before-insertion
2381 markers in the same ways as the function `insert'.
2382
2383 The optional third argument INHERIT, if non-nil, says to inherit text
2384 properties from adjoining text, if those properties are sticky. If
2385 called interactively, INHERIT is t. */)
2386 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2387 {
2388 int i, stringlen;
2389 register ptrdiff_t n;
2390 int c, len;
2391 unsigned char str[MAX_MULTIBYTE_LENGTH];
2392 char string[4000];
2393
2394 CHECK_CHARACTER (character);
2395 if (NILP (count))
2396 XSETFASTINT (count, 1);
2397 CHECK_NUMBER (count);
2398 c = XFASTINT (character);
2399
2400 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2401 len = CHAR_STRING (c, str);
2402 else
2403 str[0] = c, len = 1;
2404 if (XINT (count) <= 0)
2405 return Qnil;
2406 if (BUF_BYTES_MAX / len < XINT (count))
2407 buffer_overflow ();
2408 n = XINT (count) * len;
2409 stringlen = min (n, sizeof string - sizeof string % len);
2410 for (i = 0; i < stringlen; i++)
2411 string[i] = str[i % len];
2412 while (n > stringlen)
2413 {
2414 QUIT;
2415 if (!NILP (inherit))
2416 insert_and_inherit (string, stringlen);
2417 else
2418 insert (string, stringlen);
2419 n -= stringlen;
2420 }
2421 if (!NILP (inherit))
2422 insert_and_inherit (string, n);
2423 else
2424 insert (string, n);
2425 return Qnil;
2426 }
2427
2428 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2429 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2430 Both arguments are required.
2431 BYTE is a number of the range 0..255.
2432
2433 If BYTE is 128..255 and the current buffer is multibyte, the
2434 corresponding eight-bit character is inserted.
2435
2436 Point, and before-insertion markers, are relocated as in the function `insert'.
2437 The optional third arg INHERIT, if non-nil, says to inherit text properties
2438 from adjoining text, if those properties are sticky. */)
2439 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2440 {
2441 CHECK_NUMBER (byte);
2442 if (XINT (byte) < 0 || XINT (byte) > 255)
2443 args_out_of_range_3 (byte, make_number (0), make_number (255));
2444 if (XINT (byte) >= 128
2445 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2446 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2447 return Finsert_char (byte, count, inherit);
2448 }
2449
2450 \f
2451 /* Making strings from buffer contents. */
2452
2453 /* Return a Lisp_String containing the text of the current buffer from
2454 START to END. If text properties are in use and the current buffer
2455 has properties in the range specified, the resulting string will also
2456 have them, if PROPS is true.
2457
2458 We don't want to use plain old make_string here, because it calls
2459 make_uninit_string, which can cause the buffer arena to be
2460 compacted. make_string has no way of knowing that the data has
2461 been moved, and thus copies the wrong data into the string. This
2462 doesn't effect most of the other users of make_string, so it should
2463 be left as is. But we should use this function when conjuring
2464 buffer substrings. */
2465
2466 Lisp_Object
2467 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2468 {
2469 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2470 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2471
2472 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2473 }
2474
2475 /* Return a Lisp_String containing the text of the current buffer from
2476 START / START_BYTE to END / END_BYTE.
2477
2478 If text properties are in use and the current buffer
2479 has properties in the range specified, the resulting string will also
2480 have them, if PROPS is true.
2481
2482 We don't want to use plain old make_string here, because it calls
2483 make_uninit_string, which can cause the buffer arena to be
2484 compacted. make_string has no way of knowing that the data has
2485 been moved, and thus copies the wrong data into the string. This
2486 doesn't effect most of the other users of make_string, so it should
2487 be left as is. But we should use this function when conjuring
2488 buffer substrings. */
2489
2490 Lisp_Object
2491 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2492 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2493 {
2494 Lisp_Object result, tem, tem1;
2495
2496 if (start < GPT && GPT < end)
2497 move_gap_both (start, start_byte);
2498
2499 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2500 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2501 else
2502 result = make_uninit_string (end - start);
2503 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2504
2505 /* If desired, update and copy the text properties. */
2506 if (props)
2507 {
2508 update_buffer_properties (start, end);
2509
2510 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2511 tem1 = Ftext_properties_at (make_number (start), Qnil);
2512
2513 if (XINT (tem) != end || !NILP (tem1))
2514 copy_intervals_to_string (result, current_buffer, start,
2515 end - start);
2516 }
2517
2518 return result;
2519 }
2520
2521 /* Call Vbuffer_access_fontify_functions for the range START ... END
2522 in the current buffer, if necessary. */
2523
2524 static void
2525 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2526 {
2527 /* If this buffer has some access functions,
2528 call them, specifying the range of the buffer being accessed. */
2529 if (!NILP (Vbuffer_access_fontify_functions))
2530 {
2531 Lisp_Object args[3];
2532 Lisp_Object tem;
2533
2534 args[0] = Qbuffer_access_fontify_functions;
2535 XSETINT (args[1], start);
2536 XSETINT (args[2], end);
2537
2538 /* But don't call them if we can tell that the work
2539 has already been done. */
2540 if (!NILP (Vbuffer_access_fontified_property))
2541 {
2542 tem = Ftext_property_any (args[1], args[2],
2543 Vbuffer_access_fontified_property,
2544 Qnil, Qnil);
2545 if (! NILP (tem))
2546 Frun_hook_with_args (3, args);
2547 }
2548 else
2549 Frun_hook_with_args (3, args);
2550 }
2551 }
2552
2553 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2554 doc: /* Return the contents of part of the current buffer as a string.
2555 The two arguments START and END are character positions;
2556 they can be in either order.
2557 The string returned is multibyte if the buffer is multibyte.
2558
2559 This function copies the text properties of that part of the buffer
2560 into the result string; if you don't want the text properties,
2561 use `buffer-substring-no-properties' instead. */)
2562 (Lisp_Object start, Lisp_Object end)
2563 {
2564 register ptrdiff_t b, e;
2565
2566 validate_region (&start, &end);
2567 b = XINT (start);
2568 e = XINT (end);
2569
2570 return make_buffer_string (b, e, 1);
2571 }
2572
2573 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2574 Sbuffer_substring_no_properties, 2, 2, 0,
2575 doc: /* Return the characters of part of the buffer, without the text properties.
2576 The two arguments START and END are character positions;
2577 they can be in either order. */)
2578 (Lisp_Object start, Lisp_Object end)
2579 {
2580 register ptrdiff_t b, e;
2581
2582 validate_region (&start, &end);
2583 b = XINT (start);
2584 e = XINT (end);
2585
2586 return make_buffer_string (b, e, 0);
2587 }
2588
2589 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2590 doc: /* Return the contents of the current buffer as a string.
2591 If narrowing is in effect, this function returns only the visible part
2592 of the buffer. */)
2593 (void)
2594 {
2595 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2596 }
2597
2598 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2599 1, 3, 0,
2600 doc: /* Insert before point a substring of the contents of BUFFER.
2601 BUFFER may be a buffer or a buffer name.
2602 Arguments START and END are character positions specifying the substring.
2603 They default to the values of (point-min) and (point-max) in BUFFER. */)
2604 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2605 {
2606 register EMACS_INT b, e, temp;
2607 register struct buffer *bp, *obuf;
2608 Lisp_Object buf;
2609
2610 buf = Fget_buffer (buffer);
2611 if (NILP (buf))
2612 nsberror (buffer);
2613 bp = XBUFFER (buf);
2614 if (!BUFFER_LIVE_P (bp))
2615 error ("Selecting deleted buffer");
2616
2617 if (NILP (start))
2618 b = BUF_BEGV (bp);
2619 else
2620 {
2621 CHECK_NUMBER_COERCE_MARKER (start);
2622 b = XINT (start);
2623 }
2624 if (NILP (end))
2625 e = BUF_ZV (bp);
2626 else
2627 {
2628 CHECK_NUMBER_COERCE_MARKER (end);
2629 e = XINT (end);
2630 }
2631
2632 if (b > e)
2633 temp = b, b = e, e = temp;
2634
2635 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2636 args_out_of_range (start, end);
2637
2638 obuf = current_buffer;
2639 set_buffer_internal_1 (bp);
2640 update_buffer_properties (b, e);
2641 set_buffer_internal_1 (obuf);
2642
2643 insert_from_buffer (bp, b, e - b, 0);
2644 return Qnil;
2645 }
2646
2647 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2648 6, 6, 0,
2649 doc: /* Compare two substrings of two buffers; return result as number.
2650 Return -N if first string is less after N-1 chars, +N if first string is
2651 greater after N-1 chars, or 0 if strings match. Each substring is
2652 represented as three arguments: BUFFER, START and END. That makes six
2653 args in all, three for each substring.
2654
2655 The value of `case-fold-search' in the current buffer
2656 determines whether case is significant or ignored. */)
2657 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2658 {
2659 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2660 register struct buffer *bp1, *bp2;
2661 register Lisp_Object trt
2662 = (!NILP (BVAR (current_buffer, case_fold_search))
2663 ? BVAR (current_buffer, case_canon_table) : Qnil);
2664 ptrdiff_t chars = 0;
2665 ptrdiff_t i1, i2, i1_byte, i2_byte;
2666
2667 /* Find the first buffer and its substring. */
2668
2669 if (NILP (buffer1))
2670 bp1 = current_buffer;
2671 else
2672 {
2673 Lisp_Object buf1;
2674 buf1 = Fget_buffer (buffer1);
2675 if (NILP (buf1))
2676 nsberror (buffer1);
2677 bp1 = XBUFFER (buf1);
2678 if (!BUFFER_LIVE_P (bp1))
2679 error ("Selecting deleted buffer");
2680 }
2681
2682 if (NILP (start1))
2683 begp1 = BUF_BEGV (bp1);
2684 else
2685 {
2686 CHECK_NUMBER_COERCE_MARKER (start1);
2687 begp1 = XINT (start1);
2688 }
2689 if (NILP (end1))
2690 endp1 = BUF_ZV (bp1);
2691 else
2692 {
2693 CHECK_NUMBER_COERCE_MARKER (end1);
2694 endp1 = XINT (end1);
2695 }
2696
2697 if (begp1 > endp1)
2698 temp = begp1, begp1 = endp1, endp1 = temp;
2699
2700 if (!(BUF_BEGV (bp1) <= begp1
2701 && begp1 <= endp1
2702 && endp1 <= BUF_ZV (bp1)))
2703 args_out_of_range (start1, end1);
2704
2705 /* Likewise for second substring. */
2706
2707 if (NILP (buffer2))
2708 bp2 = current_buffer;
2709 else
2710 {
2711 Lisp_Object buf2;
2712 buf2 = Fget_buffer (buffer2);
2713 if (NILP (buf2))
2714 nsberror (buffer2);
2715 bp2 = XBUFFER (buf2);
2716 if (!BUFFER_LIVE_P (bp2))
2717 error ("Selecting deleted buffer");
2718 }
2719
2720 if (NILP (start2))
2721 begp2 = BUF_BEGV (bp2);
2722 else
2723 {
2724 CHECK_NUMBER_COERCE_MARKER (start2);
2725 begp2 = XINT (start2);
2726 }
2727 if (NILP (end2))
2728 endp2 = BUF_ZV (bp2);
2729 else
2730 {
2731 CHECK_NUMBER_COERCE_MARKER (end2);
2732 endp2 = XINT (end2);
2733 }
2734
2735 if (begp2 > endp2)
2736 temp = begp2, begp2 = endp2, endp2 = temp;
2737
2738 if (!(BUF_BEGV (bp2) <= begp2
2739 && begp2 <= endp2
2740 && endp2 <= BUF_ZV (bp2)))
2741 args_out_of_range (start2, end2);
2742
2743 i1 = begp1;
2744 i2 = begp2;
2745 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2746 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2747
2748 while (i1 < endp1 && i2 < endp2)
2749 {
2750 /* When we find a mismatch, we must compare the
2751 characters, not just the bytes. */
2752 int c1, c2;
2753
2754 QUIT;
2755
2756 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2757 {
2758 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2759 BUF_INC_POS (bp1, i1_byte);
2760 i1++;
2761 }
2762 else
2763 {
2764 c1 = BUF_FETCH_BYTE (bp1, i1);
2765 MAKE_CHAR_MULTIBYTE (c1);
2766 i1++;
2767 }
2768
2769 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2770 {
2771 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2772 BUF_INC_POS (bp2, i2_byte);
2773 i2++;
2774 }
2775 else
2776 {
2777 c2 = BUF_FETCH_BYTE (bp2, i2);
2778 MAKE_CHAR_MULTIBYTE (c2);
2779 i2++;
2780 }
2781
2782 if (!NILP (trt))
2783 {
2784 c1 = char_table_translate (trt, c1);
2785 c2 = char_table_translate (trt, c2);
2786 }
2787 if (c1 < c2)
2788 return make_number (- 1 - chars);
2789 if (c1 > c2)
2790 return make_number (chars + 1);
2791
2792 chars++;
2793 }
2794
2795 /* The strings match as far as they go.
2796 If one is shorter, that one is less. */
2797 if (chars < endp1 - begp1)
2798 return make_number (chars + 1);
2799 else if (chars < endp2 - begp2)
2800 return make_number (- chars - 1);
2801
2802 /* Same length too => they are equal. */
2803 return make_number (0);
2804 }
2805 \f
2806 static void
2807 subst_char_in_region_unwind (Lisp_Object arg)
2808 {
2809 bset_undo_list (current_buffer, arg);
2810 }
2811
2812 static void
2813 subst_char_in_region_unwind_1 (Lisp_Object arg)
2814 {
2815 bset_filename (current_buffer, arg);
2816 }
2817
2818 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2819 Ssubst_char_in_region, 4, 5, 0,
2820 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2821 If optional arg NOUNDO is non-nil, don't record this change for undo
2822 and don't mark the buffer as really changed.
2823 Both characters must have the same length of multi-byte form. */)
2824 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2825 {
2826 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2827 /* Keep track of the first change in the buffer:
2828 if 0 we haven't found it yet.
2829 if < 0 we've found it and we've run the before-change-function.
2830 if > 0 we've actually performed it and the value is its position. */
2831 ptrdiff_t changed = 0;
2832 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2833 unsigned char *p;
2834 dynwind_begin ();
2835 #define COMBINING_NO 0
2836 #define COMBINING_BEFORE 1
2837 #define COMBINING_AFTER 2
2838 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2839 int maybe_byte_combining = COMBINING_NO;
2840 ptrdiff_t last_changed = 0;
2841 bool multibyte_p
2842 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2843 int fromc, toc;
2844
2845 restart:
2846
2847 validate_region (&start, &end);
2848 CHECK_CHARACTER (fromchar);
2849 CHECK_CHARACTER (tochar);
2850 fromc = XFASTINT (fromchar);
2851 toc = XFASTINT (tochar);
2852
2853 if (multibyte_p)
2854 {
2855 len = CHAR_STRING (fromc, fromstr);
2856 if (CHAR_STRING (toc, tostr) != len)
2857 error ("Characters in `subst-char-in-region' have different byte-lengths");
2858 if (!ASCII_CHAR_P (*tostr))
2859 {
2860 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2861 complete multibyte character, it may be combined with the
2862 after bytes. If it is in the range 0xA0..0xFF, it may be
2863 combined with the before and after bytes. */
2864 if (!CHAR_HEAD_P (*tostr))
2865 maybe_byte_combining = COMBINING_BOTH;
2866 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2867 maybe_byte_combining = COMBINING_AFTER;
2868 }
2869 }
2870 else
2871 {
2872 len = 1;
2873 fromstr[0] = fromc;
2874 tostr[0] = toc;
2875 }
2876
2877 pos = XINT (start);
2878 pos_byte = CHAR_TO_BYTE (pos);
2879 stop = CHAR_TO_BYTE (XINT (end));
2880 end_byte = stop;
2881
2882 /* If we don't want undo, turn off putting stuff on the list.
2883 That's faster than getting rid of things,
2884 and it prevents even the entry for a first change.
2885 Also inhibit locking the file. */
2886 if (!changed && !NILP (noundo))
2887 {
2888 record_unwind_protect (subst_char_in_region_unwind,
2889 BVAR (current_buffer, undo_list));
2890 bset_undo_list (current_buffer, Qt);
2891 /* Don't do file-locking. */
2892 record_unwind_protect (subst_char_in_region_unwind_1,
2893 BVAR (current_buffer, filename));
2894 bset_filename (current_buffer, Qnil);
2895 }
2896
2897 if (pos_byte < GPT_BYTE)
2898 stop = min (stop, GPT_BYTE);
2899 while (1)
2900 {
2901 ptrdiff_t pos_byte_next = pos_byte;
2902
2903 if (pos_byte >= stop)
2904 {
2905 if (pos_byte >= end_byte) break;
2906 stop = end_byte;
2907 }
2908 p = BYTE_POS_ADDR (pos_byte);
2909 if (multibyte_p)
2910 INC_POS (pos_byte_next);
2911 else
2912 ++pos_byte_next;
2913 if (pos_byte_next - pos_byte == len
2914 && p[0] == fromstr[0]
2915 && (len == 1
2916 || (p[1] == fromstr[1]
2917 && (len == 2 || (p[2] == fromstr[2]
2918 && (len == 3 || p[3] == fromstr[3]))))))
2919 {
2920 if (changed < 0)
2921 /* We've already seen this and run the before-change-function;
2922 this time we only need to record the actual position. */
2923 changed = pos;
2924 else if (!changed)
2925 {
2926 changed = -1;
2927 modify_text (pos, XINT (end));
2928
2929 if (! NILP (noundo))
2930 {
2931 if (MODIFF - 1 == SAVE_MODIFF)
2932 SAVE_MODIFF++;
2933 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2934 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2935 }
2936
2937 /* The before-change-function may have moved the gap
2938 or even modified the buffer so we should start over. */
2939 goto restart;
2940 }
2941
2942 /* Take care of the case where the new character
2943 combines with neighboring bytes. */
2944 if (maybe_byte_combining
2945 && (maybe_byte_combining == COMBINING_AFTER
2946 ? (pos_byte_next < Z_BYTE
2947 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2948 : ((pos_byte_next < Z_BYTE
2949 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2950 || (pos_byte > BEG_BYTE
2951 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
2952 {
2953 Lisp_Object tem, string;
2954
2955 struct gcpro gcpro1;
2956
2957 tem = BVAR (current_buffer, undo_list);
2958 GCPRO1 (tem);
2959
2960 /* Make a multibyte string containing this single character. */
2961 string = make_multibyte_string ((char *) tostr, 1, len);
2962 /* replace_range is less efficient, because it moves the gap,
2963 but it handles combining correctly. */
2964 replace_range (pos, pos + 1, string,
2965 0, 0, 1);
2966 pos_byte_next = CHAR_TO_BYTE (pos);
2967 if (pos_byte_next > pos_byte)
2968 /* Before combining happened. We should not increment
2969 POS. So, to cancel the later increment of POS,
2970 decrease it now. */
2971 pos--;
2972 else
2973 INC_POS (pos_byte_next);
2974
2975 if (! NILP (noundo))
2976 bset_undo_list (current_buffer, tem);
2977
2978 UNGCPRO;
2979 }
2980 else
2981 {
2982 if (NILP (noundo))
2983 record_change (pos, 1);
2984 for (i = 0; i < len; i++) *p++ = tostr[i];
2985 }
2986 last_changed = pos + 1;
2987 }
2988 pos_byte = pos_byte_next;
2989 pos++;
2990 }
2991
2992 if (changed > 0)
2993 {
2994 signal_after_change (changed,
2995 last_changed - changed, last_changed - changed);
2996 update_compositions (changed, last_changed, CHECK_ALL);
2997 }
2998
2999 dynwind_end ();
3000 return Qnil;
3001 }
3002
3003
3004 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3005 Lisp_Object);
3006
3007 /* Helper function for Ftranslate_region_internal.
3008
3009 Check if a character sequence at POS (POS_BYTE) matches an element
3010 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3011 element is found, return it. Otherwise return Qnil. */
3012
3013 static Lisp_Object
3014 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3015 Lisp_Object val)
3016 {
3017 int buf_size = 16, buf_used = 0;
3018 int *buf = alloca (sizeof (int) * buf_size);
3019
3020 for (; CONSP (val); val = XCDR (val))
3021 {
3022 Lisp_Object elt;
3023 ptrdiff_t len, i;
3024
3025 elt = XCAR (val);
3026 if (! CONSP (elt))
3027 continue;
3028 elt = XCAR (elt);
3029 if (! VECTORP (elt))
3030 continue;
3031 len = ASIZE (elt);
3032 if (len <= end - pos)
3033 {
3034 for (i = 0; i < len; i++)
3035 {
3036 if (buf_used <= i)
3037 {
3038 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3039 int len1;
3040
3041 if (buf_used == buf_size)
3042 {
3043 int *newbuf;
3044
3045 buf_size += 16;
3046 newbuf = alloca (sizeof (int) * buf_size);
3047 memcpy (newbuf, buf, sizeof (int) * buf_used);
3048 buf = newbuf;
3049 }
3050 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3051 pos_byte += len1;
3052 }
3053 if (XINT (AREF (elt, i)) != buf[i])
3054 break;
3055 }
3056 if (i == len)
3057 return XCAR (val);
3058 }
3059 }
3060 return Qnil;
3061 }
3062
3063
3064 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3065 Stranslate_region_internal, 3, 3, 0,
3066 doc: /* Internal use only.
3067 From START to END, translate characters according to TABLE.
3068 TABLE is a string or a char-table; the Nth character in it is the
3069 mapping for the character with code N.
3070 It returns the number of characters changed. */)
3071 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3072 {
3073 register unsigned char *tt; /* Trans table. */
3074 register int nc; /* New character. */
3075 int cnt; /* Number of changes made. */
3076 ptrdiff_t size; /* Size of translate table. */
3077 ptrdiff_t pos, pos_byte, end_pos;
3078 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3079 bool string_multibyte IF_LINT (= 0);
3080
3081 validate_region (&start, &end);
3082 if (CHAR_TABLE_P (table))
3083 {
3084 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3085 error ("Not a translation table");
3086 size = MAX_CHAR;
3087 tt = NULL;
3088 }
3089 else
3090 {
3091 CHECK_STRING (table);
3092
3093 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3094 table = string_make_unibyte (table);
3095 string_multibyte = SCHARS (table) < SBYTES (table);
3096 size = SBYTES (table);
3097 tt = SDATA (table);
3098 }
3099
3100 pos = XINT (start);
3101 pos_byte = CHAR_TO_BYTE (pos);
3102 end_pos = XINT (end);
3103 modify_text (pos, end_pos);
3104
3105 cnt = 0;
3106 for (; pos < end_pos; )
3107 {
3108 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3109 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3110 int len, str_len;
3111 int oc;
3112 Lisp_Object val;
3113
3114 if (multibyte)
3115 oc = STRING_CHAR_AND_LENGTH (p, len);
3116 else
3117 oc = *p, len = 1;
3118 if (oc < size)
3119 {
3120 if (tt)
3121 {
3122 /* Reload as signal_after_change in last iteration may GC. */
3123 tt = SDATA (table);
3124 if (string_multibyte)
3125 {
3126 str = tt + string_char_to_byte (table, oc);
3127 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3128 }
3129 else
3130 {
3131 nc = tt[oc];
3132 if (! ASCII_CHAR_P (nc) && multibyte)
3133 {
3134 str_len = BYTE8_STRING (nc, buf);
3135 str = buf;
3136 }
3137 else
3138 {
3139 str_len = 1;
3140 str = tt + oc;
3141 }
3142 }
3143 }
3144 else
3145 {
3146 nc = oc;
3147 val = CHAR_TABLE_REF (table, oc);
3148 if (CHARACTERP (val))
3149 {
3150 nc = XFASTINT (val);
3151 str_len = CHAR_STRING (nc, buf);
3152 str = buf;
3153 }
3154 else if (VECTORP (val) || (CONSP (val)))
3155 {
3156 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3157 where TO is TO-CHAR or [TO-CHAR ...]. */
3158 nc = -1;
3159 }
3160 }
3161
3162 if (nc != oc && nc >= 0)
3163 {
3164 /* Simple one char to one char translation. */
3165 if (len != str_len)
3166 {
3167 Lisp_Object string;
3168
3169 /* This is less efficient, because it moves the gap,
3170 but it should handle multibyte characters correctly. */
3171 string = make_multibyte_string ((char *) str, 1, str_len);
3172 replace_range (pos, pos + 1, string, 1, 0, 1);
3173 len = str_len;
3174 }
3175 else
3176 {
3177 record_change (pos, 1);
3178 while (str_len-- > 0)
3179 *p++ = *str++;
3180 signal_after_change (pos, 1, 1);
3181 update_compositions (pos, pos + 1, CHECK_BORDER);
3182 }
3183 ++cnt;
3184 }
3185 else if (nc < 0)
3186 {
3187 Lisp_Object string;
3188
3189 if (CONSP (val))
3190 {
3191 val = check_translation (pos, pos_byte, end_pos, val);
3192 if (NILP (val))
3193 {
3194 pos_byte += len;
3195 pos++;
3196 continue;
3197 }
3198 /* VAL is ([FROM-CHAR ...] . TO). */
3199 len = ASIZE (XCAR (val));
3200 val = XCDR (val);
3201 }
3202 else
3203 len = 1;
3204
3205 if (VECTORP (val))
3206 {
3207 string = Fconcat (1, &val);
3208 }
3209 else
3210 {
3211 string = Fmake_string (make_number (1), val);
3212 }
3213 replace_range (pos, pos + len, string, 1, 0, 1);
3214 pos_byte += SBYTES (string);
3215 pos += SCHARS (string);
3216 cnt += SCHARS (string);
3217 end_pos += SCHARS (string) - len;
3218 continue;
3219 }
3220 }
3221 pos_byte += len;
3222 pos++;
3223 }
3224
3225 return make_number (cnt);
3226 }
3227
3228 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3229 doc: /* Delete the text between START and END.
3230 If called interactively, delete the region between point and mark.
3231 This command deletes buffer text without modifying the kill ring. */)
3232 (Lisp_Object start, Lisp_Object end)
3233 {
3234 validate_region (&start, &end);
3235 del_range (XINT (start), XINT (end));
3236 return Qnil;
3237 }
3238
3239 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3240 Sdelete_and_extract_region, 2, 2, 0,
3241 doc: /* Delete the text between START and END and return it. */)
3242 (Lisp_Object start, Lisp_Object end)
3243 {
3244 validate_region (&start, &end);
3245 if (XINT (start) == XINT (end))
3246 return empty_unibyte_string;
3247 return del_range_1 (XINT (start), XINT (end), 1, 1);
3248 }
3249 \f
3250 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3251 doc: /* Remove restrictions (narrowing) from current buffer.
3252 This allows the buffer's full text to be seen and edited. */)
3253 (void)
3254 {
3255 if (BEG != BEGV || Z != ZV)
3256 current_buffer->clip_changed = 1;
3257 BEGV = BEG;
3258 BEGV_BYTE = BEG_BYTE;
3259 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3260 /* Changing the buffer bounds invalidates any recorded current column. */
3261 invalidate_current_column ();
3262 return Qnil;
3263 }
3264
3265 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3266 doc: /* Restrict editing in this buffer to the current region.
3267 The rest of the text becomes temporarily invisible and untouchable
3268 but is not deleted; if you save the buffer in a file, the invisible
3269 text is included in the file. \\[widen] makes all visible again.
3270 See also `save-restriction'.
3271
3272 When calling from a program, pass two arguments; positions (integers
3273 or markers) bounding the text that should remain visible. */)
3274 (register Lisp_Object start, Lisp_Object end)
3275 {
3276 CHECK_NUMBER_COERCE_MARKER (start);
3277 CHECK_NUMBER_COERCE_MARKER (end);
3278
3279 if (XINT (start) > XINT (end))
3280 {
3281 Lisp_Object tem;
3282 tem = start; start = end; end = tem;
3283 }
3284
3285 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3286 args_out_of_range (start, end);
3287
3288 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3289 current_buffer->clip_changed = 1;
3290
3291 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3292 SET_BUF_ZV (current_buffer, XFASTINT (end));
3293 if (PT < XFASTINT (start))
3294 SET_PT (XFASTINT (start));
3295 if (PT > XFASTINT (end))
3296 SET_PT (XFASTINT (end));
3297 /* Changing the buffer bounds invalidates any recorded current column. */
3298 invalidate_current_column ();
3299 return Qnil;
3300 }
3301
3302 Lisp_Object
3303 save_restriction_save (void)
3304 {
3305 if (BEGV == BEG && ZV == Z)
3306 /* The common case that the buffer isn't narrowed.
3307 We return just the buffer object, which save_restriction_restore
3308 recognizes as meaning `no restriction'. */
3309 return Fcurrent_buffer ();
3310 else
3311 /* We have to save a restriction, so return a pair of markers, one
3312 for the beginning and one for the end. */
3313 {
3314 Lisp_Object beg, end;
3315
3316 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3317 end = build_marker (current_buffer, ZV, ZV_BYTE);
3318
3319 /* END must move forward if text is inserted at its exact location. */
3320 XMARKER (end)->insertion_type = 1;
3321
3322 return Fcons (beg, end);
3323 }
3324 }
3325
3326 void
3327 save_restriction_restore (Lisp_Object data)
3328 {
3329 struct buffer *cur = NULL;
3330 struct buffer *buf = (CONSP (data)
3331 ? XMARKER (XCAR (data))->buffer
3332 : XBUFFER (data));
3333
3334 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3335 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3336 is the case if it is or has an indirect buffer), then make
3337 sure it is current before we update BEGV, so
3338 set_buffer_internal takes care of managing those markers. */
3339 cur = current_buffer;
3340 set_buffer_internal (buf);
3341 }
3342
3343 if (CONSP (data))
3344 /* A pair of marks bounding a saved restriction. */
3345 {
3346 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3347 struct Lisp_Marker *end = XMARKER (XCDR (data));
3348 eassert (buf == end->buffer);
3349
3350 if (buf /* Verify marker still points to a buffer. */
3351 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3352 /* The restriction has changed from the saved one, so restore
3353 the saved restriction. */
3354 {
3355 ptrdiff_t pt = BUF_PT (buf);
3356
3357 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3358 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3359
3360 if (pt < beg->charpos || pt > end->charpos)
3361 /* The point is outside the new visible range, move it inside. */
3362 SET_BUF_PT_BOTH (buf,
3363 clip_to_bounds (beg->charpos, pt, end->charpos),
3364 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3365 end->bytepos));
3366
3367 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3368 }
3369 }
3370 else
3371 /* A buffer, which means that there was no old restriction. */
3372 {
3373 if (buf /* Verify marker still points to a buffer. */
3374 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3375 /* The buffer has been narrowed, get rid of the narrowing. */
3376 {
3377 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3378 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3379
3380 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3381 }
3382 }
3383
3384 /* Changing the buffer bounds invalidates any recorded current column. */
3385 invalidate_current_column ();
3386
3387 if (cur)
3388 set_buffer_internal (cur);
3389 }
3390
3391 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3392 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3393 The buffer's restrictions make parts of the beginning and end invisible.
3394 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3395 This special form, `save-restriction', saves the current buffer's restrictions
3396 when it is entered, and restores them when it is exited.
3397 So any `narrow-to-region' within BODY lasts only until the end of the form.
3398 The old restrictions settings are restored
3399 even in case of abnormal exit (throw or error).
3400
3401 The value returned is the value of the last form in BODY.
3402
3403 Note: if you are using both `save-excursion' and `save-restriction',
3404 use `save-excursion' outermost:
3405 (save-excursion (save-restriction ...))
3406
3407 usage: (save-restriction &rest BODY) */)
3408 (Lisp_Object body)
3409 {
3410 register Lisp_Object val;
3411 dynwind_begin ();
3412
3413 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3414 val = Fprogn (body);
3415 dynwind_end ();
3416 return val;
3417 }
3418 \f
3419 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3420 doc: /* Display a message at the bottom of the screen.
3421 The message also goes into the `*Messages*' buffer, if `message-log-max'
3422 is non-nil. (In keyboard macros, that's all it does.)
3423 Return the message.
3424
3425 In batch mode, the message is printed to the standard error stream,
3426 followed by a newline.
3427
3428 The first argument is a format control string, and the rest are data
3429 to be formatted under control of the string. See `format' for details.
3430
3431 Note: Use (message "%s" VALUE) to print the value of expressions and
3432 variables to avoid accidentally interpreting `%' as format specifiers.
3433
3434 If the first argument is nil or the empty string, the function clears
3435 any existing message; this lets the minibuffer contents show. See
3436 also `current-message'.
3437
3438 usage: (message FORMAT-STRING &rest ARGS) */)
3439 (ptrdiff_t nargs, Lisp_Object *args)
3440 {
3441 if (NILP (args[0])
3442 || (STRINGP (args[0])
3443 && SBYTES (args[0]) == 0))
3444 {
3445 message1 (0);
3446 return args[0];
3447 }
3448 else
3449 {
3450 register Lisp_Object val;
3451 val = Fformat (nargs, args);
3452 message3 (val);
3453 return val;
3454 }
3455 }
3456
3457 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3458 doc: /* Display a message, in a dialog box if possible.
3459 If a dialog box is not available, use the echo area.
3460 The first argument is a format control string, and the rest are data
3461 to be formatted under control of the string. See `format' for details.
3462
3463 If the first argument is nil or the empty string, clear any existing
3464 message; let the minibuffer contents show.
3465
3466 usage: (message-box FORMAT-STRING &rest ARGS) */)
3467 (ptrdiff_t nargs, Lisp_Object *args)
3468 {
3469 if (NILP (args[0]))
3470 {
3471 message1 (0);
3472 return Qnil;
3473 }
3474 else
3475 {
3476 Lisp_Object val = Fformat (nargs, args);
3477 Lisp_Object pane, menu;
3478 struct gcpro gcpro1;
3479
3480 pane = list1 (Fcons (build_string ("OK"), Qt));
3481 GCPRO1 (pane);
3482 menu = Fcons (val, pane);
3483 Fx_popup_dialog (Qt, menu, Qt);
3484 UNGCPRO;
3485 return val;
3486 }
3487 }
3488
3489 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3490 doc: /* Display a message in a dialog box or in the echo area.
3491 If this command was invoked with the mouse, use a dialog box if
3492 `use-dialog-box' is non-nil.
3493 Otherwise, use the echo area.
3494 The first argument is a format control string, and the rest are data
3495 to be formatted under control of the string. See `format' for details.
3496
3497 If the first argument is nil or the empty string, clear any existing
3498 message; let the minibuffer contents show.
3499
3500 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3501 (ptrdiff_t nargs, Lisp_Object *args)
3502 {
3503 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3504 && use_dialog_box)
3505 return Fmessage_box (nargs, args);
3506 return Fmessage (nargs, args);
3507 }
3508
3509 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3510 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3511 (void)
3512 {
3513 return current_message ();
3514 }
3515
3516
3517 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3518 doc: /* Return a copy of STRING with text properties added.
3519 First argument is the string to copy.
3520 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3521 properties to add to the result.
3522 usage: (propertize STRING &rest PROPERTIES) */)
3523 (ptrdiff_t nargs, Lisp_Object *args)
3524 {
3525 Lisp_Object properties, string;
3526 struct gcpro gcpro1, gcpro2;
3527 ptrdiff_t i;
3528
3529 /* Number of args must be odd. */
3530 if ((nargs & 1) == 0)
3531 error ("Wrong number of arguments");
3532
3533 properties = string = Qnil;
3534 GCPRO2 (properties, string);
3535
3536 /* First argument must be a string. */
3537 CHECK_STRING (args[0]);
3538 string = Fcopy_sequence (args[0]);
3539
3540 for (i = 1; i < nargs; i += 2)
3541 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3542
3543 Fadd_text_properties (make_number (0),
3544 make_number (SCHARS (string)),
3545 properties, string);
3546 return string;
3547 }
3548
3549 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3550 doc: /* Format a string out of a format-string and arguments.
3551 The first argument is a format control string.
3552 The other arguments are substituted into it to make the result, a string.
3553
3554 The format control string may contain %-sequences meaning to substitute
3555 the next available argument:
3556
3557 %s means print a string argument. Actually, prints any object, with `princ'.
3558 %d means print as number in decimal (%o octal, %x hex).
3559 %X is like %x, but uses upper case.
3560 %e means print a number in exponential notation.
3561 %f means print a number in decimal-point notation.
3562 %g means print a number in exponential notation
3563 or decimal-point notation, whichever uses fewer characters.
3564 %c means print a number as a single character.
3565 %S means print any object as an s-expression (using `prin1').
3566
3567 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3568 Use %% to put a single % into the output.
3569
3570 A %-sequence may contain optional flag, width, and precision
3571 specifiers, as follows:
3572
3573 %<flags><width><precision>character
3574
3575 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3576
3577 The + flag character inserts a + before any positive number, while a
3578 space inserts a space before any positive number; these flags only
3579 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3580 The - and 0 flags affect the width specifier, as described below.
3581
3582 The # flag means to use an alternate display form for %o, %x, %X, %e,
3583 %f, and %g sequences: for %o, it ensures that the result begins with
3584 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3585 for %e, %f, and %g, it causes a decimal point to be included even if
3586 the precision is zero.
3587
3588 The width specifier supplies a lower limit for the length of the
3589 printed representation. The padding, if any, normally goes on the
3590 left, but it goes on the right if the - flag is present. The padding
3591 character is normally a space, but it is 0 if the 0 flag is present.
3592 The 0 flag is ignored if the - flag is present, or the format sequence
3593 is something other than %d, %e, %f, and %g.
3594
3595 For %e, %f, and %g sequences, the number after the "." in the
3596 precision specifier says how many decimal places to show; if zero, the
3597 decimal point itself is omitted. For %s and %S, the precision
3598 specifier truncates the string to the given width.
3599
3600 usage: (format STRING &rest OBJECTS) */)
3601 (ptrdiff_t nargs, Lisp_Object *args)
3602 {
3603 ptrdiff_t n; /* The number of the next arg to substitute. */
3604 char initial_buffer[4000];
3605 char *buf = initial_buffer;
3606 ptrdiff_t bufsize = sizeof initial_buffer;
3607 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3608 char *p;
3609 char *format, *end, *format_start;
3610 ptrdiff_t formatlen, nchars;
3611 /* True if the format is multibyte. */
3612 bool multibyte_format = 0;
3613 /* True if the output should be a multibyte string,
3614 which is true if any of the inputs is one. */
3615 bool multibyte = 0;
3616 /* When we make a multibyte string, we must pay attention to the
3617 byte combining problem, i.e., a byte may be combined with a
3618 multibyte character of the previous string. This flag tells if we
3619 must consider such a situation or not. */
3620 bool maybe_combine_byte;
3621 Lisp_Object val;
3622 bool arg_intervals = 0;
3623 USE_SAFE_ALLOCA;
3624
3625 /* discarded[I] is 1 if byte I of the format
3626 string was not copied into the output.
3627 It is 2 if byte I was not the first byte of its character. */
3628 char *discarded;
3629
3630 /* Each element records, for one argument,
3631 the start and end bytepos in the output string,
3632 whether the argument has been converted to string (e.g., due to "%S"),
3633 and whether the argument is a string with intervals.
3634 info[0] is unused. Unused elements have -1 for start. */
3635 struct info
3636 {
3637 ptrdiff_t start, end;
3638 bool_bf converted_to_string : 1;
3639 bool_bf intervals : 1;
3640 } *info = 0;
3641
3642 /* It should not be necessary to GCPRO ARGS, because
3643 the caller in the interpreter should take care of that. */
3644
3645 CHECK_STRING (args[0]);
3646 format_start = SSDATA (args[0]);
3647 formatlen = SBYTES (args[0]);
3648
3649 /* Allocate the info and discarded tables. */
3650 {
3651 ptrdiff_t i;
3652 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3653 memory_full (SIZE_MAX);
3654 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3655 discarded = (char *) &info[nargs + 1];
3656 for (i = 0; i < nargs + 1; i++)
3657 {
3658 info[i].start = -1;
3659 info[i].intervals = info[i].converted_to_string = 0;
3660 }
3661 memset (discarded, 0, formatlen);
3662 }
3663
3664 /* Try to determine whether the result should be multibyte.
3665 This is not always right; sometimes the result needs to be multibyte
3666 because of an object that we will pass through prin1,
3667 and in that case, we won't know it here. */
3668 multibyte_format = STRING_MULTIBYTE (args[0]);
3669 multibyte = multibyte_format;
3670 for (n = 1; !multibyte && n < nargs; n++)
3671 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3672 multibyte = 1;
3673
3674 /* If we start out planning a unibyte result,
3675 then discover it has to be multibyte, we jump back to retry. */
3676 retry:
3677
3678 p = buf;
3679 nchars = 0;
3680 n = 0;
3681
3682 /* Scan the format and store result in BUF. */
3683 format = format_start;
3684 end = format + formatlen;
3685 maybe_combine_byte = 0;
3686
3687 while (format != end)
3688 {
3689 /* The values of N and FORMAT when the loop body is entered. */
3690 ptrdiff_t n0 = n;
3691 char *format0 = format;
3692
3693 /* Bytes needed to represent the output of this conversion. */
3694 ptrdiff_t convbytes;
3695
3696 if (*format == '%')
3697 {
3698 /* General format specifications look like
3699
3700 '%' [flags] [field-width] [precision] format
3701
3702 where
3703
3704 flags ::= [-+0# ]+
3705 field-width ::= [0-9]+
3706 precision ::= '.' [0-9]*
3707
3708 If a field-width is specified, it specifies to which width
3709 the output should be padded with blanks, if the output
3710 string is shorter than field-width.
3711
3712 If precision is specified, it specifies the number of
3713 digits to print after the '.' for floats, or the max.
3714 number of chars to print from a string. */
3715
3716 bool minus_flag = 0;
3717 bool plus_flag = 0;
3718 bool space_flag = 0;
3719 bool sharp_flag = 0;
3720 bool zero_flag = 0;
3721 ptrdiff_t field_width;
3722 bool precision_given;
3723 uintmax_t precision = UINTMAX_MAX;
3724 char *num_end;
3725 char conversion;
3726
3727 while (1)
3728 {
3729 switch (*++format)
3730 {
3731 case '-': minus_flag = 1; continue;
3732 case '+': plus_flag = 1; continue;
3733 case ' ': space_flag = 1; continue;
3734 case '#': sharp_flag = 1; continue;
3735 case '0': zero_flag = 1; continue;
3736 }
3737 break;
3738 }
3739
3740 /* Ignore flags when sprintf ignores them. */
3741 space_flag &= ~ plus_flag;
3742 zero_flag &= ~ minus_flag;
3743
3744 {
3745 uintmax_t w = strtoumax (format, &num_end, 10);
3746 if (max_bufsize <= w)
3747 string_overflow ();
3748 field_width = w;
3749 }
3750 precision_given = *num_end == '.';
3751 if (precision_given)
3752 precision = strtoumax (num_end + 1, &num_end, 10);
3753 format = num_end;
3754
3755 if (format == end)
3756 error ("Format string ends in middle of format specifier");
3757
3758 memset (&discarded[format0 - format_start], 1, format - format0);
3759 conversion = *format;
3760 if (conversion == '%')
3761 goto copy_char;
3762 discarded[format - format_start] = 1;
3763 format++;
3764
3765 ++n;
3766 if (! (n < nargs))
3767 error ("Not enough arguments for format string");
3768
3769 /* For 'S', prin1 the argument, and then treat like 's'.
3770 For 's', princ any argument that is not a string or
3771 symbol. But don't do this conversion twice, which might
3772 happen after retrying. */
3773 if ((conversion == 'S'
3774 || (conversion == 's'
3775 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3776 {
3777 if (! info[n].converted_to_string)
3778 {
3779 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3780 args[n] = Fprin1_to_string (args[n], noescape);
3781 info[n].converted_to_string = 1;
3782 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3783 {
3784 multibyte = 1;
3785 goto retry;
3786 }
3787 }
3788 conversion = 's';
3789 }
3790 else if (conversion == 'c')
3791 {
3792 if (FLOATP (args[n]))
3793 {
3794 double d = XFLOAT_DATA (args[n]);
3795 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3796 }
3797
3798 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3799 {
3800 if (!multibyte)
3801 {
3802 multibyte = 1;
3803 goto retry;
3804 }
3805 args[n] = Fchar_to_string (args[n]);
3806 info[n].converted_to_string = 1;
3807 }
3808
3809 if (info[n].converted_to_string)
3810 conversion = 's';
3811 zero_flag = 0;
3812 }
3813
3814 if (SYMBOLP (args[n]))
3815 {
3816 args[n] = SYMBOL_NAME (args[n]);
3817 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3818 {
3819 multibyte = 1;
3820 goto retry;
3821 }
3822 }
3823
3824 if (conversion == 's')
3825 {
3826 /* handle case (precision[n] >= 0) */
3827
3828 ptrdiff_t width, padding, nbytes;
3829 ptrdiff_t nchars_string;
3830
3831 ptrdiff_t prec = -1;
3832 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3833 prec = precision;
3834
3835 /* lisp_string_width ignores a precision of 0, but GNU
3836 libc functions print 0 characters when the precision
3837 is 0. Imitate libc behavior here. Changing
3838 lisp_string_width is the right thing, and will be
3839 done, but meanwhile we work with it. */
3840
3841 if (prec == 0)
3842 width = nchars_string = nbytes = 0;
3843 else
3844 {
3845 ptrdiff_t nch, nby;
3846 width = lisp_string_width (args[n], prec, &nch, &nby);
3847 if (prec < 0)
3848 {
3849 nchars_string = SCHARS (args[n]);
3850 nbytes = SBYTES (args[n]);
3851 }
3852 else
3853 {
3854 nchars_string = nch;
3855 nbytes = nby;
3856 }
3857 }
3858
3859 convbytes = nbytes;
3860 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3861 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3862
3863 padding = width < field_width ? field_width - width : 0;
3864
3865 if (max_bufsize - padding <= convbytes)
3866 string_overflow ();
3867 convbytes += padding;
3868 if (convbytes <= buf + bufsize - p)
3869 {
3870 if (! minus_flag)
3871 {
3872 memset (p, ' ', padding);
3873 p += padding;
3874 nchars += padding;
3875 }
3876
3877 if (p > buf
3878 && multibyte
3879 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
3880 && STRING_MULTIBYTE (args[n])
3881 && !CHAR_HEAD_P (SREF (args[n], 0)))
3882 maybe_combine_byte = 1;
3883
3884 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3885 nbytes,
3886 STRING_MULTIBYTE (args[n]), multibyte);
3887
3888 info[n].start = nchars;
3889 nchars += nchars_string;
3890 info[n].end = nchars;
3891
3892 if (minus_flag)
3893 {
3894 memset (p, ' ', padding);
3895 p += padding;
3896 nchars += padding;
3897 }
3898
3899 /* If this argument has text properties, record where
3900 in the result string it appears. */
3901 if (string_intervals (args[n]))
3902 info[n].intervals = arg_intervals = 1;
3903
3904 continue;
3905 }
3906 }
3907 else if (! (conversion == 'c' || conversion == 'd'
3908 || conversion == 'e' || conversion == 'f'
3909 || conversion == 'g' || conversion == 'i'
3910 || conversion == 'o' || conversion == 'x'
3911 || conversion == 'X'))
3912 error ("Invalid format operation %%%c",
3913 STRING_CHAR ((unsigned char *) format - 1));
3914 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3915 error ("Format specifier doesn't match argument type");
3916 else
3917 {
3918 enum
3919 {
3920 /* Maximum precision for a %f conversion such that the
3921 trailing output digit might be nonzero. Any precision
3922 larger than this will not yield useful information. */
3923 USEFUL_PRECISION_MAX =
3924 ((1 - DBL_MIN_EXP)
3925 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3926 : FLT_RADIX == 16 ? 4
3927 : -1)),
3928
3929 /* Maximum number of bytes generated by any format, if
3930 precision is no more than USEFUL_PRECISION_MAX.
3931 On all practical hosts, %f is the worst case. */
3932 SPRINTF_BUFSIZE =
3933 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3934
3935 /* Length of pM (that is, of pMd without the
3936 trailing "d"). */
3937 pMlen = sizeof pMd - 2
3938 };
3939 verify (USEFUL_PRECISION_MAX > 0);
3940
3941 int prec;
3942 ptrdiff_t padding, sprintf_bytes;
3943 uintmax_t excess_precision, numwidth;
3944 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3945
3946 char sprintf_buf[SPRINTF_BUFSIZE];
3947
3948 /* Copy of conversion specification, modified somewhat.
3949 At most three flags F can be specified at once. */
3950 char convspec[sizeof "%FFF.*d" + pMlen];
3951
3952 /* Avoid undefined behavior in underlying sprintf. */
3953 if (conversion == 'd' || conversion == 'i')
3954 sharp_flag = 0;
3955
3956 /* Create the copy of the conversion specification, with
3957 any width and precision removed, with ".*" inserted,
3958 and with pM inserted for integer formats. */
3959 {
3960 char *f = convspec;
3961 *f++ = '%';
3962 *f = '-'; f += minus_flag;
3963 *f = '+'; f += plus_flag;
3964 *f = ' '; f += space_flag;
3965 *f = '#'; f += sharp_flag;
3966 *f = '0'; f += zero_flag;
3967 *f++ = '.';
3968 *f++ = '*';
3969 if (conversion == 'd' || conversion == 'i'
3970 || conversion == 'o' || conversion == 'x'
3971 || conversion == 'X')
3972 {
3973 memcpy (f, pMd, pMlen);
3974 f += pMlen;
3975 zero_flag &= ~ precision_given;
3976 }
3977 *f++ = conversion;
3978 *f = '\0';
3979 }
3980
3981 prec = -1;
3982 if (precision_given)
3983 prec = min (precision, USEFUL_PRECISION_MAX);
3984
3985 /* Use sprintf to format this number into sprintf_buf. Omit
3986 padding and excess precision, though, because sprintf limits
3987 output length to INT_MAX.
3988
3989 There are four types of conversion: double, unsigned
3990 char (passed as int), wide signed int, and wide
3991 unsigned int. Treat them separately because the
3992 sprintf ABI is sensitive to which type is passed. Be
3993 careful about integer overflow, NaNs, infinities, and
3994 conversions; for example, the min and max macros are
3995 not suitable here. */
3996 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3997 {
3998 double x = (INTEGERP (args[n])
3999 ? XINT (args[n])
4000 : XFLOAT_DATA (args[n]));
4001 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4002 }
4003 else if (conversion == 'c')
4004 {
4005 /* Don't use sprintf here, as it might mishandle prec. */
4006 sprintf_buf[0] = XINT (args[n]);
4007 sprintf_bytes = prec != 0;
4008 }
4009 else if (conversion == 'd')
4010 {
4011 /* For float, maybe we should use "%1.0f"
4012 instead so it also works for values outside
4013 the integer range. */
4014 printmax_t x;
4015 if (INTEGERP (args[n]))
4016 x = XINT (args[n]);
4017 else
4018 {
4019 double d = XFLOAT_DATA (args[n]);
4020 if (d < 0)
4021 {
4022 x = TYPE_MINIMUM (printmax_t);
4023 if (x < d)
4024 x = d;
4025 }
4026 else
4027 {
4028 x = TYPE_MAXIMUM (printmax_t);
4029 if (d < x)
4030 x = d;
4031 }
4032 }
4033 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4034 }
4035 else
4036 {
4037 /* Don't sign-extend for octal or hex printing. */
4038 uprintmax_t x;
4039 if (INTEGERP (args[n]))
4040 x = XUINT (args[n]);
4041 else
4042 {
4043 double d = XFLOAT_DATA (args[n]);
4044 if (d < 0)
4045 x = 0;
4046 else
4047 {
4048 x = TYPE_MAXIMUM (uprintmax_t);
4049 if (d < x)
4050 x = d;
4051 }
4052 }
4053 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4054 }
4055
4056 /* Now the length of the formatted item is known, except it omits
4057 padding and excess precision. Deal with excess precision
4058 first. This happens only when the format specifies
4059 ridiculously large precision. */
4060 excess_precision = precision - prec;
4061 if (excess_precision)
4062 {
4063 if (conversion == 'e' || conversion == 'f'
4064 || conversion == 'g')
4065 {
4066 if ((conversion == 'g' && ! sharp_flag)
4067 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4068 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4069 excess_precision = 0;
4070 else
4071 {
4072 if (conversion == 'g')
4073 {
4074 char *dot = strchr (sprintf_buf, '.');
4075 if (!dot)
4076 excess_precision = 0;
4077 }
4078 }
4079 trailing_zeros = excess_precision;
4080 }
4081 else
4082 leading_zeros = excess_precision;
4083 }
4084
4085 /* Compute the total bytes needed for this item, including
4086 excess precision and padding. */
4087 numwidth = sprintf_bytes + excess_precision;
4088 padding = numwidth < field_width ? field_width - numwidth : 0;
4089 if (max_bufsize - sprintf_bytes <= excess_precision
4090 || max_bufsize - padding <= numwidth)
4091 string_overflow ();
4092 convbytes = numwidth + padding;
4093
4094 if (convbytes <= buf + bufsize - p)
4095 {
4096 /* Copy the formatted item from sprintf_buf into buf,
4097 inserting padding and excess-precision zeros. */
4098
4099 char *src = sprintf_buf;
4100 char src0 = src[0];
4101 int exponent_bytes = 0;
4102 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4103 int significand_bytes;
4104 if (zero_flag
4105 && ((src[signedp] >= '0' && src[signedp] <= '9')
4106 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4107 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4108 {
4109 leading_zeros += padding;
4110 padding = 0;
4111 }
4112
4113 if (excess_precision
4114 && (conversion == 'e' || conversion == 'g'))
4115 {
4116 char *e = strchr (src, 'e');
4117 if (e)
4118 exponent_bytes = src + sprintf_bytes - e;
4119 }
4120
4121 if (! minus_flag)
4122 {
4123 memset (p, ' ', padding);
4124 p += padding;
4125 nchars += padding;
4126 }
4127
4128 *p = src0;
4129 src += signedp;
4130 p += signedp;
4131 memset (p, '0', leading_zeros);
4132 p += leading_zeros;
4133 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4134 memcpy (p, src, significand_bytes);
4135 p += significand_bytes;
4136 src += significand_bytes;
4137 memset (p, '0', trailing_zeros);
4138 p += trailing_zeros;
4139 memcpy (p, src, exponent_bytes);
4140 p += exponent_bytes;
4141
4142 info[n].start = nchars;
4143 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4144 info[n].end = nchars;
4145
4146 if (minus_flag)
4147 {
4148 memset (p, ' ', padding);
4149 p += padding;
4150 nchars += padding;
4151 }
4152
4153 continue;
4154 }
4155 }
4156 }
4157 else
4158 copy_char:
4159 {
4160 /* Copy a single character from format to buf. */
4161
4162 char *src = format;
4163 unsigned char str[MAX_MULTIBYTE_LENGTH];
4164
4165 if (multibyte_format)
4166 {
4167 /* Copy a whole multibyte character. */
4168 if (p > buf
4169 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4170 && !CHAR_HEAD_P (*format))
4171 maybe_combine_byte = 1;
4172
4173 do
4174 format++;
4175 while (! CHAR_HEAD_P (*format));
4176
4177 convbytes = format - src;
4178 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4179 }
4180 else
4181 {
4182 unsigned char uc = *format++;
4183 if (! multibyte || ASCII_CHAR_P (uc))
4184 convbytes = 1;
4185 else
4186 {
4187 int c = BYTE8_TO_CHAR (uc);
4188 convbytes = CHAR_STRING (c, str);
4189 src = (char *) str;
4190 }
4191 }
4192
4193 if (convbytes <= buf + bufsize - p)
4194 {
4195 memcpy (p, src, convbytes);
4196 p += convbytes;
4197 nchars++;
4198 continue;
4199 }
4200 }
4201
4202 /* There wasn't enough room to store this conversion or single
4203 character. CONVBYTES says how much room is needed. Allocate
4204 enough room (and then some) and do it again. */
4205 {
4206 ptrdiff_t used = p - buf;
4207
4208 if (max_bufsize - used < convbytes)
4209 string_overflow ();
4210 bufsize = used + convbytes;
4211 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4212
4213 if (buf == initial_buffer)
4214 {
4215 buf = xmalloc_atomic (bufsize);
4216 memcpy (buf, initial_buffer, used);
4217 }
4218 else
4219 {
4220 buf = xrealloc (buf, bufsize);
4221 }
4222
4223 p = buf + used;
4224 }
4225
4226 format = format0;
4227 n = n0;
4228 }
4229
4230 if (bufsize < p - buf)
4231 emacs_abort ();
4232
4233 if (maybe_combine_byte)
4234 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4235 val = make_specified_string (buf, nchars, p - buf, multibyte);
4236
4237 /* If we allocated BUF with malloc, free it too. */
4238 SAFE_FREE ();
4239
4240 /* If the format string has text properties, or any of the string
4241 arguments has text properties, set up text properties of the
4242 result string. */
4243
4244 if (string_intervals (args[0]) || arg_intervals)
4245 {
4246 Lisp_Object len, new_len, props;
4247 struct gcpro gcpro1;
4248
4249 /* Add text properties from the format string. */
4250 len = make_number (SCHARS (args[0]));
4251 props = text_property_list (args[0], make_number (0), len, Qnil);
4252 GCPRO1 (props);
4253
4254 if (CONSP (props))
4255 {
4256 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4257 ptrdiff_t argn = 1;
4258 Lisp_Object list;
4259
4260 /* Adjust the bounds of each text property
4261 to the proper start and end in the output string. */
4262
4263 /* Put the positions in PROPS in increasing order, so that
4264 we can do (effectively) one scan through the position
4265 space of the format string. */
4266 props = Fnreverse (props);
4267
4268 /* BYTEPOS is the byte position in the format string,
4269 POSITION is the untranslated char position in it,
4270 TRANSLATED is the translated char position in BUF,
4271 and ARGN is the number of the next arg we will come to. */
4272 for (list = props; CONSP (list); list = XCDR (list))
4273 {
4274 Lisp_Object item;
4275 ptrdiff_t pos;
4276
4277 item = XCAR (list);
4278
4279 /* First adjust the property start position. */
4280 pos = XINT (XCAR (item));
4281
4282 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4283 up to this position. */
4284 for (; position < pos; bytepos++)
4285 {
4286 if (! discarded[bytepos])
4287 position++, translated++;
4288 else if (discarded[bytepos] == 1)
4289 {
4290 position++;
4291 if (translated == info[argn].start)
4292 {
4293 translated += info[argn].end - info[argn].start;
4294 argn++;
4295 }
4296 }
4297 }
4298
4299 XSETCAR (item, make_number (translated));
4300
4301 /* Likewise adjust the property end position. */
4302 pos = XINT (XCAR (XCDR (item)));
4303
4304 for (; position < pos; bytepos++)
4305 {
4306 if (! discarded[bytepos])
4307 position++, translated++;
4308 else if (discarded[bytepos] == 1)
4309 {
4310 position++;
4311 if (translated == info[argn].start)
4312 {
4313 translated += info[argn].end - info[argn].start;
4314 argn++;
4315 }
4316 }
4317 }
4318
4319 XSETCAR (XCDR (item), make_number (translated));
4320 }
4321
4322 add_text_properties_from_list (val, props, make_number (0));
4323 }
4324
4325 /* Add text properties from arguments. */
4326 if (arg_intervals)
4327 for (n = 1; n < nargs; ++n)
4328 if (info[n].intervals)
4329 {
4330 len = make_number (SCHARS (args[n]));
4331 new_len = make_number (info[n].end - info[n].start);
4332 props = text_property_list (args[n], make_number (0), len, Qnil);
4333 props = extend_property_ranges (props, new_len);
4334 /* If successive arguments have properties, be sure that
4335 the value of `composition' property be the copy. */
4336 if (n > 1 && info[n - 1].end)
4337 make_composition_value_copy (props);
4338 add_text_properties_from_list (val, props,
4339 make_number (info[n].start));
4340 }
4341
4342 UNGCPRO;
4343 }
4344
4345 return val;
4346 }
4347
4348 Lisp_Object
4349 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4350 {
4351 Lisp_Object args[3];
4352 args[0] = build_string (string1);
4353 args[1] = arg0;
4354 args[2] = arg1;
4355 return Fformat (3, args);
4356 }
4357 \f
4358 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4359 doc: /* Return t if two characters match, optionally ignoring case.
4360 Both arguments must be characters (i.e. integers).
4361 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4362 (register Lisp_Object c1, Lisp_Object c2)
4363 {
4364 int i1, i2;
4365 /* Check they're chars, not just integers, otherwise we could get array
4366 bounds violations in downcase. */
4367 CHECK_CHARACTER (c1);
4368 CHECK_CHARACTER (c2);
4369
4370 if (XINT (c1) == XINT (c2))
4371 return Qt;
4372 if (NILP (BVAR (current_buffer, case_fold_search)))
4373 return Qnil;
4374
4375 i1 = XFASTINT (c1);
4376 i2 = XFASTINT (c2);
4377
4378 /* FIXME: It is possible to compare multibyte characters even when
4379 the current buffer is unibyte. Unfortunately this is ambiguous
4380 for characters between 128 and 255, as they could be either
4381 eight-bit raw bytes or Latin-1 characters. Assume the former for
4382 now. See Bug#17011, and also see casefiddle.c's casify_object,
4383 which has a similar problem. */
4384 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4385 {
4386 if (SINGLE_BYTE_CHAR_P (i1))
4387 i1 = UNIBYTE_TO_CHAR (i1);
4388 if (SINGLE_BYTE_CHAR_P (i2))
4389 i2 = UNIBYTE_TO_CHAR (i2);
4390 }
4391
4392 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4393 }
4394 \f
4395 /* Transpose the markers in two regions of the current buffer, and
4396 adjust the ones between them if necessary (i.e.: if the regions
4397 differ in size).
4398
4399 START1, END1 are the character positions of the first region.
4400 START1_BYTE, END1_BYTE are the byte positions.
4401 START2, END2 are the character positions of the second region.
4402 START2_BYTE, END2_BYTE are the byte positions.
4403
4404 Traverses the entire marker list of the buffer to do so, adding an
4405 appropriate amount to some, subtracting from some, and leaving the
4406 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4407
4408 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4409
4410 static void
4411 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4412 ptrdiff_t start2, ptrdiff_t end2,
4413 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4414 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4415 {
4416 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4417 register struct Lisp_Marker *marker;
4418
4419 /* Update point as if it were a marker. */
4420 if (PT < start1)
4421 ;
4422 else if (PT < end1)
4423 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4424 PT_BYTE + (end2_byte - end1_byte));
4425 else if (PT < start2)
4426 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4427 (PT_BYTE + (end2_byte - start2_byte)
4428 - (end1_byte - start1_byte)));
4429 else if (PT < end2)
4430 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4431 PT_BYTE - (start2_byte - start1_byte));
4432
4433 /* We used to adjust the endpoints here to account for the gap, but that
4434 isn't good enough. Even if we assume the caller has tried to move the
4435 gap out of our way, it might still be at start1 exactly, for example;
4436 and that places it `inside' the interval, for our purposes. The amount
4437 of adjustment is nontrivial if there's a `denormalized' marker whose
4438 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4439 the dirty work to Fmarker_position, below. */
4440
4441 /* The difference between the region's lengths */
4442 diff = (end2 - start2) - (end1 - start1);
4443 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4444
4445 /* For shifting each marker in a region by the length of the other
4446 region plus the distance between the regions. */
4447 amt1 = (end2 - start2) + (start2 - end1);
4448 amt2 = (end1 - start1) + (start2 - end1);
4449 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4450 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4451
4452 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4453 {
4454 mpos = marker->bytepos;
4455 if (mpos >= start1_byte && mpos < end2_byte)
4456 {
4457 if (mpos < end1_byte)
4458 mpos += amt1_byte;
4459 else if (mpos < start2_byte)
4460 mpos += diff_byte;
4461 else
4462 mpos -= amt2_byte;
4463 marker->bytepos = mpos;
4464 }
4465 mpos = marker->charpos;
4466 if (mpos >= start1 && mpos < end2)
4467 {
4468 if (mpos < end1)
4469 mpos += amt1;
4470 else if (mpos < start2)
4471 mpos += diff;
4472 else
4473 mpos -= amt2;
4474 }
4475 marker->charpos = mpos;
4476 }
4477 }
4478
4479 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4480 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4481 The regions should not be overlapping, because the size of the buffer is
4482 never changed in a transposition.
4483
4484 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4485 any markers that happen to be located in the regions.
4486
4487 Transposing beyond buffer boundaries is an error. */)
4488 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4489 {
4490 register ptrdiff_t start1, end1, start2, end2;
4491 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4492 ptrdiff_t gap, len1, len_mid, len2;
4493 unsigned char *start1_addr, *start2_addr, *temp;
4494
4495 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4496 Lisp_Object buf;
4497
4498 XSETBUFFER (buf, current_buffer);
4499 cur_intv = buffer_intervals (current_buffer);
4500
4501 validate_region (&startr1, &endr1);
4502 validate_region (&startr2, &endr2);
4503
4504 start1 = XFASTINT (startr1);
4505 end1 = XFASTINT (endr1);
4506 start2 = XFASTINT (startr2);
4507 end2 = XFASTINT (endr2);
4508 gap = GPT;
4509
4510 /* Swap the regions if they're reversed. */
4511 if (start2 < end1)
4512 {
4513 register ptrdiff_t glumph = start1;
4514 start1 = start2;
4515 start2 = glumph;
4516 glumph = end1;
4517 end1 = end2;
4518 end2 = glumph;
4519 }
4520
4521 len1 = end1 - start1;
4522 len2 = end2 - start2;
4523
4524 if (start2 < end1)
4525 error ("Transposed regions overlap");
4526 /* Nothing to change for adjacent regions with one being empty */
4527 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4528 return Qnil;
4529
4530 /* The possibilities are:
4531 1. Adjacent (contiguous) regions, or separate but equal regions
4532 (no, really equal, in this case!), or
4533 2. Separate regions of unequal size.
4534
4535 The worst case is usually No. 2. It means that (aside from
4536 potential need for getting the gap out of the way), there also
4537 needs to be a shifting of the text between the two regions. So
4538 if they are spread far apart, we are that much slower... sigh. */
4539
4540 /* It must be pointed out that the really studly thing to do would
4541 be not to move the gap at all, but to leave it in place and work
4542 around it if necessary. This would be extremely efficient,
4543 especially considering that people are likely to do
4544 transpositions near where they are working interactively, which
4545 is exactly where the gap would be found. However, such code
4546 would be much harder to write and to read. So, if you are
4547 reading this comment and are feeling squirrely, by all means have
4548 a go! I just didn't feel like doing it, so I will simply move
4549 the gap the minimum distance to get it out of the way, and then
4550 deal with an unbroken array. */
4551
4552 start1_byte = CHAR_TO_BYTE (start1);
4553 end2_byte = CHAR_TO_BYTE (end2);
4554
4555 /* Make sure the gap won't interfere, by moving it out of the text
4556 we will operate on. */
4557 if (start1 < gap && gap < end2)
4558 {
4559 if (gap - start1 < end2 - gap)
4560 move_gap_both (start1, start1_byte);
4561 else
4562 move_gap_both (end2, end2_byte);
4563 }
4564
4565 start2_byte = CHAR_TO_BYTE (start2);
4566 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4567 len2_byte = end2_byte - start2_byte;
4568
4569 #ifdef BYTE_COMBINING_DEBUG
4570 if (end1 == start2)
4571 {
4572 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4573 len2_byte, start1, start1_byte)
4574 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4575 len1_byte, end2, start2_byte + len2_byte)
4576 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4577 len1_byte, end2, start2_byte + len2_byte))
4578 emacs_abort ();
4579 }
4580 else
4581 {
4582 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4583 len2_byte, start1, start1_byte)
4584 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4585 len1_byte, start2, start2_byte)
4586 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4587 len2_byte, end1, start1_byte + len1_byte)
4588 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4589 len1_byte, end2, start2_byte + len2_byte))
4590 emacs_abort ();
4591 }
4592 #endif
4593
4594 /* Hmmm... how about checking to see if the gap is large
4595 enough to use as the temporary storage? That would avoid an
4596 allocation... interesting. Later, don't fool with it now. */
4597
4598 /* Working without memmove, for portability (sigh), so must be
4599 careful of overlapping subsections of the array... */
4600
4601 if (end1 == start2) /* adjacent regions */
4602 {
4603 modify_text (start1, end2);
4604 record_change (start1, len1 + len2);
4605
4606 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4607 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4608 /* Don't use Fset_text_properties: that can cause GC, which can
4609 clobber objects stored in the tmp_intervals. */
4610 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4611 if (tmp_interval3)
4612 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4613
4614 /* First region smaller than second. */
4615 if (len1_byte < len2_byte)
4616 {
4617 USE_SAFE_ALLOCA;
4618
4619 temp = SAFE_ALLOCA (len2_byte);
4620
4621 /* Don't precompute these addresses. We have to compute them
4622 at the last minute, because the relocating allocator might
4623 have moved the buffer around during the xmalloc. */
4624 start1_addr = BYTE_POS_ADDR (start1_byte);
4625 start2_addr = BYTE_POS_ADDR (start2_byte);
4626
4627 memcpy (temp, start2_addr, len2_byte);
4628 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4629 memcpy (start1_addr, temp, len2_byte);
4630 SAFE_FREE ();
4631 }
4632 else
4633 /* First region not smaller than second. */
4634 {
4635 USE_SAFE_ALLOCA;
4636
4637 temp = SAFE_ALLOCA (len1_byte);
4638 start1_addr = BYTE_POS_ADDR (start1_byte);
4639 start2_addr = BYTE_POS_ADDR (start2_byte);
4640 memcpy (temp, start1_addr, len1_byte);
4641 memcpy (start1_addr, start2_addr, len2_byte);
4642 memcpy (start1_addr + len2_byte, temp, len1_byte);
4643 SAFE_FREE ();
4644 }
4645 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4646 len1, current_buffer, 0);
4647 graft_intervals_into_buffer (tmp_interval2, start1,
4648 len2, current_buffer, 0);
4649 update_compositions (start1, start1 + len2, CHECK_BORDER);
4650 update_compositions (start1 + len2, end2, CHECK_TAIL);
4651 }
4652 /* Non-adjacent regions, because end1 != start2, bleagh... */
4653 else
4654 {
4655 len_mid = start2_byte - (start1_byte + len1_byte);
4656
4657 if (len1_byte == len2_byte)
4658 /* Regions are same size, though, how nice. */
4659 {
4660 USE_SAFE_ALLOCA;
4661
4662 modify_text (start1, end1);
4663 modify_text (start2, end2);
4664 record_change (start1, len1);
4665 record_change (start2, len2);
4666 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4667 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4668
4669 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4670 if (tmp_interval3)
4671 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4672
4673 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4674 if (tmp_interval3)
4675 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4676
4677 temp = SAFE_ALLOCA (len1_byte);
4678 start1_addr = BYTE_POS_ADDR (start1_byte);
4679 start2_addr = BYTE_POS_ADDR (start2_byte);
4680 memcpy (temp, start1_addr, len1_byte);
4681 memcpy (start1_addr, start2_addr, len2_byte);
4682 memcpy (start2_addr, temp, len1_byte);
4683 SAFE_FREE ();
4684
4685 graft_intervals_into_buffer (tmp_interval1, start2,
4686 len1, current_buffer, 0);
4687 graft_intervals_into_buffer (tmp_interval2, start1,
4688 len2, current_buffer, 0);
4689 }
4690
4691 else if (len1_byte < len2_byte) /* Second region larger than first */
4692 /* Non-adjacent & unequal size, area between must also be shifted. */
4693 {
4694 USE_SAFE_ALLOCA;
4695
4696 modify_text (start1, end2);
4697 record_change (start1, (end2 - start1));
4698 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4699 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4700 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4701
4702 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4703 if (tmp_interval3)
4704 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4705
4706 /* holds region 2 */
4707 temp = SAFE_ALLOCA (len2_byte);
4708 start1_addr = BYTE_POS_ADDR (start1_byte);
4709 start2_addr = BYTE_POS_ADDR (start2_byte);
4710 memcpy (temp, start2_addr, len2_byte);
4711 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4712 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4713 memcpy (start1_addr, temp, len2_byte);
4714 SAFE_FREE ();
4715
4716 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4717 len1, current_buffer, 0);
4718 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4719 len_mid, current_buffer, 0);
4720 graft_intervals_into_buffer (tmp_interval2, start1,
4721 len2, current_buffer, 0);
4722 }
4723 else
4724 /* Second region smaller than first. */
4725 {
4726 USE_SAFE_ALLOCA;
4727
4728 record_change (start1, (end2 - start1));
4729 modify_text (start1, end2);
4730
4731 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4732 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4733 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4734
4735 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4736 if (tmp_interval3)
4737 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4738
4739 /* holds region 1 */
4740 temp = SAFE_ALLOCA (len1_byte);
4741 start1_addr = BYTE_POS_ADDR (start1_byte);
4742 start2_addr = BYTE_POS_ADDR (start2_byte);
4743 memcpy (temp, start1_addr, len1_byte);
4744 memcpy (start1_addr, start2_addr, len2_byte);
4745 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4746 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4747 SAFE_FREE ();
4748
4749 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4750 len1, current_buffer, 0);
4751 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4752 len_mid, current_buffer, 0);
4753 graft_intervals_into_buffer (tmp_interval2, start1,
4754 len2, current_buffer, 0);
4755 }
4756
4757 update_compositions (start1, start1 + len2, CHECK_BORDER);
4758 update_compositions (end2 - len1, end2, CHECK_BORDER);
4759 }
4760
4761 /* When doing multiple transpositions, it might be nice
4762 to optimize this. Perhaps the markers in any one buffer
4763 should be organized in some sorted data tree. */
4764 if (NILP (leave_markers))
4765 {
4766 transpose_markers (start1, end1, start2, end2,
4767 start1_byte, start1_byte + len1_byte,
4768 start2_byte, start2_byte + len2_byte);
4769 fix_start_end_in_overlays (start1, end2);
4770 }
4771
4772 signal_after_change (start1, end2 - start1, end2 - start1);
4773 return Qnil;
4774 }
4775
4776 \f
4777 void
4778 syms_of_editfns (void)
4779 {
4780 #include "editfns.x"
4781
4782 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4783
4784 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4785 doc: /* Non-nil means text motion commands don't notice fields. */);
4786 Vinhibit_field_text_motion = Qnil;
4787
4788 DEFVAR_LISP ("buffer-access-fontify-functions",
4789 Vbuffer_access_fontify_functions,
4790 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4791 Each function is called with two arguments which specify the range
4792 of the buffer being accessed. */);
4793 Vbuffer_access_fontify_functions = Qnil;
4794
4795 {
4796 Lisp_Object obuf;
4797 obuf = Fcurrent_buffer ();
4798 /* Do this here, because init_buffer_once is too early--it won't work. */
4799 Fset_buffer (Vprin1_to_string_buffer);
4800 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4801 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4802 Qnil);
4803 Fset_buffer (obuf);
4804 }
4805
4806 DEFVAR_LISP ("buffer-access-fontified-property",
4807 Vbuffer_access_fontified_property,
4808 doc: /* Property which (if non-nil) indicates text has been fontified.
4809 `buffer-substring' need not call the `buffer-access-fontify-functions'
4810 functions if all the text being accessed has this property. */);
4811 Vbuffer_access_fontified_property = Qnil;
4812
4813 DEFVAR_LISP ("system-name", Vsystem_name,
4814 doc: /* The host name of the machine Emacs is running on. */);
4815
4816 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4817 doc: /* The full name of the user logged in. */);
4818
4819 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4820 doc: /* The user's name, taken from environment variables if possible. */);
4821
4822 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4823 doc: /* The user's name, based upon the real uid only. */);
4824
4825 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4826 doc: /* The release of the operating system Emacs is running on. */);
4827
4828 DEFSYM (Qfield, "field");
4829 DEFSYM (Qboundary, "boundary");
4830 }