(decode_coding_emacs_mule): Fix the case of
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*** TABLE OF CONTENTS ***
23
24 0. General comments
25 1. Preamble
26 2. Emacs' internal format (emacs-mule) handlers
27 3. ISO2022 handlers
28 4. Shift-JIS and BIG5 handlers
29 5. CCL handlers
30 6. End-of-line handlers
31 7. C library functions
32 8. Emacs Lisp library functions
33 9. Post-amble
34
35 */
36
37 /*** 0. General comments ***/
38
39
40 /*** GENERAL NOTE on CODING SYSTEM ***
41
42 Coding system is an encoding mechanism of one or more character
43 sets. Here's a list of coding systems which Emacs can handle. When
44 we say "decode", it means converting some other coding system to
45 Emacs' internal format (emacs-internal), and when we say "encode",
46 it means converting the coding system emacs-mule to some other
47 coding system.
48
49 0. Emacs' internal format (emacs-mule)
50
51 Emacs itself holds a multi-lingual character in a buffer and a string
52 in a special format. Details are described in section 2.
53
54 1. ISO2022
55
56 The most famous coding system for multiple character sets. X's
57 Compound Text, various EUCs (Extended Unix Code), and coding
58 systems used in Internet communication such as ISO-2022-JP are
59 all variants of ISO2022. Details are described in section 3.
60
61 2. SJIS (or Shift-JIS or MS-Kanji-Code)
62
63 A coding system to encode character sets: ASCII, JISX0201, and
64 JISX0208. Widely used for PC's in Japan. Details are described in
65 section 4.
66
67 3. BIG5
68
69 A coding system to encode character sets: ASCII and Big5. Widely
70 used by Chinese (mainly in Taiwan and Hong Kong). Details are
71 described in section 4. In this file, when we write "BIG5"
72 (all uppercase), we mean the coding system, and when we write
73 "Big5" (capitalized), we mean the character set.
74
75 4. Raw text
76
77 A coding system for a text containing random 8-bit code. Emacs does
78 no code conversion on such a text except for end-of-line format.
79
80 5. Other
81
82 If a user wants to read/write a text encoded in a coding system not
83 listed above, he can supply a decoder and an encoder for it in CCL
84 (Code Conversion Language) programs. Emacs executes the CCL program
85 while reading/writing.
86
87 Emacs represents a coding system by a Lisp symbol that has a property
88 `coding-system'. But, before actually using the coding system, the
89 information about it is set in a structure of type `struct
90 coding_system' for rapid processing. See section 6 for more details.
91
92 */
93
94 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
95
96 How end-of-line of a text is encoded depends on a system. For
97 instance, Unix's format is just one byte of `line-feed' code,
98 whereas DOS's format is two-byte sequence of `carriage-return' and
99 `line-feed' codes. MacOS's format is usually one byte of
100 `carriage-return'.
101
102 Since text characters encoding and end-of-line encoding are
103 independent, any coding system described above can take
104 any format of end-of-line. So, Emacs has information of format of
105 end-of-line in each coding-system. See section 6 for more details.
106
107 */
108
109 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
110
111 These functions check if a text between SRC and SRC_END is encoded
112 in the coding system category XXX. Each returns an integer value in
113 which appropriate flag bits for the category XXX is set. The flag
114 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
115 template of these functions. */
116 #if 0
117 int
118 detect_coding_emacs_mule (src, src_end)
119 unsigned char *src, *src_end;
120 {
121 ...
122 }
123 #endif
124
125 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
126
127 These functions decode SRC_BYTES length of unibyte text at SOURCE
128 encoded in CODING to Emacs' internal format. The resulting
129 multibyte text goes to a place pointed to by DESTINATION, the length
130 of which should not exceed DST_BYTES.
131
132 These functions set the information of original and decoded texts in
133 the members produced, produced_char, consumed, and consumed_char of
134 the structure *CODING. They also set the member result to one of
135 CODING_FINISH_XXX indicating how the decoding finished.
136
137 DST_BYTES zero means that source area and destination area are
138 overlapped, which means that we can produce a decoded text until it
139 reaches at the head of not-yet-decoded source text.
140
141 Below is a template of these functions. */
142 #if 0
143 static void
144 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
145 struct coding_system *coding;
146 unsigned char *source, *destination;
147 int src_bytes, dst_bytes;
148 {
149 ...
150 }
151 #endif
152
153 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
154
155 These functions encode SRC_BYTES length text at SOURCE of Emacs'
156 internal multibyte format to CODING. The resulting unibyte text
157 goes to a place pointed to by DESTINATION, the length of which
158 should not exceed DST_BYTES.
159
160 These functions set the information of original and encoded texts in
161 the members produced, produced_char, consumed, and consumed_char of
162 the structure *CODING. They also set the member result to one of
163 CODING_FINISH_XXX indicating how the encoding finished.
164
165 DST_BYTES zero means that source area and destination area are
166 overlapped, which means that we can produce a encoded text until it
167 reaches at the head of not-yet-encoded source text.
168
169 Below is a template of these functions. */
170 #if 0
171 static void
172 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
173 struct coding_system *coding;
174 unsigned char *source, *destination;
175 int src_bytes, dst_bytes;
176 {
177 ...
178 }
179 #endif
180
181 /*** COMMONLY USED MACROS ***/
182
183 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
184 get one, two, and three bytes from the source text respectively.
185 If there are not enough bytes in the source, they jump to
186 `label_end_of_loop'. The caller should set variables `coding',
187 `src' and `src_end' to appropriate pointer in advance. These
188 macros are called from decoding routines `decode_coding_XXX', thus
189 it is assumed that the source text is unibyte. */
190
191 #define ONE_MORE_BYTE(c1) \
192 do { \
193 if (src >= src_end) \
194 { \
195 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
196 goto label_end_of_loop; \
197 } \
198 c1 = *src++; \
199 } while (0)
200
201 #define TWO_MORE_BYTES(c1, c2) \
202 do { \
203 if (src + 1 >= src_end) \
204 { \
205 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
206 goto label_end_of_loop; \
207 } \
208 c1 = *src++; \
209 c2 = *src++; \
210 } while (0)
211
212
213 /* Set C to the next character at the source text pointed by `src'.
214 If there are not enough characters in the source, jump to
215 `label_end_of_loop'. The caller should set variables `coding'
216 `src', `src_end', and `translation_table' to appropriate pointers
217 in advance. This macro is used in encoding routines
218 `encode_coding_XXX', thus it assumes that the source text is in
219 multibyte form except for 8-bit characters. 8-bit characters are
220 in multibyte form if coding->src_multibyte is nonzero, else they
221 are represented by a single byte. */
222
223 #define ONE_MORE_CHAR(c) \
224 do { \
225 int len = src_end - src; \
226 int bytes; \
227 if (len <= 0) \
228 { \
229 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
230 goto label_end_of_loop; \
231 } \
232 if (coding->src_multibyte \
233 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
234 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
235 else \
236 c = *src, bytes = 1; \
237 if (!NILP (translation_table)) \
238 c = translate_char (translation_table, c, -1, 0, 0); \
239 src += bytes; \
240 } while (0)
241
242
243 /* Produce a multibyte form of characater C to `dst'. Jump to
244 `label_end_of_loop' if there's not enough space at `dst'.
245
246 If we are now in the middle of composition sequence, the decoded
247 character may be ALTCHAR (for the current composition). In that
248 case, the character goes to coding->cmp_data->data instead of
249 `dst'.
250
251 This macro is used in decoding routines. */
252
253 #define EMIT_CHAR(c) \
254 do { \
255 if (! COMPOSING_P (coding) \
256 || coding->composing == COMPOSITION_RELATIVE \
257 || coding->composing == COMPOSITION_WITH_RULE) \
258 { \
259 int bytes = CHAR_BYTES (c); \
260 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
261 { \
262 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
263 goto label_end_of_loop; \
264 } \
265 dst += CHAR_STRING (c, dst); \
266 coding->produced_char++; \
267 } \
268 \
269 if (COMPOSING_P (coding) \
270 && coding->composing != COMPOSITION_RELATIVE) \
271 { \
272 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
273 coding->composition_rule_follows \
274 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
275 } \
276 } while (0)
277
278
279 #define EMIT_ONE_BYTE(c) \
280 do { \
281 if (dst >= (dst_bytes ? dst_end : src)) \
282 { \
283 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
284 goto label_end_of_loop; \
285 } \
286 *dst++ = c; \
287 } while (0)
288
289 #define EMIT_TWO_BYTES(c1, c2) \
290 do { \
291 if (dst + 2 > (dst_bytes ? dst_end : src)) \
292 { \
293 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
294 goto label_end_of_loop; \
295 } \
296 *dst++ = c1, *dst++ = c2; \
297 } while (0)
298
299 #define EMIT_BYTES(from, to) \
300 do { \
301 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 while (from < to) \
307 *dst++ = *from++; \
308 } while (0)
309
310 \f
311 /*** 1. Preamble ***/
312
313 #ifdef emacs
314 #include <config.h>
315 #endif
316
317 #include <stdio.h>
318
319 #ifdef emacs
320
321 #include "lisp.h"
322 #include "buffer.h"
323 #include "charset.h"
324 #include "composite.h"
325 #include "ccl.h"
326 #include "coding.h"
327 #include "window.h"
328
329 #else /* not emacs */
330
331 #include "mulelib.h"
332
333 #endif /* not emacs */
334
335 Lisp_Object Qcoding_system, Qeol_type;
336 Lisp_Object Qbuffer_file_coding_system;
337 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
338 Lisp_Object Qno_conversion, Qundecided;
339 Lisp_Object Qcoding_system_history;
340 Lisp_Object Qsafe_chars;
341 Lisp_Object Qvalid_codes;
342
343 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
344 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
345 Lisp_Object Qstart_process, Qopen_network_stream;
346 Lisp_Object Qtarget_idx;
347
348 Lisp_Object Vselect_safe_coding_system_function;
349
350 /* Mnemonic string for each format of end-of-line. */
351 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
352 /* Mnemonic string to indicate format of end-of-line is not yet
353 decided. */
354 Lisp_Object eol_mnemonic_undecided;
355
356 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
357 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
358 int system_eol_type;
359
360 #ifdef emacs
361
362 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
363
364 Lisp_Object Qcoding_system_p, Qcoding_system_error;
365
366 /* Coding system emacs-mule and raw-text are for converting only
367 end-of-line format. */
368 Lisp_Object Qemacs_mule, Qraw_text;
369
370 /* Coding-systems are handed between Emacs Lisp programs and C internal
371 routines by the following three variables. */
372 /* Coding-system for reading files and receiving data from process. */
373 Lisp_Object Vcoding_system_for_read;
374 /* Coding-system for writing files and sending data to process. */
375 Lisp_Object Vcoding_system_for_write;
376 /* Coding-system actually used in the latest I/O. */
377 Lisp_Object Vlast_coding_system_used;
378
379 /* A vector of length 256 which contains information about special
380 Latin codes (especially for dealing with Microsoft codes). */
381 Lisp_Object Vlatin_extra_code_table;
382
383 /* Flag to inhibit code conversion of end-of-line format. */
384 int inhibit_eol_conversion;
385
386 /* Flag to inhibit ISO2022 escape sequence detection. */
387 int inhibit_iso_escape_detection;
388
389 /* Flag to make buffer-file-coding-system inherit from process-coding. */
390 int inherit_process_coding_system;
391
392 /* Coding system to be used to encode text for terminal display. */
393 struct coding_system terminal_coding;
394
395 /* Coding system to be used to encode text for terminal display when
396 terminal coding system is nil. */
397 struct coding_system safe_terminal_coding;
398
399 /* Coding system of what is sent from terminal keyboard. */
400 struct coding_system keyboard_coding;
401
402 /* Default coding system to be used to write a file. */
403 struct coding_system default_buffer_file_coding;
404
405 Lisp_Object Vfile_coding_system_alist;
406 Lisp_Object Vprocess_coding_system_alist;
407 Lisp_Object Vnetwork_coding_system_alist;
408
409 Lisp_Object Vlocale_coding_system;
410
411 #endif /* emacs */
412
413 Lisp_Object Qcoding_category, Qcoding_category_index;
414
415 /* List of symbols `coding-category-xxx' ordered by priority. */
416 Lisp_Object Vcoding_category_list;
417
418 /* Table of coding categories (Lisp symbols). */
419 Lisp_Object Vcoding_category_table;
420
421 /* Table of names of symbol for each coding-category. */
422 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
423 "coding-category-emacs-mule",
424 "coding-category-sjis",
425 "coding-category-iso-7",
426 "coding-category-iso-7-tight",
427 "coding-category-iso-8-1",
428 "coding-category-iso-8-2",
429 "coding-category-iso-7-else",
430 "coding-category-iso-8-else",
431 "coding-category-ccl",
432 "coding-category-big5",
433 "coding-category-utf-8",
434 "coding-category-utf-16-be",
435 "coding-category-utf-16-le",
436 "coding-category-raw-text",
437 "coding-category-binary"
438 };
439
440 /* Table of pointers to coding systems corresponding to each coding
441 categories. */
442 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
443
444 /* Table of coding category masks. Nth element is a mask for a coding
445 cateogry of which priority is Nth. */
446 static
447 int coding_priorities[CODING_CATEGORY_IDX_MAX];
448
449 /* Flag to tell if we look up translation table on character code
450 conversion. */
451 Lisp_Object Venable_character_translation;
452 /* Standard translation table to look up on decoding (reading). */
453 Lisp_Object Vstandard_translation_table_for_decode;
454 /* Standard translation table to look up on encoding (writing). */
455 Lisp_Object Vstandard_translation_table_for_encode;
456
457 Lisp_Object Qtranslation_table;
458 Lisp_Object Qtranslation_table_id;
459 Lisp_Object Qtranslation_table_for_decode;
460 Lisp_Object Qtranslation_table_for_encode;
461
462 /* Alist of charsets vs revision number. */
463 Lisp_Object Vcharset_revision_alist;
464
465 /* Default coding systems used for process I/O. */
466 Lisp_Object Vdefault_process_coding_system;
467
468 /* Global flag to tell that we can't call post-read-conversion and
469 pre-write-conversion functions. Usually the value is zero, but it
470 is set to 1 temporarily while such functions are running. This is
471 to avoid infinite recursive call. */
472 static int inhibit_pre_post_conversion;
473
474 /* Char-table containing safe coding systems of each character. */
475 Lisp_Object Vchar_coding_system_table;
476 Lisp_Object Qchar_coding_system;
477
478 /* Return `safe-chars' property of coding system CODING. Don't check
479 validity of CODING. */
480
481 Lisp_Object
482 coding_safe_chars (coding)
483 struct coding_system *coding;
484 {
485 Lisp_Object coding_spec, plist, safe_chars;
486
487 coding_spec = Fget (coding->symbol, Qcoding_system);
488 plist = XVECTOR (coding_spec)->contents[3];
489 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
490 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
491 }
492
493 #define CODING_SAFE_CHAR_P(safe_chars, c) \
494 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
495
496 \f
497 /*** 2. Emacs internal format (emacs-mule) handlers ***/
498
499 /* Emacs' internal format for encoding multiple character sets is a
500 kind of multi-byte encoding, i.e. characters are encoded by
501 variable-length sequences of one-byte codes.
502
503 ASCII characters and control characters (e.g. `tab', `newline') are
504 represented by one-byte sequences which are their ASCII codes, in
505 the range 0x00 through 0x7F.
506
507 8-bit characters of the range 0x80..0x9F are represented by
508 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
509 code + 0x20).
510
511 8-bit characters of the range 0xA0..0xFF are represented by
512 one-byte sequences which are their 8-bit code.
513
514 The other characters are represented by a sequence of `base
515 leading-code', optional `extended leading-code', and one or two
516 `position-code's. The length of the sequence is determined by the
517 base leading-code. Leading-code takes the range 0x80 through 0x9F,
518 whereas extended leading-code and position-code take the range 0xA0
519 through 0xFF. See `charset.h' for more details about leading-code
520 and position-code.
521
522 --- CODE RANGE of Emacs' internal format ---
523 character set range
524 ------------- -----
525 ascii 0x00..0x7F
526 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
527 eight-bit-graphic 0xA0..0xBF
528 ELSE 0x81..0x9F + [0xA0..0xFF]+
529 ---------------------------------------------
530
531 */
532
533 enum emacs_code_class_type emacs_code_class[256];
534
535 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
536 Check if a text is encoded in Emacs' internal format. If it is,
537 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
538
539 int
540 detect_coding_emacs_mule (src, src_end)
541 unsigned char *src, *src_end;
542 {
543 unsigned char c;
544 int composing = 0;
545 /* Dummy for ONE_MORE_BYTE. */
546 struct coding_system dummy_coding;
547 struct coding_system *coding = &dummy_coding;
548
549 while (1)
550 {
551 ONE_MORE_BYTE (c);
552
553 if (composing)
554 {
555 if (c < 0xA0)
556 composing = 0;
557 else if (c == 0xA0)
558 {
559 ONE_MORE_BYTE (c);
560 c &= 0x7F;
561 }
562 else
563 c -= 0x20;
564 }
565
566 if (c < 0x20)
567 {
568 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
569 return 0;
570 }
571 else if (c >= 0x80 && c < 0xA0)
572 {
573 if (c == 0x80)
574 /* Old leading code for a composite character. */
575 composing = 1;
576 else
577 {
578 unsigned char *src_base = src - 1;
579 int bytes;
580
581 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
582 bytes))
583 return 0;
584 src = src_base + bytes;
585 }
586 }
587 }
588 label_end_of_loop:
589 return CODING_CATEGORY_MASK_EMACS_MULE;
590 }
591
592
593 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
594
595 static void
596 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
597 struct coding_system *coding;
598 unsigned char *source, *destination;
599 int src_bytes, dst_bytes;
600 {
601 unsigned char *src = source;
602 unsigned char *src_end = source + src_bytes;
603 unsigned char *dst = destination;
604 unsigned char *dst_end = destination + dst_bytes;
605 /* SRC_BASE remembers the start position in source in each loop.
606 The loop will be exited when there's not enough source code, or
607 when there's not enough destination area to produce a
608 character. */
609 unsigned char *src_base;
610
611 coding->produced_char = 0;
612 while ((src_base = src) < src_end)
613 {
614 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
615 int bytes;
616
617 if (*src == '\r')
618 {
619 int c = *src++;
620
621 if (coding->eol_type == CODING_EOL_CR)
622 c = '\n';
623 else if (coding->eol_type == CODING_EOL_CRLF)
624 {
625 ONE_MORE_BYTE (c);
626 if (c != '\n')
627 {
628 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
629 {
630 coding->result = CODING_FINISH_INCONSISTENT_EOL;
631 goto label_end_of_loop;
632 }
633 src--;
634 c = '\r';
635 }
636 }
637 *dst++ = c;
638 coding->produced_char++;
639 continue;
640 }
641 else if (*src == '\n')
642 {
643 if ((coding->eol_type == CODING_EOL_CR
644 || coding->eol_type == CODING_EOL_CRLF)
645 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
646 {
647 coding->result = CODING_FINISH_INCONSISTENT_EOL;
648 goto label_end_of_loop;
649 }
650 *dst++ = *src++;
651 coding->produced_char++;
652 continue;
653 }
654 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
655 {
656 p = src;
657 src += bytes;
658 }
659 else
660 {
661 bytes = CHAR_STRING (*src, tmp);
662 p = tmp;
663 src++;
664 }
665 if (dst + bytes >= (dst_bytes ? dst_end : src))
666 {
667 coding->result = CODING_FINISH_INSUFFICIENT_DST;
668 break;
669 }
670 while (bytes--) *dst++ = *p++;
671 coding->produced_char++;
672 }
673 label_end_of_loop:
674 coding->consumed = coding->consumed_char = src_base - source;
675 coding->produced = dst - destination;
676 }
677
678 #define encode_coding_emacs_mule(coding, source, destination, src_bytes, dst_bytes) \
679 encode_eol (coding, source, destination, src_bytes, dst_bytes)
680
681
682 \f
683 /*** 3. ISO2022 handlers ***/
684
685 /* The following note describes the coding system ISO2022 briefly.
686 Since the intention of this note is to help understand the
687 functions in this file, some parts are NOT ACCURATE or OVERLY
688 SIMPLIFIED. For thorough understanding, please refer to the
689 original document of ISO2022.
690
691 ISO2022 provides many mechanisms to encode several character sets
692 in 7-bit and 8-bit environments. For 7-bite environments, all text
693 is encoded using bytes less than 128. This may make the encoded
694 text a little bit longer, but the text passes more easily through
695 several gateways, some of which strip off MSB (Most Signigant Bit).
696
697 There are two kinds of character sets: control character set and
698 graphic character set. The former contains control characters such
699 as `newline' and `escape' to provide control functions (control
700 functions are also provided by escape sequences). The latter
701 contains graphic characters such as 'A' and '-'. Emacs recognizes
702 two control character sets and many graphic character sets.
703
704 Graphic character sets are classified into one of the following
705 four classes, according to the number of bytes (DIMENSION) and
706 number of characters in one dimension (CHARS) of the set:
707 - DIMENSION1_CHARS94
708 - DIMENSION1_CHARS96
709 - DIMENSION2_CHARS94
710 - DIMENSION2_CHARS96
711
712 In addition, each character set is assigned an identification tag,
713 unique for each set, called "final character" (denoted as <F>
714 hereafter). The <F> of each character set is decided by ECMA(*)
715 when it is registered in ISO. The code range of <F> is 0x30..0x7F
716 (0x30..0x3F are for private use only).
717
718 Note (*): ECMA = European Computer Manufacturers Association
719
720 Here are examples of graphic character set [NAME(<F>)]:
721 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
722 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
723 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
724 o DIMENSION2_CHARS96 -- none for the moment
725
726 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
727 C0 [0x00..0x1F] -- control character plane 0
728 GL [0x20..0x7F] -- graphic character plane 0
729 C1 [0x80..0x9F] -- control character plane 1
730 GR [0xA0..0xFF] -- graphic character plane 1
731
732 A control character set is directly designated and invoked to C0 or
733 C1 by an escape sequence. The most common case is that:
734 - ISO646's control character set is designated/invoked to C0, and
735 - ISO6429's control character set is designated/invoked to C1,
736 and usually these designations/invocations are omitted in encoded
737 text. In a 7-bit environment, only C0 can be used, and a control
738 character for C1 is encoded by an appropriate escape sequence to
739 fit into the environment. All control characters for C1 are
740 defined to have corresponding escape sequences.
741
742 A graphic character set is at first designated to one of four
743 graphic registers (G0 through G3), then these graphic registers are
744 invoked to GL or GR. These designations and invocations can be
745 done independently. The most common case is that G0 is invoked to
746 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
747 these invocations and designations are omitted in encoded text.
748 In a 7-bit environment, only GL can be used.
749
750 When a graphic character set of CHARS94 is invoked to GL, codes
751 0x20 and 0x7F of the GL area work as control characters SPACE and
752 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
753 be used.
754
755 There are two ways of invocation: locking-shift and single-shift.
756 With locking-shift, the invocation lasts until the next different
757 invocation, whereas with single-shift, the invocation affects the
758 following character only and doesn't affect the locking-shift
759 state. Invocations are done by the following control characters or
760 escape sequences:
761
762 ----------------------------------------------------------------------
763 abbrev function cntrl escape seq description
764 ----------------------------------------------------------------------
765 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
766 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
767 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
768 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
769 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
770 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
771 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
772 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
773 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
774 ----------------------------------------------------------------------
775 (*) These are not used by any known coding system.
776
777 Control characters for these functions are defined by macros
778 ISO_CODE_XXX in `coding.h'.
779
780 Designations are done by the following escape sequences:
781 ----------------------------------------------------------------------
782 escape sequence description
783 ----------------------------------------------------------------------
784 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
785 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
786 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
787 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
788 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
789 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
790 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
791 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
792 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
793 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
794 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
795 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
796 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
797 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
798 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
799 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
800 ----------------------------------------------------------------------
801
802 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
803 of dimension 1, chars 94, and final character <F>, etc...
804
805 Note (*): Although these designations are not allowed in ISO2022,
806 Emacs accepts them on decoding, and produces them on encoding
807 CHARS96 character sets in a coding system which is characterized as
808 7-bit environment, non-locking-shift, and non-single-shift.
809
810 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
811 '(' can be omitted. We refer to this as "short-form" hereafter.
812
813 Now you may notice that there are a lot of ways for encoding the
814 same multilingual text in ISO2022. Actually, there exist many
815 coding systems such as Compound Text (used in X11's inter client
816 communication, ISO-2022-JP (used in Japanese internet), ISO-2022-KR
817 (used in Korean internet), EUC (Extended UNIX Code, used in Asian
818 localized platforms), and all of these are variants of ISO2022.
819
820 In addition to the above, Emacs handles two more kinds of escape
821 sequences: ISO6429's direction specification and Emacs' private
822 sequence for specifying character composition.
823
824 ISO6429's direction specification takes the following form:
825 o CSI ']' -- end of the current direction
826 o CSI '0' ']' -- end of the current direction
827 o CSI '1' ']' -- start of left-to-right text
828 o CSI '2' ']' -- start of right-to-left text
829 The control character CSI (0x9B: control sequence introducer) is
830 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
831
832 Character composition specification takes the following form:
833 o ESC '0' -- start relative composition
834 o ESC '1' -- end composition
835 o ESC '2' -- start rule-base composition (*)
836 o ESC '3' -- start relative composition with alternate chars (**)
837 o ESC '4' -- start rule-base composition with alternate chars (**)
838 Since these are not standard escape sequences of any ISO standard,
839 the use of them for these meaning is restricted to Emacs only.
840
841 (*) This form is used only in Emacs 20.5 and the older versions,
842 but the newer versions can safely decode it.
843 (**) This form is used only in Emacs 21.1 and the newer versions,
844 and the older versions can't decode it.
845
846 Here's a list of examples usages of these composition escape
847 sequences (categorized by `enum composition_method').
848
849 COMPOSITION_RELATIVE:
850 ESC 0 CHAR [ CHAR ] ESC 1
851 COMPOSITOIN_WITH_RULE:
852 ESC 2 CHAR [ RULE CHAR ] ESC 1
853 COMPOSITION_WITH_ALTCHARS:
854 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
855 COMPOSITION_WITH_RULE_ALTCHARS:
856 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
857
858 enum iso_code_class_type iso_code_class[256];
859
860 #define CHARSET_OK(idx, charset, c) \
861 (coding_system_table[idx] \
862 && (charset == CHARSET_ASCII \
863 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
864 CODING_SAFE_CHAR_P (safe_chars, c))) \
865 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
866 charset) \
867 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
868
869 #define SHIFT_OUT_OK(idx) \
870 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
871
872 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
873 Check if a text is encoded in ISO2022. If it is, returns an
874 integer in which appropriate flag bits any of:
875 CODING_CATEGORY_MASK_ISO_7
876 CODING_CATEGORY_MASK_ISO_7_TIGHT
877 CODING_CATEGORY_MASK_ISO_8_1
878 CODING_CATEGORY_MASK_ISO_8_2
879 CODING_CATEGORY_MASK_ISO_7_ELSE
880 CODING_CATEGORY_MASK_ISO_8_ELSE
881 are set. If a code which should never appear in ISO2022 is found,
882 returns 0. */
883
884 int
885 detect_coding_iso2022 (src, src_end)
886 unsigned char *src, *src_end;
887 {
888 int mask = CODING_CATEGORY_MASK_ISO;
889 int mask_found = 0;
890 int reg[4], shift_out = 0, single_shifting = 0;
891 int c, c1, i, charset;
892 /* Dummy for ONE_MORE_BYTE. */
893 struct coding_system dummy_coding;
894 struct coding_system *coding = &dummy_coding;
895 Lisp_Object safe_chars;
896
897 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
898 while (mask && src < src_end)
899 {
900 ONE_MORE_BYTE (c);
901 switch (c)
902 {
903 case ISO_CODE_ESC:
904 if (inhibit_iso_escape_detection)
905 break;
906 single_shifting = 0;
907 ONE_MORE_BYTE (c);
908 if (c >= '(' && c <= '/')
909 {
910 /* Designation sequence for a charset of dimension 1. */
911 ONE_MORE_BYTE (c1);
912 if (c1 < ' ' || c1 >= 0x80
913 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
914 /* Invalid designation sequence. Just ignore. */
915 break;
916 reg[(c - '(') % 4] = charset;
917 }
918 else if (c == '$')
919 {
920 /* Designation sequence for a charset of dimension 2. */
921 ONE_MORE_BYTE (c);
922 if (c >= '@' && c <= 'B')
923 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
924 reg[0] = charset = iso_charset_table[1][0][c];
925 else if (c >= '(' && c <= '/')
926 {
927 ONE_MORE_BYTE (c1);
928 if (c1 < ' ' || c1 >= 0x80
929 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
930 /* Invalid designation sequence. Just ignore. */
931 break;
932 reg[(c - '(') % 4] = charset;
933 }
934 else
935 /* Invalid designation sequence. Just ignore. */
936 break;
937 }
938 else if (c == 'N' || c == 'O')
939 {
940 /* ESC <Fe> for SS2 or SS3. */
941 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
942 break;
943 }
944 else if (c >= '0' && c <= '4')
945 {
946 /* ESC <Fp> for start/end composition. */
947 mask_found |= CODING_CATEGORY_MASK_ISO;
948 break;
949 }
950 else
951 /* Invalid escape sequence. Just ignore. */
952 break;
953
954 /* We found a valid designation sequence for CHARSET. */
955 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
956 c = MAKE_CHAR (charset, 0, 0);
957 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
958 mask_found |= CODING_CATEGORY_MASK_ISO_7;
959 else
960 mask &= ~CODING_CATEGORY_MASK_ISO_7;
961 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
962 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
963 else
964 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
965 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
966 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
967 else
968 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
969 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
970 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
971 else
972 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
973 break;
974
975 case ISO_CODE_SO:
976 if (inhibit_iso_escape_detection)
977 break;
978 single_shifting = 0;
979 if (shift_out == 0
980 && (reg[1] >= 0
981 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
982 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
983 {
984 /* Locking shift out. */
985 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
986 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
987 }
988 break;
989
990 case ISO_CODE_SI:
991 if (inhibit_iso_escape_detection)
992 break;
993 single_shifting = 0;
994 if (shift_out == 1)
995 {
996 /* Locking shift in. */
997 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
998 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
999 }
1000 break;
1001
1002 case ISO_CODE_CSI:
1003 single_shifting = 0;
1004 case ISO_CODE_SS2:
1005 case ISO_CODE_SS3:
1006 {
1007 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1008
1009 if (inhibit_iso_escape_detection)
1010 break;
1011 if (c != ISO_CODE_CSI)
1012 {
1013 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1014 & CODING_FLAG_ISO_SINGLE_SHIFT)
1015 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1016 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1017 & CODING_FLAG_ISO_SINGLE_SHIFT)
1018 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1019 single_shifting = 1;
1020 }
1021 if (VECTORP (Vlatin_extra_code_table)
1022 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1023 {
1024 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1025 & CODING_FLAG_ISO_LATIN_EXTRA)
1026 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1027 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1028 & CODING_FLAG_ISO_LATIN_EXTRA)
1029 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1030 }
1031 mask &= newmask;
1032 mask_found |= newmask;
1033 }
1034 break;
1035
1036 default:
1037 if (c < 0x80)
1038 {
1039 single_shifting = 0;
1040 break;
1041 }
1042 else if (c < 0xA0)
1043 {
1044 single_shifting = 0;
1045 if (VECTORP (Vlatin_extra_code_table)
1046 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1047 {
1048 int newmask = 0;
1049
1050 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1051 & CODING_FLAG_ISO_LATIN_EXTRA)
1052 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1053 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1054 & CODING_FLAG_ISO_LATIN_EXTRA)
1055 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1056 mask &= newmask;
1057 mask_found |= newmask;
1058 }
1059 else
1060 return 0;
1061 }
1062 else
1063 {
1064 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1065 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1066 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1067 /* Check the length of succeeding codes of the range
1068 0xA0..0FF. If the byte length is odd, we exclude
1069 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1070 when we are not single shifting. */
1071 if (!single_shifting
1072 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1073 {
1074 int i = 1;
1075 while (src < src_end)
1076 {
1077 ONE_MORE_BYTE (c);
1078 if (c < 0xA0)
1079 break;
1080 i++;
1081 }
1082
1083 if (i & 1 && src < src_end)
1084 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1085 else
1086 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1087 }
1088 }
1089 break;
1090 }
1091 }
1092 label_end_of_loop:
1093 return (mask & mask_found);
1094 }
1095
1096 /* Decode a character of which charset is CHARSET, the 1st position
1097 code is C1, the 2nd position code is C2, and return the decoded
1098 character code. If the variable `translation_table' is non-nil,
1099 returned the translated code. */
1100
1101 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1102 (NILP (translation_table) \
1103 ? MAKE_CHAR (charset, c1, c2) \
1104 : translate_char (translation_table, -1, charset, c1, c2))
1105
1106 /* Set designation state into CODING. */
1107 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1108 do { \
1109 int charset, c; \
1110 \
1111 if (final_char < '0' || final_char >= 128) \
1112 goto label_invalid_code; \
1113 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1114 make_number (chars), \
1115 make_number (final_char)); \
1116 c = MAKE_CHAR (charset, 0, 0); \
1117 if (charset >= 0 \
1118 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1119 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1120 { \
1121 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1122 && reg == 0 \
1123 && charset == CHARSET_ASCII) \
1124 { \
1125 /* We should insert this designation sequence as is so \
1126 that it is surely written back to a file. */ \
1127 coding->spec.iso2022.last_invalid_designation_register = -1; \
1128 goto label_invalid_code; \
1129 } \
1130 coding->spec.iso2022.last_invalid_designation_register = -1; \
1131 if ((coding->mode & CODING_MODE_DIRECTION) \
1132 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1133 charset = CHARSET_REVERSE_CHARSET (charset); \
1134 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1135 } \
1136 else \
1137 { \
1138 coding->spec.iso2022.last_invalid_designation_register = reg; \
1139 goto label_invalid_code; \
1140 } \
1141 } while (0)
1142
1143 /* Allocate a memory block for storing information about compositions.
1144 The block is chained to the already allocated blocks. */
1145
1146 void
1147 coding_allocate_composition_data (coding, char_offset)
1148 struct coding_system *coding;
1149 int char_offset;
1150 {
1151 struct composition_data *cmp_data
1152 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1153
1154 cmp_data->char_offset = char_offset;
1155 cmp_data->used = 0;
1156 cmp_data->prev = coding->cmp_data;
1157 cmp_data->next = NULL;
1158 if (coding->cmp_data)
1159 coding->cmp_data->next = cmp_data;
1160 coding->cmp_data = cmp_data;
1161 coding->cmp_data_start = 0;
1162 }
1163
1164 /* Record the starting position START and METHOD of one composition. */
1165
1166 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
1167 do { \
1168 struct composition_data *cmp_data = coding->cmp_data; \
1169 int *data = cmp_data->data + cmp_data->used; \
1170 coding->cmp_data_start = cmp_data->used; \
1171 data[0] = -1; \
1172 data[1] = cmp_data->char_offset + start; \
1173 data[3] = (int) method; \
1174 cmp_data->used += 4; \
1175 } while (0)
1176
1177 /* Record the ending position END of the current composition. */
1178
1179 #define CODING_ADD_COMPOSITION_END(coding, end) \
1180 do { \
1181 struct composition_data *cmp_data = coding->cmp_data; \
1182 int *data = cmp_data->data + coding->cmp_data_start; \
1183 data[0] = cmp_data->used - coding->cmp_data_start; \
1184 data[2] = cmp_data->char_offset + end; \
1185 } while (0)
1186
1187 /* Record one COMPONENT (alternate character or composition rule). */
1188
1189 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
1190 (coding->cmp_data->data[coding->cmp_data->used++] = component)
1191
1192 /* Handle compositoin start sequence ESC 0, ESC 2, ESC 3, or ESC 4. */
1193
1194 #define DECODE_COMPOSITION_START(c1) \
1195 do { \
1196 if (coding->composing == COMPOSITION_DISABLED) \
1197 { \
1198 *dst++ = ISO_CODE_ESC; \
1199 *dst++ = c1 & 0x7f; \
1200 coding->produced_char += 2; \
1201 } \
1202 else if (!COMPOSING_P (coding)) \
1203 { \
1204 /* This is surely the start of a composition. We must be sure \
1205 that coding->cmp_data has enough space to store the \
1206 information about the composition. If not, terminate the \
1207 current decoding loop, allocate one more memory block for \
1208 coding->cmp_data in the calller, then start the decoding \
1209 loop again. We can't allocate memory here directly because \
1210 it may cause buffer/string relocation. */ \
1211 if (!coding->cmp_data \
1212 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1213 >= COMPOSITION_DATA_SIZE)) \
1214 { \
1215 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1216 goto label_end_of_loop; \
1217 } \
1218 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1219 : c1 == '2' ? COMPOSITION_WITH_RULE \
1220 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1221 : COMPOSITION_WITH_RULE_ALTCHARS); \
1222 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1223 coding->composing); \
1224 coding->composition_rule_follows = 0; \
1225 } \
1226 else \
1227 { \
1228 /* We are already handling a composition. If the method is \
1229 the following two, the codes following the current escape \
1230 sequence are actual characters stored in a buffer. */ \
1231 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1232 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1233 { \
1234 coding->composing = COMPOSITION_RELATIVE; \
1235 coding->composition_rule_follows = 0; \
1236 } \
1237 } \
1238 } while (0)
1239
1240 /* Handle compositoin end sequence ESC 1. */
1241
1242 #define DECODE_COMPOSITION_END(c1) \
1243 do { \
1244 if (coding->composing == COMPOSITION_DISABLED) \
1245 { \
1246 *dst++ = ISO_CODE_ESC; \
1247 *dst++ = c1; \
1248 coding->produced_char += 2; \
1249 } \
1250 else \
1251 { \
1252 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1253 coding->composing = COMPOSITION_NO; \
1254 } \
1255 } while (0)
1256
1257 /* Decode a composition rule from the byte C1 (and maybe one more byte
1258 from SRC) and store one encoded composition rule in
1259 coding->cmp_data. */
1260
1261 #define DECODE_COMPOSITION_RULE(c1) \
1262 do { \
1263 int rule = 0; \
1264 (c1) -= 32; \
1265 if (c1 < 81) /* old format (before ver.21) */ \
1266 { \
1267 int gref = (c1) / 9; \
1268 int nref = (c1) % 9; \
1269 if (gref == 4) gref = 10; \
1270 if (nref == 4) nref = 10; \
1271 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1272 } \
1273 else if (c1 < 93) /* new format (after ver.21) */ \
1274 { \
1275 ONE_MORE_BYTE (c2); \
1276 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1277 } \
1278 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1279 coding->composition_rule_follows = 0; \
1280 } while (0)
1281
1282
1283 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1284
1285 static void
1286 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1287 struct coding_system *coding;
1288 unsigned char *source, *destination;
1289 int src_bytes, dst_bytes;
1290 {
1291 unsigned char *src = source;
1292 unsigned char *src_end = source + src_bytes;
1293 unsigned char *dst = destination;
1294 unsigned char *dst_end = destination + dst_bytes;
1295 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1296 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1297 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1298 /* SRC_BASE remembers the start position in source in each loop.
1299 The loop will be exited when there's not enough source code
1300 (within macro ONE_MORE_BYTE), or when there's not enough
1301 destination area to produce a character (within macro
1302 EMIT_CHAR). */
1303 unsigned char *src_base;
1304 int c, charset;
1305 Lisp_Object translation_table;
1306 Lisp_Object safe_chars;
1307
1308 safe_chars = coding_safe_chars (coding);
1309
1310 if (NILP (Venable_character_translation))
1311 translation_table = Qnil;
1312 else
1313 {
1314 translation_table = coding->translation_table_for_decode;
1315 if (NILP (translation_table))
1316 translation_table = Vstandard_translation_table_for_decode;
1317 }
1318
1319 coding->result = CODING_FINISH_NORMAL;
1320
1321 while (1)
1322 {
1323 int c1, c2;
1324
1325 src_base = src;
1326 ONE_MORE_BYTE (c1);
1327
1328 /* We produce no character or one character. */
1329 switch (iso_code_class [c1])
1330 {
1331 case ISO_0x20_or_0x7F:
1332 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1333 {
1334 DECODE_COMPOSITION_RULE (c1);
1335 continue;
1336 }
1337 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1338 {
1339 /* This is SPACE or DEL. */
1340 charset = CHARSET_ASCII;
1341 break;
1342 }
1343 /* This is a graphic character, we fall down ... */
1344
1345 case ISO_graphic_plane_0:
1346 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1347 {
1348 DECODE_COMPOSITION_RULE (c1);
1349 continue;
1350 }
1351 charset = charset0;
1352 break;
1353
1354 case ISO_0xA0_or_0xFF:
1355 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1356 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1357 goto label_invalid_code;
1358 /* This is a graphic character, we fall down ... */
1359
1360 case ISO_graphic_plane_1:
1361 if (charset1 < 0)
1362 goto label_invalid_code;
1363 charset = charset1;
1364 break;
1365
1366 case ISO_control_0:
1367 if (COMPOSING_P (coding))
1368 DECODE_COMPOSITION_END ('1');
1369
1370 /* All ISO2022 control characters in this class have the
1371 same representation in Emacs internal format. */
1372 if (c1 == '\n'
1373 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1374 && (coding->eol_type == CODING_EOL_CR
1375 || coding->eol_type == CODING_EOL_CRLF))
1376 {
1377 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1378 goto label_end_of_loop;
1379 }
1380 charset = CHARSET_ASCII;
1381 break;
1382
1383 case ISO_control_1:
1384 if (COMPOSING_P (coding))
1385 DECODE_COMPOSITION_END ('1');
1386 goto label_invalid_code;
1387
1388 case ISO_carriage_return:
1389 if (COMPOSING_P (coding))
1390 DECODE_COMPOSITION_END ('1');
1391
1392 if (coding->eol_type == CODING_EOL_CR)
1393 c1 = '\n';
1394 else if (coding->eol_type == CODING_EOL_CRLF)
1395 {
1396 ONE_MORE_BYTE (c1);
1397 if (c1 != ISO_CODE_LF)
1398 {
1399 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1400 {
1401 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1402 goto label_end_of_loop;
1403 }
1404 src--;
1405 c1 = '\r';
1406 }
1407 }
1408 charset = CHARSET_ASCII;
1409 break;
1410
1411 case ISO_shift_out:
1412 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1413 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1414 goto label_invalid_code;
1415 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1416 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1417 continue;
1418
1419 case ISO_shift_in:
1420 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1421 goto label_invalid_code;
1422 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1423 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1424 continue;
1425
1426 case ISO_single_shift_2_7:
1427 case ISO_single_shift_2:
1428 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1429 goto label_invalid_code;
1430 /* SS2 is handled as an escape sequence of ESC 'N' */
1431 c1 = 'N';
1432 goto label_escape_sequence;
1433
1434 case ISO_single_shift_3:
1435 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1436 goto label_invalid_code;
1437 /* SS2 is handled as an escape sequence of ESC 'O' */
1438 c1 = 'O';
1439 goto label_escape_sequence;
1440
1441 case ISO_control_sequence_introducer:
1442 /* CSI is handled as an escape sequence of ESC '[' ... */
1443 c1 = '[';
1444 goto label_escape_sequence;
1445
1446 case ISO_escape:
1447 ONE_MORE_BYTE (c1);
1448 label_escape_sequence:
1449 /* Escape sequences handled by Emacs are invocation,
1450 designation, direction specification, and character
1451 composition specification. */
1452 switch (c1)
1453 {
1454 case '&': /* revision of following character set */
1455 ONE_MORE_BYTE (c1);
1456 if (!(c1 >= '@' && c1 <= '~'))
1457 goto label_invalid_code;
1458 ONE_MORE_BYTE (c1);
1459 if (c1 != ISO_CODE_ESC)
1460 goto label_invalid_code;
1461 ONE_MORE_BYTE (c1);
1462 goto label_escape_sequence;
1463
1464 case '$': /* designation of 2-byte character set */
1465 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1466 goto label_invalid_code;
1467 ONE_MORE_BYTE (c1);
1468 if (c1 >= '@' && c1 <= 'B')
1469 { /* designation of JISX0208.1978, GB2312.1980,
1470 or JISX0208.1980 */
1471 DECODE_DESIGNATION (0, 2, 94, c1);
1472 }
1473 else if (c1 >= 0x28 && c1 <= 0x2B)
1474 { /* designation of DIMENSION2_CHARS94 character set */
1475 ONE_MORE_BYTE (c2);
1476 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1477 }
1478 else if (c1 >= 0x2C && c1 <= 0x2F)
1479 { /* designation of DIMENSION2_CHARS96 character set */
1480 ONE_MORE_BYTE (c2);
1481 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1482 }
1483 else
1484 goto label_invalid_code;
1485 /* We must update these variables now. */
1486 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1487 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1488 continue;
1489
1490 case 'n': /* invocation of locking-shift-2 */
1491 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1492 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1493 goto label_invalid_code;
1494 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1495 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1496 continue;
1497
1498 case 'o': /* invocation of locking-shift-3 */
1499 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1500 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1501 goto label_invalid_code;
1502 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1503 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1504 continue;
1505
1506 case 'N': /* invocation of single-shift-2 */
1507 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1508 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1509 goto label_invalid_code;
1510 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1511 ONE_MORE_BYTE (c1);
1512 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1513 goto label_invalid_code;
1514 break;
1515
1516 case 'O': /* invocation of single-shift-3 */
1517 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1518 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1519 goto label_invalid_code;
1520 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1521 ONE_MORE_BYTE (c1);
1522 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1523 goto label_invalid_code;
1524 break;
1525
1526 case '0': case '2': case '3': case '4': /* start composition */
1527 DECODE_COMPOSITION_START (c1);
1528 continue;
1529
1530 case '1': /* end composition */
1531 DECODE_COMPOSITION_END (c1);
1532 continue;
1533
1534 case '[': /* specification of direction */
1535 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1536 goto label_invalid_code;
1537 /* For the moment, nested direction is not supported.
1538 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1539 left-to-right, and nozero means right-to-left. */
1540 ONE_MORE_BYTE (c1);
1541 switch (c1)
1542 {
1543 case ']': /* end of the current direction */
1544 coding->mode &= ~CODING_MODE_DIRECTION;
1545
1546 case '0': /* end of the current direction */
1547 case '1': /* start of left-to-right direction */
1548 ONE_MORE_BYTE (c1);
1549 if (c1 == ']')
1550 coding->mode &= ~CODING_MODE_DIRECTION;
1551 else
1552 goto label_invalid_code;
1553 break;
1554
1555 case '2': /* start of right-to-left direction */
1556 ONE_MORE_BYTE (c1);
1557 if (c1 == ']')
1558 coding->mode |= CODING_MODE_DIRECTION;
1559 else
1560 goto label_invalid_code;
1561 break;
1562
1563 default:
1564 goto label_invalid_code;
1565 }
1566 continue;
1567
1568 default:
1569 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1570 goto label_invalid_code;
1571 if (c1 >= 0x28 && c1 <= 0x2B)
1572 { /* designation of DIMENSION1_CHARS94 character set */
1573 ONE_MORE_BYTE (c2);
1574 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1575 }
1576 else if (c1 >= 0x2C && c1 <= 0x2F)
1577 { /* designation of DIMENSION1_CHARS96 character set */
1578 ONE_MORE_BYTE (c2);
1579 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
1580 }
1581 else
1582 goto label_invalid_code;
1583 /* We must update these variables now. */
1584 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1585 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1586 continue;
1587 }
1588 }
1589
1590 /* Now we know CHARSET and 1st position code C1 of a character.
1591 Produce a multibyte sequence for that character while getting
1592 2nd position code C2 if necessary. */
1593 if (CHARSET_DIMENSION (charset) == 2)
1594 {
1595 ONE_MORE_BYTE (c2);
1596 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
1597 /* C2 is not in a valid range. */
1598 goto label_invalid_code;
1599 }
1600 c = DECODE_ISO_CHARACTER (charset, c1, c2);
1601 EMIT_CHAR (c);
1602 continue;
1603
1604 label_invalid_code:
1605 coding->errors++;
1606 if (COMPOSING_P (coding))
1607 DECODE_COMPOSITION_END ('1');
1608 src = src_base;
1609 c = *src++;
1610 EMIT_CHAR (c);
1611 }
1612
1613 label_end_of_loop:
1614 coding->consumed = coding->consumed_char = src_base - source;
1615 coding->produced = dst - destination;
1616 return;
1617 }
1618
1619
1620 /* ISO2022 encoding stuff. */
1621
1622 /*
1623 It is not enough to say just "ISO2022" on encoding, we have to
1624 specify more details. In Emacs, each coding system of ISO2022
1625 variant has the following specifications:
1626 1. Initial designation to G0 thru G3.
1627 2. Allows short-form designation?
1628 3. ASCII should be designated to G0 before control characters?
1629 4. ASCII should be designated to G0 at end of line?
1630 5. 7-bit environment or 8-bit environment?
1631 6. Use locking-shift?
1632 7. Use Single-shift?
1633 And the following two are only for Japanese:
1634 8. Use ASCII in place of JIS0201-1976-Roman?
1635 9. Use JISX0208-1983 in place of JISX0208-1978?
1636 These specifications are encoded in `coding->flags' as flag bits
1637 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
1638 details.
1639 */
1640
1641 /* Produce codes (escape sequence) for designating CHARSET to graphic
1642 register REG at DST, and increment DST. If <final-char> of CHARSET is
1643 '@', 'A', or 'B' and the coding system CODING allows, produce
1644 designation sequence of short-form. */
1645
1646 #define ENCODE_DESIGNATION(charset, reg, coding) \
1647 do { \
1648 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
1649 char *intermediate_char_94 = "()*+"; \
1650 char *intermediate_char_96 = ",-./"; \
1651 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
1652 \
1653 if (revision < 255) \
1654 { \
1655 *dst++ = ISO_CODE_ESC; \
1656 *dst++ = '&'; \
1657 *dst++ = '@' + revision; \
1658 } \
1659 *dst++ = ISO_CODE_ESC; \
1660 if (CHARSET_DIMENSION (charset) == 1) \
1661 { \
1662 if (CHARSET_CHARS (charset) == 94) \
1663 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1664 else \
1665 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1666 } \
1667 else \
1668 { \
1669 *dst++ = '$'; \
1670 if (CHARSET_CHARS (charset) == 94) \
1671 { \
1672 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
1673 || reg != 0 \
1674 || final_char < '@' || final_char > 'B') \
1675 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1676 } \
1677 else \
1678 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1679 } \
1680 *dst++ = final_char; \
1681 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1682 } while (0)
1683
1684 /* The following two macros produce codes (control character or escape
1685 sequence) for ISO2022 single-shift functions (single-shift-2 and
1686 single-shift-3). */
1687
1688 #define ENCODE_SINGLE_SHIFT_2 \
1689 do { \
1690 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1691 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
1692 else \
1693 *dst++ = ISO_CODE_SS2; \
1694 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1695 } while (0)
1696
1697 #define ENCODE_SINGLE_SHIFT_3 \
1698 do { \
1699 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1700 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
1701 else \
1702 *dst++ = ISO_CODE_SS3; \
1703 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1704 } while (0)
1705
1706 /* The following four macros produce codes (control character or
1707 escape sequence) for ISO2022 locking-shift functions (shift-in,
1708 shift-out, locking-shift-2, and locking-shift-3). */
1709
1710 #define ENCODE_SHIFT_IN \
1711 do { \
1712 *dst++ = ISO_CODE_SI; \
1713 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
1714 } while (0)
1715
1716 #define ENCODE_SHIFT_OUT \
1717 do { \
1718 *dst++ = ISO_CODE_SO; \
1719 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
1720 } while (0)
1721
1722 #define ENCODE_LOCKING_SHIFT_2 \
1723 do { \
1724 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
1725 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
1726 } while (0)
1727
1728 #define ENCODE_LOCKING_SHIFT_3 \
1729 do { \
1730 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
1731 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
1732 } while (0)
1733
1734 /* Produce codes for a DIMENSION1 character whose character set is
1735 CHARSET and whose position-code is C1. Designation and invocation
1736 sequences are also produced in advance if necessary. */
1737
1738 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
1739 do { \
1740 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1741 { \
1742 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1743 *dst++ = c1 & 0x7F; \
1744 else \
1745 *dst++ = c1 | 0x80; \
1746 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1747 break; \
1748 } \
1749 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1750 { \
1751 *dst++ = c1 & 0x7F; \
1752 break; \
1753 } \
1754 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1755 { \
1756 *dst++ = c1 | 0x80; \
1757 break; \
1758 } \
1759 else \
1760 /* Since CHARSET is not yet invoked to any graphic planes, we \
1761 must invoke it, or, at first, designate it to some graphic \
1762 register. Then repeat the loop to actually produce the \
1763 character. */ \
1764 dst = encode_invocation_designation (charset, coding, dst); \
1765 } while (1)
1766
1767 /* Produce codes for a DIMENSION2 character whose character set is
1768 CHARSET and whose position-codes are C1 and C2. Designation and
1769 invocation codes are also produced in advance if necessary. */
1770
1771 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
1772 do { \
1773 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1774 { \
1775 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1776 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
1777 else \
1778 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
1779 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1780 break; \
1781 } \
1782 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1783 { \
1784 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
1785 break; \
1786 } \
1787 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1788 { \
1789 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
1790 break; \
1791 } \
1792 else \
1793 /* Since CHARSET is not yet invoked to any graphic planes, we \
1794 must invoke it, or, at first, designate it to some graphic \
1795 register. Then repeat the loop to actually produce the \
1796 character. */ \
1797 dst = encode_invocation_designation (charset, coding, dst); \
1798 } while (1)
1799
1800 #define ENCODE_ISO_CHARACTER(c) \
1801 do { \
1802 int charset, c1, c2; \
1803 \
1804 SPLIT_CHAR (c, charset, c1, c2); \
1805 if (CHARSET_DEFINED_P (charset)) \
1806 { \
1807 if (CHARSET_DIMENSION (charset) == 1) \
1808 { \
1809 if (charset == CHARSET_ASCII \
1810 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
1811 charset = charset_latin_jisx0201; \
1812 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
1813 } \
1814 else \
1815 { \
1816 if (charset == charset_jisx0208 \
1817 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
1818 charset = charset_jisx0208_1978; \
1819 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
1820 } \
1821 } \
1822 else \
1823 { \
1824 *dst++ = c1; \
1825 if (c2 >= 0) \
1826 *dst++ = c2; \
1827 } \
1828 } while (0)
1829
1830
1831 /* Instead of encoding character C, produce one or two `?'s. */
1832
1833 #define ENCODE_UNSAFE_CHARACTER(c) \
1834 do { \
1835 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
1836 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
1837 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
1838 } while (0)
1839
1840
1841 /* Produce designation and invocation codes at a place pointed by DST
1842 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
1843 Return new DST. */
1844
1845 unsigned char *
1846 encode_invocation_designation (charset, coding, dst)
1847 int charset;
1848 struct coding_system *coding;
1849 unsigned char *dst;
1850 {
1851 int reg; /* graphic register number */
1852
1853 /* At first, check designations. */
1854 for (reg = 0; reg < 4; reg++)
1855 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
1856 break;
1857
1858 if (reg >= 4)
1859 {
1860 /* CHARSET is not yet designated to any graphic registers. */
1861 /* At first check the requested designation. */
1862 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1863 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1864 /* Since CHARSET requests no special designation, designate it
1865 to graphic register 0. */
1866 reg = 0;
1867
1868 ENCODE_DESIGNATION (charset, reg, coding);
1869 }
1870
1871 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
1872 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
1873 {
1874 /* Since the graphic register REG is not invoked to any graphic
1875 planes, invoke it to graphic plane 0. */
1876 switch (reg)
1877 {
1878 case 0: /* graphic register 0 */
1879 ENCODE_SHIFT_IN;
1880 break;
1881
1882 case 1: /* graphic register 1 */
1883 ENCODE_SHIFT_OUT;
1884 break;
1885
1886 case 2: /* graphic register 2 */
1887 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1888 ENCODE_SINGLE_SHIFT_2;
1889 else
1890 ENCODE_LOCKING_SHIFT_2;
1891 break;
1892
1893 case 3: /* graphic register 3 */
1894 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1895 ENCODE_SINGLE_SHIFT_3;
1896 else
1897 ENCODE_LOCKING_SHIFT_3;
1898 break;
1899 }
1900 }
1901
1902 return dst;
1903 }
1904
1905 /* Produce 2-byte codes for encoded composition rule RULE. */
1906
1907 #define ENCODE_COMPOSITION_RULE(rule) \
1908 do { \
1909 int gref, nref; \
1910 COMPOSITION_DECODE_RULE (rule, gref, nref); \
1911 *dst++ = 32 + 81 + gref; \
1912 *dst++ = 32 + nref; \
1913 } while (0)
1914
1915 /* Produce codes for indicating the start of a composition sequence
1916 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
1917 which specify information about the composition. See the comment
1918 in coding.h for the format of DATA. */
1919
1920 #define ENCODE_COMPOSITION_START(coding, data) \
1921 do { \
1922 coding->composing = data[3]; \
1923 *dst++ = ISO_CODE_ESC; \
1924 if (coding->composing == COMPOSITION_RELATIVE) \
1925 *dst++ = '0'; \
1926 else \
1927 { \
1928 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
1929 ? '3' : '4'); \
1930 coding->cmp_data_index = coding->cmp_data_start + 4; \
1931 coding->composition_rule_follows = 0; \
1932 } \
1933 } while (0)
1934
1935 /* Produce codes for indicating the end of the current composition. */
1936
1937 #define ENCODE_COMPOSITION_END(coding, data) \
1938 do { \
1939 *dst++ = ISO_CODE_ESC; \
1940 *dst++ = '1'; \
1941 coding->cmp_data_start += data[0]; \
1942 coding->composing = COMPOSITION_NO; \
1943 if (coding->cmp_data_start == coding->cmp_data->used \
1944 && coding->cmp_data->next) \
1945 { \
1946 coding->cmp_data = coding->cmp_data->next; \
1947 coding->cmp_data_start = 0; \
1948 } \
1949 } while (0)
1950
1951 /* Produce composition start sequence ESC 0. Here, this sequence
1952 doesn't mean the start of a new composition but means that we have
1953 just produced components (alternate chars and composition rules) of
1954 the composition and the actual text follows in SRC. */
1955
1956 #define ENCODE_COMPOSITION_FAKE_START(coding) \
1957 do { \
1958 *dst++ = ISO_CODE_ESC; \
1959 *dst++ = '0'; \
1960 coding->composing = COMPOSITION_RELATIVE; \
1961 } while (0)
1962
1963 /* The following three macros produce codes for indicating direction
1964 of text. */
1965 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
1966 do { \
1967 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
1968 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
1969 else \
1970 *dst++ = ISO_CODE_CSI; \
1971 } while (0)
1972
1973 #define ENCODE_DIRECTION_R2L \
1974 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
1975
1976 #define ENCODE_DIRECTION_L2R \
1977 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
1978
1979 /* Produce codes for designation and invocation to reset the graphic
1980 planes and registers to initial state. */
1981 #define ENCODE_RESET_PLANE_AND_REGISTER \
1982 do { \
1983 int reg; \
1984 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
1985 ENCODE_SHIFT_IN; \
1986 for (reg = 0; reg < 4; reg++) \
1987 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
1988 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
1989 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
1990 ENCODE_DESIGNATION \
1991 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
1992 } while (0)
1993
1994 /* Produce designation sequences of charsets in the line started from
1995 SRC to a place pointed by DST, and return updated DST.
1996
1997 If the current block ends before any end-of-line, we may fail to
1998 find all the necessary designations. */
1999
2000 static unsigned char *
2001 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2002 struct coding_system *coding;
2003 Lisp_Object translation_table;
2004 unsigned char *src, *src_end, *dst;
2005 {
2006 int charset, c, found = 0, reg;
2007 /* Table of charsets to be designated to each graphic register. */
2008 int r[4];
2009
2010 for (reg = 0; reg < 4; reg++)
2011 r[reg] = -1;
2012
2013 while (found < 4)
2014 {
2015 ONE_MORE_CHAR (c);
2016 if (c == '\n')
2017 break;
2018
2019 charset = CHAR_CHARSET (c);
2020 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2021 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2022 {
2023 found++;
2024 r[reg] = charset;
2025 }
2026 }
2027
2028 label_end_of_loop:
2029 if (found)
2030 {
2031 for (reg = 0; reg < 4; reg++)
2032 if (r[reg] >= 0
2033 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2034 ENCODE_DESIGNATION (r[reg], reg, coding);
2035 }
2036
2037 return dst;
2038 }
2039
2040 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2041
2042 static void
2043 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2044 struct coding_system *coding;
2045 unsigned char *source, *destination;
2046 int src_bytes, dst_bytes;
2047 {
2048 unsigned char *src = source;
2049 unsigned char *src_end = source + src_bytes;
2050 unsigned char *dst = destination;
2051 unsigned char *dst_end = destination + dst_bytes;
2052 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2053 from DST_END to assure overflow checking is necessary only at the
2054 head of loop. */
2055 unsigned char *adjusted_dst_end = dst_end - 19;
2056 /* SRC_BASE remembers the start position in source in each loop.
2057 The loop will be exited when there's not enough source text to
2058 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2059 there's not enough destination area to produce encoded codes
2060 (within macro EMIT_BYTES). */
2061 unsigned char *src_base;
2062 int c;
2063 Lisp_Object translation_table;
2064 Lisp_Object safe_chars;
2065
2066 safe_chars = coding_safe_chars (coding);
2067
2068 if (NILP (Venable_character_translation))
2069 translation_table = Qnil;
2070 else
2071 {
2072 translation_table = coding->translation_table_for_encode;
2073 if (NILP (translation_table))
2074 translation_table = Vstandard_translation_table_for_encode;
2075 }
2076
2077 coding->consumed_char = 0;
2078 coding->errors = 0;
2079 while (1)
2080 {
2081 src_base = src;
2082
2083 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2084 {
2085 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2086 break;
2087 }
2088
2089 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2090 && CODING_SPEC_ISO_BOL (coding))
2091 {
2092 /* We have to produce designation sequences if any now. */
2093 dst = encode_designation_at_bol (coding, translation_table,
2094 src, src_end, dst);
2095 CODING_SPEC_ISO_BOL (coding) = 0;
2096 }
2097
2098 /* Check composition start and end. */
2099 if (coding->composing != COMPOSITION_DISABLED
2100 && coding->cmp_data_start < coding->cmp_data->used)
2101 {
2102 struct composition_data *cmp_data = coding->cmp_data;
2103 int *data = cmp_data->data + coding->cmp_data_start;
2104 int this_pos = cmp_data->char_offset + coding->consumed_char;
2105
2106 if (coding->composing == COMPOSITION_RELATIVE)
2107 {
2108 if (this_pos == data[2])
2109 {
2110 ENCODE_COMPOSITION_END (coding, data);
2111 cmp_data = coding->cmp_data;
2112 data = cmp_data->data + coding->cmp_data_start;
2113 }
2114 }
2115 else if (COMPOSING_P (coding))
2116 {
2117 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2118 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2119 /* We have consumed components of the composition.
2120 What follows in SRC is the compositions's base
2121 text. */
2122 ENCODE_COMPOSITION_FAKE_START (coding);
2123 else
2124 {
2125 int c = cmp_data->data[coding->cmp_data_index++];
2126 if (coding->composition_rule_follows)
2127 {
2128 ENCODE_COMPOSITION_RULE (c);
2129 coding->composition_rule_follows = 0;
2130 }
2131 else
2132 {
2133 if (coding->flags & CODING_FLAG_ISO_SAFE
2134 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2135 ENCODE_UNSAFE_CHARACTER (c);
2136 else
2137 ENCODE_ISO_CHARACTER (c);
2138 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2139 coding->composition_rule_follows = 1;
2140 }
2141 continue;
2142 }
2143 }
2144 if (!COMPOSING_P (coding))
2145 {
2146 if (this_pos == data[1])
2147 {
2148 ENCODE_COMPOSITION_START (coding, data);
2149 continue;
2150 }
2151 }
2152 }
2153
2154 ONE_MORE_CHAR (c);
2155
2156 /* Now encode the character C. */
2157 if (c < 0x20 || c == 0x7F)
2158 {
2159 if (c == '\r')
2160 {
2161 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2162 {
2163 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2164 ENCODE_RESET_PLANE_AND_REGISTER;
2165 *dst++ = c;
2166 continue;
2167 }
2168 /* fall down to treat '\r' as '\n' ... */
2169 c = '\n';
2170 }
2171 if (c == '\n')
2172 {
2173 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2174 ENCODE_RESET_PLANE_AND_REGISTER;
2175 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2176 bcopy (coding->spec.iso2022.initial_designation,
2177 coding->spec.iso2022.current_designation,
2178 sizeof coding->spec.iso2022.initial_designation);
2179 if (coding->eol_type == CODING_EOL_LF
2180 || coding->eol_type == CODING_EOL_UNDECIDED)
2181 *dst++ = ISO_CODE_LF;
2182 else if (coding->eol_type == CODING_EOL_CRLF)
2183 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2184 else
2185 *dst++ = ISO_CODE_CR;
2186 CODING_SPEC_ISO_BOL (coding) = 1;
2187 }
2188 else
2189 {
2190 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2191 ENCODE_RESET_PLANE_AND_REGISTER;
2192 *dst++ = c;
2193 }
2194 }
2195 else if (ASCII_BYTE_P (c))
2196 ENCODE_ISO_CHARACTER (c);
2197 else if (SINGLE_BYTE_CHAR_P (c))
2198 {
2199 *dst++ = c;
2200 coding->errors++;
2201 }
2202 else if (coding->flags & CODING_FLAG_ISO_SAFE
2203 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2204 ENCODE_UNSAFE_CHARACTER (c);
2205 else
2206 ENCODE_ISO_CHARACTER (c);
2207
2208 coding->consumed_char++;
2209 }
2210
2211 label_end_of_loop:
2212 coding->consumed = src_base - source;
2213 coding->produced = coding->produced_char = dst - destination;
2214 }
2215
2216 \f
2217 /*** 4. SJIS and BIG5 handlers ***/
2218
2219 /* Although SJIS and BIG5 are not ISO's coding system, they are used
2220 quite widely. So, for the moment, Emacs supports them in the bare
2221 C code. But, in the future, they may be supported only by CCL. */
2222
2223 /* SJIS is a coding system encoding three character sets: ASCII, right
2224 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2225 as is. A character of charset katakana-jisx0201 is encoded by
2226 "position-code + 0x80". A character of charset japanese-jisx0208
2227 is encoded in 2-byte but two position-codes are divided and shifted
2228 so that it fit in the range below.
2229
2230 --- CODE RANGE of SJIS ---
2231 (character set) (range)
2232 ASCII 0x00 .. 0x7F
2233 KATAKANA-JISX0201 0xA0 .. 0xDF
2234 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2235 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2236 -------------------------------
2237
2238 */
2239
2240 /* BIG5 is a coding system encoding two character sets: ASCII and
2241 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2242 character set and is encoded in two-byte.
2243
2244 --- CODE RANGE of BIG5 ---
2245 (character set) (range)
2246 ASCII 0x00 .. 0x7F
2247 Big5 (1st byte) 0xA1 .. 0xFE
2248 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2249 --------------------------
2250
2251 Since the number of characters in Big5 is larger than maximum
2252 characters in Emacs' charset (96x96), it can't be handled as one
2253 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2254 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2255 contains frequently used characters and the latter contains less
2256 frequently used characters. */
2257
2258 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2259 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2260 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2261 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2262
2263 /* Number of Big5 characters which have the same code in 1st byte. */
2264 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2265
2266 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2267 do { \
2268 unsigned int temp \
2269 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2270 if (b1 < 0xC9) \
2271 charset = charset_big5_1; \
2272 else \
2273 { \
2274 charset = charset_big5_2; \
2275 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2276 } \
2277 c1 = temp / (0xFF - 0xA1) + 0x21; \
2278 c2 = temp % (0xFF - 0xA1) + 0x21; \
2279 } while (0)
2280
2281 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2282 do { \
2283 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2284 if (charset == charset_big5_2) \
2285 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2286 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2287 b2 = temp % BIG5_SAME_ROW; \
2288 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2289 } while (0)
2290
2291 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2292 Check if a text is encoded in SJIS. If it is, return
2293 CODING_CATEGORY_MASK_SJIS, else return 0. */
2294
2295 int
2296 detect_coding_sjis (src, src_end)
2297 unsigned char *src, *src_end;
2298 {
2299 int c;
2300 /* Dummy for ONE_MORE_BYTE. */
2301 struct coding_system dummy_coding;
2302 struct coding_system *coding = &dummy_coding;
2303
2304 while (1)
2305 {
2306 ONE_MORE_BYTE (c);
2307 if (c >= 0x81)
2308 {
2309 if (c <= 0x9F || (c >= 0xE0 && c <= 0xEF))
2310 {
2311 ONE_MORE_BYTE (c);
2312 if (c < 0x40 || c == 0x7F || c > 0xFC)
2313 return 0;
2314 }
2315 else if (c > 0xDF)
2316 return 0;
2317 }
2318 }
2319 label_end_of_loop:
2320 return CODING_CATEGORY_MASK_SJIS;
2321 }
2322
2323 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2324 Check if a text is encoded in BIG5. If it is, return
2325 CODING_CATEGORY_MASK_BIG5, else return 0. */
2326
2327 int
2328 detect_coding_big5 (src, src_end)
2329 unsigned char *src, *src_end;
2330 {
2331 int c;
2332 /* Dummy for ONE_MORE_BYTE. */
2333 struct coding_system dummy_coding;
2334 struct coding_system *coding = &dummy_coding;
2335
2336 while (1)
2337 {
2338 ONE_MORE_BYTE (c);
2339 if (c >= 0xA1)
2340 {
2341 ONE_MORE_BYTE (c);
2342 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
2343 return 0;
2344 }
2345 }
2346 label_end_of_loop:
2347 return CODING_CATEGORY_MASK_BIG5;
2348 }
2349
2350 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2351 Check if a text is encoded in UTF-8. If it is, return
2352 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2353
2354 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2355 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2356 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2357 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2358 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2359 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2360 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2361
2362 int
2363 detect_coding_utf_8 (src, src_end)
2364 unsigned char *src, *src_end;
2365 {
2366 unsigned char c;
2367 int seq_maybe_bytes;
2368 /* Dummy for ONE_MORE_BYTE. */
2369 struct coding_system dummy_coding;
2370 struct coding_system *coding = &dummy_coding;
2371
2372 while (1)
2373 {
2374 ONE_MORE_BYTE (c);
2375 if (UTF_8_1_OCTET_P (c))
2376 continue;
2377 else if (UTF_8_2_OCTET_LEADING_P (c))
2378 seq_maybe_bytes = 1;
2379 else if (UTF_8_3_OCTET_LEADING_P (c))
2380 seq_maybe_bytes = 2;
2381 else if (UTF_8_4_OCTET_LEADING_P (c))
2382 seq_maybe_bytes = 3;
2383 else if (UTF_8_5_OCTET_LEADING_P (c))
2384 seq_maybe_bytes = 4;
2385 else if (UTF_8_6_OCTET_LEADING_P (c))
2386 seq_maybe_bytes = 5;
2387 else
2388 return 0;
2389
2390 do
2391 {
2392 ONE_MORE_BYTE (c);
2393 if (!UTF_8_EXTRA_OCTET_P (c))
2394 return 0;
2395 seq_maybe_bytes--;
2396 }
2397 while (seq_maybe_bytes > 0);
2398 }
2399
2400 label_end_of_loop:
2401 return CODING_CATEGORY_MASK_UTF_8;
2402 }
2403
2404 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2405 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2406 Little Endian (otherwise). If it is, return
2407 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2408 else return 0. */
2409
2410 #define UTF_16_INVALID_P(val) \
2411 (((val) == 0xFFFE) \
2412 || ((val) == 0xFFFF))
2413
2414 #define UTF_16_HIGH_SURROGATE_P(val) \
2415 (((val) & 0xD800) == 0xD800)
2416
2417 #define UTF_16_LOW_SURROGATE_P(val) \
2418 (((val) & 0xDC00) == 0xDC00)
2419
2420 int
2421 detect_coding_utf_16 (src, src_end)
2422 unsigned char *src, *src_end;
2423 {
2424 unsigned char c1, c2;
2425 /* Dummy for TWO_MORE_BYTES. */
2426 struct coding_system dummy_coding;
2427 struct coding_system *coding = &dummy_coding;
2428
2429 TWO_MORE_BYTES (c1, c2);
2430
2431 if ((c1 == 0xFF) && (c2 == 0xFE))
2432 return CODING_CATEGORY_MASK_UTF_16_LE;
2433 else if ((c1 == 0xFE) && (c2 == 0xFF))
2434 return CODING_CATEGORY_MASK_UTF_16_BE;
2435
2436 label_end_of_loop:
2437 return 0;
2438 }
2439
2440 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2441 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2442
2443 static void
2444 decode_coding_sjis_big5 (coding, source, destination,
2445 src_bytes, dst_bytes, sjis_p)
2446 struct coding_system *coding;
2447 unsigned char *source, *destination;
2448 int src_bytes, dst_bytes;
2449 int sjis_p;
2450 {
2451 unsigned char *src = source;
2452 unsigned char *src_end = source + src_bytes;
2453 unsigned char *dst = destination;
2454 unsigned char *dst_end = destination + dst_bytes;
2455 /* SRC_BASE remembers the start position in source in each loop.
2456 The loop will be exited when there's not enough source code
2457 (within macro ONE_MORE_BYTE), or when there's not enough
2458 destination area to produce a character (within macro
2459 EMIT_CHAR). */
2460 unsigned char *src_base;
2461 Lisp_Object translation_table;
2462
2463 if (NILP (Venable_character_translation))
2464 translation_table = Qnil;
2465 else
2466 {
2467 translation_table = coding->translation_table_for_decode;
2468 if (NILP (translation_table))
2469 translation_table = Vstandard_translation_table_for_decode;
2470 }
2471
2472 coding->produced_char = 0;
2473 while (1)
2474 {
2475 int c, charset, c1, c2;
2476
2477 src_base = src;
2478 ONE_MORE_BYTE (c1);
2479
2480 if (c1 < 0x80)
2481 {
2482 charset = CHARSET_ASCII;
2483 if (c1 < 0x20)
2484 {
2485 if (c1 == '\r')
2486 {
2487 if (coding->eol_type == CODING_EOL_CRLF)
2488 {
2489 ONE_MORE_BYTE (c2);
2490 if (c2 == '\n')
2491 c1 = c2;
2492 else if (coding->mode
2493 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2494 {
2495 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2496 goto label_end_of_loop;
2497 }
2498 else
2499 /* To process C2 again, SRC is subtracted by 1. */
2500 src--;
2501 }
2502 else if (coding->eol_type == CODING_EOL_CR)
2503 c1 = '\n';
2504 }
2505 else if (c1 == '\n'
2506 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2507 && (coding->eol_type == CODING_EOL_CR
2508 || coding->eol_type == CODING_EOL_CRLF))
2509 {
2510 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2511 goto label_end_of_loop;
2512 }
2513 }
2514 }
2515 else
2516 {
2517 if (sjis_p)
2518 {
2519 if (c1 >= 0xF0)
2520 goto label_invalid_code;
2521 if (c1 < 0xA0 || c1 >= 0xE0)
2522 {
2523 /* SJIS -> JISX0208 */
2524 ONE_MORE_BYTE (c2);
2525 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2526 goto label_invalid_code;
2527 DECODE_SJIS (c1, c2, c1, c2);
2528 charset = charset_jisx0208;
2529 }
2530 else
2531 /* SJIS -> JISX0201-Kana */
2532 charset = charset_katakana_jisx0201;
2533 }
2534 else
2535 {
2536 /* BIG5 -> Big5 */
2537 if (c1 < 0xA1 || c1 > 0xFE)
2538 goto label_invalid_code;
2539 ONE_MORE_BYTE (c2);
2540 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2541 goto label_invalid_code;
2542 DECODE_BIG5 (c1, c2, charset, c1, c2);
2543 }
2544 }
2545
2546 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2547 EMIT_CHAR (c);
2548 continue;
2549
2550 label_invalid_code:
2551 coding->errors++;
2552 src = src_base;
2553 c = *src++;
2554 EMIT_CHAR (c);
2555 }
2556
2557 label_end_of_loop:
2558 coding->consumed = coding->consumed_char = src_base - source;
2559 coding->produced = dst - destination;
2560 return;
2561 }
2562
2563 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2564 This function can encode charsets `ascii', `katakana-jisx0201',
2565 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2566 are sure that all these charsets are registered as official charset
2567 (i.e. do not have extended leading-codes). Characters of other
2568 charsets are produced without any encoding. If SJIS_P is 1, encode
2569 SJIS text, else encode BIG5 text. */
2570
2571 static void
2572 encode_coding_sjis_big5 (coding, source, destination,
2573 src_bytes, dst_bytes, sjis_p)
2574 struct coding_system *coding;
2575 unsigned char *source, *destination;
2576 int src_bytes, dst_bytes;
2577 int sjis_p;
2578 {
2579 unsigned char *src = source;
2580 unsigned char *src_end = source + src_bytes;
2581 unsigned char *dst = destination;
2582 unsigned char *dst_end = destination + dst_bytes;
2583 /* SRC_BASE remembers the start position in source in each loop.
2584 The loop will be exited when there's not enough source text to
2585 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2586 there's not enough destination area to produce encoded codes
2587 (within macro EMIT_BYTES). */
2588 unsigned char *src_base;
2589 Lisp_Object translation_table;
2590
2591 if (NILP (Venable_character_translation))
2592 translation_table = Qnil;
2593 else
2594 {
2595 translation_table = coding->translation_table_for_encode;
2596 if (NILP (translation_table))
2597 translation_table = Vstandard_translation_table_for_encode;
2598 }
2599
2600 while (1)
2601 {
2602 int c, charset, c1, c2;
2603
2604 src_base = src;
2605 ONE_MORE_CHAR (c);
2606
2607 /* Now encode the character C. */
2608 if (SINGLE_BYTE_CHAR_P (c))
2609 {
2610 switch (c)
2611 {
2612 case '\r':
2613 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
2614 {
2615 EMIT_ONE_BYTE (c);
2616 break;
2617 }
2618 c = '\n';
2619 case '\n':
2620 if (coding->eol_type == CODING_EOL_CRLF)
2621 {
2622 EMIT_TWO_BYTES ('\r', c);
2623 break;
2624 }
2625 else if (coding->eol_type == CODING_EOL_CR)
2626 c = '\r';
2627 default:
2628 EMIT_ONE_BYTE (c);
2629 }
2630 }
2631 else
2632 {
2633 SPLIT_CHAR (c, charset, c1, c2);
2634 if (sjis_p)
2635 {
2636 if (charset == charset_jisx0208
2637 || charset == charset_jisx0208_1978)
2638 {
2639 ENCODE_SJIS (c1, c2, c1, c2);
2640 EMIT_TWO_BYTES (c1, c2);
2641 }
2642 else if (charset == charset_katakana_jisx0201)
2643 EMIT_ONE_BYTE (c1 | 0x80);
2644 else if (charset == charset_latin_jisx0201)
2645 EMIT_ONE_BYTE (c1);
2646 else
2647 /* There's no way other than producing the internal
2648 codes as is. */
2649 EMIT_BYTES (src_base, src);
2650 }
2651 else
2652 {
2653 if (charset == charset_big5_1 || charset == charset_big5_2)
2654 {
2655 ENCODE_BIG5 (charset, c1, c2, c1, c2);
2656 EMIT_TWO_BYTES (c1, c2);
2657 }
2658 else
2659 /* There's no way other than producing the internal
2660 codes as is. */
2661 EMIT_BYTES (src_base, src);
2662 }
2663 }
2664 coding->consumed_char++;
2665 }
2666
2667 label_end_of_loop:
2668 coding->consumed = src_base - source;
2669 coding->produced = coding->produced_char = dst - destination;
2670 }
2671
2672 \f
2673 /*** 5. CCL handlers ***/
2674
2675 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2676 Check if a text is encoded in a coding system of which
2677 encoder/decoder are written in CCL program. If it is, return
2678 CODING_CATEGORY_MASK_CCL, else return 0. */
2679
2680 int
2681 detect_coding_ccl (src, src_end)
2682 unsigned char *src, *src_end;
2683 {
2684 unsigned char *valid;
2685 int c;
2686 /* Dummy for ONE_MORE_BYTE. */
2687 struct coding_system dummy_coding;
2688 struct coding_system *coding = &dummy_coding;
2689
2690 /* No coding system is assigned to coding-category-ccl. */
2691 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
2692 return 0;
2693
2694 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
2695 while (1)
2696 {
2697 ONE_MORE_BYTE (c);
2698 if (! valid[c])
2699 return 0;
2700 }
2701 label_end_of_loop:
2702 return CODING_CATEGORY_MASK_CCL;
2703 }
2704
2705 \f
2706 /*** 6. End-of-line handlers ***/
2707
2708 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2709
2710 static void
2711 decode_eol (coding, source, destination, src_bytes, dst_bytes)
2712 struct coding_system *coding;
2713 unsigned char *source, *destination;
2714 int src_bytes, dst_bytes;
2715 {
2716 unsigned char *src = source;
2717 unsigned char *dst = destination;
2718 unsigned char *src_end = src + src_bytes;
2719 unsigned char *dst_end = dst + dst_bytes;
2720 Lisp_Object translation_table;
2721 /* SRC_BASE remembers the start position in source in each loop.
2722 The loop will be exited when there's not enough source code
2723 (within macro ONE_MORE_BYTE), or when there's not enough
2724 destination area to produce a character (within macro
2725 EMIT_CHAR). */
2726 unsigned char *src_base;
2727 int c;
2728
2729 translation_table = Qnil;
2730 switch (coding->eol_type)
2731 {
2732 case CODING_EOL_CRLF:
2733 while (1)
2734 {
2735 src_base = src;
2736 ONE_MORE_BYTE (c);
2737 if (c == '\r')
2738 {
2739 ONE_MORE_BYTE (c);
2740 if (c != '\n')
2741 {
2742 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2743 {
2744 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2745 goto label_end_of_loop;
2746 }
2747 src--;
2748 c = '\r';
2749 }
2750 }
2751 else if (c == '\n'
2752 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
2753 {
2754 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2755 goto label_end_of_loop;
2756 }
2757 EMIT_CHAR (c);
2758 }
2759 break;
2760
2761 case CODING_EOL_CR:
2762 while (1)
2763 {
2764 src_base = src;
2765 ONE_MORE_BYTE (c);
2766 if (c == '\n')
2767 {
2768 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2769 {
2770 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2771 goto label_end_of_loop;
2772 }
2773 }
2774 else if (c == '\r')
2775 c = '\n';
2776 EMIT_CHAR (c);
2777 }
2778 break;
2779
2780 default: /* no need for EOL handling */
2781 while (1)
2782 {
2783 src_base = src;
2784 ONE_MORE_BYTE (c);
2785 EMIT_CHAR (c);
2786 }
2787 }
2788
2789 label_end_of_loop:
2790 coding->consumed = coding->consumed_char = src_base - source;
2791 coding->produced = dst - destination;
2792 return;
2793 }
2794
2795 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
2796 format of end-of-line according to `coding->eol_type'. It also
2797 convert multibyte form 8-bit characers to unibyte if
2798 CODING->src_multibyte is nonzero. If `coding->mode &
2799 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
2800 also means end-of-line. */
2801
2802 static void
2803 encode_eol (coding, source, destination, src_bytes, dst_bytes)
2804 struct coding_system *coding;
2805 unsigned char *source, *destination;
2806 int src_bytes, dst_bytes;
2807 {
2808 unsigned char *src = source;
2809 unsigned char *dst = destination;
2810 unsigned char *src_end = src + src_bytes;
2811 unsigned char *dst_end = dst + dst_bytes;
2812 Lisp_Object translation_table;
2813 /* SRC_BASE remembers the start position in source in each loop.
2814 The loop will be exited when there's not enough source text to
2815 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2816 there's not enough destination area to produce encoded codes
2817 (within macro EMIT_BYTES). */
2818 unsigned char *src_base;
2819 int c;
2820 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
2821
2822 translation_table = Qnil;
2823 if (coding->src_multibyte
2824 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
2825 {
2826 src_end--;
2827 src_bytes--;
2828 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
2829 }
2830
2831 if (coding->eol_type == CODING_EOL_CRLF)
2832 {
2833 while (src < src_end)
2834 {
2835 src_base = src;
2836 c = *src++;
2837 if (c >= 0x20)
2838 EMIT_ONE_BYTE (c);
2839 else if (c == '\n' || (c == '\r' && selective_display))
2840 EMIT_TWO_BYTES ('\r', '\n');
2841 else
2842 EMIT_ONE_BYTE (c);
2843 }
2844 src_base = src;
2845 label_end_of_loop:
2846 ;
2847 }
2848 else
2849 {
2850 if (!dst_bytes || src_bytes <= dst_bytes)
2851 {
2852 safe_bcopy (src, dst, src_bytes);
2853 src_base = src_end;
2854 dst += src_bytes;
2855 }
2856 else
2857 {
2858 if (coding->src_multibyte
2859 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
2860 dst_bytes--;
2861 safe_bcopy (src, dst, dst_bytes);
2862 src_base = src + dst_bytes;
2863 dst = destination + dst_bytes;
2864 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2865 }
2866 if (coding->eol_type == CODING_EOL_CR)
2867 {
2868 for (src = destination; src < dst; src++)
2869 if (*src == '\n') *src = '\r';
2870 }
2871 else if (selective_display)
2872 {
2873 for (src = destination; src < dst; src++)
2874 if (*src == '\r') *src = '\n';
2875 }
2876 }
2877 if (coding->src_multibyte)
2878 dst = destination + str_as_unibyte (destination, dst - destination);
2879
2880 coding->consumed = src_base - source;
2881 coding->produced = dst - destination;
2882 coding->produced_char = coding->produced;
2883 }
2884
2885 \f
2886 /*** 7. C library functions ***/
2887
2888 /* In Emacs Lisp, coding system is represented by a Lisp symbol which
2889 has a property `coding-system'. The value of this property is a
2890 vector of length 5 (called as coding-vector). Among elements of
2891 this vector, the first (element[0]) and the fifth (element[4])
2892 carry important information for decoding/encoding. Before
2893 decoding/encoding, this information should be set in fields of a
2894 structure of type `coding_system'.
2895
2896 A value of property `coding-system' can be a symbol of another
2897 subsidiary coding-system. In that case, Emacs gets coding-vector
2898 from that symbol.
2899
2900 `element[0]' contains information to be set in `coding->type'. The
2901 value and its meaning is as follows:
2902
2903 0 -- coding_type_emacs_mule
2904 1 -- coding_type_sjis
2905 2 -- coding_type_iso2022
2906 3 -- coding_type_big5
2907 4 -- coding_type_ccl encoder/decoder written in CCL
2908 nil -- coding_type_no_conversion
2909 t -- coding_type_undecided (automatic conversion on decoding,
2910 no-conversion on encoding)
2911
2912 `element[4]' contains information to be set in `coding->flags' and
2913 `coding->spec'. The meaning varies by `coding->type'.
2914
2915 If `coding->type' is `coding_type_iso2022', element[4] is a vector
2916 of length 32 (of which the first 13 sub-elements are used now).
2917 Meanings of these sub-elements are:
2918
2919 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
2920 If the value is an integer of valid charset, the charset is
2921 assumed to be designated to graphic register N initially.
2922
2923 If the value is minus, it is a minus value of charset which
2924 reserves graphic register N, which means that the charset is
2925 not designated initially but should be designated to graphic
2926 register N just before encoding a character in that charset.
2927
2928 If the value is nil, graphic register N is never used on
2929 encoding.
2930
2931 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
2932 Each value takes t or nil. See the section ISO2022 of
2933 `coding.h' for more information.
2934
2935 If `coding->type' is `coding_type_big5', element[4] is t to denote
2936 BIG5-ETen or nil to denote BIG5-HKU.
2937
2938 If `coding->type' takes the other value, element[4] is ignored.
2939
2940 Emacs Lisp's coding system also carries information about format of
2941 end-of-line in a value of property `eol-type'. If the value is
2942 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
2943 means CODING_EOL_CR. If it is not integer, it should be a vector
2944 of subsidiary coding systems of which property `eol-type' has one
2945 of above values.
2946
2947 */
2948
2949 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
2950 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
2951 is setup so that no conversion is necessary and return -1, else
2952 return 0. */
2953
2954 int
2955 setup_coding_system (coding_system, coding)
2956 Lisp_Object coding_system;
2957 struct coding_system *coding;
2958 {
2959 Lisp_Object coding_spec, coding_type, eol_type, plist;
2960 Lisp_Object val;
2961 int i;
2962
2963 /* Initialize some fields required for all kinds of coding systems. */
2964 coding->symbol = coding_system;
2965 coding->common_flags = 0;
2966 coding->mode = 0;
2967 coding->heading_ascii = -1;
2968 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
2969 coding->composing = COMPOSITION_DISABLED;
2970 coding->cmp_data = NULL;
2971
2972 if (NILP (coding_system))
2973 goto label_invalid_coding_system;
2974
2975 coding_spec = Fget (coding_system, Qcoding_system);
2976
2977 if (!VECTORP (coding_spec)
2978 || XVECTOR (coding_spec)->size != 5
2979 || !CONSP (XVECTOR (coding_spec)->contents[3]))
2980 goto label_invalid_coding_system;
2981
2982 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
2983 if (VECTORP (eol_type))
2984 {
2985 coding->eol_type = CODING_EOL_UNDECIDED;
2986 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
2987 }
2988 else if (XFASTINT (eol_type) == 1)
2989 {
2990 coding->eol_type = CODING_EOL_CRLF;
2991 coding->common_flags
2992 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2993 }
2994 else if (XFASTINT (eol_type) == 2)
2995 {
2996 coding->eol_type = CODING_EOL_CR;
2997 coding->common_flags
2998 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2999 }
3000 else
3001 coding->eol_type = CODING_EOL_LF;
3002
3003 coding_type = XVECTOR (coding_spec)->contents[0];
3004 /* Try short cut. */
3005 if (SYMBOLP (coding_type))
3006 {
3007 if (EQ (coding_type, Qt))
3008 {
3009 coding->type = coding_type_undecided;
3010 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3011 }
3012 else
3013 coding->type = coding_type_no_conversion;
3014 return 0;
3015 }
3016
3017 /* Get values of coding system properties:
3018 `post-read-conversion', `pre-write-conversion',
3019 `translation-table-for-decode', `translation-table-for-encode'. */
3020 plist = XVECTOR (coding_spec)->contents[3];
3021 /* Pre & post conversion functions should be disabled if
3022 inhibit_eol_conversion is nozero. This is the case that a code
3023 conversion function is called while those functions are running. */
3024 if (! inhibit_pre_post_conversion)
3025 {
3026 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3027 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3028 }
3029 val = Fplist_get (plist, Qtranslation_table_for_decode);
3030 if (SYMBOLP (val))
3031 val = Fget (val, Qtranslation_table_for_decode);
3032 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3033 val = Fplist_get (plist, Qtranslation_table_for_encode);
3034 if (SYMBOLP (val))
3035 val = Fget (val, Qtranslation_table_for_encode);
3036 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3037 val = Fplist_get (plist, Qcoding_category);
3038 if (!NILP (val))
3039 {
3040 val = Fget (val, Qcoding_category_index);
3041 if (INTEGERP (val))
3042 coding->category_idx = XINT (val);
3043 else
3044 goto label_invalid_coding_system;
3045 }
3046 else
3047 goto label_invalid_coding_system;
3048
3049 /* If the coding system has non-nil `composition' property, enable
3050 composition handling. */
3051 val = Fplist_get (plist, Qcomposition);
3052 if (!NILP (val))
3053 coding->composing = COMPOSITION_NO;
3054
3055 switch (XFASTINT (coding_type))
3056 {
3057 case 0:
3058 coding->type = coding_type_emacs_mule;
3059 if (!NILP (coding->post_read_conversion))
3060 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3061 if (!NILP (coding->pre_write_conversion))
3062 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3063 break;
3064
3065 case 1:
3066 coding->type = coding_type_sjis;
3067 coding->common_flags
3068 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3069 break;
3070
3071 case 2:
3072 coding->type = coding_type_iso2022;
3073 coding->common_flags
3074 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3075 {
3076 Lisp_Object val, temp;
3077 Lisp_Object *flags;
3078 int i, charset, reg_bits = 0;
3079
3080 val = XVECTOR (coding_spec)->contents[4];
3081
3082 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3083 goto label_invalid_coding_system;
3084
3085 flags = XVECTOR (val)->contents;
3086 coding->flags
3087 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3088 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3089 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3090 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3091 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3092 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3093 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3094 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3095 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3096 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3097 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3098 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3099 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3100 );
3101
3102 /* Invoke graphic register 0 to plane 0. */
3103 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3104 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3105 CODING_SPEC_ISO_INVOCATION (coding, 1)
3106 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3107 /* Not single shifting at first. */
3108 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3109 /* Beginning of buffer should also be regarded as bol. */
3110 CODING_SPEC_ISO_BOL (coding) = 1;
3111
3112 for (charset = 0; charset <= MAX_CHARSET; charset++)
3113 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3114 val = Vcharset_revision_alist;
3115 while (CONSP (val))
3116 {
3117 charset = get_charset_id (Fcar_safe (XCAR (val)));
3118 if (charset >= 0
3119 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3120 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3121 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3122 val = XCDR (val);
3123 }
3124
3125 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3126 FLAGS[REG] can be one of below:
3127 integer CHARSET: CHARSET occupies register I,
3128 t: designate nothing to REG initially, but can be used
3129 by any charsets,
3130 list of integer, nil, or t: designate the first
3131 element (if integer) to REG initially, the remaining
3132 elements (if integer) is designated to REG on request,
3133 if an element is t, REG can be used by any charsets,
3134 nil: REG is never used. */
3135 for (charset = 0; charset <= MAX_CHARSET; charset++)
3136 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3137 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3138 for (i = 0; i < 4; i++)
3139 {
3140 if (INTEGERP (flags[i])
3141 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
3142 || (charset = get_charset_id (flags[i])) >= 0)
3143 {
3144 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3145 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3146 }
3147 else if (EQ (flags[i], Qt))
3148 {
3149 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3150 reg_bits |= 1 << i;
3151 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3152 }
3153 else if (CONSP (flags[i]))
3154 {
3155 Lisp_Object tail;
3156 tail = flags[i];
3157
3158 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3159 if (INTEGERP (XCAR (tail))
3160 && (charset = XINT (XCAR (tail)),
3161 CHARSET_VALID_P (charset))
3162 || (charset = get_charset_id (XCAR (tail))) >= 0)
3163 {
3164 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3165 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3166 }
3167 else
3168 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3169 tail = XCDR (tail);
3170 while (CONSP (tail))
3171 {
3172 if (INTEGERP (XCAR (tail))
3173 && (charset = XINT (XCAR (tail)),
3174 CHARSET_VALID_P (charset))
3175 || (charset = get_charset_id (XCAR (tail))) >= 0)
3176 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3177 = i;
3178 else if (EQ (XCAR (tail), Qt))
3179 reg_bits |= 1 << i;
3180 tail = XCDR (tail);
3181 }
3182 }
3183 else
3184 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3185
3186 CODING_SPEC_ISO_DESIGNATION (coding, i)
3187 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3188 }
3189
3190 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3191 {
3192 /* REG 1 can be used only by locking shift in 7-bit env. */
3193 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3194 reg_bits &= ~2;
3195 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3196 /* Without any shifting, only REG 0 and 1 can be used. */
3197 reg_bits &= 3;
3198 }
3199
3200 if (reg_bits)
3201 for (charset = 0; charset <= MAX_CHARSET; charset++)
3202 {
3203 if (CHARSET_VALID_P (charset)
3204 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3205 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3206 {
3207 /* There exist some default graphic registers to be
3208 used by CHARSET. */
3209
3210 /* We had better avoid designating a charset of
3211 CHARS96 to REG 0 as far as possible. */
3212 if (CHARSET_CHARS (charset) == 96)
3213 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3214 = (reg_bits & 2
3215 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3216 else
3217 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3218 = (reg_bits & 1
3219 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3220 }
3221 }
3222 }
3223 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3224 coding->spec.iso2022.last_invalid_designation_register = -1;
3225 break;
3226
3227 case 3:
3228 coding->type = coding_type_big5;
3229 coding->common_flags
3230 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3231 coding->flags
3232 = (NILP (XVECTOR (coding_spec)->contents[4])
3233 ? CODING_FLAG_BIG5_HKU
3234 : CODING_FLAG_BIG5_ETEN);
3235 break;
3236
3237 case 4:
3238 coding->type = coding_type_ccl;
3239 coding->common_flags
3240 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3241 {
3242 val = XVECTOR (coding_spec)->contents[4];
3243 if (! CONSP (val)
3244 || setup_ccl_program (&(coding->spec.ccl.decoder),
3245 XCAR (val)) < 0
3246 || setup_ccl_program (&(coding->spec.ccl.encoder),
3247 XCDR (val)) < 0)
3248 goto label_invalid_coding_system;
3249
3250 bzero (coding->spec.ccl.valid_codes, 256);
3251 val = Fplist_get (plist, Qvalid_codes);
3252 if (CONSP (val))
3253 {
3254 Lisp_Object this;
3255
3256 for (; CONSP (val); val = XCDR (val))
3257 {
3258 this = XCAR (val);
3259 if (INTEGERP (this)
3260 && XINT (this) >= 0 && XINT (this) < 256)
3261 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3262 else if (CONSP (this)
3263 && INTEGERP (XCAR (this))
3264 && INTEGERP (XCDR (this)))
3265 {
3266 int start = XINT (XCAR (this));
3267 int end = XINT (XCDR (this));
3268
3269 if (start >= 0 && start <= end && end < 256)
3270 while (start <= end)
3271 coding->spec.ccl.valid_codes[start++] = 1;
3272 }
3273 }
3274 }
3275 }
3276 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3277 coding->spec.ccl.cr_carryover = 0;
3278 break;
3279
3280 case 5:
3281 coding->type = coding_type_raw_text;
3282 break;
3283
3284 default:
3285 goto label_invalid_coding_system;
3286 }
3287 return 0;
3288
3289 label_invalid_coding_system:
3290 coding->type = coding_type_no_conversion;
3291 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3292 coding->common_flags = 0;
3293 coding->eol_type = CODING_EOL_LF;
3294 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3295 return -1;
3296 }
3297
3298 /* Free memory blocks allocated for storing composition information. */
3299
3300 void
3301 coding_free_composition_data (coding)
3302 struct coding_system *coding;
3303 {
3304 struct composition_data *cmp_data = coding->cmp_data, *next;
3305
3306 if (!cmp_data)
3307 return;
3308 /* Memory blocks are chained. At first, rewind to the first, then,
3309 free blocks one by one. */
3310 while (cmp_data->prev)
3311 cmp_data = cmp_data->prev;
3312 while (cmp_data)
3313 {
3314 next = cmp_data->next;
3315 xfree (cmp_data);
3316 cmp_data = next;
3317 }
3318 coding->cmp_data = NULL;
3319 }
3320
3321 /* Set `char_offset' member of all memory blocks pointed by
3322 coding->cmp_data to POS. */
3323
3324 void
3325 coding_adjust_composition_offset (coding, pos)
3326 struct coding_system *coding;
3327 int pos;
3328 {
3329 struct composition_data *cmp_data;
3330
3331 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3332 cmp_data->char_offset = pos;
3333 }
3334
3335 /* Setup raw-text or one of its subsidiaries in the structure
3336 coding_system CODING according to the already setup value eol_type
3337 in CODING. CODING should be setup for some coding system in
3338 advance. */
3339
3340 void
3341 setup_raw_text_coding_system (coding)
3342 struct coding_system *coding;
3343 {
3344 if (coding->type != coding_type_raw_text)
3345 {
3346 coding->symbol = Qraw_text;
3347 coding->type = coding_type_raw_text;
3348 if (coding->eol_type != CODING_EOL_UNDECIDED)
3349 {
3350 Lisp_Object subsidiaries;
3351 subsidiaries = Fget (Qraw_text, Qeol_type);
3352
3353 if (VECTORP (subsidiaries)
3354 && XVECTOR (subsidiaries)->size == 3)
3355 coding->symbol
3356 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3357 }
3358 setup_coding_system (coding->symbol, coding);
3359 }
3360 return;
3361 }
3362
3363 /* Emacs has a mechanism to automatically detect a coding system if it
3364 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3365 it's impossible to distinguish some coding systems accurately
3366 because they use the same range of codes. So, at first, coding
3367 systems are categorized into 7, those are:
3368
3369 o coding-category-emacs-mule
3370
3371 The category for a coding system which has the same code range
3372 as Emacs' internal format. Assigned the coding-system (Lisp
3373 symbol) `emacs-mule' by default.
3374
3375 o coding-category-sjis
3376
3377 The category for a coding system which has the same code range
3378 as SJIS. Assigned the coding-system (Lisp
3379 symbol) `japanese-shift-jis' by default.
3380
3381 o coding-category-iso-7
3382
3383 The category for a coding system which has the same code range
3384 as ISO2022 of 7-bit environment. This doesn't use any locking
3385 shift and single shift functions. This can encode/decode all
3386 charsets. Assigned the coding-system (Lisp symbol)
3387 `iso-2022-7bit' by default.
3388
3389 o coding-category-iso-7-tight
3390
3391 Same as coding-category-iso-7 except that this can
3392 encode/decode only the specified charsets.
3393
3394 o coding-category-iso-8-1
3395
3396 The category for a coding system which has the same code range
3397 as ISO2022 of 8-bit environment and graphic plane 1 used only
3398 for DIMENSION1 charset. This doesn't use any locking shift
3399 and single shift functions. Assigned the coding-system (Lisp
3400 symbol) `iso-latin-1' by default.
3401
3402 o coding-category-iso-8-2
3403
3404 The category for a coding system which has the same code range
3405 as ISO2022 of 8-bit environment and graphic plane 1 used only
3406 for DIMENSION2 charset. This doesn't use any locking shift
3407 and single shift functions. Assigned the coding-system (Lisp
3408 symbol) `japanese-iso-8bit' by default.
3409
3410 o coding-category-iso-7-else
3411
3412 The category for a coding system which has the same code range
3413 as ISO2022 of 7-bit environemnt but uses locking shift or
3414 single shift functions. Assigned the coding-system (Lisp
3415 symbol) `iso-2022-7bit-lock' by default.
3416
3417 o coding-category-iso-8-else
3418
3419 The category for a coding system which has the same code range
3420 as ISO2022 of 8-bit environemnt but uses locking shift or
3421 single shift functions. Assigned the coding-system (Lisp
3422 symbol) `iso-2022-8bit-ss2' by default.
3423
3424 o coding-category-big5
3425
3426 The category for a coding system which has the same code range
3427 as BIG5. Assigned the coding-system (Lisp symbol)
3428 `cn-big5' by default.
3429
3430 o coding-category-utf-8
3431
3432 The category for a coding system which has the same code range
3433 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3434 symbol) `utf-8' by default.
3435
3436 o coding-category-utf-16-be
3437
3438 The category for a coding system in which a text has an
3439 Unicode signature (cf. Unicode Standard) in the order of BIG
3440 endian at the head. Assigned the coding-system (Lisp symbol)
3441 `utf-16-be' by default.
3442
3443 o coding-category-utf-16-le
3444
3445 The category for a coding system in which a text has an
3446 Unicode signature (cf. Unicode Standard) in the order of
3447 LITTLE endian at the head. Assigned the coding-system (Lisp
3448 symbol) `utf-16-le' by default.
3449
3450 o coding-category-ccl
3451
3452 The category for a coding system of which encoder/decoder is
3453 written in CCL programs. The default value is nil, i.e., no
3454 coding system is assigned.
3455
3456 o coding-category-binary
3457
3458 The category for a coding system not categorized in any of the
3459 above. Assigned the coding-system (Lisp symbol)
3460 `no-conversion' by default.
3461
3462 Each of them is a Lisp symbol and the value is an actual
3463 `coding-system's (this is also a Lisp symbol) assigned by a user.
3464 What Emacs does actually is to detect a category of coding system.
3465 Then, it uses a `coding-system' assigned to it. If Emacs can't
3466 decide only one possible category, it selects a category of the
3467 highest priority. Priorities of categories are also specified by a
3468 user in a Lisp variable `coding-category-list'.
3469
3470 */
3471
3472 static
3473 int ascii_skip_code[256];
3474
3475 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3476 If it detects possible coding systems, return an integer in which
3477 appropriate flag bits are set. Flag bits are defined by macros
3478 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3479 it should point the table `coding_priorities'. In that case, only
3480 the flag bit for a coding system of the highest priority is set in
3481 the returned value.
3482
3483 How many ASCII characters are at the head is returned as *SKIP. */
3484
3485 static int
3486 detect_coding_mask (source, src_bytes, priorities, skip)
3487 unsigned char *source;
3488 int src_bytes, *priorities, *skip;
3489 {
3490 register unsigned char c;
3491 unsigned char *src = source, *src_end = source + src_bytes;
3492 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3493 int i, idx;
3494
3495 /* At first, skip all ASCII characters and control characters except
3496 for three ISO2022 specific control characters. */
3497 ascii_skip_code[ISO_CODE_SO] = 0;
3498 ascii_skip_code[ISO_CODE_SI] = 0;
3499 ascii_skip_code[ISO_CODE_ESC] = 0;
3500
3501 label_loop_detect_coding:
3502 while (src < src_end && ascii_skip_code[*src]) src++;
3503 *skip = src - source;
3504
3505 if (src >= src_end)
3506 /* We found nothing other than ASCII. There's nothing to do. */
3507 return 0;
3508
3509 c = *src;
3510 /* The text seems to be encoded in some multilingual coding system.
3511 Now, try to find in which coding system the text is encoded. */
3512 if (c < 0x80)
3513 {
3514 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3515 /* C is an ISO2022 specific control code of C0. */
3516 mask = detect_coding_iso2022 (src, src_end);
3517 if (mask == 0)
3518 {
3519 /* No valid ISO2022 code follows C. Try again. */
3520 src++;
3521 if (c == ISO_CODE_ESC)
3522 ascii_skip_code[ISO_CODE_ESC] = 1;
3523 else
3524 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3525 goto label_loop_detect_coding;
3526 }
3527 if (priorities)
3528 {
3529 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3530 {
3531 if (mask & priorities[i])
3532 return priorities[i];
3533 }
3534 return CODING_CATEGORY_MASK_RAW_TEXT;
3535 }
3536 }
3537 else
3538 {
3539 int try;
3540
3541 if (c < 0xA0)
3542 {
3543 /* C is the first byte of SJIS character code,
3544 or a leading-code of Emacs' internal format (emacs-mule),
3545 or the first byte of UTF-16. */
3546 try = (CODING_CATEGORY_MASK_SJIS
3547 | CODING_CATEGORY_MASK_EMACS_MULE
3548 | CODING_CATEGORY_MASK_UTF_16_BE
3549 | CODING_CATEGORY_MASK_UTF_16_LE);
3550
3551 /* Or, if C is a special latin extra code,
3552 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3553 or is an ISO2022 control-sequence-introducer (CSI),
3554 we should also consider the possibility of ISO2022 codings. */
3555 if ((VECTORP (Vlatin_extra_code_table)
3556 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3557 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
3558 || (c == ISO_CODE_CSI
3559 && (src < src_end
3560 && (*src == ']'
3561 || ((*src == '0' || *src == '1' || *src == '2')
3562 && src + 1 < src_end
3563 && src[1] == ']')))))
3564 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
3565 | CODING_CATEGORY_MASK_ISO_8BIT);
3566 }
3567 else
3568 /* C is a character of ISO2022 in graphic plane right,
3569 or a SJIS's 1-byte character code (i.e. JISX0201),
3570 or the first byte of BIG5's 2-byte code,
3571 or the first byte of UTF-8/16. */
3572 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
3573 | CODING_CATEGORY_MASK_ISO_8BIT
3574 | CODING_CATEGORY_MASK_SJIS
3575 | CODING_CATEGORY_MASK_BIG5
3576 | CODING_CATEGORY_MASK_UTF_8
3577 | CODING_CATEGORY_MASK_UTF_16_BE
3578 | CODING_CATEGORY_MASK_UTF_16_LE);
3579
3580 /* Or, we may have to consider the possibility of CCL. */
3581 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
3582 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
3583 ->spec.ccl.valid_codes)[c])
3584 try |= CODING_CATEGORY_MASK_CCL;
3585
3586 mask = 0;
3587 utf16_examined_p = iso2022_examined_p = 0;
3588 if (priorities)
3589 {
3590 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3591 {
3592 if (!iso2022_examined_p
3593 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
3594 {
3595 mask |= detect_coding_iso2022 (src, src_end);
3596 iso2022_examined_p = 1;
3597 }
3598 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
3599 mask |= detect_coding_sjis (src, src_end);
3600 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
3601 mask |= detect_coding_utf_8 (src, src_end);
3602 else if (!utf16_examined_p
3603 && (priorities[i] & try &
3604 CODING_CATEGORY_MASK_UTF_16_BE_LE))
3605 {
3606 mask |= detect_coding_utf_16 (src, src_end);
3607 utf16_examined_p = 1;
3608 }
3609 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
3610 mask |= detect_coding_big5 (src, src_end);
3611 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
3612 mask |= detect_coding_emacs_mule (src, src_end);
3613 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
3614 mask |= detect_coding_ccl (src, src_end);
3615 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
3616 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
3617 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
3618 mask |= CODING_CATEGORY_MASK_BINARY;
3619 if (mask & priorities[i])
3620 return priorities[i];
3621 }
3622 return CODING_CATEGORY_MASK_RAW_TEXT;
3623 }
3624 if (try & CODING_CATEGORY_MASK_ISO)
3625 mask |= detect_coding_iso2022 (src, src_end);
3626 if (try & CODING_CATEGORY_MASK_SJIS)
3627 mask |= detect_coding_sjis (src, src_end);
3628 if (try & CODING_CATEGORY_MASK_BIG5)
3629 mask |= detect_coding_big5 (src, src_end);
3630 if (try & CODING_CATEGORY_MASK_UTF_8)
3631 mask |= detect_coding_utf_8 (src, src_end);
3632 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
3633 mask |= detect_coding_utf_16 (src, src_end);
3634 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
3635 mask |= detect_coding_emacs_mule (src, src_end);
3636 if (try & CODING_CATEGORY_MASK_CCL)
3637 mask |= detect_coding_ccl (src, src_end);
3638 }
3639 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
3640 }
3641
3642 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
3643 The information of the detected coding system is set in CODING. */
3644
3645 void
3646 detect_coding (coding, src, src_bytes)
3647 struct coding_system *coding;
3648 unsigned char *src;
3649 int src_bytes;
3650 {
3651 unsigned int idx;
3652 int skip, mask, i;
3653 Lisp_Object val;
3654
3655 val = Vcoding_category_list;
3656 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip);
3657 coding->heading_ascii = skip;
3658
3659 if (!mask) return;
3660
3661 /* We found a single coding system of the highest priority in MASK. */
3662 idx = 0;
3663 while (mask && ! (mask & 1)) mask >>= 1, idx++;
3664 if (! mask)
3665 idx = CODING_CATEGORY_IDX_RAW_TEXT;
3666
3667 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[idx])->value;
3668
3669 if (coding->eol_type != CODING_EOL_UNDECIDED)
3670 {
3671 Lisp_Object tmp;
3672
3673 tmp = Fget (val, Qeol_type);
3674 if (VECTORP (tmp))
3675 val = XVECTOR (tmp)->contents[coding->eol_type];
3676 }
3677
3678 /* Setup this new coding system while preserving some slots. */
3679 {
3680 int src_multibyte = coding->src_multibyte;
3681 int dst_multibyte = coding->dst_multibyte;
3682
3683 setup_coding_system (val, coding);
3684 coding->src_multibyte = src_multibyte;
3685 coding->dst_multibyte = dst_multibyte;
3686 coding->heading_ascii = skip;
3687 }
3688 }
3689
3690 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
3691 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
3692 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
3693
3694 How many non-eol characters are at the head is returned as *SKIP. */
3695
3696 #define MAX_EOL_CHECK_COUNT 3
3697
3698 static int
3699 detect_eol_type (source, src_bytes, skip)
3700 unsigned char *source;
3701 int src_bytes, *skip;
3702 {
3703 unsigned char *src = source, *src_end = src + src_bytes;
3704 unsigned char c;
3705 int total = 0; /* How many end-of-lines are found so far. */
3706 int eol_type = CODING_EOL_UNDECIDED;
3707 int this_eol_type;
3708
3709 *skip = 0;
3710
3711 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
3712 {
3713 c = *src++;
3714 if (c == '\n' || c == '\r')
3715 {
3716 if (*skip == 0)
3717 *skip = src - 1 - source;
3718 total++;
3719 if (c == '\n')
3720 this_eol_type = CODING_EOL_LF;
3721 else if (src >= src_end || *src != '\n')
3722 this_eol_type = CODING_EOL_CR;
3723 else
3724 this_eol_type = CODING_EOL_CRLF, src++;
3725
3726 if (eol_type == CODING_EOL_UNDECIDED)
3727 /* This is the first end-of-line. */
3728 eol_type = this_eol_type;
3729 else if (eol_type != this_eol_type)
3730 {
3731 /* The found type is different from what found before. */
3732 eol_type = CODING_EOL_INCONSISTENT;
3733 break;
3734 }
3735 }
3736 }
3737
3738 if (*skip == 0)
3739 *skip = src_end - source;
3740 return eol_type;
3741 }
3742
3743 /* Like detect_eol_type, but detect EOL type in 2-octet
3744 big-endian/little-endian format for coding systems utf-16-be and
3745 utf-16-le. */
3746
3747 static int
3748 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
3749 unsigned char *source;
3750 int src_bytes, *skip;
3751 {
3752 unsigned char *src = source, *src_end = src + src_bytes;
3753 unsigned int c1, c2;
3754 int total = 0; /* How many end-of-lines are found so far. */
3755 int eol_type = CODING_EOL_UNDECIDED;
3756 int this_eol_type;
3757 int msb, lsb;
3758
3759 if (big_endian_p)
3760 msb = 0, lsb = 1;
3761 else
3762 msb = 1, lsb = 0;
3763
3764 *skip = 0;
3765
3766 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
3767 {
3768 c1 = (src[msb] << 8) | (src[lsb]);
3769 src += 2;
3770
3771 if (c1 == '\n' || c1 == '\r')
3772 {
3773 if (*skip == 0)
3774 *skip = src - 2 - source;
3775 total++;
3776 if (c1 == '\n')
3777 {
3778 this_eol_type = CODING_EOL_LF;
3779 }
3780 else
3781 {
3782 if ((src + 1) >= src_end)
3783 {
3784 this_eol_type = CODING_EOL_CR;
3785 }
3786 else
3787 {
3788 c2 = (src[msb] << 8) | (src[lsb]);
3789 if (c2 == '\n')
3790 this_eol_type = CODING_EOL_CRLF, src += 2;
3791 else
3792 this_eol_type = CODING_EOL_CR;
3793 }
3794 }
3795
3796 if (eol_type == CODING_EOL_UNDECIDED)
3797 /* This is the first end-of-line. */
3798 eol_type = this_eol_type;
3799 else if (eol_type != this_eol_type)
3800 {
3801 /* The found type is different from what found before. */
3802 eol_type = CODING_EOL_INCONSISTENT;
3803 break;
3804 }
3805 }
3806 }
3807
3808 if (*skip == 0)
3809 *skip = src_end - source;
3810 return eol_type;
3811 }
3812
3813 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
3814 is encoded. If it detects an appropriate format of end-of-line, it
3815 sets the information in *CODING. */
3816
3817 void
3818 detect_eol (coding, src, src_bytes)
3819 struct coding_system *coding;
3820 unsigned char *src;
3821 int src_bytes;
3822 {
3823 Lisp_Object val;
3824 int skip;
3825 int eol_type;
3826
3827 switch (coding->category_idx)
3828 {
3829 case CODING_CATEGORY_IDX_UTF_16_BE:
3830 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
3831 break;
3832 case CODING_CATEGORY_IDX_UTF_16_LE:
3833 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
3834 break;
3835 default:
3836 eol_type = detect_eol_type (src, src_bytes, &skip);
3837 break;
3838 }
3839
3840 if (coding->heading_ascii > skip)
3841 coding->heading_ascii = skip;
3842 else
3843 skip = coding->heading_ascii;
3844
3845 if (eol_type == CODING_EOL_UNDECIDED)
3846 return;
3847 if (eol_type == CODING_EOL_INCONSISTENT)
3848 {
3849 #if 0
3850 /* This code is suppressed until we find a better way to
3851 distinguish raw text file and binary file. */
3852
3853 /* If we have already detected that the coding is raw-text, the
3854 coding should actually be no-conversion. */
3855 if (coding->type == coding_type_raw_text)
3856 {
3857 setup_coding_system (Qno_conversion, coding);
3858 return;
3859 }
3860 /* Else, let's decode only text code anyway. */
3861 #endif /* 0 */
3862 eol_type = CODING_EOL_LF;
3863 }
3864
3865 val = Fget (coding->symbol, Qeol_type);
3866 if (VECTORP (val) && XVECTOR (val)->size == 3)
3867 {
3868 int src_multibyte = coding->src_multibyte;
3869 int dst_multibyte = coding->dst_multibyte;
3870
3871 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
3872 coding->src_multibyte = src_multibyte;
3873 coding->dst_multibyte = dst_multibyte;
3874 coding->heading_ascii = skip;
3875 }
3876 }
3877
3878 #define CONVERSION_BUFFER_EXTRA_ROOM 256
3879
3880 #define DECODING_BUFFER_MAG(coding) \
3881 (coding->type == coding_type_iso2022 \
3882 ? 3 \
3883 : (coding->type == coding_type_ccl \
3884 ? coding->spec.ccl.decoder.buf_magnification \
3885 : 2))
3886
3887 /* Return maximum size (bytes) of a buffer enough for decoding
3888 SRC_BYTES of text encoded in CODING. */
3889
3890 int
3891 decoding_buffer_size (coding, src_bytes)
3892 struct coding_system *coding;
3893 int src_bytes;
3894 {
3895 return (src_bytes * DECODING_BUFFER_MAG (coding)
3896 + CONVERSION_BUFFER_EXTRA_ROOM);
3897 }
3898
3899 /* Return maximum size (bytes) of a buffer enough for encoding
3900 SRC_BYTES of text to CODING. */
3901
3902 int
3903 encoding_buffer_size (coding, src_bytes)
3904 struct coding_system *coding;
3905 int src_bytes;
3906 {
3907 int magnification;
3908
3909 if (coding->type == coding_type_ccl)
3910 magnification = coding->spec.ccl.encoder.buf_magnification;
3911 else if (CODING_REQUIRE_ENCODING (coding))
3912 magnification = 3;
3913 else
3914 magnification = 1;
3915
3916 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
3917 }
3918
3919 /* Working buffer for code conversion. */
3920 struct conversion_buffer
3921 {
3922 int size; /* size of data. */
3923 int on_stack; /* 1 if allocated by alloca. */
3924 unsigned char *data;
3925 };
3926
3927 /* Don't use alloca for allocating memory space larger than this, lest
3928 we overflow their stack. */
3929 #define MAX_ALLOCA 16*1024
3930
3931 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
3932 #define allocate_conversion_buffer(buf, len) \
3933 do { \
3934 if (len < MAX_ALLOCA) \
3935 { \
3936 buf.data = (unsigned char *) alloca (len); \
3937 buf.on_stack = 1; \
3938 } \
3939 else \
3940 { \
3941 buf.data = (unsigned char *) xmalloc (len); \
3942 buf.on_stack = 0; \
3943 } \
3944 buf.size = len; \
3945 } while (0)
3946
3947 /* Double the allocated memory for *BUF. */
3948 static void
3949 extend_conversion_buffer (buf)
3950 struct conversion_buffer *buf;
3951 {
3952 if (buf->on_stack)
3953 {
3954 unsigned char *save = buf->data;
3955 buf->data = (unsigned char *) xmalloc (buf->size * 2);
3956 bcopy (save, buf->data, buf->size);
3957 buf->on_stack = 0;
3958 }
3959 else
3960 {
3961 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
3962 }
3963 buf->size *= 2;
3964 }
3965
3966 /* Free the allocated memory for BUF if it is not on stack. */
3967 static void
3968 free_conversion_buffer (buf)
3969 struct conversion_buffer *buf;
3970 {
3971 if (!buf->on_stack)
3972 xfree (buf->data);
3973 }
3974
3975 int
3976 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
3977 struct coding_system *coding;
3978 unsigned char *source, *destination;
3979 int src_bytes, dst_bytes, encodep;
3980 {
3981 struct ccl_program *ccl
3982 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
3983 int result;
3984
3985 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
3986 if (encodep)
3987 ccl->eol_type = coding->eol_type;
3988 ccl->multibyte = coding->src_multibyte;
3989 coding->produced = ccl_driver (ccl, source, destination,
3990 src_bytes, dst_bytes, &(coding->consumed));
3991 if (encodep)
3992 coding->produced_char = coding->produced;
3993 else
3994 {
3995 int bytes
3996 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
3997 coding->produced = str_as_multibyte (destination, bytes,
3998 coding->produced,
3999 &(coding->produced_char));
4000 }
4001
4002 switch (ccl->status)
4003 {
4004 case CCL_STAT_SUSPEND_BY_SRC:
4005 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4006 break;
4007 case CCL_STAT_SUSPEND_BY_DST:
4008 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4009 break;
4010 case CCL_STAT_QUIT:
4011 case CCL_STAT_INVALID_CMD:
4012 coding->result = CODING_FINISH_INTERRUPT;
4013 break;
4014 default:
4015 coding->result = CODING_FINISH_NORMAL;
4016 break;
4017 }
4018 return coding->result;
4019 }
4020
4021 /* Decode EOL format of the text at PTR of BYTES length destructively
4022 according to CODING->eol_type. This is called after the CCL
4023 program produced a decoded text at PTR. If we do CRLF->LF
4024 conversion, update CODING->produced and CODING->produced_char. */
4025
4026 static void
4027 decode_eol_post_ccl (coding, ptr, bytes)
4028 struct coding_system *coding;
4029 unsigned char *ptr;
4030 int bytes;
4031 {
4032 Lisp_Object val, saved_coding_symbol;
4033 unsigned char *pend = ptr + bytes;
4034 int dummy;
4035
4036 /* Remember the current coding system symbol. We set it back when
4037 an inconsistent EOL is found so that `last-coding-system-used' is
4038 set to the coding system that doesn't specify EOL conversion. */
4039 saved_coding_symbol = coding->symbol;
4040
4041 coding->spec.ccl.cr_carryover = 0;
4042 if (coding->eol_type == CODING_EOL_UNDECIDED)
4043 {
4044 /* Here, to avoid the call of setup_coding_system, we directly
4045 call detect_eol_type. */
4046 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4047 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4048 coding->eol_type = CODING_EOL_LF;
4049 if (coding->eol_type != CODING_EOL_UNDECIDED)
4050 {
4051 val = Fget (coding->symbol, Qeol_type);
4052 if (VECTORP (val) && XVECTOR (val)->size == 3)
4053 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4054 }
4055 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4056 }
4057
4058 if (coding->eol_type == CODING_EOL_LF
4059 || coding->eol_type == CODING_EOL_UNDECIDED)
4060 {
4061 /* We have nothing to do. */
4062 ptr = pend;
4063 }
4064 else if (coding->eol_type == CODING_EOL_CRLF)
4065 {
4066 unsigned char *pstart = ptr, *p = ptr;
4067
4068 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4069 && *(pend - 1) == '\r')
4070 {
4071 /* If the last character is CR, we can't handle it here
4072 because LF will be in the not-yet-decoded source text.
4073 Recorded that the CR is not yet processed. */
4074 coding->spec.ccl.cr_carryover = 1;
4075 coding->produced--;
4076 coding->produced_char--;
4077 pend--;
4078 }
4079 while (ptr < pend)
4080 {
4081 if (*ptr == '\r')
4082 {
4083 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4084 {
4085 *p++ = '\n';
4086 ptr += 2;
4087 }
4088 else
4089 {
4090 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4091 goto undo_eol_conversion;
4092 *p++ = *ptr++;
4093 }
4094 }
4095 else if (*ptr == '\n'
4096 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4097 goto undo_eol_conversion;
4098 else
4099 *p++ = *ptr++;
4100 continue;
4101
4102 undo_eol_conversion:
4103 /* We have faced with inconsistent EOL format at PTR.
4104 Convert all LFs before PTR back to CRLFs. */
4105 for (p--, ptr--; p >= pstart; p--)
4106 {
4107 if (*p == '\n')
4108 *ptr-- = '\n', *ptr-- = '\r';
4109 else
4110 *ptr-- = *p;
4111 }
4112 /* If carryover is recorded, cancel it because we don't
4113 convert CRLF anymore. */
4114 if (coding->spec.ccl.cr_carryover)
4115 {
4116 coding->spec.ccl.cr_carryover = 0;
4117 coding->produced++;
4118 coding->produced_char++;
4119 pend++;
4120 }
4121 p = ptr = pend;
4122 coding->eol_type = CODING_EOL_LF;
4123 coding->symbol = saved_coding_symbol;
4124 }
4125 if (p < pend)
4126 {
4127 /* As each two-byte sequence CRLF was converted to LF, (PEND
4128 - P) is the number of deleted characters. */
4129 coding->produced -= pend - p;
4130 coding->produced_char -= pend - p;
4131 }
4132 }
4133 else /* i.e. coding->eol_type == CODING_EOL_CR */
4134 {
4135 unsigned char *p = ptr;
4136
4137 for (; ptr < pend; ptr++)
4138 {
4139 if (*ptr == '\r')
4140 *ptr = '\n';
4141 else if (*ptr == '\n'
4142 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4143 {
4144 for (; p < ptr; p++)
4145 {
4146 if (*p == '\n')
4147 *p = '\r';
4148 }
4149 ptr = pend;
4150 coding->eol_type = CODING_EOL_LF;
4151 coding->symbol = saved_coding_symbol;
4152 }
4153 }
4154 }
4155 }
4156
4157 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4158 decoding, it may detect coding system and format of end-of-line if
4159 those are not yet decided. The source should be unibyte, the
4160 result is multibyte if CODING->dst_multibyte is nonzero, else
4161 unibyte. */
4162
4163 int
4164 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4165 struct coding_system *coding;
4166 unsigned char *source, *destination;
4167 int src_bytes, dst_bytes;
4168 {
4169 if (coding->type == coding_type_undecided)
4170 detect_coding (coding, source, src_bytes);
4171
4172 if (coding->eol_type == CODING_EOL_UNDECIDED
4173 && coding->type != coding_type_ccl)
4174 detect_eol (coding, source, src_bytes);
4175
4176 coding->produced = coding->produced_char = 0;
4177 coding->consumed = coding->consumed_char = 0;
4178 coding->errors = 0;
4179 coding->result = CODING_FINISH_NORMAL;
4180
4181 switch (coding->type)
4182 {
4183 case coding_type_sjis:
4184 decode_coding_sjis_big5 (coding, source, destination,
4185 src_bytes, dst_bytes, 1);
4186 break;
4187
4188 case coding_type_iso2022:
4189 decode_coding_iso2022 (coding, source, destination,
4190 src_bytes, dst_bytes);
4191 break;
4192
4193 case coding_type_big5:
4194 decode_coding_sjis_big5 (coding, source, destination,
4195 src_bytes, dst_bytes, 0);
4196 break;
4197
4198 case coding_type_emacs_mule:
4199 decode_coding_emacs_mule (coding, source, destination,
4200 src_bytes, dst_bytes);
4201 break;
4202
4203 case coding_type_ccl:
4204 if (coding->spec.ccl.cr_carryover)
4205 {
4206 /* Set the CR which is not processed by the previous call of
4207 decode_eol_post_ccl in DESTINATION. */
4208 *destination = '\r';
4209 coding->produced++;
4210 coding->produced_char++;
4211 dst_bytes--;
4212 }
4213 ccl_coding_driver (coding, source,
4214 destination + coding->spec.ccl.cr_carryover,
4215 src_bytes, dst_bytes, 0);
4216 if (coding->eol_type != CODING_EOL_LF)
4217 decode_eol_post_ccl (coding, destination, coding->produced);
4218 break;
4219
4220 default:
4221 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4222 }
4223
4224 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4225 && coding->mode & CODING_MODE_LAST_BLOCK
4226 && coding->consumed == src_bytes)
4227 coding->result = CODING_FINISH_NORMAL;
4228
4229 if (coding->mode & CODING_MODE_LAST_BLOCK
4230 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4231 {
4232 unsigned char *src = source + coding->consumed;
4233 unsigned char *dst = destination + coding->produced;
4234
4235 src_bytes -= coding->consumed;
4236 coding->errors++;
4237 if (COMPOSING_P (coding))
4238 DECODE_COMPOSITION_END ('1');
4239 while (src_bytes--)
4240 {
4241 int c = *src++;
4242 dst += CHAR_STRING (c, dst);
4243 coding->produced_char++;
4244 }
4245 coding->consumed = coding->consumed_char = src - source;
4246 coding->produced = dst - destination;
4247 coding->result = CODING_FINISH_NORMAL;
4248 }
4249
4250 if (!coding->dst_multibyte)
4251 {
4252 coding->produced = str_as_unibyte (destination, coding->produced);
4253 coding->produced_char = coding->produced;
4254 }
4255
4256 return coding->result;
4257 }
4258
4259 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4260 multibyteness of the source is CODING->src_multibyte, the
4261 multibyteness of the result is always unibyte. */
4262
4263 int
4264 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4265 struct coding_system *coding;
4266 unsigned char *source, *destination;
4267 int src_bytes, dst_bytes;
4268 {
4269 coding->produced = coding->produced_char = 0;
4270 coding->consumed = coding->consumed_char = 0;
4271 coding->errors = 0;
4272 coding->result = CODING_FINISH_NORMAL;
4273
4274 switch (coding->type)
4275 {
4276 case coding_type_sjis:
4277 encode_coding_sjis_big5 (coding, source, destination,
4278 src_bytes, dst_bytes, 1);
4279 break;
4280
4281 case coding_type_iso2022:
4282 encode_coding_iso2022 (coding, source, destination,
4283 src_bytes, dst_bytes);
4284 break;
4285
4286 case coding_type_big5:
4287 encode_coding_sjis_big5 (coding, source, destination,
4288 src_bytes, dst_bytes, 0);
4289 break;
4290
4291 case coding_type_emacs_mule:
4292 encode_coding_emacs_mule (coding, source, destination,
4293 src_bytes, dst_bytes);
4294 break;
4295
4296 case coding_type_ccl:
4297 ccl_coding_driver (coding, source, destination,
4298 src_bytes, dst_bytes, 1);
4299 break;
4300
4301 default:
4302 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4303 }
4304
4305 if (coding->mode & CODING_MODE_LAST_BLOCK
4306 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4307 {
4308 unsigned char *src = source + coding->consumed;
4309 unsigned char *src_end = src + src_bytes;
4310 unsigned char *dst = destination + coding->produced;
4311
4312 if (coding->type == coding_type_iso2022)
4313 ENCODE_RESET_PLANE_AND_REGISTER;
4314 if (COMPOSING_P (coding))
4315 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4316 if (coding->consumed < src_bytes)
4317 {
4318 int len = src_bytes - coding->consumed;
4319
4320 BCOPY_SHORT (source + coding->consumed, dst, len);
4321 if (coding->src_multibyte)
4322 len = str_as_unibyte (dst, len);
4323 dst += len;
4324 coding->consumed = src_bytes;
4325 }
4326 coding->produced = coding->produced_char = dst - destination;
4327 coding->result = CODING_FINISH_NORMAL;
4328 }
4329
4330 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4331 && coding->consumed == src_bytes)
4332 coding->result = CODING_FINISH_NORMAL;
4333
4334 return coding->result;
4335 }
4336
4337 /* Scan text in the region between *BEG and *END (byte positions),
4338 skip characters which we don't have to decode by coding system
4339 CODING at the head and tail, then set *BEG and *END to the region
4340 of the text we actually have to convert. The caller should move
4341 the gap out of the region in advance if the region is from a
4342 buffer.
4343
4344 If STR is not NULL, *BEG and *END are indices into STR. */
4345
4346 static void
4347 shrink_decoding_region (beg, end, coding, str)
4348 int *beg, *end;
4349 struct coding_system *coding;
4350 unsigned char *str;
4351 {
4352 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4353 int eol_conversion;
4354 Lisp_Object translation_table;
4355
4356 if (coding->type == coding_type_ccl
4357 || coding->type == coding_type_undecided
4358 || coding->eol_type != CODING_EOL_LF
4359 || !NILP (coding->post_read_conversion)
4360 || coding->composing != COMPOSITION_DISABLED)
4361 {
4362 /* We can't skip any data. */
4363 return;
4364 }
4365 if (coding->type == coding_type_no_conversion
4366 || coding->type == coding_type_raw_text
4367 || coding->type == coding_type_emacs_mule)
4368 {
4369 /* We need no conversion, but don't have to skip any data here.
4370 Decoding routine handles them effectively anyway. */
4371 return;
4372 }
4373
4374 translation_table = coding->translation_table_for_decode;
4375 if (NILP (translation_table) && !NILP (Venable_character_translation))
4376 translation_table = Vstandard_translation_table_for_decode;
4377 if (CHAR_TABLE_P (translation_table))
4378 {
4379 int i;
4380 for (i = 0; i < 128; i++)
4381 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4382 break;
4383 if (i < 128)
4384 /* Some ASCII character should be translated. We give up
4385 shrinking. */
4386 return;
4387 }
4388
4389 if (coding->heading_ascii >= 0)
4390 /* Detection routine has already found how much we can skip at the
4391 head. */
4392 *beg += coding->heading_ascii;
4393
4394 if (str)
4395 {
4396 begp_orig = begp = str + *beg;
4397 endp_orig = endp = str + *end;
4398 }
4399 else
4400 {
4401 begp_orig = begp = BYTE_POS_ADDR (*beg);
4402 endp_orig = endp = begp + *end - *beg;
4403 }
4404
4405 eol_conversion = (coding->eol_type == CODING_EOL_CR
4406 || coding->eol_type == CODING_EOL_CRLF);
4407
4408 switch (coding->type)
4409 {
4410 case coding_type_sjis:
4411 case coding_type_big5:
4412 /* We can skip all ASCII characters at the head. */
4413 if (coding->heading_ascii < 0)
4414 {
4415 if (eol_conversion)
4416 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4417 else
4418 while (begp < endp && *begp < 0x80) begp++;
4419 }
4420 /* We can skip all ASCII characters at the tail except for the
4421 second byte of SJIS or BIG5 code. */
4422 if (eol_conversion)
4423 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4424 else
4425 while (begp < endp && endp[-1] < 0x80) endp--;
4426 /* Do not consider LF as ascii if preceded by CR, since that
4427 confuses eol decoding. */
4428 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4429 endp++;
4430 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4431 endp++;
4432 break;
4433
4434 case coding_type_iso2022:
4435 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4436 /* We can't skip any data. */
4437 break;
4438 if (coding->heading_ascii < 0)
4439 {
4440 /* We can skip all ASCII characters at the head except for a
4441 few control codes. */
4442 while (begp < endp && (c = *begp) < 0x80
4443 && c != ISO_CODE_CR && c != ISO_CODE_SO
4444 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4445 && (!eol_conversion || c != ISO_CODE_LF))
4446 begp++;
4447 }
4448 switch (coding->category_idx)
4449 {
4450 case CODING_CATEGORY_IDX_ISO_8_1:
4451 case CODING_CATEGORY_IDX_ISO_8_2:
4452 /* We can skip all ASCII characters at the tail. */
4453 if (eol_conversion)
4454 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4455 else
4456 while (begp < endp && endp[-1] < 0x80) endp--;
4457 /* Do not consider LF as ascii if preceded by CR, since that
4458 confuses eol decoding. */
4459 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4460 endp++;
4461 break;
4462
4463 case CODING_CATEGORY_IDX_ISO_7:
4464 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4465 {
4466 /* We can skip all charactes at the tail except for 8-bit
4467 codes and ESC and the following 2-byte at the tail. */
4468 unsigned char *eight_bit = NULL;
4469
4470 if (eol_conversion)
4471 while (begp < endp
4472 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4473 {
4474 if (!eight_bit && c & 0x80) eight_bit = endp;
4475 endp--;
4476 }
4477 else
4478 while (begp < endp
4479 && (c = endp[-1]) != ISO_CODE_ESC)
4480 {
4481 if (!eight_bit && c & 0x80) eight_bit = endp;
4482 endp--;
4483 }
4484 /* Do not consider LF as ascii if preceded by CR, since that
4485 confuses eol decoding. */
4486 if (begp < endp && endp < endp_orig
4487 && endp[-1] == '\r' && endp[0] == '\n')
4488 endp++;
4489 if (begp < endp && endp[-1] == ISO_CODE_ESC)
4490 {
4491 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
4492 /* This is an ASCII designation sequence. We can
4493 surely skip the tail. But, if we have
4494 encountered an 8-bit code, skip only the codes
4495 after that. */
4496 endp = eight_bit ? eight_bit : endp + 2;
4497 else
4498 /* Hmmm, we can't skip the tail. */
4499 endp = endp_orig;
4500 }
4501 else if (eight_bit)
4502 endp = eight_bit;
4503 }
4504 }
4505 break;
4506
4507 default:
4508 abort ();
4509 }
4510 *beg += begp - begp_orig;
4511 *end += endp - endp_orig;
4512 return;
4513 }
4514
4515 /* Like shrink_decoding_region but for encoding. */
4516
4517 static void
4518 shrink_encoding_region (beg, end, coding, str)
4519 int *beg, *end;
4520 struct coding_system *coding;
4521 unsigned char *str;
4522 {
4523 unsigned char *begp_orig, *begp, *endp_orig, *endp;
4524 int eol_conversion;
4525 Lisp_Object translation_table;
4526
4527 if (coding->type == coding_type_ccl
4528 || coding->eol_type == CODING_EOL_CRLF
4529 || coding->eol_type == CODING_EOL_CR
4530 || coding->cmp_data && coding->cmp_data->used > 0)
4531 {
4532 /* We can't skip any data. */
4533 return;
4534 }
4535 if (coding->type == coding_type_no_conversion
4536 || coding->type == coding_type_raw_text
4537 || coding->type == coding_type_emacs_mule
4538 || coding->type == coding_type_undecided)
4539 {
4540 /* We need no conversion, but don't have to skip any data here.
4541 Encoding routine handles them effectively anyway. */
4542 return;
4543 }
4544
4545 translation_table = coding->translation_table_for_encode;
4546 if (NILP (translation_table) && !NILP (Venable_character_translation))
4547 translation_table = Vstandard_translation_table_for_encode;
4548 if (CHAR_TABLE_P (translation_table))
4549 {
4550 int i;
4551 for (i = 0; i < 128; i++)
4552 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4553 break;
4554 if (i < 128)
4555 /* Some ASCII character should be tranlsated. We give up
4556 shrinking. */
4557 return;
4558 }
4559
4560 if (str)
4561 {
4562 begp_orig = begp = str + *beg;
4563 endp_orig = endp = str + *end;
4564 }
4565 else
4566 {
4567 begp_orig = begp = BYTE_POS_ADDR (*beg);
4568 endp_orig = endp = begp + *end - *beg;
4569 }
4570
4571 eol_conversion = (coding->eol_type == CODING_EOL_CR
4572 || coding->eol_type == CODING_EOL_CRLF);
4573
4574 /* Here, we don't have to check coding->pre_write_conversion because
4575 the caller is expected to have handled it already. */
4576 switch (coding->type)
4577 {
4578 case coding_type_iso2022:
4579 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4580 /* We can't skip any data. */
4581 break;
4582 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
4583 {
4584 unsigned char *bol = begp;
4585 while (begp < endp && *begp < 0x80)
4586 {
4587 begp++;
4588 if (begp[-1] == '\n')
4589 bol = begp;
4590 }
4591 begp = bol;
4592 goto label_skip_tail;
4593 }
4594 /* fall down ... */
4595
4596 case coding_type_sjis:
4597 case coding_type_big5:
4598 /* We can skip all ASCII characters at the head and tail. */
4599 if (eol_conversion)
4600 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
4601 else
4602 while (begp < endp && *begp < 0x80) begp++;
4603 label_skip_tail:
4604 if (eol_conversion)
4605 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
4606 else
4607 while (begp < endp && *(endp - 1) < 0x80) endp--;
4608 break;
4609
4610 default:
4611 abort ();
4612 }
4613
4614 *beg += begp - begp_orig;
4615 *end += endp - endp_orig;
4616 return;
4617 }
4618
4619 /* As shrinking conversion region requires some overhead, we don't try
4620 shrinking if the length of conversion region is less than this
4621 value. */
4622 static int shrink_conversion_region_threshhold = 1024;
4623
4624 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
4625 do { \
4626 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
4627 { \
4628 if (encodep) shrink_encoding_region (beg, end, coding, str); \
4629 else shrink_decoding_region (beg, end, coding, str); \
4630 } \
4631 } while (0)
4632
4633 static Lisp_Object
4634 code_convert_region_unwind (dummy)
4635 Lisp_Object dummy;
4636 {
4637 inhibit_pre_post_conversion = 0;
4638 return Qnil;
4639 }
4640
4641 /* Store information about all compositions in the range FROM and TO
4642 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
4643 buffer or a string, defaults to the current buffer. */
4644
4645 void
4646 coding_save_composition (coding, from, to, obj)
4647 struct coding_system *coding;
4648 int from, to;
4649 Lisp_Object obj;
4650 {
4651 Lisp_Object prop;
4652 int start, end;
4653
4654 if (coding->composing == COMPOSITION_DISABLED)
4655 return;
4656 if (!coding->cmp_data)
4657 coding_allocate_composition_data (coding, from);
4658 if (!find_composition (from, to, &start, &end, &prop, obj)
4659 || end > to)
4660 return;
4661 if (start < from
4662 && (!find_composition (end, to, &start, &end, &prop, obj)
4663 || end > to))
4664 return;
4665 coding->composing = COMPOSITION_NO;
4666 do
4667 {
4668 if (COMPOSITION_VALID_P (start, end, prop))
4669 {
4670 enum composition_method method = COMPOSITION_METHOD (prop);
4671 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
4672 >= COMPOSITION_DATA_SIZE)
4673 coding_allocate_composition_data (coding, from);
4674 /* For relative composition, we remember start and end
4675 positions, for the other compositions, we also remember
4676 components. */
4677 CODING_ADD_COMPOSITION_START (coding, start - from, method);
4678 if (method != COMPOSITION_RELATIVE)
4679 {
4680 /* We must store a*/
4681 Lisp_Object val, ch;
4682
4683 val = COMPOSITION_COMPONENTS (prop);
4684 if (CONSP (val))
4685 while (CONSP (val))
4686 {
4687 ch = XCAR (val), val = XCDR (val);
4688 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
4689 }
4690 else if (VECTORP (val) || STRINGP (val))
4691 {
4692 int len = (VECTORP (val)
4693 ? XVECTOR (val)->size : XSTRING (val)->size);
4694 int i;
4695 for (i = 0; i < len; i++)
4696 {
4697 ch = (STRINGP (val)
4698 ? Faref (val, make_number (i))
4699 : XVECTOR (val)->contents[i]);
4700 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
4701 }
4702 }
4703 else /* INTEGERP (val) */
4704 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
4705 }
4706 CODING_ADD_COMPOSITION_END (coding, end - from);
4707 }
4708 start = end;
4709 }
4710 while (start < to
4711 && find_composition (start, to, &start, &end, &prop, obj)
4712 && end <= to);
4713
4714 /* Make coding->cmp_data point to the first memory block. */
4715 while (coding->cmp_data->prev)
4716 coding->cmp_data = coding->cmp_data->prev;
4717 coding->cmp_data_start = 0;
4718 }
4719
4720 /* Reflect the saved information about compositions to OBJ.
4721 CODING->cmp_data points to a memory block for the informaiton. OBJ
4722 is a buffer or a string, defaults to the current buffer. */
4723
4724 void
4725 coding_restore_composition (coding, obj)
4726 struct coding_system *coding;
4727 Lisp_Object obj;
4728 {
4729 struct composition_data *cmp_data = coding->cmp_data;
4730
4731 if (!cmp_data)
4732 return;
4733
4734 while (cmp_data->prev)
4735 cmp_data = cmp_data->prev;
4736
4737 while (cmp_data)
4738 {
4739 int i;
4740
4741 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
4742 i += cmp_data->data[i])
4743 {
4744 int *data = cmp_data->data + i;
4745 enum composition_method method = (enum composition_method) data[3];
4746 Lisp_Object components;
4747
4748 if (method == COMPOSITION_RELATIVE)
4749 components = Qnil;
4750 else
4751 {
4752 int len = data[0] - 4, j;
4753 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
4754
4755 for (j = 0; j < len; j++)
4756 args[j] = make_number (data[4 + j]);
4757 components = (method == COMPOSITION_WITH_ALTCHARS
4758 ? Fstring (len, args) : Fvector (len, args));
4759 }
4760 compose_text (data[1], data[2], components, Qnil, obj);
4761 }
4762 cmp_data = cmp_data->next;
4763 }
4764 }
4765
4766 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
4767 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
4768 coding system CODING, and return the status code of code conversion
4769 (currently, this value has no meaning).
4770
4771 How many characters (and bytes) are converted to how many
4772 characters (and bytes) are recorded in members of the structure
4773 CODING.
4774
4775 If REPLACE is nonzero, we do various things as if the original text
4776 is deleted and a new text is inserted. See the comments in
4777 replace_range (insdel.c) to know what we are doing.
4778
4779 If REPLACE is zero, it is assumed that the source text is unibyte.
4780 Otherwize, it is assumed that the source text is multibyte. */
4781
4782 int
4783 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
4784 int from, from_byte, to, to_byte, encodep, replace;
4785 struct coding_system *coding;
4786 {
4787 int len = to - from, len_byte = to_byte - from_byte;
4788 int require, inserted, inserted_byte;
4789 int head_skip, tail_skip, total_skip = 0;
4790 Lisp_Object saved_coding_symbol;
4791 int first = 1;
4792 unsigned char *src, *dst;
4793 Lisp_Object deletion;
4794 int orig_point = PT, orig_len = len;
4795 int prev_Z;
4796 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
4797
4798 coding->src_multibyte = replace && multibyte_p;
4799 coding->dst_multibyte = multibyte_p;
4800
4801 deletion = Qnil;
4802 saved_coding_symbol = Qnil;
4803
4804 if (from < PT && PT < to)
4805 {
4806 TEMP_SET_PT_BOTH (from, from_byte);
4807 orig_point = from;
4808 }
4809
4810 if (replace)
4811 {
4812 int saved_from = from;
4813 int saved_inhibit_modification_hooks;
4814
4815 prepare_to_modify_buffer (from, to, &from);
4816 if (saved_from != from)
4817 {
4818 to = from + len;
4819 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
4820 len_byte = to_byte - from_byte;
4821 }
4822
4823 /* The code conversion routine can not preserve text properties
4824 for now. So, we must remove all text properties in the
4825 region. Here, we must suppress all modification hooks. */
4826 saved_inhibit_modification_hooks = inhibit_modification_hooks;
4827 inhibit_modification_hooks = 1;
4828 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
4829 inhibit_modification_hooks = saved_inhibit_modification_hooks;
4830 }
4831
4832 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4833 {
4834 /* We must detect encoding of text and eol format. */
4835
4836 if (from < GPT && to > GPT)
4837 move_gap_both (from, from_byte);
4838 if (coding->type == coding_type_undecided)
4839 {
4840 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
4841 if (coding->type == coding_type_undecided)
4842 {
4843 /* It seems that the text contains only ASCII, but we
4844 should not leave it undecided because the deeper
4845 decoding routine (decode_coding) tries to detect the
4846 encodings again in vain. */
4847 coding->type = coding_type_emacs_mule;
4848 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
4849 }
4850 }
4851 if (coding->eol_type == CODING_EOL_UNDECIDED
4852 && coding->type != coding_type_ccl)
4853 {
4854 saved_coding_symbol = coding->symbol;
4855 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
4856 if (coding->eol_type == CODING_EOL_UNDECIDED)
4857 coding->eol_type = CODING_EOL_LF;
4858 /* We had better recover the original eol format if we
4859 encounter an inconsitent eol format while decoding. */
4860 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4861 }
4862 }
4863
4864 /* Now we convert the text. */
4865
4866 /* For encoding, we must process pre-write-conversion in advance. */
4867 if (! inhibit_pre_post_conversion
4868 && encodep
4869 && SYMBOLP (coding->pre_write_conversion)
4870 && ! NILP (Ffboundp (coding->pre_write_conversion)))
4871 {
4872 /* The function in pre-write-conversion may put a new text in a
4873 new buffer. */
4874 struct buffer *prev = current_buffer;
4875 Lisp_Object new;
4876 int count = specpdl_ptr - specpdl;
4877
4878 record_unwind_protect (code_convert_region_unwind, Qnil);
4879 /* We should not call any more pre-write/post-read-conversion
4880 functions while this pre-write-conversion is running. */
4881 inhibit_pre_post_conversion = 1;
4882 call2 (coding->pre_write_conversion,
4883 make_number (from), make_number (to));
4884 inhibit_pre_post_conversion = 0;
4885 /* Discard the unwind protect. */
4886 specpdl_ptr--;
4887
4888 if (current_buffer != prev)
4889 {
4890 len = ZV - BEGV;
4891 new = Fcurrent_buffer ();
4892 set_buffer_internal_1 (prev);
4893 del_range_2 (from, from_byte, to, to_byte, 0);
4894 TEMP_SET_PT_BOTH (from, from_byte);
4895 insert_from_buffer (XBUFFER (new), 1, len, 0);
4896 Fkill_buffer (new);
4897 if (orig_point >= to)
4898 orig_point += len - orig_len;
4899 else if (orig_point > from)
4900 orig_point = from;
4901 orig_len = len;
4902 to = from + len;
4903 from_byte = CHAR_TO_BYTE (from);
4904 to_byte = CHAR_TO_BYTE (to);
4905 len_byte = to_byte - from_byte;
4906 TEMP_SET_PT_BOTH (from, from_byte);
4907 }
4908 }
4909
4910 if (replace)
4911 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
4912
4913 if (coding->composing != COMPOSITION_DISABLED)
4914 {
4915 if (encodep)
4916 coding_save_composition (coding, from, to, Fcurrent_buffer ());
4917 else
4918 coding_allocate_composition_data (coding, from);
4919 }
4920
4921 /* Try to skip the heading and tailing ASCIIs. */
4922 if (coding->type != coding_type_ccl)
4923 {
4924 int from_byte_orig = from_byte, to_byte_orig = to_byte;
4925
4926 if (from < GPT && GPT < to)
4927 move_gap_both (from, from_byte);
4928 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
4929 if (from_byte == to_byte
4930 && (encodep || NILP (coding->post_read_conversion))
4931 && ! CODING_REQUIRE_FLUSHING (coding))
4932 {
4933 coding->produced = len_byte;
4934 coding->produced_char = len;
4935 if (!replace)
4936 /* We must record and adjust for this new text now. */
4937 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
4938 return 0;
4939 }
4940
4941 head_skip = from_byte - from_byte_orig;
4942 tail_skip = to_byte_orig - to_byte;
4943 total_skip = head_skip + tail_skip;
4944 from += head_skip;
4945 to -= tail_skip;
4946 len -= total_skip; len_byte -= total_skip;
4947 }
4948
4949 /* For converion, we must put the gap before the text in addition to
4950 making the gap larger for efficient decoding. The required gap
4951 size starts from 2000 which is the magic number used in make_gap.
4952 But, after one batch of conversion, it will be incremented if we
4953 find that it is not enough . */
4954 require = 2000;
4955
4956 if (GAP_SIZE < require)
4957 make_gap (require - GAP_SIZE);
4958 move_gap_both (from, from_byte);
4959
4960 inserted = inserted_byte = 0;
4961
4962 GAP_SIZE += len_byte;
4963 ZV -= len;
4964 Z -= len;
4965 ZV_BYTE -= len_byte;
4966 Z_BYTE -= len_byte;
4967
4968 if (GPT - BEG < BEG_UNCHANGED)
4969 BEG_UNCHANGED = GPT - BEG;
4970 if (Z - GPT < END_UNCHANGED)
4971 END_UNCHANGED = Z - GPT;
4972
4973 if (!encodep && coding->src_multibyte)
4974 {
4975 /* Decoding routines expects that the source text is unibyte.
4976 We must convert 8-bit characters of multibyte form to
4977 unibyte. */
4978 int len_byte_orig = len_byte;
4979 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
4980 if (len_byte < len_byte_orig)
4981 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
4982 len_byte);
4983 coding->src_multibyte = 0;
4984 }
4985
4986 for (;;)
4987 {
4988 int result;
4989
4990 /* The buffer memory is now:
4991 +--------+converted-text+---------+-------original-text-------+---+
4992 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
4993 |<---------------------- GAP ----------------------->| */
4994 src = GAP_END_ADDR - len_byte;
4995 dst = GPT_ADDR + inserted_byte;
4996
4997 if (encodep)
4998 result = encode_coding (coding, src, dst, len_byte, 0);
4999 else
5000 result = decode_coding (coding, src, dst, len_byte, 0);
5001
5002 /* The buffer memory is now:
5003 +--------+-------converted-text----+--+------original-text----+---+
5004 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5005 |<---------------------- GAP ----------------------->| */
5006
5007 inserted += coding->produced_char;
5008 inserted_byte += coding->produced;
5009 len_byte -= coding->consumed;
5010
5011 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5012 {
5013 coding_allocate_composition_data (coding, from + inserted);
5014 continue;
5015 }
5016
5017 src += coding->consumed;
5018 dst += coding->produced;
5019
5020 if (result == CODING_FINISH_NORMAL)
5021 {
5022 src += len_byte;
5023 break;
5024 }
5025 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5026 {
5027 unsigned char *pend = dst, *p = pend - inserted_byte;
5028 Lisp_Object eol_type;
5029
5030 /* Encode LFs back to the original eol format (CR or CRLF). */
5031 if (coding->eol_type == CODING_EOL_CR)
5032 {
5033 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5034 }
5035 else
5036 {
5037 int count = 0;
5038
5039 while (p < pend) if (*p++ == '\n') count++;
5040 if (src - dst < count)
5041 {
5042 /* We don't have sufficient room for encoding LFs
5043 back to CRLF. We must record converted and
5044 not-yet-converted text back to the buffer
5045 content, enlarge the gap, then record them out of
5046 the buffer contents again. */
5047 int add = len_byte + inserted_byte;
5048
5049 GAP_SIZE -= add;
5050 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5051 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5052 make_gap (count - GAP_SIZE);
5053 GAP_SIZE += add;
5054 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5055 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5056 /* Don't forget to update SRC, DST, and PEND. */
5057 src = GAP_END_ADDR - len_byte;
5058 dst = GPT_ADDR + inserted_byte;
5059 pend = dst;
5060 }
5061 inserted += count;
5062 inserted_byte += count;
5063 coding->produced += count;
5064 p = dst = pend + count;
5065 while (count)
5066 {
5067 *--p = *--pend;
5068 if (*p == '\n') count--, *--p = '\r';
5069 }
5070 }
5071
5072 /* Suppress eol-format conversion in the further conversion. */
5073 coding->eol_type = CODING_EOL_LF;
5074
5075 /* Set the coding system symbol to that for Unix-like EOL. */
5076 eol_type = Fget (saved_coding_symbol, Qeol_type);
5077 if (VECTORP (eol_type)
5078 && XVECTOR (eol_type)->size == 3
5079 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5080 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5081 else
5082 coding->symbol = saved_coding_symbol;
5083
5084 continue;
5085 }
5086 if (len_byte <= 0)
5087 {
5088 if (coding->type != coding_type_ccl
5089 || coding->mode & CODING_MODE_LAST_BLOCK)
5090 break;
5091 coding->mode |= CODING_MODE_LAST_BLOCK;
5092 continue;
5093 }
5094 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5095 {
5096 /* The source text ends in invalid codes. Let's just
5097 make them valid buffer contents, and finish conversion. */
5098 inserted += len_byte;
5099 inserted_byte += len_byte;
5100 while (len_byte--)
5101 *dst++ = *src++;
5102 break;
5103 }
5104 if (result == CODING_FINISH_INTERRUPT)
5105 {
5106 /* The conversion procedure was interrupted by a user. */
5107 break;
5108 }
5109 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5110 if (coding->consumed < 1)
5111 {
5112 /* It's quite strange to require more memory without
5113 consuming any bytes. Perhaps CCL program bug. */
5114 break;
5115 }
5116 if (first)
5117 {
5118 /* We have just done the first batch of conversion which was
5119 stoped because of insufficient gap. Let's reconsider the
5120 required gap size (i.e. SRT - DST) now.
5121
5122 We have converted ORIG bytes (== coding->consumed) into
5123 NEW bytes (coding->produced). To convert the remaining
5124 LEN bytes, we may need REQUIRE bytes of gap, where:
5125 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5126 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5127 Here, we are sure that NEW >= ORIG. */
5128 float ratio = coding->produced - coding->consumed;
5129 ratio /= coding->consumed;
5130 require = len_byte * ratio;
5131 first = 0;
5132 }
5133 if ((src - dst) < (require + 2000))
5134 {
5135 /* See the comment above the previous call of make_gap. */
5136 int add = len_byte + inserted_byte;
5137
5138 GAP_SIZE -= add;
5139 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5140 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5141 make_gap (require + 2000);
5142 GAP_SIZE += add;
5143 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5144 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5145 }
5146 }
5147 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5148
5149 if (encodep && coding->dst_multibyte)
5150 {
5151 /* The output is unibyte. We must convert 8-bit characters to
5152 multibyte form. */
5153 if (inserted_byte * 2 > GAP_SIZE)
5154 {
5155 GAP_SIZE -= inserted_byte;
5156 ZV += inserted_byte; Z += inserted_byte;
5157 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5158 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5159 make_gap (inserted_byte - GAP_SIZE);
5160 GAP_SIZE += inserted_byte;
5161 ZV -= inserted_byte; Z -= inserted_byte;
5162 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5163 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5164 }
5165 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5166 }
5167
5168 /* If we have shrinked the conversion area, adjust it now. */
5169 if (total_skip > 0)
5170 {
5171 if (tail_skip > 0)
5172 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5173 inserted += total_skip; inserted_byte += total_skip;
5174 GAP_SIZE += total_skip;
5175 GPT -= head_skip; GPT_BYTE -= head_skip;
5176 ZV -= total_skip; ZV_BYTE -= total_skip;
5177 Z -= total_skip; Z_BYTE -= total_skip;
5178 from -= head_skip; from_byte -= head_skip;
5179 to += tail_skip; to_byte += tail_skip;
5180 }
5181
5182 prev_Z = Z;
5183 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5184 inserted = Z - prev_Z;
5185
5186 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5187 coding_restore_composition (coding, Fcurrent_buffer ());
5188 coding_free_composition_data (coding);
5189
5190 if (! inhibit_pre_post_conversion
5191 && ! encodep && ! NILP (coding->post_read_conversion))
5192 {
5193 Lisp_Object val;
5194 int count = specpdl_ptr - specpdl;
5195
5196 if (from != PT)
5197 TEMP_SET_PT_BOTH (from, from_byte);
5198 prev_Z = Z;
5199 record_unwind_protect (code_convert_region_unwind, Qnil);
5200 /* We should not call any more pre-write/post-read-conversion
5201 functions while this post-read-conversion is running. */
5202 inhibit_pre_post_conversion = 1;
5203 val = call1 (coding->post_read_conversion, make_number (inserted));
5204 inhibit_pre_post_conversion = 0;
5205 /* Discard the unwind protect. */
5206 specpdl_ptr--;
5207 CHECK_NUMBER (val, 0);
5208 inserted += Z - prev_Z;
5209 }
5210
5211 if (orig_point >= from)
5212 {
5213 if (orig_point >= from + orig_len)
5214 orig_point += inserted - orig_len;
5215 else
5216 orig_point = from;
5217 TEMP_SET_PT (orig_point);
5218 }
5219
5220 if (replace)
5221 {
5222 signal_after_change (from, to - from, inserted);
5223 update_compositions (from, from + inserted, CHECK_BORDER);
5224 }
5225
5226 {
5227 coding->consumed = to_byte - from_byte;
5228 coding->consumed_char = to - from;
5229 coding->produced = inserted_byte;
5230 coding->produced_char = inserted;
5231 }
5232
5233 return 0;
5234 }
5235
5236 Lisp_Object
5237 run_pre_post_conversion_on_str (str, coding, encodep)
5238 Lisp_Object str;
5239 struct coding_system *coding;
5240 int encodep;
5241 {
5242 int count = specpdl_ptr - specpdl;
5243 struct gcpro gcpro1;
5244 struct buffer *prev = current_buffer;
5245 int multibyte = STRING_MULTIBYTE (str);
5246
5247 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5248 record_unwind_protect (code_convert_region_unwind, Qnil);
5249 GCPRO1 (str);
5250 temp_output_buffer_setup (" *code-converting-work*");
5251 set_buffer_internal (XBUFFER (Vstandard_output));
5252 /* We must insert the contents of STR as is without
5253 unibyte<->multibyte conversion. For that, we adjust the
5254 multibyteness of the working buffer to that of STR. */
5255 Ferase_buffer ();
5256 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5257 insert_from_string (str, 0, 0,
5258 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5259 UNGCPRO;
5260 inhibit_pre_post_conversion = 1;
5261 if (encodep)
5262 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5263 else
5264 {
5265 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5266 call1 (coding->post_read_conversion, make_number (Z - BEG));
5267 }
5268 inhibit_pre_post_conversion = 0;
5269 str = make_buffer_string (BEG, Z, 1);
5270 return unbind_to (count, str);
5271 }
5272
5273 Lisp_Object
5274 decode_coding_string (str, coding, nocopy)
5275 Lisp_Object str;
5276 struct coding_system *coding;
5277 int nocopy;
5278 {
5279 int len;
5280 struct conversion_buffer buf;
5281 int from, to, to_byte;
5282 struct gcpro gcpro1;
5283 Lisp_Object saved_coding_symbol;
5284 int result;
5285 int require_decoding;
5286 int shrinked_bytes = 0;
5287 Lisp_Object newstr;
5288 int consumed, consumed_char, produced, produced_char;
5289
5290 from = 0;
5291 to = XSTRING (str)->size;
5292 to_byte = STRING_BYTES (XSTRING (str));
5293
5294 saved_coding_symbol = Qnil;
5295 if (CODING_REQUIRE_DETECTION (coding))
5296 {
5297 /* See the comments in code_convert_region. */
5298 if (coding->type == coding_type_undecided)
5299 {
5300 detect_coding (coding, XSTRING (str)->data, to_byte);
5301 if (coding->type == coding_type_undecided)
5302 coding->type = coding_type_emacs_mule;
5303 }
5304 if (coding->eol_type == CODING_EOL_UNDECIDED
5305 && coding->type != coding_type_ccl)
5306 {
5307 saved_coding_symbol = coding->symbol;
5308 detect_eol (coding, XSTRING (str)->data, to_byte);
5309 if (coding->eol_type == CODING_EOL_UNDECIDED)
5310 coding->eol_type = CODING_EOL_LF;
5311 /* We had better recover the original eol format if we
5312 encounter an inconsitent eol format while decoding. */
5313 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5314 }
5315 }
5316
5317 coding->src_multibyte = 0;
5318 coding->dst_multibyte = (coding->type != coding_type_no_conversion
5319 && coding->type != coding_type_raw_text);
5320 require_decoding = CODING_REQUIRE_DECODING (coding);
5321
5322 if (STRING_MULTIBYTE (str))
5323 {
5324 /* Decoding routines expect the source text to be unibyte. */
5325 str = Fstring_as_unibyte (str);
5326 to_byte = STRING_BYTES (XSTRING (str));
5327 nocopy = 1;
5328 }
5329
5330 /* Try to skip the heading and tailing ASCIIs. */
5331 if (require_decoding && coding->type != coding_type_ccl)
5332 {
5333 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5334 0);
5335 if (from == to_byte)
5336 require_decoding = 0;
5337 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5338 }
5339
5340 if (!require_decoding)
5341 {
5342 coding->consumed = STRING_BYTES (XSTRING (str));
5343 coding->consumed_char = XSTRING (str)->size;
5344 if (coding->dst_multibyte)
5345 {
5346 str = Fstring_as_multibyte (str);
5347 nocopy = 1;
5348 }
5349 coding->produced = STRING_BYTES (XSTRING (str));
5350 coding->produced_char = XSTRING (str)->size;
5351 return (nocopy ? str : Fcopy_sequence (str));
5352 }
5353
5354 if (coding->composing != COMPOSITION_DISABLED)
5355 coding_allocate_composition_data (coding, from);
5356 len = decoding_buffer_size (coding, to_byte - from);
5357 allocate_conversion_buffer (buf, len);
5358
5359 consumed = consumed_char = produced = produced_char = 0;
5360 while (1)
5361 {
5362 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5363 buf.data + produced, to_byte - from - consumed,
5364 buf.size - produced);
5365 consumed += coding->consumed;
5366 consumed_char += coding->consumed_char;
5367 produced += coding->produced;
5368 produced_char += coding->produced_char;
5369 if (result == CODING_FINISH_NORMAL
5370 || (result == CODING_FINISH_INSUFFICIENT_SRC
5371 && coding->consumed == 0))
5372 break;
5373 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5374 coding_allocate_composition_data (coding, from + produced_char);
5375 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5376 extend_conversion_buffer (&buf);
5377 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5378 {
5379 /* Recover the original EOL format. */
5380 if (coding->eol_type == CODING_EOL_CR)
5381 {
5382 unsigned char *p;
5383 for (p = buf.data; p < buf.data + produced; p++)
5384 if (*p == '\n') *p = '\r';
5385 }
5386 else if (coding->eol_type == CODING_EOL_CRLF)
5387 {
5388 int num_eol = 0;
5389 unsigned char *p0, *p1;
5390 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5391 if (*p0 == '\n') num_eol++;
5392 if (produced + num_eol >= buf.size)
5393 extend_conversion_buffer (&buf);
5394 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5395 {
5396 *--p1 = *--p0;
5397 if (*p0 == '\n') *--p1 = '\r';
5398 }
5399 produced += num_eol;
5400 produced_char += num_eol;
5401 }
5402 coding->eol_type = CODING_EOL_LF;
5403 coding->symbol = saved_coding_symbol;
5404 }
5405 }
5406
5407 coding->consumed = consumed;
5408 coding->consumed_char = consumed_char;
5409 coding->produced = produced;
5410 coding->produced_char = produced_char;
5411
5412 if (coding->dst_multibyte)
5413 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
5414 produced + shrinked_bytes);
5415 else
5416 newstr = make_uninit_string (produced + shrinked_bytes);
5417 if (from > 0)
5418 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5419 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5420 if (shrinked_bytes > from)
5421 bcopy (XSTRING (str)->data + to_byte,
5422 XSTRING (newstr)->data + from + produced,
5423 shrinked_bytes - from);
5424 free_conversion_buffer (&buf);
5425
5426 if (coding->cmp_data && coding->cmp_data->used)
5427 coding_restore_composition (coding, newstr);
5428 coding_free_composition_data (coding);
5429
5430 if (SYMBOLP (coding->post_read_conversion)
5431 && !NILP (Ffboundp (coding->post_read_conversion)))
5432 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
5433
5434 return newstr;
5435 }
5436
5437 Lisp_Object
5438 encode_coding_string (str, coding, nocopy)
5439 Lisp_Object str;
5440 struct coding_system *coding;
5441 int nocopy;
5442 {
5443 int len;
5444 struct conversion_buffer buf;
5445 int from, to, to_byte;
5446 struct gcpro gcpro1;
5447 Lisp_Object saved_coding_symbol;
5448 int result;
5449 int shrinked_bytes = 0;
5450 Lisp_Object newstr;
5451 int consumed, consumed_char, produced, produced_char;
5452
5453 if (SYMBOLP (coding->pre_write_conversion)
5454 && !NILP (Ffboundp (coding->pre_write_conversion)))
5455 str = run_pre_post_conversion_on_str (str, coding, 1);
5456
5457 from = 0;
5458 to = XSTRING (str)->size;
5459 to_byte = STRING_BYTES (XSTRING (str));
5460
5461 saved_coding_symbol = Qnil;
5462
5463 /* Encoding routines determine the multibyteness of the source text
5464 by coding->src_multibyte. */
5465 coding->src_multibyte = STRING_MULTIBYTE (str);
5466 coding->dst_multibyte = 0;
5467 if (! CODING_REQUIRE_ENCODING (coding))
5468 {
5469 coding->consumed = STRING_BYTES (XSTRING (str));
5470 coding->consumed_char = XSTRING (str)->size;
5471 if (STRING_MULTIBYTE (str))
5472 {
5473 str = Fstring_as_unibyte (str);
5474 nocopy = 1;
5475 }
5476 coding->produced = STRING_BYTES (XSTRING (str));
5477 coding->produced_char = XSTRING (str)->size;
5478 return (nocopy ? str : Fcopy_sequence (str));
5479 }
5480
5481 if (coding->composing != COMPOSITION_DISABLED)
5482 coding_save_composition (coding, from, to, str);
5483
5484 /* Try to skip the heading and tailing ASCIIs. */
5485 if (coding->type != coding_type_ccl)
5486 {
5487 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5488 1);
5489 if (from == to_byte)
5490 return (nocopy ? str : Fcopy_sequence (str));
5491 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5492 }
5493
5494 len = encoding_buffer_size (coding, to_byte - from);
5495 allocate_conversion_buffer (buf, len);
5496
5497 consumed = consumed_char = produced = produced_char = 0;
5498 while (1)
5499 {
5500 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
5501 buf.data + produced, to_byte - from - consumed,
5502 buf.size - produced);
5503 consumed += coding->consumed;
5504 consumed_char += coding->consumed_char;
5505 produced += coding->produced;
5506 produced_char += coding->produced_char;
5507 if (result == CODING_FINISH_NORMAL
5508 || (result == CODING_FINISH_INSUFFICIENT_SRC
5509 && coding->consumed == 0))
5510 break;
5511 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
5512 extend_conversion_buffer (&buf);
5513 }
5514
5515 coding->consumed = consumed;
5516 coding->consumed_char = consumed_char;
5517 coding->produced = produced;
5518 coding->produced_char = produced_char;
5519
5520 newstr = make_uninit_string (produced + shrinked_bytes);
5521 if (from > 0)
5522 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5523 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5524 if (shrinked_bytes > from)
5525 bcopy (XSTRING (str)->data + to_byte,
5526 XSTRING (newstr)->data + from + produced,
5527 shrinked_bytes - from);
5528
5529 free_conversion_buffer (&buf);
5530 coding_free_composition_data (coding);
5531
5532 return newstr;
5533 }
5534
5535 \f
5536 #ifdef emacs
5537 /*** 8. Emacs Lisp library functions ***/
5538
5539 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
5540 "Return t if OBJECT is nil or a coding-system.\n\
5541 See the documentation of `make-coding-system' for information\n\
5542 about coding-system objects.")
5543 (obj)
5544 Lisp_Object obj;
5545 {
5546 if (NILP (obj))
5547 return Qt;
5548 if (!SYMBOLP (obj))
5549 return Qnil;
5550 /* Get coding-spec vector for OBJ. */
5551 obj = Fget (obj, Qcoding_system);
5552 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
5553 ? Qt : Qnil);
5554 }
5555
5556 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
5557 Sread_non_nil_coding_system, 1, 1, 0,
5558 "Read a coding system from the minibuffer, prompting with string PROMPT.")
5559 (prompt)
5560 Lisp_Object prompt;
5561 {
5562 Lisp_Object val;
5563 do
5564 {
5565 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
5566 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
5567 }
5568 while (XSTRING (val)->size == 0);
5569 return (Fintern (val, Qnil));
5570 }
5571
5572 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
5573 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
5574 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
5575 (prompt, default_coding_system)
5576 Lisp_Object prompt, default_coding_system;
5577 {
5578 Lisp_Object val;
5579 if (SYMBOLP (default_coding_system))
5580 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
5581 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
5582 Qt, Qnil, Qcoding_system_history,
5583 default_coding_system, Qnil);
5584 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
5585 }
5586
5587 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
5588 1, 1, 0,
5589 "Check validity of CODING-SYSTEM.\n\
5590 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
5591 It is valid if it is a symbol with a non-nil `coding-system' property.\n\
5592 The value of property should be a vector of length 5.")
5593 (coding_system)
5594 Lisp_Object coding_system;
5595 {
5596 CHECK_SYMBOL (coding_system, 0);
5597 if (!NILP (Fcoding_system_p (coding_system)))
5598 return coding_system;
5599 while (1)
5600 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5601 }
5602 \f
5603 Lisp_Object
5604 detect_coding_system (src, src_bytes, highest)
5605 unsigned char *src;
5606 int src_bytes, highest;
5607 {
5608 int coding_mask, eol_type;
5609 Lisp_Object val, tmp;
5610 int dummy;
5611
5612 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy);
5613 eol_type = detect_eol_type (src, src_bytes, &dummy);
5614 if (eol_type == CODING_EOL_INCONSISTENT)
5615 eol_type = CODING_EOL_UNDECIDED;
5616
5617 if (!coding_mask)
5618 {
5619 val = Qundecided;
5620 if (eol_type != CODING_EOL_UNDECIDED)
5621 {
5622 Lisp_Object val2;
5623 val2 = Fget (Qundecided, Qeol_type);
5624 if (VECTORP (val2))
5625 val = XVECTOR (val2)->contents[eol_type];
5626 }
5627 return (highest ? val : Fcons (val, Qnil));
5628 }
5629
5630 /* At first, gather possible coding systems in VAL. */
5631 val = Qnil;
5632 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
5633 {
5634 Lisp_Object category_val, category_index;
5635
5636 category_index = Fget (XCAR (tmp), Qcoding_category_index);
5637 category_val = Fsymbol_value (XCAR (tmp));
5638 if (!NILP (category_val)
5639 && NATNUMP (category_index)
5640 && (coding_mask & (1 << XFASTINT (category_index))))
5641 {
5642 val = Fcons (category_val, val);
5643 if (highest)
5644 break;
5645 }
5646 }
5647 if (!highest)
5648 val = Fnreverse (val);
5649
5650 /* Then, replace the elements with subsidiary coding systems. */
5651 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
5652 {
5653 if (eol_type != CODING_EOL_UNDECIDED
5654 && eol_type != CODING_EOL_INCONSISTENT)
5655 {
5656 Lisp_Object eol;
5657 eol = Fget (XCAR (tmp), Qeol_type);
5658 if (VECTORP (eol))
5659 XCAR (tmp) = XVECTOR (eol)->contents[eol_type];
5660 }
5661 }
5662 return (highest ? XCAR (val) : val);
5663 }
5664
5665 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
5666 2, 3, 0,
5667 "Detect coding system of the text in the region between START and END.\n\
5668 Return a list of possible coding systems ordered by priority.\n\
5669 \n\
5670 If only ASCII characters are found, it returns a list of single element\n\
5671 `undecided' or its subsidiary coding system according to a detected\n\
5672 end-of-line format.\n\
5673 \n\
5674 If optional argument HIGHEST is non-nil, return the coding system of\n\
5675 highest priority.")
5676 (start, end, highest)
5677 Lisp_Object start, end, highest;
5678 {
5679 int from, to;
5680 int from_byte, to_byte;
5681
5682 CHECK_NUMBER_COERCE_MARKER (start, 0);
5683 CHECK_NUMBER_COERCE_MARKER (end, 1);
5684
5685 validate_region (&start, &end);
5686 from = XINT (start), to = XINT (end);
5687 from_byte = CHAR_TO_BYTE (from);
5688 to_byte = CHAR_TO_BYTE (to);
5689
5690 if (from < GPT && to >= GPT)
5691 move_gap_both (to, to_byte);
5692
5693 return detect_coding_system (BYTE_POS_ADDR (from_byte),
5694 to_byte - from_byte,
5695 !NILP (highest));
5696 }
5697
5698 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
5699 1, 2, 0,
5700 "Detect coding system of the text in STRING.\n\
5701 Return a list of possible coding systems ordered by priority.\n\
5702 \n\
5703 If only ASCII characters are found, it returns a list of single element\n\
5704 `undecided' or its subsidiary coding system according to a detected\n\
5705 end-of-line format.\n\
5706 \n\
5707 If optional argument HIGHEST is non-nil, return the coding system of\n\
5708 highest priority.")
5709 (string, highest)
5710 Lisp_Object string, highest;
5711 {
5712 CHECK_STRING (string, 0);
5713
5714 return detect_coding_system (XSTRING (string)->data,
5715 STRING_BYTES (XSTRING (string)),
5716 !NILP (highest));
5717 }
5718
5719 /* Return an intersection of lists L1 and L2. */
5720
5721 static Lisp_Object
5722 intersection (l1, l2)
5723 Lisp_Object l1, l2;
5724 {
5725 Lisp_Object val;
5726
5727 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
5728 {
5729 if (!NILP (Fmemq (XCAR (l1), l2)))
5730 val = Fcons (XCAR (l1), val);
5731 }
5732 return val;
5733 }
5734
5735
5736 /* Subroutine for Fsafe_coding_systems_region_internal.
5737
5738 Return a list of coding systems that safely encode the multibyte
5739 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
5740 possible coding systems. If it is nil, it means that we have not
5741 yet found any coding systems.
5742
5743 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
5744 element of WORK_TABLE is set to t once the element is looked up.
5745
5746 If a non-ASCII single byte char is found, set
5747 *single_byte_char_found to 1. */
5748
5749 static Lisp_Object
5750 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
5751 unsigned char *p, *pend;
5752 Lisp_Object safe_codings, work_table;
5753 int *single_byte_char_found;
5754 {
5755 int c, len, idx;
5756 Lisp_Object val;
5757
5758 while (p < pend)
5759 {
5760 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
5761 p += len;
5762 if (ASCII_BYTE_P (c))
5763 /* We can ignore ASCII characters here. */
5764 continue;
5765 if (SINGLE_BYTE_CHAR_P (c))
5766 *single_byte_char_found = 1;
5767 if (NILP (safe_codings))
5768 continue;
5769 /* Check the safe coding systems for C. */
5770 val = char_table_ref_and_index (work_table, c, &idx);
5771 if (EQ (val, Qt))
5772 /* This element was already checked. Ignore it. */
5773 continue;
5774 /* Remember that we checked this element. */
5775 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
5776
5777 /* If there are some safe coding systems for C and we have
5778 already found the other set of coding systems for the
5779 different characters, get the intersection of them. */
5780 if (!EQ (safe_codings, Qt) && !NILP (val))
5781 val = intersection (safe_codings, val);
5782 safe_codings = val;
5783 }
5784 return safe_codings;
5785 }
5786
5787
5788 /* Return a list of coding systems that safely encode the text between
5789 START and END. If the text contains only ASCII or is unibyte,
5790 return t. */
5791
5792 DEFUN ("find-coding-systems-region-internal",
5793 Ffind_coding_systems_region_internal,
5794 Sfind_coding_systems_region_internal, 2, 2, 0,
5795 "Internal use only.")
5796 (start, end)
5797 Lisp_Object start, end;
5798 {
5799 Lisp_Object work_table, safe_codings;
5800 int non_ascii_p = 0;
5801 int single_byte_char_found = 0;
5802 unsigned char *p1, *p1end, *p2, *p2end, *p;
5803 Lisp_Object args[2];
5804
5805 if (STRINGP (start))
5806 {
5807 if (!STRING_MULTIBYTE (start))
5808 return Qt;
5809 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
5810 p2 = p2end = p1end;
5811 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
5812 non_ascii_p = 1;
5813 }
5814 else
5815 {
5816 int from, to, stop;
5817
5818 CHECK_NUMBER_COERCE_MARKER (start, 0);
5819 CHECK_NUMBER_COERCE_MARKER (end, 1);
5820 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
5821 args_out_of_range (start, end);
5822 if (NILP (current_buffer->enable_multibyte_characters))
5823 return Qt;
5824 from = CHAR_TO_BYTE (XINT (start));
5825 to = CHAR_TO_BYTE (XINT (end));
5826 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
5827 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
5828 if (stop == to)
5829 p2 = p2end = p1end;
5830 else
5831 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
5832 if (XINT (end) - XINT (start) != to - from)
5833 non_ascii_p = 1;
5834 }
5835
5836 if (!non_ascii_p)
5837 {
5838 /* We are sure that the text contains no multibyte character.
5839 Check if it contains eight-bit-graphic. */
5840 p = p1;
5841 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
5842 if (p == p1end)
5843 {
5844 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
5845 if (p == p2end)
5846 return Qt;
5847 }
5848 }
5849
5850 /* The text contains non-ASCII characters. */
5851 work_table = Fcopy_sequence (Vchar_coding_system_table);
5852 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
5853 &single_byte_char_found);
5854 if (p2 < p2end)
5855 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
5856 &single_byte_char_found);
5857
5858 if (!single_byte_char_found)
5859 {
5860 /* Append generic coding systems. */
5861 Lisp_Object args[2];
5862 args[0] = safe_codings;
5863 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
5864 make_number (0));
5865 safe_codings = Fappend (2, args);
5866 }
5867 else
5868 safe_codings = Fcons (Qraw_text, Fcons (Qemacs_mule, safe_codings));
5869 return safe_codings;
5870 }
5871
5872
5873 Lisp_Object
5874 code_convert_region1 (start, end, coding_system, encodep)
5875 Lisp_Object start, end, coding_system;
5876 int encodep;
5877 {
5878 struct coding_system coding;
5879 int from, to, len;
5880
5881 CHECK_NUMBER_COERCE_MARKER (start, 0);
5882 CHECK_NUMBER_COERCE_MARKER (end, 1);
5883 CHECK_SYMBOL (coding_system, 2);
5884
5885 validate_region (&start, &end);
5886 from = XFASTINT (start);
5887 to = XFASTINT (end);
5888
5889 if (NILP (coding_system))
5890 return make_number (to - from);
5891
5892 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5893 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5894
5895 coding.mode |= CODING_MODE_LAST_BLOCK;
5896 coding.src_multibyte = coding.dst_multibyte
5897 = !NILP (current_buffer->enable_multibyte_characters);
5898 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
5899 &coding, encodep, 1);
5900 Vlast_coding_system_used = coding.symbol;
5901 return make_number (coding.produced_char);
5902 }
5903
5904 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
5905 3, 3, "r\nzCoding system: ",
5906 "Decode the current region by specified coding system.\n\
5907 When called from a program, takes three arguments:\n\
5908 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
5909 This function sets `last-coding-system-used' to the precise coding system\n\
5910 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5911 not fully specified.)\n\
5912 It returns the length of the decoded text.")
5913 (start, end, coding_system)
5914 Lisp_Object start, end, coding_system;
5915 {
5916 return code_convert_region1 (start, end, coding_system, 0);
5917 }
5918
5919 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
5920 3, 3, "r\nzCoding system: ",
5921 "Encode the current region by specified coding system.\n\
5922 When called from a program, takes three arguments:\n\
5923 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
5924 This function sets `last-coding-system-used' to the precise coding system\n\
5925 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5926 not fully specified.)\n\
5927 It returns the length of the encoded text.")
5928 (start, end, coding_system)
5929 Lisp_Object start, end, coding_system;
5930 {
5931 return code_convert_region1 (start, end, coding_system, 1);
5932 }
5933
5934 Lisp_Object
5935 code_convert_string1 (string, coding_system, nocopy, encodep)
5936 Lisp_Object string, coding_system, nocopy;
5937 int encodep;
5938 {
5939 struct coding_system coding;
5940
5941 CHECK_STRING (string, 0);
5942 CHECK_SYMBOL (coding_system, 1);
5943
5944 if (NILP (coding_system))
5945 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
5946
5947 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
5948 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
5949
5950 coding.mode |= CODING_MODE_LAST_BLOCK;
5951 string = (encodep
5952 ? encode_coding_string (string, &coding, !NILP (nocopy))
5953 : decode_coding_string (string, &coding, !NILP (nocopy)));
5954 Vlast_coding_system_used = coding.symbol;
5955
5956 return string;
5957 }
5958
5959 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
5960 2, 3, 0,
5961 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
5962 Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
5963 if the decoding operation is trivial.\n\
5964 This function sets `last-coding-system-used' to the precise coding system\n\
5965 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5966 not fully specified.)")
5967 (string, coding_system, nocopy)
5968 Lisp_Object string, coding_system, nocopy;
5969 {
5970 return code_convert_string1 (string, coding_system, nocopy, 0);
5971 }
5972
5973 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
5974 2, 3, 0,
5975 "Encode STRING to CODING-SYSTEM, and return the result.\n\
5976 Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
5977 if the encoding operation is trivial.\n\
5978 This function sets `last-coding-system-used' to the precise coding system\n\
5979 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
5980 not fully specified.)")
5981 (string, coding_system, nocopy)
5982 Lisp_Object string, coding_system, nocopy;
5983 {
5984 return code_convert_string1 (string, coding_system, nocopy, 1);
5985 }
5986
5987 /* Encode or decode STRING according to CODING_SYSTEM.
5988 Do not set Vlast_coding_system_used.
5989
5990 This function is called only from macros DECODE_FILE and
5991 ENCODE_FILE, thus we ignore character composition. */
5992
5993 Lisp_Object
5994 code_convert_string_norecord (string, coding_system, encodep)
5995 Lisp_Object string, coding_system;
5996 int encodep;
5997 {
5998 struct coding_system coding;
5999
6000 CHECK_STRING (string, 0);
6001 CHECK_SYMBOL (coding_system, 1);
6002
6003 if (NILP (coding_system))
6004 return string;
6005
6006 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6007 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6008
6009 coding.composing = COMPOSITION_DISABLED;
6010 coding.mode |= CODING_MODE_LAST_BLOCK;
6011 return (encodep
6012 ? encode_coding_string (string, &coding, 1)
6013 : decode_coding_string (string, &coding, 1));
6014 }
6015 \f
6016 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6017 "Decode a Japanese character which has CODE in shift_jis encoding.\n\
6018 Return the corresponding character.")
6019 (code)
6020 Lisp_Object code;
6021 {
6022 unsigned char c1, c2, s1, s2;
6023 Lisp_Object val;
6024
6025 CHECK_NUMBER (code, 0);
6026 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6027 if (s1 == 0)
6028 {
6029 if (s2 < 0x80)
6030 XSETFASTINT (val, s2);
6031 else if (s2 >= 0xA0 || s2 <= 0xDF)
6032 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6033 else
6034 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6035 }
6036 else
6037 {
6038 if ((s1 < 0x80 || s1 > 0x9F && s1 < 0xE0 || s1 > 0xEF)
6039 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6040 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6041 DECODE_SJIS (s1, s2, c1, c2);
6042 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6043 }
6044 return val;
6045 }
6046
6047 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6048 "Encode a Japanese character CHAR to shift_jis encoding.\n\
6049 Return the corresponding code in SJIS.")
6050 (ch)
6051 Lisp_Object ch;
6052 {
6053 int charset, c1, c2, s1, s2;
6054 Lisp_Object val;
6055
6056 CHECK_NUMBER (ch, 0);
6057 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6058 if (charset == CHARSET_ASCII)
6059 {
6060 val = ch;
6061 }
6062 else if (charset == charset_jisx0208
6063 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6064 {
6065 ENCODE_SJIS (c1, c2, s1, s2);
6066 XSETFASTINT (val, (s1 << 8) | s2);
6067 }
6068 else if (charset == charset_katakana_jisx0201
6069 && c1 > 0x20 && c2 < 0xE0)
6070 {
6071 XSETFASTINT (val, c1 | 0x80);
6072 }
6073 else
6074 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6075 return val;
6076 }
6077
6078 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6079 "Decode a Big5 character which has CODE in BIG5 coding system.\n\
6080 Return the corresponding character.")
6081 (code)
6082 Lisp_Object code;
6083 {
6084 int charset;
6085 unsigned char b1, b2, c1, c2;
6086 Lisp_Object val;
6087
6088 CHECK_NUMBER (code, 0);
6089 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6090 if (b1 == 0)
6091 {
6092 if (b2 >= 0x80)
6093 error ("Invalid BIG5 code: %x", XFASTINT (code));
6094 val = code;
6095 }
6096 else
6097 {
6098 if ((b1 < 0xA1 || b1 > 0xFE)
6099 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6100 error ("Invalid BIG5 code: %x", XFASTINT (code));
6101 DECODE_BIG5 (b1, b2, charset, c1, c2);
6102 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6103 }
6104 return val;
6105 }
6106
6107 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6108 "Encode the Big5 character CHAR to BIG5 coding system.\n\
6109 Return the corresponding character code in Big5.")
6110 (ch)
6111 Lisp_Object ch;
6112 {
6113 int charset, c1, c2, b1, b2;
6114 Lisp_Object val;
6115
6116 CHECK_NUMBER (ch, 0);
6117 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6118 if (charset == CHARSET_ASCII)
6119 {
6120 val = ch;
6121 }
6122 else if ((charset == charset_big5_1
6123 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6124 || (charset == charset_big5_2
6125 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6126 {
6127 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6128 XSETFASTINT (val, (b1 << 8) | b2);
6129 }
6130 else
6131 error ("Can't encode to Big5: %d", XFASTINT (ch));
6132 return val;
6133 }
6134 \f
6135 DEFUN ("set-terminal-coding-system-internal",
6136 Fset_terminal_coding_system_internal,
6137 Sset_terminal_coding_system_internal, 1, 1, 0, "")
6138 (coding_system)
6139 Lisp_Object coding_system;
6140 {
6141 CHECK_SYMBOL (coding_system, 0);
6142 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6143 /* We had better not send unsafe characters to terminal. */
6144 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6145 /* Characer composition should be disabled. */
6146 terminal_coding.composing = COMPOSITION_DISABLED;
6147 terminal_coding.src_multibyte = 1;
6148 terminal_coding.dst_multibyte = 0;
6149 return Qnil;
6150 }
6151
6152 DEFUN ("set-safe-terminal-coding-system-internal",
6153 Fset_safe_terminal_coding_system_internal,
6154 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
6155 (coding_system)
6156 Lisp_Object coding_system;
6157 {
6158 CHECK_SYMBOL (coding_system, 0);
6159 setup_coding_system (Fcheck_coding_system (coding_system),
6160 &safe_terminal_coding);
6161 /* Characer composition should be disabled. */
6162 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6163 safe_terminal_coding.src_multibyte = 1;
6164 safe_terminal_coding.dst_multibyte = 0;
6165 return Qnil;
6166 }
6167
6168 DEFUN ("terminal-coding-system",
6169 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6170 "Return coding system specified for terminal output.")
6171 ()
6172 {
6173 return terminal_coding.symbol;
6174 }
6175
6176 DEFUN ("set-keyboard-coding-system-internal",
6177 Fset_keyboard_coding_system_internal,
6178 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
6179 (coding_system)
6180 Lisp_Object coding_system;
6181 {
6182 CHECK_SYMBOL (coding_system, 0);
6183 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6184 /* Characer composition should be disabled. */
6185 keyboard_coding.composing = COMPOSITION_DISABLED;
6186 return Qnil;
6187 }
6188
6189 DEFUN ("keyboard-coding-system",
6190 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6191 "Return coding system specified for decoding keyboard input.")
6192 ()
6193 {
6194 return keyboard_coding.symbol;
6195 }
6196
6197 \f
6198 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6199 Sfind_operation_coding_system, 1, MANY, 0,
6200 "Choose a coding system for an operation based on the target name.\n\
6201 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).\n\
6202 DECODING-SYSTEM is the coding system to use for decoding\n\
6203 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
6204 for encoding (in case OPERATION does encoding).\n\
6205 \n\
6206 The first argument OPERATION specifies an I/O primitive:\n\
6207 For file I/O, `insert-file-contents' or `write-region'.\n\
6208 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
6209 For network I/O, `open-network-stream'.\n\
6210 \n\
6211 The remaining arguments should be the same arguments that were passed\n\
6212 to the primitive. Depending on which primitive, one of those arguments\n\
6213 is selected as the TARGET. For example, if OPERATION does file I/O,\n\
6214 whichever argument specifies the file name is TARGET.\n\
6215 \n\
6216 TARGET has a meaning which depends on OPERATION:\n\
6217 For file I/O, TARGET is a file name.\n\
6218 For process I/O, TARGET is a process name.\n\
6219 For network I/O, TARGET is a service name or a port number\n\
6220 \n\
6221 This function looks up what specified for TARGET in,\n\
6222 `file-coding-system-alist', `process-coding-system-alist',\n\
6223 or `network-coding-system-alist' depending on OPERATION.\n\
6224 They may specify a coding system, a cons of coding systems,\n\
6225 or a function symbol to call.\n\
6226 In the last case, we call the function with one argument,\n\
6227 which is a list of all the arguments given to this function.")
6228 (nargs, args)
6229 int nargs;
6230 Lisp_Object *args;
6231 {
6232 Lisp_Object operation, target_idx, target, val;
6233 register Lisp_Object chain;
6234
6235 if (nargs < 2)
6236 error ("Too few arguments");
6237 operation = args[0];
6238 if (!SYMBOLP (operation)
6239 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6240 error ("Invalid first arguement");
6241 if (nargs < 1 + XINT (target_idx))
6242 error ("Too few arguments for operation: %s",
6243 XSYMBOL (operation)->name->data);
6244 target = args[XINT (target_idx) + 1];
6245 if (!(STRINGP (target)
6246 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6247 error ("Invalid %dth argument", XINT (target_idx) + 1);
6248
6249 chain = ((EQ (operation, Qinsert_file_contents)
6250 || EQ (operation, Qwrite_region))
6251 ? Vfile_coding_system_alist
6252 : (EQ (operation, Qopen_network_stream)
6253 ? Vnetwork_coding_system_alist
6254 : Vprocess_coding_system_alist));
6255 if (NILP (chain))
6256 return Qnil;
6257
6258 for (; CONSP (chain); chain = XCDR (chain))
6259 {
6260 Lisp_Object elt;
6261 elt = XCAR (chain);
6262
6263 if (CONSP (elt)
6264 && ((STRINGP (target)
6265 && STRINGP (XCAR (elt))
6266 && fast_string_match (XCAR (elt), target) >= 0)
6267 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6268 {
6269 val = XCDR (elt);
6270 /* Here, if VAL is both a valid coding system and a valid
6271 function symbol, we return VAL as a coding system. */
6272 if (CONSP (val))
6273 return val;
6274 if (! SYMBOLP (val))
6275 return Qnil;
6276 if (! NILP (Fcoding_system_p (val)))
6277 return Fcons (val, val);
6278 if (! NILP (Ffboundp (val)))
6279 {
6280 val = call1 (val, Flist (nargs, args));
6281 if (CONSP (val))
6282 return val;
6283 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6284 return Fcons (val, val);
6285 }
6286 return Qnil;
6287 }
6288 }
6289 return Qnil;
6290 }
6291
6292 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6293 Supdate_coding_systems_internal, 0, 0, 0,
6294 "Update internal database for ISO2022 and CCL based coding systems.\n\
6295 When values of any coding categories are changed, you must\n\
6296 call this function")
6297 ()
6298 {
6299 int i;
6300
6301 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6302 {
6303 Lisp_Object val;
6304
6305 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[i])->value;
6306 if (!NILP (val))
6307 {
6308 if (! coding_system_table[i])
6309 coding_system_table[i] = ((struct coding_system *)
6310 xmalloc (sizeof (struct coding_system)));
6311 setup_coding_system (val, coding_system_table[i]);
6312 }
6313 else if (coding_system_table[i])
6314 {
6315 xfree (coding_system_table[i]);
6316 coding_system_table[i] = NULL;
6317 }
6318 }
6319
6320 return Qnil;
6321 }
6322
6323 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6324 Sset_coding_priority_internal, 0, 0, 0,
6325 "Update internal database for the current value of `coding-category-list'.\n\
6326 This function is internal use only.")
6327 ()
6328 {
6329 int i = 0, idx;
6330 Lisp_Object val;
6331
6332 val = Vcoding_category_list;
6333
6334 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6335 {
6336 if (! SYMBOLP (XCAR (val)))
6337 break;
6338 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6339 if (idx >= CODING_CATEGORY_IDX_MAX)
6340 break;
6341 coding_priorities[i++] = (1 << idx);
6342 val = XCDR (val);
6343 }
6344 /* If coding-category-list is valid and contains all coding
6345 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6346 the following code saves Emacs from crashing. */
6347 while (i < CODING_CATEGORY_IDX_MAX)
6348 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6349
6350 return Qnil;
6351 }
6352
6353 #endif /* emacs */
6354
6355 \f
6356 /*** 9. Post-amble ***/
6357
6358 void
6359 init_coding_once ()
6360 {
6361 int i;
6362
6363 /* Emacs' internal format specific initialize routine. */
6364 for (i = 0; i <= 0x20; i++)
6365 emacs_code_class[i] = EMACS_control_code;
6366 emacs_code_class[0x0A] = EMACS_linefeed_code;
6367 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6368 for (i = 0x21 ; i < 0x7F; i++)
6369 emacs_code_class[i] = EMACS_ascii_code;
6370 emacs_code_class[0x7F] = EMACS_control_code;
6371 for (i = 0x80; i < 0xFF; i++)
6372 emacs_code_class[i] = EMACS_invalid_code;
6373 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6374 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6375 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6376 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6377
6378 /* ISO2022 specific initialize routine. */
6379 for (i = 0; i < 0x20; i++)
6380 iso_code_class[i] = ISO_control_0;
6381 for (i = 0x21; i < 0x7F; i++)
6382 iso_code_class[i] = ISO_graphic_plane_0;
6383 for (i = 0x80; i < 0xA0; i++)
6384 iso_code_class[i] = ISO_control_1;
6385 for (i = 0xA1; i < 0xFF; i++)
6386 iso_code_class[i] = ISO_graphic_plane_1;
6387 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6388 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6389 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6390 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6391 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6392 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6393 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6394 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6395 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6396 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6397
6398 setup_coding_system (Qnil, &keyboard_coding);
6399 setup_coding_system (Qnil, &terminal_coding);
6400 setup_coding_system (Qnil, &safe_terminal_coding);
6401 setup_coding_system (Qnil, &default_buffer_file_coding);
6402
6403 bzero (coding_system_table, sizeof coding_system_table);
6404
6405 bzero (ascii_skip_code, sizeof ascii_skip_code);
6406 for (i = 0; i < 128; i++)
6407 ascii_skip_code[i] = 1;
6408
6409 #if defined (MSDOS) || defined (WINDOWSNT)
6410 system_eol_type = CODING_EOL_CRLF;
6411 #else
6412 system_eol_type = CODING_EOL_LF;
6413 #endif
6414
6415 inhibit_pre_post_conversion = 0;
6416 }
6417
6418 #ifdef emacs
6419
6420 void
6421 syms_of_coding ()
6422 {
6423 Qtarget_idx = intern ("target-idx");
6424 staticpro (&Qtarget_idx);
6425
6426 Qcoding_system_history = intern ("coding-system-history");
6427 staticpro (&Qcoding_system_history);
6428 Fset (Qcoding_system_history, Qnil);
6429
6430 /* Target FILENAME is the first argument. */
6431 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
6432 /* Target FILENAME is the third argument. */
6433 Fput (Qwrite_region, Qtarget_idx, make_number (2));
6434
6435 Qcall_process = intern ("call-process");
6436 staticpro (&Qcall_process);
6437 /* Target PROGRAM is the first argument. */
6438 Fput (Qcall_process, Qtarget_idx, make_number (0));
6439
6440 Qcall_process_region = intern ("call-process-region");
6441 staticpro (&Qcall_process_region);
6442 /* Target PROGRAM is the third argument. */
6443 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
6444
6445 Qstart_process = intern ("start-process");
6446 staticpro (&Qstart_process);
6447 /* Target PROGRAM is the third argument. */
6448 Fput (Qstart_process, Qtarget_idx, make_number (2));
6449
6450 Qopen_network_stream = intern ("open-network-stream");
6451 staticpro (&Qopen_network_stream);
6452 /* Target SERVICE is the fourth argument. */
6453 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
6454
6455 Qcoding_system = intern ("coding-system");
6456 staticpro (&Qcoding_system);
6457
6458 Qeol_type = intern ("eol-type");
6459 staticpro (&Qeol_type);
6460
6461 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
6462 staticpro (&Qbuffer_file_coding_system);
6463
6464 Qpost_read_conversion = intern ("post-read-conversion");
6465 staticpro (&Qpost_read_conversion);
6466
6467 Qpre_write_conversion = intern ("pre-write-conversion");
6468 staticpro (&Qpre_write_conversion);
6469
6470 Qno_conversion = intern ("no-conversion");
6471 staticpro (&Qno_conversion);
6472
6473 Qundecided = intern ("undecided");
6474 staticpro (&Qundecided);
6475
6476 Qcoding_system_p = intern ("coding-system-p");
6477 staticpro (&Qcoding_system_p);
6478
6479 Qcoding_system_error = intern ("coding-system-error");
6480 staticpro (&Qcoding_system_error);
6481
6482 Fput (Qcoding_system_error, Qerror_conditions,
6483 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
6484 Fput (Qcoding_system_error, Qerror_message,
6485 build_string ("Invalid coding system"));
6486
6487 Qcoding_category = intern ("coding-category");
6488 staticpro (&Qcoding_category);
6489 Qcoding_category_index = intern ("coding-category-index");
6490 staticpro (&Qcoding_category_index);
6491
6492 Vcoding_category_table
6493 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
6494 staticpro (&Vcoding_category_table);
6495 {
6496 int i;
6497 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
6498 {
6499 XVECTOR (Vcoding_category_table)->contents[i]
6500 = intern (coding_category_name[i]);
6501 Fput (XVECTOR (Vcoding_category_table)->contents[i],
6502 Qcoding_category_index, make_number (i));
6503 }
6504 }
6505
6506 Qtranslation_table = intern ("translation-table");
6507 staticpro (&Qtranslation_table);
6508 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
6509
6510 Qtranslation_table_id = intern ("translation-table-id");
6511 staticpro (&Qtranslation_table_id);
6512
6513 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
6514 staticpro (&Qtranslation_table_for_decode);
6515
6516 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
6517 staticpro (&Qtranslation_table_for_encode);
6518
6519 Qsafe_chars = intern ("safe-chars");
6520 staticpro (&Qsafe_chars);
6521
6522 Qchar_coding_system = intern ("char-coding-system");
6523 staticpro (&Qchar_coding_system);
6524
6525 /* Intern this now in case it isn't already done.
6526 Setting this variable twice is harmless.
6527 But don't staticpro it here--that is done in alloc.c. */
6528 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6529 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
6530 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (1));
6531
6532 Qvalid_codes = intern ("valid-codes");
6533 staticpro (&Qvalid_codes);
6534
6535 Qemacs_mule = intern ("emacs-mule");
6536 staticpro (&Qemacs_mule);
6537
6538 Qraw_text = intern ("raw-text");
6539 staticpro (&Qraw_text);
6540
6541 defsubr (&Scoding_system_p);
6542 defsubr (&Sread_coding_system);
6543 defsubr (&Sread_non_nil_coding_system);
6544 defsubr (&Scheck_coding_system);
6545 defsubr (&Sdetect_coding_region);
6546 defsubr (&Sdetect_coding_string);
6547 defsubr (&Sfind_coding_systems_region_internal);
6548 defsubr (&Sdecode_coding_region);
6549 defsubr (&Sencode_coding_region);
6550 defsubr (&Sdecode_coding_string);
6551 defsubr (&Sencode_coding_string);
6552 defsubr (&Sdecode_sjis_char);
6553 defsubr (&Sencode_sjis_char);
6554 defsubr (&Sdecode_big5_char);
6555 defsubr (&Sencode_big5_char);
6556 defsubr (&Sset_terminal_coding_system_internal);
6557 defsubr (&Sset_safe_terminal_coding_system_internal);
6558 defsubr (&Sterminal_coding_system);
6559 defsubr (&Sset_keyboard_coding_system_internal);
6560 defsubr (&Skeyboard_coding_system);
6561 defsubr (&Sfind_operation_coding_system);
6562 defsubr (&Supdate_coding_systems_internal);
6563 defsubr (&Sset_coding_priority_internal);
6564
6565 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
6566 "List of coding systems.\n\
6567 \n\
6568 Do not alter the value of this variable manually. This variable should be\n\
6569 updated by the functions `make-coding-system' and\n\
6570 `define-coding-system-alias'.");
6571 Vcoding_system_list = Qnil;
6572
6573 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
6574 "Alist of coding system names.\n\
6575 Each element is one element list of coding system name.\n\
6576 This variable is given to `completing-read' as TABLE argument.\n\
6577 \n\
6578 Do not alter the value of this variable manually. This variable should be\n\
6579 updated by the functions `make-coding-system' and\n\
6580 `define-coding-system-alias'.");
6581 Vcoding_system_alist = Qnil;
6582
6583 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
6584 "List of coding-categories (symbols) ordered by priority.");
6585 {
6586 int i;
6587
6588 Vcoding_category_list = Qnil;
6589 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
6590 Vcoding_category_list
6591 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
6592 Vcoding_category_list);
6593 }
6594
6595 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
6596 "Specify the coding system for read operations.\n\
6597 It is useful to bind this variable with `let', but do not set it globally.\n\
6598 If the value is a coding system, it is used for decoding on read operation.\n\
6599 If not, an appropriate element is used from one of the coding system alists:\n\
6600 There are three such tables, `file-coding-system-alist',\n\
6601 `process-coding-system-alist', and `network-coding-system-alist'.");
6602 Vcoding_system_for_read = Qnil;
6603
6604 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
6605 "Specify the coding system for write operations.\n\
6606 Programs bind this variable with `let', but you should not set it globally.\n\
6607 If the value is a coding system, it is used for encoding of output,\n\
6608 when writing it to a file and when sending it to a file or subprocess.\n\
6609 \n\
6610 If this does not specify a coding system, an appropriate element\n\
6611 is used from one of the coding system alists:\n\
6612 There are three such tables, `file-coding-system-alist',\n\
6613 `process-coding-system-alist', and `network-coding-system-alist'.\n\
6614 For output to files, if the above procedure does not specify a coding system,\n\
6615 the value of `buffer-file-coding-system' is used.");
6616 Vcoding_system_for_write = Qnil;
6617
6618 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
6619 "Coding system used in the latest file or process I/O.");
6620 Vlast_coding_system_used = Qnil;
6621
6622 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
6623 "*Non-nil means always inhibit code conversion of end-of-line format.\n\
6624 See info node `Coding Systems' and info node `Text and Binary' concerning\n\
6625 such conversion.");
6626 inhibit_eol_conversion = 0;
6627
6628 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
6629 "Non-nil means process buffer inherits coding system of process output.\n\
6630 Bind it to t if the process output is to be treated as if it were a file\n\
6631 read from some filesystem.");
6632 inherit_process_coding_system = 0;
6633
6634 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
6635 "Alist to decide a coding system to use for a file I/O operation.\n\
6636 The format is ((PATTERN . VAL) ...),\n\
6637 where PATTERN is a regular expression matching a file name,\n\
6638 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
6639 If VAL is a coding system, it is used for both decoding and encoding\n\
6640 the file contents.\n\
6641 If VAL is a cons of coding systems, the car part is used for decoding,\n\
6642 and the cdr part is used for encoding.\n\
6643 If VAL is a function symbol, the function must return a coding system\n\
6644 or a cons of coding systems which are used as above.\n\
6645 \n\
6646 See also the function `find-operation-coding-system'\n\
6647 and the variable `auto-coding-alist'.");
6648 Vfile_coding_system_alist = Qnil;
6649
6650 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
6651 "Alist to decide a coding system to use for a process I/O operation.\n\
6652 The format is ((PATTERN . VAL) ...),\n\
6653 where PATTERN is a regular expression matching a program name,\n\
6654 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
6655 If VAL is a coding system, it is used for both decoding what received\n\
6656 from the program and encoding what sent to the program.\n\
6657 If VAL is a cons of coding systems, the car part is used for decoding,\n\
6658 and the cdr part is used for encoding.\n\
6659 If VAL is a function symbol, the function must return a coding system\n\
6660 or a cons of coding systems which are used as above.\n\
6661 \n\
6662 See also the function `find-operation-coding-system'.");
6663 Vprocess_coding_system_alist = Qnil;
6664
6665 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
6666 "Alist to decide a coding system to use for a network I/O operation.\n\
6667 The format is ((PATTERN . VAL) ...),\n\
6668 where PATTERN is a regular expression matching a network service name\n\
6669 or is a port number to connect to,\n\
6670 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
6671 If VAL is a coding system, it is used for both decoding what received\n\
6672 from the network stream and encoding what sent to the network stream.\n\
6673 If VAL is a cons of coding systems, the car part is used for decoding,\n\
6674 and the cdr part is used for encoding.\n\
6675 If VAL is a function symbol, the function must return a coding system\n\
6676 or a cons of coding systems which are used as above.\n\
6677 \n\
6678 See also the function `find-operation-coding-system'.");
6679 Vnetwork_coding_system_alist = Qnil;
6680
6681 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
6682 "Coding system to use with system messages.");
6683 Vlocale_coding_system = Qnil;
6684
6685 /* The eol mnemonics are reset in startup.el system-dependently. */
6686 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
6687 "*String displayed in mode line for UNIX-like (LF) end-of-line format.");
6688 eol_mnemonic_unix = build_string (":");
6689
6690 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
6691 "*String displayed in mode line for DOS-like (CRLF) end-of-line format.");
6692 eol_mnemonic_dos = build_string ("\\");
6693
6694 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
6695 "*String displayed in mode line for MAC-like (CR) end-of-line format.");
6696 eol_mnemonic_mac = build_string ("/");
6697
6698 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
6699 "*String displayed in mode line when end-of-line format is not yet determined.");
6700 eol_mnemonic_undecided = build_string (":");
6701
6702 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
6703 "*Non-nil enables character translation while encoding and decoding.");
6704 Venable_character_translation = Qt;
6705
6706 DEFVAR_LISP ("standard-translation-table-for-decode",
6707 &Vstandard_translation_table_for_decode,
6708 "Table for translating characters while decoding.");
6709 Vstandard_translation_table_for_decode = Qnil;
6710
6711 DEFVAR_LISP ("standard-translation-table-for-encode",
6712 &Vstandard_translation_table_for_encode,
6713 "Table for translationg characters while encoding.");
6714 Vstandard_translation_table_for_encode = Qnil;
6715
6716 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
6717 "Alist of charsets vs revision numbers.\n\
6718 While encoding, if a charset (car part of an element) is found,\n\
6719 designate it with the escape sequence identifing revision (cdr part of the element).");
6720 Vcharset_revision_alist = Qnil;
6721
6722 DEFVAR_LISP ("default-process-coding-system",
6723 &Vdefault_process_coding_system,
6724 "Cons of coding systems used for process I/O by default.\n\
6725 The car part is used for decoding a process output,\n\
6726 the cdr part is used for encoding a text to be sent to a process.");
6727 Vdefault_process_coding_system = Qnil;
6728
6729 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
6730 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
6731 This is a vector of length 256.\n\
6732 If Nth element is non-nil, the existence of code N in a file\n\
6733 \(or output of subprocess) doesn't prevent it to be detected as\n\
6734 a coding system of ISO 2022 variant which has a flag\n\
6735 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
6736 or reading output of a subprocess.\n\
6737 Only 128th through 159th elements has a meaning.");
6738 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
6739
6740 DEFVAR_LISP ("select-safe-coding-system-function",
6741 &Vselect_safe_coding_system_function,
6742 "Function to call to select safe coding system for encoding a text.\n\
6743 \n\
6744 If set, this function is called to force a user to select a proper\n\
6745 coding system which can encode the text in the case that a default\n\
6746 coding system used in each operation can't encode the text.\n\
6747 \n\
6748 The default value is `select-safe-coding-system' (which see).");
6749 Vselect_safe_coding_system_function = Qnil;
6750
6751 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
6752 "Char-table containing safe coding systems of each characters.\n\
6753 Each element doesn't include such generic coding systems that can\n\
6754 encode any characters. They are in the first extra slot.");
6755 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
6756
6757 DEFVAR_BOOL ("inhibit-iso-escape-detection",
6758 &inhibit_iso_escape_detection,
6759 "If non-nil, Emacs ignores ISO2022's escape sequence on code detection.\n\
6760 \n\
6761 By default, on reading a file, Emacs tries to detect how the text is\n\
6762 encoded. This code detection is sensitive to escape sequences. If\n\
6763 the sequence is valid as ISO2022, the code is determined as one of\n\
6764 the ISO2022 encodings, and the file is decoded by the corresponding\n\
6765 coding system (e.g. `iso-2022-7bit').\n\
6766 \n\
6767 However, there may be a case that you want to read escape sequences in\n\
6768 a file as is. In such a case, you can set this variable to non-nil.\n\
6769 Then, as the code detection ignores any escape sequences, no file is\n\
6770 detected as encoded in some ISO2022 encoding. The result is that all\n\
6771 escape sequences become visible in a buffer.\n\
6772 \n\
6773 The default value is nil, and it is strongly recommended not to change\n\
6774 it. That is because many Emacs Lisp source files that contain\n\
6775 non-ASCII characters are encoded by the coding system `iso-2022-7bit'\n\
6776 in Emacs's distribution, and they won't be decoded correctly on\n\
6777 reading if you suppress escape sequence detection.\n\
6778 \n\
6779 The other way to read escape sequences in a file without decoding is\n\
6780 to explicitly specify some coding system that doesn't use ISO2022's\n\
6781 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument].");
6782 inhibit_iso_escape_detection = 0;
6783 }
6784
6785 char *
6786 emacs_strerror (error_number)
6787 int error_number;
6788 {
6789 char *str;
6790
6791 synchronize_system_messages_locale ();
6792 str = strerror (error_number);
6793
6794 if (! NILP (Vlocale_coding_system))
6795 {
6796 Lisp_Object dec = code_convert_string_norecord (build_string (str),
6797 Vlocale_coding_system,
6798 0);
6799 str = (char *) XSTRING (dec)->data;
6800 }
6801
6802 return str;
6803 }
6804
6805 #endif /* emacs */
6806