(Fkey_description): Use empty_string.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* Keymap mapping ASCII function key sequences onto their preferred forms.
79 Initialized by the terminal-specific lisp files. See DEFVAR for more
80 documentation. */
81 Lisp_Object Vfunction_key_map;
82
83 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
84 Lisp_Object Vkey_translation_map;
85
86 /* A list of all commands given new bindings since a certain time
87 when nil was stored here.
88 This is used to speed up recomputation of menu key equivalents
89 when Emacs starts up. t means don't record anything here. */
90 Lisp_Object Vdefine_key_rebound_commands;
91
92 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
93
94 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
95 in a string key sequence is equivalent to prefixing with this
96 character. */
97 extern Lisp_Object meta_prefix_char;
98
99 extern Lisp_Object Voverriding_local_map;
100
101 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
102 static Lisp_Object where_is_cache;
103 /* Which keymaps are reverse-stored in the cache. */
104 static Lisp_Object where_is_cache_keymaps;
105
106 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
107 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
108
109 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
110 static void describe_command P_ ((Lisp_Object));
111 static void describe_translation P_ ((Lisp_Object));
112 static void describe_map P_ ((Lisp_Object, Lisp_Object,
113 void (*) P_ ((Lisp_Object)),
114 int, Lisp_Object, Lisp_Object*, int));
115 \f
116 /* Keymap object support - constructors and predicates. */
117
118 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
119 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
120 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
121 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
122 mouse events, and any other things that appear in the input stream.\n\
123 All entries in it are initially nil, meaning \"command undefined\".\n\n\
124 The optional arg STRING supplies a menu name for the keymap\n\
125 in case you use it as a menu with `x-popup-menu'.")
126 (string)
127 Lisp_Object string;
128 {
129 Lisp_Object tail;
130 if (!NILP (string))
131 tail = Fcons (string, Qnil);
132 else
133 tail = Qnil;
134 return Fcons (Qkeymap,
135 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
136 }
137
138 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
139 "Construct and return a new sparse keymap.\n\
140 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
141 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
142 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
143 Initially the alist is nil.\n\n\
144 The optional arg STRING supplies a menu name for the keymap\n\
145 in case you use it as a menu with `x-popup-menu'.")
146 (string)
147 Lisp_Object string;
148 {
149 if (!NILP (string))
150 return Fcons (Qkeymap, Fcons (string, Qnil));
151 return Fcons (Qkeymap, Qnil);
152 }
153
154 /* This function is used for installing the standard key bindings
155 at initialization time.
156
157 For example:
158
159 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
160
161 void
162 initial_define_key (keymap, key, defname)
163 Lisp_Object keymap;
164 int key;
165 char *defname;
166 {
167 store_in_keymap (keymap, make_number (key), intern (defname));
168 }
169
170 void
171 initial_define_lispy_key (keymap, keyname, defname)
172 Lisp_Object keymap;
173 char *keyname;
174 char *defname;
175 {
176 store_in_keymap (keymap, intern (keyname), intern (defname));
177 }
178
179 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
180 "Return t if OBJECT is a keymap.\n\
181 \n\
182 A keymap is a list (keymap . ALIST),\n\
183 or a symbol whose function definition is itself a keymap.\n\
184 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
185 a vector of densely packed bindings for small character codes\n\
186 is also allowed as an element.")
187 (object)
188 Lisp_Object object;
189 {
190 return (KEYMAPP (object) ? Qt : Qnil);
191 }
192
193 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
194 "Return the prompt-string of a keymap MAP.\n\
195 If non-nil, the prompt is shown in the echo-area\n\
196 when reading a key-sequence to be looked-up in this keymap.")
197 (map)
198 Lisp_Object map;
199 {
200 while (CONSP (map))
201 {
202 register Lisp_Object tem;
203 tem = Fcar (map);
204 if (STRINGP (tem))
205 return tem;
206 map = Fcdr (map);
207 }
208 return Qnil;
209 }
210
211 /* Check that OBJECT is a keymap (after dereferencing through any
212 symbols). If it is, return it.
213
214 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
215 is an autoload form, do the autoload and try again.
216 If AUTOLOAD is nonzero, callers must assume GC is possible.
217
218 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
219 is zero as well), return Qt.
220
221 ERROR controls how we respond if OBJECT isn't a keymap.
222 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
223
224 Note that most of the time, we don't want to pursue autoloads.
225 Functions like Faccessible_keymaps which scan entire keymap trees
226 shouldn't load every autoloaded keymap. I'm not sure about this,
227 but it seems to me that only read_key_sequence, Flookup_key, and
228 Fdefine_key should cause keymaps to be autoloaded.
229
230 This function can GC when AUTOLOAD is non-zero, because it calls
231 do_autoload which can GC. */
232
233 Lisp_Object
234 get_keymap (object, error, autoload)
235 Lisp_Object object;
236 int error, autoload;
237 {
238 Lisp_Object tem;
239
240 autoload_retry:
241 if (NILP (object))
242 goto end;
243 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
244 return object;
245
246 tem = indirect_function (object);
247 if (CONSP (tem))
248 {
249 if (EQ (XCAR (tem), Qkeymap))
250 return tem;
251
252 /* Should we do an autoload? Autoload forms for keymaps have
253 Qkeymap as their fifth element. */
254 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
255 {
256 Lisp_Object tail;
257
258 tail = Fnth (make_number (4), tem);
259 if (EQ (tail, Qkeymap))
260 {
261 if (autoload)
262 {
263 struct gcpro gcpro1, gcpro2;
264
265 GCPRO2 (tem, object);
266 do_autoload (tem, object);
267 UNGCPRO;
268
269 goto autoload_retry;
270 }
271 else
272 return Qt;
273 }
274 }
275 }
276
277 end:
278 if (error)
279 wrong_type_argument (Qkeymapp, object);
280 return Qnil;
281 }
282 \f
283 /* Return the parent map of the keymap MAP, or nil if it has none.
284 We assume that MAP is a valid keymap. */
285
286 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
287 "Return the parent keymap of KEYMAP.")
288 (keymap)
289 Lisp_Object keymap;
290 {
291 Lisp_Object list;
292
293 keymap = get_keymap (keymap, 1, 1);
294
295 /* Skip past the initial element `keymap'. */
296 list = XCDR (keymap);
297 for (; CONSP (list); list = XCDR (list))
298 {
299 /* See if there is another `keymap'. */
300 if (KEYMAPP (list))
301 return list;
302 }
303
304 return get_keymap (list, 0, 1);
305 }
306
307
308 /* Check whether MAP is one of MAPS parents. */
309 int
310 keymap_memberp (map, maps)
311 Lisp_Object map, maps;
312 {
313 if (NILP (map)) return 0;
314 while (KEYMAPP (maps) && !EQ (map, maps))
315 maps = Fkeymap_parent (maps);
316 return (EQ (map, maps));
317 }
318
319 /* Set the parent keymap of MAP to PARENT. */
320
321 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
322 "Modify KEYMAP to set its parent map to PARENT.\n\
323 PARENT should be nil or another keymap.")
324 (keymap, parent)
325 Lisp_Object keymap, parent;
326 {
327 Lisp_Object list, prev;
328 struct gcpro gcpro1;
329 int i;
330
331 /* Force a keymap flush for the next call to where-is.
332 Since this can be called from within where-is, we don't set where_is_cache
333 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
334 be changed during where-is, while where_is_cache_keymaps is only used at
335 the very beginning of where-is and can thus be changed here without any
336 adverse effect.
337 This is a very minor correctness (rather than safety) issue. */
338 where_is_cache_keymaps = Qt;
339
340 keymap = get_keymap (keymap, 1, 1);
341 GCPRO1 (keymap);
342
343 if (!NILP (parent))
344 {
345 parent = get_keymap (parent, 1, 1);
346
347 /* Check for cycles. */
348 if (keymap_memberp (keymap, parent))
349 error ("Cyclic keymap inheritance");
350 }
351
352 /* Skip past the initial element `keymap'. */
353 prev = keymap;
354 while (1)
355 {
356 list = XCDR (prev);
357 /* If there is a parent keymap here, replace it.
358 If we came to the end, add the parent in PREV. */
359 if (!CONSP (list) || KEYMAPP (list))
360 {
361 /* If we already have the right parent, return now
362 so that we avoid the loops below. */
363 if (EQ (XCDR (prev), parent))
364 RETURN_UNGCPRO (parent);
365
366 XCDR (prev) = parent;
367 break;
368 }
369 prev = list;
370 }
371
372 /* Scan through for submaps, and set their parents too. */
373
374 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
375 {
376 /* Stop the scan when we come to the parent. */
377 if (EQ (XCAR (list), Qkeymap))
378 break;
379
380 /* If this element holds a prefix map, deal with it. */
381 if (CONSP (XCAR (list))
382 && CONSP (XCDR (XCAR (list))))
383 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
384 XCDR (XCAR (list)));
385
386 if (VECTORP (XCAR (list)))
387 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
388 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
389 fix_submap_inheritance (keymap, make_number (i),
390 XVECTOR (XCAR (list))->contents[i]);
391
392 if (CHAR_TABLE_P (XCAR (list)))
393 {
394 Lisp_Object indices[3];
395
396 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
397 keymap, 0, indices);
398 }
399 }
400
401 RETURN_UNGCPRO (parent);
402 }
403
404 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
405 if EVENT is also a prefix in MAP's parent,
406 make sure that SUBMAP inherits that definition as its own parent. */
407
408 static void
409 fix_submap_inheritance (map, event, submap)
410 Lisp_Object map, event, submap;
411 {
412 Lisp_Object map_parent, parent_entry;
413
414 /* SUBMAP is a cons that we found as a key binding.
415 Discard the other things found in a menu key binding. */
416
417 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
418
419 /* If it isn't a keymap now, there's no work to do. */
420 if (!CONSP (submap))
421 return;
422
423 map_parent = Fkeymap_parent (map);
424 if (!NILP (map_parent))
425 parent_entry =
426 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
427 else
428 parent_entry = Qnil;
429
430 /* If MAP's parent has something other than a keymap,
431 our own submap shadows it completely. */
432 if (!CONSP (parent_entry))
433 return;
434
435 if (! EQ (parent_entry, submap))
436 {
437 Lisp_Object submap_parent;
438 submap_parent = submap;
439 while (1)
440 {
441 Lisp_Object tem;
442
443 tem = Fkeymap_parent (submap_parent);
444
445 if (KEYMAPP (tem))
446 {
447 if (keymap_memberp (tem, parent_entry))
448 /* Fset_keymap_parent could create a cycle. */
449 return;
450 submap_parent = tem;
451 }
452 else
453 break;
454 }
455 Fset_keymap_parent (submap_parent, parent_entry);
456 }
457 }
458 \f
459 /* Look up IDX in MAP. IDX may be any sort of event.
460 Note that this does only one level of lookup; IDX must be a single
461 event, not a sequence.
462
463 If T_OK is non-zero, bindings for Qt are treated as default
464 bindings; any key left unmentioned by other tables and bindings is
465 given the binding of Qt.
466
467 If T_OK is zero, bindings for Qt are not treated specially.
468
469 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
470
471 Lisp_Object
472 access_keymap (map, idx, t_ok, noinherit, autoload)
473 Lisp_Object map;
474 Lisp_Object idx;
475 int t_ok;
476 int noinherit;
477 int autoload;
478 {
479 int noprefix = 0;
480 Lisp_Object val;
481
482 /* If idx is a list (some sort of mouse click, perhaps?),
483 the index we want to use is the car of the list, which
484 ought to be a symbol. */
485 idx = EVENT_HEAD (idx);
486
487 /* If idx is a symbol, it might have modifiers, which need to
488 be put in the canonical order. */
489 if (SYMBOLP (idx))
490 idx = reorder_modifiers (idx);
491 else if (INTEGERP (idx))
492 /* Clobber the high bits that can be present on a machine
493 with more than 24 bits of integer. */
494 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
495
496 /* Handle the special meta -> esc mapping. */
497 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
498 {
499 /* See if there is a meta-map. If there's none, there is
500 no binding for IDX, unless a default binding exists in MAP. */
501 Lisp_Object meta_map =
502 get_keymap (access_keymap (map, meta_prefix_char,
503 t_ok, noinherit, autoload),
504 0, autoload);
505 if (CONSP (meta_map))
506 {
507 map = meta_map;
508 idx = make_number (XUINT (idx) & ~meta_modifier);
509 }
510 else if (t_ok)
511 /* Set IDX to t, so that we only find a default binding. */
512 idx = Qt;
513 else
514 /* We know there is no binding. */
515 return Qnil;
516 }
517
518 {
519 Lisp_Object tail;
520 Lisp_Object t_binding;
521 Lisp_Object generic_binding;
522
523 t_binding = Qnil;
524 generic_binding = Qnil;
525
526 for (tail = XCDR (map);
527 (CONSP (tail)
528 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
529 tail = XCDR (tail))
530 {
531 Lisp_Object binding;
532
533 binding = XCAR (tail);
534 if (SYMBOLP (binding))
535 {
536 /* If NOINHERIT, stop finding prefix definitions
537 after we pass a second occurrence of the `keymap' symbol. */
538 if (noinherit && EQ (binding, Qkeymap))
539 noprefix = 1;
540 }
541 else if (CONSP (binding))
542 {
543 Lisp_Object key = XCAR (binding);
544 int c1, c2, charset;
545
546 if (EQ (key, idx))
547 {
548 val = XCDR (binding);
549 if (noprefix && KEYMAPP (val))
550 return Qnil;
551 if (CONSP (val))
552 fix_submap_inheritance (map, idx, val);
553 return get_keyelt (val, autoload);
554 }
555 else if (INTEGERP (idx)
556 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
557 && INTEGERP (key)
558 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
559 && !SINGLE_BYTE_CHAR_P (XINT (idx))
560 && !SINGLE_BYTE_CHAR_P (XINT (key))
561 && CHAR_VALID_P (XINT (key), 1)
562 && !CHAR_VALID_P (XINT (key), 0)
563 && (CHAR_CHARSET (XINT (key))
564 == CHAR_CHARSET (XINT (idx))))
565 {
566 /* KEY is the generic character of the charset of IDX.
567 Use KEY's binding if there isn't a binding for IDX
568 itself. */
569 generic_binding = XCDR (binding);
570 }
571 else if (t_ok && EQ (XCAR (binding), Qt))
572 t_binding = XCDR (binding);
573 }
574 else if (VECTORP (binding))
575 {
576 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
577 {
578 val = XVECTOR (binding)->contents[XFASTINT (idx)];
579 if (noprefix && KEYMAPP (val))
580 return Qnil;
581 if (CONSP (val))
582 fix_submap_inheritance (map, idx, val);
583 return get_keyelt (val, autoload);
584 }
585 }
586 else if (CHAR_TABLE_P (binding))
587 {
588 /* Character codes with modifiers
589 are not included in a char-table.
590 All character codes without modifiers are included. */
591 if (NATNUMP (idx)
592 && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
593 {
594 val = Faref (binding, idx);
595 if (noprefix && KEYMAPP (val))
596 return Qnil;
597 if (CONSP (val))
598 fix_submap_inheritance (map, idx, val);
599 return get_keyelt (val, autoload);
600 }
601 }
602
603 QUIT;
604 }
605
606 if (!NILP (generic_binding))
607 return get_keyelt (generic_binding, autoload);
608
609 return get_keyelt (t_binding, autoload);
610 }
611 }
612
613 /* Given OBJECT which was found in a slot in a keymap,
614 trace indirect definitions to get the actual definition of that slot.
615 An indirect definition is a list of the form
616 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
617 and INDEX is the object to look up in KEYMAP to yield the definition.
618
619 Also if OBJECT has a menu string as the first element,
620 remove that. Also remove a menu help string as second element.
621
622 If AUTOLOAD is nonzero, load autoloadable keymaps
623 that are referred to with indirection. */
624
625 Lisp_Object
626 get_keyelt (object, autoload)
627 register Lisp_Object object;
628 int autoload;
629 {
630 while (1)
631 {
632 if (!(CONSP (object)))
633 /* This is really the value. */
634 return object;
635
636 /* If the keymap contents looks like (keymap ...) or (lambda ...)
637 then use itself. */
638 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
639 return object;
640
641 /* If the keymap contents looks like (menu-item name . DEFN)
642 or (menu-item name DEFN ...) then use DEFN.
643 This is a new format menu item. */
644 else if (EQ (XCAR (object), Qmenu_item))
645 {
646 if (CONSP (XCDR (object)))
647 {
648 Lisp_Object tem;
649
650 object = XCDR (XCDR (object));
651 tem = object;
652 if (CONSP (object))
653 object = XCAR (object);
654
655 /* If there's a `:filter FILTER', apply FILTER to the
656 menu-item's definition to get the real definition to
657 use. */
658 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
659 if (EQ (XCAR (tem), QCfilter) && autoload)
660 {
661 Lisp_Object filter;
662 filter = XCAR (XCDR (tem));
663 filter = list2 (filter, list2 (Qquote, object));
664 object = menu_item_eval_property (filter);
665 break;
666 }
667 }
668 else
669 /* Invalid keymap */
670 return object;
671 }
672
673 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
674 Keymap alist elements like (CHAR MENUSTRING . DEFN)
675 will be used by HierarKey menus. */
676 else if (STRINGP (XCAR (object)))
677 {
678 object = XCDR (object);
679 /* Also remove a menu help string, if any,
680 following the menu item name. */
681 if (CONSP (object) && STRINGP (XCAR (object)))
682 object = XCDR (object);
683 /* Also remove the sublist that caches key equivalences, if any. */
684 if (CONSP (object) && CONSP (XCAR (object)))
685 {
686 Lisp_Object carcar;
687 carcar = XCAR (XCAR (object));
688 if (NILP (carcar) || VECTORP (carcar))
689 object = XCDR (object);
690 }
691 }
692
693 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
694 else
695 {
696 Lisp_Object map;
697 map = get_keymap (Fcar_safe (object), 0, autoload);
698 return (!CONSP (map) ? object /* Invalid keymap */
699 : access_keymap (map, Fcdr (object), 0, 0, autoload));
700 }
701 }
702 }
703
704 static Lisp_Object
705 store_in_keymap (keymap, idx, def)
706 Lisp_Object keymap;
707 register Lisp_Object idx;
708 register Lisp_Object def;
709 {
710 /* Flush any reverse-map cache. */
711 where_is_cache = Qnil;
712 where_is_cache_keymaps = Qt;
713
714 /* If we are preparing to dump, and DEF is a menu element
715 with a menu item indicator, copy it to ensure it is not pure. */
716 if (CONSP (def) && PURE_P (def)
717 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
718 def = Fcons (XCAR (def), XCDR (def));
719
720 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
721 error ("attempt to define a key in a non-keymap");
722
723 /* If idx is a list (some sort of mouse click, perhaps?),
724 the index we want to use is the car of the list, which
725 ought to be a symbol. */
726 idx = EVENT_HEAD (idx);
727
728 /* If idx is a symbol, it might have modifiers, which need to
729 be put in the canonical order. */
730 if (SYMBOLP (idx))
731 idx = reorder_modifiers (idx);
732 else if (INTEGERP (idx))
733 /* Clobber the high bits that can be present on a machine
734 with more than 24 bits of integer. */
735 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
736
737 /* Scan the keymap for a binding of idx. */
738 {
739 Lisp_Object tail;
740
741 /* The cons after which we should insert new bindings. If the
742 keymap has a table element, we record its position here, so new
743 bindings will go after it; this way, the table will stay
744 towards the front of the alist and character lookups in dense
745 keymaps will remain fast. Otherwise, this just points at the
746 front of the keymap. */
747 Lisp_Object insertion_point;
748
749 insertion_point = keymap;
750 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
751 {
752 Lisp_Object elt;
753
754 elt = XCAR (tail);
755 if (VECTORP (elt))
756 {
757 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
758 {
759 ASET (elt, XFASTINT (idx), def);
760 return def;
761 }
762 insertion_point = tail;
763 }
764 else if (CHAR_TABLE_P (elt))
765 {
766 /* Character codes with modifiers
767 are not included in a char-table.
768 All character codes without modifiers are included. */
769 if (NATNUMP (idx)
770 && ! (XFASTINT (idx)
771 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
772 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
773 {
774 Faset (elt, idx, def);
775 return def;
776 }
777 insertion_point = tail;
778 }
779 else if (CONSP (elt))
780 {
781 if (EQ (idx, XCAR (elt)))
782 {
783 XCDR (elt) = def;
784 return def;
785 }
786 }
787 else if (EQ (elt, Qkeymap))
788 /* If we find a 'keymap' symbol in the spine of KEYMAP,
789 then we must have found the start of a second keymap
790 being used as the tail of KEYMAP, and a binding for IDX
791 should be inserted before it. */
792 goto keymap_end;
793
794 QUIT;
795 }
796
797 keymap_end:
798 /* We have scanned the entire keymap, and not found a binding for
799 IDX. Let's add one. */
800 XCDR (insertion_point)
801 = Fcons (Fcons (idx, def), XCDR (insertion_point));
802 }
803
804 return def;
805 }
806
807 EXFUN (Fcopy_keymap, 1);
808
809 void
810 copy_keymap_1 (chartable, idx, elt)
811 Lisp_Object chartable, idx, elt;
812 {
813 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
814 Faset (chartable, idx, Fcopy_keymap (elt));
815 }
816
817 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
818 "Return a copy of the keymap KEYMAP.\n\
819 The copy starts out with the same definitions of KEYMAP,\n\
820 but changing either the copy or KEYMAP does not affect the other.\n\
821 Any key definitions that are subkeymaps are recursively copied.\n\
822 However, a key definition which is a symbol whose definition is a keymap\n\
823 is not copied.")
824 (keymap)
825 Lisp_Object keymap;
826 {
827 /* FIXME: This doesn't properly copy menu-items in vectors. */
828 /* FIXME: This also copies the parent keymap. */
829
830 register Lisp_Object copy, tail;
831
832 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
833
834 for (tail = copy; CONSP (tail); tail = XCDR (tail))
835 {
836 Lisp_Object elt;
837
838 elt = XCAR (tail);
839 if (CHAR_TABLE_P (elt))
840 {
841 Lisp_Object indices[3];
842
843 elt = Fcopy_sequence (elt);
844 XCAR (tail) = elt;
845
846 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
847 }
848 else if (VECTORP (elt))
849 {
850 int i;
851
852 elt = Fcopy_sequence (elt);
853 XCAR (tail) = elt;
854
855 for (i = 0; i < ASIZE (elt); i++)
856 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
857 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
858 }
859 else if (CONSP (elt) && CONSP (XCDR (elt)))
860 {
861 Lisp_Object tem;
862 tem = XCDR (elt);
863
864 /* Is this a new format menu item. */
865 if (EQ (XCAR (tem),Qmenu_item))
866 {
867 /* Copy cell with menu-item marker. */
868 XCDR (elt)
869 = Fcons (XCAR (tem), XCDR (tem));
870 elt = XCDR (elt);
871 tem = XCDR (elt);
872 if (CONSP (tem))
873 {
874 /* Copy cell with menu-item name. */
875 XCDR (elt)
876 = Fcons (XCAR (tem), XCDR (tem));
877 elt = XCDR (elt);
878 tem = XCDR (elt);
879 };
880 if (CONSP (tem))
881 {
882 /* Copy cell with binding and if the binding is a keymap,
883 copy that. */
884 XCDR (elt)
885 = Fcons (XCAR (tem), XCDR (tem));
886 elt = XCDR (elt);
887 tem = XCAR (elt);
888 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
889 XCAR (elt) = Fcopy_keymap (tem);
890 tem = XCDR (elt);
891 if (CONSP (tem) && CONSP (XCAR (tem)))
892 /* Delete cache for key equivalences. */
893 XCDR (elt) = XCDR (tem);
894 }
895 }
896 else
897 {
898 /* It may be an old fomat menu item.
899 Skip the optional menu string.
900 */
901 if (STRINGP (XCAR (tem)))
902 {
903 /* Copy the cell, since copy-alist didn't go this deep. */
904 XCDR (elt)
905 = Fcons (XCAR (tem), XCDR (tem));
906 elt = XCDR (elt);
907 tem = XCDR (elt);
908 /* Also skip the optional menu help string. */
909 if (CONSP (tem) && STRINGP (XCAR (tem)))
910 {
911 XCDR (elt)
912 = Fcons (XCAR (tem), XCDR (tem));
913 elt = XCDR (elt);
914 tem = XCDR (elt);
915 }
916 /* There may also be a list that caches key equivalences.
917 Just delete it for the new keymap. */
918 if (CONSP (tem)
919 && CONSP (XCAR (tem))
920 && (NILP (XCAR (XCAR (tem)))
921 || VECTORP (XCAR (XCAR (tem)))))
922 XCDR (elt) = XCDR (tem);
923 }
924 if (CONSP (elt)
925 && CONSP (XCDR (elt))
926 && EQ (XCAR (XCDR (elt)), Qkeymap))
927 XCDR (elt) = Fcopy_keymap (XCDR (elt));
928 }
929
930 }
931 }
932
933 return copy;
934 }
935 \f
936 /* Simple Keymap mutators and accessors. */
937
938 /* GC is possible in this function if it autoloads a keymap. */
939
940 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
941 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
942 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
943 meaning a sequence of keystrokes and events.\n\
944 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
945 can be included if you use a vector.\n\
946 DEF is anything that can be a key's definition:\n\
947 nil (means key is undefined in this keymap),\n\
948 a command (a Lisp function suitable for interactive calling)\n\
949 a string (treated as a keyboard macro),\n\
950 a keymap (to define a prefix key),\n\
951 a symbol. When the key is looked up, the symbol will stand for its\n\
952 function definition, which should at that time be one of the above,\n\
953 or another symbol whose function definition is used, etc.\n\
954 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
955 (DEFN should be a valid definition in its own right),\n\
956 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
957 \n\
958 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
959 the front of KEYMAP.")
960 (keymap, key, def)
961 Lisp_Object keymap;
962 Lisp_Object key;
963 Lisp_Object def;
964 {
965 register int idx;
966 register Lisp_Object c;
967 register Lisp_Object cmd;
968 int metized = 0;
969 int meta_bit;
970 int length;
971 struct gcpro gcpro1, gcpro2, gcpro3;
972
973 keymap = get_keymap (keymap, 1, 1);
974
975 if (!VECTORP (key) && !STRINGP (key))
976 key = wrong_type_argument (Qarrayp, key);
977
978 length = XFASTINT (Flength (key));
979 if (length == 0)
980 return Qnil;
981
982 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
983 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
984
985 GCPRO3 (keymap, key, def);
986
987 if (VECTORP (key))
988 meta_bit = meta_modifier;
989 else
990 meta_bit = 0x80;
991
992 idx = 0;
993 while (1)
994 {
995 c = Faref (key, make_number (idx));
996
997 if (CONSP (c) && lucid_event_type_list_p (c))
998 c = Fevent_convert_list (c);
999
1000 if (INTEGERP (c)
1001 && (XINT (c) & meta_bit)
1002 && !metized)
1003 {
1004 c = meta_prefix_char;
1005 metized = 1;
1006 }
1007 else
1008 {
1009 if (INTEGERP (c))
1010 XSETINT (c, XINT (c) & ~meta_bit);
1011
1012 metized = 0;
1013 idx++;
1014 }
1015
1016 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1017 error ("Key sequence contains invalid events");
1018
1019 if (idx == length)
1020 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1021
1022 cmd = access_keymap (keymap, c, 0, 1, 1);
1023
1024 /* If this key is undefined, make it a prefix. */
1025 if (NILP (cmd))
1026 cmd = define_as_prefix (keymap, c);
1027
1028 keymap = get_keymap (cmd, 0, 1);
1029 if (!CONSP (keymap))
1030 /* We must use Fkey_description rather than just passing key to
1031 error; key might be a vector, not a string. */
1032 error ("Key sequence %s uses invalid prefix characters",
1033 XSTRING (Fkey_description (key))->data);
1034 }
1035 }
1036
1037 /* Value is number if KEY is too long; NIL if valid but has no definition. */
1038 /* GC is possible in this function if it autoloads a keymap. */
1039
1040 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1041 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
1042 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
1043 \n\
1044 A number as value means KEY is \"too long\";\n\
1045 that is, characters or symbols in it except for the last one\n\
1046 fail to be a valid sequence of prefix characters in KEYMAP.\n\
1047 The number is how many characters at the front of KEY\n\
1048 it takes to reach a non-prefix command.\n\
1049 \n\
1050 Normally, `lookup-key' ignores bindings for t, which act as default\n\
1051 bindings, used when nothing else in the keymap applies; this makes it\n\
1052 usable as a general function for probing keymaps. However, if the\n\
1053 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
1054 recognize the default bindings, just as `read-key-sequence' does.")
1055 (keymap, key, accept_default)
1056 register Lisp_Object keymap;
1057 Lisp_Object key;
1058 Lisp_Object accept_default;
1059 {
1060 register int idx;
1061 register Lisp_Object cmd;
1062 register Lisp_Object c;
1063 int length;
1064 int t_ok = !NILP (accept_default);
1065 struct gcpro gcpro1;
1066
1067 keymap = get_keymap (keymap, 1, 1);
1068
1069 if (!VECTORP (key) && !STRINGP (key))
1070 key = wrong_type_argument (Qarrayp, key);
1071
1072 length = XFASTINT (Flength (key));
1073 if (length == 0)
1074 return keymap;
1075
1076 GCPRO1 (key);
1077
1078 idx = 0;
1079 while (1)
1080 {
1081 c = Faref (key, make_number (idx++));
1082
1083 if (CONSP (c) && lucid_event_type_list_p (c))
1084 c = Fevent_convert_list (c);
1085
1086 /* Turn the 8th bit of string chars into a meta modifier. */
1087 if (XINT (c) & 0x80 && STRINGP (key))
1088 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1089
1090 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1091 if (idx == length)
1092 RETURN_UNGCPRO (cmd);
1093
1094 keymap = get_keymap (cmd, 0, 1);
1095 if (!CONSP (keymap))
1096 RETURN_UNGCPRO (make_number (idx));
1097
1098 QUIT;
1099 }
1100 }
1101
1102 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1103 Assume that currently it does not define C at all.
1104 Return the keymap. */
1105
1106 static Lisp_Object
1107 define_as_prefix (keymap, c)
1108 Lisp_Object keymap, c;
1109 {
1110 Lisp_Object cmd;
1111
1112 cmd = Fmake_sparse_keymap (Qnil);
1113 /* If this key is defined as a prefix in an inherited keymap,
1114 make it a prefix in this map, and make its definition
1115 inherit the other prefix definition. */
1116 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1117 store_in_keymap (keymap, c, cmd);
1118
1119 return cmd;
1120 }
1121
1122 /* Append a key to the end of a key sequence. We always make a vector. */
1123
1124 Lisp_Object
1125 append_key (key_sequence, key)
1126 Lisp_Object key_sequence, key;
1127 {
1128 Lisp_Object args[2];
1129
1130 args[0] = key_sequence;
1131
1132 args[1] = Fcons (key, Qnil);
1133 return Fvconcat (2, args);
1134 }
1135
1136 \f
1137 /* Global, local, and minor mode keymap stuff. */
1138
1139 /* We can't put these variables inside current_minor_maps, since under
1140 some systems, static gets macro-defined to be the empty string.
1141 Ickypoo. */
1142 static Lisp_Object *cmm_modes, *cmm_maps;
1143 static int cmm_size;
1144
1145 /* Error handler used in current_minor_maps. */
1146 static Lisp_Object
1147 current_minor_maps_error ()
1148 {
1149 return Qnil;
1150 }
1151
1152 /* Store a pointer to an array of the keymaps of the currently active
1153 minor modes in *buf, and return the number of maps it contains.
1154
1155 This function always returns a pointer to the same buffer, and may
1156 free or reallocate it, so if you want to keep it for a long time or
1157 hand it out to lisp code, copy it. This procedure will be called
1158 for every key sequence read, so the nice lispy approach (return a
1159 new assoclist, list, what have you) for each invocation would
1160 result in a lot of consing over time.
1161
1162 If we used xrealloc/xmalloc and ran out of memory, they would throw
1163 back to the command loop, which would try to read a key sequence,
1164 which would call this function again, resulting in an infinite
1165 loop. Instead, we'll use realloc/malloc and silently truncate the
1166 list, let the key sequence be read, and hope some other piece of
1167 code signals the error. */
1168 int
1169 current_minor_maps (modeptr, mapptr)
1170 Lisp_Object **modeptr, **mapptr;
1171 {
1172 int i = 0;
1173 int list_number = 0;
1174 Lisp_Object alist, assoc, var, val;
1175 Lisp_Object lists[2];
1176
1177 lists[0] = Vminor_mode_overriding_map_alist;
1178 lists[1] = Vminor_mode_map_alist;
1179
1180 for (list_number = 0; list_number < 2; list_number++)
1181 for (alist = lists[list_number];
1182 CONSP (alist);
1183 alist = XCDR (alist))
1184 if ((assoc = XCAR (alist), CONSP (assoc))
1185 && (var = XCAR (assoc), SYMBOLP (var))
1186 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1187 && !NILP (val))
1188 {
1189 Lisp_Object temp;
1190
1191 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1192 and also an entry in Vminor_mode_map_alist,
1193 ignore the latter. */
1194 if (list_number == 1)
1195 {
1196 val = assq_no_quit (var, lists[0]);
1197 if (!NILP (val))
1198 break;
1199 }
1200
1201 if (i >= cmm_size)
1202 {
1203 Lisp_Object *newmodes, *newmaps;
1204
1205 /* Use malloc/realloc here. See the comment above
1206 this function. */
1207 if (cmm_maps)
1208 {
1209 BLOCK_INPUT;
1210 cmm_size *= 2;
1211 newmodes
1212 = (Lisp_Object *) realloc (cmm_modes,
1213 cmm_size * sizeof *newmodes);
1214 newmaps
1215 = (Lisp_Object *) realloc (cmm_maps,
1216 cmm_size * sizeof *newmaps);
1217 UNBLOCK_INPUT;
1218 }
1219 else
1220 {
1221 BLOCK_INPUT;
1222 cmm_size = 30;
1223 newmodes
1224 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1225 newmaps
1226 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1227 UNBLOCK_INPUT;
1228 }
1229
1230 if (newmodes)
1231 cmm_modes = newmodes;
1232 if (newmaps)
1233 cmm_maps = newmaps;
1234
1235 if (newmodes == NULL || newmaps == NULL)
1236 break;
1237 }
1238
1239 /* Get the keymap definition--or nil if it is not defined. */
1240 temp = internal_condition_case_1 (Findirect_function,
1241 XCDR (assoc),
1242 Qerror, current_minor_maps_error);
1243 if (!NILP (temp))
1244 {
1245 cmm_modes[i] = var;
1246 cmm_maps [i] = temp;
1247 i++;
1248 }
1249 }
1250
1251 if (modeptr) *modeptr = cmm_modes;
1252 if (mapptr) *mapptr = cmm_maps;
1253 return i;
1254 }
1255
1256 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1257 0, 1, 0,
1258 "Return a list of the currently active keymaps.\n\
1259 OLP if non-nil indicates that we should obey `overriding-local-map' and\n\
1260 `overriding-terminal-local-map'.")
1261 (olp)
1262 Lisp_Object olp;
1263 {
1264 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1265
1266 if (!NILP (olp))
1267 {
1268 if (!NILP (Voverriding_local_map))
1269 keymaps = Fcons (Voverriding_local_map, keymaps);
1270 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1271 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1272 }
1273 if (NILP (XCDR (keymaps)))
1274 {
1275 Lisp_Object local;
1276 Lisp_Object *maps;
1277 int nmaps, i;
1278
1279 local = get_local_map (PT, current_buffer, Qlocal_map);
1280 if (!NILP (local))
1281 keymaps = Fcons (local, keymaps);
1282
1283 local = get_local_map (PT, current_buffer, Qkeymap);
1284 if (!NILP (local))
1285 keymaps = Fcons (local, keymaps);
1286
1287 nmaps = current_minor_maps (0, &maps);
1288
1289 for (i = --nmaps; i >= 0; i--)
1290 if (!NILP (maps[i]))
1291 keymaps = Fcons (maps[i], keymaps);
1292 }
1293
1294 return keymaps;
1295 }
1296
1297 /* GC is possible in this function if it autoloads a keymap. */
1298
1299 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1300 "Return the binding for command KEY in current keymaps.\n\
1301 KEY is a string or vector, a sequence of keystrokes.\n\
1302 The binding is probably a symbol with a function definition.\n\
1303 \n\
1304 Normally, `key-binding' ignores bindings for t, which act as default\n\
1305 bindings, used when nothing else in the keymap applies; this makes it\n\
1306 usable as a general function for probing keymaps. However, if the\n\
1307 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1308 recognize the default bindings, just as `read-key-sequence' does.")
1309 (key, accept_default)
1310 Lisp_Object key, accept_default;
1311 {
1312 Lisp_Object *maps, value;
1313 int nmaps, i;
1314 struct gcpro gcpro1;
1315
1316 GCPRO1 (key);
1317
1318 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1319 {
1320 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1321 key, accept_default);
1322 if (! NILP (value) && !INTEGERP (value))
1323 RETURN_UNGCPRO (value);
1324 }
1325 else if (!NILP (Voverriding_local_map))
1326 {
1327 value = Flookup_key (Voverriding_local_map, key, accept_default);
1328 if (! NILP (value) && !INTEGERP (value))
1329 RETURN_UNGCPRO (value);
1330 }
1331 else
1332 {
1333 Lisp_Object local;
1334
1335 nmaps = current_minor_maps (0, &maps);
1336 /* Note that all these maps are GCPRO'd
1337 in the places where we found them. */
1338
1339 for (i = 0; i < nmaps; i++)
1340 if (! NILP (maps[i]))
1341 {
1342 value = Flookup_key (maps[i], key, accept_default);
1343 if (! NILP (value) && !INTEGERP (value))
1344 RETURN_UNGCPRO (value);
1345 }
1346
1347 local = get_local_map (PT, current_buffer, Qkeymap);
1348 if (! NILP (local))
1349 {
1350 value = Flookup_key (local, key, accept_default);
1351 if (! NILP (value) && !INTEGERP (value))
1352 RETURN_UNGCPRO (value);
1353 }
1354
1355 local = get_local_map (PT, current_buffer, Qlocal_map);
1356
1357 if (! NILP (local))
1358 {
1359 value = Flookup_key (local, key, accept_default);
1360 if (! NILP (value) && !INTEGERP (value))
1361 RETURN_UNGCPRO (value);
1362 }
1363 }
1364
1365 value = Flookup_key (current_global_map, key, accept_default);
1366 UNGCPRO;
1367 if (! NILP (value) && !INTEGERP (value))
1368 return value;
1369
1370 return Qnil;
1371 }
1372
1373 /* GC is possible in this function if it autoloads a keymap. */
1374
1375 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1376 "Return the binding for command KEYS in current local keymap only.\n\
1377 KEYS is a string, a sequence of keystrokes.\n\
1378 The binding is probably a symbol with a function definition.\n\
1379 \n\
1380 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1381 bindings; see the description of `lookup-key' for more details about this.")
1382 (keys, accept_default)
1383 Lisp_Object keys, accept_default;
1384 {
1385 register Lisp_Object map;
1386 map = current_buffer->keymap;
1387 if (NILP (map))
1388 return Qnil;
1389 return Flookup_key (map, keys, accept_default);
1390 }
1391
1392 /* GC is possible in this function if it autoloads a keymap. */
1393
1394 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1395 "Return the binding for command KEYS in current global keymap only.\n\
1396 KEYS is a string, a sequence of keystrokes.\n\
1397 The binding is probably a symbol with a function definition.\n\
1398 This function's return values are the same as those of lookup-key\n\
1399 \(which see).\n\
1400 \n\
1401 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1402 bindings; see the description of `lookup-key' for more details about this.")
1403 (keys, accept_default)
1404 Lisp_Object keys, accept_default;
1405 {
1406 return Flookup_key (current_global_map, keys, accept_default);
1407 }
1408
1409 /* GC is possible in this function if it autoloads a keymap. */
1410
1411 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1412 "Find the visible minor mode bindings of KEY.\n\
1413 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1414 the symbol which names the minor mode binding KEY, and BINDING is\n\
1415 KEY's definition in that mode. In particular, if KEY has no\n\
1416 minor-mode bindings, return nil. If the first binding is a\n\
1417 non-prefix, all subsequent bindings will be omitted, since they would\n\
1418 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1419 that come after prefix bindings.\n\
1420 \n\
1421 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1422 bindings; see the description of `lookup-key' for more details about this.")
1423 (key, accept_default)
1424 Lisp_Object key, accept_default;
1425 {
1426 Lisp_Object *modes, *maps;
1427 int nmaps;
1428 Lisp_Object binding;
1429 int i, j;
1430 struct gcpro gcpro1, gcpro2;
1431
1432 nmaps = current_minor_maps (&modes, &maps);
1433 /* Note that all these maps are GCPRO'd
1434 in the places where we found them. */
1435
1436 binding = Qnil;
1437 GCPRO2 (key, binding);
1438
1439 for (i = j = 0; i < nmaps; i++)
1440 if (!NILP (maps[i])
1441 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1442 && !INTEGERP (binding))
1443 {
1444 if (KEYMAPP (binding))
1445 maps[j++] = Fcons (modes[i], binding);
1446 else if (j == 0)
1447 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1448 }
1449
1450 UNGCPRO;
1451 return Flist (j, maps);
1452 }
1453
1454 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1455 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1456 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1457 If a second optional argument MAPVAR is given, the map is stored as\n\
1458 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1459 as a function.\n\
1460 The third optional argument NAME, if given, supplies a menu name\n\
1461 string for the map. This is required to use the keymap as a menu.")
1462 (command, mapvar, name)
1463 Lisp_Object command, mapvar, name;
1464 {
1465 Lisp_Object map;
1466 map = Fmake_sparse_keymap (name);
1467 Ffset (command, map);
1468 if (!NILP (mapvar))
1469 Fset (mapvar, map);
1470 else
1471 Fset (command, map);
1472 return command;
1473 }
1474
1475 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1476 "Select KEYMAP as the global keymap.")
1477 (keymap)
1478 Lisp_Object keymap;
1479 {
1480 keymap = get_keymap (keymap, 1, 1);
1481 current_global_map = keymap;
1482
1483 return Qnil;
1484 }
1485
1486 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1487 "Select KEYMAP as the local keymap.\n\
1488 If KEYMAP is nil, that means no local keymap.")
1489 (keymap)
1490 Lisp_Object keymap;
1491 {
1492 if (!NILP (keymap))
1493 keymap = get_keymap (keymap, 1, 1);
1494
1495 current_buffer->keymap = keymap;
1496
1497 return Qnil;
1498 }
1499
1500 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1501 "Return current buffer's local keymap, or nil if it has none.")
1502 ()
1503 {
1504 return current_buffer->keymap;
1505 }
1506
1507 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1508 "Return the current global keymap.")
1509 ()
1510 {
1511 return current_global_map;
1512 }
1513
1514 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1515 "Return a list of keymaps for the minor modes of the current buffer.")
1516 ()
1517 {
1518 Lisp_Object *maps;
1519 int nmaps = current_minor_maps (0, &maps);
1520
1521 return Flist (nmaps, maps);
1522 }
1523 \f
1524 /* Help functions for describing and documenting keymaps. */
1525
1526
1527 static void
1528 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1529 Lisp_Object maps, tail, thisseq, key, cmd;
1530 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1531 {
1532 Lisp_Object tem;
1533
1534 cmd = get_keyelt (cmd, 0);
1535 if (NILP (cmd))
1536 return;
1537
1538 tem = get_keymap (cmd, 0, 0);
1539 if (CONSP (tem))
1540 {
1541 cmd = tem;
1542 /* Ignore keymaps that are already added to maps. */
1543 tem = Frassq (cmd, maps);
1544 if (NILP (tem))
1545 {
1546 /* If the last key in thisseq is meta-prefix-char,
1547 turn it into a meta-ized keystroke. We know
1548 that the event we're about to append is an
1549 ascii keystroke since we're processing a
1550 keymap table. */
1551 if (is_metized)
1552 {
1553 int meta_bit = meta_modifier;
1554 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1555 tem = Fcopy_sequence (thisseq);
1556
1557 Faset (tem, last, make_number (XINT (key) | meta_bit));
1558
1559 /* This new sequence is the same length as
1560 thisseq, so stick it in the list right
1561 after this one. */
1562 XCDR (tail)
1563 = Fcons (Fcons (tem, cmd), XCDR (tail));
1564 }
1565 else
1566 {
1567 tem = append_key (thisseq, key);
1568 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1569 }
1570 }
1571 }
1572 }
1573
1574 static void
1575 accessible_keymaps_char_table (args, index, cmd)
1576 Lisp_Object args, index, cmd;
1577 {
1578 accessible_keymaps_1 (index, cmd,
1579 XCAR (XCAR (args)),
1580 XCAR (XCDR (args)),
1581 XCDR (XCDR (args)),
1582 XINT (XCDR (XCAR (args))));
1583 }
1584
1585 /* This function cannot GC. */
1586
1587 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1588 1, 2, 0,
1589 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1590 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1591 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1592 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1593 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1594 then the value includes only maps for prefixes that start with PREFIX.")
1595 (keymap, prefix)
1596 Lisp_Object keymap, prefix;
1597 {
1598 Lisp_Object maps, good_maps, tail;
1599 int prefixlen = 0;
1600
1601 /* no need for gcpro because we don't autoload any keymaps. */
1602
1603 if (!NILP (prefix))
1604 prefixlen = XINT (Flength (prefix));
1605
1606 if (!NILP (prefix))
1607 {
1608 /* If a prefix was specified, start with the keymap (if any) for
1609 that prefix, so we don't waste time considering other prefixes. */
1610 Lisp_Object tem;
1611 tem = Flookup_key (keymap, prefix, Qt);
1612 /* Flookup_key may give us nil, or a number,
1613 if the prefix is not defined in this particular map.
1614 It might even give us a list that isn't a keymap. */
1615 tem = get_keymap (tem, 0, 0);
1616 if (CONSP (tem))
1617 {
1618 /* Convert PREFIX to a vector now, so that later on
1619 we don't have to deal with the possibility of a string. */
1620 if (STRINGP (prefix))
1621 {
1622 int i, i_byte, c;
1623 Lisp_Object copy;
1624
1625 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1626 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1627 {
1628 int i_before = i;
1629
1630 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1631 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1632 c ^= 0200 | meta_modifier;
1633 ASET (copy, i_before, make_number (c));
1634 }
1635 prefix = copy;
1636 }
1637 maps = Fcons (Fcons (prefix, tem), Qnil);
1638 }
1639 else
1640 return Qnil;
1641 }
1642 else
1643 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1644 get_keymap (keymap, 1, 0)),
1645 Qnil);
1646
1647 /* For each map in the list maps,
1648 look at any other maps it points to,
1649 and stick them at the end if they are not already in the list.
1650
1651 This is a breadth-first traversal, where tail is the queue of
1652 nodes, and maps accumulates a list of all nodes visited. */
1653
1654 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1655 {
1656 register Lisp_Object thisseq, thismap;
1657 Lisp_Object last;
1658 /* Does the current sequence end in the meta-prefix-char? */
1659 int is_metized;
1660
1661 thisseq = Fcar (Fcar (tail));
1662 thismap = Fcdr (Fcar (tail));
1663 last = make_number (XINT (Flength (thisseq)) - 1);
1664 is_metized = (XINT (last) >= 0
1665 /* Don't metize the last char of PREFIX. */
1666 && XINT (last) >= prefixlen
1667 && EQ (Faref (thisseq, last), meta_prefix_char));
1668
1669 for (; CONSP (thismap); thismap = XCDR (thismap))
1670 {
1671 Lisp_Object elt;
1672
1673 elt = XCAR (thismap);
1674
1675 QUIT;
1676
1677 if (CHAR_TABLE_P (elt))
1678 {
1679 Lisp_Object indices[3];
1680
1681 map_char_table (accessible_keymaps_char_table, Qnil,
1682 elt, Fcons (Fcons (maps, make_number (is_metized)),
1683 Fcons (tail, thisseq)),
1684 0, indices);
1685 }
1686 else if (VECTORP (elt))
1687 {
1688 register int i;
1689
1690 /* Vector keymap. Scan all the elements. */
1691 for (i = 0; i < ASIZE (elt); i++)
1692 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1693 maps, tail, thisseq, is_metized);
1694
1695 }
1696 else if (CONSP (elt))
1697 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1698 maps, tail, thisseq,
1699 is_metized && INTEGERP (XCAR (elt)));
1700
1701 }
1702 }
1703
1704 if (NILP (prefix))
1705 return maps;
1706
1707 /* Now find just the maps whose access prefixes start with PREFIX. */
1708
1709 good_maps = Qnil;
1710 for (; CONSP (maps); maps = XCDR (maps))
1711 {
1712 Lisp_Object elt, thisseq;
1713 elt = XCAR (maps);
1714 thisseq = XCAR (elt);
1715 /* The access prefix must be at least as long as PREFIX,
1716 and the first elements must match those of PREFIX. */
1717 if (XINT (Flength (thisseq)) >= prefixlen)
1718 {
1719 int i;
1720 for (i = 0; i < prefixlen; i++)
1721 {
1722 Lisp_Object i1;
1723 XSETFASTINT (i1, i);
1724 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1725 break;
1726 }
1727 if (i == prefixlen)
1728 good_maps = Fcons (elt, good_maps);
1729 }
1730 }
1731
1732 return Fnreverse (good_maps);
1733 }
1734 \f
1735 Lisp_Object Qsingle_key_description, Qkey_description;
1736
1737 /* This function cannot GC. */
1738
1739 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1740 "Return a pretty description of key-sequence KEYS.\n\
1741 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1742 spaces are put between sequence elements, etc.")
1743 (keys)
1744 Lisp_Object keys;
1745 {
1746 int len = 0;
1747 int i, i_byte;
1748 Lisp_Object sep;
1749 Lisp_Object *args = NULL;
1750
1751 if (STRINGP (keys))
1752 {
1753 Lisp_Object vector;
1754 vector = Fmake_vector (Flength (keys), Qnil);
1755 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1756 {
1757 int c;
1758 int i_before = i;
1759
1760 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1761 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1762 c ^= 0200 | meta_modifier;
1763 XSETFASTINT (AREF (vector, i_before), c);
1764 }
1765 keys = vector;
1766 }
1767
1768 if (VECTORP (keys))
1769 {
1770 /* In effect, this computes
1771 (mapconcat 'single-key-description keys " ")
1772 but we shouldn't use mapconcat because it can do GC. */
1773
1774 len = XVECTOR (keys)->size;
1775 sep = build_string (" ");
1776 /* This has one extra element at the end that we don't pass to Fconcat. */
1777 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1778
1779 for (i = 0; i < len; i++)
1780 {
1781 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1782 args[i * 2 + 1] = sep;
1783 }
1784 }
1785 else if (CONSP (keys))
1786 {
1787 /* In effect, this computes
1788 (mapconcat 'single-key-description keys " ")
1789 but we shouldn't use mapconcat because it can do GC. */
1790
1791 len = XFASTINT (Flength (keys));
1792 sep = build_string (" ");
1793 /* This has one extra element at the end that we don't pass to Fconcat. */
1794 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1795
1796 for (i = 0; i < len; i++)
1797 {
1798 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1799 args[i * 2 + 1] = sep;
1800 keys = XCDR (keys);
1801 }
1802 }
1803 else
1804 keys = wrong_type_argument (Qarrayp, keys);
1805
1806 if (len == 0)
1807 return empty_string;
1808 return Fconcat (len * 2 - 1, args);
1809 }
1810
1811 char *
1812 push_key_description (c, p, force_multibyte)
1813 register unsigned int c;
1814 register char *p;
1815 int force_multibyte;
1816 {
1817 unsigned c2;
1818
1819 /* Clear all the meaningless bits above the meta bit. */
1820 c &= meta_modifier | ~ - meta_modifier;
1821 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1822 | meta_modifier | shift_modifier | super_modifier);
1823
1824 if (c & alt_modifier)
1825 {
1826 *p++ = 'A';
1827 *p++ = '-';
1828 c -= alt_modifier;
1829 }
1830 if ((c & ctrl_modifier) != 0
1831 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1832 {
1833 *p++ = 'C';
1834 *p++ = '-';
1835 c &= ~ctrl_modifier;
1836 }
1837 if (c & hyper_modifier)
1838 {
1839 *p++ = 'H';
1840 *p++ = '-';
1841 c -= hyper_modifier;
1842 }
1843 if (c & meta_modifier)
1844 {
1845 *p++ = 'M';
1846 *p++ = '-';
1847 c -= meta_modifier;
1848 }
1849 if (c & shift_modifier)
1850 {
1851 *p++ = 'S';
1852 *p++ = '-';
1853 c -= shift_modifier;
1854 }
1855 if (c & super_modifier)
1856 {
1857 *p++ = 's';
1858 *p++ = '-';
1859 c -= super_modifier;
1860 }
1861 if (c < 040)
1862 {
1863 if (c == 033)
1864 {
1865 *p++ = 'E';
1866 *p++ = 'S';
1867 *p++ = 'C';
1868 }
1869 else if (c == '\t')
1870 {
1871 *p++ = 'T';
1872 *p++ = 'A';
1873 *p++ = 'B';
1874 }
1875 else if (c == Ctl ('M'))
1876 {
1877 *p++ = 'R';
1878 *p++ = 'E';
1879 *p++ = 'T';
1880 }
1881 else
1882 {
1883 /* `C-' already added above. */
1884 if (c > 0 && c <= Ctl ('Z'))
1885 *p++ = c + 0140;
1886 else
1887 *p++ = c + 0100;
1888 }
1889 }
1890 else if (c == 0177)
1891 {
1892 *p++ = 'D';
1893 *p++ = 'E';
1894 *p++ = 'L';
1895 }
1896 else if (c == ' ')
1897 {
1898 *p++ = 'S';
1899 *p++ = 'P';
1900 *p++ = 'C';
1901 }
1902 else if (c < 128
1903 || (NILP (current_buffer->enable_multibyte_characters)
1904 && SINGLE_BYTE_CHAR_P (c)
1905 && !force_multibyte))
1906 {
1907 *p++ = c;
1908 }
1909 else
1910 {
1911 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
1912
1913 if (force_multibyte && valid_p)
1914 {
1915 if (SINGLE_BYTE_CHAR_P (c))
1916 c = unibyte_char_to_multibyte (c);
1917 p += CHAR_STRING (c, p);
1918 }
1919 else if (NILP (current_buffer->enable_multibyte_characters)
1920 || valid_p)
1921 {
1922 int bit_offset;
1923 *p++ = '\\';
1924 /* The biggest character code uses 19 bits. */
1925 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1926 {
1927 if (c >= (1 << bit_offset))
1928 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1929 }
1930 }
1931 else
1932 p += CHAR_STRING (c, p);
1933 }
1934
1935 return p;
1936 }
1937
1938 /* This function cannot GC. */
1939
1940 DEFUN ("single-key-description", Fsingle_key_description,
1941 Ssingle_key_description, 1, 2, 0,
1942 "Return a pretty description of command character KEY.\n\
1943 Control characters turn into C-whatever, etc.\n\
1944 Optional argument NO-ANGLES non-nil means don't put angle brackets\n\
1945 around function keys and event symbols.")
1946 (key, no_angles)
1947 Lisp_Object key, no_angles;
1948 {
1949 if (CONSP (key) && lucid_event_type_list_p (key))
1950 key = Fevent_convert_list (key);
1951
1952 key = EVENT_HEAD (key);
1953
1954 if (INTEGERP (key)) /* Normal character */
1955 {
1956 unsigned int charset, c1, c2;
1957 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1958
1959 if (SINGLE_BYTE_CHAR_P (without_bits))
1960 charset = 0;
1961 else
1962 SPLIT_CHAR (without_bits, charset, c1, c2);
1963
1964 if (charset
1965 && CHARSET_DEFINED_P (charset)
1966 && ((c1 >= 0 && c1 < 32)
1967 || (c2 >= 0 && c2 < 32)))
1968 {
1969 /* Handle a generic character. */
1970 Lisp_Object name;
1971 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1972 CHECK_STRING (name, 0);
1973 return concat2 (build_string ("Character set "), name);
1974 }
1975 else
1976 {
1977 char tem[KEY_DESCRIPTION_SIZE], *end;
1978 int nbytes, nchars;
1979 Lisp_Object string;
1980
1981 end = push_key_description (XUINT (key), tem, 1);
1982 nbytes = end - tem;
1983 nchars = multibyte_chars_in_text (tem, nbytes);
1984 if (nchars == nbytes)
1985 {
1986 *end = '\0';
1987 string = build_string (tem);
1988 }
1989 else
1990 string = make_multibyte_string (tem, nchars, nbytes);
1991 return string;
1992 }
1993 }
1994 else if (SYMBOLP (key)) /* Function key or event-symbol */
1995 {
1996 if (NILP (no_angles))
1997 {
1998 char *buffer
1999 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
2000 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
2001 return build_string (buffer);
2002 }
2003 else
2004 return Fsymbol_name (key);
2005 }
2006 else if (STRINGP (key)) /* Buffer names in the menubar. */
2007 return Fcopy_sequence (key);
2008 else
2009 error ("KEY must be an integer, cons, symbol, or string");
2010 return Qnil;
2011 }
2012
2013 char *
2014 push_text_char_description (c, p)
2015 register unsigned int c;
2016 register char *p;
2017 {
2018 if (c >= 0200)
2019 {
2020 *p++ = 'M';
2021 *p++ = '-';
2022 c -= 0200;
2023 }
2024 if (c < 040)
2025 {
2026 *p++ = '^';
2027 *p++ = c + 64; /* 'A' - 1 */
2028 }
2029 else if (c == 0177)
2030 {
2031 *p++ = '^';
2032 *p++ = '?';
2033 }
2034 else
2035 *p++ = c;
2036 return p;
2037 }
2038
2039 /* This function cannot GC. */
2040
2041 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2042 "Return a pretty description of file-character CHARACTER.\n\
2043 Control characters turn into \"^char\", etc.")
2044 (character)
2045 Lisp_Object character;
2046 {
2047 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2048 unsigned char str[6];
2049 int c;
2050
2051 CHECK_NUMBER (character, 0);
2052
2053 c = XINT (character);
2054 if (!SINGLE_BYTE_CHAR_P (c))
2055 {
2056 int len = CHAR_STRING (c, str);
2057
2058 return make_multibyte_string (str, 1, len);
2059 }
2060
2061 *push_text_char_description (c & 0377, str) = 0;
2062
2063 return build_string (str);
2064 }
2065
2066 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2067 a meta bit. */
2068 static int
2069 ascii_sequence_p (seq)
2070 Lisp_Object seq;
2071 {
2072 int i;
2073 int len = XINT (Flength (seq));
2074
2075 for (i = 0; i < len; i++)
2076 {
2077 Lisp_Object ii, elt;
2078
2079 XSETFASTINT (ii, i);
2080 elt = Faref (seq, ii);
2081
2082 if (!INTEGERP (elt)
2083 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2084 return 0;
2085 }
2086
2087 return 1;
2088 }
2089
2090 \f
2091 /* where-is - finding a command in a set of keymaps. */
2092
2093 static Lisp_Object where_is_internal_1 ();
2094 static void where_is_internal_2 ();
2095
2096 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2097 Returns the first non-nil binding found in any of those maps. */
2098
2099 static Lisp_Object
2100 shadow_lookup (shadow, key, flag)
2101 Lisp_Object shadow, key, flag;
2102 {
2103 Lisp_Object tail, value;
2104
2105 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2106 {
2107 value = Flookup_key (XCAR (tail), key, flag);
2108 if (!NILP (value) && !NATNUMP (value))
2109 return value;
2110 }
2111 return Qnil;
2112 }
2113
2114 /* This function can GC if Flookup_key autoloads any keymaps. */
2115
2116 static Lisp_Object
2117 where_is_internal (definition, keymaps, firstonly, noindirect)
2118 Lisp_Object definition, keymaps;
2119 Lisp_Object firstonly, noindirect;
2120 {
2121 Lisp_Object maps = Qnil;
2122 Lisp_Object found, sequences;
2123 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2124 /* 1 means ignore all menu bindings entirely. */
2125 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2126
2127 found = keymaps;
2128 while (CONSP (found))
2129 {
2130 maps =
2131 nconc2 (maps,
2132 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2133 found = XCDR (found);
2134 }
2135
2136 GCPRO5 (definition, keymaps, maps, found, sequences);
2137 found = Qnil;
2138 sequences = Qnil;
2139
2140 for (; !NILP (maps); maps = Fcdr (maps))
2141 {
2142 /* Key sequence to reach map, and the map that it reaches */
2143 register Lisp_Object this, map;
2144
2145 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2146 [M-CHAR] sequences, check if last character of the sequence
2147 is the meta-prefix char. */
2148 Lisp_Object last;
2149 int last_is_meta;
2150
2151 this = Fcar (Fcar (maps));
2152 map = Fcdr (Fcar (maps));
2153 last = make_number (XINT (Flength (this)) - 1);
2154 last_is_meta = (XINT (last) >= 0
2155 && EQ (Faref (this, last), meta_prefix_char));
2156
2157 /* if (nomenus && !ascii_sequence_p (this)) */
2158 if (nomenus && XINT (last) >= 0
2159 && !INTEGERP (Faref (this, make_number (0))))
2160 /* If no menu entries should be returned, skip over the
2161 keymaps bound to `menu-bar' and `tool-bar' and other
2162 non-ascii prefixes like `C-down-mouse-2'. */
2163 continue;
2164
2165 QUIT;
2166
2167 while (CONSP (map))
2168 {
2169 /* Because the code we want to run on each binding is rather
2170 large, we don't want to have two separate loop bodies for
2171 sparse keymap bindings and tables; we want to iterate one
2172 loop body over both keymap and vector bindings.
2173
2174 For this reason, if Fcar (map) is a vector, we don't
2175 advance map to the next element until i indicates that we
2176 have finished off the vector. */
2177 Lisp_Object elt, key, binding;
2178 elt = XCAR (map);
2179 map = XCDR (map);
2180
2181 sequences = Qnil;
2182
2183 QUIT;
2184
2185 /* Set key and binding to the current key and binding, and
2186 advance map and i to the next binding. */
2187 if (VECTORP (elt))
2188 {
2189 Lisp_Object sequence;
2190 int i;
2191 /* In a vector, look at each element. */
2192 for (i = 0; i < XVECTOR (elt)->size; i++)
2193 {
2194 binding = AREF (elt, i);
2195 XSETFASTINT (key, i);
2196 sequence = where_is_internal_1 (binding, key, definition,
2197 noindirect, this,
2198 last, nomenus, last_is_meta);
2199 if (!NILP (sequence))
2200 sequences = Fcons (sequence, sequences);
2201 }
2202 }
2203 else if (CHAR_TABLE_P (elt))
2204 {
2205 Lisp_Object indices[3];
2206 Lisp_Object args;
2207
2208 args = Fcons (Fcons (Fcons (definition, noindirect),
2209 Qnil), /* Result accumulator. */
2210 Fcons (Fcons (this, last),
2211 Fcons (make_number (nomenus),
2212 make_number (last_is_meta))));
2213 map_char_table (where_is_internal_2, Qnil, elt, args,
2214 0, indices);
2215 sequences = XCDR (XCAR (args));
2216 }
2217 else if (CONSP (elt))
2218 {
2219 Lisp_Object sequence;
2220
2221 key = XCAR (elt);
2222 binding = XCDR (elt);
2223
2224 sequence = where_is_internal_1 (binding, key, definition,
2225 noindirect, this,
2226 last, nomenus, last_is_meta);
2227 if (!NILP (sequence))
2228 sequences = Fcons (sequence, sequences);
2229 }
2230
2231
2232 for (; !NILP (sequences); sequences = XCDR (sequences))
2233 {
2234 Lisp_Object sequence;
2235
2236 sequence = XCAR (sequences);
2237
2238 /* Verify that this key binding is not shadowed by another
2239 binding for the same key, before we say it exists.
2240
2241 Mechanism: look for local definition of this key and if
2242 it is defined and does not match what we found then
2243 ignore this key.
2244
2245 Either nil or number as value from Flookup_key
2246 means undefined. */
2247 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2248 continue;
2249
2250 /* It is a true unshadowed match. Record it, unless it's already
2251 been seen (as could happen when inheriting keymaps). */
2252 if (NILP (Fmember (sequence, found)))
2253 found = Fcons (sequence, found);
2254
2255 /* If firstonly is Qnon_ascii, then we can return the first
2256 binding we find. If firstonly is not Qnon_ascii but not
2257 nil, then we should return the first ascii-only binding
2258 we find. */
2259 if (EQ (firstonly, Qnon_ascii))
2260 RETURN_UNGCPRO (sequence);
2261 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2262 RETURN_UNGCPRO (sequence);
2263 }
2264 }
2265 }
2266
2267 UNGCPRO;
2268
2269 found = Fnreverse (found);
2270
2271 /* firstonly may have been t, but we may have gone all the way through
2272 the keymaps without finding an all-ASCII key sequence. So just
2273 return the best we could find. */
2274 if (!NILP (firstonly))
2275 return Fcar (found);
2276
2277 return found;
2278 }
2279
2280 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2281 "Return list of keys that invoke DEFINITION.\n\
2282 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2283 If KEYMAP is nil, search all the currently active keymaps.\n\
2284 If KEYMAP is a list of keymaps, search only those keymaps.\n\
2285 \n\
2286 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2287 rather than a list of all possible key sequences.\n\
2288 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2289 no matter what it is.\n\
2290 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2291 and entirely reject menu bindings.\n\
2292 \n\
2293 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2294 to other keymaps or slots. This makes it possible to search for an\n\
2295 indirect definition itself.")
2296 (definition, keymap, firstonly, noindirect)
2297 Lisp_Object definition, keymap;
2298 Lisp_Object firstonly, noindirect;
2299 {
2300 Lisp_Object sequences, keymaps;
2301 /* 1 means ignore all menu bindings entirely. */
2302 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2303 Lisp_Object result;
2304
2305 /* Find the relevant keymaps. */
2306 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2307 keymaps = keymap;
2308 else if (!NILP (keymap))
2309 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2310 else
2311 keymaps = Fcurrent_active_maps (Qnil);
2312
2313 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2314 We don't really need to check `keymap'. */
2315 if (nomenus && NILP (noindirect) && NILP (keymap))
2316 {
2317 Lisp_Object *defns;
2318 int i, j, n;
2319 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2320
2321 /* Check heuristic-consistency of the cache. */
2322 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2323 where_is_cache = Qnil;
2324
2325 if (NILP (where_is_cache))
2326 {
2327 /* We need to create the cache. */
2328 Lisp_Object args[2];
2329 where_is_cache = Fmake_hash_table (0, args);
2330 where_is_cache_keymaps = Qt;
2331
2332 /* Fill in the cache. */
2333 GCPRO4 (definition, keymaps, firstonly, noindirect);
2334 where_is_internal (definition, keymaps, firstonly, noindirect);
2335 UNGCPRO;
2336
2337 where_is_cache_keymaps = keymaps;
2338 }
2339
2340 /* We want to process definitions from the last to the first.
2341 Instead of consing, copy definitions to a vector and step
2342 over that vector. */
2343 sequences = Fgethash (definition, where_is_cache, Qnil);
2344 n = XINT (Flength (sequences));
2345 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2346 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2347 defns[i++] = XCAR (sequences);
2348
2349 /* Verify that the key bindings are not shadowed. Note that
2350 the following can GC. */
2351 GCPRO2 (definition, keymaps);
2352 result = Qnil;
2353 j = -1;
2354 for (i = n - 1; i >= 0; --i)
2355 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2356 {
2357 if (ascii_sequence_p (defns[i]))
2358 break;
2359 else if (j < 0)
2360 j = i;
2361 }
2362
2363 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2364 UNGCPRO;
2365 }
2366 else
2367 {
2368 /* Kill the cache so that where_is_internal_1 doesn't think
2369 we're filling it up. */
2370 where_is_cache = Qnil;
2371 result = where_is_internal (definition, keymaps, firstonly, noindirect);
2372 }
2373
2374 return result;
2375 }
2376
2377 /* This is the function that Fwhere_is_internal calls using map_char_table.
2378 ARGS has the form
2379 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2380 .
2381 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2382 Since map_char_table doesn't really use the return value from this function,
2383 we the result append to RESULT, the slot in ARGS.
2384
2385 This function can GC because it calls where_is_internal_1 which can
2386 GC. */
2387
2388 static void
2389 where_is_internal_2 (args, key, binding)
2390 Lisp_Object args, key, binding;
2391 {
2392 Lisp_Object definition, noindirect, this, last;
2393 Lisp_Object result, sequence;
2394 int nomenus, last_is_meta;
2395 struct gcpro gcpro1, gcpro2, gcpro3;
2396
2397 GCPRO3 (args, key, binding);
2398 result = XCDR (XCAR (args));
2399 definition = XCAR (XCAR (XCAR (args)));
2400 noindirect = XCDR (XCAR (XCAR (args)));
2401 this = XCAR (XCAR (XCDR (args)));
2402 last = XCDR (XCAR (XCDR (args)));
2403 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2404 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2405
2406 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2407 this, last, nomenus, last_is_meta);
2408
2409 if (!NILP (sequence))
2410 XCDR (XCAR (args)) = Fcons (sequence, result);
2411
2412 UNGCPRO;
2413 }
2414
2415
2416 /* This function cannot GC. */
2417
2418 static Lisp_Object
2419 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2420 nomenus, last_is_meta)
2421 Lisp_Object binding, key, definition, noindirect, this, last;
2422 int nomenus, last_is_meta;
2423 {
2424 Lisp_Object sequence;
2425
2426 /* Search through indirections unless that's not wanted. */
2427 if (NILP (noindirect))
2428 binding = get_keyelt (binding, 0);
2429
2430 /* End this iteration if this element does not match
2431 the target. */
2432
2433 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2434 || EQ (binding, definition)
2435 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2436 /* Doesn't match. */
2437 return Qnil;
2438
2439 /* We have found a match. Construct the key sequence where we found it. */
2440 if (INTEGERP (key) && last_is_meta)
2441 {
2442 sequence = Fcopy_sequence (this);
2443 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2444 }
2445 else
2446 sequence = append_key (this, key);
2447
2448 if (!NILP (where_is_cache))
2449 {
2450 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2451 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2452 return Qnil;
2453 }
2454 else
2455 return sequence;
2456 }
2457 \f
2458 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2459
2460 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2461 "Insert the list of all defined keys and their definitions.\n\
2462 The list is inserted in the current buffer, while the bindings are\n\
2463 looked up in BUFFER.\n\
2464 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2465 then we display only bindings that start with that prefix.\n\
2466 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2467 \(Ordinarily these are omitted from the output.)")
2468 (buffer, prefix, menus)
2469 Lisp_Object buffer, prefix, menus;
2470 {
2471 Lisp_Object outbuf, shadow;
2472 int nomenu = NILP (menus);
2473 register Lisp_Object start1;
2474 struct gcpro gcpro1;
2475
2476 char *alternate_heading
2477 = "\
2478 Keyboard translations:\n\n\
2479 You type Translation\n\
2480 -------- -----------\n";
2481
2482 shadow = Qnil;
2483 GCPRO1 (shadow);
2484
2485 outbuf = Fcurrent_buffer();
2486
2487 /* Report on alternates for keys. */
2488 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2489 {
2490 int c;
2491 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2492 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2493
2494 for (c = 0; c < translate_len; c++)
2495 if (translate[c] != c)
2496 {
2497 char buf[KEY_DESCRIPTION_SIZE];
2498 char *bufend;
2499
2500 if (alternate_heading)
2501 {
2502 insert_string (alternate_heading);
2503 alternate_heading = 0;
2504 }
2505
2506 bufend = push_key_description (translate[c], buf, 1);
2507 insert (buf, bufend - buf);
2508 Findent_to (make_number (16), make_number (1));
2509 bufend = push_key_description (c, buf, 1);
2510 insert (buf, bufend - buf);
2511
2512 insert ("\n", 1);
2513 }
2514
2515 insert ("\n", 1);
2516 }
2517
2518 if (!NILP (Vkey_translation_map))
2519 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2520 "Key translations", nomenu, 1, 0);
2521
2522 {
2523 int i, nmaps;
2524 Lisp_Object *modes, *maps;
2525
2526 /* Temporarily switch to `buffer', so that we can get that buffer's
2527 minor modes correctly. */
2528 Fset_buffer (buffer);
2529
2530 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2531 || !NILP (Voverriding_local_map))
2532 nmaps = 0;
2533 else
2534 nmaps = current_minor_maps (&modes, &maps);
2535 Fset_buffer (outbuf);
2536
2537 /* Print the minor mode maps. */
2538 for (i = 0; i < nmaps; i++)
2539 {
2540 /* The title for a minor mode keymap
2541 is constructed at run time.
2542 We let describe_map_tree do the actual insertion
2543 because it takes care of other features when doing so. */
2544 char *title, *p;
2545
2546 if (!SYMBOLP (modes[i]))
2547 abort();
2548
2549 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2550 *p++ = '\f';
2551 *p++ = '\n';
2552 *p++ = '`';
2553 bcopy (XSYMBOL (modes[i])->name->data, p,
2554 XSYMBOL (modes[i])->name->size);
2555 p += XSYMBOL (modes[i])->name->size;
2556 *p++ = '\'';
2557 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2558 p += sizeof (" Minor Mode Bindings") - 1;
2559 *p = 0;
2560
2561 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2562 shadow = Fcons (maps[i], shadow);
2563 }
2564 }
2565
2566 /* Print the (major mode) local map. */
2567 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2568 start1 = current_kboard->Voverriding_terminal_local_map;
2569 else if (!NILP (Voverriding_local_map))
2570 start1 = Voverriding_local_map;
2571 else
2572 start1 = XBUFFER (buffer)->keymap;
2573
2574 if (!NILP (start1))
2575 {
2576 describe_map_tree (start1, 1, shadow, prefix,
2577 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2578 shadow = Fcons (start1, shadow);
2579 }
2580
2581 describe_map_tree (current_global_map, 1, shadow, prefix,
2582 "\f\nGlobal Bindings", nomenu, 0, 1);
2583
2584 /* Print the function-key-map translations under this prefix. */
2585 if (!NILP (Vfunction_key_map))
2586 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2587 "\f\nFunction key map translations", nomenu, 1, 0);
2588
2589 UNGCPRO;
2590 return Qnil;
2591 }
2592
2593 /* Insert a description of the key bindings in STARTMAP,
2594 followed by those of all maps reachable through STARTMAP.
2595 If PARTIAL is nonzero, omit certain "uninteresting" commands
2596 (such as `undefined').
2597 If SHADOW is non-nil, it is a list of maps;
2598 don't mention keys which would be shadowed by any of them.
2599 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2600 TITLE, if not 0, is a string to insert at the beginning.
2601 TITLE should not end with a colon or a newline; we supply that.
2602 If NOMENU is not 0, then omit menu-bar commands.
2603
2604 If TRANSL is nonzero, the definitions are actually key translations
2605 so print strings and vectors differently.
2606
2607 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2608 to look through. */
2609
2610 void
2611 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2612 always_title)
2613 Lisp_Object startmap, shadow, prefix;
2614 int partial;
2615 char *title;
2616 int nomenu;
2617 int transl;
2618 int always_title;
2619 {
2620 Lisp_Object maps, orig_maps, seen, sub_shadows;
2621 struct gcpro gcpro1, gcpro2, gcpro3;
2622 int something = 0;
2623 char *key_heading
2624 = "\
2625 key binding\n\
2626 --- -------\n";
2627
2628 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2629 seen = Qnil;
2630 sub_shadows = Qnil;
2631 GCPRO3 (maps, seen, sub_shadows);
2632
2633 if (nomenu)
2634 {
2635 Lisp_Object list;
2636
2637 /* Delete from MAPS each element that is for the menu bar. */
2638 for (list = maps; !NILP (list); list = XCDR (list))
2639 {
2640 Lisp_Object elt, prefix, tem;
2641
2642 elt = Fcar (list);
2643 prefix = Fcar (elt);
2644 if (XVECTOR (prefix)->size >= 1)
2645 {
2646 tem = Faref (prefix, make_number (0));
2647 if (EQ (tem, Qmenu_bar))
2648 maps = Fdelq (elt, maps);
2649 }
2650 }
2651 }
2652
2653 if (!NILP (maps) || always_title)
2654 {
2655 if (title)
2656 {
2657 insert_string (title);
2658 if (!NILP (prefix))
2659 {
2660 insert_string (" Starting With ");
2661 insert1 (Fkey_description (prefix));
2662 }
2663 insert_string (":\n");
2664 }
2665 insert_string (key_heading);
2666 something = 1;
2667 }
2668
2669 for (; !NILP (maps); maps = Fcdr (maps))
2670 {
2671 register Lisp_Object elt, prefix, tail;
2672
2673 elt = Fcar (maps);
2674 prefix = Fcar (elt);
2675
2676 sub_shadows = Qnil;
2677
2678 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2679 {
2680 Lisp_Object shmap;
2681
2682 shmap = XCAR (tail);
2683
2684 /* If the sequence by which we reach this keymap is zero-length,
2685 then the shadow map for this keymap is just SHADOW. */
2686 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2687 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2688 ;
2689 /* If the sequence by which we reach this keymap actually has
2690 some elements, then the sequence's definition in SHADOW is
2691 what we should use. */
2692 else
2693 {
2694 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2695 if (INTEGERP (shmap))
2696 shmap = Qnil;
2697 }
2698
2699 /* If shmap is not nil and not a keymap,
2700 it completely shadows this map, so don't
2701 describe this map at all. */
2702 if (!NILP (shmap) && !KEYMAPP (shmap))
2703 goto skip;
2704
2705 if (!NILP (shmap))
2706 sub_shadows = Fcons (shmap, sub_shadows);
2707 }
2708
2709 /* Maps we have already listed in this loop shadow this map. */
2710 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2711 {
2712 Lisp_Object tem;
2713 tem = Fequal (Fcar (XCAR (tail)), prefix);
2714 if (!NILP (tem))
2715 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2716 }
2717
2718 describe_map (Fcdr (elt), prefix,
2719 transl ? describe_translation : describe_command,
2720 partial, sub_shadows, &seen, nomenu);
2721
2722 skip: ;
2723 }
2724
2725 if (something)
2726 insert_string ("\n");
2727
2728 UNGCPRO;
2729 }
2730
2731 static int previous_description_column;
2732
2733 static void
2734 describe_command (definition)
2735 Lisp_Object definition;
2736 {
2737 register Lisp_Object tem1;
2738 int column = current_column ();
2739 int description_column;
2740
2741 /* If column 16 is no good, go to col 32;
2742 but don't push beyond that--go to next line instead. */
2743 if (column > 30)
2744 {
2745 insert_char ('\n');
2746 description_column = 32;
2747 }
2748 else if (column > 14 || (column > 10 && previous_description_column == 32))
2749 description_column = 32;
2750 else
2751 description_column = 16;
2752
2753 Findent_to (make_number (description_column), make_number (1));
2754 previous_description_column = description_column;
2755
2756 if (SYMBOLP (definition))
2757 {
2758 XSETSTRING (tem1, XSYMBOL (definition)->name);
2759 insert1 (tem1);
2760 insert_string ("\n");
2761 }
2762 else if (STRINGP (definition) || VECTORP (definition))
2763 insert_string ("Keyboard Macro\n");
2764 else if (KEYMAPP (definition))
2765 insert_string ("Prefix Command\n");
2766 else
2767 insert_string ("??\n");
2768 }
2769
2770 static void
2771 describe_translation (definition)
2772 Lisp_Object definition;
2773 {
2774 register Lisp_Object tem1;
2775
2776 Findent_to (make_number (16), make_number (1));
2777
2778 if (SYMBOLP (definition))
2779 {
2780 XSETSTRING (tem1, XSYMBOL (definition)->name);
2781 insert1 (tem1);
2782 insert_string ("\n");
2783 }
2784 else if (STRINGP (definition) || VECTORP (definition))
2785 {
2786 insert1 (Fkey_description (definition));
2787 insert_string ("\n");
2788 }
2789 else if (KEYMAPP (definition))
2790 insert_string ("Prefix Command\n");
2791 else
2792 insert_string ("??\n");
2793 }
2794
2795 /* Describe the contents of map MAP, assuming that this map itself is
2796 reached by the sequence of prefix keys KEYS (a string or vector).
2797 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2798
2799 static void
2800 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2801 register Lisp_Object map;
2802 Lisp_Object keys;
2803 void (*elt_describer) P_ ((Lisp_Object));
2804 int partial;
2805 Lisp_Object shadow;
2806 Lisp_Object *seen;
2807 int nomenu;
2808 {
2809 Lisp_Object elt_prefix;
2810 Lisp_Object tail, definition, event;
2811 Lisp_Object tem;
2812 Lisp_Object suppress;
2813 Lisp_Object kludge;
2814 int first = 1;
2815 struct gcpro gcpro1, gcpro2, gcpro3;
2816
2817 suppress = Qnil;
2818
2819 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2820 {
2821 /* Call Fkey_description first, to avoid GC bug for the other string. */
2822 tem = Fkey_description (keys);
2823 elt_prefix = concat2 (tem, build_string (" "));
2824 }
2825 else
2826 elt_prefix = Qnil;
2827
2828 if (partial)
2829 suppress = intern ("suppress-keymap");
2830
2831 /* This vector gets used to present single keys to Flookup_key. Since
2832 that is done once per keymap element, we don't want to cons up a
2833 fresh vector every time. */
2834 kludge = Fmake_vector (make_number (1), Qnil);
2835 definition = Qnil;
2836
2837 GCPRO3 (elt_prefix, definition, kludge);
2838
2839 for (tail = map; CONSP (tail); tail = XCDR (tail))
2840 {
2841 QUIT;
2842
2843 if (VECTORP (XCAR (tail))
2844 || CHAR_TABLE_P (XCAR (tail)))
2845 describe_vector (XCAR (tail),
2846 elt_prefix, elt_describer, partial, shadow, map,
2847 (int *)0, 0);
2848 else if (CONSP (XCAR (tail)))
2849 {
2850 event = XCAR (XCAR (tail));
2851
2852 /* Ignore bindings whose "keys" are not really valid events.
2853 (We get these in the frames and buffers menu.) */
2854 if (!(SYMBOLP (event) || INTEGERP (event)))
2855 continue;
2856
2857 if (nomenu && EQ (event, Qmenu_bar))
2858 continue;
2859
2860 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2861
2862 /* Don't show undefined commands or suppressed commands. */
2863 if (NILP (definition)) continue;
2864 if (SYMBOLP (definition) && partial)
2865 {
2866 tem = Fget (definition, suppress);
2867 if (!NILP (tem))
2868 continue;
2869 }
2870
2871 /* Don't show a command that isn't really visible
2872 because a local definition of the same key shadows it. */
2873
2874 ASET (kludge, 0, event);
2875 if (!NILP (shadow))
2876 {
2877 tem = shadow_lookup (shadow, kludge, Qt);
2878 if (!NILP (tem)) continue;
2879 }
2880
2881 tem = Flookup_key (map, kludge, Qt);
2882 if (!EQ (tem, definition)) continue;
2883
2884 if (first)
2885 {
2886 previous_description_column = 0;
2887 insert ("\n", 1);
2888 first = 0;
2889 }
2890
2891 if (!NILP (elt_prefix))
2892 insert1 (elt_prefix);
2893
2894 /* THIS gets the string to describe the character EVENT. */
2895 insert1 (Fsingle_key_description (event, Qnil));
2896
2897 /* Print a description of the definition of this character.
2898 elt_describer will take care of spacing out far enough
2899 for alignment purposes. */
2900 (*elt_describer) (definition);
2901 }
2902 else if (EQ (XCAR (tail), Qkeymap))
2903 {
2904 /* The same keymap might be in the structure twice, if we're
2905 using an inherited keymap. So skip anything we've already
2906 encountered. */
2907 tem = Fassq (tail, *seen);
2908 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2909 break;
2910 *seen = Fcons (Fcons (tail, keys), *seen);
2911 }
2912 }
2913
2914 UNGCPRO;
2915 }
2916
2917 static void
2918 describe_vector_princ (elt)
2919 Lisp_Object elt;
2920 {
2921 Findent_to (make_number (16), make_number (1));
2922 Fprinc (elt, Qnil);
2923 Fterpri (Qnil);
2924 }
2925
2926 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2927 "Insert a description of contents of VECTOR.\n\
2928 This is text showing the elements of vector matched against indices.")
2929 (vector)
2930 Lisp_Object vector;
2931 {
2932 int count = specpdl_ptr - specpdl;
2933
2934 specbind (Qstandard_output, Fcurrent_buffer ());
2935 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2936 describe_vector (vector, Qnil, describe_vector_princ, 0,
2937 Qnil, Qnil, (int *)0, 0);
2938
2939 return unbind_to (count, Qnil);
2940 }
2941
2942 /* Insert in the current buffer a description of the contents of VECTOR.
2943 We call ELT_DESCRIBER to insert the description of one value found
2944 in VECTOR.
2945
2946 ELT_PREFIX describes what "comes before" the keys or indices defined
2947 by this vector. This is a human-readable string whose size
2948 is not necessarily related to the situation.
2949
2950 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2951 leads to this keymap.
2952
2953 If the vector is a chartable, ELT_PREFIX is the vector
2954 of bytes that lead to the character set or portion of a character
2955 set described by this chartable.
2956
2957 If PARTIAL is nonzero, it means do not mention suppressed commands
2958 (that assumes the vector is in a keymap).
2959
2960 SHADOW is a list of keymaps that shadow this map.
2961 If it is non-nil, then we look up the key in those maps
2962 and we don't mention it now if it is defined by any of them.
2963
2964 ENTIRE_MAP is the keymap in which this vector appears.
2965 If the definition in effect in the whole map does not match
2966 the one in this vector, we ignore this one.
2967
2968 When describing a sub-char-table, INDICES is a list of
2969 indices at higher levels in this char-table,
2970 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2971
2972 void
2973 describe_vector (vector, elt_prefix, elt_describer,
2974 partial, shadow, entire_map,
2975 indices, char_table_depth)
2976 register Lisp_Object vector;
2977 Lisp_Object elt_prefix;
2978 void (*elt_describer) P_ ((Lisp_Object));
2979 int partial;
2980 Lisp_Object shadow;
2981 Lisp_Object entire_map;
2982 int *indices;
2983 int char_table_depth;
2984 {
2985 Lisp_Object definition;
2986 Lisp_Object tem2;
2987 register int i;
2988 Lisp_Object suppress;
2989 Lisp_Object kludge;
2990 int first = 1;
2991 struct gcpro gcpro1, gcpro2, gcpro3;
2992 /* Range of elements to be handled. */
2993 int from, to;
2994 /* A flag to tell if a leaf in this level of char-table is not a
2995 generic character (i.e. a complete multibyte character). */
2996 int complete_char;
2997 int character;
2998 int starting_i;
2999
3000 suppress = Qnil;
3001
3002 if (indices == 0)
3003 indices = (int *) alloca (3 * sizeof (int));
3004
3005 definition = Qnil;
3006
3007 /* This vector gets used to present single keys to Flookup_key. Since
3008 that is done once per vector element, we don't want to cons up a
3009 fresh vector every time. */
3010 kludge = Fmake_vector (make_number (1), Qnil);
3011 GCPRO3 (elt_prefix, definition, kludge);
3012
3013 if (partial)
3014 suppress = intern ("suppress-keymap");
3015
3016 if (CHAR_TABLE_P (vector))
3017 {
3018 if (char_table_depth == 0)
3019 {
3020 /* VECTOR is a top level char-table. */
3021 complete_char = 1;
3022 from = 0;
3023 to = CHAR_TABLE_ORDINARY_SLOTS;
3024 }
3025 else
3026 {
3027 /* VECTOR is a sub char-table. */
3028 if (char_table_depth >= 3)
3029 /* A char-table is never that deep. */
3030 error ("Too deep char table");
3031
3032 complete_char
3033 = (CHARSET_VALID_P (indices[0])
3034 && ((CHARSET_DIMENSION (indices[0]) == 1
3035 && char_table_depth == 1)
3036 || char_table_depth == 2));
3037
3038 /* Meaningful elements are from 32th to 127th. */
3039 from = 32;
3040 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3041 }
3042 }
3043 else
3044 {
3045 /* This does the right thing for ordinary vectors. */
3046
3047 complete_char = 1;
3048 from = 0;
3049 to = XVECTOR (vector)->size;
3050 }
3051
3052 for (i = from; i < to; i++)
3053 {
3054 QUIT;
3055
3056 if (CHAR_TABLE_P (vector))
3057 {
3058 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3059 complete_char = 0;
3060
3061 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3062 && !CHARSET_DEFINED_P (i - 128))
3063 continue;
3064
3065 definition
3066 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3067 }
3068 else
3069 definition = get_keyelt (AREF (vector, i), 0);
3070
3071 if (NILP (definition)) continue;
3072
3073 /* Don't mention suppressed commands. */
3074 if (SYMBOLP (definition) && partial)
3075 {
3076 Lisp_Object tem;
3077
3078 tem = Fget (definition, suppress);
3079
3080 if (!NILP (tem)) continue;
3081 }
3082
3083 /* Set CHARACTER to the character this entry describes, if any.
3084 Also update *INDICES. */
3085 if (CHAR_TABLE_P (vector))
3086 {
3087 indices[char_table_depth] = i;
3088
3089 if (char_table_depth == 0)
3090 {
3091 character = i;
3092 indices[0] = i - 128;
3093 }
3094 else if (complete_char)
3095 {
3096 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3097 }
3098 else
3099 character = 0;
3100 }
3101 else
3102 character = i;
3103
3104 /* If this binding is shadowed by some other map, ignore it. */
3105 if (!NILP (shadow) && complete_char)
3106 {
3107 Lisp_Object tem;
3108
3109 ASET (kludge, 0, make_number (character));
3110 tem = shadow_lookup (shadow, kludge, Qt);
3111
3112 if (!NILP (tem)) continue;
3113 }
3114
3115 /* Ignore this definition if it is shadowed by an earlier
3116 one in the same keymap. */
3117 if (!NILP (entire_map) && complete_char)
3118 {
3119 Lisp_Object tem;
3120
3121 ASET (kludge, 0, make_number (character));
3122 tem = Flookup_key (entire_map, kludge, Qt);
3123
3124 if (!EQ (tem, definition))
3125 continue;
3126 }
3127
3128 if (first)
3129 {
3130 if (char_table_depth == 0)
3131 insert ("\n", 1);
3132 first = 0;
3133 }
3134
3135 /* For a sub char-table, show the depth by indentation.
3136 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3137 if (char_table_depth > 0)
3138 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3139
3140 /* Output the prefix that applies to every entry in this map. */
3141 if (!NILP (elt_prefix))
3142 insert1 (elt_prefix);
3143
3144 /* Insert or describe the character this slot is for,
3145 or a description of what it is for. */
3146 if (SUB_CHAR_TABLE_P (vector))
3147 {
3148 if (complete_char)
3149 insert_char (character);
3150 else
3151 {
3152 /* We need an octal representation for this block of
3153 characters. */
3154 char work[16];
3155 sprintf (work, "(row %d)", i);
3156 insert (work, strlen (work));
3157 }
3158 }
3159 else if (CHAR_TABLE_P (vector))
3160 {
3161 if (complete_char)
3162 insert1 (Fsingle_key_description (make_number (character), Qnil));
3163 else
3164 {
3165 /* Print the information for this character set. */
3166 insert_string ("<");
3167 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3168 if (STRINGP (tem2))
3169 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3170 STRING_BYTES (XSTRING (tem2)), 0);
3171 else
3172 insert ("?", 1);
3173 insert (">", 1);
3174 }
3175 }
3176 else
3177 {
3178 insert1 (Fsingle_key_description (make_number (character), Qnil));
3179 }
3180
3181 /* If we find a sub char-table within a char-table,
3182 scan it recursively; it defines the details for
3183 a character set or a portion of a character set. */
3184 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3185 {
3186 insert ("\n", 1);
3187 describe_vector (definition, elt_prefix, elt_describer,
3188 partial, shadow, entire_map,
3189 indices, char_table_depth + 1);
3190 continue;
3191 }
3192
3193 starting_i = i;
3194
3195 /* Find all consecutive characters or rows that have the same
3196 definition. But, for elements of a top level char table, if
3197 they are for charsets, we had better describe one by one even
3198 if they have the same definition. */
3199 if (CHAR_TABLE_P (vector))
3200 {
3201 int limit = to;
3202
3203 if (char_table_depth == 0)
3204 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3205
3206 while (i + 1 < limit
3207 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3208 !NILP (tem2))
3209 && !NILP (Fequal (tem2, definition)))
3210 i++;
3211 }
3212 else
3213 while (i + 1 < to
3214 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3215 !NILP (tem2))
3216 && !NILP (Fequal (tem2, definition)))
3217 i++;
3218
3219
3220 /* If we have a range of more than one character,
3221 print where the range reaches to. */
3222
3223 if (i != starting_i)
3224 {
3225 insert (" .. ", 4);
3226
3227 if (!NILP (elt_prefix))
3228 insert1 (elt_prefix);
3229
3230 if (CHAR_TABLE_P (vector))
3231 {
3232 if (char_table_depth == 0)
3233 {
3234 insert1 (Fsingle_key_description (make_number (i), Qnil));
3235 }
3236 else if (complete_char)
3237 {
3238 indices[char_table_depth] = i;
3239 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3240 insert_char (character);
3241 }
3242 else
3243 {
3244 /* We need an octal representation for this block of
3245 characters. */
3246 char work[16];
3247 sprintf (work, "(row %d)", i);
3248 insert (work, strlen (work));
3249 }
3250 }
3251 else
3252 {
3253 insert1 (Fsingle_key_description (make_number (i), Qnil));
3254 }
3255 }
3256
3257 /* Print a description of the definition of this character.
3258 elt_describer will take care of spacing out far enough
3259 for alignment purposes. */
3260 (*elt_describer) (definition);
3261 }
3262
3263 /* For (sub) char-table, print `defalt' slot at last. */
3264 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3265 {
3266 insert (" ", char_table_depth * 2);
3267 insert_string ("<<default>>");
3268 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3269 }
3270
3271 UNGCPRO;
3272 }
3273 \f
3274 /* Apropos - finding all symbols whose names match a regexp. */
3275 Lisp_Object apropos_predicate;
3276 Lisp_Object apropos_accumulate;
3277
3278 static void
3279 apropos_accum (symbol, string)
3280 Lisp_Object symbol, string;
3281 {
3282 register Lisp_Object tem;
3283
3284 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3285 if (!NILP (tem) && !NILP (apropos_predicate))
3286 tem = call1 (apropos_predicate, symbol);
3287 if (!NILP (tem))
3288 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3289 }
3290
3291 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3292 "Show all symbols whose names contain match for REGEXP.\n\
3293 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3294 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3295 Return list of symbols found.")
3296 (regexp, predicate)
3297 Lisp_Object regexp, predicate;
3298 {
3299 struct gcpro gcpro1, gcpro2;
3300 CHECK_STRING (regexp, 0);
3301 apropos_predicate = predicate;
3302 GCPRO2 (apropos_predicate, apropos_accumulate);
3303 apropos_accumulate = Qnil;
3304 map_obarray (Vobarray, apropos_accum, regexp);
3305 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3306 UNGCPRO;
3307 return apropos_accumulate;
3308 }
3309 \f
3310 void
3311 syms_of_keymap ()
3312 {
3313 Qkeymap = intern ("keymap");
3314 staticpro (&Qkeymap);
3315
3316 /* Now we are ready to set up this property, so we can
3317 create char tables. */
3318 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3319
3320 /* Initialize the keymaps standardly used.
3321 Each one is the value of a Lisp variable, and is also
3322 pointed to by a C variable */
3323
3324 global_map = Fmake_keymap (Qnil);
3325 Fset (intern ("global-map"), global_map);
3326
3327 current_global_map = global_map;
3328 staticpro (&global_map);
3329 staticpro (&current_global_map);
3330
3331 meta_map = Fmake_keymap (Qnil);
3332 Fset (intern ("esc-map"), meta_map);
3333 Ffset (intern ("ESC-prefix"), meta_map);
3334
3335 control_x_map = Fmake_keymap (Qnil);
3336 Fset (intern ("ctl-x-map"), control_x_map);
3337 Ffset (intern ("Control-X-prefix"), control_x_map);
3338
3339 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3340 "List of commands given new key bindings recently.\n\
3341 This is used for internal purposes during Emacs startup;\n\
3342 don't alter it yourself.");
3343 Vdefine_key_rebound_commands = Qt;
3344
3345 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3346 "Default keymap to use when reading from the minibuffer.");
3347 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3348
3349 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3350 "Local keymap for the minibuffer when spaces are not allowed.");
3351 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3352 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3353
3354 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3355 "Local keymap for minibuffer input with completion.");
3356 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3357 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3358
3359 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3360 "Local keymap for minibuffer input with completion, for exact match.");
3361 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3362 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3363 Vminibuffer_local_completion_map);
3364
3365 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3366 "Alist of keymaps to use for minor modes.\n\
3367 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3368 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3369 If two active keymaps bind the same key, the keymap appearing earlier\n\
3370 in the list takes precedence.");
3371 Vminor_mode_map_alist = Qnil;
3372
3373 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3374 "Alist of keymaps to use for minor modes, in current major mode.\n\
3375 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3376 used the same way (and before `minor-mode-map-alist'); however,\n\
3377 it is provided for major modes to bind locally.");
3378 Vminor_mode_overriding_map_alist = Qnil;
3379
3380 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3381 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3382 This allows Emacs to recognize function keys sent from ASCII\n\
3383 terminals at any point in a key sequence.\n\
3384 \n\
3385 The `read-key-sequence' function replaces any subsequence bound by\n\
3386 `function-key-map' with its binding. More precisely, when the active\n\
3387 keymaps have no binding for the current key sequence but\n\
3388 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3389 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3390 continues with the new sequence.\n\
3391 \n\
3392 The events that come from bindings in `function-key-map' are not\n\
3393 themselves looked up in `function-key-map'.\n\
3394 \n\
3395 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3396 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3397 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3398 key, typing `ESC O P x' would return [f1 x].");
3399 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3400
3401 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3402 "Keymap of key translations that can override keymaps.\n\
3403 This keymap works like `function-key-map', but comes after that,\n\
3404 and applies even for keys that have ordinary bindings.");
3405 Vkey_translation_map = Qnil;
3406
3407 Qsingle_key_description = intern ("single-key-description");
3408 staticpro (&Qsingle_key_description);
3409
3410 Qkey_description = intern ("key-description");
3411 staticpro (&Qkey_description);
3412
3413 Qkeymapp = intern ("keymapp");
3414 staticpro (&Qkeymapp);
3415
3416 Qnon_ascii = intern ("non-ascii");
3417 staticpro (&Qnon_ascii);
3418
3419 Qmenu_item = intern ("menu-item");
3420 staticpro (&Qmenu_item);
3421
3422 where_is_cache_keymaps = Qt;
3423 where_is_cache = Qnil;
3424 staticpro (&where_is_cache);
3425 staticpro (&where_is_cache_keymaps);
3426
3427 defsubr (&Skeymapp);
3428 defsubr (&Skeymap_parent);
3429 defsubr (&Skeymap_prompt);
3430 defsubr (&Sset_keymap_parent);
3431 defsubr (&Smake_keymap);
3432 defsubr (&Smake_sparse_keymap);
3433 defsubr (&Scopy_keymap);
3434 defsubr (&Skey_binding);
3435 defsubr (&Slocal_key_binding);
3436 defsubr (&Sglobal_key_binding);
3437 defsubr (&Sminor_mode_key_binding);
3438 defsubr (&Sdefine_key);
3439 defsubr (&Slookup_key);
3440 defsubr (&Sdefine_prefix_command);
3441 defsubr (&Suse_global_map);
3442 defsubr (&Suse_local_map);
3443 defsubr (&Scurrent_local_map);
3444 defsubr (&Scurrent_global_map);
3445 defsubr (&Scurrent_minor_mode_maps);
3446 defsubr (&Scurrent_active_maps);
3447 defsubr (&Saccessible_keymaps);
3448 defsubr (&Skey_description);
3449 defsubr (&Sdescribe_vector);
3450 defsubr (&Ssingle_key_description);
3451 defsubr (&Stext_char_description);
3452 defsubr (&Swhere_is_internal);
3453 defsubr (&Sdescribe_buffer_bindings);
3454 defsubr (&Sapropos_internal);
3455 }
3456
3457 void
3458 keys_of_keymap ()
3459 {
3460 initial_define_key (global_map, 033, "ESC-prefix");
3461 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3462 }