* emacs-lisp-intro.texi (Counting Words): Don't use ':' in xref
[bpt/emacs.git] / doc / lispintro / emacs-lisp-intro.texi
1 \input texinfo @c -*-texinfo-*-
2 @comment %**start of header
3 @setfilename ../../info/eintr
4 @c setfilename emacs-lisp-intro.info
5 @c sethtmlfilename emacs-lisp-intro.html
6 @settitle Programming in Emacs Lisp
7 @syncodeindex vr cp
8 @syncodeindex fn cp
9 @finalout
10
11 @include emacsver.texi
12
13 @c ================ How to Print a Book in Various Sizes ================
14
15 @c This book can be printed in any of three different sizes.
16 @c Set the following @-commands appropriately.
17
18 @c 7 by 9.25 inches:
19 @c @smallbook
20 @c @clear largebook
21
22 @c 8.5 by 11 inches:
23 @c @c smallbook
24 @c @set largebook
25
26 @c European A4 size paper:
27 @c @c smallbook
28 @c @afourpaper
29 @c @set largebook
30
31 @c (Note: if you edit the book so as to change the length of the
32 @c table of contents, you may have to change the value of `pageno' below.)
33
34 @c <<<< For hard copy printing, this file is now
35 @c set for smallbook, which works for all sizes
36 @c of paper, and with PostScript figures >>>>
37
38 @set smallbook
39 @ifset smallbook
40 @smallbook
41 @clear largebook
42 @end ifset
43
44 @c ================ Included Figures ================
45
46 @c If you clear this, the figures will be printed as ASCII diagrams
47 @c rather than PostScript/PDF.
48 @c (This is not relevant to Info, since Info only handles ASCII.)
49 @set print-postscript-figures
50 @c clear print-postscript-figures
51
52 @comment %**end of header
53
54 @c per rms and peterb, use 10pt fonts for the main text, mostly to
55 @c save on paper cost.
56 @c Do this inside @tex for now, so current makeinfo does not complain.
57 @tex
58 @ifset smallbook
59 @fonttextsize 10
60
61 @end ifset
62 \global\hbadness=6666 % don't worry about not-too-underfull boxes
63 @end tex
64
65 @c These refer to the printed book sold by the FSF.
66 @set edition-number 3.10
67 @set update-date 28 October 2009
68
69 @c For next or subsequent edition:
70 @c create function using with-output-to-temp-buffer
71 @c create a major mode, with keymaps
72 @c run an asynchronous process, like grep or diff
73
74 @c For 8.5 by 11 inch format: do not use such a small amount of
75 @c whitespace between paragraphs as smallbook format
76 @ifset largebook
77 @tex
78 \global\parskip 6pt plus 1pt
79 @end tex
80 @end ifset
81
82 @c For all sized formats: print within-book cross
83 @c reference with ``...'' rather than [...]
84
85 @c This works with the texinfo.tex file, version 2003-05-04.08,
86 @c in the Texinfo version 4.6 of the 2003 Jun 13 distribution.
87
88 @tex
89 \if \xrefprintnodename
90 \global\def\xrefprintnodename#1{\unskip, ``#1''}
91 \else
92 \global\def\xrefprintnodename#1{ ``#1''}
93 \fi
94 % \global\def\xrefprintnodename#1{, ``#1''}
95 @end tex
96
97 @c ----------------------------------------------------
98
99 @dircategory GNU Emacs Lisp
100 @direntry
101 * Emacs Lisp Intro: (eintr).
102 A simple introduction to Emacs Lisp programming.
103 @end direntry
104
105 @copying
106 This is an @cite{Introduction to Programming in Emacs Lisp}, for
107 people who are not programmers.
108 @sp 1
109 @iftex
110 Edition @value{edition-number}, @value{update-date}
111 @end iftex
112 @ifnottex
113 Distributed with Emacs version @value{EMACSVER}.
114 @end ifnottex
115 @sp 1
116 Copyright @copyright{} 1990--1995, 1997, 2001--2013 Free Software
117 Foundation, Inc.
118 @sp 1
119
120 @iftex
121 Published by the:@*
122
123 GNU Press, @hfill @uref{http://www.fsf.org/licensing/gnu-press/}@*
124 a division of the @hfill email: @email{sales@@fsf.org}@*
125 Free Software Foundation, Inc. @hfill Tel: +1 (617) 542-5942@*
126 51 Franklin Street, Fifth Floor @hfill Fax: +1 (617) 542-2652@*
127 Boston, MA 02110-1301 USA
128 @end iftex
129
130 @ifnottex
131 Printed copies available from @uref{http://shop.fsf.org/}. Published by:
132
133 @example
134 GNU Press, http://www.fsf.org/licensing/gnu-press/
135 a division of the email: sales@@fsf.org
136 Free Software Foundation, Inc. Tel: +1 (617) 542-5942
137 51 Franklin Street, Fifth Floor Fax: +1 (617) 542-2652
138 Boston, MA 02110-1301 USA
139 @end example
140 @end ifnottex
141
142 @sp 1
143 ISBN 1-882114-43-4
144
145 Permission is granted to copy, distribute and/or modify this document
146 under the terms of the GNU Free Documentation License, Version 1.3 or
147 any later version published by the Free Software Foundation; there
148 being no Invariant Section, with the Front-Cover Texts being ``A GNU
149 Manual'', and with the Back-Cover Texts as in (a) below. A copy of
150 the license is included in the section entitled ``GNU Free
151 Documentation License''.
152
153 (a) The FSF's Back-Cover Text is: ``You have the freedom to
154 copy and modify this GNU manual. Buying copies from the FSF
155 supports it in developing GNU and promoting software freedom.''
156 @end copying
157
158 @c half title; two lines here, so do not use `shorttitlepage'
159 @tex
160 {\begingroup%
161 \hbox{}\vskip 1.5in \chaprm \centerline{An Introduction to}%
162 \endgroup}%
163 {\begingroup\hbox{}\vskip 0.25in \chaprm%
164 \centerline{Programming in Emacs Lisp}%
165 \endgroup\page\hbox{}\page}
166 @end tex
167
168 @titlepage
169 @sp 6
170 @center @titlefont{An Introduction to}
171 @sp 2
172 @center @titlefont{Programming in Emacs Lisp}
173 @sp 2
174 @center Revised Third Edition
175 @sp 4
176 @center by Robert J. Chassell
177
178 @page
179 @vskip 0pt plus 1filll
180 @insertcopying
181 @end titlepage
182
183 @iftex
184 @headings off
185 @evenheading @thispage @| @| @thischapter
186 @oddheading @thissection @| @| @thispage
187 @end iftex
188
189 @ifnothtml
190 @c Keep T.O.C. short by tightening up for largebook
191 @ifset largebook
192 @tex
193 \global\parskip 2pt plus 1pt
194 \global\advance\baselineskip by -1pt
195 @end tex
196 @end ifset
197 @end ifnothtml
198
199 @shortcontents
200 @contents
201
202 @ifnottex
203 @node Top
204 @top An Introduction to Programming in Emacs Lisp
205
206 @ifset WWW_GNU_ORG
207 @html
208 <p>The homepage for GNU Emacs is at
209 <a href="/software/emacs/">http://www.gnu.org/software/emacs/</a>.<br>
210 To view this manual in other formats, click
211 <a href="/software/emacs/manual/eintr.html">here</a>.
212 @end html
213 @end ifset
214
215 @insertcopying
216
217 This master menu first lists each chapter and index; then it lists
218 every node in every chapter.
219 @end ifnottex
220
221 @c >>>> Set pageno appropriately <<<<
222
223 @c The first page of the Preface is a roman numeral; it is the first
224 @c right handed page after the Table of Contents; hence the following
225 @c setting must be for an odd negative number.
226
227 @c iftex
228 @c global@pageno = -11
229 @c end iftex
230
231 @set COUNT-WORDS count-words-example
232 @c Length of variable name chosen so that things still line up when expanded.
233
234 @menu
235 * Preface:: What to look for.
236 * List Processing:: What is Lisp?
237 * Practicing Evaluation:: Running several programs.
238 * Writing Defuns:: How to write function definitions.
239 * Buffer Walk Through:: Exploring a few buffer-related functions.
240 * More Complex:: A few, even more complex functions.
241 * Narrowing & Widening:: Restricting your and Emacs attention to
242 a region.
243 * car cdr & cons:: Fundamental functions in Lisp.
244 * Cutting & Storing Text:: Removing text and saving it.
245 * List Implementation:: How lists are implemented in the computer.
246 * Yanking:: Pasting stored text.
247 * Loops & Recursion:: How to repeat a process.
248 * Regexp Search:: Regular expression searches.
249 * Counting Words:: A review of repetition and regexps.
250 * Words in a defun:: Counting words in a @code{defun}.
251 * Readying a Graph:: A prototype graph printing function.
252 * Emacs Initialization:: How to write a @file{.emacs} file.
253 * Debugging:: How to run the Emacs Lisp debuggers.
254 * Conclusion:: Now you have the basics.
255 * the-the:: An appendix: how to find reduplicated words.
256 * Kill Ring:: An appendix: how the kill ring works.
257 * Full Graph:: How to create a graph with labeled axes.
258 * Free Software and Free Manuals::
259 * GNU Free Documentation License::
260 * Index::
261 * About the Author::
262
263 @detailmenu
264 --- The Detailed Node Listing ---
265
266 Preface
267
268 * Why:: Why learn Emacs Lisp?
269 * On Reading this Text:: Read, gain familiarity, pick up habits....
270 * Who You Are:: For whom this is written.
271 * Lisp History::
272 * Note for Novices:: You can read this as a novice.
273 * Thank You::
274
275 List Processing
276
277 * Lisp Lists:: What are lists?
278 * Run a Program:: Any list in Lisp is a program ready to run.
279 * Making Errors:: Generating an error message.
280 * Names & Definitions:: Names of symbols and function definitions.
281 * Lisp Interpreter:: What the Lisp interpreter does.
282 * Evaluation:: Running a program.
283 * Variables:: Returning a value from a variable.
284 * Arguments:: Passing information to a function.
285 * set & setq:: Setting the value of a variable.
286 * Summary:: The major points.
287 * Error Message Exercises::
288
289 Lisp Lists
290
291 * Numbers Lists:: List have numbers, other lists, in them.
292 * Lisp Atoms:: Elemental entities.
293 * Whitespace in Lists:: Formatting lists to be readable.
294 * Typing Lists:: How GNU Emacs helps you type lists.
295
296 The Lisp Interpreter
297
298 * Complications:: Variables, Special forms, Lists within.
299 * Byte Compiling:: Specially processing code for speed.
300
301 Evaluation
302
303 * How the Interpreter Acts:: Returns and Side Effects...
304 * Evaluating Inner Lists:: Lists within lists...
305
306 Variables
307
308 * fill-column Example::
309 * Void Function:: The error message for a symbol
310 without a function.
311 * Void Variable:: The error message for a symbol without a value.
312
313 Arguments
314
315 * Data types:: Types of data passed to a function.
316 * Args as Variable or List:: An argument can be the value
317 of a variable or list.
318 * Variable Number of Arguments:: Some functions may take a
319 variable number of arguments.
320 * Wrong Type of Argument:: Passing an argument of the wrong type
321 to a function.
322 * message:: A useful function for sending messages.
323
324 Setting the Value of a Variable
325
326 * Using set:: Setting values.
327 * Using setq:: Setting a quoted value.
328 * Counting:: Using @code{setq} to count.
329
330 Practicing Evaluation
331
332 * How to Evaluate:: Typing editing commands or @kbd{C-x C-e}
333 causes evaluation.
334 * Buffer Names:: Buffers and files are different.
335 * Getting Buffers:: Getting a buffer itself, not merely its name.
336 * Switching Buffers:: How to change to another buffer.
337 * Buffer Size & Locations:: Where point is located and the size of
338 the buffer.
339 * Evaluation Exercise::
340
341 How To Write Function Definitions
342
343 * Primitive Functions::
344 * defun:: The @code{defun} macro.
345 * Install:: Install a function definition.
346 * Interactive:: Making a function interactive.
347 * Interactive Options:: Different options for @code{interactive}.
348 * Permanent Installation:: Installing code permanently.
349 * let:: Creating and initializing local variables.
350 * if:: What if?
351 * else:: If--then--else expressions.
352 * Truth & Falsehood:: What Lisp considers false and true.
353 * save-excursion:: Keeping track of point, mark, and buffer.
354 * Review::
355 * defun Exercises::
356
357 Install a Function Definition
358
359 * Effect of installation::
360 * Change a defun:: How to change a function definition.
361
362 Make a Function Interactive
363
364 * Interactive multiply-by-seven:: An overview.
365 * multiply-by-seven in detail:: The interactive version.
366
367 @code{let}
368
369 * Prevent confusion::
370 * Parts of let Expression::
371 * Sample let Expression::
372 * Uninitialized let Variables::
373
374 The @code{if} Special Form
375
376 * if in more detail::
377 * type-of-animal in detail:: An example of an @code{if} expression.
378
379 Truth and Falsehood in Emacs Lisp
380
381 * nil explained:: @code{nil} has two meanings.
382
383 @code{save-excursion}
384
385 * Point and mark:: A review of various locations.
386 * Template for save-excursion::
387
388 A Few Buffer--Related Functions
389
390 * Finding More:: How to find more information.
391 * simplified-beginning-of-buffer:: Shows @code{goto-char},
392 @code{point-min}, and @code{push-mark}.
393 * mark-whole-buffer:: Almost the same as @code{beginning-of-buffer}.
394 * append-to-buffer:: Uses @code{save-excursion} and
395 @code{insert-buffer-substring}.
396 * Buffer Related Review:: Review.
397 * Buffer Exercises::
398
399 The Definition of @code{mark-whole-buffer}
400
401 * mark-whole-buffer overview::
402 * Body of mark-whole-buffer:: Only three lines of code.
403
404 The Definition of @code{append-to-buffer}
405
406 * append-to-buffer overview::
407 * append interactive:: A two part interactive expression.
408 * append-to-buffer body:: Incorporates a @code{let} expression.
409 * append save-excursion:: How the @code{save-excursion} works.
410
411 A Few More Complex Functions
412
413 * copy-to-buffer:: With @code{set-buffer}, @code{get-buffer-create}.
414 * insert-buffer:: Read-only, and with @code{or}.
415 * beginning-of-buffer:: Shows @code{goto-char},
416 @code{point-min}, and @code{push-mark}.
417 * Second Buffer Related Review::
418 * optional Exercise::
419
420 The Definition of @code{insert-buffer}
421
422 * insert-buffer code::
423 * insert-buffer interactive:: When you can read, but not write.
424 * insert-buffer body:: The body has an @code{or} and a @code{let}.
425 * if & or:: Using an @code{if} instead of an @code{or}.
426 * Insert or:: How the @code{or} expression works.
427 * Insert let:: Two @code{save-excursion} expressions.
428 * New insert-buffer::
429
430 The Interactive Expression in @code{insert-buffer}
431
432 * Read-only buffer:: When a buffer cannot be modified.
433 * b for interactive:: An existing buffer or else its name.
434
435 Complete Definition of @code{beginning-of-buffer}
436
437 * Optional Arguments::
438 * beginning-of-buffer opt arg:: Example with optional argument.
439 * beginning-of-buffer complete::
440
441 @code{beginning-of-buffer} with an Argument
442
443 * Disentangle beginning-of-buffer::
444 * Large buffer case::
445 * Small buffer case::
446
447 Narrowing and Widening
448
449 * Narrowing advantages:: The advantages of narrowing
450 * save-restriction:: The @code{save-restriction} special form.
451 * what-line:: The number of the line that point is on.
452 * narrow Exercise::
453
454 @code{car}, @code{cdr}, @code{cons}: Fundamental Functions
455
456 * Strange Names:: An historical aside: why the strange names?
457 * car & cdr:: Functions for extracting part of a list.
458 * cons:: Constructing a list.
459 * nthcdr:: Calling @code{cdr} repeatedly.
460 * nth::
461 * setcar:: Changing the first element of a list.
462 * setcdr:: Changing the rest of a list.
463 * cons Exercise::
464
465 @code{cons}
466
467 * Build a list::
468 * length:: How to find the length of a list.
469
470 Cutting and Storing Text
471
472 * Storing Text:: Text is stored in a list.
473 * zap-to-char:: Cutting out text up to a character.
474 * kill-region:: Cutting text out of a region.
475 * copy-region-as-kill:: A definition for copying text.
476 * Digression into C:: Minor note on C programming language macros.
477 * defvar:: How to give a variable an initial value.
478 * cons & search-fwd Review::
479 * search Exercises::
480
481 @code{zap-to-char}
482
483 * Complete zap-to-char:: The complete implementation.
484 * zap-to-char interactive:: A three part interactive expression.
485 * zap-to-char body:: A short overview.
486 * search-forward:: How to search for a string.
487 * progn:: The @code{progn} special form.
488 * Summing up zap-to-char:: Using @code{point} and @code{search-forward}.
489
490 @code{kill-region}
491
492 * Complete kill-region:: The function definition.
493 * condition-case:: Dealing with a problem.
494 * Lisp macro::
495
496 @code{copy-region-as-kill}
497
498 * Complete copy-region-as-kill:: The complete function definition.
499 * copy-region-as-kill body:: The body of @code{copy-region-as-kill}.
500
501 The Body of @code{copy-region-as-kill}
502
503 * last-command & this-command::
504 * kill-append function::
505 * kill-new function::
506
507 Initializing a Variable with @code{defvar}
508
509 * See variable current value::
510 * defvar and asterisk::
511
512 How Lists are Implemented
513
514 * Lists diagrammed::
515 * Symbols as Chest:: Exploring a powerful metaphor.
516 * List Exercise::
517
518 Yanking Text Back
519
520 * Kill Ring Overview::
521 * kill-ring-yank-pointer:: The kill ring is a list.
522 * yank nthcdr Exercises:: The @code{kill-ring-yank-pointer} variable.
523
524 Loops and Recursion
525
526 * while:: Causing a stretch of code to repeat.
527 * dolist dotimes::
528 * Recursion:: Causing a function to call itself.
529 * Looping exercise::
530
531 @code{while}
532
533 * Looping with while:: Repeat so long as test returns true.
534 * Loop Example:: A @code{while} loop that uses a list.
535 * print-elements-of-list:: Uses @code{while}, @code{car}, @code{cdr}.
536 * Incrementing Loop:: A loop with an incrementing counter.
537 * Incrementing Loop Details::
538 * Decrementing Loop:: A loop with a decrementing counter.
539
540 Details of an Incrementing Loop
541
542 * Incrementing Example:: Counting pebbles in a triangle.
543 * Inc Example parts:: The parts of the function definition.
544 * Inc Example altogether:: Putting the function definition together.
545
546 Loop with a Decrementing Counter
547
548 * Decrementing Example:: More pebbles on the beach.
549 * Dec Example parts:: The parts of the function definition.
550 * Dec Example altogether:: Putting the function definition together.
551
552 Save your time: @code{dolist} and @code{dotimes}
553
554 * dolist::
555 * dotimes::
556
557 Recursion
558
559 * Building Robots:: Same model, different serial number ...
560 * Recursive Definition Parts:: Walk until you stop ...
561 * Recursion with list:: Using a list as the test whether to recurse.
562 * Recursive triangle function::
563 * Recursion with cond::
564 * Recursive Patterns:: Often used templates.
565 * No Deferment:: Don't store up work ...
566 * No deferment solution::
567
568 Recursion in Place of a Counter
569
570 * Recursive Example arg of 1 or 2::
571 * Recursive Example arg of 3 or 4::
572
573 Recursive Patterns
574
575 * Every::
576 * Accumulate::
577 * Keep::
578
579 Regular Expression Searches
580
581 * sentence-end:: The regular expression for @code{sentence-end}.
582 * re-search-forward:: Very similar to @code{search-forward}.
583 * forward-sentence:: A straightforward example of regexp search.
584 * forward-paragraph:: A somewhat complex example.
585 * etags:: How to create your own @file{TAGS} table.
586 * Regexp Review::
587 * re-search Exercises::
588
589 @code{forward-sentence}
590
591 * Complete forward-sentence::
592 * fwd-sentence while loops:: Two @code{while} loops.
593 * fwd-sentence re-search:: A regular expression search.
594
595 @code{forward-paragraph}: a Goldmine of Functions
596
597 * forward-paragraph in brief:: Key parts of the function definition.
598 * fwd-para let:: The @code{let*} expression.
599 * fwd-para while:: The forward motion @code{while} loop.
600
601 Counting: Repetition and Regexps
602
603 * Why Count Words::
604 * @value{COUNT-WORDS}:: Use a regexp, but find a problem.
605 * recursive-count-words:: Start with case of no words in region.
606 * Counting Exercise::
607
608 The @code{@value{COUNT-WORDS}} Function
609
610 * Design @value{COUNT-WORDS}:: The definition using a @code{while} loop.
611 * Whitespace Bug:: The Whitespace Bug in @code{@value{COUNT-WORDS}}.
612
613 Counting Words in a @code{defun}
614
615 * Divide and Conquer::
616 * Words and Symbols:: What to count?
617 * Syntax:: What constitutes a word or symbol?
618 * count-words-in-defun:: Very like @code{@value{COUNT-WORDS}}.
619 * Several defuns:: Counting several defuns in a file.
620 * Find a File:: Do you want to look at a file?
621 * lengths-list-file:: A list of the lengths of many definitions.
622 * Several files:: Counting in definitions in different files.
623 * Several files recursively:: Recursively counting in different files.
624 * Prepare the data:: Prepare the data for display in a graph.
625
626 Count Words in @code{defuns} in Different Files
627
628 * lengths-list-many-files:: Return a list of the lengths of defuns.
629 * append:: Attach one list to another.
630
631 Prepare the Data for Display in a Graph
632
633 * Data for Display in Detail::
634 * Sorting:: Sorting lists.
635 * Files List:: Making a list of files.
636 * Counting function definitions::
637
638 Readying a Graph
639
640 * Columns of a graph::
641 * graph-body-print:: How to print the body of a graph.
642 * recursive-graph-body-print::
643 * Printed Axes::
644 * Line Graph Exercise::
645
646 Your @file{.emacs} File
647
648 * Default Configuration::
649 * Site-wide Init:: You can write site-wide init files.
650 * defcustom:: Emacs will write code for you.
651 * Beginning init File:: How to write a @file{.emacs} init file.
652 * Text and Auto-fill:: Automatically wrap lines.
653 * Mail Aliases:: Use abbreviations for email addresses.
654 * Indent Tabs Mode:: Don't use tabs with @TeX{}
655 * Keybindings:: Create some personal keybindings.
656 * Keymaps:: More about key binding.
657 * Loading Files:: Load (i.e., evaluate) files automatically.
658 * Autoload:: Make functions available.
659 * Simple Extension:: Define a function; bind it to a key.
660 * X11 Colors:: Colors in X.
661 * Miscellaneous::
662 * Mode Line:: How to customize your mode line.
663
664 Debugging
665
666 * debug:: How to use the built-in debugger.
667 * debug-on-entry:: Start debugging when you call a function.
668 * debug-on-quit:: Start debugging when you quit with @kbd{C-g}.
669 * edebug:: How to use Edebug, a source level debugger.
670 * Debugging Exercises::
671
672 Handling the Kill Ring
673
674 * What the Kill Ring Does::
675 * current-kill::
676 * yank:: Paste a copy of a clipped element.
677 * yank-pop:: Insert element pointed to.
678 * ring file::
679
680 The @code{current-kill} Function
681
682 * Code for current-kill::
683 * Understanding current-kill::
684
685 @code{current-kill} in Outline
686
687 * Body of current-kill::
688 * Digression concerning error:: How to mislead humans, but not computers.
689 * Determining the Element::
690
691 A Graph with Labeled Axes
692
693 * Labeled Example::
694 * print-graph Varlist:: @code{let} expression in @code{print-graph}.
695 * print-Y-axis:: Print a label for the vertical axis.
696 * print-X-axis:: Print a horizontal label.
697 * Print Whole Graph:: The function to print a complete graph.
698
699 The @code{print-Y-axis} Function
700
701 * print-Y-axis in Detail::
702 * Height of label:: What height for the Y axis?
703 * Compute a Remainder:: How to compute the remainder of a division.
704 * Y Axis Element:: Construct a line for the Y axis.
705 * Y-axis-column:: Generate a list of Y axis labels.
706 * print-Y-axis Penultimate:: A not quite final version.
707
708 The @code{print-X-axis} Function
709
710 * Similarities differences:: Much like @code{print-Y-axis}, but not exactly.
711 * X Axis Tic Marks:: Create tic marks for the horizontal axis.
712
713 Printing the Whole Graph
714
715 * The final version:: A few changes.
716 * Test print-graph:: Run a short test.
717 * Graphing words in defuns:: Executing the final code.
718 * lambda:: How to write an anonymous function.
719 * mapcar:: Apply a function to elements of a list.
720 * Another Bug:: Yet another bug @dots{} most insidious.
721 * Final printed graph:: The graph itself!
722
723 @end detailmenu
724 @end menu
725
726 @node Preface
727 @unnumbered Preface
728
729 Most of the GNU Emacs integrated environment is written in the programming
730 language called Emacs Lisp. The code written in this programming
731 language is the software---the sets of instructions---that tell the
732 computer what to do when you give it commands. Emacs is designed so
733 that you can write new code in Emacs Lisp and easily install it as an
734 extension to the editor.
735
736 (GNU Emacs is sometimes called an ``extensible editor'', but it does
737 much more than provide editing capabilities. It is better to refer to
738 Emacs as an ``extensible computing environment''. However, that
739 phrase is quite a mouthful. It is easier to refer to Emacs simply as
740 an editor. Moreover, everything you do in Emacs---find the Mayan date
741 and phases of the moon, simplify polynomials, debug code, manage
742 files, read letters, write books---all these activities are kinds of
743 editing in the most general sense of the word.)
744
745 @menu
746 * Why:: Why learn Emacs Lisp?
747 * On Reading this Text:: Read, gain familiarity, pick up habits....
748 * Who You Are:: For whom this is written.
749 * Lisp History::
750 * Note for Novices:: You can read this as a novice.
751 * Thank You::
752 @end menu
753
754 @ifnottex
755 @node Why
756 @unnumberedsec Why Study Emacs Lisp?
757 @end ifnottex
758
759 Although Emacs Lisp is usually thought of in association only with Emacs,
760 it is a full computer programming language. You can use Emacs Lisp as
761 you would any other programming language.
762
763 Perhaps you want to understand programming; perhaps you want to extend
764 Emacs; or perhaps you want to become a programmer. This introduction to
765 Emacs Lisp is designed to get you started: to guide you in learning the
766 fundamentals of programming, and more importantly, to show you how you
767 can teach yourself to go further.
768
769 @node On Reading this Text
770 @unnumberedsec On Reading this Text
771
772 All through this document, you will see little sample programs you can
773 run inside of Emacs. If you read this document in Info inside of GNU
774 Emacs, you can run the programs as they appear. (This is easy to do and
775 is explained when the examples are presented.) Alternatively, you can
776 read this introduction as a printed book while sitting beside a computer
777 running Emacs. (This is what I like to do; I like printed books.) If
778 you don't have a running Emacs beside you, you can still read this book,
779 but in this case, it is best to treat it as a novel or as a travel guide
780 to a country not yet visited: interesting, but not the same as being
781 there.
782
783 Much of this introduction is dedicated to walkthroughs or guided tours
784 of code used in GNU Emacs. These tours are designed for two purposes:
785 first, to give you familiarity with real, working code (code you use
786 every day); and, second, to give you familiarity with the way Emacs
787 works. It is interesting to see how a working environment is
788 implemented.
789 Also, I
790 hope that you will pick up the habit of browsing through source code.
791 You can learn from it and mine it for ideas. Having GNU Emacs is like
792 having a dragon's cave of treasures.
793
794 In addition to learning about Emacs as an editor and Emacs Lisp as a
795 programming language, the examples and guided tours will give you an
796 opportunity to get acquainted with Emacs as a Lisp programming
797 environment. GNU Emacs supports programming and provides tools that
798 you will want to become comfortable using, such as @kbd{M-.} (the key
799 which invokes the @code{find-tag} command). You will also learn about
800 buffers and other objects that are part of the environment.
801 Learning about these features of Emacs is like learning new routes
802 around your home town.
803
804 @ignore
805 In addition, I have written several programs as extended examples.
806 Although these are examples, the programs are real. I use them.
807 Other people use them. You may use them. Beyond the fragments of
808 programs used for illustrations, there is very little in here that is
809 `just for teaching purposes'; what you see is used. This is a great
810 advantage of Emacs Lisp: it is easy to learn to use it for work.
811 @end ignore
812
813 Finally, I hope to convey some of the skills for using Emacs to
814 learn aspects of programming that you don't know. You can often use
815 Emacs to help you understand what puzzles you or to find out how to do
816 something new. This self-reliance is not only a pleasure, but an
817 advantage.
818
819 @node Who You Are
820 @unnumberedsec For Whom This is Written
821
822 This text is written as an elementary introduction for people who are
823 not programmers. If you are a programmer, you may not be satisfied with
824 this primer. The reason is that you may have become expert at reading
825 reference manuals and be put off by the way this text is organized.
826
827 An expert programmer who reviewed this text said to me:
828
829 @quotation
830 @i{I prefer to learn from reference manuals. I ``dive into'' each
831 paragraph, and ``come up for air'' between paragraphs.}
832
833 @i{When I get to the end of a paragraph, I assume that that subject is
834 done, finished, that I know everything I need (with the
835 possible exception of the case when the next paragraph starts talking
836 about it in more detail). I expect that a well written reference manual
837 will not have a lot of redundancy, and that it will have excellent
838 pointers to the (one) place where the information I want is.}
839 @end quotation
840
841 This introduction is not written for this person!
842
843 Firstly, I try to say everything at least three times: first, to
844 introduce it; second, to show it in context; and third, to show it in a
845 different context, or to review it.
846
847 Secondly, I hardly ever put all the information about a subject in one
848 place, much less in one paragraph. To my way of thinking, that imposes
849 too heavy a burden on the reader. Instead I try to explain only what
850 you need to know at the time. (Sometimes I include a little extra
851 information so you won't be surprised later when the additional
852 information is formally introduced.)
853
854 When you read this text, you are not expected to learn everything the
855 first time. Frequently, you need only make, as it were, a `nodding
856 acquaintance' with some of the items mentioned. My hope is that I have
857 structured the text and given you enough hints that you will be alert to
858 what is important, and concentrate on it.
859
860 You will need to ``dive into'' some paragraphs; there is no other way
861 to read them. But I have tried to keep down the number of such
862 paragraphs. This book is intended as an approachable hill, rather than
863 as a daunting mountain.
864
865 This introduction to @cite{Programming in Emacs Lisp} has a companion
866 document,
867 @iftex
868 @cite{The GNU Emacs Lisp Reference Manual}.
869 @end iftex
870 @ifnottex
871 @ref{Top, , The GNU Emacs Lisp Reference Manual, elisp, The GNU
872 Emacs Lisp Reference Manual}.
873 @end ifnottex
874 The reference manual has more detail than this introduction. In the
875 reference manual, all the information about one topic is concentrated
876 in one place. You should turn to it if you are like the programmer
877 quoted above. And, of course, after you have read this
878 @cite{Introduction}, you will find the @cite{Reference Manual} useful
879 when you are writing your own programs.
880
881 @node Lisp History
882 @unnumberedsec Lisp History
883 @cindex Lisp history
884
885 Lisp was first developed in the late 1950s at the Massachusetts
886 Institute of Technology for research in artificial intelligence. The
887 great power of the Lisp language makes it superior for other purposes as
888 well, such as writing editor commands and integrated environments.
889
890 @cindex Maclisp
891 @cindex Common Lisp
892 GNU Emacs Lisp is largely inspired by Maclisp, which was written at MIT
893 in the 1960s. It is somewhat inspired by Common Lisp, which became a
894 standard in the 1980s. However, Emacs Lisp is much simpler than Common
895 Lisp. (The standard Emacs distribution contains an optional extensions
896 file, @file{cl.el}, that adds many Common Lisp features to Emacs Lisp.)
897
898 @node Note for Novices
899 @unnumberedsec A Note for Novices
900
901 If you don't know GNU Emacs, you can still read this document
902 profitably. However, I recommend you learn Emacs, if only to learn to
903 move around your computer screen. You can teach yourself how to use
904 Emacs with the on-line tutorial. To use it, type @kbd{C-h t}. (This
905 means you press and release the @key{CTRL} key and the @kbd{h} at the
906 same time, and then press and release @kbd{t}.)
907
908 Also, I often refer to one of Emacs's standard commands by listing the
909 keys which you press to invoke the command and then giving the name of
910 the command in parentheses, like this: @kbd{M-C-\}
911 (@code{indent-region}). What this means is that the
912 @code{indent-region} command is customarily invoked by typing
913 @kbd{M-C-\}. (You can, if you wish, change the keys that are typed to
914 invoke the command; this is called @dfn{rebinding}. @xref{Keymaps, ,
915 Keymaps}.) The abbreviation @kbd{M-C-\} means that you type your
916 @key{META} key, @key{CTRL} key and @key{\} key all at the same time.
917 (On many modern keyboards the @key{META} key is labeled
918 @key{ALT}.)
919 Sometimes a combination like this is called a keychord, since it is
920 similar to the way you play a chord on a piano. If your keyboard does
921 not have a @key{META} key, the @key{ESC} key prefix is used in place
922 of it. In this case, @kbd{M-C-\} means that you press and release your
923 @key{ESC} key and then type the @key{CTRL} key and the @key{\} key at
924 the same time. But usually @kbd{M-C-\} means press the @key{CTRL} key
925 along with the key that is labeled @key{ALT} and, at the same time,
926 press the @key{\} key.
927
928 In addition to typing a lone keychord, you can prefix what you type
929 with @kbd{C-u}, which is called the `universal argument'. The
930 @kbd{C-u} keychord passes an argument to the subsequent command.
931 Thus, to indent a region of plain text by 6 spaces, mark the region,
932 and then type @w{@kbd{C-u 6 M-C-\}}. (If you do not specify a number,
933 Emacs either passes the number 4 to the command or otherwise runs the
934 command differently than it would otherwise.) @xref{Arguments, ,
935 Numeric Arguments, emacs, The GNU Emacs Manual}.
936
937 If you are reading this in Info using GNU Emacs, you can read through
938 this whole document just by pressing the space bar, @key{SPC}.
939 (To learn about Info, type @kbd{C-h i} and then select Info.)
940
941 A note on terminology: when I use the word Lisp alone, I often am
942 referring to the various dialects of Lisp in general, but when I speak
943 of Emacs Lisp, I am referring to GNU Emacs Lisp in particular.
944
945 @node Thank You
946 @unnumberedsec Thank You
947
948 My thanks to all who helped me with this book. My especial thanks to
949 @r{Jim Blandy}, @r{Noah Friedman}, @w{Jim Kingdon}, @r{Roland
950 McGrath}, @w{Frank Ritter}, @w{Randy Smith}, @w{Richard M.
951 Stallman}, and @w{Melissa Weisshaus}. My thanks also go to both
952 @w{Philip Johnson} and @w{David Stampe} for their patient
953 encouragement. My mistakes are my own.
954
955 @flushright
956 Robert J. Chassell
957 @ifnothtml
958 @email{bob@@gnu.org}
959 @end ifnothtml
960 @ifhtml
961 bob@@gnu.org
962 @end ifhtml
963 @end flushright
964
965 @c ================ Beginning of main text ================
966
967 @c Start main text on right-hand (verso) page
968
969 @tex
970 \par\vfill\supereject
971 \headings off
972 \ifodd\pageno
973 \par\vfill\supereject
974 \else
975 \par\vfill\supereject
976 \page\hbox{}\page
977 \par\vfill\supereject
978 \fi
979 @end tex
980
981 @c Note: this resetting of the page number back to 1 causes TeX to gripe
982 @c about already having seen page numbers 1-4 before (in the preface):
983 @c pdfTeX warning (ext4): destination with the same identifier (name{1})
984 @c has been already used, duplicate ignored
985 @c I guess that is harmless (what happens if a later part of the text
986 @c makes a link to something in the first 4 pages though?).
987 @c E.g., note that the Emacs manual has a preface, but does not bother
988 @c resetting the page numbers back to 1 after that.
989 @iftex
990 @headings off
991 @evenheading @thispage @| @| @thischapter
992 @oddheading @thissection @| @| @thispage
993 @global@pageno = 1
994 @end iftex
995
996 @node List Processing
997 @chapter List Processing
998
999 To the untutored eye, Lisp is a strange programming language. In Lisp
1000 code there are parentheses everywhere. Some people even claim that
1001 the name stands for `Lots of Isolated Silly Parentheses'. But the
1002 claim is unwarranted. Lisp stands for LISt Processing, and the
1003 programming language handles @emph{lists} (and lists of lists) by
1004 putting them between parentheses. The parentheses mark the boundaries
1005 of the list. Sometimes a list is preceded by a single apostrophe or
1006 quotation mark, @samp{'}@footnote{The single apostrophe or quotation
1007 mark is an abbreviation for the function @code{quote}; you need not
1008 think about functions now; functions are defined in @ref{Making
1009 Errors, , Generate an Error Message}.} Lists are the basis of Lisp.
1010
1011 @menu
1012 * Lisp Lists:: What are lists?
1013 * Run a Program:: Any list in Lisp is a program ready to run.
1014 * Making Errors:: Generating an error message.
1015 * Names & Definitions:: Names of symbols and function definitions.
1016 * Lisp Interpreter:: What the Lisp interpreter does.
1017 * Evaluation:: Running a program.
1018 * Variables:: Returning a value from a variable.
1019 * Arguments:: Passing information to a function.
1020 * set & setq:: Setting the value of a variable.
1021 * Summary:: The major points.
1022 * Error Message Exercises::
1023 @end menu
1024
1025 @node Lisp Lists
1026 @section Lisp Lists
1027 @cindex Lisp Lists
1028
1029 In Lisp, a list looks like this: @code{'(rose violet daisy buttercup)}.
1030 This list is preceded by a single apostrophe. It could just as well be
1031 written as follows, which looks more like the kind of list you are likely
1032 to be familiar with:
1033
1034 @smallexample
1035 @group
1036 '(rose
1037 violet
1038 daisy
1039 buttercup)
1040 @end group
1041 @end smallexample
1042
1043 @noindent
1044 The elements of this list are the names of the four different flowers,
1045 separated from each other by whitespace and surrounded by parentheses,
1046 like flowers in a field with a stone wall around them.
1047 @cindex Flowers in a field
1048
1049 @menu
1050 * Numbers Lists:: List have numbers, other lists, in them.
1051 * Lisp Atoms:: Elemental entities.
1052 * Whitespace in Lists:: Formatting lists to be readable.
1053 * Typing Lists:: How GNU Emacs helps you type lists.
1054 @end menu
1055
1056 @ifnottex
1057 @node Numbers Lists
1058 @unnumberedsubsec Numbers, Lists inside of Lists
1059 @end ifnottex
1060
1061 Lists can also have numbers in them, as in this list: @code{(+ 2 2)}.
1062 This list has a plus-sign, @samp{+}, followed by two @samp{2}s, each
1063 separated by whitespace.
1064
1065 In Lisp, both data and programs are represented the same way; that is,
1066 they are both lists of words, numbers, or other lists, separated by
1067 whitespace and surrounded by parentheses. (Since a program looks like
1068 data, one program may easily serve as data for another; this is a very
1069 powerful feature of Lisp.) (Incidentally, these two parenthetical
1070 remarks are @emph{not} Lisp lists, because they contain @samp{;} and
1071 @samp{.} as punctuation marks.)
1072
1073 @need 1200
1074 Here is another list, this time with a list inside of it:
1075
1076 @smallexample
1077 '(this list has (a list inside of it))
1078 @end smallexample
1079
1080 The components of this list are the words @samp{this}, @samp{list},
1081 @samp{has}, and the list @samp{(a list inside of it)}. The interior
1082 list is made up of the words @samp{a}, @samp{list}, @samp{inside},
1083 @samp{of}, @samp{it}.
1084
1085 @node Lisp Atoms
1086 @subsection Lisp Atoms
1087 @cindex Lisp Atoms
1088
1089 In Lisp, what we have been calling words are called @dfn{atoms}. This
1090 term comes from the historical meaning of the word atom, which means
1091 `indivisible'. As far as Lisp is concerned, the words we have been
1092 using in the lists cannot be divided into any smaller parts and still
1093 mean the same thing as part of a program; likewise with numbers and
1094 single character symbols like @samp{+}. On the other hand, unlike an
1095 ancient atom, a list can be split into parts. (@xref{car cdr & cons,
1096 , @code{car} @code{cdr} & @code{cons} Fundamental Functions}.)
1097
1098 In a list, atoms are separated from each other by whitespace. They can be
1099 right next to a parenthesis.
1100
1101 @cindex @samp{empty list} defined
1102 Technically speaking, a list in Lisp consists of parentheses surrounding
1103 atoms separated by whitespace or surrounding other lists or surrounding
1104 both atoms and other lists. A list can have just one atom in it or
1105 have nothing in it at all. A list with nothing in it looks like this:
1106 @code{()}, and is called the @dfn{empty list}. Unlike anything else, an
1107 empty list is considered both an atom and a list at the same time.
1108
1109 @cindex Symbolic expressions, introduced
1110 @cindex @samp{expression} defined
1111 @cindex @samp{form} defined
1112 The printed representation of both atoms and lists are called
1113 @dfn{symbolic expressions} or, more concisely, @dfn{s-expressions}.
1114 The word @dfn{expression} by itself can refer to either the printed
1115 representation, or to the atom or list as it is held internally in the
1116 computer. Often, people use the term @dfn{expression}
1117 indiscriminately. (Also, in many texts, the word @dfn{form} is used
1118 as a synonym for expression.)
1119
1120 Incidentally, the atoms that make up our universe were named such when
1121 they were thought to be indivisible; but it has been found that physical
1122 atoms are not indivisible. Parts can split off an atom or it can
1123 fission into two parts of roughly equal size. Physical atoms were named
1124 prematurely, before their truer nature was found. In Lisp, certain
1125 kinds of atom, such as an array, can be separated into parts; but the
1126 mechanism for doing this is different from the mechanism for splitting a
1127 list. As far as list operations are concerned, the atoms of a list are
1128 unsplittable.
1129
1130 As in English, the meanings of the component letters of a Lisp atom
1131 are different from the meaning the letters make as a word. For
1132 example, the word for the South American sloth, the @samp{ai}, is
1133 completely different from the two words, @samp{a}, and @samp{i}.
1134
1135 There are many kinds of atom in nature but only a few in Lisp: for
1136 example, @dfn{numbers}, such as 37, 511, or 1729, and @dfn{symbols}, such
1137 as @samp{+}, @samp{foo}, or @samp{forward-line}. The words we have
1138 listed in the examples above are all symbols. In everyday Lisp
1139 conversation, the word ``atom'' is not often used, because programmers
1140 usually try to be more specific about what kind of atom they are dealing
1141 with. Lisp programming is mostly about symbols (and sometimes numbers)
1142 within lists. (Incidentally, the preceding three word parenthetical
1143 remark is a proper list in Lisp, since it consists of atoms, which in
1144 this case are symbols, separated by whitespace and enclosed by
1145 parentheses, without any non-Lisp punctuation.)
1146
1147 @need 1250
1148 Text between double quotation marks---even sentences or
1149 paragraphs---is also an atom. Here is an example:
1150 @cindex Text between double quotation marks
1151
1152 @smallexample
1153 '(this list includes "text between quotation marks.")
1154 @end smallexample
1155
1156 @cindex @samp{string} defined
1157 @noindent
1158 In Lisp, all of the quoted text including the punctuation mark and the
1159 blank spaces is a single atom. This kind of atom is called a
1160 @dfn{string} (for `string of characters') and is the sort of thing that
1161 is used for messages that a computer can print for a human to read.
1162 Strings are a different kind of atom than numbers or symbols and are
1163 used differently.
1164
1165 @node Whitespace in Lists
1166 @subsection Whitespace in Lists
1167 @cindex Whitespace in lists
1168
1169 @need 1200
1170 The amount of whitespace in a list does not matter. From the point of view
1171 of the Lisp language,
1172
1173 @smallexample
1174 @group
1175 '(this list
1176 looks like this)
1177 @end group
1178 @end smallexample
1179
1180 @need 800
1181 @noindent
1182 is exactly the same as this:
1183
1184 @smallexample
1185 '(this list looks like this)
1186 @end smallexample
1187
1188 Both examples show what to Lisp is the same list, the list made up of
1189 the symbols @samp{this}, @samp{list}, @samp{looks}, @samp{like}, and
1190 @samp{this} in that order.
1191
1192 Extra whitespace and newlines are designed to make a list more readable
1193 by humans. When Lisp reads the expression, it gets rid of all the extra
1194 whitespace (but it needs to have at least one space between atoms in
1195 order to tell them apart.)
1196
1197 Odd as it seems, the examples we have seen cover almost all of what Lisp
1198 lists look like! Every other list in Lisp looks more or less like one
1199 of these examples, except that the list may be longer and more complex.
1200 In brief, a list is between parentheses, a string is between quotation
1201 marks, a symbol looks like a word, and a number looks like a number.
1202 (For certain situations, square brackets, dots and a few other special
1203 characters may be used; however, we will go quite far without them.)
1204
1205 @node Typing Lists
1206 @subsection GNU Emacs Helps You Type Lists
1207 @cindex Help typing lists
1208 @cindex Formatting help
1209
1210 When you type a Lisp expression in GNU Emacs using either Lisp
1211 Interaction mode or Emacs Lisp mode, you have available to you several
1212 commands to format the Lisp expression so it is easy to read. For
1213 example, pressing the @key{TAB} key automatically indents the line the
1214 cursor is on by the right amount. A command to properly indent the
1215 code in a region is customarily bound to @kbd{M-C-\}. Indentation is
1216 designed so that you can see which elements of a list belong to which
1217 list---elements of a sub-list are indented more than the elements of
1218 the enclosing list.
1219
1220 In addition, when you type a closing parenthesis, Emacs momentarily
1221 jumps the cursor back to the matching opening parenthesis, so you can
1222 see which one it is. This is very useful, since every list you type
1223 in Lisp must have its closing parenthesis match its opening
1224 parenthesis. (@xref{Major Modes, , Major Modes, emacs, The GNU Emacs
1225 Manual}, for more information about Emacs's modes.)
1226
1227 @node Run a Program
1228 @section Run a Program
1229 @cindex Run a program
1230 @cindex Program, running one
1231
1232 @cindex @samp{evaluate} defined
1233 A list in Lisp---any list---is a program ready to run. If you run it
1234 (for which the Lisp jargon is @dfn{evaluate}), the computer will do one
1235 of three things: do nothing except return to you the list itself; send
1236 you an error message; or, treat the first symbol in the list as a
1237 command to do something. (Usually, of course, it is the last of these
1238 three things that you really want!)
1239
1240 @c use code for the single apostrophe, not samp.
1241 The single apostrophe, @code{'}, that I put in front of some of the
1242 example lists in preceding sections is called a @dfn{quote}; when it
1243 precedes a list, it tells Lisp to do nothing with the list, other than
1244 take it as it is written. But if there is no quote preceding a list,
1245 the first item of the list is special: it is a command for the computer
1246 to obey. (In Lisp, these commands are called @emph{functions}.) The list
1247 @code{(+ 2 2)} shown above did not have a quote in front of it, so Lisp
1248 understands that the @code{+} is an instruction to do something with the
1249 rest of the list: add the numbers that follow.
1250
1251 @need 1250
1252 If you are reading this inside of GNU Emacs in Info, here is how you can
1253 evaluate such a list: place your cursor immediately after the right
1254 hand parenthesis of the following list and then type @kbd{C-x C-e}:
1255
1256 @smallexample
1257 (+ 2 2)
1258 @end smallexample
1259
1260 @c use code for the number four, not samp.
1261 @noindent
1262 You will see the number @code{4} appear in the echo area. (In the
1263 jargon, what you have just done is ``evaluate the list.'' The echo area
1264 is the line at the bottom of the screen that displays or ``echoes''
1265 text.) Now try the same thing with a quoted list: place the cursor
1266 right after the following list and type @kbd{C-x C-e}:
1267
1268 @smallexample
1269 '(this is a quoted list)
1270 @end smallexample
1271
1272 @noindent
1273 You will see @code{(this is a quoted list)} appear in the echo area.
1274
1275 @cindex Lisp interpreter, explained
1276 @cindex Interpreter, Lisp, explained
1277 In both cases, what you are doing is giving a command to the program
1278 inside of GNU Emacs called the @dfn{Lisp interpreter}---giving the
1279 interpreter a command to evaluate the expression. The name of the Lisp
1280 interpreter comes from the word for the task done by a human who comes
1281 up with the meaning of an expression---who ``interprets'' it.
1282
1283 You can also evaluate an atom that is not part of a list---one that is
1284 not surrounded by parentheses; again, the Lisp interpreter translates
1285 from the humanly readable expression to the language of the computer.
1286 But before discussing this (@pxref{Variables}), we will discuss what the
1287 Lisp interpreter does when you make an error.
1288
1289 @node Making Errors
1290 @section Generate an Error Message
1291 @cindex Generate an error message
1292 @cindex Error message generation
1293
1294 Partly so you won't worry if you do it accidentally, we will now give
1295 a command to the Lisp interpreter that generates an error message.
1296 This is a harmless activity; and indeed, we will often try to generate
1297 error messages intentionally. Once you understand the jargon, error
1298 messages can be informative. Instead of being called ``error''
1299 messages, they should be called ``help'' messages. They are like
1300 signposts to a traveler in a strange country; deciphering them can be
1301 hard, but once understood, they can point the way.
1302
1303 The error message is generated by a built-in GNU Emacs debugger. We
1304 will `enter the debugger'. You get out of the debugger by typing @code{q}.
1305
1306 What we will do is evaluate a list that is not quoted and does not
1307 have a meaningful command as its first element. Here is a list almost
1308 exactly the same as the one we just used, but without the single-quote
1309 in front of it. Position the cursor right after it and type @kbd{C-x
1310 C-e}:
1311
1312 @smallexample
1313 (this is an unquoted list)
1314 @end smallexample
1315
1316 @ignore
1317 @noindent
1318 What you see depends on which version of Emacs you are running. GNU
1319 Emacs version 22 provides more information than version 20 and before.
1320 First, the more recent result of generating an error; then the
1321 earlier, version 20 result.
1322
1323 @need 1250
1324 @noindent
1325 In GNU Emacs version 22, a @file{*Backtrace*} window will open up and
1326 you will see the following in it:
1327 @end ignore
1328
1329 A @file{*Backtrace*} window will open up and you should see the
1330 following in it:
1331
1332 @smallexample
1333 @group
1334 ---------- Buffer: *Backtrace* ----------
1335 Debugger entered--Lisp error: (void-function this)
1336 (this is an unquoted list)
1337 eval((this is an unquoted list))
1338 eval-last-sexp-1(nil)
1339 eval-last-sexp(nil)
1340 call-interactively(eval-last-sexp)
1341 ---------- Buffer: *Backtrace* ----------
1342 @end group
1343 @end smallexample
1344
1345 @need 1200
1346 @noindent
1347 Your cursor will be in this window (you may have to wait a few seconds
1348 before it becomes visible). To quit the debugger and make the
1349 debugger window go away, type:
1350
1351 @smallexample
1352 q
1353 @end smallexample
1354
1355 @noindent
1356 Please type @kbd{q} right now, so you become confident that you can
1357 get out of the debugger. Then, type @kbd{C-x C-e} again to re-enter
1358 it.
1359
1360 @cindex @samp{function} defined
1361 Based on what we already know, we can almost read this error message.
1362
1363 You read the @file{*Backtrace*} buffer from the bottom up; it tells
1364 you what Emacs did. When you typed @kbd{C-x C-e}, you made an
1365 interactive call to the command @code{eval-last-sexp}. @code{eval} is
1366 an abbreviation for `evaluate' and @code{sexp} is an abbreviation for
1367 `symbolic expression'. The command means `evaluate last symbolic
1368 expression', which is the expression just before your cursor.
1369
1370 Each line above tells you what the Lisp interpreter evaluated next.
1371 The most recent action is at the top. The buffer is called the
1372 @file{*Backtrace*} buffer because it enables you to track Emacs
1373 backwards.
1374
1375 @need 800
1376 At the top of the @file{*Backtrace*} buffer, you see the line:
1377
1378 @smallexample
1379 Debugger entered--Lisp error: (void-function this)
1380 @end smallexample
1381
1382 @noindent
1383 The Lisp interpreter tried to evaluate the first atom of the list, the
1384 word @samp{this}. It is this action that generated the error message
1385 @samp{void-function this}.
1386
1387 The message contains the words @samp{void-function} and @samp{this}.
1388
1389 @cindex @samp{function} defined
1390 The word @samp{function} was mentioned once before. It is a very
1391 important word. For our purposes, we can define it by saying that a
1392 @dfn{function} is a set of instructions to the computer that tell the
1393 computer to do something.
1394
1395 Now we can begin to understand the error message: @samp{void-function
1396 this}. The function (that is, the word @samp{this}) does not have a
1397 definition of any set of instructions for the computer to carry out.
1398
1399 The slightly odd word, @samp{void-function}, is designed to cover the
1400 way Emacs Lisp is implemented, which is that when a symbol does not
1401 have a function definition attached to it, the place that should
1402 contain the instructions is `void'.
1403
1404 On the other hand, since we were able to add 2 plus 2 successfully, by
1405 evaluating @code{(+ 2 2)}, we can infer that the symbol @code{+} must
1406 have a set of instructions for the computer to obey and those
1407 instructions must be to add the numbers that follow the @code{+}.
1408
1409 It is possible to prevent Emacs entering the debugger in cases like
1410 this. We do not explain how to do that here, but we will mention what
1411 the result looks like, because you may encounter a similar situation
1412 if there is a bug in some Emacs code that you are using. In such
1413 cases, you will see only one line of error message; it will appear in
1414 the echo area and look like this:
1415
1416 @smallexample
1417 Symbol's function definition is void:@: this
1418 @end smallexample
1419
1420 @noindent
1421 @ignore
1422 (Also, your terminal may beep at you---some do, some don't; and others
1423 blink. This is just a device to get your attention.)
1424 @end ignore
1425 The message goes away as soon as you type a key, even just to
1426 move the cursor.
1427
1428 We know the meaning of the word @samp{Symbol}. It refers to the first
1429 atom of the list, the word @samp{this}. The word @samp{function}
1430 refers to the instructions that tell the computer what to do.
1431 (Technically, the symbol tells the computer where to find the
1432 instructions, but this is a complication we can ignore for the
1433 moment.)
1434
1435 The error message can be understood: @samp{Symbol's function
1436 definition is void:@: this}. The symbol (that is, the word
1437 @samp{this}) lacks instructions for the computer to carry out.
1438
1439 @node Names & Definitions
1440 @section Symbol Names and Function Definitions
1441 @cindex Symbol names
1442
1443 We can articulate another characteristic of Lisp based on what we have
1444 discussed so far---an important characteristic: a symbol, like
1445 @code{+}, is not itself the set of instructions for the computer to
1446 carry out. Instead, the symbol is used, perhaps temporarily, as a way
1447 of locating the definition or set of instructions. What we see is the
1448 name through which the instructions can be found. Names of people
1449 work the same way. I can be referred to as @samp{Bob}; however, I am
1450 not the letters @samp{B}, @samp{o}, @samp{b} but am, or was, the
1451 consciousness consistently associated with a particular life-form.
1452 The name is not me, but it can be used to refer to me.
1453
1454 In Lisp, one set of instructions can be attached to several names.
1455 For example, the computer instructions for adding numbers can be
1456 linked to the symbol @code{plus} as well as to the symbol @code{+}
1457 (and are in some dialects of Lisp). Among humans, I can be referred
1458 to as @samp{Robert} as well as @samp{Bob} and by other words as well.
1459
1460 On the other hand, a symbol can have only one function definition
1461 attached to it at a time. Otherwise, the computer would be confused as
1462 to which definition to use. If this were the case among people, only
1463 one person in the world could be named @samp{Bob}. However, the function
1464 definition to which the name refers can be changed readily.
1465 (@xref{Install, , Install a Function Definition}.)
1466
1467 Since Emacs Lisp is large, it is customary to name symbols in a way
1468 that identifies the part of Emacs to which the function belongs.
1469 Thus, all the names for functions that deal with Texinfo start with
1470 @samp{texinfo-} and those for functions that deal with reading mail
1471 start with @samp{rmail-}.
1472
1473 @node Lisp Interpreter
1474 @section The Lisp Interpreter
1475 @cindex Lisp interpreter, what it does
1476 @cindex Interpreter, what it does
1477
1478 Based on what we have seen, we can now start to figure out what the
1479 Lisp interpreter does when we command it to evaluate a list.
1480 First, it looks to see whether there is a quote before the list; if
1481 there is, the interpreter just gives us the list. On the other
1482 hand, if there is no quote, the interpreter looks at the first element
1483 in the list and sees whether it has a function definition. If it does,
1484 the interpreter carries out the instructions in the function definition.
1485 Otherwise, the interpreter prints an error message.
1486
1487 This is how Lisp works. Simple. There are added complications which we
1488 will get to in a minute, but these are the fundamentals. Of course, to
1489 write Lisp programs, you need to know how to write function definitions
1490 and attach them to names, and how to do this without confusing either
1491 yourself or the computer.
1492
1493 @menu
1494 * Complications:: Variables, Special forms, Lists within.
1495 * Byte Compiling:: Specially processing code for speed.
1496 @end menu
1497
1498 @ifnottex
1499 @node Complications
1500 @unnumberedsubsec Complications
1501 @end ifnottex
1502
1503 Now, for the first complication. In addition to lists, the Lisp
1504 interpreter can evaluate a symbol that is not quoted and does not have
1505 parentheses around it. The Lisp interpreter will attempt to determine
1506 the symbol's value as a @dfn{variable}. This situation is described
1507 in the section on variables. (@xref{Variables}.)
1508
1509 @cindex Special form
1510 The second complication occurs because some functions are unusual and
1511 do not work in the usual manner. Those that don't are called
1512 @dfn{special forms}. They are used for special jobs, like defining a
1513 function, and there are not many of them. In the next few chapters,
1514 you will be introduced to several of the more important special forms.
1515
1516 As well as special forms, there are also @dfn{macros}. A macro
1517 is a construct defined in Lisp, which differs from a function in that it
1518 translates a Lisp expression into another expression that is to be
1519 evaluated in place of the original expression. (@xref{Lisp macro}.)
1520
1521 For the purposes of this introduction, you do not need to worry too much
1522 about whether something is a special form, macro, or ordinary function.
1523 For example, @code{if} is a special form (@pxref{if}), but @code{when}
1524 is a macro (@pxref{Lisp macro}). In earlier versions of Emacs,
1525 @code{defun} was a special form, but now it is a macro (@pxref{defun}).
1526 It still behaves in the same way.
1527
1528 The final complication is this: if the function that the
1529 Lisp interpreter is looking at is not a special form, and if it is part
1530 of a list, the Lisp interpreter looks to see whether the list has a list
1531 inside of it. If there is an inner list, the Lisp interpreter first
1532 figures out what it should do with the inside list, and then it works on
1533 the outside list. If there is yet another list embedded inside the
1534 inner list, it works on that one first, and so on. It always works on
1535 the innermost list first. The interpreter works on the innermost list
1536 first, to evaluate the result of that list. The result may be
1537 used by the enclosing expression.
1538
1539 Otherwise, the interpreter works left to right, from one expression to
1540 the next.
1541
1542 @node Byte Compiling
1543 @subsection Byte Compiling
1544 @cindex Byte compiling
1545
1546 One other aspect of interpreting: the Lisp interpreter is able to
1547 interpret two kinds of entity: humanly readable code, on which we will
1548 focus exclusively, and specially processed code, called @dfn{byte
1549 compiled} code, which is not humanly readable. Byte compiled code
1550 runs faster than humanly readable code.
1551
1552 You can transform humanly readable code into byte compiled code by
1553 running one of the compile commands such as @code{byte-compile-file}.
1554 Byte compiled code is usually stored in a file that ends with a
1555 @file{.elc} extension rather than a @file{.el} extension. You will
1556 see both kinds of file in the @file{emacs/lisp} directory; the files
1557 to read are those with @file{.el} extensions.
1558
1559 As a practical matter, for most things you might do to customize or
1560 extend Emacs, you do not need to byte compile; and I will not discuss
1561 the topic here. @xref{Byte Compilation, , Byte Compilation, elisp,
1562 The GNU Emacs Lisp Reference Manual}, for a full description of byte
1563 compilation.
1564
1565 @node Evaluation
1566 @section Evaluation
1567 @cindex Evaluation
1568
1569 When the Lisp interpreter works on an expression, the term for the
1570 activity is called @dfn{evaluation}. We say that the interpreter
1571 `evaluates the expression'. I've used this term several times before.
1572 The word comes from its use in everyday language, `to ascertain the
1573 value or amount of; to appraise', according to @cite{Webster's New
1574 Collegiate Dictionary}.
1575
1576 @menu
1577 * How the Interpreter Acts:: Returns and Side Effects...
1578 * Evaluating Inner Lists:: Lists within lists...
1579 @end menu
1580
1581 @ifnottex
1582 @node How the Interpreter Acts
1583 @unnumberedsubsec How the Lisp Interpreter Acts
1584 @end ifnottex
1585
1586 @cindex @samp{returned value} explained
1587 After evaluating an expression, the Lisp interpreter will most likely
1588 @dfn{return} the value that the computer produces by carrying out the
1589 instructions it found in the function definition, or perhaps it will
1590 give up on that function and produce an error message. (The interpreter
1591 may also find itself tossed, so to speak, to a different function or it
1592 may attempt to repeat continually what it is doing for ever and ever in
1593 what is called an `infinite loop'. These actions are less common; and
1594 we can ignore them.) Most frequently, the interpreter returns a value.
1595
1596 @cindex @samp{side effect} defined
1597 At the same time the interpreter returns a value, it may do something
1598 else as well, such as move a cursor or copy a file; this other kind of
1599 action is called a @dfn{side effect}. Actions that we humans think are
1600 important, such as printing results, are often ``side effects'' to the
1601 Lisp interpreter. The jargon can sound peculiar, but it turns out that
1602 it is fairly easy to learn to use side effects.
1603
1604 In summary, evaluating a symbolic expression most commonly causes the
1605 Lisp interpreter to return a value and perhaps carry out a side effect;
1606 or else produce an error.
1607
1608 @node Evaluating Inner Lists
1609 @subsection Evaluating Inner Lists
1610 @cindex Inner list evaluation
1611 @cindex Evaluating inner lists
1612
1613 If evaluation applies to a list that is inside another list, the outer
1614 list may use the value returned by the first evaluation as information
1615 when the outer list is evaluated. This explains why inner expressions
1616 are evaluated first: the values they return are used by the outer
1617 expressions.
1618
1619 @need 1250
1620 We can investigate this process by evaluating another addition example.
1621 Place your cursor after the following expression and type @kbd{C-x C-e}:
1622
1623 @smallexample
1624 (+ 2 (+ 3 3))
1625 @end smallexample
1626
1627 @noindent
1628 The number 8 will appear in the echo area.
1629
1630 What happens is that the Lisp interpreter first evaluates the inner
1631 expression, @code{(+ 3 3)}, for which the value 6 is returned; then it
1632 evaluates the outer expression as if it were written @code{(+ 2 6)}, which
1633 returns the value 8. Since there are no more enclosing expressions to
1634 evaluate, the interpreter prints that value in the echo area.
1635
1636 Now it is easy to understand the name of the command invoked by the
1637 keystrokes @kbd{C-x C-e}: the name is @code{eval-last-sexp}. The
1638 letters @code{sexp} are an abbreviation for `symbolic expression', and
1639 @code{eval} is an abbreviation for `evaluate'. The command means
1640 `evaluate last symbolic expression'.
1641
1642 As an experiment, you can try evaluating the expression by putting the
1643 cursor at the beginning of the next line immediately following the
1644 expression, or inside the expression.
1645
1646 @need 800
1647 Here is another copy of the expression:
1648
1649 @smallexample
1650 (+ 2 (+ 3 3))
1651 @end smallexample
1652
1653 @noindent
1654 If you place the cursor at the beginning of the blank line that
1655 immediately follows the expression and type @kbd{C-x C-e}, you will
1656 still get the value 8 printed in the echo area. Now try putting the
1657 cursor inside the expression. If you put it right after the next to
1658 last parenthesis (so it appears to sit on top of the last parenthesis),
1659 you will get a 6 printed in the echo area! This is because the command
1660 evaluates the expression @code{(+ 3 3)}.
1661
1662 Now put the cursor immediately after a number. Type @kbd{C-x C-e} and
1663 you will get the number itself. In Lisp, if you evaluate a number, you
1664 get the number itself---this is how numbers differ from symbols. If you
1665 evaluate a list starting with a symbol like @code{+}, you will get a
1666 value returned that is the result of the computer carrying out the
1667 instructions in the function definition attached to that name. If a
1668 symbol by itself is evaluated, something different happens, as we will
1669 see in the next section.
1670
1671 @node Variables
1672 @section Variables
1673 @cindex Variables
1674
1675 In Emacs Lisp, a symbol can have a value attached to it just as it can
1676 have a function definition attached to it. The two are different.
1677 The function definition is a set of instructions that a computer will
1678 obey. A value, on the other hand, is something, such as number or a
1679 name, that can vary (which is why such a symbol is called a variable).
1680 The value of a symbol can be any expression in Lisp, such as a symbol,
1681 number, list, or string. A symbol that has a value is often called a
1682 @dfn{variable}.
1683
1684 A symbol can have both a function definition and a value attached to
1685 it at the same time. Or it can have just one or the other.
1686 The two are separate. This is somewhat similar
1687 to the way the name Cambridge can refer to the city in Massachusetts
1688 and have some information attached to the name as well, such as
1689 ``great programming center''.
1690
1691 @ignore
1692 (Incidentally, in Emacs Lisp, a symbol can have two
1693 other things attached to it, too: a property list and a documentation
1694 string; these are discussed later.)
1695 @end ignore
1696
1697 Another way to think about this is to imagine a symbol as being a chest
1698 of drawers. The function definition is put in one drawer, the value in
1699 another, and so on. What is put in the drawer holding the value can be
1700 changed without affecting the contents of the drawer holding the
1701 function definition, and vice-verse.
1702
1703 @menu
1704 * fill-column Example::
1705 * Void Function:: The error message for a symbol
1706 without a function.
1707 * Void Variable:: The error message for a symbol without a value.
1708 @end menu
1709
1710 @ifnottex
1711 @node fill-column Example
1712 @unnumberedsubsec @code{fill-column}, an Example Variable
1713 @end ifnottex
1714
1715 @findex fill-column, @r{an example variable}
1716 @cindex Example variable, @code{fill-column}
1717 @cindex Variable, example of, @code{fill-column}
1718 The variable @code{fill-column} illustrates a symbol with a value
1719 attached to it: in every GNU Emacs buffer, this symbol is set to some
1720 value, usually 72 or 70, but sometimes to some other value. To find the
1721 value of this symbol, evaluate it by itself. If you are reading this in
1722 Info inside of GNU Emacs, you can do this by putting the cursor after
1723 the symbol and typing @kbd{C-x C-e}:
1724
1725 @smallexample
1726 fill-column
1727 @end smallexample
1728
1729 @noindent
1730 After I typed @kbd{C-x C-e}, Emacs printed the number 72 in my echo
1731 area. This is the value for which @code{fill-column} is set for me as I
1732 write this. It may be different for you in your Info buffer. Notice
1733 that the value returned as a variable is printed in exactly the same way
1734 as the value returned by a function carrying out its instructions. From
1735 the point of view of the Lisp interpreter, a value returned is a value
1736 returned. What kind of expression it came from ceases to matter once
1737 the value is known.
1738
1739 A symbol can have any value attached to it or, to use the jargon, we can
1740 @dfn{bind} the variable to a value: to a number, such as 72; to a
1741 string, @code{"such as this"}; to a list, such as @code{(spruce pine
1742 oak)}; we can even bind a variable to a function definition.
1743
1744 A symbol can be bound to a value in several ways. @xref{set & setq, ,
1745 Setting the Value of a Variable}, for information about one way to do
1746 this.
1747
1748 @node Void Function
1749 @subsection Error Message for a Symbol Without a Function
1750 @cindex Symbol without function error
1751 @cindex Error for symbol without function
1752
1753 When we evaluated @code{fill-column} to find its value as a variable,
1754 we did not place parentheses around the word. This is because we did
1755 not intend to use it as a function name.
1756
1757 If @code{fill-column} were the first or only element of a list, the
1758 Lisp interpreter would attempt to find the function definition
1759 attached to it. But @code{fill-column} has no function definition.
1760 Try evaluating this:
1761
1762 @smallexample
1763 (fill-column)
1764 @end smallexample
1765
1766 @need 1250
1767 @noindent
1768 You will create a @file{*Backtrace*} buffer that says:
1769
1770 @smallexample
1771 @group
1772 ---------- Buffer: *Backtrace* ----------
1773 Debugger entered--Lisp error: (void-function fill-column)
1774 (fill-column)
1775 eval((fill-column))
1776 eval-last-sexp-1(nil)
1777 eval-last-sexp(nil)
1778 call-interactively(eval-last-sexp)
1779 ---------- Buffer: *Backtrace* ----------
1780 @end group
1781 @end smallexample
1782
1783 @noindent
1784 (Remember, to quit the debugger and make the debugger window go away,
1785 type @kbd{q} in the @file{*Backtrace*} buffer.)
1786
1787 @ignore
1788 @need 800
1789 In GNU Emacs 20 and before, you will produce an error message that says:
1790
1791 @smallexample
1792 Symbol's function definition is void:@: fill-column
1793 @end smallexample
1794
1795 @noindent
1796 (The message will go away as soon as you move the cursor or type
1797 another key.)
1798 @end ignore
1799
1800 @node Void Variable
1801 @subsection Error Message for a Symbol Without a Value
1802 @cindex Symbol without value error
1803 @cindex Error for symbol without value
1804
1805 If you attempt to evaluate a symbol that does not have a value bound to
1806 it, you will receive an error message. You can see this by
1807 experimenting with our 2 plus 2 addition. In the following expression,
1808 put your cursor right after the @code{+}, before the first number 2,
1809 type @kbd{C-x C-e}:
1810
1811 @smallexample
1812 (+ 2 2)
1813 @end smallexample
1814
1815 @need 1500
1816 @noindent
1817 In GNU Emacs 22, you will create a @file{*Backtrace*} buffer that
1818 says:
1819
1820 @smallexample
1821 @group
1822 ---------- Buffer: *Backtrace* ----------
1823 Debugger entered--Lisp error: (void-variable +)
1824 eval(+)
1825 eval-last-sexp-1(nil)
1826 eval-last-sexp(nil)
1827 call-interactively(eval-last-sexp)
1828 ---------- Buffer: *Backtrace* ----------
1829 @end group
1830 @end smallexample
1831
1832 @noindent
1833 (Again, you can quit the debugger by
1834 typing @kbd{q} in the @file{*Backtrace*} buffer.)
1835
1836 This backtrace is different from the very first error message we saw,
1837 which said, @samp{Debugger entered--Lisp error: (void-function this)}.
1838 In this case, the function does not have a value as a variable; while
1839 in the other error message, the function (the word `this') did not
1840 have a definition.
1841
1842 In this experiment with the @code{+}, what we did was cause the Lisp
1843 interpreter to evaluate the @code{+} and look for the value of the
1844 variable instead of the function definition. We did this by placing the
1845 cursor right after the symbol rather than after the parenthesis of the
1846 enclosing list as we did before. As a consequence, the Lisp interpreter
1847 evaluated the preceding s-expression, which in this case was
1848 @code{+} by itself.
1849
1850 Since @code{+} does not have a value bound to it, just the function
1851 definition, the error message reported that the symbol's value as a
1852 variable was void.
1853
1854 @ignore
1855 @need 800
1856 In GNU Emacs version 20 and before, your error message will say:
1857
1858 @example
1859 Symbol's value as variable is void:@: +
1860 @end example
1861
1862 @noindent
1863 The meaning is the same as in GNU Emacs 22.
1864 @end ignore
1865
1866 @node Arguments
1867 @section Arguments
1868 @cindex Arguments
1869 @cindex Passing information to functions
1870
1871 To see how information is passed to functions, let's look again at
1872 our old standby, the addition of two plus two. In Lisp, this is written
1873 as follows:
1874
1875 @smallexample
1876 (+ 2 2)
1877 @end smallexample
1878
1879 If you evaluate this expression, the number 4 will appear in your echo
1880 area. What the Lisp interpreter does is add the numbers that follow
1881 the @code{+}.
1882
1883 @cindex @samp{argument} defined
1884 The numbers added by @code{+} are called the @dfn{arguments} of the
1885 function @code{+}. These numbers are the information that is given to
1886 or @dfn{passed} to the function.
1887
1888 The word `argument' comes from the way it is used in mathematics and
1889 does not refer to a disputation between two people; instead it refers to
1890 the information presented to the function, in this case, to the
1891 @code{+}. In Lisp, the arguments to a function are the atoms or lists
1892 that follow the function. The values returned by the evaluation of
1893 these atoms or lists are passed to the function. Different functions
1894 require different numbers of arguments; some functions require none at
1895 all.@footnote{It is curious to track the path by which the word `argument'
1896 came to have two different meanings, one in mathematics and the other in
1897 everyday English. According to the @cite{Oxford English Dictionary},
1898 the word derives from the Latin for @samp{to make clear, prove}; thus it
1899 came to mean, by one thread of derivation, `the evidence offered as
1900 proof', which is to say, `the information offered', which led to its
1901 meaning in Lisp. But in the other thread of derivation, it came to mean
1902 `to assert in a manner against which others may make counter
1903 assertions', which led to the meaning of the word as a disputation.
1904 (Note here that the English word has two different definitions attached
1905 to it at the same time. By contrast, in Emacs Lisp, a symbol cannot
1906 have two different function definitions at the same time.)}
1907
1908 @menu
1909 * Data types:: Types of data passed to a function.
1910 * Args as Variable or List:: An argument can be the value
1911 of a variable or list.
1912 * Variable Number of Arguments:: Some functions may take a
1913 variable number of arguments.
1914 * Wrong Type of Argument:: Passing an argument of the wrong type
1915 to a function.
1916 * message:: A useful function for sending messages.
1917 @end menu
1918
1919 @node Data types
1920 @subsection Arguments' Data Types
1921 @cindex Data types
1922 @cindex Types of data
1923 @cindex Arguments' data types
1924
1925 The type of data that should be passed to a function depends on what
1926 kind of information it uses. The arguments to a function such as
1927 @code{+} must have values that are numbers, since @code{+} adds numbers.
1928 Other functions use different kinds of data for their arguments.
1929
1930 @need 1250
1931 @findex concat
1932 For example, the @code{concat} function links together or unites two or
1933 more strings of text to produce a string. The arguments are strings.
1934 Concatenating the two character strings @code{abc}, @code{def} produces
1935 the single string @code{abcdef}. This can be seen by evaluating the
1936 following:
1937
1938 @smallexample
1939 (concat "abc" "def")
1940 @end smallexample
1941
1942 @noindent
1943 The value produced by evaluating this expression is @code{"abcdef"}.
1944
1945 A function such as @code{substring} uses both a string and numbers as
1946 arguments. The function returns a part of the string, a substring of
1947 the first argument. This function takes three arguments. Its first
1948 argument is the string of characters, the second and third arguments are
1949 numbers that indicate the beginning and end of the substring. The
1950 numbers are a count of the number of characters (including spaces and
1951 punctuation) from the beginning of the string.
1952
1953 @need 800
1954 For example, if you evaluate the following:
1955
1956 @smallexample
1957 (substring "The quick brown fox jumped." 16 19)
1958 @end smallexample
1959
1960 @noindent
1961 you will see @code{"fox"} appear in the echo area. The arguments are the
1962 string and the two numbers.
1963
1964 Note that the string passed to @code{substring} is a single atom even
1965 though it is made up of several words separated by spaces. Lisp counts
1966 everything between the two quotation marks as part of the string,
1967 including the spaces. You can think of the @code{substring} function as
1968 a kind of `atom smasher' since it takes an otherwise indivisible atom
1969 and extracts a part. However, @code{substring} is only able to extract
1970 a substring from an argument that is a string, not from another type of
1971 atom such as a number or symbol.
1972
1973 @node Args as Variable or List
1974 @subsection An Argument as the Value of a Variable or List
1975
1976 An argument can be a symbol that returns a value when it is evaluated.
1977 For example, when the symbol @code{fill-column} by itself is evaluated,
1978 it returns a number. This number can be used in an addition.
1979
1980 @need 1250
1981 Position the cursor after the following expression and type @kbd{C-x
1982 C-e}:
1983
1984 @smallexample
1985 (+ 2 fill-column)
1986 @end smallexample
1987
1988 @noindent
1989 The value will be a number two more than what you get by evaluating
1990 @code{fill-column} alone. For me, this is 74, because my value of
1991 @code{fill-column} is 72.
1992
1993 As we have just seen, an argument can be a symbol that returns a value
1994 when evaluated. In addition, an argument can be a list that returns a
1995 value when it is evaluated. For example, in the following expression,
1996 the arguments to the function @code{concat} are the strings
1997 @w{@code{"The "}} and @w{@code{" red foxes."}} and the list
1998 @code{(number-to-string (+ 2 fill-column))}.
1999
2000 @c For GNU Emacs 22, need number-to-string
2001 @smallexample
2002 (concat "The " (number-to-string (+ 2 fill-column)) " red foxes.")
2003 @end smallexample
2004
2005 @noindent
2006 If you evaluate this expression---and if, as with my Emacs,
2007 @code{fill-column} evaluates to 72---@code{"The 74 red foxes."} will
2008 appear in the echo area. (Note that you must put spaces after the
2009 word @samp{The} and before the word @samp{red} so they will appear in
2010 the final string. The function @code{number-to-string} converts the
2011 integer that the addition function returns to a string.
2012 @code{number-to-string} is also known as @code{int-to-string}.)
2013
2014 @node Variable Number of Arguments
2015 @subsection Variable Number of Arguments
2016 @cindex Variable number of arguments
2017 @cindex Arguments, variable number of
2018
2019 Some functions, such as @code{concat}, @code{+} or @code{*}, take any
2020 number of arguments. (The @code{*} is the symbol for multiplication.)
2021 This can be seen by evaluating each of the following expressions in
2022 the usual way. What you will see in the echo area is printed in this
2023 text after @samp{@result{}}, which you may read as `evaluates to'.
2024
2025 @need 1250
2026 In the first set, the functions have no arguments:
2027
2028 @smallexample
2029 @group
2030 (+) @result{} 0
2031
2032 (*) @result{} 1
2033 @end group
2034 @end smallexample
2035
2036 @need 1250
2037 In this set, the functions have one argument each:
2038
2039 @smallexample
2040 @group
2041 (+ 3) @result{} 3
2042
2043 (* 3) @result{} 3
2044 @end group
2045 @end smallexample
2046
2047 @need 1250
2048 In this set, the functions have three arguments each:
2049
2050 @smallexample
2051 @group
2052 (+ 3 4 5) @result{} 12
2053
2054 (* 3 4 5) @result{} 60
2055 @end group
2056 @end smallexample
2057
2058 @node Wrong Type of Argument
2059 @subsection Using the Wrong Type Object as an Argument
2060 @cindex Wrong type of argument
2061 @cindex Argument, wrong type of
2062
2063 When a function is passed an argument of the wrong type, the Lisp
2064 interpreter produces an error message. For example, the @code{+}
2065 function expects the values of its arguments to be numbers. As an
2066 experiment we can pass it the quoted symbol @code{hello} instead of a
2067 number. Position the cursor after the following expression and type
2068 @kbd{C-x C-e}:
2069
2070 @smallexample
2071 (+ 2 'hello)
2072 @end smallexample
2073
2074 @noindent
2075 When you do this you will generate an error message. What has happened
2076 is that @code{+} has tried to add the 2 to the value returned by
2077 @code{'hello}, but the value returned by @code{'hello} is the symbol
2078 @code{hello}, not a number. Only numbers can be added. So @code{+}
2079 could not carry out its addition.
2080
2081 @need 1250
2082 You will create and enter a @file{*Backtrace*} buffer that says:
2083
2084 @noindent
2085 @smallexample
2086 @group
2087 ---------- Buffer: *Backtrace* ----------
2088 Debugger entered--Lisp error:
2089 (wrong-type-argument number-or-marker-p hello)
2090 +(2 hello)
2091 eval((+ 2 (quote hello)))
2092 eval-last-sexp-1(nil)
2093 eval-last-sexp(nil)
2094 call-interactively(eval-last-sexp)
2095 ---------- Buffer: *Backtrace* ----------
2096 @end group
2097 @end smallexample
2098
2099 @need 1250
2100 As usual, the error message tries to be helpful and makes sense after you
2101 learn how to read it.@footnote{@code{(quote hello)} is an expansion of
2102 the abbreviation @code{'hello}.}
2103
2104 The first part of the error message is straightforward; it says
2105 @samp{wrong type argument}. Next comes the mysterious jargon word
2106 @w{@samp{number-or-marker-p}}. This word is trying to tell you what
2107 kind of argument the @code{+} expected.
2108
2109 The symbol @code{number-or-marker-p} says that the Lisp interpreter is
2110 trying to determine whether the information presented it (the value of
2111 the argument) is a number or a marker (a special object representing a
2112 buffer position). What it does is test to see whether the @code{+} is
2113 being given numbers to add. It also tests to see whether the
2114 argument is something called a marker, which is a specific feature of
2115 Emacs Lisp. (In Emacs, locations in a buffer are recorded as markers.
2116 When the mark is set with the @kbd{C-@@} or @kbd{C-@key{SPC}} command,
2117 its position is kept as a marker. The mark can be considered a
2118 number---the number of characters the location is from the beginning
2119 of the buffer.) In Emacs Lisp, @code{+} can be used to add the
2120 numeric value of marker positions as numbers.
2121
2122 The @samp{p} of @code{number-or-marker-p} is the embodiment of a
2123 practice started in the early days of Lisp programming. The @samp{p}
2124 stands for `predicate'. In the jargon used by the early Lisp
2125 researchers, a predicate refers to a function to determine whether some
2126 property is true or false. So the @samp{p} tells us that
2127 @code{number-or-marker-p} is the name of a function that determines
2128 whether it is true or false that the argument supplied is a number or
2129 a marker. Other Lisp symbols that end in @samp{p} include @code{zerop},
2130 a function that tests whether its argument has the value of zero, and
2131 @code{listp}, a function that tests whether its argument is a list.
2132
2133 Finally, the last part of the error message is the symbol @code{hello}.
2134 This is the value of the argument that was passed to @code{+}. If the
2135 addition had been passed the correct type of object, the value passed
2136 would have been a number, such as 37, rather than a symbol like
2137 @code{hello}. But then you would not have got the error message.
2138
2139 @ignore
2140 @need 1250
2141 In GNU Emacs version 20 and before, the echo area displays an error
2142 message that says:
2143
2144 @smallexample
2145 Wrong type argument:@: number-or-marker-p, hello
2146 @end smallexample
2147
2148 This says, in different words, the same as the top line of the
2149 @file{*Backtrace*} buffer.
2150 @end ignore
2151
2152 @node message
2153 @subsection The @code{message} Function
2154 @findex message
2155
2156 Like @code{+}, the @code{message} function takes a variable number of
2157 arguments. It is used to send messages to the user and is so useful
2158 that we will describe it here.
2159
2160 @need 1250
2161 A message is printed in the echo area. For example, you can print a
2162 message in your echo area by evaluating the following list:
2163
2164 @smallexample
2165 (message "This message appears in the echo area!")
2166 @end smallexample
2167
2168 The whole string between double quotation marks is a single argument
2169 and is printed @i{in toto}. (Note that in this example, the message
2170 itself will appear in the echo area within double quotes; that is
2171 because you see the value returned by the @code{message} function. In
2172 most uses of @code{message} in programs that you write, the text will
2173 be printed in the echo area as a side-effect, without the quotes.
2174 @xref{multiply-by-seven in detail, , @code{multiply-by-seven} in
2175 detail}, for an example of this.)
2176
2177 However, if there is a @samp{%s} in the quoted string of characters, the
2178 @code{message} function does not print the @samp{%s} as such, but looks
2179 to the argument that follows the string. It evaluates the second
2180 argument and prints the value at the location in the string where the
2181 @samp{%s} is.
2182
2183 @need 1250
2184 You can see this by positioning the cursor after the following
2185 expression and typing @kbd{C-x C-e}:
2186
2187 @smallexample
2188 (message "The name of this buffer is: %s." (buffer-name))
2189 @end smallexample
2190
2191 @noindent
2192 In Info, @code{"The name of this buffer is: *info*."} will appear in the
2193 echo area. The function @code{buffer-name} returns the name of the
2194 buffer as a string, which the @code{message} function inserts in place
2195 of @code{%s}.
2196
2197 To print a value as an integer, use @samp{%d} in the same way as
2198 @samp{%s}. For example, to print a message in the echo area that
2199 states the value of the @code{fill-column}, evaluate the following:
2200
2201 @smallexample
2202 (message "The value of fill-column is %d." fill-column)
2203 @end smallexample
2204
2205 @noindent
2206 On my system, when I evaluate this list, @code{"The value of
2207 fill-column is 72."} appears in my echo area@footnote{Actually, you
2208 can use @code{%s} to print a number. It is non-specific. @code{%d}
2209 prints only the part of a number left of a decimal point, and not
2210 anything that is not a number.}.
2211
2212 If there is more than one @samp{%s} in the quoted string, the value of
2213 the first argument following the quoted string is printed at the
2214 location of the first @samp{%s} and the value of the second argument is
2215 printed at the location of the second @samp{%s}, and so on.
2216
2217 @need 1250
2218 For example, if you evaluate the following,
2219
2220 @smallexample
2221 @group
2222 (message "There are %d %s in the office!"
2223 (- fill-column 14) "pink elephants")
2224 @end group
2225 @end smallexample
2226
2227 @noindent
2228 a rather whimsical message will appear in your echo area. On my system
2229 it says, @code{"There are 58 pink elephants in the office!"}.
2230
2231 The expression @code{(- fill-column 14)} is evaluated and the resulting
2232 number is inserted in place of the @samp{%d}; and the string in double
2233 quotes, @code{"pink elephants"}, is treated as a single argument and
2234 inserted in place of the @samp{%s}. (That is to say, a string between
2235 double quotes evaluates to itself, like a number.)
2236
2237 Finally, here is a somewhat complex example that not only illustrates
2238 the computation of a number, but also shows how you can use an
2239 expression within an expression to generate the text that is substituted
2240 for @samp{%s}:
2241
2242 @smallexample
2243 @group
2244 (message "He saw %d %s"
2245 (- fill-column 32)
2246 (concat "red "
2247 (substring
2248 "The quick brown foxes jumped." 16 21)
2249 " leaping."))
2250 @end group
2251 @end smallexample
2252
2253 In this example, @code{message} has three arguments: the string,
2254 @code{"He saw %d %s"}, the expression, @code{(- fill-column 32)}, and
2255 the expression beginning with the function @code{concat}. The value
2256 resulting from the evaluation of @code{(- fill-column 32)} is inserted
2257 in place of the @samp{%d}; and the value returned by the expression
2258 beginning with @code{concat} is inserted in place of the @samp{%s}.
2259
2260 When your fill column is 70 and you evaluate the expression, the
2261 message @code{"He saw 38 red foxes leaping."} appears in your echo
2262 area.
2263
2264 @node set & setq
2265 @section Setting the Value of a Variable
2266 @cindex Variable, setting value
2267 @cindex Setting value of variable
2268
2269 @cindex @samp{bind} defined
2270 There are several ways by which a variable can be given a value. One of
2271 the ways is to use either the function @code{set} or the function
2272 @code{setq}. Another way is to use @code{let} (@pxref{let}). (The
2273 jargon for this process is to @dfn{bind} a variable to a value.)
2274
2275 The following sections not only describe how @code{set} and @code{setq}
2276 work but also illustrate how arguments are passed.
2277
2278 @menu
2279 * Using set:: Setting values.
2280 * Using setq:: Setting a quoted value.
2281 * Counting:: Using @code{setq} to count.
2282 @end menu
2283
2284 @node Using set
2285 @subsection Using @code{set}
2286 @findex set
2287
2288 To set the value of the symbol @code{flowers} to the list @code{'(rose
2289 violet daisy buttercup)}, evaluate the following expression by
2290 positioning the cursor after the expression and typing @kbd{C-x C-e}.
2291
2292 @smallexample
2293 (set 'flowers '(rose violet daisy buttercup))
2294 @end smallexample
2295
2296 @noindent
2297 The list @code{(rose violet daisy buttercup)} will appear in the echo
2298 area. This is what is @emph{returned} by the @code{set} function. As a
2299 side effect, the symbol @code{flowers} is bound to the list; that is,
2300 the symbol @code{flowers}, which can be viewed as a variable, is given
2301 the list as its value. (This process, by the way, illustrates how a
2302 side effect to the Lisp interpreter, setting the value, can be the
2303 primary effect that we humans are interested in. This is because every
2304 Lisp function must return a value if it does not get an error, but it
2305 will only have a side effect if it is designed to have one.)
2306
2307 After evaluating the @code{set} expression, you can evaluate the symbol
2308 @code{flowers} and it will return the value you just set. Here is the
2309 symbol. Place your cursor after it and type @kbd{C-x C-e}.
2310
2311 @smallexample
2312 flowers
2313 @end smallexample
2314
2315 @noindent
2316 When you evaluate @code{flowers}, the list
2317 @code{(rose violet daisy buttercup)} appears in the echo area.
2318
2319 Incidentally, if you evaluate @code{'flowers}, the variable with a quote
2320 in front of it, what you will see in the echo area is the symbol itself,
2321 @code{flowers}. Here is the quoted symbol, so you can try this:
2322
2323 @smallexample
2324 'flowers
2325 @end smallexample
2326
2327 Note also, that when you use @code{set}, you need to quote both
2328 arguments to @code{set}, unless you want them evaluated. Since we do
2329 not want either argument evaluated, neither the variable
2330 @code{flowers} nor the list @code{(rose violet daisy buttercup)}, both
2331 are quoted. (When you use @code{set} without quoting its first
2332 argument, the first argument is evaluated before anything else is
2333 done. If you did this and @code{flowers} did not have a value
2334 already, you would get an error message that the @samp{Symbol's value
2335 as variable is void}; on the other hand, if @code{flowers} did return
2336 a value after it was evaluated, the @code{set} would attempt to set
2337 the value that was returned. There are situations where this is the
2338 right thing for the function to do; but such situations are rare.)
2339
2340 @node Using setq
2341 @subsection Using @code{setq}
2342 @findex setq
2343
2344 As a practical matter, you almost always quote the first argument to
2345 @code{set}. The combination of @code{set} and a quoted first argument
2346 is so common that it has its own name: the special form @code{setq}.
2347 This special form is just like @code{set} except that the first argument
2348 is quoted automatically, so you don't need to type the quote mark
2349 yourself. Also, as an added convenience, @code{setq} permits you to set
2350 several different variables to different values, all in one expression.
2351
2352 To set the value of the variable @code{carnivores} to the list
2353 @code{'(lion tiger leopard)} using @code{setq}, the following expression
2354 is used:
2355
2356 @smallexample
2357 (setq carnivores '(lion tiger leopard))
2358 @end smallexample
2359
2360 @noindent
2361 This is exactly the same as using @code{set} except the first argument
2362 is automatically quoted by @code{setq}. (The @samp{q} in @code{setq}
2363 means @code{quote}.)
2364
2365 @need 1250
2366 With @code{set}, the expression would look like this:
2367
2368 @smallexample
2369 (set 'carnivores '(lion tiger leopard))
2370 @end smallexample
2371
2372 Also, @code{setq} can be used to assign different values to
2373 different variables. The first argument is bound to the value
2374 of the second argument, the third argument is bound to the value of the
2375 fourth argument, and so on. For example, you could use the following to
2376 assign a list of trees to the symbol @code{trees} and a list of herbivores
2377 to the symbol @code{herbivores}:
2378
2379 @smallexample
2380 @group
2381 (setq trees '(pine fir oak maple)
2382 herbivores '(gazelle antelope zebra))
2383 @end group
2384 @end smallexample
2385
2386 @noindent
2387 (The expression could just as well have been on one line, but it might
2388 not have fit on a page; and humans find it easier to read nicely
2389 formatted lists.)
2390
2391 Although I have been using the term `assign', there is another way of
2392 thinking about the workings of @code{set} and @code{setq}; and that is to
2393 say that @code{set} and @code{setq} make the symbol @emph{point} to the
2394 list. This latter way of thinking is very common and in forthcoming
2395 chapters we shall come upon at least one symbol that has `pointer' as
2396 part of its name. The name is chosen because the symbol has a value,
2397 specifically a list, attached to it; or, expressed another way,
2398 the symbol is set to ``point'' to the list.
2399
2400 @node Counting
2401 @subsection Counting
2402 @cindex Counting
2403
2404 Here is an example that shows how to use @code{setq} in a counter. You
2405 might use this to count how many times a part of your program repeats
2406 itself. First set a variable to zero; then add one to the number each
2407 time the program repeats itself. To do this, you need a variable that
2408 serves as a counter, and two expressions: an initial @code{setq}
2409 expression that sets the counter variable to zero; and a second
2410 @code{setq} expression that increments the counter each time it is
2411 evaluated.
2412
2413 @smallexample
2414 @group
2415 (setq counter 0) ; @r{Let's call this the initializer.}
2416
2417 (setq counter (+ counter 1)) ; @r{This is the incrementer.}
2418
2419 counter ; @r{This is the counter.}
2420 @end group
2421 @end smallexample
2422
2423 @noindent
2424 (The text following the @samp{;} are comments. @xref{Change a
2425 defun, , Change a Function Definition}.)
2426
2427 If you evaluate the first of these expressions, the initializer,
2428 @code{(setq counter 0)}, and then evaluate the third expression,
2429 @code{counter}, the number @code{0} will appear in the echo area. If
2430 you then evaluate the second expression, the incrementer, @code{(setq
2431 counter (+ counter 1))}, the counter will get the value 1. So if you
2432 again evaluate @code{counter}, the number @code{1} will appear in the
2433 echo area. Each time you evaluate the second expression, the value of
2434 the counter will be incremented.
2435
2436 When you evaluate the incrementer, @code{(setq counter (+ counter 1))},
2437 the Lisp interpreter first evaluates the innermost list; this is the
2438 addition. In order to evaluate this list, it must evaluate the variable
2439 @code{counter} and the number @code{1}. When it evaluates the variable
2440 @code{counter}, it receives its current value. It passes this value and
2441 the number @code{1} to the @code{+} which adds them together. The sum
2442 is then returned as the value of the inner list and passed to the
2443 @code{setq} which sets the variable @code{counter} to this new value.
2444 Thus, the value of the variable, @code{counter}, is changed.
2445
2446 @node Summary
2447 @section Summary
2448
2449 Learning Lisp is like climbing a hill in which the first part is the
2450 steepest. You have now climbed the most difficult part; what remains
2451 becomes easier as you progress onwards.
2452
2453 @need 1000
2454 In summary,
2455
2456 @itemize @bullet
2457
2458 @item
2459 Lisp programs are made up of expressions, which are lists or single atoms.
2460
2461 @item
2462 Lists are made up of zero or more atoms or inner lists, separated by whitespace and
2463 surrounded by parentheses. A list can be empty.
2464
2465 @item
2466 Atoms are multi-character symbols, like @code{forward-paragraph}, single
2467 character symbols like @code{+}, strings of characters between double
2468 quotation marks, or numbers.
2469
2470 @item
2471 A number evaluates to itself.
2472
2473 @item
2474 A string between double quotes also evaluates to itself.
2475
2476 @item
2477 When you evaluate a symbol by itself, its value is returned.
2478
2479 @item
2480 When you evaluate a list, the Lisp interpreter looks at the first symbol
2481 in the list and then at the function definition bound to that symbol.
2482 Then the instructions in the function definition are carried out.
2483
2484 @item
2485 A single quotation mark,
2486 @ifinfo
2487 '
2488 @end ifinfo
2489 @ifnotinfo
2490 @code{'}
2491 @end ifnotinfo
2492 , tells the Lisp interpreter that it should
2493 return the following expression as written, and not evaluate it as it
2494 would if the quote were not there.
2495
2496 @item
2497 Arguments are the information passed to a function. The arguments to a
2498 function are computed by evaluating the rest of the elements of the list
2499 of which the function is the first element.
2500
2501 @item
2502 A function always returns a value when it is evaluated (unless it gets
2503 an error); in addition, it may also carry out some action called a
2504 ``side effect''. In many cases, a function's primary purpose is to
2505 create a side effect.
2506 @end itemize
2507
2508 @node Error Message Exercises
2509 @section Exercises
2510
2511 A few simple exercises:
2512
2513 @itemize @bullet
2514 @item
2515 Generate an error message by evaluating an appropriate symbol that is
2516 not within parentheses.
2517
2518 @item
2519 Generate an error message by evaluating an appropriate symbol that is
2520 between parentheses.
2521
2522 @item
2523 Create a counter that increments by two rather than one.
2524
2525 @item
2526 Write an expression that prints a message in the echo area when
2527 evaluated.
2528 @end itemize
2529
2530 @node Practicing Evaluation
2531 @chapter Practicing Evaluation
2532 @cindex Practicing evaluation
2533 @cindex Evaluation practice
2534
2535 Before learning how to write a function definition in Emacs Lisp, it is
2536 useful to spend a little time evaluating various expressions that have
2537 already been written. These expressions will be lists with the
2538 functions as their first (and often only) element. Since some of the
2539 functions associated with buffers are both simple and interesting, we
2540 will start with those. In this section, we will evaluate a few of
2541 these. In another section, we will study the code of several other
2542 buffer-related functions, to see how they were written.
2543
2544 @menu
2545 * How to Evaluate:: Typing editing commands or @kbd{C-x C-e}
2546 causes evaluation.
2547 * Buffer Names:: Buffers and files are different.
2548 * Getting Buffers:: Getting a buffer itself, not merely its name.
2549 * Switching Buffers:: How to change to another buffer.
2550 * Buffer Size & Locations:: Where point is located and the size of
2551 the buffer.
2552 * Evaluation Exercise::
2553 @end menu
2554
2555 @ifnottex
2556 @node How to Evaluate
2557 @unnumberedsec How to Evaluate
2558 @end ifnottex
2559
2560 @i{Whenever you give an editing command} to Emacs Lisp, such as the
2561 command to move the cursor or to scroll the screen, @i{you are evaluating
2562 an expression,} the first element of which is a function. @i{This is
2563 how Emacs works.}
2564
2565 @cindex @samp{interactive function} defined
2566 @cindex @samp{command} defined
2567 When you type keys, you cause the Lisp interpreter to evaluate an
2568 expression and that is how you get your results. Even typing plain text
2569 involves evaluating an Emacs Lisp function, in this case, one that uses
2570 @code{self-insert-command}, which simply inserts the character you
2571 typed. The functions you evaluate by typing keystrokes are called
2572 @dfn{interactive} functions, or @dfn{commands}; how you make a function
2573 interactive will be illustrated in the chapter on how to write function
2574 definitions. @xref{Interactive, , Making a Function Interactive}.
2575
2576 In addition to typing keyboard commands, we have seen a second way to
2577 evaluate an expression: by positioning the cursor after a list and
2578 typing @kbd{C-x C-e}. This is what we will do in the rest of this
2579 section. There are other ways to evaluate an expression as well; these
2580 will be described as we come to them.
2581
2582 Besides being used for practicing evaluation, the functions shown in the
2583 next few sections are important in their own right. A study of these
2584 functions makes clear the distinction between buffers and files, how to
2585 switch to a buffer, and how to determine a location within it.
2586
2587 @node Buffer Names
2588 @section Buffer Names
2589 @findex buffer-name
2590 @findex buffer-file-name
2591
2592 The two functions, @code{buffer-name} and @code{buffer-file-name}, show
2593 the difference between a file and a buffer. When you evaluate the
2594 following expression, @code{(buffer-name)}, the name of the buffer
2595 appears in the echo area. When you evaluate @code{(buffer-file-name)},
2596 the name of the file to which the buffer refers appears in the echo
2597 area. Usually, the name returned by @code{(buffer-name)} is the same as
2598 the name of the file to which it refers, and the name returned by
2599 @code{(buffer-file-name)} is the full path-name of the file.
2600
2601 A file and a buffer are two different entities. A file is information
2602 recorded permanently in the computer (unless you delete it). A buffer,
2603 on the other hand, is information inside of Emacs that will vanish at
2604 the end of the editing session (or when you kill the buffer). Usually,
2605 a buffer contains information that you have copied from a file; we say
2606 the buffer is @dfn{visiting} that file. This copy is what you work on
2607 and modify. Changes to the buffer do not change the file, until you
2608 save the buffer. When you save the buffer, the buffer is copied to the file
2609 and is thus saved permanently.
2610
2611 @need 1250
2612 If you are reading this in Info inside of GNU Emacs, you can evaluate
2613 each of the following expressions by positioning the cursor after it and
2614 typing @kbd{C-x C-e}.
2615
2616 @example
2617 @group
2618 (buffer-name)
2619
2620 (buffer-file-name)
2621 @end group
2622 @end example
2623
2624 @noindent
2625 When I do this in Info, the value returned by evaluating
2626 @code{(buffer-name)} is @file{"*info*"}, and the value returned by
2627 evaluating @code{(buffer-file-name)} is @file{nil}.
2628
2629 On the other hand, while I am writing this document, the value
2630 returned by evaluating @code{(buffer-name)} is
2631 @file{"introduction.texinfo"}, and the value returned by evaluating
2632 @code{(buffer-file-name)} is
2633 @file{"/gnu/work/intro/introduction.texinfo"}.
2634
2635 @cindex @code{nil}, history of word
2636 The former is the name of the buffer and the latter is the name of the
2637 file. In Info, the buffer name is @file{"*info*"}. Info does not
2638 point to any file, so the result of evaluating
2639 @code{(buffer-file-name)} is @file{nil}. The symbol @code{nil} is
2640 from the Latin word for `nothing'; in this case, it means that the
2641 buffer is not associated with any file. (In Lisp, @code{nil} is also
2642 used to mean `false' and is a synonym for the empty list, @code{()}.)
2643
2644 When I am writing, the name of my buffer is
2645 @file{"introduction.texinfo"}. The name of the file to which it
2646 points is @file{"/gnu/work/intro/introduction.texinfo"}.
2647
2648 (In the expressions, the parentheses tell the Lisp interpreter to
2649 treat @w{@code{buffer-name}} and @w{@code{buffer-file-name}} as
2650 functions; without the parentheses, the interpreter would attempt to
2651 evaluate the symbols as variables. @xref{Variables}.)
2652
2653 In spite of the distinction between files and buffers, you will often
2654 find that people refer to a file when they mean a buffer and vice-verse.
2655 Indeed, most people say, ``I am editing a file,'' rather than saying,
2656 ``I am editing a buffer which I will soon save to a file.'' It is
2657 almost always clear from context what people mean. When dealing with
2658 computer programs, however, it is important to keep the distinction in mind,
2659 since the computer is not as smart as a person.
2660
2661 @cindex Buffer, history of word
2662 The word `buffer', by the way, comes from the meaning of the word as a
2663 cushion that deadens the force of a collision. In early computers, a
2664 buffer cushioned the interaction between files and the computer's
2665 central processing unit. The drums or tapes that held a file and the
2666 central processing unit were pieces of equipment that were very
2667 different from each other, working at their own speeds, in spurts. The
2668 buffer made it possible for them to work together effectively.
2669 Eventually, the buffer grew from being an intermediary, a temporary
2670 holding place, to being the place where work is done. This
2671 transformation is rather like that of a small seaport that grew into a
2672 great city: once it was merely the place where cargo was warehoused
2673 temporarily before being loaded onto ships; then it became a business
2674 and cultural center in its own right.
2675
2676 Not all buffers are associated with files. For example, a
2677 @file{*scratch*} buffer does not visit any file. Similarly, a
2678 @file{*Help*} buffer is not associated with any file.
2679
2680 In the old days, when you lacked a @file{~/.emacs} file and started an
2681 Emacs session by typing the command @code{emacs} alone, without naming
2682 any files, Emacs started with the @file{*scratch*} buffer visible.
2683 Nowadays, you will see a splash screen. You can follow one of the
2684 commands suggested on the splash screen, visit a file, or press the
2685 spacebar to reach the @file{*scratch*} buffer.
2686
2687 If you switch to the @file{*scratch*} buffer, type
2688 @code{(buffer-name)}, position the cursor after it, and then type
2689 @kbd{C-x C-e} to evaluate the expression. The name @code{"*scratch*"}
2690 will be returned and will appear in the echo area. @code{"*scratch*"}
2691 is the name of the buffer. When you type @code{(buffer-file-name)} in
2692 the @file{*scratch*} buffer and evaluate that, @code{nil} will appear
2693 in the echo area, just as it does when you evaluate
2694 @code{(buffer-file-name)} in Info.
2695
2696 Incidentally, if you are in the @file{*scratch*} buffer and want the
2697 value returned by an expression to appear in the @file{*scratch*}
2698 buffer itself rather than in the echo area, type @kbd{C-u C-x C-e}
2699 instead of @kbd{C-x C-e}. This causes the value returned to appear
2700 after the expression. The buffer will look like this:
2701
2702 @smallexample
2703 (buffer-name)"*scratch*"
2704 @end smallexample
2705
2706 @noindent
2707 You cannot do this in Info since Info is read-only and it will not allow
2708 you to change the contents of the buffer. But you can do this in any
2709 buffer you can edit; and when you write code or documentation (such as
2710 this book), this feature is very useful.
2711
2712 @node Getting Buffers
2713 @section Getting Buffers
2714 @findex current-buffer
2715 @findex other-buffer
2716 @cindex Getting a buffer
2717
2718 The @code{buffer-name} function returns the @emph{name} of the buffer;
2719 to get the buffer @emph{itself}, a different function is needed: the
2720 @code{current-buffer} function. If you use this function in code, what
2721 you get is the buffer itself.
2722
2723 A name and the object or entity to which the name refers are different
2724 from each other. You are not your name. You are a person to whom
2725 others refer by name. If you ask to speak to George and someone hands you
2726 a card with the letters @samp{G}, @samp{e}, @samp{o}, @samp{r},
2727 @samp{g}, and @samp{e} written on it, you might be amused, but you would
2728 not be satisfied. You do not want to speak to the name, but to the
2729 person to whom the name refers. A buffer is similar: the name of the
2730 scratch buffer is @file{*scratch*}, but the name is not the buffer. To
2731 get a buffer itself, you need to use a function such as
2732 @code{current-buffer}.
2733
2734 However, there is a slight complication: if you evaluate
2735 @code{current-buffer} in an expression on its own, as we will do here,
2736 what you see is a printed representation of the name of the buffer
2737 without the contents of the buffer. Emacs works this way for two
2738 reasons: the buffer may be thousands of lines long---too long to be
2739 conveniently displayed; and, another buffer may have the same contents
2740 but a different name, and it is important to distinguish between them.
2741
2742 @need 800
2743 Here is an expression containing the function:
2744
2745 @smallexample
2746 (current-buffer)
2747 @end smallexample
2748
2749 @noindent
2750 If you evaluate this expression in Info in Emacs in the usual way,
2751 @file{#<buffer *info*>} will appear in the echo area. The special
2752 format indicates that the buffer itself is being returned, rather than
2753 just its name.
2754
2755 Incidentally, while you can type a number or symbol into a program, you
2756 cannot do that with the printed representation of a buffer: the only way
2757 to get a buffer itself is with a function such as @code{current-buffer}.
2758
2759 A related function is @code{other-buffer}. This returns the most
2760 recently selected buffer other than the one you are in currently, not
2761 a printed representation of its name. If you have recently switched
2762 back and forth from the @file{*scratch*} buffer, @code{other-buffer}
2763 will return that buffer.
2764
2765 @need 800
2766 You can see this by evaluating the expression:
2767
2768 @smallexample
2769 (other-buffer)
2770 @end smallexample
2771
2772 @noindent
2773 You should see @file{#<buffer *scratch*>} appear in the echo area, or
2774 the name of whatever other buffer you switched back from most
2775 recently@footnote{Actually, by default, if the buffer from which you
2776 just switched is visible to you in another window, @code{other-buffer}
2777 will choose the most recent buffer that you cannot see; this is a
2778 subtlety that I often forget.}.
2779
2780 @node Switching Buffers
2781 @section Switching Buffers
2782 @findex switch-to-buffer
2783 @findex set-buffer
2784 @cindex Switching to a buffer
2785
2786 The @code{other-buffer} function actually provides a buffer when it is
2787 used as an argument to a function that requires one. We can see this
2788 by using @code{other-buffer} and @code{switch-to-buffer} to switch to a
2789 different buffer.
2790
2791 But first, a brief introduction to the @code{switch-to-buffer}
2792 function. When you switched back and forth from Info to the
2793 @file{*scratch*} buffer to evaluate @code{(buffer-name)}, you most
2794 likely typed @kbd{C-x b} and then typed @file{*scratch*}@footnote{Or
2795 rather, to save typing, you probably only typed @kbd{RET} if the
2796 default buffer was @file{*scratch*}, or if it was different, then you
2797 typed just part of the name, such as @code{*sc}, pressed your
2798 @kbd{TAB} key to cause it to expand to the full name, and then typed
2799 @kbd{RET}.} when prompted in the minibuffer for the name of
2800 the buffer to which you wanted to switch. The keystrokes, @kbd{C-x
2801 b}, cause the Lisp interpreter to evaluate the interactive function
2802 @code{switch-to-buffer}. As we said before, this is how Emacs works:
2803 different keystrokes call or run different functions. For example,
2804 @kbd{C-f} calls @code{forward-char}, @kbd{M-e} calls
2805 @code{forward-sentence}, and so on.
2806
2807 By writing @code{switch-to-buffer} in an expression, and giving it a
2808 buffer to switch to, we can switch buffers just the way @kbd{C-x b}
2809 does:
2810
2811 @smallexample
2812 (switch-to-buffer (other-buffer))
2813 @end smallexample
2814
2815 @noindent
2816 The symbol @code{switch-to-buffer} is the first element of the list,
2817 so the Lisp interpreter will treat it as a function and carry out the
2818 instructions that are attached to it. But before doing that, the
2819 interpreter will note that @code{other-buffer} is inside parentheses
2820 and work on that symbol first. @code{other-buffer} is the first (and
2821 in this case, the only) element of this list, so the Lisp interpreter
2822 calls or runs the function. It returns another buffer. Next, the
2823 interpreter runs @code{switch-to-buffer}, passing to it, as an
2824 argument, the other buffer, which is what Emacs will switch to. If
2825 you are reading this in Info, try this now. Evaluate the expression.
2826 (To get back, type @kbd{C-x b @key{RET}}.)@footnote{Remember, this
2827 expression will move you to your most recent other buffer that you
2828 cannot see. If you really want to go to your most recently selected
2829 buffer, even if you can still see it, you need to evaluate the
2830 following more complex expression:
2831
2832 @smallexample
2833 (switch-to-buffer (other-buffer (current-buffer) t))
2834 @end smallexample
2835
2836 @c noindent
2837 In this case, the first argument to @code{other-buffer} tells it which
2838 buffer to skip---the current one---and the second argument tells
2839 @code{other-buffer} it is OK to switch to a visible buffer.
2840 In regular use, @code{switch-to-buffer} takes you to an invisible
2841 window since you would most likely use @kbd{C-x o} (@code{other-window})
2842 to go to another visible buffer.}
2843
2844 In the programming examples in later sections of this document, you will
2845 see the function @code{set-buffer} more often than
2846 @code{switch-to-buffer}. This is because of a difference between
2847 computer programs and humans: humans have eyes and expect to see the
2848 buffer on which they are working on their computer terminals. This is
2849 so obvious, it almost goes without saying. However, programs do not
2850 have eyes. When a computer program works on a buffer, that buffer does
2851 not need to be visible on the screen.
2852
2853 @code{switch-to-buffer} is designed for humans and does two different
2854 things: it switches the buffer to which Emacs's attention is directed; and
2855 it switches the buffer displayed in the window to the new buffer.
2856 @code{set-buffer}, on the other hand, does only one thing: it switches
2857 the attention of the computer program to a different buffer. The buffer
2858 on the screen remains unchanged (of course, normally nothing happens
2859 there until the command finishes running).
2860
2861 @cindex @samp{call} defined
2862 Also, we have just introduced another jargon term, the word @dfn{call}.
2863 When you evaluate a list in which the first symbol is a function, you
2864 are calling that function. The use of the term comes from the notion of
2865 the function as an entity that can do something for you if you `call'
2866 it---just as a plumber is an entity who can fix a leak if you call him
2867 or her.
2868
2869 @node Buffer Size & Locations
2870 @section Buffer Size and the Location of Point
2871 @cindex Size of buffer
2872 @cindex Buffer size
2873 @cindex Point location
2874 @cindex Location of point
2875
2876 Finally, let's look at several rather simple functions,
2877 @code{buffer-size}, @code{point}, @code{point-min}, and
2878 @code{point-max}. These give information about the size of a buffer and
2879 the location of point within it.
2880
2881 The function @code{buffer-size} tells you the size of the current
2882 buffer; that is, the function returns a count of the number of
2883 characters in the buffer.
2884
2885 @smallexample
2886 (buffer-size)
2887 @end smallexample
2888
2889 @noindent
2890 You can evaluate this in the usual way, by positioning the
2891 cursor after the expression and typing @kbd{C-x C-e}.
2892
2893 @cindex @samp{point} defined
2894 In Emacs, the current position of the cursor is called @dfn{point}.
2895 The expression @code{(point)} returns a number that tells you where the
2896 cursor is located as a count of the number of characters from the
2897 beginning of the buffer up to point.
2898
2899 @need 1250
2900 You can see the character count for point in this buffer by evaluating
2901 the following expression in the usual way:
2902
2903 @smallexample
2904 (point)
2905 @end smallexample
2906
2907 @noindent
2908 As I write this, the value of @code{point} is 65724. The @code{point}
2909 function is frequently used in some of the examples later in this
2910 book.
2911
2912 @need 1250
2913 The value of point depends, of course, on its location within the
2914 buffer. If you evaluate point in this spot, the number will be larger:
2915
2916 @smallexample
2917 (point)
2918 @end smallexample
2919
2920 @noindent
2921 For me, the value of point in this location is 66043, which means that
2922 there are 319 characters (including spaces) between the two
2923 expressions. (Doubtless, you will see different numbers, since I will
2924 have edited this since I first evaluated point.)
2925
2926 @cindex @samp{narrowing} defined
2927 The function @code{point-min} is somewhat similar to @code{point}, but
2928 it returns the value of the minimum permissible value of point in the
2929 current buffer. This is the number 1 unless @dfn{narrowing} is in
2930 effect. (Narrowing is a mechanism whereby you can restrict yourself,
2931 or a program, to operations on just a part of a buffer.
2932 @xref{Narrowing & Widening, , Narrowing and Widening}.) Likewise, the
2933 function @code{point-max} returns the value of the maximum permissible
2934 value of point in the current buffer.
2935
2936 @node Evaluation Exercise
2937 @section Exercise
2938
2939 Find a file with which you are working and move towards its middle.
2940 Find its buffer name, file name, length, and your position in the file.
2941
2942 @node Writing Defuns
2943 @chapter How To Write Function Definitions
2944 @cindex Definition writing
2945 @cindex Function definition writing
2946 @cindex Writing a function definition
2947
2948 When the Lisp interpreter evaluates a list, it looks to see whether the
2949 first symbol on the list has a function definition attached to it; or,
2950 put another way, whether the symbol points to a function definition. If
2951 it does, the computer carries out the instructions in the definition. A
2952 symbol that has a function definition is called, simply, a function
2953 (although, properly speaking, the definition is the function and the
2954 symbol refers to it.)
2955
2956 @menu
2957 * Primitive Functions::
2958 * defun:: The @code{defun} macro.
2959 * Install:: Install a function definition.
2960 * Interactive:: Making a function interactive.
2961 * Interactive Options:: Different options for @code{interactive}.
2962 * Permanent Installation:: Installing code permanently.
2963 * let:: Creating and initializing local variables.
2964 * if:: What if?
2965 * else:: If--then--else expressions.
2966 * Truth & Falsehood:: What Lisp considers false and true.
2967 * save-excursion:: Keeping track of point, mark, and buffer.
2968 * Review::
2969 * defun Exercises::
2970 @end menu
2971
2972 @ifnottex
2973 @node Primitive Functions
2974 @unnumberedsec An Aside about Primitive Functions
2975 @end ifnottex
2976 @cindex Primitive functions
2977 @cindex Functions, primitive
2978
2979 @cindex C language primitives
2980 @cindex Primitives written in C
2981 All functions are defined in terms of other functions, except for a few
2982 @dfn{primitive} functions that are written in the C programming
2983 language. When you write functions' definitions, you will write them in
2984 Emacs Lisp and use other functions as your building blocks. Some of the
2985 functions you will use will themselves be written in Emacs Lisp (perhaps
2986 by you) and some will be primitives written in C@. The primitive
2987 functions are used exactly like those written in Emacs Lisp and behave
2988 like them. They are written in C so we can easily run GNU Emacs on any
2989 computer that has sufficient power and can run C.
2990
2991 Let me re-emphasize this: when you write code in Emacs Lisp, you do not
2992 distinguish between the use of functions written in C and the use of
2993 functions written in Emacs Lisp. The difference is irrelevant. I
2994 mention the distinction only because it is interesting to know. Indeed,
2995 unless you investigate, you won't know whether an already-written
2996 function is written in Emacs Lisp or C.
2997
2998 @node defun
2999 @section The @code{defun} Macro
3000 @findex defun
3001
3002 @cindex @samp{function definition} defined
3003 In Lisp, a symbol such as @code{mark-whole-buffer} has code attached to
3004 it that tells the computer what to do when the function is called.
3005 This code is called the @dfn{function definition} and is created by
3006 evaluating a Lisp expression that starts with the symbol @code{defun}
3007 (which is an abbreviation for @emph{define function}).
3008
3009 In subsequent sections, we will look at function definitions from the
3010 Emacs source code, such as @code{mark-whole-buffer}. In this section,
3011 we will describe a simple function definition so you can see how it
3012 looks. This function definition uses arithmetic because it makes for a
3013 simple example. Some people dislike examples using arithmetic; however,
3014 if you are such a person, do not despair. Hardly any of the code we
3015 will study in the remainder of this introduction involves arithmetic or
3016 mathematics. The examples mostly involve text in one way or another.
3017
3018 A function definition has up to five parts following the word
3019 @code{defun}:
3020
3021 @enumerate
3022 @item
3023 The name of the symbol to which the function definition should be
3024 attached.
3025
3026 @item
3027 A list of the arguments that will be passed to the function. If no
3028 arguments will be passed to the function, this is an empty list,
3029 @code{()}.
3030
3031 @item
3032 Documentation describing the function. (Technically optional, but
3033 strongly recommended.)
3034
3035 @item
3036 Optionally, an expression to make the function interactive so you can
3037 use it by typing @kbd{M-x} and then the name of the function; or by
3038 typing an appropriate key or keychord.
3039
3040 @cindex @samp{body} defined
3041 @item
3042 The code that instructs the computer what to do: the @dfn{body} of the
3043 function definition.
3044 @end enumerate
3045
3046 It is helpful to think of the five parts of a function definition as
3047 being organized in a template, with slots for each part:
3048
3049 @smallexample
3050 @group
3051 (defun @var{function-name} (@var{arguments}@dots{})
3052 "@var{optional-documentation}@dots{}"
3053 (interactive @var{argument-passing-info}) ; @r{optional}
3054 @var{body}@dots{})
3055 @end group
3056 @end smallexample
3057
3058 As an example, here is the code for a function that multiplies its
3059 argument by 7. (This example is not interactive. @xref{Interactive,
3060 , Making a Function Interactive}, for that information.)
3061
3062 @smallexample
3063 @group
3064 (defun multiply-by-seven (number)
3065 "Multiply NUMBER by seven."
3066 (* 7 number))
3067 @end group
3068 @end smallexample
3069
3070 This definition begins with a parenthesis and the symbol @code{defun},
3071 followed by the name of the function.
3072
3073 @cindex @samp{argument list} defined
3074 The name of the function is followed by a list that contains the
3075 arguments that will be passed to the function. This list is called
3076 the @dfn{argument list}. In this example, the list has only one
3077 element, the symbol, @code{number}. When the function is used, the
3078 symbol will be bound to the value that is used as the argument to the
3079 function.
3080
3081 Instead of choosing the word @code{number} for the name of the argument,
3082 I could have picked any other name. For example, I could have chosen
3083 the word @code{multiplicand}. I picked the word `number' because it
3084 tells what kind of value is intended for this slot; but I could just as
3085 well have chosen the word `multiplicand' to indicate the role that the
3086 value placed in this slot will play in the workings of the function. I
3087 could have called it @code{foogle}, but that would have been a bad
3088 choice because it would not tell humans what it means. The choice of
3089 name is up to the programmer and should be chosen to make the meaning of
3090 the function clear.
3091
3092 Indeed, you can choose any name you wish for a symbol in an argument
3093 list, even the name of a symbol used in some other function: the name
3094 you use in an argument list is private to that particular definition.
3095 In that definition, the name refers to a different entity than any use
3096 of the same name outside the function definition. Suppose you have a
3097 nick-name `Shorty' in your family; when your family members refer to
3098 `Shorty', they mean you. But outside your family, in a movie, for
3099 example, the name `Shorty' refers to someone else. Because a name in an
3100 argument list is private to the function definition, you can change the
3101 value of such a symbol inside the body of a function without changing
3102 its value outside the function. The effect is similar to that produced
3103 by a @code{let} expression. (@xref{let, , @code{let}}.)
3104
3105 @ignore
3106 Note also that we discuss the word `number' in two different ways: as a
3107 symbol that appears in the code, and as the name of something that will
3108 be replaced by a something else during the evaluation of the function.
3109 In the first case, @code{number} is a symbol, not a number; it happens
3110 that within the function, it is a variable who value is the number in
3111 question, but our primary interest in it is as a symbol. On the other
3112 hand, when we are talking about the function, our interest is that we
3113 will substitute a number for the word @var{number}. To keep this
3114 distinction clear, we use different typography for the two
3115 circumstances. When we talk about this function, or about how it works,
3116 we refer to this number by writing @var{number}. In the function
3117 itself, we refer to it by writing @code{number}.
3118 @end ignore
3119
3120 The argument list is followed by the documentation string that
3121 describes the function. This is what you see when you type
3122 @w{@kbd{C-h f}} and the name of a function. Incidentally, when you
3123 write a documentation string like this, you should make the first line
3124 a complete sentence since some commands, such as @code{apropos}, print
3125 only the first line of a multi-line documentation string. Also, you
3126 should not indent the second line of a documentation string, if you
3127 have one, because that looks odd when you use @kbd{C-h f}
3128 (@code{describe-function}). The documentation string is optional, but
3129 it is so useful, it should be included in almost every function you
3130 write.
3131
3132 @findex * @r{(multiplication)}
3133 The third line of the example consists of the body of the function
3134 definition. (Most functions' definitions, of course, are longer than
3135 this.) In this function, the body is the list, @code{(* 7 number)}, which
3136 says to multiply the value of @var{number} by 7. (In Emacs Lisp,
3137 @code{*} is the function for multiplication, just as @code{+} is the
3138 function for addition.)
3139
3140 When you use the @code{multiply-by-seven} function, the argument
3141 @code{number} evaluates to the actual number you want used. Here is an
3142 example that shows how @code{multiply-by-seven} is used; but don't try
3143 to evaluate this yet!
3144
3145 @smallexample
3146 (multiply-by-seven 3)
3147 @end smallexample
3148
3149 @noindent
3150 The symbol @code{number}, specified in the function definition in the
3151 next section, is given or ``bound to'' the value 3 in the actual use of
3152 the function. Note that although @code{number} was inside parentheses
3153 in the function definition, the argument passed to the
3154 @code{multiply-by-seven} function is not in parentheses. The
3155 parentheses are written in the function definition so the computer can
3156 figure out where the argument list ends and the rest of the function
3157 definition begins.
3158
3159 If you evaluate this example, you are likely to get an error message.
3160 (Go ahead, try it!) This is because we have written the function
3161 definition, but not yet told the computer about the definition---we have
3162 not yet installed (or `loaded') the function definition in Emacs.
3163 Installing a function is the process that tells the Lisp interpreter the
3164 definition of the function. Installation is described in the next
3165 section.
3166
3167 @node Install
3168 @section Install a Function Definition
3169 @cindex Install a Function Definition
3170 @cindex Definition installation
3171 @cindex Function definition installation
3172
3173 If you are reading this inside of Info in Emacs, you can try out the
3174 @code{multiply-by-seven} function by first evaluating the function
3175 definition and then evaluating @code{(multiply-by-seven 3)}. A copy of
3176 the function definition follows. Place the cursor after the last
3177 parenthesis of the function definition and type @kbd{C-x C-e}. When you
3178 do this, @code{multiply-by-seven} will appear in the echo area. (What
3179 this means is that when a function definition is evaluated, the value it
3180 returns is the name of the defined function.) At the same time, this
3181 action installs the function definition.
3182
3183 @smallexample
3184 @group
3185 (defun multiply-by-seven (number)
3186 "Multiply NUMBER by seven."
3187 (* 7 number))
3188 @end group
3189 @end smallexample
3190
3191 @noindent
3192 By evaluating this @code{defun}, you have just installed
3193 @code{multiply-by-seven} in Emacs. The function is now just as much a
3194 part of Emacs as @code{forward-word} or any other editing function you
3195 use. (@code{multiply-by-seven} will stay installed until you quit
3196 Emacs. To reload code automatically whenever you start Emacs, see
3197 @ref{Permanent Installation, , Installing Code Permanently}.)
3198
3199 @menu
3200 * Effect of installation::
3201 * Change a defun:: How to change a function definition.
3202 @end menu
3203
3204 @ifnottex
3205 @node Effect of installation
3206 @unnumberedsubsec The effect of installation
3207 @end ifnottex
3208
3209 You can see the effect of installing @code{multiply-by-seven} by
3210 evaluating the following sample. Place the cursor after the following
3211 expression and type @kbd{C-x C-e}. The number 21 will appear in the
3212 echo area.
3213
3214 @smallexample
3215 (multiply-by-seven 3)
3216 @end smallexample
3217
3218 If you wish, you can read the documentation for the function by typing
3219 @kbd{C-h f} (@code{describe-function}) and then the name of the
3220 function, @code{multiply-by-seven}. When you do this, a
3221 @file{*Help*} window will appear on your screen that says:
3222
3223 @smallexample
3224 @group
3225 multiply-by-seven is a Lisp function.
3226 (multiply-by-seven NUMBER)
3227
3228 Multiply NUMBER by seven.
3229 @end group
3230 @end smallexample
3231
3232 @noindent
3233 (To return to a single window on your screen, type @kbd{C-x 1}.)
3234
3235 @node Change a defun
3236 @subsection Change a Function Definition
3237 @cindex Changing a function definition
3238 @cindex Function definition, how to change
3239 @cindex Definition, how to change
3240
3241 If you want to change the code in @code{multiply-by-seven}, just rewrite
3242 it. To install the new version in place of the old one, evaluate the
3243 function definition again. This is how you modify code in Emacs. It is
3244 very simple.
3245
3246 As an example, you can change the @code{multiply-by-seven} function to
3247 add the number to itself seven times instead of multiplying the number
3248 by seven. It produces the same answer, but by a different path. At
3249 the same time, we will add a comment to the code; a comment is text
3250 that the Lisp interpreter ignores, but that a human reader may find
3251 useful or enlightening. The comment is that this is the ``second
3252 version''.
3253
3254 @smallexample
3255 @group
3256 (defun multiply-by-seven (number) ; @r{Second version.}
3257 "Multiply NUMBER by seven."
3258 (+ number number number number number number number))
3259 @end group
3260 @end smallexample
3261
3262 @cindex Comments in Lisp code
3263 The comment follows a semicolon, @samp{;}. In Lisp, everything on a
3264 line that follows a semicolon is a comment. The end of the line is the
3265 end of the comment. To stretch a comment over two or more lines, begin
3266 each line with a semicolon.
3267
3268 @xref{Beginning init File, , Beginning a @file{.emacs}
3269 File}, and @ref{Comments, , Comments, elisp, The GNU Emacs Lisp
3270 Reference Manual}, for more about comments.
3271
3272 You can install this version of the @code{multiply-by-seven} function by
3273 evaluating it in the same way you evaluated the first function: place
3274 the cursor after the last parenthesis and type @kbd{C-x C-e}.
3275
3276 In summary, this is how you write code in Emacs Lisp: you write a
3277 function; install it; test it; and then make fixes or enhancements and
3278 install it again.
3279
3280 @node Interactive
3281 @section Make a Function Interactive
3282 @cindex Interactive functions
3283 @findex interactive
3284
3285 You make a function interactive by placing a list that begins with
3286 the special form @code{interactive} immediately after the
3287 documentation. A user can invoke an interactive function by typing
3288 @kbd{M-x} and then the name of the function; or by typing the keys to
3289 which it is bound, for example, by typing @kbd{C-n} for
3290 @code{next-line} or @kbd{C-x h} for @code{mark-whole-buffer}.
3291
3292 Interestingly, when you call an interactive function interactively,
3293 the value returned is not automatically displayed in the echo area.
3294 This is because you often call an interactive function for its side
3295 effects, such as moving forward by a word or line, and not for the
3296 value returned. If the returned value were displayed in the echo area
3297 each time you typed a key, it would be very distracting.
3298
3299 @menu
3300 * Interactive multiply-by-seven:: An overview.
3301 * multiply-by-seven in detail:: The interactive version.
3302 @end menu
3303
3304 @ifnottex
3305 @node Interactive multiply-by-seven
3306 @unnumberedsubsec An Interactive @code{multiply-by-seven}, An Overview
3307 @end ifnottex
3308
3309 Both the use of the special form @code{interactive} and one way to
3310 display a value in the echo area can be illustrated by creating an
3311 interactive version of @code{multiply-by-seven}.
3312
3313 @need 1250
3314 Here is the code:
3315
3316 @smallexample
3317 @group
3318 (defun multiply-by-seven (number) ; @r{Interactive version.}
3319 "Multiply NUMBER by seven."
3320 (interactive "p")
3321 (message "The result is %d" (* 7 number)))
3322 @end group
3323 @end smallexample
3324
3325 @noindent
3326 You can install this code by placing your cursor after it and typing
3327 @kbd{C-x C-e}. The name of the function will appear in your echo area.
3328 Then, you can use this code by typing @kbd{C-u} and a number and then
3329 typing @kbd{M-x multiply-by-seven} and pressing @key{RET}. The phrase
3330 @samp{The result is @dots{}} followed by the product will appear in the
3331 echo area.
3332
3333 Speaking more generally, you invoke a function like this in either of two
3334 ways:
3335
3336 @enumerate
3337 @item
3338 By typing a prefix argument that contains the number to be passed, and
3339 then typing @kbd{M-x} and the name of the function, as with
3340 @kbd{C-u 3 M-x forward-sentence}; or,
3341
3342 @item
3343 By typing whatever key or keychord the function is bound to, as with
3344 @kbd{C-u 3 M-e}.
3345 @end enumerate
3346
3347 @noindent
3348 Both the examples just mentioned work identically to move point forward
3349 three sentences. (Since @code{multiply-by-seven} is not bound to a key,
3350 it could not be used as an example of key binding.)
3351
3352 (@xref{Keybindings, , Some Keybindings}, to learn how to bind a command
3353 to a key.)
3354
3355 A prefix argument is passed to an interactive function by typing the
3356 @key{META} key followed by a number, for example, @kbd{M-3 M-e}, or by
3357 typing @kbd{C-u} and then a number, for example, @kbd{C-u 3 M-e} (if you
3358 type @kbd{C-u} without a number, it defaults to 4).
3359
3360 @node multiply-by-seven in detail
3361 @subsection An Interactive @code{multiply-by-seven}
3362
3363 Let's look at the use of the special form @code{interactive} and then at
3364 the function @code{message} in the interactive version of
3365 @code{multiply-by-seven}. You will recall that the function definition
3366 looks like this:
3367
3368 @smallexample
3369 @group
3370 (defun multiply-by-seven (number) ; @r{Interactive version.}
3371 "Multiply NUMBER by seven."
3372 (interactive "p")
3373 (message "The result is %d" (* 7 number)))
3374 @end group
3375 @end smallexample
3376
3377 In this function, the expression, @code{(interactive "p")}, is a list of
3378 two elements. The @code{"p"} tells Emacs to pass the prefix argument to
3379 the function and use its value for the argument of the function.
3380
3381 @need 1000
3382 The argument will be a number. This means that the symbol
3383 @code{number} will be bound to a number in the line:
3384
3385 @smallexample
3386 (message "The result is %d" (* 7 number))
3387 @end smallexample
3388
3389 @need 1250
3390 @noindent
3391 For example, if your prefix argument is 5, the Lisp interpreter will
3392 evaluate the line as if it were:
3393
3394 @smallexample
3395 (message "The result is %d" (* 7 5))
3396 @end smallexample
3397
3398 @noindent
3399 (If you are reading this in GNU Emacs, you can evaluate this expression
3400 yourself.) First, the interpreter will evaluate the inner list, which
3401 is @code{(* 7 5)}. This returns a value of 35. Next, it
3402 will evaluate the outer list, passing the values of the second and
3403 subsequent elements of the list to the function @code{message}.
3404
3405 As we have seen, @code{message} is an Emacs Lisp function especially
3406 designed for sending a one line message to a user. (@xref{message, ,
3407 The @code{message} function}.) In summary, the @code{message}
3408 function prints its first argument in the echo area as is, except for
3409 occurrences of @samp{%d} or @samp{%s} (and various other %-sequences
3410 which we have not mentioned). When it sees a control sequence, the
3411 function looks to the second or subsequent arguments and prints the
3412 value of the argument in the location in the string where the control
3413 sequence is located.
3414
3415 In the interactive @code{multiply-by-seven} function, the control string
3416 is @samp{%d}, which requires a number, and the value returned by
3417 evaluating @code{(* 7 5)} is the number 35. Consequently, the number 35
3418 is printed in place of the @samp{%d} and the message is @samp{The result
3419 is 35}.
3420
3421 (Note that when you call the function @code{multiply-by-seven}, the
3422 message is printed without quotes, but when you call @code{message}, the
3423 text is printed in double quotes. This is because the value returned by
3424 @code{message} is what appears in the echo area when you evaluate an
3425 expression whose first element is @code{message}; but when embedded in a
3426 function, @code{message} prints the text as a side effect without
3427 quotes.)
3428
3429 @node Interactive Options
3430 @section Different Options for @code{interactive}
3431 @cindex Options for @code{interactive}
3432 @cindex Interactive options
3433
3434 In the example, @code{multiply-by-seven} used @code{"p"} as the
3435 argument to @code{interactive}. This argument told Emacs to interpret
3436 your typing either @kbd{C-u} followed by a number or @key{META}
3437 followed by a number as a command to pass that number to the function
3438 as its argument. Emacs has more than twenty characters predefined for
3439 use with @code{interactive}. In almost every case, one of these
3440 options will enable you to pass the right information interactively to
3441 a function. (@xref{Interactive Codes, , Code Characters for
3442 @code{interactive}, elisp, The GNU Emacs Lisp Reference Manual}.)
3443
3444 @need 1250
3445 Consider the function @code{zap-to-char}. Its interactive expression
3446 is
3447
3448 @smallexample
3449 (interactive "p\ncZap to char: ")
3450 @end smallexample
3451
3452 The first part of the argument to @code{interactive} is @samp{p}, with
3453 which you are already familiar. This argument tells Emacs to
3454 interpret a `prefix', as a number to be passed to the function. You
3455 can specify a prefix either by typing @kbd{C-u} followed by a number
3456 or by typing @key{META} followed by a number. The prefix is the
3457 number of specified characters. Thus, if your prefix is three and the
3458 specified character is @samp{x}, then you will delete all the text up
3459 to and including the third next @samp{x}. If you do not set a prefix,
3460 then you delete all the text up to and including the specified
3461 character, but no more.
3462
3463 The @samp{c} tells the function the name of the character to which to delete.
3464
3465 More formally, a function with two or more arguments can have
3466 information passed to each argument by adding parts to the string that
3467 follows @code{interactive}. When you do this, the information is
3468 passed to each argument in the same order it is specified in the
3469 @code{interactive} list. In the string, each part is separated from
3470 the next part by a @samp{\n}, which is a newline. For example, you
3471 can follow @samp{p} with a @samp{\n} and an @samp{cZap to char:@: }.
3472 This causes Emacs to pass the value of the prefix argument (if there
3473 is one) and the character.
3474
3475 In this case, the function definition looks like the following, where
3476 @code{arg} and @code{char} are the symbols to which @code{interactive}
3477 binds the prefix argument and the specified character:
3478
3479 @smallexample
3480 @group
3481 (defun @var{name-of-function} (arg char)
3482 "@var{documentation}@dots{}"
3483 (interactive "p\ncZap to char: ")
3484 @var{body-of-function}@dots{})
3485 @end group
3486 @end smallexample
3487
3488 @noindent
3489 (The space after the colon in the prompt makes it look better when you
3490 are prompted. @xref{copy-to-buffer, , The Definition of
3491 @code{copy-to-buffer}}, for an example.)
3492
3493 When a function does not take arguments, @code{interactive} does not
3494 require any. Such a function contains the simple expression
3495 @code{(interactive)}. The @code{mark-whole-buffer} function is like
3496 this.
3497
3498 Alternatively, if the special letter-codes are not right for your
3499 application, you can pass your own arguments to @code{interactive} as
3500 a list.
3501
3502 @xref{append-to-buffer, , The Definition of @code{append-to-buffer}},
3503 for an example. @xref{Using Interactive, , Using @code{Interactive},
3504 elisp, The GNU Emacs Lisp Reference Manual}, for a more complete
3505 explanation about this technique.
3506
3507 @node Permanent Installation
3508 @section Install Code Permanently
3509 @cindex Install code permanently
3510 @cindex Permanent code installation
3511 @cindex Code installation
3512
3513 When you install a function definition by evaluating it, it will stay
3514 installed until you quit Emacs. The next time you start a new session
3515 of Emacs, the function will not be installed unless you evaluate the
3516 function definition again.
3517
3518 At some point, you may want to have code installed automatically
3519 whenever you start a new session of Emacs. There are several ways of
3520 doing this:
3521
3522 @itemize @bullet
3523 @item
3524 If you have code that is just for yourself, you can put the code for the
3525 function definition in your @file{.emacs} initialization file. When you
3526 start Emacs, your @file{.emacs} file is automatically evaluated and all
3527 the function definitions within it are installed.
3528 @xref{Emacs Initialization, , Your @file{.emacs} File}.
3529
3530 @item
3531 Alternatively, you can put the function definitions that you want
3532 installed in one or more files of their own and use the @code{load}
3533 function to cause Emacs to evaluate and thereby install each of the
3534 functions in the files.
3535 @xref{Loading Files, , Loading Files}.
3536
3537 @item
3538 Thirdly, if you have code that your whole site will use, it is usual
3539 to put it in a file called @file{site-init.el} that is loaded when
3540 Emacs is built. This makes the code available to everyone who uses
3541 your machine. (See the @file{INSTALL} file that is part of the Emacs
3542 distribution.)
3543 @end itemize
3544
3545 Finally, if you have code that everyone who uses Emacs may want, you
3546 can post it on a computer network or send a copy to the Free Software
3547 Foundation. (When you do this, please license the code and its
3548 documentation under a license that permits other people to run, copy,
3549 study, modify, and redistribute the code and which protects you from
3550 having your work taken from you.) If you send a copy of your code to
3551 the Free Software Foundation, and properly protect yourself and
3552 others, it may be included in the next release of Emacs. In large
3553 part, this is how Emacs has grown over the past years, by donations.
3554
3555 @node let
3556 @section @code{let}
3557 @findex let
3558
3559 The @code{let} expression is a special form in Lisp that you will need
3560 to use in most function definitions.
3561
3562 @code{let} is used to attach or bind a symbol to a value in such a way
3563 that the Lisp interpreter will not confuse the variable with a
3564 variable of the same name that is not part of the function.
3565
3566 To understand why the @code{let} special form is necessary, consider
3567 the situation in which you own a home that you generally refer to as
3568 `the house', as in the sentence, ``The house needs painting.'' If you
3569 are visiting a friend and your host refers to `the house', he is
3570 likely to be referring to @emph{his} house, not yours, that is, to a
3571 different house.
3572
3573 If your friend is referring to his house and you think he is referring
3574 to your house, you may be in for some confusion. The same thing could
3575 happen in Lisp if a variable that is used inside of one function has
3576 the same name as a variable that is used inside of another function,
3577 and the two are not intended to refer to the same value. The
3578 @code{let} special form prevents this kind of confusion.
3579
3580 @menu
3581 * Prevent confusion::
3582 * Parts of let Expression::
3583 * Sample let Expression::
3584 * Uninitialized let Variables::
3585 @end menu
3586
3587 @ifnottex
3588 @node Prevent confusion
3589 @unnumberedsubsec @code{let} Prevents Confusion
3590 @end ifnottex
3591
3592 @cindex @samp{local variable} defined
3593 @cindex @samp{variable, local}, defined
3594 The @code{let} special form prevents confusion. @code{let} creates a
3595 name for a @dfn{local variable} that overshadows any use of the same
3596 name outside the @code{let} expression. This is like understanding
3597 that whenever your host refers to `the house', he means his house, not
3598 yours. (Symbols used in argument lists work the same way.
3599 @xref{defun, , The @code{defun} Macro}.)
3600
3601 Local variables created by a @code{let} expression retain their value
3602 @emph{only} within the @code{let} expression itself (and within
3603 expressions called within the @code{let} expression); the local
3604 variables have no effect outside the @code{let} expression.
3605
3606 Another way to think about @code{let} is that it is like a @code{setq}
3607 that is temporary and local. The values set by @code{let} are
3608 automatically undone when the @code{let} is finished. The setting
3609 only affects expressions that are inside the bounds of the @code{let}
3610 expression. In computer science jargon, we would say ``the binding of
3611 a symbol is visible only in functions called in the @code{let} form;
3612 in Emacs Lisp, scoping is dynamic, not lexical.''
3613
3614 @code{let} can create more than one variable at once. Also,
3615 @code{let} gives each variable it creates an initial value, either a
3616 value specified by you, or @code{nil}. (In the jargon, this is called
3617 `binding the variable to the value'.) After @code{let} has created
3618 and bound the variables, it executes the code in the body of the
3619 @code{let}, and returns the value of the last expression in the body,
3620 as the value of the whole @code{let} expression. (`Execute' is a jargon
3621 term that means to evaluate a list; it comes from the use of the word
3622 meaning `to give practical effect to' (@cite{Oxford English
3623 Dictionary}). Since you evaluate an expression to perform an action,
3624 `execute' has evolved as a synonym to `evaluate'.)
3625
3626 @node Parts of let Expression
3627 @subsection The Parts of a @code{let} Expression
3628 @cindex @code{let} expression, parts of
3629 @cindex Parts of @code{let} expression
3630
3631 @cindex @samp{varlist} defined
3632 A @code{let} expression is a list of three parts. The first part is
3633 the symbol @code{let}. The second part is a list, called a
3634 @dfn{varlist}, each element of which is either a symbol by itself or a
3635 two-element list, the first element of which is a symbol. The third
3636 part of the @code{let} expression is the body of the @code{let}. The
3637 body usually consists of one or more lists.
3638
3639 @need 800
3640 A template for a @code{let} expression looks like this:
3641
3642 @smallexample
3643 (let @var{varlist} @var{body}@dots{})
3644 @end smallexample
3645
3646 @noindent
3647 The symbols in the varlist are the variables that are given initial
3648 values by the @code{let} special form. Symbols by themselves are given
3649 the initial value of @code{nil}; and each symbol that is the first
3650 element of a two-element list is bound to the value that is returned
3651 when the Lisp interpreter evaluates the second element.
3652
3653 Thus, a varlist might look like this: @code{(thread (needles 3))}. In
3654 this case, in a @code{let} expression, Emacs binds the symbol
3655 @code{thread} to an initial value of @code{nil}, and binds the symbol
3656 @code{needles} to an initial value of 3.
3657
3658 When you write a @code{let} expression, what you do is put the
3659 appropriate expressions in the slots of the @code{let} expression
3660 template.
3661
3662 If the varlist is composed of two-element lists, as is often the case,
3663 the template for the @code{let} expression looks like this:
3664
3665 @smallexample
3666 @group
3667 (let ((@var{variable} @var{value})
3668 (@var{variable} @var{value})
3669 @dots{})
3670 @var{body}@dots{})
3671 @end group
3672 @end smallexample
3673
3674 @node Sample let Expression
3675 @subsection Sample @code{let} Expression
3676 @cindex Sample @code{let} expression
3677 @cindex @code{let} expression sample
3678
3679 The following expression creates and gives initial values
3680 to the two variables @code{zebra} and @code{tiger}. The body of the
3681 @code{let} expression is a list which calls the @code{message} function.
3682
3683 @smallexample
3684 @group
3685 (let ((zebra 'stripes)
3686 (tiger 'fierce))
3687 (message "One kind of animal has %s and another is %s."
3688 zebra tiger))
3689 @end group
3690 @end smallexample
3691
3692 Here, the varlist is @code{((zebra 'stripes) (tiger 'fierce))}.
3693
3694 The two variables are @code{zebra} and @code{tiger}. Each variable is
3695 the first element of a two-element list and each value is the second
3696 element of its two-element list. In the varlist, Emacs binds the
3697 variable @code{zebra} to the value @code{stripes}@footnote{According
3698 to Jared Diamond in @cite{Guns, Germs, and Steel}, ``@dots{} zebras
3699 become impossibly dangerous as they grow older'' but the claim here is
3700 that they do not become fierce like a tiger. (1997, W. W. Norton and
3701 Co., ISBN 0-393-03894-2, page 171)}, and binds the
3702 variable @code{tiger} to the value @code{fierce}. In this example,
3703 both values are symbols preceded by a quote. The values could just as
3704 well have been another list or a string. The body of the @code{let}
3705 follows after the list holding the variables. In this example, the
3706 body is a list that uses the @code{message} function to print a string
3707 in the echo area.
3708
3709 @need 1500
3710 You may evaluate the example in the usual fashion, by placing the
3711 cursor after the last parenthesis and typing @kbd{C-x C-e}. When you do
3712 this, the following will appear in the echo area:
3713
3714 @smallexample
3715 "One kind of animal has stripes and another is fierce."
3716 @end smallexample
3717
3718 As we have seen before, the @code{message} function prints its first
3719 argument, except for @samp{%s}. In this example, the value of the variable
3720 @code{zebra} is printed at the location of the first @samp{%s} and the
3721 value of the variable @code{tiger} is printed at the location of the
3722 second @samp{%s}.
3723
3724 @node Uninitialized let Variables
3725 @subsection Uninitialized Variables in a @code{let} Statement
3726 @cindex Uninitialized @code{let} variables
3727 @cindex @code{let} variables uninitialized
3728
3729 If you do not bind the variables in a @code{let} statement to specific
3730 initial values, they will automatically be bound to an initial value of
3731 @code{nil}, as in the following expression:
3732
3733 @smallexample
3734 @group
3735 (let ((birch 3)
3736 pine
3737 fir
3738 (oak 'some))
3739 (message
3740 "Here are %d variables with %s, %s, and %s value."
3741 birch pine fir oak))
3742 @end group
3743 @end smallexample
3744
3745 @noindent
3746 Here, the varlist is @code{((birch 3) pine fir (oak 'some))}.
3747
3748 @need 1250
3749 If you evaluate this expression in the usual way, the following will
3750 appear in your echo area:
3751
3752 @smallexample
3753 "Here are 3 variables with nil, nil, and some value."
3754 @end smallexample
3755
3756 @noindent
3757 In this example, Emacs binds the symbol @code{birch} to the number 3,
3758 binds the symbols @code{pine} and @code{fir} to @code{nil}, and binds
3759 the symbol @code{oak} to the value @code{some}.
3760
3761 Note that in the first part of the @code{let}, the variables @code{pine}
3762 and @code{fir} stand alone as atoms that are not surrounded by
3763 parentheses; this is because they are being bound to @code{nil}, the
3764 empty list. But @code{oak} is bound to @code{some} and so is a part of
3765 the list @code{(oak 'some)}. Similarly, @code{birch} is bound to the
3766 number 3 and so is in a list with that number. (Since a number
3767 evaluates to itself, the number does not need to be quoted. Also, the
3768 number is printed in the message using a @samp{%d} rather than a
3769 @samp{%s}.) The four variables as a group are put into a list to
3770 delimit them from the body of the @code{let}.
3771
3772 @node if
3773 @section The @code{if} Special Form
3774 @findex if
3775 @cindex Conditional with @code{if}
3776
3777 A third special form, in addition to @code{defun} and @code{let}, is the
3778 conditional @code{if}. This form is used to instruct the computer to
3779 make decisions. You can write function definitions without using
3780 @code{if}, but it is used often enough, and is important enough, to be
3781 included here. It is used, for example, in the code for the
3782 function @code{beginning-of-buffer}.
3783
3784 The basic idea behind an @code{if}, is that ``@emph{if} a test is true,
3785 @emph{then} an expression is evaluated.'' If the test is not true, the
3786 expression is not evaluated. For example, you might make a decision
3787 such as, ``if it is warm and sunny, then go to the beach!''
3788
3789 @menu
3790 * if in more detail::
3791 * type-of-animal in detail:: An example of an @code{if} expression.
3792 @end menu
3793
3794 @ifnottex
3795 @node if in more detail
3796 @unnumberedsubsec @code{if} in more detail
3797 @end ifnottex
3798
3799 @cindex @samp{if-part} defined
3800 @cindex @samp{then-part} defined
3801 An @code{if} expression written in Lisp does not use the word `then';
3802 the test and the action are the second and third elements of the list
3803 whose first element is @code{if}. Nonetheless, the test part of an
3804 @code{if} expression is often called the @dfn{if-part} and the second
3805 argument is often called the @dfn{then-part}.
3806
3807 Also, when an @code{if} expression is written, the true-or-false-test
3808 is usually written on the same line as the symbol @code{if}, but the
3809 action to carry out if the test is true, the ``then-part'', is written
3810 on the second and subsequent lines. This makes the @code{if}
3811 expression easier to read.
3812
3813 @smallexample
3814 @group
3815 (if @var{true-or-false-test}
3816 @var{action-to-carry-out-if-test-is-true})
3817 @end group
3818 @end smallexample
3819
3820 @noindent
3821 The true-or-false-test will be an expression that
3822 is evaluated by the Lisp interpreter.
3823
3824 Here is an example that you can evaluate in the usual manner. The test
3825 is whether the number 5 is greater than the number 4. Since it is, the
3826 message @samp{5 is greater than 4!} will be printed.
3827
3828 @smallexample
3829 @group
3830 (if (> 5 4) ; @r{if-part}
3831 (message "5 is greater than 4!")) ; @r{then-part}
3832 @end group
3833 @end smallexample
3834
3835 @noindent
3836 (The function @code{>} tests whether its first argument is greater than
3837 its second argument and returns true if it is.)
3838 @findex > (greater than)
3839
3840 Of course, in actual use, the test in an @code{if} expression will not
3841 be fixed for all time as it is by the expression @code{(> 5 4)}.
3842 Instead, at least one of the variables used in the test will be bound to
3843 a value that is not known ahead of time. (If the value were known ahead
3844 of time, we would not need to run the test!)
3845
3846 For example, the value may be bound to an argument of a function
3847 definition. In the following function definition, the character of the
3848 animal is a value that is passed to the function. If the value bound to
3849 @code{characteristic} is @code{fierce}, then the message, @samp{It's a
3850 tiger!} will be printed; otherwise, @code{nil} will be returned.
3851
3852 @smallexample
3853 @group
3854 (defun type-of-animal (characteristic)
3855 "Print message in echo area depending on CHARACTERISTIC.
3856 If the CHARACTERISTIC is the symbol `fierce',
3857 then warn of a tiger."
3858 (if (equal characteristic 'fierce)
3859 (message "It's a tiger!")))
3860 @end group
3861 @end smallexample
3862
3863 @need 1500
3864 @noindent
3865 If you are reading this inside of GNU Emacs, you can evaluate the
3866 function definition in the usual way to install it in Emacs, and then you
3867 can evaluate the following two expressions to see the results:
3868
3869 @smallexample
3870 @group
3871 (type-of-animal 'fierce)
3872
3873 (type-of-animal 'zebra)
3874
3875 @end group
3876 @end smallexample
3877
3878 @c Following sentences rewritten to prevent overfull hbox.
3879 @noindent
3880 When you evaluate @code{(type-of-animal 'fierce)}, you will see the
3881 following message printed in the echo area: @code{"It's a tiger!"}; and
3882 when you evaluate @code{(type-of-animal 'zebra)} you will see @code{nil}
3883 printed in the echo area.
3884
3885 @node type-of-animal in detail
3886 @subsection The @code{type-of-animal} Function in Detail
3887
3888 Let's look at the @code{type-of-animal} function in detail.
3889
3890 The function definition for @code{type-of-animal} was written by filling
3891 the slots of two templates, one for a function definition as a whole, and
3892 a second for an @code{if} expression.
3893
3894 @need 1250
3895 The template for every function that is not interactive is:
3896
3897 @smallexample
3898 @group
3899 (defun @var{name-of-function} (@var{argument-list})
3900 "@var{documentation}@dots{}"
3901 @var{body}@dots{})
3902 @end group
3903 @end smallexample
3904
3905 @need 800
3906 The parts of the function that match this template look like this:
3907
3908 @smallexample
3909 @group
3910 (defun type-of-animal (characteristic)
3911 "Print message in echo area depending on CHARACTERISTIC.
3912 If the CHARACTERISTIC is the symbol `fierce',
3913 then warn of a tiger."
3914 @var{body: the} @code{if} @var{expression})
3915 @end group
3916 @end smallexample
3917
3918 The name of function is @code{type-of-animal}; it is passed the value
3919 of one argument. The argument list is followed by a multi-line
3920 documentation string. The documentation string is included in the
3921 example because it is a good habit to write documentation string for
3922 every function definition. The body of the function definition
3923 consists of the @code{if} expression.
3924
3925 @need 800
3926 The template for an @code{if} expression looks like this:
3927
3928 @smallexample
3929 @group
3930 (if @var{true-or-false-test}
3931 @var{action-to-carry-out-if-the-test-returns-true})
3932 @end group
3933 @end smallexample
3934
3935 @need 1250
3936 In the @code{type-of-animal} function, the code for the @code{if}
3937 looks like this:
3938
3939 @smallexample
3940 @group
3941 (if (equal characteristic 'fierce)
3942 (message "It's a tiger!")))
3943 @end group
3944 @end smallexample
3945
3946 @need 800
3947 Here, the true-or-false-test is the expression:
3948
3949 @smallexample
3950 (equal characteristic 'fierce)
3951 @end smallexample
3952
3953 @noindent
3954 In Lisp, @code{equal} is a function that determines whether its first
3955 argument is equal to its second argument. The second argument is the
3956 quoted symbol @code{'fierce} and the first argument is the value of the
3957 symbol @code{characteristic}---in other words, the argument passed to
3958 this function.
3959
3960 In the first exercise of @code{type-of-animal}, the argument
3961 @code{fierce} is passed to @code{type-of-animal}. Since @code{fierce}
3962 is equal to @code{fierce}, the expression, @code{(equal characteristic
3963 'fierce)}, returns a value of true. When this happens, the @code{if}
3964 evaluates the second argument or then-part of the @code{if}:
3965 @code{(message "It's tiger!")}.
3966
3967 On the other hand, in the second exercise of @code{type-of-animal}, the
3968 argument @code{zebra} is passed to @code{type-of-animal}. @code{zebra}
3969 is not equal to @code{fierce}, so the then-part is not evaluated and
3970 @code{nil} is returned by the @code{if} expression.
3971
3972 @node else
3973 @section If--then--else Expressions
3974 @cindex Else
3975
3976 An @code{if} expression may have an optional third argument, called
3977 the @dfn{else-part}, for the case when the true-or-false-test returns
3978 false. When this happens, the second argument or then-part of the
3979 overall @code{if} expression is @emph{not} evaluated, but the third or
3980 else-part @emph{is} evaluated. You might think of this as the cloudy
3981 day alternative for the decision ``if it is warm and sunny, then go to
3982 the beach, else read a book!''.
3983
3984 The word ``else'' is not written in the Lisp code; the else-part of an
3985 @code{if} expression comes after the then-part. In the written Lisp, the
3986 else-part is usually written to start on a line of its own and is
3987 indented less than the then-part:
3988
3989 @smallexample
3990 @group
3991 (if @var{true-or-false-test}
3992 @var{action-to-carry-out-if-the-test-returns-true}
3993 @var{action-to-carry-out-if-the-test-returns-false})
3994 @end group
3995 @end smallexample
3996
3997 For example, the following @code{if} expression prints the message @samp{4
3998 is not greater than 5!} when you evaluate it in the usual way:
3999
4000 @smallexample
4001 @group
4002 (if (> 4 5) ; @r{if-part}
4003 (message "4 falsely greater than 5!") ; @r{then-part}
4004 (message "4 is not greater than 5!")) ; @r{else-part}
4005 @end group
4006 @end smallexample
4007
4008 @noindent
4009 Note that the different levels of indentation make it easy to
4010 distinguish the then-part from the else-part. (GNU Emacs has several
4011 commands that automatically indent @code{if} expressions correctly.
4012 @xref{Typing Lists, , GNU Emacs Helps You Type Lists}.)
4013
4014 We can extend the @code{type-of-animal} function to include an
4015 else-part by simply incorporating an additional part to the @code{if}
4016 expression.
4017
4018 @need 1500
4019 You can see the consequences of doing this if you evaluate the following
4020 version of the @code{type-of-animal} function definition to install it
4021 and then evaluate the two subsequent expressions to pass different
4022 arguments to the function.
4023
4024 @smallexample
4025 @group
4026 (defun type-of-animal (characteristic) ; @r{Second version.}
4027 "Print message in echo area depending on CHARACTERISTIC.
4028 If the CHARACTERISTIC is the symbol `fierce',
4029 then warn of a tiger;
4030 else say it's not fierce."
4031 (if (equal characteristic 'fierce)
4032 (message "It's a tiger!")
4033 (message "It's not fierce!")))
4034 @end group
4035 @end smallexample
4036 @sp 1
4037
4038 @smallexample
4039 @group
4040 (type-of-animal 'fierce)
4041
4042 (type-of-animal 'zebra)
4043
4044 @end group
4045 @end smallexample
4046
4047 @c Following sentence rewritten to prevent overfull hbox.
4048 @noindent
4049 When you evaluate @code{(type-of-animal 'fierce)}, you will see the
4050 following message printed in the echo area: @code{"It's a tiger!"}; but
4051 when you evaluate @code{(type-of-animal 'zebra)}, you will see
4052 @code{"It's not fierce!"}.
4053
4054 (Of course, if the @var{characteristic} were @code{ferocious}, the
4055 message @code{"It's not fierce!"} would be printed; and it would be
4056 misleading! When you write code, you need to take into account the
4057 possibility that some such argument will be tested by the @code{if}
4058 and write your program accordingly.)
4059
4060 @node Truth & Falsehood
4061 @section Truth and Falsehood in Emacs Lisp
4062 @cindex Truth and falsehood in Emacs Lisp
4063 @cindex Falsehood and truth in Emacs Lisp
4064 @findex nil
4065
4066 There is an important aspect to the truth test in an @code{if}
4067 expression. So far, we have spoken of `true' and `false' as values of
4068 predicates as if they were new kinds of Emacs Lisp objects. In fact,
4069 `false' is just our old friend @code{nil}. Anything else---anything
4070 at all---is `true'.
4071
4072 The expression that tests for truth is interpreted as @dfn{true}
4073 if the result of evaluating it is a value that is not @code{nil}. In
4074 other words, the result of the test is considered true if the value
4075 returned is a number such as 47, a string such as @code{"hello"}, or a
4076 symbol (other than @code{nil}) such as @code{flowers}, or a list (so
4077 long as it is not empty), or even a buffer!
4078
4079 @menu
4080 * nil explained:: @code{nil} has two meanings.
4081 @end menu
4082
4083 @ifnottex
4084 @node nil explained
4085 @unnumberedsubsec An explanation of @code{nil}
4086 @end ifnottex
4087
4088 Before illustrating a test for truth, we need an explanation of @code{nil}.
4089
4090 In Emacs Lisp, the symbol @code{nil} has two meanings. First, it means the
4091 empty list. Second, it means false and is the value returned when a
4092 true-or-false-test tests false. @code{nil} can be written as an empty
4093 list, @code{()}, or as @code{nil}. As far as the Lisp interpreter is
4094 concerned, @code{()} and @code{nil} are the same. Humans, however, tend
4095 to use @code{nil} for false and @code{()} for the empty list.
4096
4097 In Emacs Lisp, any value that is not @code{nil}---is not the empty
4098 list---is considered true. This means that if an evaluation returns
4099 something that is not an empty list, an @code{if} expression will test
4100 true. For example, if a number is put in the slot for the test, it
4101 will be evaluated and will return itself, since that is what numbers
4102 do when evaluated. In this conditional, the @code{if} expression will
4103 test true. The expression tests false only when @code{nil}, an empty
4104 list, is returned by evaluating the expression.
4105
4106 You can see this by evaluating the two expressions in the following examples.
4107
4108 In the first example, the number 4 is evaluated as the test in the
4109 @code{if} expression and returns itself; consequently, the then-part
4110 of the expression is evaluated and returned: @samp{true} appears in
4111 the echo area. In the second example, the @code{nil} indicates false;
4112 consequently, the else-part of the expression is evaluated and
4113 returned: @samp{false} appears in the echo area.
4114
4115 @smallexample
4116 @group
4117 (if 4
4118 'true
4119 'false)
4120 @end group
4121
4122 @group
4123 (if nil
4124 'true
4125 'false)
4126 @end group
4127 @end smallexample
4128
4129 @need 1250
4130 Incidentally, if some other useful value is not available for a test that
4131 returns true, then the Lisp interpreter will return the symbol @code{t}
4132 for true. For example, the expression @code{(> 5 4)} returns @code{t}
4133 when evaluated, as you can see by evaluating it in the usual way:
4134
4135 @smallexample
4136 (> 5 4)
4137 @end smallexample
4138
4139 @need 1250
4140 @noindent
4141 On the other hand, this function returns @code{nil} if the test is false.
4142
4143 @smallexample
4144 (> 4 5)
4145 @end smallexample
4146
4147 @node save-excursion
4148 @section @code{save-excursion}
4149 @findex save-excursion
4150 @cindex Region, what it is
4151 @cindex Preserving point, mark, and buffer
4152 @cindex Point, mark, buffer preservation
4153 @findex point
4154 @findex mark
4155
4156 The @code{save-excursion} function is the third and final special form
4157 that we will discuss in this chapter.
4158
4159 In Emacs Lisp programs used for editing, the @code{save-excursion}
4160 function is very common. It saves the location of point and mark,
4161 executes the body of the function, and then restores point and mark to
4162 their previous positions if their locations were changed. Its primary
4163 purpose is to keep the user from being surprised and disturbed by
4164 unexpected movement of point or mark.
4165
4166 @menu
4167 * Point and mark:: A review of various locations.
4168 * Template for save-excursion::
4169 @end menu
4170
4171 @ifnottex
4172 @node Point and mark
4173 @unnumberedsubsec Point and Mark
4174 @end ifnottex
4175
4176 Before discussing @code{save-excursion}, however, it may be useful
4177 first to review what point and mark are in GNU Emacs. @dfn{Point} is
4178 the current location of the cursor. Wherever the cursor
4179 is, that is point. More precisely, on terminals where the cursor
4180 appears to be on top of a character, point is immediately before the
4181 character. In Emacs Lisp, point is an integer. The first character in
4182 a buffer is number one, the second is number two, and so on. The
4183 function @code{point} returns the current position of the cursor as a
4184 number. Each buffer has its own value for point.
4185
4186 The @dfn{mark} is another position in the buffer; its value can be set
4187 with a command such as @kbd{C-@key{SPC}} (@code{set-mark-command}). If
4188 a mark has been set, you can use the command @kbd{C-x C-x}
4189 (@code{exchange-point-and-mark}) to cause the cursor to jump to the mark
4190 and set the mark to be the previous position of point. In addition, if
4191 you set another mark, the position of the previous mark is saved in the
4192 mark ring. Many mark positions can be saved this way. You can jump the
4193 cursor to a saved mark by typing @kbd{C-u C-@key{SPC}} one or more
4194 times.
4195
4196 The part of the buffer between point and mark is called @dfn{the
4197 region}. Numerous commands work on the region, including
4198 @code{center-region}, @code{count-lines-region}, @code{kill-region}, and
4199 @code{print-region}.
4200
4201 The @code{save-excursion} special form saves the locations of point and
4202 mark and restores those positions after the code within the body of the
4203 special form is evaluated by the Lisp interpreter. Thus, if point were
4204 in the beginning of a piece of text and some code moved point to the end
4205 of the buffer, the @code{save-excursion} would put point back to where
4206 it was before, after the expressions in the body of the function were
4207 evaluated.
4208
4209 In Emacs, a function frequently moves point as part of its internal
4210 workings even though a user would not expect this. For example,
4211 @code{count-lines-region} moves point. To prevent the user from being
4212 bothered by jumps that are both unexpected and (from the user's point of
4213 view) unnecessary, @code{save-excursion} is often used to keep point and
4214 mark in the location expected by the user. The use of
4215 @code{save-excursion} is good housekeeping.
4216
4217 To make sure the house stays clean, @code{save-excursion} restores the
4218 values of point and mark even if something goes wrong in the code inside
4219 of it (or, to be more precise and to use the proper jargon, ``in case of
4220 abnormal exit''). This feature is very helpful.
4221
4222 In addition to recording the values of point and mark,
4223 @code{save-excursion} keeps track of the current buffer, and restores
4224 it, too. This means you can write code that will change the buffer and
4225 have @code{save-excursion} switch you back to the original buffer.
4226 This is how @code{save-excursion} is used in @code{append-to-buffer}.
4227 (@xref{append-to-buffer, , The Definition of @code{append-to-buffer}}.)
4228
4229 @node Template for save-excursion
4230 @subsection Template for a @code{save-excursion} Expression
4231
4232 @need 800
4233 The template for code using @code{save-excursion} is simple:
4234
4235 @smallexample
4236 @group
4237 (save-excursion
4238 @var{body}@dots{})
4239 @end group
4240 @end smallexample
4241
4242 @noindent
4243 The body of the function is one or more expressions that will be
4244 evaluated in sequence by the Lisp interpreter. If there is more than
4245 one expression in the body, the value of the last one will be returned
4246 as the value of the @code{save-excursion} function. The other
4247 expressions in the body are evaluated only for their side effects; and
4248 @code{save-excursion} itself is used only for its side effect (which
4249 is restoring the positions of point and mark).
4250
4251 @need 1250
4252 In more detail, the template for a @code{save-excursion} expression
4253 looks like this:
4254
4255 @smallexample
4256 @group
4257 (save-excursion
4258 @var{first-expression-in-body}
4259 @var{second-expression-in-body}
4260 @var{third-expression-in-body}
4261 @dots{}
4262 @var{last-expression-in-body})
4263 @end group
4264 @end smallexample
4265
4266 @noindent
4267 An expression, of course, may be a symbol on its own or a list.
4268
4269 In Emacs Lisp code, a @code{save-excursion} expression often occurs
4270 within the body of a @code{let} expression. It looks like this:
4271
4272 @smallexample
4273 @group
4274 (let @var{varlist}
4275 (save-excursion
4276 @var{body}@dots{}))
4277 @end group
4278 @end smallexample
4279
4280 @node Review
4281 @section Review
4282
4283 In the last few chapters we have introduced a macro and a fair number
4284 of functions and special forms. Here they are described in brief,
4285 along with a few similar functions that have not been mentioned yet.
4286
4287 @table @code
4288 @item eval-last-sexp
4289 Evaluate the last symbolic expression before the current location of
4290 point. The value is printed in the echo area unless the function is
4291 invoked with an argument; in that case, the output is printed in the
4292 current buffer. This command is normally bound to @kbd{C-x C-e}.
4293
4294 @item defun
4295 Define function. This macro has up to five parts: the name, a
4296 template for the arguments that will be passed to the function,
4297 documentation, an optional interactive declaration, and the body of
4298 the definition.
4299
4300 @need 1250
4301 For example, in an early version of Emacs, the function definition was
4302 as follows. (It is slightly more complex now that it seeks the first
4303 non-whitespace character rather than the first visible character.)
4304
4305 @smallexample
4306 @group
4307 (defun back-to-indentation ()
4308 "Move point to first visible character on line."
4309 (interactive)
4310 (beginning-of-line 1)
4311 (skip-chars-forward " \t"))
4312 @end group
4313 @end smallexample
4314
4315 @ignore
4316 In GNU Emacs 22,
4317
4318 (defun backward-to-indentation (&optional arg)
4319 "Move backward ARG lines and position at first nonblank character."
4320 (interactive "p")
4321 (forward-line (- (or arg 1)))
4322 (skip-chars-forward " \t"))
4323
4324 (defun back-to-indentation ()
4325 "Move point to the first non-whitespace character on this line."
4326 (interactive)
4327 (beginning-of-line 1)
4328 (skip-syntax-forward " " (line-end-position))
4329 ;; Move back over chars that have whitespace syntax but have the p flag.
4330 (backward-prefix-chars))
4331 @end ignore
4332
4333 @item interactive
4334 Declare to the interpreter that the function can be used
4335 interactively. This special form may be followed by a string with one
4336 or more parts that pass the information to the arguments of the
4337 function, in sequence. These parts may also tell the interpreter to
4338 prompt for information. Parts of the string are separated by
4339 newlines, @samp{\n}.
4340
4341 @need 1000
4342 Common code characters are:
4343
4344 @table @code
4345 @item b
4346 The name of an existing buffer.
4347
4348 @item f
4349 The name of an existing file.
4350
4351 @item p
4352 The numeric prefix argument. (Note that this `p' is lower case.)
4353
4354 @item r
4355 Point and the mark, as two numeric arguments, smallest first. This
4356 is the only code letter that specifies two successive arguments
4357 rather than one.
4358 @end table
4359
4360 @xref{Interactive Codes, , Code Characters for @samp{interactive},
4361 elisp, The GNU Emacs Lisp Reference Manual}, for a complete list of
4362 code characters.
4363
4364 @item let
4365 Declare that a list of variables is for use within the body of the
4366 @code{let} and give them an initial value, either @code{nil} or a
4367 specified value; then evaluate the rest of the expressions in the body
4368 of the @code{let} and return the value of the last one. Inside the
4369 body of the @code{let}, the Lisp interpreter does not see the values of
4370 the variables of the same names that are bound outside of the
4371 @code{let}.
4372
4373 @need 1250
4374 For example,
4375
4376 @smallexample
4377 @group
4378 (let ((foo (buffer-name))
4379 (bar (buffer-size)))
4380 (message
4381 "This buffer is %s and has %d characters."
4382 foo bar))
4383 @end group
4384 @end smallexample
4385
4386 @item save-excursion
4387 Record the values of point and mark and the current buffer before
4388 evaluating the body of this special form. Restore the values of point
4389 and mark and buffer afterward.
4390
4391 @need 1250
4392 For example,
4393
4394 @smallexample
4395 @group
4396 (message "We are %d characters into this buffer."
4397 (- (point)
4398 (save-excursion
4399 (goto-char (point-min)) (point))))
4400 @end group
4401 @end smallexample
4402
4403 @item if
4404 Evaluate the first argument to the function; if it is true, evaluate
4405 the second argument; else evaluate the third argument, if there is one.
4406
4407 The @code{if} special form is called a @dfn{conditional}. There are
4408 other conditionals in Emacs Lisp, but @code{if} is perhaps the most
4409 commonly used.
4410
4411 @need 1250
4412 For example,
4413
4414 @smallexample
4415 @group
4416 (if (= 22 emacs-major-version)
4417 (message "This is version 22 Emacs")
4418 (message "This is not version 22 Emacs"))
4419 @end group
4420 @end smallexample
4421
4422 @need 1250
4423 @item <
4424 @itemx >
4425 @itemx <=
4426 @itemx >=
4427 The @code{<} function tests whether its first argument is smaller than
4428 its second argument. A corresponding function, @code{>}, tests whether
4429 the first argument is greater than the second. Likewise, @code{<=}
4430 tests whether the first argument is less than or equal to the second and
4431 @code{>=} tests whether the first argument is greater than or equal to
4432 the second. In all cases, both arguments must be numbers or markers
4433 (markers indicate positions in buffers).
4434
4435 @need 800
4436 @item =
4437 The @code{=} function tests whether two arguments, both numbers or
4438 markers, are equal.
4439
4440 @need 1250
4441 @item equal
4442 @itemx eq
4443 Test whether two objects are the same. @code{equal} uses one meaning
4444 of the word `same' and @code{eq} uses another: @code{equal} returns
4445 true if the two objects have a similar structure and contents, such as
4446 two copies of the same book. On the other hand, @code{eq}, returns
4447 true if both arguments are actually the same object.
4448 @findex equal
4449 @findex eq
4450
4451 @need 1250
4452 @item string<
4453 @itemx string-lessp
4454 @itemx string=
4455 @itemx string-equal
4456 The @code{string-lessp} function tests whether its first argument is
4457 smaller than the second argument. A shorter, alternative name for the
4458 same function (a @code{defalias}) is @code{string<}.
4459
4460 The arguments to @code{string-lessp} must be strings or symbols; the
4461 ordering is lexicographic, so case is significant. The print names of
4462 symbols are used instead of the symbols themselves.
4463
4464 @cindex @samp{empty string} defined
4465 An empty string, @samp{""}, a string with no characters in it, is
4466 smaller than any string of characters.
4467
4468 @code{string-equal} provides the corresponding test for equality. Its
4469 shorter, alternative name is @code{string=}. There are no string test
4470 functions that correspond to @var{>}, @code{>=}, or @code{<=}.
4471
4472 @item message
4473 Print a message in the echo area. The first argument is a string that
4474 can contain @samp{%s}, @samp{%d}, or @samp{%c} to print the value of
4475 arguments that follow the string. The argument used by @samp{%s} must
4476 be a string or a symbol; the argument used by @samp{%d} must be a
4477 number. The argument used by @samp{%c} must be an @sc{ascii} code
4478 number; it will be printed as the character with that @sc{ascii} code.
4479 (Various other %-sequences have not been mentioned.)
4480
4481 @item setq
4482 @itemx set
4483 The @code{setq} function sets the value of its first argument to the
4484 value of the second argument. The first argument is automatically
4485 quoted by @code{setq}. It does the same for succeeding pairs of
4486 arguments. Another function, @code{set}, takes only two arguments and
4487 evaluates both of them before setting the value returned by its first
4488 argument to the value returned by its second argument.
4489
4490 @item buffer-name
4491 Without an argument, return the name of the buffer, as a string.
4492
4493 @item buffer-file-name
4494 Without an argument, return the name of the file the buffer is
4495 visiting.
4496
4497 @item current-buffer
4498 Return the buffer in which Emacs is active; it may not be
4499 the buffer that is visible on the screen.
4500
4501 @item other-buffer
4502 Return the most recently selected buffer (other than the buffer passed
4503 to @code{other-buffer} as an argument and other than the current
4504 buffer).
4505
4506 @item switch-to-buffer
4507 Select a buffer for Emacs to be active in and display it in the current
4508 window so users can look at it. Usually bound to @kbd{C-x b}.
4509
4510 @item set-buffer
4511 Switch Emacs's attention to a buffer on which programs will run. Don't
4512 alter what the window is showing.
4513
4514 @item buffer-size
4515 Return the number of characters in the current buffer.
4516
4517 @item point
4518 Return the value of the current position of the cursor, as an
4519 integer counting the number of characters from the beginning of the
4520 buffer.
4521
4522 @item point-min
4523 Return the minimum permissible value of point in
4524 the current buffer. This is 1, unless narrowing is in effect.
4525
4526 @item point-max
4527 Return the value of the maximum permissible value of point in the
4528 current buffer. This is the end of the buffer, unless narrowing is in
4529 effect.
4530 @end table
4531
4532 @need 1500
4533 @node defun Exercises
4534 @section Exercises
4535
4536 @itemize @bullet
4537 @item
4538 Write a non-interactive function that doubles the value of its
4539 argument, a number. Make that function interactive.
4540
4541 @item
4542 Write a function that tests whether the current value of
4543 @code{fill-column} is greater than the argument passed to the function,
4544 and if so, prints an appropriate message.
4545 @end itemize
4546
4547 @node Buffer Walk Through
4548 @chapter A Few Buffer--Related Functions
4549
4550 In this chapter we study in detail several of the functions used in GNU
4551 Emacs. This is called a ``walk-through''. These functions are used as
4552 examples of Lisp code, but are not imaginary examples; with the
4553 exception of the first, simplified function definition, these functions
4554 show the actual code used in GNU Emacs. You can learn a great deal from
4555 these definitions. The functions described here are all related to
4556 buffers. Later, we will study other functions.
4557
4558 @menu
4559 * Finding More:: How to find more information.
4560 * simplified-beginning-of-buffer:: Shows @code{goto-char},
4561 @code{point-min}, and @code{push-mark}.
4562 * mark-whole-buffer:: Almost the same as @code{beginning-of-buffer}.
4563 * append-to-buffer:: Uses @code{save-excursion} and
4564 @code{insert-buffer-substring}.
4565 * Buffer Related Review:: Review.
4566 * Buffer Exercises::
4567 @end menu
4568
4569 @node Finding More
4570 @section Finding More Information
4571
4572 @findex describe-function, @r{introduced}
4573 @cindex Find function documentation
4574 In this walk-through, I will describe each new function as we come to
4575 it, sometimes in detail and sometimes briefly. If you are interested,
4576 you can get the full documentation of any Emacs Lisp function at any
4577 time by typing @kbd{C-h f} and then the name of the function (and then
4578 @key{RET}). Similarly, you can get the full documentation for a
4579 variable by typing @kbd{C-h v} and then the name of the variable (and
4580 then @key{RET}).
4581
4582 @cindex Find source of function
4583 @c In version 22, tells location both of C and of Emacs Lisp
4584 Also, @code{describe-function} will tell you the location of the
4585 function definition.
4586
4587 Put point into the name of the file that contains the function and
4588 press the @key{RET} key. In this case, @key{RET} means
4589 @code{push-button} rather than `return' or `enter'. Emacs will take
4590 you directly to the function definition.
4591
4592 @ignore
4593 Not In version 22
4594
4595 If you move point over the file name and press
4596 the @key{RET} key, which in this case means @code{help-follow} rather
4597 than `return' or `enter', Emacs will take you directly to the function
4598 definition.
4599 @end ignore
4600
4601 More generally, if you want to see a function in its original source
4602 file, you can use the @code{find-tag} function to jump to it.
4603 @code{find-tag} works with a wide variety of languages, not just
4604 Lisp, and C, and it works with non-programming text as well. For
4605 example, @code{find-tag} will jump to the various nodes in the
4606 Texinfo source file of this document.
4607 The @code{find-tag} function depends on `tags tables' that record
4608 the locations of the functions, variables, and other items to which
4609 @code{find-tag} jumps.
4610
4611 To use the @code{find-tag} command, type @kbd{M-.} (i.e., press the
4612 period key while holding down the @key{META} key, or else type the
4613 @key{ESC} key and then type the period key), and then, at the prompt,
4614 type in the name of the function whose source code you want to see,
4615 such as @code{mark-whole-buffer}, and then type @key{RET}. Emacs will
4616 switch buffers and display the source code for the function on your
4617 screen. To switch back to your current buffer, type @kbd{C-x b
4618 @key{RET}}. (On some keyboards, the @key{META} key is labeled
4619 @key{ALT}.)
4620
4621 @c !!! 22.1.1 tags table location in this paragraph
4622 @cindex TAGS table, specifying
4623 @findex find-tag
4624 Depending on how the initial default values of your copy of Emacs are
4625 set, you may also need to specify the location of your `tags table',
4626 which is a file called @file{TAGS}. For example, if you are
4627 interested in Emacs sources, the tags table you will most likely want,
4628 if it has already been created for you, will be in a subdirectory of
4629 the @file{/usr/local/share/emacs/} directory; thus you would use the
4630 @code{M-x visit-tags-table} command and specify a pathname such as
4631 @file{/usr/local/share/emacs/22.1.1/lisp/TAGS}. If the tags table
4632 has not already been created, you will have to create it yourself. It
4633 will be in a file such as @file{/usr/local/src/emacs/src/TAGS}.
4634
4635 @need 1250
4636 To create a @file{TAGS} file in a specific directory, switch to that
4637 directory in Emacs using @kbd{M-x cd} command, or list the directory
4638 with @kbd{C-x d} (@code{dired}). Then run the compile command, with
4639 @w{@code{etags *.el}} as the command to execute:
4640
4641 @smallexample
4642 M-x compile RET etags *.el RET
4643 @end smallexample
4644
4645 For more information, see @ref{etags, , Create Your Own @file{TAGS} File}.
4646
4647 After you become more familiar with Emacs Lisp, you will find that you will
4648 frequently use @code{find-tag} to navigate your way around source code;
4649 and you will create your own @file{TAGS} tables.
4650
4651 @cindex Library, as term for `file'
4652 Incidentally, the files that contain Lisp code are conventionally
4653 called @dfn{libraries}. The metaphor is derived from that of a
4654 specialized library, such as a law library or an engineering library,
4655 rather than a general library. Each library, or file, contains
4656 functions that relate to a particular topic or activity, such as
4657 @file{abbrev.el} for handling abbreviations and other typing
4658 shortcuts, and @file{help.el} for on-line help. (Sometimes several
4659 libraries provide code for a single activity, as the various
4660 @file{rmail@dots{}} files provide code for reading electronic mail.)
4661 In @cite{The GNU Emacs Manual}, you will see sentences such as ``The
4662 @kbd{C-h p} command lets you search the standard Emacs Lisp libraries
4663 by topic keywords.''
4664
4665 @node simplified-beginning-of-buffer
4666 @section A Simplified @code{beginning-of-buffer} Definition
4667 @findex simplified-beginning-of-buffer
4668
4669 The @code{beginning-of-buffer} command is a good function to start with
4670 since you are likely to be familiar with it and it is easy to
4671 understand. Used as an interactive command, @code{beginning-of-buffer}
4672 moves the cursor to the beginning of the buffer, leaving the mark at the
4673 previous position. It is generally bound to @kbd{M-<}.
4674
4675 In this section, we will discuss a shortened version of the function
4676 that shows how it is most frequently used. This shortened function
4677 works as written, but it does not contain the code for a complex option.
4678 In another section, we will describe the entire function.
4679 (@xref{beginning-of-buffer, , Complete Definition of
4680 @code{beginning-of-buffer}}.)
4681
4682 Before looking at the code, let's consider what the function
4683 definition has to contain: it must include an expression that makes
4684 the function interactive so it can be called by typing @kbd{M-x
4685 beginning-of-buffer} or by typing a keychord such as @kbd{M-<}; it
4686 must include code to leave a mark at the original position in the
4687 buffer; and it must include code to move the cursor to the beginning
4688 of the buffer.
4689
4690 @need 1250
4691 Here is the complete text of the shortened version of the function:
4692
4693 @smallexample
4694 @group
4695 (defun simplified-beginning-of-buffer ()
4696 "Move point to the beginning of the buffer;
4697 leave mark at previous position."
4698 (interactive)
4699 (push-mark)
4700 (goto-char (point-min)))
4701 @end group
4702 @end smallexample
4703
4704 Like all function definitions, this definition has five parts following
4705 the macro @code{defun}:
4706
4707 @enumerate
4708 @item
4709 The name: in this example, @code{simplified-beginning-of-buffer}.
4710
4711 @item
4712 A list of the arguments: in this example, an empty list, @code{()},
4713
4714 @item
4715 The documentation string.
4716
4717 @item
4718 The interactive expression.
4719
4720 @item
4721 The body.
4722 @end enumerate
4723
4724 @noindent
4725 In this function definition, the argument list is empty; this means that
4726 this function does not require any arguments. (When we look at the
4727 definition for the complete function, we will see that it may be passed
4728 an optional argument.)
4729
4730 The interactive expression tells Emacs that the function is intended to
4731 be used interactively. In this example, @code{interactive} does not have
4732 an argument because @code{simplified-beginning-of-buffer} does not
4733 require one.
4734
4735 @need 800
4736 The body of the function consists of the two lines:
4737
4738 @smallexample
4739 @group
4740 (push-mark)
4741 (goto-char (point-min))
4742 @end group
4743 @end smallexample
4744
4745 The first of these lines is the expression, @code{(push-mark)}. When
4746 this expression is evaluated by the Lisp interpreter, it sets a mark at
4747 the current position of the cursor, wherever that may be. The position
4748 of this mark is saved in the mark ring.
4749
4750 The next line is @code{(goto-char (point-min))}. This expression
4751 jumps the cursor to the minimum point in the buffer, that is, to the
4752 beginning of the buffer (or to the beginning of the accessible portion
4753 of the buffer if it is narrowed. @xref{Narrowing & Widening, ,
4754 Narrowing and Widening}.)
4755
4756 The @code{push-mark} command sets a mark at the place where the cursor
4757 was located before it was moved to the beginning of the buffer by the
4758 @code{(goto-char (point-min))} expression. Consequently, you can, if
4759 you wish, go back to where you were originally by typing @kbd{C-x C-x}.
4760
4761 That is all there is to the function definition!
4762
4763 @findex describe-function
4764 When you are reading code such as this and come upon an unfamiliar
4765 function, such as @code{goto-char}, you can find out what it does by
4766 using the @code{describe-function} command. To use this command, type
4767 @kbd{C-h f} and then type in the name of the function and press
4768 @key{RET}. The @code{describe-function} command will print the
4769 function's documentation string in a @file{*Help*} window. For
4770 example, the documentation for @code{goto-char} is:
4771
4772 @smallexample
4773 @group
4774 Set point to POSITION, a number or marker.
4775 Beginning of buffer is position (point-min), end is (point-max).
4776 @end group
4777 @end smallexample
4778
4779 @noindent
4780 The function's one argument is the desired position.
4781
4782 @noindent
4783 (The prompt for @code{describe-function} will offer you the symbol
4784 under or preceding the cursor, so you can save typing by positioning
4785 the cursor right over or after the function and then typing @kbd{C-h f
4786 @key{RET}}.)
4787
4788 The @code{end-of-buffer} function definition is written in the same way as
4789 the @code{beginning-of-buffer} definition except that the body of the
4790 function contains the expression @code{(goto-char (point-max))} in place
4791 of @code{(goto-char (point-min))}.
4792
4793 @node mark-whole-buffer
4794 @section The Definition of @code{mark-whole-buffer}
4795 @findex mark-whole-buffer
4796
4797 The @code{mark-whole-buffer} function is no harder to understand than the
4798 @code{simplified-beginning-of-buffer} function. In this case, however,
4799 we will look at the complete function, not a shortened version.
4800
4801 The @code{mark-whole-buffer} function is not as commonly used as the
4802 @code{beginning-of-buffer} function, but is useful nonetheless: it
4803 marks a whole buffer as a region by putting point at the beginning and
4804 a mark at the end of the buffer. It is generally bound to @kbd{C-x
4805 h}.
4806
4807 @menu
4808 * mark-whole-buffer overview::
4809 * Body of mark-whole-buffer:: Only three lines of code.
4810 @end menu
4811
4812 @ifnottex
4813 @node mark-whole-buffer overview
4814 @unnumberedsubsec An overview of @code{mark-whole-buffer}
4815 @end ifnottex
4816
4817 @need 1250
4818 In GNU Emacs 22, the code for the complete function looks like this:
4819
4820 @smallexample
4821 @group
4822 (defun mark-whole-buffer ()
4823 "Put point at beginning and mark at end of buffer.
4824 You probably should not use this function in Lisp programs;
4825 it is usually a mistake for a Lisp function to use any subroutine
4826 that uses or sets the mark."
4827 (interactive)
4828 (push-mark (point))
4829 (push-mark (point-max) nil t)
4830 (goto-char (point-min)))
4831 @end group
4832 @end smallexample
4833
4834 @need 1250
4835 Like all other functions, the @code{mark-whole-buffer} function fits
4836 into the template for a function definition. The template looks like
4837 this:
4838
4839 @smallexample
4840 @group
4841 (defun @var{name-of-function} (@var{argument-list})
4842 "@var{documentation}@dots{}"
4843 (@var{interactive-expression}@dots{})
4844 @var{body}@dots{})
4845 @end group
4846 @end smallexample
4847
4848 Here is how the function works: the name of the function is
4849 @code{mark-whole-buffer}; it is followed by an empty argument list,
4850 @samp{()}, which means that the function does not require arguments.
4851 The documentation comes next.
4852
4853 The next line is an @code{(interactive)} expression that tells Emacs
4854 that the function will be used interactively. These details are similar
4855 to the @code{simplified-beginning-of-buffer} function described in the
4856 previous section.
4857
4858 @need 1250
4859 @node Body of mark-whole-buffer
4860 @subsection Body of @code{mark-whole-buffer}
4861
4862 The body of the @code{mark-whole-buffer} function consists of three
4863 lines of code:
4864
4865 @c GNU Emacs 22
4866 @smallexample
4867 @group
4868 (push-mark (point))
4869 (push-mark (point-max) nil t)
4870 (goto-char (point-min))
4871 @end group
4872 @end smallexample
4873
4874 The first of these lines is the expression, @code{(push-mark (point))}.
4875
4876 This line does exactly the same job as the first line of the body of
4877 the @code{simplified-beginning-of-buffer} function, which is written
4878 @code{(push-mark)}. In both cases, the Lisp interpreter sets a mark
4879 at the current position of the cursor.
4880
4881 I don't know why the expression in @code{mark-whole-buffer} is written
4882 @code{(push-mark (point))} and the expression in
4883 @code{beginning-of-buffer} is written @code{(push-mark)}. Perhaps
4884 whoever wrote the code did not know that the arguments for
4885 @code{push-mark} are optional and that if @code{push-mark} is not
4886 passed an argument, the function automatically sets mark at the
4887 location of point by default. Or perhaps the expression was written
4888 so as to parallel the structure of the next line. In any case, the
4889 line causes Emacs to determine the position of point and set a mark
4890 there.
4891
4892 In earlier versions of GNU Emacs, the next line of
4893 @code{mark-whole-buffer} was @code{(push-mark (point-max))}. This
4894 expression sets a mark at the point in the buffer that has the highest
4895 number. This will be the end of the buffer (or, if the buffer is
4896 narrowed, the end of the accessible portion of the buffer.
4897 @xref{Narrowing & Widening, , Narrowing and Widening}, for more about
4898 narrowing.) After this mark has been set, the previous mark, the one
4899 set at point, is no longer set, but Emacs remembers its position, just
4900 as all other recent marks are always remembered. This means that you
4901 can, if you wish, go back to that position by typing @kbd{C-u
4902 C-@key{SPC}} twice.
4903
4904 @need 1250
4905 In GNU Emacs 22, the @code{(point-max)} is slightly more complicated.
4906 The line reads
4907
4908 @smallexample
4909 (push-mark (point-max) nil t)
4910 @end smallexample
4911
4912 @noindent
4913 The expression works nearly the same as before. It sets a mark at the
4914 highest numbered place in the buffer that it can. However, in this
4915 version, @code{push-mark} has two additional arguments. The second
4916 argument to @code{push-mark} is @code{nil}. This tells the function
4917 it @emph{should} display a message that says `Mark set' when it pushes
4918 the mark. The third argument is @code{t}. This tells
4919 @code{push-mark} to activate the mark when Transient Mark mode is
4920 turned on. Transient Mark mode highlights the currently active
4921 region. It is often turned off.
4922
4923 Finally, the last line of the function is @code{(goto-char
4924 (point-min)))}. This is written exactly the same way as it is written
4925 in @code{beginning-of-buffer}. The expression moves the cursor to
4926 the minimum point in the buffer, that is, to the beginning of the buffer
4927 (or to the beginning of the accessible portion of the buffer). As a
4928 result of this, point is placed at the beginning of the buffer and mark
4929 is set at the end of the buffer. The whole buffer is, therefore, the
4930 region.
4931
4932 @node append-to-buffer
4933 @section The Definition of @code{append-to-buffer}
4934 @findex append-to-buffer
4935
4936 The @code{append-to-buffer} command is more complex than the
4937 @code{mark-whole-buffer} command. What it does is copy the region
4938 (that is, the part of the buffer between point and mark) from the
4939 current buffer to a specified buffer.
4940
4941 @menu
4942 * append-to-buffer overview::
4943 * append interactive:: A two part interactive expression.
4944 * append-to-buffer body:: Incorporates a @code{let} expression.
4945 * append save-excursion:: How the @code{save-excursion} works.
4946 @end menu
4947
4948 @ifnottex
4949 @node append-to-buffer overview
4950 @unnumberedsubsec An Overview of @code{append-to-buffer}
4951 @end ifnottex
4952
4953 @findex insert-buffer-substring
4954 The @code{append-to-buffer} command uses the
4955 @code{insert-buffer-substring} function to copy the region.
4956 @code{insert-buffer-substring} is described by its name: it takes a
4957 string of characters from part of a buffer, a ``substring'', and
4958 inserts them into another buffer.
4959
4960 Most of @code{append-to-buffer} is
4961 concerned with setting up the conditions for
4962 @code{insert-buffer-substring} to work: the code must specify both the
4963 buffer to which the text will go, the window it comes from and goes
4964 to, and the region that will be copied.
4965
4966 @need 1250
4967 Here is the complete text of the function:
4968
4969 @smallexample
4970 @group
4971 (defun append-to-buffer (buffer start end)
4972 "Append to specified buffer the text of the region.
4973 It is inserted into that buffer before its point.
4974 @end group
4975
4976 @group
4977 When calling from a program, give three arguments:
4978 BUFFER (or buffer name), START and END.
4979 START and END specify the portion of the current buffer to be copied."
4980 (interactive
4981 (list (read-buffer "Append to buffer: " (other-buffer
4982 (current-buffer) t))
4983 (region-beginning) (region-end)))
4984 @end group
4985 @group
4986 (let ((oldbuf (current-buffer)))
4987 (save-excursion
4988 (let* ((append-to (get-buffer-create buffer))
4989 (windows (get-buffer-window-list append-to t t))
4990 point)
4991 (set-buffer append-to)
4992 (setq point (point))
4993 (barf-if-buffer-read-only)
4994 (insert-buffer-substring oldbuf start end)
4995 (dolist (window windows)
4996 (when (= (window-point window) point)
4997 (set-window-point window (point))))))))
4998 @end group
4999 @end smallexample
5000
5001 The function can be understood by looking at it as a series of
5002 filled-in templates.
5003
5004 The outermost template is for the function definition. In this
5005 function, it looks like this (with several slots filled in):
5006
5007 @smallexample
5008 @group
5009 (defun append-to-buffer (buffer start end)
5010 "@var{documentation}@dots{}"
5011 (interactive @dots{})
5012 @var{body}@dots{})
5013 @end group
5014 @end smallexample
5015
5016 The first line of the function includes its name and three arguments.
5017 The arguments are the @code{buffer} to which the text will be copied, and
5018 the @code{start} and @code{end} of the region in the current buffer that
5019 will be copied.
5020
5021 The next part of the function is the documentation, which is clear and
5022 complete. As is conventional, the three arguments are written in
5023 upper case so you will notice them easily. Even better, they are
5024 described in the same order as in the argument list.
5025
5026 Note that the documentation distinguishes between a buffer and its
5027 name. (The function can handle either.)
5028
5029 @node append interactive
5030 @subsection The @code{append-to-buffer} Interactive Expression
5031
5032 Since the @code{append-to-buffer} function will be used interactively,
5033 the function must have an @code{interactive} expression. (For a
5034 review of @code{interactive}, see @ref{Interactive, , Making a
5035 Function Interactive}.) The expression reads as follows:
5036
5037 @smallexample
5038 @group
5039 (interactive
5040 (list (read-buffer
5041 "Append to buffer: "
5042 (other-buffer (current-buffer) t))
5043 (region-beginning)
5044 (region-end)))
5045 @end group
5046 @end smallexample
5047
5048 @noindent
5049 This expression is not one with letters standing for parts, as
5050 described earlier. Instead, it starts a list with these parts:
5051
5052 The first part of the list is an expression to read the name of a
5053 buffer and return it as a string. That is @code{read-buffer}. The
5054 function requires a prompt as its first argument, @samp{"Append to
5055 buffer: "}. Its second argument tells the command what value to
5056 provide if you don't specify anything.
5057
5058 In this case that second argument is an expression containing the
5059 function @code{other-buffer}, an exception, and a @samp{t}, standing
5060 for true.
5061
5062 The first argument to @code{other-buffer}, the exception, is yet
5063 another function, @code{current-buffer}. That is not going to be
5064 returned. The second argument is the symbol for true, @code{t}. that
5065 tells @code{other-buffer} that it may show visible buffers (except in
5066 this case, it will not show the current buffer, which makes sense).
5067
5068 @need 1250
5069 The expression looks like this:
5070
5071 @smallexample
5072 (other-buffer (current-buffer) t)
5073 @end smallexample
5074
5075 The second and third arguments to the @code{list} expression are
5076 @code{(region-beginning)} and @code{(region-end)}. These two
5077 functions specify the beginning and end of the text to be appended.
5078
5079 @need 1250
5080 Originally, the command used the letters @samp{B} and @samp{r}.
5081 The whole @code{interactive} expression looked like this:
5082
5083 @smallexample
5084 (interactive "BAppend to buffer:@: \nr")
5085 @end smallexample
5086
5087 @noindent
5088 But when that was done, the default value of the buffer switched to
5089 was invisible. That was not wanted.
5090
5091 (The prompt was separated from the second argument with a newline,
5092 @samp{\n}. It was followed by an @samp{r} that told Emacs to bind the
5093 two arguments that follow the symbol @code{buffer} in the function's
5094 argument list (that is, @code{start} and @code{end}) to the values of
5095 point and mark. That argument worked fine.)
5096
5097 @node append-to-buffer body
5098 @subsection The Body of @code{append-to-buffer}
5099
5100 @ignore
5101 in GNU Emacs 22 in /usr/local/src/emacs/lisp/simple.el
5102
5103 (defun append-to-buffer (buffer start end)
5104 "Append to specified buffer the text of the region.
5105 It is inserted into that buffer before its point.
5106
5107 When calling from a program, give three arguments:
5108 BUFFER (or buffer name), START and END.
5109 START and END specify the portion of the current buffer to be copied."
5110 (interactive
5111 (list (read-buffer "Append to buffer: " (other-buffer (current-buffer) t))
5112 (region-beginning) (region-end)))
5113 (let ((oldbuf (current-buffer)))
5114 (save-excursion
5115 (let* ((append-to (get-buffer-create buffer))
5116 (windows (get-buffer-window-list append-to t t))
5117 point)
5118 (set-buffer append-to)
5119 (setq point (point))
5120 (barf-if-buffer-read-only)
5121 (insert-buffer-substring oldbuf start end)
5122 (dolist (window windows)
5123 (when (= (window-point window) point)
5124 (set-window-point window (point))))))))
5125 @end ignore
5126
5127 The body of the @code{append-to-buffer} function begins with @code{let}.
5128
5129 As we have seen before (@pxref{let, , @code{let}}), the purpose of a
5130 @code{let} expression is to create and give initial values to one or
5131 more variables that will only be used within the body of the
5132 @code{let}. This means that such a variable will not be confused with
5133 any variable of the same name outside the @code{let} expression.
5134
5135 We can see how the @code{let} expression fits into the function as a
5136 whole by showing a template for @code{append-to-buffer} with the
5137 @code{let} expression in outline:
5138
5139 @smallexample
5140 @group
5141 (defun append-to-buffer (buffer start end)
5142 "@var{documentation}@dots{}"
5143 (interactive @dots{})
5144 (let ((@var{variable} @var{value}))
5145 @var{body}@dots{})
5146 @end group
5147 @end smallexample
5148
5149 The @code{let} expression has three elements:
5150
5151 @enumerate
5152 @item
5153 The symbol @code{let};
5154
5155 @item
5156 A varlist containing, in this case, a single two-element list,
5157 @code{(@var{variable} @var{value})};
5158
5159 @item
5160 The body of the @code{let} expression.
5161 @end enumerate
5162
5163 @need 800
5164 In the @code{append-to-buffer} function, the varlist looks like this:
5165
5166 @smallexample
5167 (oldbuf (current-buffer))
5168 @end smallexample
5169
5170 @noindent
5171 In this part of the @code{let} expression, the one variable,
5172 @code{oldbuf}, is bound to the value returned by the
5173 @code{(current-buffer)} expression. The variable, @code{oldbuf}, is
5174 used to keep track of the buffer in which you are working and from
5175 which you will copy.
5176
5177 The element or elements of a varlist are surrounded by a set of
5178 parentheses so the Lisp interpreter can distinguish the varlist from
5179 the body of the @code{let}. As a consequence, the two-element list
5180 within the varlist is surrounded by a circumscribing set of parentheses.
5181 The line looks like this:
5182
5183 @smallexample
5184 @group
5185 (let ((oldbuf (current-buffer)))
5186 @dots{} )
5187 @end group
5188 @end smallexample
5189
5190 @noindent
5191 The two parentheses before @code{oldbuf} might surprise you if you did
5192 not realize that the first parenthesis before @code{oldbuf} marks the
5193 boundary of the varlist and the second parenthesis marks the beginning
5194 of the two-element list, @code{(oldbuf (current-buffer))}.
5195
5196 @node append save-excursion
5197 @subsection @code{save-excursion} in @code{append-to-buffer}
5198
5199 The body of the @code{let} expression in @code{append-to-buffer}
5200 consists of a @code{save-excursion} expression.
5201
5202 The @code{save-excursion} function saves the locations of point and
5203 mark, and restores them to those positions after the expressions in the
5204 body of the @code{save-excursion} complete execution. In addition,
5205 @code{save-excursion} keeps track of the original buffer, and
5206 restores it. This is how @code{save-excursion} is used in
5207 @code{append-to-buffer}.
5208
5209 @need 1500
5210 @cindex Indentation for formatting
5211 @cindex Formatting convention
5212 Incidentally, it is worth noting here that a Lisp function is normally
5213 formatted so that everything that is enclosed in a multi-line spread is
5214 indented more to the right than the first symbol. In this function
5215 definition, the @code{let} is indented more than the @code{defun}, and
5216 the @code{save-excursion} is indented more than the @code{let}, like
5217 this:
5218
5219 @smallexample
5220 @group
5221 (defun @dots{}
5222 @dots{}
5223 @dots{}
5224 (let@dots{}
5225 (save-excursion
5226 @dots{}
5227 @end group
5228 @end smallexample
5229
5230 @need 1500
5231 @noindent
5232 This formatting convention makes it easy to see that the lines in
5233 the body of the @code{save-excursion} are enclosed by the parentheses
5234 associated with @code{save-excursion}, just as the
5235 @code{save-excursion} itself is enclosed by the parentheses associated
5236 with the @code{let}:
5237
5238 @smallexample
5239 @group
5240 (let ((oldbuf (current-buffer)))
5241 (save-excursion
5242 @dots{}
5243 (set-buffer @dots{})
5244 (insert-buffer-substring oldbuf start end)
5245 @dots{}))
5246 @end group
5247 @end smallexample
5248
5249 @need 1200
5250 The use of the @code{save-excursion} function can be viewed as a process
5251 of filling in the slots of a template:
5252
5253 @smallexample
5254 @group
5255 (save-excursion
5256 @var{first-expression-in-body}
5257 @var{second-expression-in-body}
5258 @dots{}
5259 @var{last-expression-in-body})
5260 @end group
5261 @end smallexample
5262
5263 @need 1200
5264 @noindent
5265 In this function, the body of the @code{save-excursion} contains only
5266 one expression, the @code{let*} expression. You know about a
5267 @code{let} function. The @code{let*} function is different. It has a
5268 @samp{*} in its name. It enables Emacs to set each variable in its
5269 varlist in sequence, one after another.
5270
5271 Its critical feature is that variables later in the varlist can make
5272 use of the values to which Emacs set variables earlier in the varlist.
5273 @xref{fwd-para let, , The @code{let*} expression}.
5274
5275 We will skip functions like @code{let*} and focus on two: the
5276 @code{set-buffer} function and the @code{insert-buffer-substring}
5277 function.
5278
5279 @need 1250
5280 In the old days, the @code{set-buffer} expression was simply
5281
5282 @smallexample
5283 (set-buffer (get-buffer-create buffer))
5284 @end smallexample
5285
5286 @need 1250
5287 @noindent
5288 but now it is
5289
5290 @smallexample
5291 (set-buffer append-to)
5292 @end smallexample
5293
5294 @noindent
5295 @code{append-to} is bound to @code{(get-buffer-create buffer)} earlier
5296 on in the @code{let*} expression. That extra binding would not be
5297 necessary except for that @code{append-to} is used later in the
5298 varlist as an argument to @code{get-buffer-window-list}.
5299
5300 @ignore
5301 in GNU Emacs 22
5302
5303 (let ((oldbuf (current-buffer)))
5304 (save-excursion
5305 (let* ((append-to (get-buffer-create buffer))
5306 (windows (get-buffer-window-list append-to t t))
5307 point)
5308 (set-buffer append-to)
5309 (setq point (point))
5310 (barf-if-buffer-read-only)
5311 (insert-buffer-substring oldbuf start end)
5312 (dolist (window windows)
5313 (when (= (window-point window) point)
5314 (set-window-point window (point))))))))
5315 @end ignore
5316
5317 The @code{append-to-buffer} function definition inserts text from the
5318 buffer in which you are currently to a named buffer. It happens that
5319 @code{insert-buffer-substring} copies text from another buffer to the
5320 current buffer, just the reverse---that is why the
5321 @code{append-to-buffer} definition starts out with a @code{let} that
5322 binds the local symbol @code{oldbuf} to the value returned by
5323 @code{current-buffer}.
5324
5325 @need 1250
5326 The @code{insert-buffer-substring} expression looks like this:
5327
5328 @smallexample
5329 (insert-buffer-substring oldbuf start end)
5330 @end smallexample
5331
5332 @noindent
5333 The @code{insert-buffer-substring} function copies a string
5334 @emph{from} the buffer specified as its first argument and inserts the
5335 string into the present buffer. In this case, the argument to
5336 @code{insert-buffer-substring} is the value of the variable created
5337 and bound by the @code{let}, namely the value of @code{oldbuf}, which
5338 was the current buffer when you gave the @code{append-to-buffer}
5339 command.
5340
5341 After @code{insert-buffer-substring} has done its work,
5342 @code{save-excursion} will restore the action to the original buffer
5343 and @code{append-to-buffer} will have done its job.
5344
5345 @need 800
5346 Written in skeletal form, the workings of the body look like this:
5347
5348 @smallexample
5349 @group
5350 (let (@var{bind-}@code{oldbuf}@var{-to-value-of-}@code{current-buffer})
5351 (save-excursion ; @r{Keep track of buffer.}
5352 @var{change-buffer}
5353 @var{insert-substring-from-}@code{oldbuf}@var{-into-buffer})
5354
5355 @var{change-back-to-original-buffer-when-finished}
5356 @var{let-the-local-meaning-of-}@code{oldbuf}@var{-disappear-when-finished}
5357 @end group
5358 @end smallexample
5359
5360 In summary, @code{append-to-buffer} works as follows: it saves the
5361 value of the current buffer in the variable called @code{oldbuf}. It
5362 gets the new buffer (creating one if need be) and switches Emacs's
5363 attention to it. Using the value of @code{oldbuf}, it inserts the
5364 region of text from the old buffer into the new buffer; and then using
5365 @code{save-excursion}, it brings you back to your original buffer.
5366
5367 In looking at @code{append-to-buffer}, you have explored a fairly
5368 complex function. It shows how to use @code{let} and
5369 @code{save-excursion}, and how to change to and come back from another
5370 buffer. Many function definitions use @code{let},
5371 @code{save-excursion}, and @code{set-buffer} this way.
5372
5373 @node Buffer Related Review
5374 @section Review
5375
5376 Here is a brief summary of the various functions discussed in this chapter.
5377
5378 @table @code
5379 @item describe-function
5380 @itemx describe-variable
5381 Print the documentation for a function or variable.
5382 Conventionally bound to @kbd{C-h f} and @kbd{C-h v}.
5383
5384 @item find-tag
5385 Find the file containing the source for a function or variable and
5386 switch buffers to it, positioning point at the beginning of the item.
5387 Conventionally bound to @kbd{M-.} (that's a period following the
5388 @key{META} key).
5389
5390 @item save-excursion
5391 Save the location of point and mark and restore their values after the
5392 arguments to @code{save-excursion} have been evaluated. Also, remember
5393 the current buffer and return to it.
5394
5395 @item push-mark
5396 Set mark at a location and record the value of the previous mark on the
5397 mark ring. The mark is a location in the buffer that will keep its
5398 relative position even if text is added to or removed from the buffer.
5399
5400 @item goto-char
5401 Set point to the location specified by the value of the argument, which
5402 can be a number, a marker, or an expression that returns the number of
5403 a position, such as @code{(point-min)}.
5404
5405 @item insert-buffer-substring
5406 Copy a region of text from a buffer that is passed to the function as
5407 an argument and insert the region into the current buffer.
5408
5409 @item mark-whole-buffer
5410 Mark the whole buffer as a region. Normally bound to @kbd{C-x h}.
5411
5412 @item set-buffer
5413 Switch the attention of Emacs to another buffer, but do not change the
5414 window being displayed. Used when the program rather than a human is
5415 to work on a different buffer.
5416
5417 @item get-buffer-create
5418 @itemx get-buffer
5419 Find a named buffer or create one if a buffer of that name does not
5420 exist. The @code{get-buffer} function returns @code{nil} if the named
5421 buffer does not exist.
5422 @end table
5423
5424 @need 1500
5425 @node Buffer Exercises
5426 @section Exercises
5427
5428 @itemize @bullet
5429 @item
5430 Write your own @code{simplified-end-of-buffer} function definition;
5431 then test it to see whether it works.
5432
5433 @item
5434 Use @code{if} and @code{get-buffer} to write a function that prints a
5435 message telling you whether a buffer exists.
5436
5437 @item
5438 Using @code{find-tag}, find the source for the @code{copy-to-buffer}
5439 function.
5440 @end itemize
5441
5442 @node More Complex
5443 @chapter A Few More Complex Functions
5444
5445 In this chapter, we build on what we have learned in previous chapters
5446 by looking at more complex functions. The @code{copy-to-buffer}
5447 function illustrates use of two @code{save-excursion} expressions in
5448 one definition, while the @code{insert-buffer} function illustrates
5449 use of an asterisk in an @code{interactive} expression, use of
5450 @code{or}, and the important distinction between a name and the object
5451 to which the name refers.
5452
5453 @menu
5454 * copy-to-buffer:: With @code{set-buffer}, @code{get-buffer-create}.
5455 * insert-buffer:: Read-only, and with @code{or}.
5456 * beginning-of-buffer:: Shows @code{goto-char},
5457 @code{point-min}, and @code{push-mark}.
5458 * Second Buffer Related Review::
5459 * optional Exercise::
5460 @end menu
5461
5462 @node copy-to-buffer
5463 @section The Definition of @code{copy-to-buffer}
5464 @findex copy-to-buffer
5465
5466 After understanding how @code{append-to-buffer} works, it is easy to
5467 understand @code{copy-to-buffer}. This function copies text into a
5468 buffer, but instead of adding to the second buffer, it replaces all the
5469 previous text in the second buffer.
5470
5471 @need 800
5472 The body of @code{copy-to-buffer} looks like this,
5473
5474 @smallexample
5475 @group
5476 @dots{}
5477 (interactive "BCopy to buffer: \nr")
5478 (let ((oldbuf (current-buffer)))
5479 (with-current-buffer (get-buffer-create buffer)
5480 (barf-if-buffer-read-only)
5481 (erase-buffer)
5482 (save-excursion
5483 (insert-buffer-substring oldbuf start end)))))
5484 @end group
5485 @end smallexample
5486
5487 The @code{copy-to-buffer} function has a simpler @code{interactive}
5488 expression than @code{append-to-buffer}.
5489
5490 @need 800
5491 The definition then says
5492
5493 @smallexample
5494 (with-current-buffer (get-buffer-create buffer) @dots{}
5495 @end smallexample
5496
5497 First, look at the earliest inner expression; that is evaluated first.
5498 That expression starts with @code{get-buffer-create buffer}. The
5499 function tells the computer to use the buffer with the name specified
5500 as the one to which you are copying, or if such a buffer does not
5501 exist, to create it. Then, the @code{with-current-buffer} function
5502 evaluates its body with that buffer temporarily current.
5503
5504 (This demonstrates another way to shift the computer's attention but
5505 not the user's. The @code{append-to-buffer} function showed how to do
5506 the same with @code{save-excursion} and @code{set-buffer}.
5507 @code{with-current-buffer} is a newer, and arguably easier,
5508 mechanism.)
5509
5510 The @code{barf-if-buffer-read-only} function sends you an error
5511 message saying the buffer is read-only if you cannot modify it.
5512
5513 The next line has the @code{erase-buffer} function as its sole
5514 contents. That function erases the buffer.
5515
5516 Finally, the last two lines contain the @code{save-excursion}
5517 expression with @code{insert-buffer-substring} as its body.
5518 The @code{insert-buffer-substring} expression copies the text from
5519 the buffer you are in (and you have not seen the computer shift its
5520 attention, so you don't know that that buffer is now called
5521 @code{oldbuf}).
5522
5523 Incidentally, this is what is meant by `replacement'. To replace text,
5524 Emacs erases the previous text and then inserts new text.
5525
5526 @need 1250
5527 In outline, the body of @code{copy-to-buffer} looks like this:
5528
5529 @smallexample
5530 @group
5531 (let (@var{bind-}@code{oldbuf}@var{-to-value-of-}@code{current-buffer})
5532 (@var{with-the-buffer-you-are-copying-to}
5533 (@var{but-do-not-erase-or-copy-to-a-read-only-buffer})
5534 (erase-buffer)
5535 (save-excursion
5536 @var{insert-substring-from-}@code{oldbuf}@var{-into-buffer})))
5537 @end group
5538 @end smallexample
5539
5540 @node insert-buffer
5541 @section The Definition of @code{insert-buffer}
5542 @findex insert-buffer
5543
5544 @code{insert-buffer} is yet another buffer-related function. This
5545 command copies another buffer @emph{into} the current buffer. It is the
5546 reverse of @code{append-to-buffer} or @code{copy-to-buffer}, since they
5547 copy a region of text @emph{from} the current buffer to another buffer.
5548
5549 Here is a discussion based on the original code. The code was
5550 simplified in 2003 and is harder to understand.
5551
5552 (@xref{New insert-buffer, , New Body for @code{insert-buffer}}, to see
5553 a discussion of the new body.)
5554
5555 In addition, this code illustrates the use of @code{interactive} with a
5556 buffer that might be @dfn{read-only} and the important distinction
5557 between the name of an object and the object actually referred to.
5558
5559 @menu
5560 * insert-buffer code::
5561 * insert-buffer interactive:: When you can read, but not write.
5562 * insert-buffer body:: The body has an @code{or} and a @code{let}.
5563 * if & or:: Using an @code{if} instead of an @code{or}.
5564 * Insert or:: How the @code{or} expression works.
5565 * Insert let:: Two @code{save-excursion} expressions.
5566 * New insert-buffer::
5567 @end menu
5568
5569 @ifnottex
5570 @node insert-buffer code
5571 @unnumberedsubsec The Code for @code{insert-buffer}
5572 @end ifnottex
5573
5574 @need 800
5575 Here is the earlier code:
5576
5577 @smallexample
5578 @group
5579 (defun insert-buffer (buffer)
5580 "Insert after point the contents of BUFFER.
5581 Puts mark after the inserted text.
5582 BUFFER may be a buffer or a buffer name."
5583 (interactive "*bInsert buffer:@: ")
5584 @end group
5585 @group
5586 (or (bufferp buffer)
5587 (setq buffer (get-buffer buffer)))
5588 (let (start end newmark)
5589 (save-excursion
5590 (save-excursion
5591 (set-buffer buffer)
5592 (setq start (point-min) end (point-max)))
5593 @end group
5594 @group
5595 (insert-buffer-substring buffer start end)
5596 (setq newmark (point)))
5597 (push-mark newmark)))
5598 @end group
5599 @end smallexample
5600
5601 @need 1200
5602 As with other function definitions, you can use a template to see an
5603 outline of the function:
5604
5605 @smallexample
5606 @group
5607 (defun insert-buffer (buffer)
5608 "@var{documentation}@dots{}"
5609 (interactive "*bInsert buffer:@: ")
5610 @var{body}@dots{})
5611 @end group
5612 @end smallexample
5613
5614 @node insert-buffer interactive
5615 @subsection The Interactive Expression in @code{insert-buffer}
5616 @findex interactive, @r{example use of}
5617
5618 In @code{insert-buffer}, the argument to the @code{interactive}
5619 declaration has two parts, an asterisk, @samp{*}, and @samp{bInsert
5620 buffer:@: }.
5621
5622 @menu
5623 * Read-only buffer:: When a buffer cannot be modified.
5624 * b for interactive:: An existing buffer or else its name.
5625 @end menu
5626
5627 @node Read-only buffer
5628 @unnumberedsubsubsec A Read-only Buffer
5629 @cindex Read-only buffer
5630 @cindex Asterisk for read-only buffer
5631 @findex * @r{for read-only buffer}
5632
5633 The asterisk is for the situation when the current buffer is a
5634 read-only buffer---a buffer that cannot be modified. If
5635 @code{insert-buffer} is called when the current buffer is read-only, a
5636 message to this effect is printed in the echo area and the terminal
5637 may beep or blink at you; you will not be permitted to insert anything
5638 into current buffer. The asterisk does not need to be followed by a
5639 newline to separate it from the next argument.
5640
5641 @node b for interactive
5642 @unnumberedsubsubsec @samp{b} in an Interactive Expression
5643
5644 The next argument in the interactive expression starts with a lower
5645 case @samp{b}. (This is different from the code for
5646 @code{append-to-buffer}, which uses an upper-case @samp{B}.
5647 @xref{append-to-buffer, , The Definition of @code{append-to-buffer}}.)
5648 The lower-case @samp{b} tells the Lisp interpreter that the argument
5649 for @code{insert-buffer} should be an existing buffer or else its
5650 name. (The upper-case @samp{B} option provides for the possibility
5651 that the buffer does not exist.) Emacs will prompt you for the name
5652 of the buffer, offering you a default buffer, with name completion
5653 enabled. If the buffer does not exist, you receive a message that
5654 says ``No match''; your terminal may beep at you as well.
5655
5656 The new and simplified code generates a list for @code{interactive}.
5657 It uses the @code{barf-if-buffer-read-only} and @code{read-buffer}
5658 functions with which we are already familiar and the @code{progn}
5659 special form with which we are not. (It will be described later.)
5660
5661 @node insert-buffer body
5662 @subsection The Body of the @code{insert-buffer} Function
5663
5664 The body of the @code{insert-buffer} function has two major parts: an
5665 @code{or} expression and a @code{let} expression. The purpose of the
5666 @code{or} expression is to ensure that the argument @code{buffer} is
5667 bound to a buffer and not just the name of a buffer. The body of the
5668 @code{let} expression contains the code which copies the other buffer
5669 into the current buffer.
5670
5671 @need 1250
5672 In outline, the two expressions fit into the @code{insert-buffer}
5673 function like this:
5674
5675 @smallexample
5676 @group
5677 (defun insert-buffer (buffer)
5678 "@var{documentation}@dots{}"
5679 (interactive "*bInsert buffer:@: ")
5680 (or @dots{}
5681 @dots{}
5682 @end group
5683 @group
5684 (let (@var{varlist})
5685 @var{body-of-}@code{let}@dots{} )
5686 @end group
5687 @end smallexample
5688
5689 To understand how the @code{or} expression ensures that the argument
5690 @code{buffer} is bound to a buffer and not to the name of a buffer, it
5691 is first necessary to understand the @code{or} function.
5692
5693 Before doing this, let me rewrite this part of the function using
5694 @code{if} so that you can see what is done in a manner that will be familiar.
5695
5696 @node if & or
5697 @subsection @code{insert-buffer} With an @code{if} Instead of an @code{or}
5698
5699 The job to be done is to make sure the value of @code{buffer} is a
5700 buffer itself and not the name of a buffer. If the value is the name,
5701 then the buffer itself must be got.
5702
5703 You can imagine yourself at a conference where an usher is wandering
5704 around holding a list with your name on it and looking for you: the
5705 usher is ``bound'' to your name, not to you; but when the usher finds
5706 you and takes your arm, the usher becomes ``bound'' to you.
5707
5708 @need 800
5709 In Lisp, you might describe this situation like this:
5710
5711 @smallexample
5712 @group
5713 (if (not (holding-on-to-guest))
5714 (find-and-take-arm-of-guest))
5715 @end group
5716 @end smallexample
5717
5718 We want to do the same thing with a buffer---if we do not have the
5719 buffer itself, we want to get it.
5720
5721 @need 1200
5722 Using a predicate called @code{bufferp} that tells us whether we have a
5723 buffer (rather than its name), we can write the code like this:
5724
5725 @smallexample
5726 @group
5727 (if (not (bufferp buffer)) ; @r{if-part}
5728 (setq buffer (get-buffer buffer))) ; @r{then-part}
5729 @end group
5730 @end smallexample
5731
5732 @noindent
5733 Here, the true-or-false-test of the @code{if} expression is
5734 @w{@code{(not (bufferp buffer))}}; and the then-part is the expression
5735 @w{@code{(setq buffer (get-buffer buffer))}}.
5736
5737 In the test, the function @code{bufferp} returns true if its argument is
5738 a buffer---but false if its argument is the name of the buffer. (The
5739 last character of the function name @code{bufferp} is the character
5740 @samp{p}; as we saw earlier, such use of @samp{p} is a convention that
5741 indicates that the function is a predicate, which is a term that means
5742 that the function will determine whether some property is true or false.
5743 @xref{Wrong Type of Argument, , Using the Wrong Type Object as an
5744 Argument}.)
5745
5746 @need 1200
5747 The function @code{not} precedes the expression @code{(bufferp buffer)},
5748 so the true-or-false-test looks like this:
5749
5750 @smallexample
5751 (not (bufferp buffer))
5752 @end smallexample
5753
5754 @noindent
5755 @code{not} is a function that returns true if its argument is false
5756 and false if its argument is true. So if @code{(bufferp buffer)}
5757 returns true, the @code{not} expression returns false and vice-verse:
5758 what is ``not true'' is false and what is ``not false'' is true.
5759
5760 Using this test, the @code{if} expression works as follows: when the
5761 value of the variable @code{buffer} is actually a buffer rather than
5762 its name, the true-or-false-test returns false and the @code{if}
5763 expression does not evaluate the then-part. This is fine, since we do
5764 not need to do anything to the variable @code{buffer} if it really is
5765 a buffer.
5766
5767 On the other hand, when the value of @code{buffer} is not a buffer
5768 itself, but the name of a buffer, the true-or-false-test returns true
5769 and the then-part of the expression is evaluated. In this case, the
5770 then-part is @code{(setq buffer (get-buffer buffer))}. This
5771 expression uses the @code{get-buffer} function to return an actual
5772 buffer itself, given its name. The @code{setq} then sets the variable
5773 @code{buffer} to the value of the buffer itself, replacing its previous
5774 value (which was the name of the buffer).
5775
5776 @node Insert or
5777 @subsection The @code{or} in the Body
5778
5779 The purpose of the @code{or} expression in the @code{insert-buffer}
5780 function is to ensure that the argument @code{buffer} is bound to a
5781 buffer and not just to the name of a buffer. The previous section shows
5782 how the job could have been done using an @code{if} expression.
5783 However, the @code{insert-buffer} function actually uses @code{or}.
5784 To understand this, it is necessary to understand how @code{or} works.
5785
5786 @findex or
5787 An @code{or} function can have any number of arguments. It evaluates
5788 each argument in turn and returns the value of the first of its
5789 arguments that is not @code{nil}. Also, and this is a crucial feature
5790 of @code{or}, it does not evaluate any subsequent arguments after
5791 returning the first non-@code{nil} value.
5792
5793 @need 800
5794 The @code{or} expression looks like this:
5795
5796 @smallexample
5797 @group
5798 (or (bufferp buffer)
5799 (setq buffer (get-buffer buffer)))
5800 @end group
5801 @end smallexample
5802
5803 @noindent
5804 The first argument to @code{or} is the expression @code{(bufferp buffer)}.
5805 This expression returns true (a non-@code{nil} value) if the buffer is
5806 actually a buffer, and not just the name of a buffer. In the @code{or}
5807 expression, if this is the case, the @code{or} expression returns this
5808 true value and does not evaluate the next expression---and this is fine
5809 with us, since we do not want to do anything to the value of
5810 @code{buffer} if it really is a buffer.
5811
5812 On the other hand, if the value of @code{(bufferp buffer)} is @code{nil},
5813 which it will be if the value of @code{buffer} is the name of a buffer,
5814 the Lisp interpreter evaluates the next element of the @code{or}
5815 expression. This is the expression @code{(setq buffer (get-buffer
5816 buffer))}. This expression returns a non-@code{nil} value, which
5817 is the value to which it sets the variable @code{buffer}---and this
5818 value is a buffer itself, not the name of a buffer.
5819
5820 The result of all this is that the symbol @code{buffer} is always
5821 bound to a buffer itself rather than to the name of a buffer. All
5822 this is necessary because the @code{set-buffer} function in a
5823 following line only works with a buffer itself, not with the name to a
5824 buffer.
5825
5826 @need 1250
5827 Incidentally, using @code{or}, the situation with the usher would be
5828 written like this:
5829
5830 @smallexample
5831 (or (holding-on-to-guest) (find-and-take-arm-of-guest))
5832 @end smallexample
5833
5834 @node Insert let
5835 @subsection The @code{let} Expression in @code{insert-buffer}
5836
5837 After ensuring that the variable @code{buffer} refers to a buffer itself
5838 and not just to the name of a buffer, the @code{insert-buffer function}
5839 continues with a @code{let} expression. This specifies three local
5840 variables, @code{start}, @code{end}, and @code{newmark} and binds them
5841 to the initial value @code{nil}. These variables are used inside the
5842 remainder of the @code{let} and temporarily hide any other occurrence of
5843 variables of the same name in Emacs until the end of the @code{let}.
5844
5845 @need 1200
5846 The body of the @code{let} contains two @code{save-excursion}
5847 expressions. First, we will look at the inner @code{save-excursion}
5848 expression in detail. The expression looks like this:
5849
5850 @smallexample
5851 @group
5852 (save-excursion
5853 (set-buffer buffer)
5854 (setq start (point-min) end (point-max)))
5855 @end group
5856 @end smallexample
5857
5858 @noindent
5859 The expression @code{(set-buffer buffer)} changes Emacs's attention
5860 from the current buffer to the one from which the text will copied.
5861 In that buffer, the variables @code{start} and @code{end} are set to
5862 the beginning and end of the buffer, using the commands
5863 @code{point-min} and @code{point-max}. Note that we have here an
5864 illustration of how @code{setq} is able to set two variables in the
5865 same expression. The first argument of @code{setq} is set to the
5866 value of its second, and its third argument is set to the value of its
5867 fourth.
5868
5869 After the body of the inner @code{save-excursion} is evaluated, the
5870 @code{save-excursion} restores the original buffer, but @code{start} and
5871 @code{end} remain set to the values of the beginning and end of the
5872 buffer from which the text will be copied.
5873
5874 @need 1250
5875 The outer @code{save-excursion} expression looks like this:
5876
5877 @smallexample
5878 @group
5879 (save-excursion
5880 (@var{inner-}@code{save-excursion}@var{-expression}
5881 (@var{go-to-new-buffer-and-set-}@code{start}@var{-and-}@code{end})
5882 (insert-buffer-substring buffer start end)
5883 (setq newmark (point)))
5884 @end group
5885 @end smallexample
5886
5887 @noindent
5888 The @code{insert-buffer-substring} function copies the text
5889 @emph{into} the current buffer @emph{from} the region indicated by
5890 @code{start} and @code{end} in @code{buffer}. Since the whole of the
5891 second buffer lies between @code{start} and @code{end}, the whole of
5892 the second buffer is copied into the buffer you are editing. Next,
5893 the value of point, which will be at the end of the inserted text, is
5894 recorded in the variable @code{newmark}.
5895
5896 After the body of the outer @code{save-excursion} is evaluated, point
5897 and mark are relocated to their original places.
5898
5899 However, it is convenient to locate a mark at the end of the newly
5900 inserted text and locate point at its beginning. The @code{newmark}
5901 variable records the end of the inserted text. In the last line of
5902 the @code{let} expression, the @code{(push-mark newmark)} expression
5903 function sets a mark to this location. (The previous location of the
5904 mark is still accessible; it is recorded on the mark ring and you can
5905 go back to it with @kbd{C-u C-@key{SPC}}.) Meanwhile, point is
5906 located at the beginning of the inserted text, which is where it was
5907 before you called the insert function, the position of which was saved
5908 by the first @code{save-excursion}.
5909
5910 @need 1250
5911 The whole @code{let} expression looks like this:
5912
5913 @smallexample
5914 @group
5915 (let (start end newmark)
5916 (save-excursion
5917 (save-excursion
5918 (set-buffer buffer)
5919 (setq start (point-min) end (point-max)))
5920 (insert-buffer-substring buffer start end)
5921 (setq newmark (point)))
5922 (push-mark newmark))
5923 @end group
5924 @end smallexample
5925
5926 Like the @code{append-to-buffer} function, the @code{insert-buffer}
5927 function uses @code{let}, @code{save-excursion}, and
5928 @code{set-buffer}. In addition, the function illustrates one way to
5929 use @code{or}. All these functions are building blocks that we will
5930 find and use again and again.
5931
5932 @node New insert-buffer
5933 @subsection New Body for @code{insert-buffer}
5934 @findex insert-buffer, new version body
5935 @findex new version body for insert-buffer
5936
5937 The body in the GNU Emacs 22 version is more confusing than the original.
5938
5939 @need 1250
5940 It consists of two expressions,
5941
5942 @smallexample
5943 @group
5944 (push-mark
5945 (save-excursion
5946 (insert-buffer-substring (get-buffer buffer))
5947 (point)))
5948
5949 nil
5950 @end group
5951 @end smallexample
5952
5953 @noindent
5954 except, and this is what confuses novices, very important work is done
5955 inside the @code{push-mark} expression.
5956
5957 The @code{get-buffer} function returns a buffer with the name
5958 provided. You will note that the function is @emph{not} called
5959 @code{get-buffer-create}; it does not create a buffer if one does not
5960 already exist. The buffer returned by @code{get-buffer}, an existing
5961 buffer, is passed to @code{insert-buffer-substring}, which inserts the
5962 whole of the buffer (since you did not specify anything else).
5963
5964 The location into which the buffer is inserted is recorded by
5965 @code{push-mark}. Then the function returns @code{nil}, the value of
5966 its last command. Put another way, the @code{insert-buffer} function
5967 exists only to produce a side effect, inserting another buffer, not to
5968 return any value.
5969
5970 @node beginning-of-buffer
5971 @section Complete Definition of @code{beginning-of-buffer}
5972 @findex beginning-of-buffer
5973
5974 The basic structure of the @code{beginning-of-buffer} function has
5975 already been discussed. (@xref{simplified-beginning-of-buffer, , A
5976 Simplified @code{beginning-of-buffer} Definition}.)
5977 This section describes the complex part of the definition.
5978
5979 As previously described, when invoked without an argument,
5980 @code{beginning-of-buffer} moves the cursor to the beginning of the
5981 buffer (in truth, the beginning of the accessible portion of the
5982 buffer), leaving the mark at the previous position. However, when the
5983 command is invoked with a number between one and ten, the function
5984 considers that number to be a fraction of the length of the buffer,
5985 measured in tenths, and Emacs moves the cursor that fraction of the
5986 way from the beginning of the buffer. Thus, you can either call this
5987 function with the key command @kbd{M-<}, which will move the cursor to
5988 the beginning of the buffer, or with a key command such as @kbd{C-u 7
5989 M-<} which will move the cursor to a point 70% of the way through the
5990 buffer. If a number bigger than ten is used for the argument, it
5991 moves to the end of the buffer.
5992
5993 The @code{beginning-of-buffer} function can be called with or without an
5994 argument. The use of the argument is optional.
5995
5996 @menu
5997 * Optional Arguments::
5998 * beginning-of-buffer opt arg:: Example with optional argument.
5999 * beginning-of-buffer complete::
6000 @end menu
6001
6002 @node Optional Arguments
6003 @subsection Optional Arguments
6004
6005 Unless told otherwise, Lisp expects that a function with an argument in
6006 its function definition will be called with a value for that argument.
6007 If that does not happen, you get an error and a message that says
6008 @samp{Wrong number of arguments}.
6009
6010 @cindex Optional arguments
6011 @cindex Keyword
6012 @findex optional
6013 However, optional arguments are a feature of Lisp: a particular
6014 @dfn{keyword} is used to tell the Lisp interpreter that an argument is
6015 optional. The keyword is @code{&optional}. (The @samp{&} in front of
6016 @samp{optional} is part of the keyword.) In a function definition, if
6017 an argument follows the keyword @code{&optional}, no value need be
6018 passed to that argument when the function is called.
6019
6020 @need 1200
6021 The first line of the function definition of @code{beginning-of-buffer}
6022 therefore looks like this:
6023
6024 @smallexample
6025 (defun beginning-of-buffer (&optional arg)
6026 @end smallexample
6027
6028 @need 1250
6029 In outline, the whole function looks like this:
6030
6031 @smallexample
6032 @group
6033 (defun beginning-of-buffer (&optional arg)
6034 "@var{documentation}@dots{}"
6035 (interactive "P")
6036 (or (@var{is-the-argument-a-cons-cell} arg)
6037 (and @var{are-both-transient-mark-mode-and-mark-active-true})
6038 (push-mark))
6039 (let (@var{determine-size-and-set-it})
6040 (goto-char
6041 (@var{if-there-is-an-argument}
6042 @var{figure-out-where-to-go}
6043 @var{else-go-to}
6044 (point-min))))
6045 @var{do-nicety}
6046 @end group
6047 @end smallexample
6048
6049 The function is similar to the @code{simplified-beginning-of-buffer}
6050 function except that the @code{interactive} expression has @code{"P"}
6051 as an argument and the @code{goto-char} function is followed by an
6052 if-then-else expression that figures out where to put the cursor if
6053 there is an argument that is not a cons cell.
6054
6055 (Since I do not explain a cons cell for many more chapters, please
6056 consider ignoring the function @code{consp}. @xref{List
6057 Implementation, , How Lists are Implemented}, and @ref{Cons Cell Type,
6058 , Cons Cell and List Types, elisp, The GNU Emacs Lisp Reference
6059 Manual}.)
6060
6061 The @code{"P"} in the @code{interactive} expression tells Emacs to
6062 pass a prefix argument, if there is one, to the function in raw form.
6063 A prefix argument is made by typing the @key{META} key followed by a
6064 number, or by typing @kbd{C-u} and then a number. (If you don't type
6065 a number, @kbd{C-u} defaults to a cons cell with a 4. A lowercase
6066 @code{"p"} in the @code{interactive} expression causes the function to
6067 convert a prefix arg to a number.)
6068
6069 The true-or-false-test of the @code{if} expression looks complex, but
6070 it is not: it checks whether @code{arg} has a value that is not
6071 @code{nil} and whether it is a cons cell. (That is what @code{consp}
6072 does; it checks whether its argument is a cons cell.) If @code{arg}
6073 has a value that is not @code{nil} (and is not a cons cell), which
6074 will be the case if @code{beginning-of-buffer} is called with a
6075 numeric argument, then this true-or-false-test will return true and
6076 the then-part of the @code{if} expression will be evaluated. On the
6077 other hand, if @code{beginning-of-buffer} is not called with an
6078 argument, the value of @code{arg} will be @code{nil} and the else-part
6079 of the @code{if} expression will be evaluated. The else-part is
6080 simply @code{point-min}, and when this is the outcome, the whole
6081 @code{goto-char} expression is @code{(goto-char (point-min))}, which
6082 is how we saw the @code{beginning-of-buffer} function in its
6083 simplified form.
6084
6085 @node beginning-of-buffer opt arg
6086 @subsection @code{beginning-of-buffer} with an Argument
6087
6088 When @code{beginning-of-buffer} is called with an argument, an
6089 expression is evaluated which calculates what value to pass to
6090 @code{goto-char}. This expression is rather complicated at first sight.
6091 It includes an inner @code{if} expression and much arithmetic. It looks
6092 like this:
6093
6094 @smallexample
6095 @group
6096 (if (> (buffer-size) 10000)
6097 ;; @r{Avoid overflow for large buffer sizes!}
6098 (* (prefix-numeric-value arg)
6099 (/ size 10))
6100 (/
6101 (+ 10
6102 (*
6103 size (prefix-numeric-value arg))) 10)))
6104 @end group
6105 @end smallexample
6106
6107 @menu
6108 * Disentangle beginning-of-buffer::
6109 * Large buffer case::
6110 * Small buffer case::
6111 @end menu
6112
6113 @ifnottex
6114 @node Disentangle beginning-of-buffer
6115 @unnumberedsubsubsec Disentangle @code{beginning-of-buffer}
6116 @end ifnottex
6117
6118 Like other complex-looking expressions, the conditional expression
6119 within @code{beginning-of-buffer} can be disentangled by looking at it
6120 as parts of a template, in this case, the template for an if-then-else
6121 expression. In skeletal form, the expression looks like this:
6122
6123 @smallexample
6124 @group
6125 (if (@var{buffer-is-large}
6126 @var{divide-buffer-size-by-10-and-multiply-by-arg}
6127 @var{else-use-alternate-calculation}
6128 @end group
6129 @end smallexample
6130
6131 The true-or-false-test of this inner @code{if} expression checks the
6132 size of the buffer. The reason for this is that the old version 18
6133 Emacs used numbers that are no bigger than eight million or so and in
6134 the computation that followed, the programmer feared that Emacs might
6135 try to use over-large numbers if the buffer were large. The term
6136 `overflow', mentioned in the comment, means numbers that are over
6137 large. More recent versions of Emacs use larger numbers, but this
6138 code has not been touched, if only because people now look at buffers
6139 that are far, far larger than ever before.
6140
6141 There are two cases: if the buffer is large and if it is not.
6142
6143 @node Large buffer case
6144 @unnumberedsubsubsec What happens in a large buffer
6145
6146 In @code{beginning-of-buffer}, the inner @code{if} expression tests
6147 whether the size of the buffer is greater than 10,000 characters. To do
6148 this, it uses the @code{>} function and the computation of @code{size}
6149 that comes from the let expression.
6150
6151 In the old days, the function @code{buffer-size} was used. Not only
6152 was that function called several times, it gave the size of the whole
6153 buffer, not the accessible part. The computation makes much more
6154 sense when it handles just the accessible part. (@xref{Narrowing &
6155 Widening, , Narrowing and Widening}, for more information on focusing
6156 attention to an `accessible' part.)
6157
6158 @need 800
6159 The line looks like this:
6160
6161 @smallexample
6162 (if (> size 10000)
6163 @end smallexample
6164
6165 @need 1200
6166 @noindent
6167 When the buffer is large, the then-part of the @code{if} expression is
6168 evaluated. It reads like this (after formatting for easy reading):
6169
6170 @smallexample
6171 @group
6172 (*
6173 (prefix-numeric-value arg)
6174 (/ size 10))
6175 @end group
6176 @end smallexample
6177
6178 @noindent
6179 This expression is a multiplication, with two arguments to the function
6180 @code{*}.
6181
6182 The first argument is @code{(prefix-numeric-value arg)}. When
6183 @code{"P"} is used as the argument for @code{interactive}, the value
6184 passed to the function as its argument is passed a ``raw prefix
6185 argument'', and not a number. (It is a number in a list.) To perform
6186 the arithmetic, a conversion is necessary, and
6187 @code{prefix-numeric-value} does the job.
6188
6189 @findex / @r{(division)}
6190 @cindex Division
6191 The second argument is @code{(/ size 10)}. This expression divides
6192 the numeric value by ten---the numeric value of the size of the
6193 accessible portion of the buffer. This produces a number that tells
6194 how many characters make up one tenth of the buffer size. (In Lisp,
6195 @code{/} is used for division, just as @code{*} is used for
6196 multiplication.)
6197
6198 @need 1200
6199 In the multiplication expression as a whole, this amount is multiplied
6200 by the value of the prefix argument---the multiplication looks like this:
6201
6202 @smallexample
6203 @group
6204 (* @var{numeric-value-of-prefix-arg}
6205 @var{number-of-characters-in-one-tenth-of-the-accessible-buffer})
6206 @end group
6207 @end smallexample
6208
6209 @noindent
6210 If, for example, the prefix argument is @samp{7}, the one-tenth value
6211 will be multiplied by 7 to give a position 70% of the way through.
6212
6213 @need 1200
6214 The result of all this is that if the accessible portion of the buffer
6215 is large, the @code{goto-char} expression reads like this:
6216
6217 @smallexample
6218 @group
6219 (goto-char (* (prefix-numeric-value arg)
6220 (/ size 10)))
6221 @end group
6222 @end smallexample
6223
6224 This puts the cursor where we want it.
6225
6226 @node Small buffer case
6227 @unnumberedsubsubsec What happens in a small buffer
6228
6229 If the buffer contains fewer than 10,000 characters, a slightly
6230 different computation is performed. You might think this is not
6231 necessary, since the first computation could do the job. However, in
6232 a small buffer, the first method may not put the cursor on exactly the
6233 desired line; the second method does a better job.
6234
6235 @need 800
6236 The code looks like this:
6237
6238 @c Keep this on one line.
6239 @smallexample
6240 (/ (+ 10 (* size (prefix-numeric-value arg))) 10))
6241 @end smallexample
6242
6243 @need 1200
6244 @noindent
6245 This is code in which you figure out what happens by discovering how the
6246 functions are embedded in parentheses. It is easier to read if you
6247 reformat it with each expression indented more deeply than its
6248 enclosing expression:
6249
6250 @smallexample
6251 @group
6252 (/
6253 (+ 10
6254 (*
6255 size
6256 (prefix-numeric-value arg)))
6257 10))
6258 @end group
6259 @end smallexample
6260
6261 @need 1200
6262 @noindent
6263 Looking at parentheses, we see that the innermost operation is
6264 @code{(prefix-numeric-value arg)}, which converts the raw argument to
6265 a number. In the following expression, this number is multiplied by
6266 the size of the accessible portion of the buffer:
6267
6268 @smallexample
6269 (* size (prefix-numeric-value arg))
6270 @end smallexample
6271
6272 @noindent
6273 This multiplication creates a number that may be larger than the size of
6274 the buffer---seven times larger if the argument is 7, for example. Ten
6275 is then added to this number and finally the large number is divided by
6276 ten to provide a value that is one character larger than the percentage
6277 position in the buffer.
6278
6279 The number that results from all this is passed to @code{goto-char} and
6280 the cursor is moved to that point.
6281
6282 @need 1500
6283 @node beginning-of-buffer complete
6284 @subsection The Complete @code{beginning-of-buffer}
6285
6286 @need 1000
6287 Here is the complete text of the @code{beginning-of-buffer} function:
6288 @sp 1
6289
6290 @c In GNU Emacs 22
6291 @smallexample
6292 @group
6293 (defun beginning-of-buffer (&optional arg)
6294 "Move point to the beginning of the buffer;
6295 leave mark at previous position.
6296 With \\[universal-argument] prefix,
6297 do not set mark at previous position.
6298 With numeric arg N,
6299 put point N/10 of the way from the beginning.
6300
6301 If the buffer is narrowed,
6302 this command uses the beginning and size
6303 of the accessible part of the buffer.
6304 @end group
6305
6306 @group
6307 Don't use this command in Lisp programs!
6308 \(goto-char (point-min)) is faster
6309 and avoids clobbering the mark."
6310 (interactive "P")
6311 (or (consp arg)
6312 (and transient-mark-mode mark-active)
6313 (push-mark))
6314 @end group
6315 @group
6316 (let ((size (- (point-max) (point-min))))
6317 (goto-char (if (and arg (not (consp arg)))
6318 (+ (point-min)
6319 (if (> size 10000)
6320 ;; Avoid overflow for large buffer sizes!
6321 (* (prefix-numeric-value arg)
6322 (/ size 10))
6323 (/ (+ 10 (* size (prefix-numeric-value arg)))
6324 10)))
6325 (point-min))))
6326 (if (and arg (not (consp arg))) (forward-line 1)))
6327 @end group
6328 @end smallexample
6329
6330 @ignore
6331 From before GNU Emacs 22
6332 @smallexample
6333 @group
6334 (defun beginning-of-buffer (&optional arg)
6335 "Move point to the beginning of the buffer;
6336 leave mark at previous position.
6337 With arg N, put point N/10 of the way
6338 from the true beginning.
6339 @end group
6340 @group
6341 Don't use this in Lisp programs!
6342 \(goto-char (point-min)) is faster
6343 and does not set the mark."
6344 (interactive "P")
6345 (push-mark)
6346 @end group
6347 @group
6348 (goto-char
6349 (if arg
6350 (if (> (buffer-size) 10000)
6351 ;; @r{Avoid overflow for large buffer sizes!}
6352 (* (prefix-numeric-value arg)
6353 (/ (buffer-size) 10))
6354 @end group
6355 @group
6356 (/ (+ 10 (* (buffer-size)
6357 (prefix-numeric-value arg)))
6358 10))
6359 (point-min)))
6360 (if arg (forward-line 1)))
6361 @end group
6362 @end smallexample
6363 @end ignore
6364
6365 @noindent
6366 Except for two small points, the previous discussion shows how this
6367 function works. The first point deals with a detail in the
6368 documentation string, and the second point concerns the last line of
6369 the function.
6370
6371 @need 800
6372 In the documentation string, there is reference to an expression:
6373
6374 @smallexample
6375 \\[universal-argument]
6376 @end smallexample
6377
6378 @noindent
6379 A @samp{\\} is used before the first square bracket of this
6380 expression. This @samp{\\} tells the Lisp interpreter to substitute
6381 whatever key is currently bound to the @samp{[@dots{}]}. In the case
6382 of @code{universal-argument}, that is usually @kbd{C-u}, but it might
6383 be different. (@xref{Documentation Tips, , Tips for Documentation
6384 Strings, elisp, The GNU Emacs Lisp Reference Manual}, for more
6385 information.)
6386
6387 @need 1200
6388 Finally, the last line of the @code{beginning-of-buffer} command says
6389 to move point to the beginning of the next line if the command is
6390 invoked with an argument:
6391
6392 @smallexample
6393 (if (and arg (not (consp arg))) (forward-line 1))
6394 @end smallexample
6395
6396 @noindent
6397 This puts the cursor at the beginning of the first line after the
6398 appropriate tenths position in the buffer. This is a flourish that
6399 means that the cursor is always located @emph{at least} the requested
6400 tenths of the way through the buffer, which is a nicety that is,
6401 perhaps, not necessary, but which, if it did not occur, would be sure
6402 to draw complaints. (The @code{(not (consp arg))} portion is so that
6403 if you specify the command with a @kbd{C-u}, but without a number,
6404 that is to say, if the `raw prefix argument' is simply a cons cell,
6405 the command does not put you at the beginning of the second line.)
6406
6407 @node Second Buffer Related Review
6408 @section Review
6409
6410 Here is a brief summary of some of the topics covered in this chapter.
6411
6412 @table @code
6413 @item or
6414 Evaluate each argument in sequence, and return the value of the first
6415 argument that is not @code{nil}; if none return a value that is not
6416 @code{nil}, return @code{nil}. In brief, return the first true value
6417 of the arguments; return a true value if one @emph{or} any of the
6418 others are true.
6419
6420 @item and
6421 Evaluate each argument in sequence, and if any are @code{nil}, return
6422 @code{nil}; if none are @code{nil}, return the value of the last
6423 argument. In brief, return a true value only if all the arguments are
6424 true; return a true value if one @emph{and} each of the others is
6425 true.
6426
6427 @item &optional
6428 A keyword used to indicate that an argument to a function definition
6429 is optional; this means that the function can be evaluated without the
6430 argument, if desired.
6431
6432 @item prefix-numeric-value
6433 Convert the `raw prefix argument' produced by @code{(interactive
6434 "P")} to a numeric value.
6435
6436 @item forward-line
6437 Move point forward to the beginning of the next line, or if the argument
6438 is greater than one, forward that many lines. If it can't move as far
6439 forward as it is supposed to, @code{forward-line} goes forward as far as
6440 it can and then returns a count of the number of additional lines it was
6441 supposed to move but couldn't.
6442
6443 @item erase-buffer
6444 Delete the entire contents of the current buffer.
6445
6446 @item bufferp
6447 Return @code{t} if its argument is a buffer; otherwise return @code{nil}.
6448 @end table
6449
6450 @node optional Exercise
6451 @section @code{optional} Argument Exercise
6452
6453 Write an interactive function with an optional argument that tests
6454 whether its argument, a number, is greater than or equal to, or else,
6455 less than the value of @code{fill-column}, and tells you which, in a
6456 message. However, if you do not pass an argument to the function, use
6457 56 as a default value.
6458
6459 @node Narrowing & Widening
6460 @chapter Narrowing and Widening
6461 @cindex Focusing attention (narrowing)
6462 @cindex Narrowing
6463 @cindex Widening
6464
6465 Narrowing is a feature of Emacs that makes it possible for you to focus
6466 on a specific part of a buffer, and work without accidentally changing
6467 other parts. Narrowing is normally disabled since it can confuse
6468 novices.
6469
6470 @menu
6471 * Narrowing advantages:: The advantages of narrowing
6472 * save-restriction:: The @code{save-restriction} special form.
6473 * what-line:: The number of the line that point is on.
6474 * narrow Exercise::
6475 @end menu
6476
6477 @ifnottex
6478 @node Narrowing advantages
6479 @unnumberedsec The Advantages of Narrowing
6480 @end ifnottex
6481
6482 With narrowing, the rest of a buffer is made invisible, as if it weren't
6483 there. This is an advantage if, for example, you want to replace a word
6484 in one part of a buffer but not in another: you narrow to the part you want
6485 and the replacement is carried out only in that section, not in the rest
6486 of the buffer. Searches will only work within a narrowed region, not
6487 outside of one, so if you are fixing a part of a document, you can keep
6488 yourself from accidentally finding parts you do not need to fix by
6489 narrowing just to the region you want.
6490 (The key binding for @code{narrow-to-region} is @kbd{C-x n n}.)
6491
6492 However, narrowing does make the rest of the buffer invisible, which
6493 can scare people who inadvertently invoke narrowing and think they
6494 have deleted a part of their file. Moreover, the @code{undo} command
6495 (which is usually bound to @kbd{C-x u}) does not turn off narrowing
6496 (nor should it), so people can become quite desperate if they do not
6497 know that they can return the rest of a buffer to visibility with the
6498 @code{widen} command.
6499 (The key binding for @code{widen} is @kbd{C-x n w}.)
6500
6501 Narrowing is just as useful to the Lisp interpreter as to a human.
6502 Often, an Emacs Lisp function is designed to work on just part of a
6503 buffer; or conversely, an Emacs Lisp function needs to work on all of a
6504 buffer that has been narrowed. The @code{what-line} function, for
6505 example, removes the narrowing from a buffer, if it has any narrowing
6506 and when it has finished its job, restores the narrowing to what it was.
6507 On the other hand, the @code{count-lines} function
6508 uses narrowing to restrict itself to just that portion
6509 of the buffer in which it is interested and then restores the previous
6510 situation.
6511
6512 @node save-restriction
6513 @section The @code{save-restriction} Special Form
6514 @findex save-restriction
6515
6516 In Emacs Lisp, you can use the @code{save-restriction} special form to
6517 keep track of whatever narrowing is in effect, if any. When the Lisp
6518 interpreter meets with @code{save-restriction}, it executes the code
6519 in the body of the @code{save-restriction} expression, and then undoes
6520 any changes to narrowing that the code caused. If, for example, the
6521 buffer is narrowed and the code that follows @code{save-restriction}
6522 gets rid of the narrowing, @code{save-restriction} returns the buffer
6523 to its narrowed region afterwards. In the @code{what-line} command,
6524 any narrowing the buffer may have is undone by the @code{widen}
6525 command that immediately follows the @code{save-restriction} command.
6526 Any original narrowing is restored just before the completion of the
6527 function.
6528
6529 @need 1250
6530 The template for a @code{save-restriction} expression is simple:
6531
6532 @smallexample
6533 @group
6534 (save-restriction
6535 @var{body}@dots{} )
6536 @end group
6537 @end smallexample
6538
6539 @noindent
6540 The body of the @code{save-restriction} is one or more expressions that
6541 will be evaluated in sequence by the Lisp interpreter.
6542
6543 Finally, a point to note: when you use both @code{save-excursion} and
6544 @code{save-restriction}, one right after the other, you should use
6545 @code{save-excursion} outermost. If you write them in reverse order,
6546 you may fail to record narrowing in the buffer to which Emacs switches
6547 after calling @code{save-excursion}. Thus, when written together,
6548 @code{save-excursion} and @code{save-restriction} should be written
6549 like this:
6550
6551 @smallexample
6552 @group
6553 (save-excursion
6554 (save-restriction
6555 @var{body}@dots{}))
6556 @end group
6557 @end smallexample
6558
6559 In other circumstances, when not written together, the
6560 @code{save-excursion} and @code{save-restriction} special forms must
6561 be written in the order appropriate to the function.
6562
6563 @need 1250
6564 For example,
6565
6566 @smallexample
6567 @group
6568 (save-restriction
6569 (widen)
6570 (save-excursion
6571 @var{body}@dots{}))
6572 @end group
6573 @end smallexample
6574
6575 @ignore
6576 Emacs 22
6577 /usr/local/src/emacs/lisp/simple.el
6578
6579 (defun what-line ()
6580 "Print the current buffer line number and narrowed line number of point."
6581 (interactive)
6582 (let ((start (point-min))
6583 (n (line-number-at-pos)))
6584 (if (= start 1)
6585 (message "Line %d" n)
6586 (save-excursion
6587 (save-restriction
6588 (widen)
6589 (message "line %d (narrowed line %d)"
6590 (+ n (line-number-at-pos start) -1) n))))))
6591
6592 (defun line-number-at-pos (&optional pos)
6593 "Return (narrowed) buffer line number at position POS.
6594 If POS is nil, use current buffer location.
6595 Counting starts at (point-min), so the value refers
6596 to the contents of the accessible portion of the buffer."
6597 (let ((opoint (or pos (point))) start)
6598 (save-excursion
6599 (goto-char (point-min))
6600 (setq start (point))
6601 (goto-char opoint)
6602 (forward-line 0)
6603 (1+ (count-lines start (point))))))
6604
6605 (defun count-lines (start end)
6606 "Return number of lines between START and END.
6607 This is usually the number of newlines between them,
6608 but can be one more if START is not equal to END
6609 and the greater of them is not at the start of a line."
6610 (save-excursion
6611 (save-restriction
6612 (narrow-to-region start end)
6613 (goto-char (point-min))
6614 (if (eq selective-display t)
6615 (save-match-data
6616 (let ((done 0))
6617 (while (re-search-forward "[\n\C-m]" nil t 40)
6618 (setq done (+ 40 done)))
6619 (while (re-search-forward "[\n\C-m]" nil t 1)
6620 (setq done (+ 1 done)))
6621 (goto-char (point-max))
6622 (if (and (/= start end)
6623 (not (bolp)))
6624 (1+ done)
6625 done)))
6626 (- (buffer-size) (forward-line (buffer-size)))))))
6627 @end ignore
6628
6629 @node what-line
6630 @section @code{what-line}
6631 @findex what-line
6632 @cindex Widening, example of
6633
6634 The @code{what-line} command tells you the number of the line in which
6635 the cursor is located. The function illustrates the use of the
6636 @code{save-restriction} and @code{save-excursion} commands. Here is the
6637 original text of the function:
6638
6639 @smallexample
6640 @group
6641 (defun what-line ()
6642 "Print the current line number (in the buffer) of point."
6643 (interactive)
6644 (save-restriction
6645 (widen)
6646 (save-excursion
6647 (beginning-of-line)
6648 (message "Line %d"
6649 (1+ (count-lines 1 (point)))))))
6650 @end group
6651 @end smallexample
6652
6653 (In recent versions of GNU Emacs, the @code{what-line} function has
6654 been expanded to tell you your line number in a narrowed buffer as
6655 well as your line number in a widened buffer. The recent version is
6656 more complex than the version shown here. If you feel adventurous,
6657 you might want to look at it after figuring out how this version
6658 works. You will probably need to use @kbd{C-h f}
6659 (@code{describe-function}). The newer version uses a conditional to
6660 determine whether the buffer has been narrowed.
6661
6662 (Also, it uses @code{line-number-at-pos}, which among other simple
6663 expressions, such as @code{(goto-char (point-min))}, moves point to
6664 the beginning of the current line with @code{(forward-line 0)} rather
6665 than @code{beginning-of-line}.)
6666
6667 The @code{what-line} function as shown here has a documentation line
6668 and is interactive, as you would expect. The next two lines use the
6669 functions @code{save-restriction} and @code{widen}.
6670
6671 The @code{save-restriction} special form notes whatever narrowing is in
6672 effect, if any, in the current buffer and restores that narrowing after
6673 the code in the body of the @code{save-restriction} has been evaluated.
6674
6675 The @code{save-restriction} special form is followed by @code{widen}.
6676 This function undoes any narrowing the current buffer may have had
6677 when @code{what-line} was called. (The narrowing that was there is
6678 the narrowing that @code{save-restriction} remembers.) This widening
6679 makes it possible for the line counting commands to count from the
6680 beginning of the buffer. Otherwise, they would have been limited to
6681 counting within the accessible region. Any original narrowing is
6682 restored just before the completion of the function by the
6683 @code{save-restriction} special form.
6684
6685 The call to @code{widen} is followed by @code{save-excursion}, which
6686 saves the location of the cursor (i.e., of point) and of the mark, and
6687 restores them after the code in the body of the @code{save-excursion}
6688 uses the @code{beginning-of-line} function to move point.
6689
6690 (Note that the @code{(widen)} expression comes between the
6691 @code{save-restriction} and @code{save-excursion} special forms. When
6692 you write the two @code{save- @dots{}} expressions in sequence, write
6693 @code{save-excursion} outermost.)
6694
6695 @need 1200
6696 The last two lines of the @code{what-line} function are functions to
6697 count the number of lines in the buffer and then print the number in the
6698 echo area.
6699
6700 @smallexample
6701 @group
6702 (message "Line %d"
6703 (1+ (count-lines 1 (point)))))))
6704 @end group
6705 @end smallexample
6706
6707 The @code{message} function prints a one-line message at the bottom of
6708 the Emacs screen. The first argument is inside of quotation marks and
6709 is printed as a string of characters. However, it may contain a
6710 @samp{%d} expression to print a following argument. @samp{%d} prints
6711 the argument as a decimal, so the message will say something such as
6712 @samp{Line 243}.
6713
6714 @need 1200
6715 The number that is printed in place of the @samp{%d} is computed by the
6716 last line of the function:
6717
6718 @smallexample
6719 (1+ (count-lines 1 (point)))
6720 @end smallexample
6721
6722 @ignore
6723 GNU Emacs 22
6724
6725 (defun count-lines (start end)
6726 "Return number of lines between START and END.
6727 This is usually the number of newlines between them,
6728 but can be one more if START is not equal to END
6729 and the greater of them is not at the start of a line."
6730 (save-excursion
6731 (save-restriction
6732 (narrow-to-region start end)
6733 (goto-char (point-min))
6734 (if (eq selective-display t)
6735 (save-match-data
6736 (let ((done 0))
6737 (while (re-search-forward "[\n\C-m]" nil t 40)
6738 (setq done (+ 40 done)))
6739 (while (re-search-forward "[\n\C-m]" nil t 1)
6740 (setq done (+ 1 done)))
6741 (goto-char (point-max))
6742 (if (and (/= start end)
6743 (not (bolp)))
6744 (1+ done)
6745 done)))
6746 (- (buffer-size) (forward-line (buffer-size)))))))
6747 @end ignore
6748
6749 @noindent
6750 What this does is count the lines from the first position of the
6751 buffer, indicated by the @code{1}, up to @code{(point)}, and then add
6752 one to that number. (The @code{1+} function adds one to its
6753 argument.) We add one to it because line 2 has only one line before
6754 it, and @code{count-lines} counts only the lines @emph{before} the
6755 current line.
6756
6757 After @code{count-lines} has done its job, and the message has been
6758 printed in the echo area, the @code{save-excursion} restores point and
6759 mark to their original positions; and @code{save-restriction} restores
6760 the original narrowing, if any.
6761
6762 @node narrow Exercise
6763 @section Exercise with Narrowing
6764
6765 Write a function that will display the first 60 characters of the
6766 current buffer, even if you have narrowed the buffer to its latter
6767 half so that the first line is inaccessible. Restore point, mark, and
6768 narrowing. For this exercise, you need to use a whole potpourri of
6769 functions, including @code{save-restriction}, @code{widen},
6770 @code{goto-char}, @code{point-min}, @code{message}, and
6771 @code{buffer-substring}.
6772
6773 @cindex Properties, mention of @code{buffer-substring-no-properties}
6774 (@code{buffer-substring} is a previously unmentioned function you will
6775 have to investigate yourself; or perhaps you will have to use
6776 @code{buffer-substring-no-properties} or
6777 @code{filter-buffer-substring} @dots{}, yet other functions. Text
6778 properties are a feature otherwise not discussed here. @xref{Text
6779 Properties, , Text Properties, elisp, The GNU Emacs Lisp Reference
6780 Manual}.)
6781
6782 Additionally, do you really need @code{goto-char} or @code{point-min}?
6783 Or can you write the function without them?
6784
6785 @node car cdr & cons
6786 @chapter @code{car}, @code{cdr}, @code{cons}: Fundamental Functions
6787 @findex car, @r{introduced}
6788 @findex cdr, @r{introduced}
6789
6790 In Lisp, @code{car}, @code{cdr}, and @code{cons} are fundamental
6791 functions. The @code{cons} function is used to construct lists, and
6792 the @code{car} and @code{cdr} functions are used to take them apart.
6793
6794 In the walk through of the @code{copy-region-as-kill} function, we
6795 will see @code{cons} as well as two variants on @code{cdr},
6796 namely, @code{setcdr} and @code{nthcdr}. (@xref{copy-region-as-kill}.)
6797
6798 @menu
6799 * Strange Names:: An historical aside: why the strange names?
6800 * car & cdr:: Functions for extracting part of a list.
6801 * cons:: Constructing a list.
6802 * nthcdr:: Calling @code{cdr} repeatedly.
6803 * nth::
6804 * setcar:: Changing the first element of a list.
6805 * setcdr:: Changing the rest of a list.
6806 * cons Exercise::
6807 @end menu
6808
6809 @ifnottex
6810 @node Strange Names
6811 @unnumberedsec Strange Names
6812 @end ifnottex
6813
6814 The name of the @code{cons} function is not unreasonable: it is an
6815 abbreviation of the word `construct'. The origins of the names for
6816 @code{car} and @code{cdr}, on the other hand, are esoteric: @code{car}
6817 is an acronym from the phrase `Contents of the Address part of the
6818 Register'; and @code{cdr} (pronounced `could-er') is an acronym from
6819 the phrase `Contents of the Decrement part of the Register'. These
6820 phrases refer to specific pieces of hardware on the very early
6821 computer on which the original Lisp was developed. Besides being
6822 obsolete, the phrases have been completely irrelevant for more than 25
6823 years to anyone thinking about Lisp. Nonetheless, although a few
6824 brave scholars have begun to use more reasonable names for these
6825 functions, the old terms are still in use. In particular, since the
6826 terms are used in the Emacs Lisp source code, we will use them in this
6827 introduction.
6828
6829 @node car & cdr
6830 @section @code{car} and @code{cdr}
6831
6832 The @sc{car} of a list is, quite simply, the first item in the list.
6833 Thus the @sc{car} of the list @code{(rose violet daisy buttercup)} is
6834 @code{rose}.
6835
6836 @need 1200
6837 If you are reading this in Info in GNU Emacs, you can see this by
6838 evaluating the following:
6839
6840 @smallexample
6841 (car '(rose violet daisy buttercup))
6842 @end smallexample
6843
6844 @noindent
6845 After evaluating the expression, @code{rose} will appear in the echo
6846 area.
6847
6848 Clearly, a more reasonable name for the @code{car} function would be
6849 @code{first} and this is often suggested.
6850
6851 @code{car} does not remove the first item from the list; it only reports
6852 what it is. After @code{car} has been applied to a list, the list is
6853 still the same as it was. In the jargon, @code{car} is
6854 `non-destructive'. This feature turns out to be important.
6855
6856 The @sc{cdr} of a list is the rest of the list, that is, the
6857 @code{cdr} function returns the part of the list that follows the
6858 first item. Thus, while the @sc{car} of the list @code{'(rose violet
6859 daisy buttercup)} is @code{rose}, the rest of the list, the value
6860 returned by the @code{cdr} function, is @code{(violet daisy
6861 buttercup)}.
6862
6863 @need 800
6864 You can see this by evaluating the following in the usual way:
6865
6866 @smallexample
6867 (cdr '(rose violet daisy buttercup))
6868 @end smallexample
6869
6870 @noindent
6871 When you evaluate this, @code{(violet daisy buttercup)} will appear in
6872 the echo area.
6873
6874 Like @code{car}, @code{cdr} does not remove any elements from the
6875 list---it just returns a report of what the second and subsequent
6876 elements are.
6877
6878 Incidentally, in the example, the list of flowers is quoted. If it were
6879 not, the Lisp interpreter would try to evaluate the list by calling
6880 @code{rose} as a function. In this example, we do not want to do that.
6881
6882 Clearly, a more reasonable name for @code{cdr} would be @code{rest}.
6883
6884 (There is a lesson here: when you name new functions, consider very
6885 carefully what you are doing, since you may be stuck with the names
6886 for far longer than you expect. The reason this document perpetuates
6887 these names is that the Emacs Lisp source code uses them, and if I did
6888 not use them, you would have a hard time reading the code; but do,
6889 please, try to avoid using these terms yourself. The people who come
6890 after you will be grateful to you.)
6891
6892 When @code{car} and @code{cdr} are applied to a list made up of symbols,
6893 such as the list @code{(pine fir oak maple)}, the element of the list
6894 returned by the function @code{car} is the symbol @code{pine} without
6895 any parentheses around it. @code{pine} is the first element in the
6896 list. However, the @sc{cdr} of the list is a list itself, @code{(fir
6897 oak maple)}, as you can see by evaluating the following expressions in
6898 the usual way:
6899
6900 @smallexample
6901 @group
6902 (car '(pine fir oak maple))
6903
6904 (cdr '(pine fir oak maple))
6905 @end group
6906 @end smallexample
6907
6908 On the other hand, in a list of lists, the first element is itself a
6909 list. @code{car} returns this first element as a list. For example,
6910 the following list contains three sub-lists, a list of carnivores, a
6911 list of herbivores and a list of sea mammals:
6912
6913 @smallexample
6914 @group
6915 (car '((lion tiger cheetah)
6916 (gazelle antelope zebra)
6917 (whale dolphin seal)))
6918 @end group
6919 @end smallexample
6920
6921 @noindent
6922 In this example, the first element or @sc{car} of the list is the list of
6923 carnivores, @code{(lion tiger cheetah)}, and the rest of the list is
6924 @code{((gazelle antelope zebra) (whale dolphin seal))}.
6925
6926 @smallexample
6927 @group
6928 (cdr '((lion tiger cheetah)
6929 (gazelle antelope zebra)
6930 (whale dolphin seal)))
6931 @end group
6932 @end smallexample
6933
6934 It is worth saying again that @code{car} and @code{cdr} are
6935 non-destructive---that is, they do not modify or change lists to which
6936 they are applied. This is very important for how they are used.
6937
6938 Also, in the first chapter, in the discussion about atoms, I said that
6939 in Lisp, ``certain kinds of atom, such as an array, can be separated
6940 into parts; but the mechanism for doing this is different from the
6941 mechanism for splitting a list. As far as Lisp is concerned, the
6942 atoms of a list are unsplittable.'' (@xref{Lisp Atoms}.) The
6943 @code{car} and @code{cdr} functions are used for splitting lists and
6944 are considered fundamental to Lisp. Since they cannot split or gain
6945 access to the parts of an array, an array is considered an atom.
6946 Conversely, the other fundamental function, @code{cons}, can put
6947 together or construct a list, but not an array. (Arrays are handled
6948 by array-specific functions. @xref{Arrays, , Arrays, elisp, The GNU
6949 Emacs Lisp Reference Manual}.)
6950
6951 @node cons
6952 @section @code{cons}
6953 @findex cons, @r{introduced}
6954
6955 The @code{cons} function constructs lists; it is the inverse of
6956 @code{car} and @code{cdr}. For example, @code{cons} can be used to make
6957 a four element list from the three element list, @code{(fir oak maple)}:
6958
6959 @smallexample
6960 (cons 'pine '(fir oak maple))
6961 @end smallexample
6962
6963 @need 800
6964 @noindent
6965 After evaluating this list, you will see
6966
6967 @smallexample
6968 (pine fir oak maple)
6969 @end smallexample
6970
6971 @noindent
6972 appear in the echo area. @code{cons} causes the creation of a new
6973 list in which the element is followed by the elements of the original
6974 list.
6975
6976 We often say that `@code{cons} puts a new element at the beginning of
6977 a list; it attaches or pushes elements onto the list', but this
6978 phrasing can be misleading, since @code{cons} does not change an
6979 existing list, but creates a new one.
6980
6981 Like @code{car} and @code{cdr}, @code{cons} is non-destructive.
6982
6983 @menu
6984 * Build a list::
6985 * length:: How to find the length of a list.
6986 @end menu
6987
6988 @ifnottex
6989 @node Build a list
6990 @unnumberedsubsec Build a list
6991 @end ifnottex
6992
6993 @code{cons} must have a list to attach to.@footnote{Actually, you can
6994 @code{cons} an element to an atom to produce a dotted pair. Dotted
6995 pairs are not discussed here; see @ref{Dotted Pair Notation, , Dotted
6996 Pair Notation, elisp, The GNU Emacs Lisp Reference Manual}.} You
6997 cannot start from absolutely nothing. If you are building a list, you
6998 need to provide at least an empty list at the beginning. Here is a
6999 series of @code{cons} expressions that build up a list of flowers. If
7000 you are reading this in Info in GNU Emacs, you can evaluate each of
7001 the expressions in the usual way; the value is printed in this text
7002 after @samp{@result{}}, which you may read as `evaluates to'.
7003
7004 @smallexample
7005 @group
7006 (cons 'buttercup ())
7007 @result{} (buttercup)
7008 @end group
7009
7010 @group
7011 (cons 'daisy '(buttercup))
7012 @result{} (daisy buttercup)
7013 @end group
7014
7015 @group
7016 (cons 'violet '(daisy buttercup))
7017 @result{} (violet daisy buttercup)
7018 @end group
7019
7020 @group
7021 (cons 'rose '(violet daisy buttercup))
7022 @result{} (rose violet daisy buttercup)
7023 @end group
7024 @end smallexample
7025
7026 @noindent
7027 In the first example, the empty list is shown as @code{()} and a list
7028 made up of @code{buttercup} followed by the empty list is constructed.
7029 As you can see, the empty list is not shown in the list that was
7030 constructed. All that you see is @code{(buttercup)}. The empty list is
7031 not counted as an element of a list because there is nothing in an empty
7032 list. Generally speaking, an empty list is invisible.
7033
7034 The second example, @code{(cons 'daisy '(buttercup))} constructs a new,
7035 two element list by putting @code{daisy} in front of @code{buttercup};
7036 and the third example constructs a three element list by putting
7037 @code{violet} in front of @code{daisy} and @code{buttercup}.
7038
7039 @node length
7040 @subsection Find the Length of a List: @code{length}
7041 @findex length
7042
7043 You can find out how many elements there are in a list by using the Lisp
7044 function @code{length}, as in the following examples:
7045
7046 @smallexample
7047 @group
7048 (length '(buttercup))
7049 @result{} 1
7050 @end group
7051
7052 @group
7053 (length '(daisy buttercup))
7054 @result{} 2
7055 @end group
7056
7057 @group
7058 (length (cons 'violet '(daisy buttercup)))
7059 @result{} 3
7060 @end group
7061 @end smallexample
7062
7063 @noindent
7064 In the third example, the @code{cons} function is used to construct a
7065 three element list which is then passed to the @code{length} function as
7066 its argument.
7067
7068 @need 1200
7069 We can also use @code{length} to count the number of elements in an
7070 empty list:
7071
7072 @smallexample
7073 @group
7074 (length ())
7075 @result{} 0
7076 @end group
7077 @end smallexample
7078
7079 @noindent
7080 As you would expect, the number of elements in an empty list is zero.
7081
7082 An interesting experiment is to find out what happens if you try to find
7083 the length of no list at all; that is, if you try to call @code{length}
7084 without giving it an argument, not even an empty list:
7085
7086 @smallexample
7087 (length )
7088 @end smallexample
7089
7090 @need 800
7091 @noindent
7092 What you see, if you evaluate this, is the error message
7093
7094 @smallexample
7095 Lisp error: (wrong-number-of-arguments length 0)
7096 @end smallexample
7097
7098 @noindent
7099 This means that the function receives the wrong number of
7100 arguments, zero, when it expects some other number of arguments. In
7101 this case, one argument is expected, the argument being a list whose
7102 length the function is measuring. (Note that @emph{one} list is
7103 @emph{one} argument, even if the list has many elements inside it.)
7104
7105 The part of the error message that says @samp{length} is the name of
7106 the function.
7107
7108 @ignore
7109 @code{length} is still a subroutine, but you need C-h f to discover that.
7110
7111 In an earlier version:
7112 This is written with a special notation, @samp{#<subr},
7113 that indicates that the function @code{length} is one of the primitive
7114 functions written in C rather than in Emacs Lisp. (@samp{subr} is an
7115 abbreviation for `subroutine'.) @xref{What Is a Function, , What Is a
7116 Function?, elisp , The GNU Emacs Lisp Reference Manual}, for more
7117 about subroutines.
7118 @end ignore
7119
7120 @node nthcdr
7121 @section @code{nthcdr}
7122 @findex nthcdr
7123
7124 The @code{nthcdr} function is associated with the @code{cdr} function.
7125 What it does is take the @sc{cdr} of a list repeatedly.
7126
7127 If you take the @sc{cdr} of the list @code{(pine fir
7128 oak maple)}, you will be returned the list @code{(fir oak maple)}. If you
7129 repeat this on what was returned, you will be returned the list
7130 @code{(oak maple)}. (Of course, repeated @sc{cdr}ing on the original
7131 list will just give you the original @sc{cdr} since the function does
7132 not change the list. You need to evaluate the @sc{cdr} of the
7133 @sc{cdr} and so on.) If you continue this, eventually you will be
7134 returned an empty list, which in this case, instead of being shown as
7135 @code{()} is shown as @code{nil}.
7136
7137 @need 1200
7138 For review, here is a series of repeated @sc{cdr}s, the text following
7139 the @samp{@result{}} shows what is returned.
7140
7141 @smallexample
7142 @group
7143 (cdr '(pine fir oak maple))
7144 @result{}(fir oak maple)
7145 @end group
7146
7147 @group
7148 (cdr '(fir oak maple))
7149 @result{} (oak maple)
7150 @end group
7151
7152 @group
7153 (cdr '(oak maple))
7154 @result{}(maple)
7155 @end group
7156
7157 @group
7158 (cdr '(maple))
7159 @result{} nil
7160 @end group
7161
7162 @group
7163 (cdr 'nil)
7164 @result{} nil
7165 @end group
7166
7167 @group
7168 (cdr ())
7169 @result{} nil
7170 @end group
7171 @end smallexample
7172
7173 @need 1200
7174 You can also do several @sc{cdr}s without printing the values in
7175 between, like this:
7176
7177 @smallexample
7178 @group
7179 (cdr (cdr '(pine fir oak maple)))
7180 @result{} (oak maple)
7181 @end group
7182 @end smallexample
7183
7184 @noindent
7185 In this example, the Lisp interpreter evaluates the innermost list first.
7186 The innermost list is quoted, so it just passes the list as it is to the
7187 innermost @code{cdr}. This @code{cdr} passes a list made up of the
7188 second and subsequent elements of the list to the outermost @code{cdr},
7189 which produces a list composed of the third and subsequent elements of
7190 the original list. In this example, the @code{cdr} function is repeated
7191 and returns a list that consists of the original list without its
7192 first two elements.
7193
7194 The @code{nthcdr} function does the same as repeating the call to
7195 @code{cdr}. In the following example, the argument 2 is passed to the
7196 function @code{nthcdr}, along with the list, and the value returned is
7197 the list without its first two items, which is exactly the same
7198 as repeating @code{cdr} twice on the list:
7199
7200 @smallexample
7201 @group
7202 (nthcdr 2 '(pine fir oak maple))
7203 @result{} (oak maple)
7204 @end group
7205 @end smallexample
7206
7207 @need 1200
7208 Using the original four element list, we can see what happens when
7209 various numeric arguments are passed to @code{nthcdr}, including 0, 1,
7210 and 5:
7211
7212 @smallexample
7213 @group
7214 ;; @r{Leave the list as it was.}
7215 (nthcdr 0 '(pine fir oak maple))
7216 @result{} (pine fir oak maple)
7217 @end group
7218
7219 @group
7220 ;; @r{Return a copy without the first element.}
7221 (nthcdr 1 '(pine fir oak maple))
7222 @result{} (fir oak maple)
7223 @end group
7224
7225 @group
7226 ;; @r{Return a copy of the list without three elements.}
7227 (nthcdr 3 '(pine fir oak maple))
7228 @result{} (maple)
7229 @end group
7230
7231 @group
7232 ;; @r{Return a copy lacking all four elements.}
7233 (nthcdr 4 '(pine fir oak maple))
7234 @result{} nil
7235 @end group
7236
7237 @group
7238 ;; @r{Return a copy lacking all elements.}
7239 (nthcdr 5 '(pine fir oak maple))
7240 @result{} nil
7241 @end group
7242 @end smallexample
7243
7244 @node nth
7245 @section @code{nth}
7246 @findex nth
7247
7248 The @code{nthcdr} function takes the @sc{cdr} of a list repeatedly.
7249 The @code{nth} function takes the @sc{car} of the result returned by
7250 @code{nthcdr}. It returns the Nth element of the list.
7251
7252 @need 1500
7253 Thus, if it were not defined in C for speed, the definition of
7254 @code{nth} would be:
7255
7256 @smallexample
7257 @group
7258 (defun nth (n list)
7259 "Returns the Nth element of LIST.
7260 N counts from zero. If LIST is not that long, nil is returned."
7261 (car (nthcdr n list)))
7262 @end group
7263 @end smallexample
7264
7265 @noindent
7266 (Originally, @code{nth} was defined in Emacs Lisp in @file{subr.el},
7267 but its definition was redone in C in the 1980s.)
7268
7269 The @code{nth} function returns a single element of a list.
7270 This can be very convenient.
7271
7272 Note that the elements are numbered from zero, not one. That is to
7273 say, the first element of a list, its @sc{car} is the zeroth element.
7274 This is called `zero-based' counting and often bothers people who
7275 are accustomed to the first element in a list being number one, which
7276 is `one-based'.
7277
7278 @need 1250
7279 For example:
7280
7281 @smallexample
7282 @group
7283 (nth 0 '("one" "two" "three"))
7284 @result{} "one"
7285
7286 (nth 1 '("one" "two" "three"))
7287 @result{} "two"
7288 @end group
7289 @end smallexample
7290
7291 It is worth mentioning that @code{nth}, like @code{nthcdr} and
7292 @code{cdr}, does not change the original list---the function is
7293 non-destructive. This is in sharp contrast to the @code{setcar} and
7294 @code{setcdr} functions.
7295
7296 @node setcar
7297 @section @code{setcar}
7298 @findex setcar
7299
7300 As you might guess from their names, the @code{setcar} and @code{setcdr}
7301 functions set the @sc{car} or the @sc{cdr} of a list to a new value.
7302 They actually change the original list, unlike @code{car} and @code{cdr}
7303 which leave the original list as it was. One way to find out how this
7304 works is to experiment. We will start with the @code{setcar} function.
7305
7306 @need 1200
7307 First, we can make a list and then set the value of a variable to the
7308 list, using the @code{setq} function. Here is a list of animals:
7309
7310 @smallexample
7311 (setq animals '(antelope giraffe lion tiger))
7312 @end smallexample
7313
7314 @noindent
7315 If you are reading this in Info inside of GNU Emacs, you can evaluate
7316 this expression in the usual fashion, by positioning the cursor after
7317 the expression and typing @kbd{C-x C-e}. (I'm doing this right here
7318 as I write this. This is one of the advantages of having the
7319 interpreter built into the computing environment. Incidentally, when
7320 there is nothing on the line after the final parentheses, such as a
7321 comment, point can be on the next line. Thus, if your cursor is in
7322 the first column of the next line, you do not need to move it.
7323 Indeed, Emacs permits any amount of white space after the final
7324 parenthesis.)
7325
7326 @need 1200
7327 When we evaluate the variable @code{animals}, we see that it is bound to
7328 the list @code{(antelope giraffe lion tiger)}:
7329
7330 @smallexample
7331 @group
7332 animals
7333 @result{} (antelope giraffe lion tiger)
7334 @end group
7335 @end smallexample
7336
7337 @noindent
7338 Put another way, the variable @code{animals} points to the list
7339 @code{(antelope giraffe lion tiger)}.
7340
7341 Next, evaluate the function @code{setcar} while passing it two
7342 arguments, the variable @code{animals} and the quoted symbol
7343 @code{hippopotamus}; this is done by writing the three element list
7344 @code{(setcar animals 'hippopotamus)} and then evaluating it in the
7345 usual fashion:
7346
7347 @smallexample
7348 (setcar animals 'hippopotamus)
7349 @end smallexample
7350
7351 @need 1200
7352 @noindent
7353 After evaluating this expression, evaluate the variable @code{animals}
7354 again. You will see that the list of animals has changed:
7355
7356 @smallexample
7357 @group
7358 animals
7359 @result{} (hippopotamus giraffe lion tiger)
7360 @end group
7361 @end smallexample
7362
7363 @noindent
7364 The first element on the list, @code{antelope} is replaced by
7365 @code{hippopotamus}.
7366
7367 So we can see that @code{setcar} did not add a new element to the list
7368 as @code{cons} would have; it replaced @code{antelope} with
7369 @code{hippopotamus}; it @emph{changed} the list.
7370
7371 @node setcdr
7372 @section @code{setcdr}
7373 @findex setcdr
7374
7375 The @code{setcdr} function is similar to the @code{setcar} function,
7376 except that the function replaces the second and subsequent elements of
7377 a list rather than the first element.
7378
7379 (To see how to change the last element of a list, look ahead to
7380 @ref{kill-new function, , The @code{kill-new} function}, which uses
7381 the @code{nthcdr} and @code{setcdr} functions.)
7382
7383 @need 1200
7384 To see how this works, set the value of the variable to a list of
7385 domesticated animals by evaluating the following expression:
7386
7387 @smallexample
7388 (setq domesticated-animals '(horse cow sheep goat))
7389 @end smallexample
7390
7391 @need 1200
7392 @noindent
7393 If you now evaluate the list, you will be returned the list
7394 @code{(horse cow sheep goat)}:
7395
7396 @smallexample
7397 @group
7398 domesticated-animals
7399 @result{} (horse cow sheep goat)
7400 @end group
7401 @end smallexample
7402
7403 @need 1200
7404 Next, evaluate @code{setcdr} with two arguments, the name of the
7405 variable which has a list as its value, and the list to which the
7406 @sc{cdr} of the first list will be set;
7407
7408 @smallexample
7409 (setcdr domesticated-animals '(cat dog))
7410 @end smallexample
7411
7412 @noindent
7413 If you evaluate this expression, the list @code{(cat dog)} will appear
7414 in the echo area. This is the value returned by the function. The
7415 result we are interested in is the ``side effect'', which we can see by
7416 evaluating the variable @code{domesticated-animals}:
7417
7418 @smallexample
7419 @group
7420 domesticated-animals
7421 @result{} (horse cat dog)
7422 @end group
7423 @end smallexample
7424
7425 @noindent
7426 Indeed, the list is changed from @code{(horse cow sheep goat)} to
7427 @code{(horse cat dog)}. The @sc{cdr} of the list is changed from
7428 @code{(cow sheep goat)} to @code{(cat dog)}.
7429
7430 @node cons Exercise
7431 @section Exercise
7432
7433 Construct a list of four birds by evaluating several expressions with
7434 @code{cons}. Find out what happens when you @code{cons} a list onto
7435 itself. Replace the first element of the list of four birds with a
7436 fish. Replace the rest of that list with a list of other fish.
7437
7438 @node Cutting & Storing Text
7439 @chapter Cutting and Storing Text
7440 @cindex Cutting and storing text
7441 @cindex Storing and cutting text
7442 @cindex Killing text
7443 @cindex Clipping text
7444 @cindex Erasing text
7445 @cindex Deleting text
7446
7447 Whenever you cut or clip text out of a buffer with a `kill' command in
7448 GNU Emacs, it is stored in a list and you can bring it back with a
7449 `yank' command.
7450
7451 (The use of the word `kill' in Emacs for processes which specifically
7452 @emph{do not} destroy the values of the entities is an unfortunate
7453 historical accident. A much more appropriate word would be `clip' since
7454 that is what the kill commands do; they clip text out of a buffer and
7455 put it into storage from which it can be brought back. I have often
7456 been tempted to replace globally all occurrences of `kill' in the Emacs
7457 sources with `clip' and all occurrences of `killed' with `clipped'.)
7458
7459 @menu
7460 * Storing Text:: Text is stored in a list.
7461 * zap-to-char:: Cutting out text up to a character.
7462 * kill-region:: Cutting text out of a region.
7463 * copy-region-as-kill:: A definition for copying text.
7464 * Digression into C:: Minor note on C programming language macros.
7465 * defvar:: How to give a variable an initial value.
7466 * cons & search-fwd Review::
7467 * search Exercises::
7468 @end menu
7469
7470 @ifnottex
7471 @node Storing Text
7472 @unnumberedsec Storing Text in a List
7473 @end ifnottex
7474
7475 When text is cut out of a buffer, it is stored on a list. Successive
7476 pieces of text are stored on the list successively, so the list might
7477 look like this:
7478
7479 @smallexample
7480 ("a piece of text" "previous piece")
7481 @end smallexample
7482
7483 @need 1200
7484 @noindent
7485 The function @code{cons} can be used to create a new list from a piece
7486 of text (an `atom', to use the jargon) and an existing list, like
7487 this:
7488
7489 @smallexample
7490 @group
7491 (cons "another piece"
7492 '("a piece of text" "previous piece"))
7493 @end group
7494 @end smallexample
7495
7496 @need 1200
7497 @noindent
7498 If you evaluate this expression, a list of three elements will appear in
7499 the echo area:
7500
7501 @smallexample
7502 ("another piece" "a piece of text" "previous piece")
7503 @end smallexample
7504
7505 With the @code{car} and @code{nthcdr} functions, you can retrieve
7506 whichever piece of text you want. For example, in the following code,
7507 @code{nthcdr 1 @dots{}} returns the list with the first item removed;
7508 and the @code{car} returns the first element of that remainder---the
7509 second element of the original list:
7510
7511 @smallexample
7512 @group
7513 (car (nthcdr 1 '("another piece"
7514 "a piece of text"
7515 "previous piece")))
7516 @result{} "a piece of text"
7517 @end group
7518 @end smallexample
7519
7520 The actual functions in Emacs are more complex than this, of course.
7521 The code for cutting and retrieving text has to be written so that
7522 Emacs can figure out which element in the list you want---the first,
7523 second, third, or whatever. In addition, when you get to the end of
7524 the list, Emacs should give you the first element of the list, rather
7525 than nothing at all.
7526
7527 The list that holds the pieces of text is called the @dfn{kill ring}.
7528 This chapter leads up to a description of the kill ring and how it is
7529 used by first tracing how the @code{zap-to-char} function works. This
7530 function uses (or `calls') a function that invokes a function that
7531 manipulates the kill ring. Thus, before reaching the mountains, we
7532 climb the foothills.
7533
7534 A subsequent chapter describes how text that is cut from the buffer is
7535 retrieved. @xref{Yanking, , Yanking Text Back}.
7536
7537 @node zap-to-char
7538 @section @code{zap-to-char}
7539 @findex zap-to-char
7540
7541 Let us look at the interactive @code{zap-to-char} function.
7542
7543 @menu
7544 * Complete zap-to-char:: The complete implementation.
7545 * zap-to-char interactive:: A three part interactive expression.
7546 * zap-to-char body:: A short overview.
7547 * search-forward:: How to search for a string.
7548 * progn:: The @code{progn} special form.
7549 * Summing up zap-to-char:: Using @code{point} and @code{search-forward}.
7550 @end menu
7551
7552 @ifnottex
7553 @node Complete zap-to-char
7554 @unnumberedsubsec The Complete @code{zap-to-char} Implementation
7555 @end ifnottex
7556
7557 The @code{zap-to-char} function removes the text in the region between
7558 the location of the cursor (i.e., of point) up to and including the
7559 next occurrence of a specified character. The text that
7560 @code{zap-to-char} removes is put in the kill ring; and it can be
7561 retrieved from the kill ring by typing @kbd{C-y} (@code{yank}). If
7562 the command is given an argument, it removes text through that number
7563 of occurrences. Thus, if the cursor were at the beginning of this
7564 sentence and the character were @samp{s}, @samp{Thus} would be
7565 removed. If the argument were two, @samp{Thus, if the curs} would be
7566 removed, up to and including the @samp{s} in @samp{cursor}.
7567
7568 If the specified character is not found, @code{zap-to-char} will say
7569 ``Search failed'', tell you the character you typed, and not remove
7570 any text.
7571
7572 In order to determine how much text to remove, @code{zap-to-char} uses
7573 a search function. Searches are used extensively in code that
7574 manipulates text, and we will focus attention on them as well as on the
7575 deletion command.
7576
7577 @ignore
7578 @c GNU Emacs version 19
7579 (defun zap-to-char (arg char) ; version 19 implementation
7580 "Kill up to and including ARG'th occurrence of CHAR.
7581 Goes backward if ARG is negative; error if CHAR not found."
7582 (interactive "*p\ncZap to char: ")
7583 (kill-region (point)
7584 (progn
7585 (search-forward
7586 (char-to-string char) nil nil arg)
7587 (point))))
7588 @end ignore
7589
7590 @need 1250
7591 Here is the complete text of the version 22 implementation of the function:
7592
7593 @c GNU Emacs 22
7594 @smallexample
7595 @group
7596 (defun zap-to-char (arg char)
7597 "Kill up to and including ARG'th occurrence of CHAR.
7598 Case is ignored if `case-fold-search' is non-nil in the current buffer.
7599 Goes backward if ARG is negative; error if CHAR not found."
7600 (interactive "p\ncZap to char: ")
7601 (if (char-table-p translation-table-for-input)
7602 (setq char (or (aref translation-table-for-input char) char)))
7603 (kill-region (point) (progn
7604 (search-forward (char-to-string char)
7605 nil nil arg)
7606 (point))))
7607 @end group
7608 @end smallexample
7609
7610 The documentation is thorough. You do need to know the jargon meaning
7611 of the word `kill'.
7612
7613 @node zap-to-char interactive
7614 @subsection The @code{interactive} Expression
7615
7616 @need 800
7617 The interactive expression in the @code{zap-to-char} command looks like
7618 this:
7619
7620 @smallexample
7621 (interactive "p\ncZap to char: ")
7622 @end smallexample
7623
7624 The part within quotation marks, @code{"p\ncZap to char:@: "}, specifies
7625 two different things. First, and most simply, is the @samp{p}.
7626 This part is separated from the next part by a newline, @samp{\n}.
7627 The @samp{p} means that the first argument to the function will be
7628 passed the value of a `processed prefix'. The prefix argument is
7629 passed by typing @kbd{C-u} and a number, or @kbd{M-} and a number. If
7630 the function is called interactively without a prefix, 1 is passed to
7631 this argument.
7632
7633 The second part of @code{"p\ncZap to char:@: "} is
7634 @samp{cZap to char:@: }. In this part, the lower case @samp{c}
7635 indicates that @code{interactive} expects a prompt and that the
7636 argument will be a character. The prompt follows the @samp{c} and is
7637 the string @samp{Zap to char:@: } (with a space after the colon to
7638 make it look good).
7639
7640 What all this does is prepare the arguments to @code{zap-to-char} so they
7641 are of the right type, and give the user a prompt.
7642
7643 In a read-only buffer, the @code{zap-to-char} function copies the text
7644 to the kill ring, but does not remove it. The echo area displays a
7645 message saying that the buffer is read-only. Also, the terminal may
7646 beep or blink at you.
7647
7648 @node zap-to-char body
7649 @subsection The Body of @code{zap-to-char}
7650
7651 The body of the @code{zap-to-char} function contains the code that
7652 kills (that is, removes) the text in the region from the current
7653 position of the cursor up to and including the specified character.
7654
7655 The first part of the code looks like this:
7656
7657 @smallexample
7658 (if (char-table-p translation-table-for-input)
7659 (setq char (or (aref translation-table-for-input char) char)))
7660 (kill-region (point) (progn
7661 (search-forward (char-to-string char) nil nil arg)
7662 (point)))
7663 @end smallexample
7664
7665 @noindent
7666 @code{char-table-p} is an hitherto unseen function. It determines
7667 whether its argument is a character table. When it is, it sets the
7668 character passed to @code{zap-to-char} to one of them, if that
7669 character exists, or to the character itself. (This becomes important
7670 for certain characters in non-European languages. The @code{aref}
7671 function extracts an element from an array. It is an array-specific
7672 function that is not described in this document. @xref{Arrays, ,
7673 Arrays, elisp, The GNU Emacs Lisp Reference Manual}.)
7674
7675 @noindent
7676 @code{(point)} is the current position of the cursor.
7677
7678 The next part of the code is an expression using @code{progn}. The body
7679 of the @code{progn} consists of calls to @code{search-forward} and
7680 @code{point}.
7681
7682 It is easier to understand how @code{progn} works after learning about
7683 @code{search-forward}, so we will look at @code{search-forward} and
7684 then at @code{progn}.
7685
7686 @node search-forward
7687 @subsection The @code{search-forward} Function
7688 @findex search-forward
7689
7690 The @code{search-forward} function is used to locate the
7691 zapped-for-character in @code{zap-to-char}. If the search is
7692 successful, @code{search-forward} leaves point immediately after the
7693 last character in the target string. (In @code{zap-to-char}, the
7694 target string is just one character long. @code{zap-to-char} uses the
7695 function @code{char-to-string} to ensure that the computer treats that
7696 character as a string.) If the search is backwards,
7697 @code{search-forward} leaves point just before the first character in
7698 the target. Also, @code{search-forward} returns @code{t} for true.
7699 (Moving point is therefore a `side effect'.)
7700
7701 @need 1250
7702 In @code{zap-to-char}, the @code{search-forward} function looks like this:
7703
7704 @smallexample
7705 (search-forward (char-to-string char) nil nil arg)
7706 @end smallexample
7707
7708 The @code{search-forward} function takes four arguments:
7709
7710 @enumerate
7711 @item
7712 The first argument is the target, what is searched for. This must be a
7713 string, such as @samp{"z"}.
7714
7715 As it happens, the argument passed to @code{zap-to-char} is a single
7716 character. Because of the way computers are built, the Lisp
7717 interpreter may treat a single character as being different from a
7718 string of characters. Inside the computer, a single character has a
7719 different electronic format than a string of one character. (A single
7720 character can often be recorded in the computer using exactly one
7721 byte; but a string may be longer, and the computer needs to be ready
7722 for this.) Since the @code{search-forward} function searches for a
7723 string, the character that the @code{zap-to-char} function receives as
7724 its argument must be converted inside the computer from one format to
7725 the other; otherwise the @code{search-forward} function will fail.
7726 The @code{char-to-string} function is used to make this conversion.
7727
7728 @item
7729 The second argument bounds the search; it is specified as a position in
7730 the buffer. In this case, the search can go to the end of the buffer,
7731 so no bound is set and the second argument is @code{nil}.
7732
7733 @item
7734 The third argument tells the function what it should do if the search
7735 fails---it can signal an error (and print a message) or it can return
7736 @code{nil}. A @code{nil} as the third argument causes the function to
7737 signal an error when the search fails.
7738
7739 @item
7740 The fourth argument to @code{search-forward} is the repeat count---how
7741 many occurrences of the string to look for. This argument is optional
7742 and if the function is called without a repeat count, this argument is
7743 passed the value 1. If this argument is negative, the search goes
7744 backwards.
7745 @end enumerate
7746
7747 @need 800
7748 In template form, a @code{search-forward} expression looks like this:
7749
7750 @smallexample
7751 @group
7752 (search-forward "@var{target-string}"
7753 @var{limit-of-search}
7754 @var{what-to-do-if-search-fails}
7755 @var{repeat-count})
7756 @end group
7757 @end smallexample
7758
7759 We will look at @code{progn} next.
7760
7761 @node progn
7762 @subsection The @code{progn} Special Form
7763 @findex progn
7764
7765 @code{progn} is a special form that causes each of its arguments to be
7766 evaluated in sequence and then returns the value of the last one. The
7767 preceding expressions are evaluated only for the side effects they
7768 perform. The values produced by them are discarded.
7769
7770 @need 800
7771 The template for a @code{progn} expression is very simple:
7772
7773 @smallexample
7774 @group
7775 (progn
7776 @var{body}@dots{})
7777 @end group
7778 @end smallexample
7779
7780 In @code{zap-to-char}, the @code{progn} expression has to do two things:
7781 put point in exactly the right position; and return the location of
7782 point so that @code{kill-region} will know how far to kill to.
7783
7784 The first argument to the @code{progn} is @code{search-forward}. When
7785 @code{search-forward} finds the string, the function leaves point
7786 immediately after the last character in the target string. (In this
7787 case the target string is just one character long.) If the search is
7788 backwards, @code{search-forward} leaves point just before the first
7789 character in the target. The movement of point is a side effect.
7790
7791 The second and last argument to @code{progn} is the expression
7792 @code{(point)}. This expression returns the value of point, which in
7793 this case will be the location to which it has been moved by
7794 @code{search-forward}. (In the source, a line that tells the function
7795 to go to the previous character, if it is going forward, was commented
7796 out in 1999; I don't remember whether that feature or mis-feature was
7797 ever a part of the distributed source.) The value of @code{point} is
7798 returned by the @code{progn} expression and is passed to
7799 @code{kill-region} as @code{kill-region}'s second argument.
7800
7801 @node Summing up zap-to-char
7802 @subsection Summing up @code{zap-to-char}
7803
7804 Now that we have seen how @code{search-forward} and @code{progn} work,
7805 we can see how the @code{zap-to-char} function works as a whole.
7806
7807 The first argument to @code{kill-region} is the position of the cursor
7808 when the @code{zap-to-char} command is given---the value of point at
7809 that time. Within the @code{progn}, the search function then moves
7810 point to just after the zapped-to-character and @code{point} returns the
7811 value of this location. The @code{kill-region} function puts together
7812 these two values of point, the first one as the beginning of the region
7813 and the second one as the end of the region, and removes the region.
7814
7815 The @code{progn} special form is necessary because the
7816 @code{kill-region} command takes two arguments; and it would fail if
7817 @code{search-forward} and @code{point} expressions were written in
7818 sequence as two additional arguments. The @code{progn} expression is
7819 a single argument to @code{kill-region} and returns the one value that
7820 @code{kill-region} needs for its second argument.
7821
7822 @node kill-region
7823 @section @code{kill-region}
7824 @findex kill-region
7825
7826 The @code{zap-to-char} function uses the @code{kill-region} function.
7827 This function clips text from a region and copies that text to
7828 the kill ring, from which it may be retrieved.
7829
7830 @ignore
7831 GNU Emacs 22:
7832
7833 (defun kill-region (beg end &optional yank-handler)
7834 "Kill (\"cut\") text between point and mark.
7835 This deletes the text from the buffer and saves it in the kill ring.
7836 The command \\[yank] can retrieve it from there.
7837 \(If you want to kill and then yank immediately, use \\[kill-ring-save].)
7838
7839 If you want to append the killed region to the last killed text,
7840 use \\[append-next-kill] before \\[kill-region].
7841
7842 If the buffer is read-only, Emacs will beep and refrain from deleting
7843 the text, but put the text in the kill ring anyway. This means that
7844 you can use the killing commands to copy text from a read-only buffer.
7845
7846 This is the primitive for programs to kill text (as opposed to deleting it).
7847 Supply two arguments, character positions indicating the stretch of text
7848 to be killed.
7849 Any command that calls this function is a \"kill command\".
7850 If the previous command was also a kill command,
7851 the text killed this time appends to the text killed last time
7852 to make one entry in the kill ring.
7853
7854 In Lisp code, optional third arg YANK-HANDLER, if non-nil,
7855 specifies the yank-handler text property to be set on the killed
7856 text. See `insert-for-yank'."
7857 ;; Pass point first, then mark, because the order matters
7858 ;; when calling kill-append.
7859 (interactive (list (point) (mark)))
7860 (unless (and beg end)
7861 (error "The mark is not set now, so there is no region"))
7862 (condition-case nil
7863 (let ((string (filter-buffer-substring beg end t)))
7864 (when string ;STRING is nil if BEG = END
7865 ;; Add that string to the kill ring, one way or another.
7866 (if (eq last-command 'kill-region)
7867 (kill-append string (< end beg) yank-handler)
7868 (kill-new string nil yank-handler)))
7869 (when (or string (eq last-command 'kill-region))
7870 (setq this-command 'kill-region))
7871 nil)
7872 ((buffer-read-only text-read-only)
7873 ;; The code above failed because the buffer, or some of the characters
7874 ;; in the region, are read-only.
7875 ;; We should beep, in case the user just isn't aware of this.
7876 ;; However, there's no harm in putting
7877 ;; the region's text in the kill ring, anyway.
7878 (copy-region-as-kill beg end)
7879 ;; Set this-command now, so it will be set even if we get an error.
7880 (setq this-command 'kill-region)
7881 ;; This should barf, if appropriate, and give us the correct error.
7882 (if kill-read-only-ok
7883 (progn (message "Read only text copied to kill ring") nil)
7884 ;; Signal an error if the buffer is read-only.
7885 (barf-if-buffer-read-only)
7886 ;; If the buffer isn't read-only, the text is.
7887 (signal 'text-read-only (list (current-buffer)))))))
7888 @end ignore
7889
7890 The Emacs 22 version of that function uses @code{condition-case} and
7891 @code{copy-region-as-kill}, both of which we will explain.
7892 @code{condition-case} is an important special form.
7893
7894 In essence, the @code{kill-region} function calls
7895 @code{condition-case}, which takes three arguments. In this function,
7896 the first argument does nothing. The second argument contains the
7897 code that does the work when all goes well. The third argument
7898 contains the code that is called in the event of an error.
7899
7900 @menu
7901 * Complete kill-region:: The function definition.
7902 * condition-case:: Dealing with a problem.
7903 * Lisp macro::
7904 @end menu
7905
7906 @ifnottex
7907 @node Complete kill-region
7908 @unnumberedsubsec The Complete @code{kill-region} Definition
7909 @end ifnottex
7910
7911 @need 1200
7912 We will go through the @code{condition-case} code in a moment. First,
7913 let us look at the definition of @code{kill-region}, with comments
7914 added:
7915
7916 @c GNU Emacs 22:
7917 @smallexample
7918 @group
7919 (defun kill-region (beg end)
7920 "Kill (\"cut\") text between point and mark.
7921 This deletes the text from the buffer and saves it in the kill ring.
7922 The command \\[yank] can retrieve it from there. @dots{} "
7923 @end group
7924
7925 @group
7926 ;; @bullet{} Since order matters, pass point first.
7927 (interactive (list (point) (mark)))
7928 ;; @bullet{} And tell us if we cannot cut the text.
7929 ;; `unless' is an `if' without a then-part.
7930 (unless (and beg end)
7931 (error "The mark is not set now, so there is no region"))
7932 @end group
7933
7934 @group
7935 ;; @bullet{} `condition-case' takes three arguments.
7936 ;; If the first argument is nil, as it is here,
7937 ;; information about the error signal is not
7938 ;; stored for use by another function.
7939 (condition-case nil
7940 @end group
7941
7942 @group
7943 ;; @bullet{} The second argument to `condition-case' tells the
7944 ;; Lisp interpreter what to do when all goes well.
7945 @end group
7946
7947 @group
7948 ;; It starts with a `let' function that extracts the string
7949 ;; and tests whether it exists. If so (that is what the
7950 ;; `when' checks), it calls an `if' function that determines
7951 ;; whether the previous command was another call to
7952 ;; `kill-region'; if it was, then the new text is appended to
7953 ;; the previous text; if not, then a different function,
7954 ;; `kill-new', is called.
7955 @end group
7956
7957 @group
7958 ;; The `kill-append' function concatenates the new string and
7959 ;; the old. The `kill-new' function inserts text into a new
7960 ;; item in the kill ring.
7961 @end group
7962
7963 @group
7964 ;; `when' is an `if' without an else-part. The second `when'
7965 ;; again checks whether the current string exists; in
7966 ;; addition, it checks whether the previous command was
7967 ;; another call to `kill-region'. If one or the other
7968 ;; condition is true, then it sets the current command to
7969 ;; be `kill-region'.
7970 @end group
7971 @group
7972 (let ((string (filter-buffer-substring beg end t)))
7973 (when string ;STRING is nil if BEG = END
7974 ;; Add that string to the kill ring, one way or another.
7975 (if (eq last-command 'kill-region)
7976 @end group
7977 @group
7978 ;; @minus{} `yank-handler' is an optional argument to
7979 ;; `kill-region' that tells the `kill-append' and
7980 ;; `kill-new' functions how deal with properties
7981 ;; added to the text, such as `bold' or `italics'.
7982 (kill-append string (< end beg) yank-handler)
7983 (kill-new string nil yank-handler)))
7984 (when (or string (eq last-command 'kill-region))
7985 (setq this-command 'kill-region))
7986 nil)
7987 @end group
7988
7989 @group
7990 ;; @bullet{} The third argument to `condition-case' tells the interpreter
7991 ;; what to do with an error.
7992 @end group
7993 @group
7994 ;; The third argument has a conditions part and a body part.
7995 ;; If the conditions are met (in this case,
7996 ;; if text or buffer are read-only)
7997 ;; then the body is executed.
7998 @end group
7999 @group
8000 ;; The first part of the third argument is the following:
8001 ((buffer-read-only text-read-only) ;; the if-part
8002 ;; @dots{} the then-part
8003 (copy-region-as-kill beg end)
8004 @end group
8005 @group
8006 ;; Next, also as part of the then-part, set this-command, so
8007 ;; it will be set in an error
8008 (setq this-command 'kill-region)
8009 ;; Finally, in the then-part, send a message if you may copy
8010 ;; the text to the kill ring without signaling an error, but
8011 ;; don't if you may not.
8012 @end group
8013 @group
8014 (if kill-read-only-ok
8015 (progn (message "Read only text copied to kill ring") nil)
8016 (barf-if-buffer-read-only)
8017 ;; If the buffer isn't read-only, the text is.
8018 (signal 'text-read-only (list (current-buffer)))))
8019 @end group
8020 @end smallexample
8021
8022 @ignore
8023 @c v 21
8024 @smallexample
8025 @group
8026 (defun kill-region (beg end)
8027 "Kill between point and mark.
8028 The text is deleted but saved in the kill ring."
8029 (interactive "r")
8030 @end group
8031
8032 @group
8033 ;; 1. `condition-case' takes three arguments.
8034 ;; If the first argument is nil, as it is here,
8035 ;; information about the error signal is not
8036 ;; stored for use by another function.
8037 (condition-case nil
8038 @end group
8039
8040 @group
8041 ;; 2. The second argument to `condition-case'
8042 ;; tells the Lisp interpreter what to do when all goes well.
8043 @end group
8044
8045 @group
8046 ;; The `delete-and-extract-region' function usually does the
8047 ;; work. If the beginning and ending of the region are both
8048 ;; the same, then the variable `string' will be empty, or nil
8049 (let ((string (delete-and-extract-region beg end)))
8050 @end group
8051
8052 @group
8053 ;; `when' is an `if' clause that cannot take an `else-part'.
8054 ;; Emacs normally sets the value of `last-command' to the
8055 ;; previous command.
8056 @end group
8057 @group
8058 ;; `kill-append' concatenates the new string and the old.
8059 ;; `kill-new' inserts text into a new item in the kill ring.
8060 (when string
8061 (if (eq last-command 'kill-region)
8062 ;; if true, prepend string
8063 (kill-append string (< end beg))
8064 (kill-new string)))
8065 (setq this-command 'kill-region))
8066 @end group
8067
8068 @group
8069 ;; 3. The third argument to `condition-case' tells the interpreter
8070 ;; what to do with an error.
8071 @end group
8072 @group
8073 ;; The third argument has a conditions part and a body part.
8074 ;; If the conditions are met (in this case,
8075 ;; if text or buffer are read-only)
8076 ;; then the body is executed.
8077 @end group
8078 @group
8079 ((buffer-read-only text-read-only) ;; this is the if-part
8080 ;; then...
8081 (copy-region-as-kill beg end)
8082 @end group
8083 @group
8084 (if kill-read-only-ok ;; usually this variable is nil
8085 (message "Read only text copied to kill ring")
8086 ;; or else, signal an error if the buffer is read-only;
8087 (barf-if-buffer-read-only)
8088 ;; and, in any case, signal that the text is read-only.
8089 (signal 'text-read-only (list (current-buffer)))))))
8090 @end group
8091 @end smallexample
8092 @end ignore
8093
8094 @node condition-case
8095 @subsection @code{condition-case}
8096 @findex condition-case
8097
8098 As we have seen earlier (@pxref{Making Errors, , Generate an Error
8099 Message}), when the Emacs Lisp interpreter has trouble evaluating an
8100 expression, it provides you with help; in the jargon, this is called
8101 ``signaling an error''. Usually, the computer stops the program and
8102 shows you a message.
8103
8104 However, some programs undertake complicated actions. They should not
8105 simply stop on an error. In the @code{kill-region} function, the most
8106 likely error is that you will try to kill text that is read-only and
8107 cannot be removed. So the @code{kill-region} function contains code
8108 to handle this circumstance. This code, which makes up the body of
8109 the @code{kill-region} function, is inside of a @code{condition-case}
8110 special form.
8111
8112 @need 800
8113 The template for @code{condition-case} looks like this:
8114
8115 @smallexample
8116 @group
8117 (condition-case
8118 @var{var}
8119 @var{bodyform}
8120 @var{error-handler}@dots{})
8121 @end group
8122 @end smallexample
8123
8124 The second argument, @var{bodyform}, is straightforward. The
8125 @code{condition-case} special form causes the Lisp interpreter to
8126 evaluate the code in @var{bodyform}. If no error occurs, the special
8127 form returns the code's value and produces the side-effects, if any.
8128
8129 In short, the @var{bodyform} part of a @code{condition-case}
8130 expression determines what should happen when everything works
8131 correctly.
8132
8133 However, if an error occurs, among its other actions, the function
8134 generating the error signal will define one or more error condition
8135 names.
8136
8137 An error handler is the third argument to @code{condition case}.
8138 An error handler has two parts, a @var{condition-name} and a
8139 @var{body}. If the @var{condition-name} part of an error handler
8140 matches a condition name generated by an error, then the @var{body}
8141 part of the error handler is run.
8142
8143 As you will expect, the @var{condition-name} part of an error handler
8144 may be either a single condition name or a list of condition names.
8145
8146 Also, a complete @code{condition-case} expression may contain more
8147 than one error handler. When an error occurs, the first applicable
8148 handler is run.
8149
8150 Lastly, the first argument to the @code{condition-case} expression,
8151 the @var{var} argument, is sometimes bound to a variable that
8152 contains information about the error. However, if that argument is
8153 nil, as is the case in @code{kill-region}, that information is
8154 discarded.
8155
8156 @need 1200
8157 In brief, in the @code{kill-region} function, the code
8158 @code{condition-case} works like this:
8159
8160 @smallexample
8161 @group
8162 @var{If no errors}, @var{run only this code}
8163 @var{but}, @var{if errors}, @var{run this other code}.
8164 @end group
8165 @end smallexample
8166
8167 @ignore
8168 2006 Oct 24
8169 In Emacs 22,
8170 copy-region-as-kill is short, 12 lines, and uses
8171 filter-buffer-substring, which is longer, 39 lines
8172 and has delete-and-extract-region in it.
8173 delete-and-extract-region is written in C.
8174
8175 see Initializing a Variable with @code{defvar}
8176 this is line 8054
8177 Initializing a Variable with @code{defvar} includes line 8350
8178 @end ignore
8179
8180 @node Lisp macro
8181 @subsection Lisp macro
8182 @cindex Macro, lisp
8183 @cindex Lisp macro
8184
8185 The part of the @code{condition-case} expression that is evaluated in
8186 the expectation that all goes well has a @code{when}. The code uses
8187 @code{when} to determine whether the @code{string} variable points to
8188 text that exists.
8189
8190 A @code{when} expression is simply a programmers' convenience. It is
8191 an @code{if} without the possibility of an else clause. In your mind,
8192 you can replace @code{when} with @code{if} and understand what goes
8193 on. That is what the Lisp interpreter does.
8194
8195 Technically speaking, @code{when} is a Lisp macro. A Lisp macro
8196 enables you to define new control constructs and other language
8197 features. It tells the interpreter how to compute another Lisp
8198 expression which will in turn compute the value. In this case, the
8199 `other expression' is an @code{if} expression.
8200
8201 The @code{kill-region} function definition also has an @code{unless}
8202 macro; it is the converse of @code{when}. The @code{unless} macro is
8203 an @code{if} without a then clause
8204
8205 For more about Lisp macros, see @ref{Macros, , Macros, elisp, The GNU
8206 Emacs Lisp Reference Manual}. The C programming language also
8207 provides macros. These are different, but also useful.
8208
8209 @ignore
8210 We will briefly look at C macros in
8211 @ref{Digression into C}.
8212 @end ignore
8213
8214 @need 1200
8215 Regarding the @code{when} macro, in the @code{condition-case}
8216 expression, when the string has content, then another conditional
8217 expression is executed. This is an @code{if} with both a then-part
8218 and an else-part.
8219
8220 @smallexample
8221 @group
8222 (if (eq last-command 'kill-region)
8223 (kill-append string (< end beg) yank-handler)
8224 (kill-new string nil yank-handler))
8225 @end group
8226 @end smallexample
8227
8228 The then-part is evaluated if the previous command was another call to
8229 @code{kill-region}; if not, the else-part is evaluated.
8230
8231 @code{yank-handler} is an optional argument to @code{kill-region} that
8232 tells the @code{kill-append} and @code{kill-new} functions how deal
8233 with properties added to the text, such as `bold' or `italics'.
8234
8235 @code{last-command} is a variable that comes with Emacs that we have
8236 not seen before. Normally, whenever a function is executed, Emacs
8237 sets the value of @code{last-command} to the previous command.
8238
8239 @need 1200
8240 In this segment of the definition, the @code{if} expression checks
8241 whether the previous command was @code{kill-region}. If it was,
8242
8243 @smallexample
8244 (kill-append string (< end beg) yank-handler)
8245 @end smallexample
8246
8247 @noindent
8248 concatenates a copy of the newly clipped text to the just previously
8249 clipped text in the kill ring.
8250
8251 @node copy-region-as-kill
8252 @section @code{copy-region-as-kill}
8253 @findex copy-region-as-kill
8254 @findex nthcdr
8255
8256 The @code{copy-region-as-kill} function copies a region of text from a
8257 buffer and (via either @code{kill-append} or @code{kill-new}) saves it
8258 in the @code{kill-ring}.
8259
8260 If you call @code{copy-region-as-kill} immediately after a
8261 @code{kill-region} command, Emacs appends the newly copied text to the
8262 previously copied text. This means that if you yank back the text, you
8263 get it all, from both this and the previous operation. On the other
8264 hand, if some other command precedes the @code{copy-region-as-kill},
8265 the function copies the text into a separate entry in the kill ring.
8266
8267 @menu
8268 * Complete copy-region-as-kill:: The complete function definition.
8269 * copy-region-as-kill body:: The body of @code{copy-region-as-kill}.
8270 @end menu
8271
8272 @ifnottex
8273 @node Complete copy-region-as-kill
8274 @unnumberedsubsec The complete @code{copy-region-as-kill} function definition
8275 @end ifnottex
8276
8277 @need 1200
8278 Here is the complete text of the version 22 @code{copy-region-as-kill}
8279 function:
8280
8281 @smallexample
8282 @group
8283 (defun copy-region-as-kill (beg end)
8284 "Save the region as if killed, but don't kill it.
8285 In Transient Mark mode, deactivate the mark.
8286 If `interprogram-cut-function' is non-nil, also save the text for a window
8287 system cut and paste."
8288 (interactive "r")
8289 @end group
8290 @group
8291 (if (eq last-command 'kill-region)
8292 (kill-append (filter-buffer-substring beg end) (< end beg))
8293 (kill-new (filter-buffer-substring beg end)))
8294 @end group
8295 @group
8296 (if transient-mark-mode
8297 (setq deactivate-mark t))
8298 nil)
8299 @end group
8300 @end smallexample
8301
8302 @need 800
8303 As usual, this function can be divided into its component parts:
8304
8305 @smallexample
8306 @group
8307 (defun copy-region-as-kill (@var{argument-list})
8308 "@var{documentation}@dots{}"
8309 (interactive "r")
8310 @var{body}@dots{})
8311 @end group
8312 @end smallexample
8313
8314 The arguments are @code{beg} and @code{end} and the function is
8315 interactive with @code{"r"}, so the two arguments must refer to the
8316 beginning and end of the region. If you have been reading through this
8317 document from the beginning, understanding these parts of a function is
8318 almost becoming routine.
8319
8320 The documentation is somewhat confusing unless you remember that the
8321 word `kill' has a meaning different from usual. The `Transient Mark'
8322 and @code{interprogram-cut-function} comments explain certain
8323 side-effects.
8324
8325 After you once set a mark, a buffer always contains a region. If you
8326 wish, you can use Transient Mark mode to highlight the region
8327 temporarily. (No one wants to highlight the region all the time, so
8328 Transient Mark mode highlights it only at appropriate times. Many
8329 people turn off Transient Mark mode, so the region is never
8330 highlighted.)
8331
8332 Also, a windowing system allows you to copy, cut, and paste among
8333 different programs. In the X windowing system, for example, the
8334 @code{interprogram-cut-function} function is @code{x-select-text},
8335 which works with the windowing system's equivalent of the Emacs kill
8336 ring.
8337
8338 The body of the @code{copy-region-as-kill} function starts with an
8339 @code{if} clause. What this clause does is distinguish between two
8340 different situations: whether or not this command is executed
8341 immediately after a previous @code{kill-region} command. In the first
8342 case, the new region is appended to the previously copied text.
8343 Otherwise, it is inserted into the beginning of the kill ring as a
8344 separate piece of text from the previous piece.
8345
8346 The last two lines of the function prevent the region from lighting up
8347 if Transient Mark mode is turned on.
8348
8349 The body of @code{copy-region-as-kill} merits discussion in detail.
8350
8351 @node copy-region-as-kill body
8352 @subsection The Body of @code{copy-region-as-kill}
8353
8354 The @code{copy-region-as-kill} function works in much the same way as
8355 the @code{kill-region} function. Both are written so that two or more
8356 kills in a row combine their text into a single entry. If you yank
8357 back the text from the kill ring, you get it all in one piece.
8358 Moreover, kills that kill forward from the current position of the
8359 cursor are added to the end of the previously copied text and commands
8360 that copy text backwards add it to the beginning of the previously
8361 copied text. This way, the words in the text stay in the proper
8362 order.
8363
8364 Like @code{kill-region}, the @code{copy-region-as-kill} function makes
8365 use of the @code{last-command} variable that keeps track of the
8366 previous Emacs command.
8367
8368 @menu
8369 * last-command & this-command::
8370 * kill-append function::
8371 * kill-new function::
8372 @end menu
8373
8374 @ifnottex
8375 @node last-command & this-command
8376 @unnumberedsubsubsec @code{last-command} and @code{this-command}
8377 @end ifnottex
8378
8379 Normally, whenever a function is executed, Emacs sets the value of
8380 @code{this-command} to the function being executed (which in this case
8381 would be @code{copy-region-as-kill}). At the same time, Emacs sets
8382 the value of @code{last-command} to the previous value of
8383 @code{this-command}.
8384
8385 In the first part of the body of the @code{copy-region-as-kill}
8386 function, an @code{if} expression determines whether the value of
8387 @code{last-command} is @code{kill-region}. If so, the then-part of
8388 the @code{if} expression is evaluated; it uses the @code{kill-append}
8389 function to concatenate the text copied at this call to the function
8390 with the text already in the first element (the @sc{car}) of the kill
8391 ring. On the other hand, if the value of @code{last-command} is not
8392 @code{kill-region}, then the @code{copy-region-as-kill} function
8393 attaches a new element to the kill ring using the @code{kill-new}
8394 function.
8395
8396 @need 1250
8397 The @code{if} expression reads as follows; it uses @code{eq}:
8398
8399 @smallexample
8400 @group
8401 (if (eq last-command 'kill-region)
8402 ;; @r{then-part}
8403 (kill-append (filter-buffer-substring beg end) (< end beg))
8404 ;; @r{else-part}
8405 (kill-new (filter-buffer-substring beg end)))
8406 @end group
8407 @end smallexample
8408
8409 @findex filter-buffer-substring
8410 (The @code{filter-buffer-substring} function returns a filtered
8411 substring of the buffer, if any. Optionally---the arguments are not
8412 here, so neither is done---the function may delete the initial text or
8413 return the text without its properties; this function is a replacement
8414 for the older @code{buffer-substring} function, which came before text
8415 properties were implemented.)
8416
8417 @findex eq @r{(example of use)}
8418 @noindent
8419 The @code{eq} function tests whether its first argument is the same Lisp
8420 object as its second argument. The @code{eq} function is similar to the
8421 @code{equal} function in that it is used to test for equality, but
8422 differs in that it determines whether two representations are actually
8423 the same object inside the computer, but with different names.
8424 @code{equal} determines whether the structure and contents of two
8425 expressions are the same.
8426
8427 If the previous command was @code{kill-region}, then the Emacs Lisp
8428 interpreter calls the @code{kill-append} function
8429
8430 @node kill-append function
8431 @unnumberedsubsubsec The @code{kill-append} function
8432 @findex kill-append
8433
8434 @need 800
8435 The @code{kill-append} function looks like this:
8436
8437 @c in GNU Emacs 22
8438 @smallexample
8439 @group
8440 (defun kill-append (string before-p &optional yank-handler)
8441 "Append STRING to the end of the latest kill in the kill ring.
8442 If BEFORE-P is non-nil, prepend STRING to the kill.
8443 @dots{} "
8444 (let* ((cur (car kill-ring)))
8445 (kill-new (if before-p (concat string cur) (concat cur string))
8446 (or (= (length cur) 0)
8447 (equal yank-handler
8448 (get-text-property 0 'yank-handler cur)))
8449 yank-handler)))
8450 @end group
8451 @end smallexample
8452
8453 @ignore
8454 was:
8455 (defun kill-append (string before-p)
8456 "Append STRING to the end of the latest kill in the kill ring.
8457 If BEFORE-P is non-nil, prepend STRING to the kill.
8458 If `interprogram-cut-function' is set, pass the resulting kill to
8459 it."
8460 (kill-new (if before-p
8461 (concat string (car kill-ring))
8462 (concat (car kill-ring) string))
8463 t))
8464 @end ignore
8465
8466 @noindent
8467 The @code{kill-append} function is fairly straightforward. It uses
8468 the @code{kill-new} function, which we will discuss in more detail in
8469 a moment.
8470
8471 (Also, the function provides an optional argument called
8472 @code{yank-handler}; when invoked, this argument tells the function
8473 how to deal with properties added to the text, such as `bold' or
8474 `italics'.)
8475
8476 @c !!! bug in GNU Emacs 22 version of kill-append ?
8477 It has a @code{let*} function to set the value of the first element of
8478 the kill ring to @code{cur}. (I do not know why the function does not
8479 use @code{let} instead; only one value is set in the expression.
8480 Perhaps this is a bug that produces no problems?)
8481
8482 Consider the conditional that is one of the two arguments to
8483 @code{kill-new}. It uses @code{concat} to concatenate the new text to
8484 the @sc{car} of the kill ring. Whether it prepends or appends the
8485 text depends on the results of an @code{if} expression:
8486
8487 @smallexample
8488 @group
8489 (if before-p ; @r{if-part}
8490 (concat string cur) ; @r{then-part}
8491 (concat cur string)) ; @r{else-part}
8492 @end group
8493 @end smallexample
8494
8495 @noindent
8496 If the region being killed is before the region that was killed in the
8497 last command, then it should be prepended before the material that was
8498 saved in the previous kill; and conversely, if the killed text follows
8499 what was just killed, it should be appended after the previous text.
8500 The @code{if} expression depends on the predicate @code{before-p} to
8501 decide whether the newly saved text should be put before or after the
8502 previously saved text.
8503
8504 The symbol @code{before-p} is the name of one of the arguments to
8505 @code{kill-append}. When the @code{kill-append} function is
8506 evaluated, it is bound to the value returned by evaluating the actual
8507 argument. In this case, this is the expression @code{(< end beg)}.
8508 This expression does not directly determine whether the killed text in
8509 this command is located before or after the kill text of the last
8510 command; what it does is determine whether the value of the variable
8511 @code{end} is less than the value of the variable @code{beg}. If it
8512 is, it means that the user is most likely heading towards the
8513 beginning of the buffer. Also, the result of evaluating the predicate
8514 expression, @code{(< end beg)}, will be true and the text will be
8515 prepended before the previous text. On the other hand, if the value of
8516 the variable @code{end} is greater than the value of the variable
8517 @code{beg}, the text will be appended after the previous text.
8518
8519 @need 800
8520 When the newly saved text will be prepended, then the string with the new
8521 text will be concatenated before the old text:
8522
8523 @smallexample
8524 (concat string cur)
8525 @end smallexample
8526
8527 @need 1200
8528 @noindent
8529 But if the text will be appended, it will be concatenated
8530 after the old text:
8531
8532 @smallexample
8533 (concat cur string))
8534 @end smallexample
8535
8536 To understand how this works, we first need to review the
8537 @code{concat} function. The @code{concat} function links together or
8538 unites two strings of text. The result is a string. For example:
8539
8540 @smallexample
8541 @group
8542 (concat "abc" "def")
8543 @result{} "abcdef"
8544 @end group
8545
8546 @group
8547 (concat "new "
8548 (car '("first element" "second element")))
8549 @result{} "new first element"
8550
8551 (concat (car
8552 '("first element" "second element")) " modified")
8553 @result{} "first element modified"
8554 @end group
8555 @end smallexample
8556
8557 We can now make sense of @code{kill-append}: it modifies the contents
8558 of the kill ring. The kill ring is a list, each element of which is
8559 saved text. The @code{kill-append} function uses the @code{kill-new}
8560 function which in turn uses the @code{setcar} function.
8561
8562 @node kill-new function
8563 @unnumberedsubsubsec The @code{kill-new} function
8564 @findex kill-new
8565
8566 @c in GNU Emacs 22, additional documentation to kill-new:
8567 @ignore
8568 Optional third arguments YANK-HANDLER controls how the STRING is later
8569 inserted into a buffer; see `insert-for-yank' for details.
8570 When a yank handler is specified, STRING must be non-empty (the yank
8571 handler, if non-nil, is stored as a `yank-handler' text property on STRING).
8572
8573 When the yank handler has a non-nil PARAM element, the original STRING
8574 argument is not used by `insert-for-yank'. However, since Lisp code
8575 may access and use elements from the kill ring directly, the STRING
8576 argument should still be a \"useful\" string for such uses."
8577 @end ignore
8578 @need 1200
8579 The @code{kill-new} function looks like this:
8580
8581 @smallexample
8582 @group
8583 (defun kill-new (string &optional replace yank-handler)
8584 "Make STRING the latest kill in the kill ring.
8585 Set `kill-ring-yank-pointer' to point to it.
8586
8587 If `interprogram-cut-function' is non-nil, apply it to STRING.
8588 Optional second argument REPLACE non-nil means that STRING will replace
8589 the front of the kill ring, rather than being added to the list.
8590 @dots{}"
8591 @end group
8592 @group
8593 (if (> (length string) 0)
8594 (if yank-handler
8595 (put-text-property 0 (length string)
8596 'yank-handler yank-handler string))
8597 (if yank-handler
8598 (signal 'args-out-of-range
8599 (list string "yank-handler specified for empty string"))))
8600 @end group
8601 @group
8602 (if (fboundp 'menu-bar-update-yank-menu)
8603 (menu-bar-update-yank-menu string (and replace (car kill-ring))))
8604 @end group
8605 @group
8606 (if (and replace kill-ring)
8607 (setcar kill-ring string)
8608 (push string kill-ring)
8609 (if (> (length kill-ring) kill-ring-max)
8610 (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil)))
8611 @end group
8612 @group
8613 (setq kill-ring-yank-pointer kill-ring)
8614 (if interprogram-cut-function
8615 (funcall interprogram-cut-function string (not replace))))
8616 @end group
8617 @end smallexample
8618 @ignore
8619 was:
8620 (defun kill-new (string &optional replace)
8621 "Make STRING the latest kill in the kill ring.
8622 Set the kill-ring-yank pointer to point to it.
8623 If `interprogram-cut-function' is non-nil, apply it to STRING.
8624 Optional second argument REPLACE non-nil means that STRING will replace
8625 the front of the kill ring, rather than being added to the list."
8626 (and (fboundp 'menu-bar-update-yank-menu)
8627 (menu-bar-update-yank-menu string (and replace (car kill-ring))))
8628 (if (and replace kill-ring)
8629 (setcar kill-ring string)
8630 (setq kill-ring (cons string kill-ring))
8631 (if (> (length kill-ring) kill-ring-max)
8632 (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil)))
8633 (setq kill-ring-yank-pointer kill-ring)
8634 (if interprogram-cut-function
8635 (funcall interprogram-cut-function string (not replace))))
8636 @end ignore
8637
8638 (Notice that the function is not interactive.)
8639
8640 As usual, we can look at this function in parts.
8641
8642 The function definition has an optional @code{yank-handler} argument,
8643 which when invoked tells the function how to deal with properties
8644 added to the text, such as `bold' or `italics'. We will skip that.
8645
8646 @need 1200
8647 The first line of the documentation makes sense:
8648
8649 @smallexample
8650 Make STRING the latest kill in the kill ring.
8651 @end smallexample
8652
8653 @noindent
8654 Let's skip over the rest of the documentation for the moment.
8655
8656 @noindent
8657 Also, let's skip over the initial @code{if} expression and those lines
8658 of code involving @code{menu-bar-update-yank-menu}. We will explain
8659 them below.
8660
8661 @need 1200
8662 The critical lines are these:
8663
8664 @smallexample
8665 @group
8666 (if (and replace kill-ring)
8667 ;; @r{then}
8668 (setcar kill-ring string)
8669 @end group
8670 @group
8671 ;; @r{else}
8672 (push string kill-ring)
8673 @end group
8674 @group
8675 (setq kill-ring (cons string kill-ring))
8676 (if (> (length kill-ring) kill-ring-max)
8677 ;; @r{avoid overly long kill ring}
8678 (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil)))
8679 @end group
8680 @group
8681 (setq kill-ring-yank-pointer kill-ring)
8682 (if interprogram-cut-function
8683 (funcall interprogram-cut-function string (not replace))))
8684 @end group
8685 @end smallexample
8686
8687 The conditional test is @w{@code{(and replace kill-ring)}}.
8688 This will be true when two conditions are met: the kill ring has
8689 something in it, and the @code{replace} variable is true.
8690
8691 @need 1250
8692 When the @code{kill-append} function sets @code{replace} to be true
8693 and when the kill ring has at least one item in it, the @code{setcar}
8694 expression is executed:
8695
8696 @smallexample
8697 (setcar kill-ring string)
8698 @end smallexample
8699
8700 The @code{setcar} function actually changes the first element of the
8701 @code{kill-ring} list to the value of @code{string}. It replaces the
8702 first element.
8703
8704 @need 1250
8705 On the other hand, if the kill ring is empty, or replace is false, the
8706 else-part of the condition is executed:
8707
8708 @smallexample
8709 (push string kill-ring)
8710 @end smallexample
8711
8712 @noindent
8713 @need 1250
8714 @code{push} puts its first argument onto the second. It is similar to
8715 the older
8716
8717 @smallexample
8718 (setq kill-ring (cons string kill-ring))
8719 @end smallexample
8720
8721 @noindent
8722 @need 1250
8723 or the newer
8724
8725 @smallexample
8726 (add-to-list kill-ring string)
8727 @end smallexample
8728
8729 @noindent
8730 When it is false, the expression first constructs a new version of the
8731 kill ring by prepending @code{string} to the existing kill ring as a
8732 new element (that is what the @code{push} does). Then it executes a
8733 second @code{if} clause. This second @code{if} clause keeps the kill
8734 ring from growing too long.
8735
8736 Let's look at these two expressions in order.
8737
8738 The @code{push} line of the else-part sets the new value of the kill
8739 ring to what results from adding the string being killed to the old
8740 kill ring.
8741
8742 We can see how this works with an example.
8743
8744 @need 800
8745 First,
8746
8747 @smallexample
8748 (setq example-list '("here is a clause" "another clause"))
8749 @end smallexample
8750
8751 @need 1200
8752 @noindent
8753 After evaluating this expression with @kbd{C-x C-e}, you can evaluate
8754 @code{example-list} and see what it returns:
8755
8756 @smallexample
8757 @group
8758 example-list
8759 @result{} ("here is a clause" "another clause")
8760 @end group
8761 @end smallexample
8762
8763 @need 1200
8764 @noindent
8765 Now, we can add a new element on to this list by evaluating the
8766 following expression:
8767 @findex push, @r{example}
8768
8769 @smallexample
8770 (push "a third clause" example-list)
8771 @end smallexample
8772
8773 @need 800
8774 @noindent
8775 When we evaluate @code{example-list}, we find its value is:
8776
8777 @smallexample
8778 @group
8779 example-list
8780 @result{} ("a third clause" "here is a clause" "another clause")
8781 @end group
8782 @end smallexample
8783
8784 @noindent
8785 Thus, the third clause is added to the list by @code{push}.
8786
8787 @need 1200
8788 Now for the second part of the @code{if} clause. This expression
8789 keeps the kill ring from growing too long. It looks like this:
8790
8791 @smallexample
8792 @group
8793 (if (> (length kill-ring) kill-ring-max)
8794 (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil))
8795 @end group
8796 @end smallexample
8797
8798 The code checks whether the length of the kill ring is greater than
8799 the maximum permitted length. This is the value of
8800 @code{kill-ring-max} (which is 60, by default). If the length of the
8801 kill ring is too long, then this code sets the last element of the
8802 kill ring to @code{nil}. It does this by using two functions,
8803 @code{nthcdr} and @code{setcdr}.
8804
8805 We looked at @code{setcdr} earlier (@pxref{setcdr, , @code{setcdr}}).
8806 It sets the @sc{cdr} of a list, just as @code{setcar} sets the
8807 @sc{car} of a list. In this case, however, @code{setcdr} will not be
8808 setting the @sc{cdr} of the whole kill ring; the @code{nthcdr}
8809 function is used to cause it to set the @sc{cdr} of the next to last
8810 element of the kill ring---this means that since the @sc{cdr} of the
8811 next to last element is the last element of the kill ring, it will set
8812 the last element of the kill ring.
8813
8814 @findex nthcdr, @r{example}
8815 The @code{nthcdr} function works by repeatedly taking the @sc{cdr} of a
8816 list---it takes the @sc{cdr} of the @sc{cdr} of the @sc{cdr}
8817 @dots{} It does this @var{N} times and returns the results.
8818 (@xref{nthcdr, , @code{nthcdr}}.)
8819
8820 @findex setcdr, @r{example}
8821 Thus, if we had a four element list that was supposed to be three
8822 elements long, we could set the @sc{cdr} of the next to last element
8823 to @code{nil}, and thereby shorten the list. (If you set the last
8824 element to some other value than @code{nil}, which you could do, then
8825 you would not have shortened the list. @xref{setcdr, ,
8826 @code{setcdr}}.)
8827
8828 You can see shortening by evaluating the following three expressions
8829 in turn. First set the value of @code{trees} to @code{(maple oak pine
8830 birch)}, then set the @sc{cdr} of its second @sc{cdr} to @code{nil}
8831 and then find the value of @code{trees}:
8832
8833 @smallexample
8834 @group
8835 (setq trees '(maple oak pine birch))
8836 @result{} (maple oak pine birch)
8837 @end group
8838
8839 @group
8840 (setcdr (nthcdr 2 trees) nil)
8841 @result{} nil
8842
8843 trees
8844 @result{} (maple oak pine)
8845 @end group
8846 @end smallexample
8847
8848 @noindent
8849 (The value returned by the @code{setcdr} expression is @code{nil} since
8850 that is what the @sc{cdr} is set to.)
8851
8852 To repeat, in @code{kill-new}, the @code{nthcdr} function takes the
8853 @sc{cdr} a number of times that is one less than the maximum permitted
8854 size of the kill ring and @code{setcdr} sets the @sc{cdr} of that
8855 element (which will be the rest of the elements in the kill ring) to
8856 @code{nil}. This prevents the kill ring from growing too long.
8857
8858 @need 800
8859 The next to last expression in the @code{kill-new} function is
8860
8861 @smallexample
8862 (setq kill-ring-yank-pointer kill-ring)
8863 @end smallexample
8864
8865 The @code{kill-ring-yank-pointer} is a global variable that is set to be
8866 the @code{kill-ring}.
8867
8868 Even though the @code{kill-ring-yank-pointer} is called a
8869 @samp{pointer}, it is a variable just like the kill ring. However, the
8870 name has been chosen to help humans understand how the variable is used.
8871
8872 @need 1200
8873 Now, to return to an early expression in the body of the function:
8874
8875 @smallexample
8876 @group
8877 (if (fboundp 'menu-bar-update-yank-menu)
8878 (menu-bar-update-yank-menu string (and replace (car kill-ring))))
8879 @end group
8880 @end smallexample
8881
8882 @noindent
8883 It starts with an @code{if} expression
8884
8885 In this case, the expression tests first to see whether
8886 @code{menu-bar-update-yank-menu} exists as a function, and if so,
8887 calls it. The @code{fboundp} function returns true if the symbol it
8888 is testing has a function definition that `is not void'. If the
8889 symbol's function definition were void, we would receive an error
8890 message, as we did when we created errors intentionally (@pxref{Making
8891 Errors, , Generate an Error Message}).
8892
8893 @noindent
8894 The then-part contains an expression whose first element is the
8895 function @code{and}.
8896
8897 @findex and
8898 The @code{and} special form evaluates each of its arguments until one
8899 of the arguments returns a value of @code{nil}, in which case the
8900 @code{and} expression returns @code{nil}; however, if none of the
8901 arguments returns a value of @code{nil}, the value resulting from
8902 evaluating the last argument is returned. (Since such a value is not
8903 @code{nil}, it is considered true in Emacs Lisp.) In other words, an
8904 @code{and} expression returns a true value only if all its arguments
8905 are true. (@xref{Second Buffer Related Review}.)
8906
8907 The expression determines whether the second argument to
8908 @code{menu-bar-update-yank-menu} is true or not.
8909 @ignore
8910 ;; If we're supposed to be extending an existing string, and that
8911 ;; string really is at the front of the menu, then update it in place.
8912 @end ignore
8913
8914 @code{menu-bar-update-yank-menu} is one of the functions that make it
8915 possible to use the `Select and Paste' menu in the Edit item of a menu
8916 bar; using a mouse, you can look at the various pieces of text you
8917 have saved and select one piece to paste.
8918
8919 The last expression in the @code{kill-new} function adds the newly
8920 copied string to whatever facility exists for copying and pasting
8921 among different programs running in a windowing system. In the X
8922 Windowing system, for example, the @code{x-select-text} function takes
8923 the string and stores it in memory operated by X@. You can paste the
8924 string in another program, such as an Xterm.
8925
8926 @need 1200
8927 The expression looks like this:
8928
8929 @smallexample
8930 @group
8931 (if interprogram-cut-function
8932 (funcall interprogram-cut-function string (not replace))))
8933 @end group
8934 @end smallexample
8935
8936 If an @code{interprogram-cut-function} exists, then Emacs executes
8937 @code{funcall}, which in turn calls its first argument as a function
8938 and passes the remaining arguments to it. (Incidentally, as far as I
8939 can see, this @code{if} expression could be replaced by an @code{and}
8940 expression similar to the one in the first part of the function.)
8941
8942 We are not going to discuss windowing systems and other programs
8943 further, but merely note that this is a mechanism that enables GNU
8944 Emacs to work easily and well with other programs.
8945
8946 This code for placing text in the kill ring, either concatenated with
8947 an existing element or as a new element, leads us to the code for
8948 bringing back text that has been cut out of the buffer---the yank
8949 commands. However, before discussing the yank commands, it is better
8950 to learn how lists are implemented in a computer. This will make
8951 clear such mysteries as the use of the term `pointer'. But before
8952 that, we will digress into C.
8953
8954 @ignore
8955 @c is this true in Emacs 22? Does not seems to be
8956
8957 (If the @w{@code{(< end beg))}}
8958 expression is true, @code{kill-append} prepends the string to the just
8959 previously clipped text. For a detailed discussion, see
8960 @ref{kill-append function, , The @code{kill-append} function}.)
8961
8962 If you then yank back the text, i.e., `paste' it, you get both
8963 pieces of text at once. That way, if you delete two words in a row,
8964 and then yank them back, you get both words, in their proper order,
8965 with one yank. (The @w{@code{(< end beg))}} expression makes sure the
8966 order is correct.)
8967
8968 On the other hand, if the previous command is not @code{kill-region},
8969 then the @code{kill-new} function is called, which adds the text to
8970 the kill ring as the latest item, and sets the
8971 @code{kill-ring-yank-pointer} variable to point to it.
8972 @end ignore
8973 @ignore
8974
8975 @c Evidently, changed for Emacs 22. The zap-to-char command does not
8976 @c use the delete-and-extract-region function
8977
8978 2006 Oct 26, the Digression into C is now OK but should come after
8979 copy-region-as-kill and filter-buffer-substring
8980
8981 2006 Oct 24
8982 In Emacs 22,
8983 copy-region-as-kill is short, 12 lines, and uses
8984 filter-buffer-substring, which is longer, 39 lines
8985 and has delete-and-extract-region in it.
8986 delete-and-extract-region is written in C.
8987
8988 see Initializing a Variable with @code{defvar}
8989 @end ignore
8990
8991 @node Digression into C
8992 @section Digression into C
8993 @findex delete-and-extract-region
8994 @cindex C, a digression into
8995 @cindex Digression into C
8996
8997 The @code{copy-region-as-kill} function (@pxref{copy-region-as-kill, ,
8998 @code{copy-region-as-kill}}) uses the @code{filter-buffer-substring}
8999 function, which in turn uses the @code{delete-and-extract-region}
9000 function. It removes the contents of a region and you cannot get them
9001 back.
9002
9003 Unlike the other code discussed here, the
9004 @code{delete-and-extract-region} function is not written in Emacs
9005 Lisp; it is written in C and is one of the primitives of the GNU Emacs
9006 system. Since it is very simple, I will digress briefly from Lisp and
9007 describe it here.
9008
9009 @c GNU Emacs 24 in src/editfns.c
9010 @c the DEFUN for delete-and-extract-region
9011
9012 @need 1500
9013 Like many of the other Emacs primitives,
9014 @code{delete-and-extract-region} is written as an instance of a C
9015 macro, a macro being a template for code. The complete macro looks
9016 like this:
9017
9018 @smallexample
9019 @group
9020 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
9021 Sdelete_and_extract_region, 2, 2, 0,
9022 doc: /* Delete the text between START and END and return it. */)
9023 (Lisp_Object start, Lisp_Object end)
9024 @{
9025 validate_region (&start, &end);
9026 if (XINT (start) == XINT (end))
9027 return empty_unibyte_string;
9028 return del_range_1 (XINT (start), XINT (end), 1, 1);
9029 @}
9030 @end group
9031 @end smallexample
9032
9033 Without going into the details of the macro writing process, let me
9034 point out that this macro starts with the word @code{DEFUN}. The word
9035 @code{DEFUN} was chosen since the code serves the same purpose as
9036 @code{defun} does in Lisp. (The @code{DEFUN} C macro is defined in
9037 @file{emacs/src/lisp.h}.)
9038
9039 The word @code{DEFUN} is followed by seven parts inside of
9040 parentheses:
9041
9042 @itemize @bullet
9043 @item
9044 The first part is the name given to the function in Lisp,
9045 @code{delete-and-extract-region}.
9046
9047 @item
9048 The second part is the name of the function in C,
9049 @code{Fdelete_and_extract_region}. By convention, it starts with
9050 @samp{F}. Since C does not use hyphens in names, underscores are used
9051 instead.
9052
9053 @item
9054 The third part is the name for the C constant structure that records
9055 information on this function for internal use. It is the name of the
9056 function in C but begins with an @samp{S} instead of an @samp{F}.
9057
9058 @item
9059 The fourth and fifth parts specify the minimum and maximum number of
9060 arguments the function can have. This function demands exactly 2
9061 arguments.
9062
9063 @item
9064 The sixth part is nearly like the argument that follows the
9065 @code{interactive} declaration in a function written in Lisp: a letter
9066 followed, perhaps, by a prompt. The only difference from the Lisp is
9067 when the macro is called with no arguments. Then you write a @code{0}
9068 (which is a `null string'), as in this macro.
9069
9070 If you were to specify arguments, you would place them between
9071 quotation marks. The C macro for @code{goto-char} includes
9072 @code{"NGoto char: "} in this position to indicate that the function
9073 expects a raw prefix, in this case, a numerical location in a buffer,
9074 and provides a prompt.
9075
9076 @item
9077 The seventh part is a documentation string, just like the one for a
9078 function written in Emacs Lisp. This is written as a C comment. (When
9079 you build Emacs, the program @command{lib-src/make-docfile} extracts
9080 these comments and uses them to make the ``real'' documentation.)
9081 @end itemize
9082
9083 @need 1200
9084 In a C macro, the formal parameters come next, with a statement of
9085 what kind of object they are, followed by what might be called the `body'
9086 of the macro. For @code{delete-and-extract-region} the `body'
9087 consists of the following four lines:
9088
9089 @smallexample
9090 @group
9091 validate_region (&start, &end);
9092 if (XINT (start) == XINT (end))
9093 return empty_unibyte_string;
9094 return del_range_1 (XINT (start), XINT (end), 1, 1);
9095 @end group
9096 @end smallexample
9097
9098 The @code{validate_region} function checks whether the values
9099 passed as the beginning and end of the region are the proper type and
9100 are within range. If the beginning and end positions are the same,
9101 then return an empty string.
9102
9103 The @code{del_range_1} function actually deletes the text. It is a
9104 complex function we will not look into. It updates the buffer and
9105 does other things. However, it is worth looking at the two arguments
9106 passed to @code{del_range}. These are @w{@code{XINT (start)}} and
9107 @w{@code{XINT (end)}}.
9108
9109 As far as the C language is concerned, @code{start} and @code{end} are
9110 two integers that mark the beginning and end of the region to be
9111 deleted@footnote{More precisely, and requiring more expert knowledge
9112 to understand, the two integers are of type `Lisp_Object', which can
9113 also be a C union instead of an integer type.}.
9114
9115 In early versions of Emacs, these two numbers were thirty-two bits
9116 long, but the code is slowly being generalized to handle other
9117 lengths. Three of the available bits are used to specify the type of
9118 information; the remaining bits are used as `content'.
9119
9120 @samp{XINT} is a C macro that extracts the relevant number from the
9121 longer collection of bits; the three other bits are discarded.
9122
9123 @need 800
9124 The command in @code{delete-and-extract-region} looks like this:
9125
9126 @smallexample
9127 del_range_1 (XINT (start), XINT (end), 1, 1);
9128 @end smallexample
9129
9130 @noindent
9131 It deletes the region between the beginning position, @code{start},
9132 and the ending position, @code{end}.
9133
9134 From the point of view of the person writing Lisp, Emacs is all very
9135 simple; but hidden underneath is a great deal of complexity to make it
9136 all work.
9137
9138 @node defvar
9139 @section Initializing a Variable with @code{defvar}
9140 @findex defvar
9141 @cindex Initializing a variable
9142 @cindex Variable initialization
9143
9144 @ignore
9145 2006 Oct 24
9146 In Emacs 22,
9147 copy-region-as-kill is short, 12 lines, and uses
9148 filter-buffer-substring, which is longer, 39 lines
9149 and has delete-and-extract-region in it.
9150 delete-and-extract-region is written in C.
9151
9152 see Initializing a Variable with @code{defvar}
9153
9154 @end ignore
9155
9156 The @code{copy-region-as-kill} function is written in Emacs Lisp. Two
9157 functions within it, @code{kill-append} and @code{kill-new}, copy a
9158 region in a buffer and save it in a variable called the
9159 @code{kill-ring}. This section describes how the @code{kill-ring}
9160 variable is created and initialized using the @code{defvar} special
9161 form.
9162
9163 (Again we note that the term @code{kill-ring} is a misnomer. The text
9164 that is clipped out of the buffer can be brought back; it is not a ring
9165 of corpses, but a ring of resurrectable text.)
9166
9167 In Emacs Lisp, a variable such as the @code{kill-ring} is created and
9168 given an initial value by using the @code{defvar} special form. The
9169 name comes from ``define variable''.
9170
9171 The @code{defvar} special form is similar to @code{setq} in that it sets
9172 the value of a variable. It is unlike @code{setq} in two ways: first,
9173 it only sets the value of the variable if the variable does not already
9174 have a value. If the variable already has a value, @code{defvar} does
9175 not override the existing value. Second, @code{defvar} has a
9176 documentation string.
9177
9178 (There is a related macro, @code{defcustom}, designed for variables
9179 that people customize. It has more features than @code{defvar}.
9180 (@xref{defcustom, , Setting Variables with @code{defcustom}}.)
9181
9182 @menu
9183 * See variable current value::
9184 * defvar and asterisk::
9185 @end menu
9186
9187 @ifnottex
9188 @node See variable current value
9189 @unnumberedsubsec Seeing the Current Value of a Variable
9190 @end ifnottex
9191
9192 You can see the current value of a variable, any variable, by using
9193 the @code{describe-variable} function, which is usually invoked by
9194 typing @kbd{C-h v}. If you type @kbd{C-h v} and then @code{kill-ring}
9195 (followed by @key{RET}) when prompted, you will see what is in your
9196 current kill ring---this may be quite a lot! Conversely, if you have
9197 been doing nothing this Emacs session except read this document, you
9198 may have nothing in it. Also, you will see the documentation for
9199 @code{kill-ring}:
9200
9201 @smallexample
9202 @group
9203 Documentation:
9204 List of killed text sequences.
9205 Since the kill ring is supposed to interact nicely with cut-and-paste
9206 facilities offered by window systems, use of this variable should
9207 @end group
9208 @group
9209 interact nicely with `interprogram-cut-function' and
9210 `interprogram-paste-function'. The functions `kill-new',
9211 `kill-append', and `current-kill' are supposed to implement this
9212 interaction; you may want to use them instead of manipulating the kill
9213 ring directly.
9214 @end group
9215 @end smallexample
9216
9217 @need 800
9218 The kill ring is defined by a @code{defvar} in the following way:
9219
9220 @smallexample
9221 @group
9222 (defvar kill-ring nil
9223 "List of killed text sequences.
9224 @dots{}")
9225 @end group
9226 @end smallexample
9227
9228 @noindent
9229 In this variable definition, the variable is given an initial value of
9230 @code{nil}, which makes sense, since if you have saved nothing, you want
9231 nothing back if you give a @code{yank} command. The documentation
9232 string is written just like the documentation string of a @code{defun}.
9233 As with the documentation string of the @code{defun}, the first line of
9234 the documentation should be a complete sentence, since some commands,
9235 like @code{apropos}, print only the first line of documentation.
9236 Succeeding lines should not be indented; otherwise they look odd when
9237 you use @kbd{C-h v} (@code{describe-variable}).
9238
9239 @node defvar and asterisk
9240 @subsection @code{defvar} and an asterisk
9241 @findex defvar @r{for a user customizable variable}
9242 @findex defvar @r{with an asterisk}
9243
9244 In the past, Emacs used the @code{defvar} special form both for
9245 internal variables that you would not expect a user to change and for
9246 variables that you do expect a user to change. Although you can still
9247 use @code{defvar} for user customizable variables, please use
9248 @code{defcustom} instead, since it provides a path into
9249 the Customization commands. (@xref{defcustom, , Specifying Variables
9250 using @code{defcustom}}.)
9251
9252 When you specified a variable using the @code{defvar} special form,
9253 you could distinguish a variable that a user might want to change from
9254 others by typing an asterisk, @samp{*}, in the first column of its
9255 documentation string. For example:
9256
9257 @smallexample
9258 @group
9259 (defvar shell-command-default-error-buffer nil
9260 "*Buffer name for `shell-command' @dots{} error output.
9261 @dots{} ")
9262 @end group
9263 @end smallexample
9264
9265 @findex set-variable
9266 @noindent
9267 You could (and still can) use the @code{set-variable} command to
9268 change the value of @code{shell-command-default-error-buffer}
9269 temporarily. However, options set using @code{set-variable} are set
9270 only for the duration of your editing session. The new values are not
9271 saved between sessions. Each time Emacs starts, it reads the original
9272 value, unless you change the value within your @file{.emacs} file,
9273 either by setting it manually or by using @code{customize}.
9274 @xref{Emacs Initialization, , Your @file{.emacs} File}.
9275
9276 For me, the major use of the @code{set-variable} command is to suggest
9277 variables that I might want to set in my @file{.emacs} file. There
9278 are now more than 700 such variables, far too many to remember
9279 readily. Fortunately, you can press @key{TAB} after calling the
9280 @code{M-x set-variable} command to see the list of variables.
9281 (@xref{Examining, , Examining and Setting Variables, emacs,
9282 The GNU Emacs Manual}.)
9283
9284 @need 1250
9285 @node cons & search-fwd Review
9286 @section Review
9287
9288 Here is a brief summary of some recently introduced functions.
9289
9290 @table @code
9291 @item car
9292 @itemx cdr
9293 @code{car} returns the first element of a list; @code{cdr} returns the
9294 second and subsequent elements of a list.
9295
9296 @need 1250
9297 For example:
9298
9299 @smallexample
9300 @group
9301 (car '(1 2 3 4 5 6 7))
9302 @result{} 1
9303 (cdr '(1 2 3 4 5 6 7))
9304 @result{} (2 3 4 5 6 7)
9305 @end group
9306 @end smallexample
9307
9308 @item cons
9309 @code{cons} constructs a list by prepending its first argument to its
9310 second argument.
9311
9312 @need 1250
9313 For example:
9314
9315 @smallexample
9316 @group
9317 (cons 1 '(2 3 4))
9318 @result{} (1 2 3 4)
9319 @end group
9320 @end smallexample
9321
9322 @item funcall
9323 @code{funcall} evaluates its first argument as a function. It passes
9324 its remaining arguments to its first argument.
9325
9326 @item nthcdr
9327 Return the result of taking @sc{cdr} `n' times on a list.
9328 @iftex
9329 The
9330 @tex
9331 $n^{th}$
9332 @end tex
9333 @code{cdr}.
9334 @end iftex
9335 The `rest of the rest', as it were.
9336
9337 @need 1250
9338 For example:
9339
9340 @smallexample
9341 @group
9342 (nthcdr 3 '(1 2 3 4 5 6 7))
9343 @result{} (4 5 6 7)
9344 @end group
9345 @end smallexample
9346
9347 @item setcar
9348 @itemx setcdr
9349 @code{setcar} changes the first element of a list; @code{setcdr}
9350 changes the second and subsequent elements of a list.
9351
9352 @need 1250
9353 For example:
9354
9355 @smallexample
9356 @group
9357 (setq triple '(1 2 3))
9358
9359 (setcar triple '37)
9360
9361 triple
9362 @result{} (37 2 3)
9363
9364 (setcdr triple '("foo" "bar"))
9365
9366 triple
9367 @result{} (37 "foo" "bar")
9368 @end group
9369 @end smallexample
9370
9371 @item progn
9372 Evaluate each argument in sequence and then return the value of the
9373 last.
9374
9375 @need 1250
9376 For example:
9377
9378 @smallexample
9379 @group
9380 (progn 1 2 3 4)
9381 @result{} 4
9382 @end group
9383 @end smallexample
9384
9385 @item save-restriction
9386 Record whatever narrowing is in effect in the current buffer, if any,
9387 and restore that narrowing after evaluating the arguments.
9388
9389 @item search-forward
9390 Search for a string, and if the string is found, move point. With a
9391 regular expression, use the similar @code{re-search-forward}.
9392 (@xref{Regexp Search, , Regular Expression Searches}, for an
9393 explanation of regular expression patterns and searches.)
9394
9395 @need 1250
9396 @noindent
9397 @code{search-forward} and @code{re-search-forward} take four
9398 arguments:
9399
9400 @enumerate
9401 @item
9402 The string or regular expression to search for.
9403
9404 @item
9405 Optionally, the limit of the search.
9406
9407 @item
9408 Optionally, what to do if the search fails, return @code{nil} or an
9409 error message.
9410
9411 @item
9412 Optionally, how many times to repeat the search; if negative, the
9413 search goes backwards.
9414 @end enumerate
9415
9416 @item kill-region
9417 @itemx delete-and-extract-region
9418 @itemx copy-region-as-kill
9419
9420 @code{kill-region} cuts the text between point and mark from the
9421 buffer and stores that text in the kill ring, so you can get it back
9422 by yanking.
9423
9424 @code{copy-region-as-kill} copies the text between point and mark into
9425 the kill ring, from which you can get it by yanking. The function
9426 does not cut or remove the text from the buffer.
9427 @end table
9428
9429 @code{delete-and-extract-region} removes the text between point and
9430 mark from the buffer and throws it away. You cannot get it back.
9431 (This is not an interactive command.)
9432
9433 @need 1500
9434 @node search Exercises
9435 @section Searching Exercises
9436
9437 @itemize @bullet
9438 @item
9439 Write an interactive function that searches for a string. If the
9440 search finds the string, leave point after it and display a message
9441 that says ``Found!''. (Do not use @code{search-forward} for the name
9442 of this function; if you do, you will overwrite the existing version of
9443 @code{search-forward} that comes with Emacs. Use a name such as
9444 @code{test-search} instead.)
9445
9446 @item
9447 Write a function that prints the third element of the kill ring in the
9448 echo area, if any; if the kill ring does not contain a third element,
9449 print an appropriate message.
9450 @end itemize
9451
9452 @node List Implementation
9453 @chapter How Lists are Implemented
9454 @cindex Lists in a computer
9455
9456 In Lisp, atoms are recorded in a straightforward fashion; if the
9457 implementation is not straightforward in practice, it is, nonetheless,
9458 straightforward in theory. The atom @samp{rose}, for example, is
9459 recorded as the four contiguous letters @samp{r}, @samp{o}, @samp{s},
9460 @samp{e}. A list, on the other hand, is kept differently. The mechanism
9461 is equally simple, but it takes a moment to get used to the idea. A
9462 list is kept using a series of pairs of pointers. In the series, the
9463 first pointer in each pair points to an atom or to another list, and the
9464 second pointer in each pair points to the next pair, or to the symbol
9465 @code{nil}, which marks the end of the list.
9466
9467 A pointer itself is quite simply the electronic address of what is
9468 pointed to. Hence, a list is kept as a series of electronic addresses.
9469
9470 @menu
9471 * Lists diagrammed::
9472 * Symbols as Chest:: Exploring a powerful metaphor.
9473 * List Exercise::
9474 @end menu
9475
9476 @ifnottex
9477 @node Lists diagrammed
9478 @unnumberedsec Lists diagrammed
9479 @end ifnottex
9480
9481 For example, the list @code{(rose violet buttercup)} has three elements,
9482 @samp{rose}, @samp{violet}, and @samp{buttercup}. In the computer, the
9483 electronic address of @samp{rose} is recorded in a segment of computer
9484 memory along with the address that gives the electronic address of where
9485 the atom @samp{violet} is located; and that address (the one that tells
9486 where @samp{violet} is located) is kept along with an address that tells
9487 where the address for the atom @samp{buttercup} is located.
9488
9489 @need 1200
9490 This sounds more complicated than it is and is easier seen in a diagram:
9491
9492 @c clear print-postscript-figures
9493 @c !!! cons-cell-diagram #1
9494 @ifnottex
9495 @smallexample
9496 @group
9497 ___ ___ ___ ___ ___ ___
9498 |___|___|--> |___|___|--> |___|___|--> nil
9499 | | |
9500 | | |
9501 --> rose --> violet --> buttercup
9502 @end group
9503 @end smallexample
9504 @end ifnottex
9505 @ifset print-postscript-figures
9506 @sp 1
9507 @tex
9508 @center @image{cons-1}
9509 @end tex
9510 @sp 1
9511 @end ifset
9512 @ifclear print-postscript-figures
9513 @iftex
9514 @smallexample
9515 @group
9516 ___ ___ ___ ___ ___ ___
9517 |___|___|--> |___|___|--> |___|___|--> nil
9518 | | |
9519 | | |
9520 --> rose --> violet --> buttercup
9521 @end group
9522 @end smallexample
9523 @end iftex
9524 @end ifclear
9525
9526 @noindent
9527 In the diagram, each box represents a word of computer memory that
9528 holds a Lisp object, usually in the form of a memory address. The boxes,
9529 i.e., the addresses, are in pairs. Each arrow points to what the address
9530 is the address of, either an atom or another pair of addresses. The
9531 first box is the electronic address of @samp{rose} and the arrow points
9532 to @samp{rose}; the second box is the address of the next pair of boxes,
9533 the first part of which is the address of @samp{violet} and the second
9534 part of which is the address of the next pair. The very last box
9535 points to the symbol @code{nil}, which marks the end of the list.
9536
9537 @need 1200
9538 When a variable is set to a list with a function such as @code{setq},
9539 it stores the address of the first box in the variable. Thus,
9540 evaluation of the expression
9541
9542 @smallexample
9543 (setq bouquet '(rose violet buttercup))
9544 @end smallexample
9545
9546 @need 1250
9547 @noindent
9548 creates a situation like this:
9549
9550 @c cons-cell-diagram #2
9551 @ifnottex
9552 @smallexample
9553 @group
9554 bouquet
9555 |
9556 | ___ ___ ___ ___ ___ ___
9557 --> |___|___|--> |___|___|--> |___|___|--> nil
9558 | | |
9559 | | |
9560 --> rose --> violet --> buttercup
9561 @end group
9562 @end smallexample
9563 @end ifnottex
9564 @ifset print-postscript-figures
9565 @sp 1
9566 @tex
9567 @center @image{cons-2}
9568 @end tex
9569 @sp 1
9570 @end ifset
9571 @ifclear print-postscript-figures
9572 @iftex
9573 @smallexample
9574 @group
9575 bouquet
9576 |
9577 | ___ ___ ___ ___ ___ ___
9578 --> |___|___|--> |___|___|--> |___|___|--> nil
9579 | | |
9580 | | |
9581 --> rose --> violet --> buttercup
9582 @end group
9583 @end smallexample
9584 @end iftex
9585 @end ifclear
9586
9587 @noindent
9588 In this example, the symbol @code{bouquet} holds the address of the first
9589 pair of boxes.
9590
9591 @need 1200
9592 This same list can be illustrated in a different sort of box notation
9593 like this:
9594
9595 @c cons-cell-diagram #2a
9596 @ifnottex
9597 @smallexample
9598 @group
9599 bouquet
9600 |
9601 | -------------- --------------- ----------------
9602 | | car | cdr | | car | cdr | | car | cdr |
9603 -->| rose | o------->| violet | o------->| butter- | nil |
9604 | | | | | | | cup | |
9605 -------------- --------------- ----------------
9606 @end group
9607 @end smallexample
9608 @end ifnottex
9609 @ifset print-postscript-figures
9610 @sp 1
9611 @tex
9612 @center @image{cons-2a}
9613 @end tex
9614 @sp 1
9615 @end ifset
9616 @ifclear print-postscript-figures
9617 @iftex
9618 @smallexample
9619 @group
9620 bouquet
9621 |
9622 | -------------- --------------- ----------------
9623 | | car | cdr | | car | cdr | | car | cdr |
9624 -->| rose | o------->| violet | o------->| butter- | nil |
9625 | | | | | | | cup | |
9626 -------------- --------------- ----------------
9627 @end group
9628 @end smallexample
9629 @end iftex
9630 @end ifclear
9631
9632 (Symbols consist of more than pairs of addresses, but the structure of
9633 a symbol is made up of addresses. Indeed, the symbol @code{bouquet}
9634 consists of a group of address-boxes, one of which is the address of
9635 the printed word @samp{bouquet}, a second of which is the address of a
9636 function definition attached to the symbol, if any, a third of which
9637 is the address of the first pair of address-boxes for the list
9638 @code{(rose violet buttercup)}, and so on. Here we are showing that
9639 the symbol's third address-box points to the first pair of
9640 address-boxes for the list.)
9641
9642 If a symbol is set to the @sc{cdr} of a list, the list itself is not
9643 changed; the symbol simply has an address further down the list. (In
9644 the jargon, @sc{car} and @sc{cdr} are `non-destructive'.) Thus,
9645 evaluation of the following expression
9646
9647 @smallexample
9648 (setq flowers (cdr bouquet))
9649 @end smallexample
9650
9651 @need 800
9652 @noindent
9653 produces this:
9654
9655 @c cons-cell-diagram #3
9656 @ifnottex
9657 @sp 1
9658 @smallexample
9659 @group
9660 bouquet flowers
9661 | |
9662 | ___ ___ | ___ ___ ___ ___
9663 --> | | | --> | | | | | |
9664 |___|___|----> |___|___|--> |___|___|--> nil
9665 | | |
9666 | | |
9667 --> rose --> violet --> buttercup
9668 @end group
9669 @end smallexample
9670 @sp 1
9671 @end ifnottex
9672 @ifset print-postscript-figures
9673 @sp 1
9674 @tex
9675 @center @image{cons-3}
9676 @end tex
9677 @sp 1
9678 @end ifset
9679 @ifclear print-postscript-figures
9680 @iftex
9681 @sp 1
9682 @smallexample
9683 @group
9684 bouquet flowers
9685 | |
9686 | ___ ___ | ___ ___ ___ ___
9687 --> | | | --> | | | | | |
9688 |___|___|----> |___|___|--> |___|___|--> nil
9689 | | |
9690 | | |
9691 --> rose --> violet --> buttercup
9692 @end group
9693 @end smallexample
9694 @sp 1
9695 @end iftex
9696 @end ifclear
9697
9698 @noindent
9699 The value of @code{flowers} is @code{(violet buttercup)}, which is
9700 to say, the symbol @code{flowers} holds the address of the pair of
9701 address-boxes, the first of which holds the address of @code{violet},
9702 and the second of which holds the address of @code{buttercup}.
9703
9704 A pair of address-boxes is called a @dfn{cons cell} or @dfn{dotted
9705 pair}. @xref{Cons Cell Type, , Cons Cell and List Types, elisp, The GNU Emacs Lisp
9706 Reference Manual}, and @ref{Dotted Pair Notation, , Dotted Pair
9707 Notation, elisp, The GNU Emacs Lisp Reference Manual}, for more
9708 information about cons cells and dotted pairs.
9709
9710 @need 1200
9711 The function @code{cons} adds a new pair of addresses to the front of
9712 a series of addresses like that shown above. For example, evaluating
9713 the expression
9714
9715 @smallexample
9716 (setq bouquet (cons 'lily bouquet))
9717 @end smallexample
9718
9719 @need 1500
9720 @noindent
9721 produces:
9722
9723 @c cons-cell-diagram #4
9724 @ifnottex
9725 @sp 1
9726 @smallexample
9727 @group
9728 bouquet flowers
9729 | |
9730 | ___ ___ ___ ___ | ___ ___ ___ ___
9731 --> | | | | | | --> | | | | | |
9732 |___|___|----> |___|___|----> |___|___|---->|___|___|--> nil
9733 | | | |
9734 | | | |
9735 --> lily --> rose --> violet --> buttercup
9736 @end group
9737 @end smallexample
9738 @sp 1
9739 @end ifnottex
9740 @ifset print-postscript-figures
9741 @sp 1
9742 @tex
9743 @center @image{cons-4}
9744 @end tex
9745 @sp 1
9746 @end ifset
9747 @ifclear print-postscript-figures
9748 @iftex
9749 @sp 1
9750 @smallexample
9751 @group
9752 bouquet flowers
9753 | |
9754 | ___ ___ ___ ___ | ___ ___ ___ ___
9755 --> | | | | | | --> | | | | | |
9756 |___|___|----> |___|___|----> |___|___|---->|___|___|--> nil
9757 | | | |
9758 | | | |
9759 --> lily --> rose --> violet --> buttercup
9760 @end group
9761 @end smallexample
9762 @sp 1
9763 @end iftex
9764 @end ifclear
9765
9766 @need 1200
9767 @noindent
9768 However, this does not change the value of the symbol
9769 @code{flowers}, as you can see by evaluating the following,
9770
9771 @smallexample
9772 (eq (cdr (cdr bouquet)) flowers)
9773 @end smallexample
9774
9775 @noindent
9776 which returns @code{t} for true.
9777
9778 Until it is reset, @code{flowers} still has the value
9779 @code{(violet buttercup)}; that is, it has the address of the cons
9780 cell whose first address is of @code{violet}. Also, this does not
9781 alter any of the pre-existing cons cells; they are all still there.
9782
9783 Thus, in Lisp, to get the @sc{cdr} of a list, you just get the address
9784 of the next cons cell in the series; to get the @sc{car} of a list,
9785 you get the address of the first element of the list; to @code{cons} a
9786 new element on a list, you add a new cons cell to the front of the list.
9787 That is all there is to it! The underlying structure of Lisp is
9788 brilliantly simple!
9789
9790 And what does the last address in a series of cons cells refer to? It
9791 is the address of the empty list, of @code{nil}.
9792
9793 In summary, when a Lisp variable is set to a value, it is provided with
9794 the address of the list to which the variable refers.
9795
9796 @node Symbols as Chest
9797 @section Symbols as a Chest of Drawers
9798 @cindex Symbols as a Chest of Drawers
9799 @cindex Chest of Drawers, metaphor for a symbol
9800 @cindex Drawers, Chest of, metaphor for a symbol
9801
9802 In an earlier section, I suggested that you might imagine a symbol as
9803 being a chest of drawers. The function definition is put in one
9804 drawer, the value in another, and so on. What is put in the drawer
9805 holding the value can be changed without affecting the contents of the
9806 drawer holding the function definition, and vice-verse.
9807
9808 Actually, what is put in each drawer is the address of the value or
9809 function definition. It is as if you found an old chest in the attic,
9810 and in one of its drawers you found a map giving you directions to
9811 where the buried treasure lies.
9812
9813 (In addition to its name, symbol definition, and variable value, a
9814 symbol has a `drawer' for a @dfn{property list} which can be used to
9815 record other information. Property lists are not discussed here; see
9816 @ref{Property Lists, , Property Lists, elisp, The GNU Emacs Lisp
9817 Reference Manual}.)
9818
9819 @need 1500
9820 Here is a fanciful representation:
9821
9822 @c chest-of-drawers diagram
9823 @ifnottex
9824 @sp 1
9825 @smallexample
9826 @group
9827 Chest of Drawers Contents of Drawers
9828
9829 __ o0O0o __
9830 / \
9831 ---------------------
9832 | directions to | [map to]
9833 | symbol name | bouquet
9834 | |
9835 +---------------------+
9836 | directions to |
9837 | symbol definition | [none]
9838 | |
9839 +---------------------+
9840 | directions to | [map to]
9841 | variable value | (rose violet buttercup)
9842 | |
9843 +---------------------+
9844 | directions to |
9845 | property list | [not described here]
9846 | |
9847 +---------------------+
9848 |/ \|
9849 @end group
9850 @end smallexample
9851 @sp 1
9852 @end ifnottex
9853 @ifset print-postscript-figures
9854 @sp 1
9855 @tex
9856 @center @image{drawers}
9857 @end tex
9858 @sp 1
9859 @end ifset
9860 @ifclear print-postscript-figures
9861 @iftex
9862 @sp 1
9863 @smallexample
9864 @group
9865 Chest of Drawers Contents of Drawers
9866
9867 __ o0O0o __
9868 / \
9869 ---------------------
9870 | directions to | [map to]
9871 | symbol name | bouquet
9872 | |
9873 +---------------------+
9874 | directions to |
9875 | symbol definition | [none]
9876 | |
9877 +---------------------+
9878 | directions to | [map to]
9879 | variable value | (rose violet buttercup)
9880 | |
9881 +---------------------+
9882 | directions to |
9883 | property list | [not described here]
9884 | |
9885 +---------------------+
9886 |/ \|
9887 @end group
9888 @end smallexample
9889 @sp 1
9890 @end iftex
9891 @end ifclear
9892
9893 @node List Exercise
9894 @section Exercise
9895
9896 Set @code{flowers} to @code{violet} and @code{buttercup}. Cons two
9897 more flowers on to this list and set this new list to
9898 @code{more-flowers}. Set the @sc{car} of @code{flowers} to a fish.
9899 What does the @code{more-flowers} list now contain?
9900
9901 @node Yanking
9902 @chapter Yanking Text Back
9903 @findex yank
9904 @cindex Text retrieval
9905 @cindex Retrieving text
9906 @cindex Pasting text
9907
9908 Whenever you cut text out of a buffer with a `kill' command in GNU Emacs,
9909 you can bring it back with a `yank' command. The text that is cut out of
9910 the buffer is put in the kill ring and the yank commands insert the
9911 appropriate contents of the kill ring back into a buffer (not necessarily
9912 the original buffer).
9913
9914 A simple @kbd{C-y} (@code{yank}) command inserts the first item from
9915 the kill ring into the current buffer. If the @kbd{C-y} command is
9916 followed immediately by @kbd{M-y}, the first element is replaced by
9917 the second element. Successive @kbd{M-y} commands replace the second
9918 element with the third, fourth, or fifth element, and so on. When the
9919 last element in the kill ring is reached, it is replaced by the first
9920 element and the cycle is repeated. (Thus the kill ring is called a
9921 `ring' rather than just a `list'. However, the actual data structure
9922 that holds the text is a list.
9923 @xref{Kill Ring, , Handling the Kill Ring}, for the details of how the
9924 list is handled as a ring.)
9925
9926 @menu
9927 * Kill Ring Overview::
9928 * kill-ring-yank-pointer:: The kill ring is a list.
9929 * yank nthcdr Exercises:: The @code{kill-ring-yank-pointer} variable.
9930 @end menu
9931
9932 @node Kill Ring Overview
9933 @section Kill Ring Overview
9934 @cindex Kill ring overview
9935
9936 The kill ring is a list of textual strings. This is what it looks like:
9937
9938 @smallexample
9939 ("some text" "a different piece of text" "yet more text")
9940 @end smallexample
9941
9942 If this were the contents of my kill ring and I pressed @kbd{C-y}, the
9943 string of characters saying @samp{some text} would be inserted in this
9944 buffer where my cursor is located.
9945
9946 The @code{yank} command is also used for duplicating text by copying it.
9947 The copied text is not cut from the buffer, but a copy of it is put on the
9948 kill ring and is inserted by yanking it back.
9949
9950 Three functions are used for bringing text back from the kill ring:
9951 @code{yank}, which is usually bound to @kbd{C-y}; @code{yank-pop},
9952 which is usually bound to @kbd{M-y}; and @code{rotate-yank-pointer},
9953 which is used by the two other functions.
9954
9955 These functions refer to the kill ring through a variable called the
9956 @code{kill-ring-yank-pointer}. Indeed, the insertion code for both the
9957 @code{yank} and @code{yank-pop} functions is:
9958
9959 @smallexample
9960 (insert (car kill-ring-yank-pointer))
9961 @end smallexample
9962
9963 @noindent
9964 (Well, no more. In GNU Emacs 22, the function has been replaced by
9965 @code{insert-for-yank} which calls @code{insert-for-yank-1}
9966 repetitively for each @code{yank-handler} segment. In turn,
9967 @code{insert-for-yank-1} strips text properties from the inserted text
9968 according to @code{yank-excluded-properties}. Otherwise, it is just
9969 like @code{insert}. We will stick with plain @code{insert} since it
9970 is easier to understand.)
9971
9972 To begin to understand how @code{yank} and @code{yank-pop} work, it is
9973 first necessary to look at the @code{kill-ring-yank-pointer} variable.
9974
9975 @node kill-ring-yank-pointer
9976 @section The @code{kill-ring-yank-pointer} Variable
9977
9978 @code{kill-ring-yank-pointer} is a variable, just as @code{kill-ring} is
9979 a variable. It points to something by being bound to the value of what
9980 it points to, like any other Lisp variable.
9981
9982 @need 1000
9983 Thus, if the value of the kill ring is:
9984
9985 @smallexample
9986 ("some text" "a different piece of text" "yet more text")
9987 @end smallexample
9988
9989 @need 1250
9990 @noindent
9991 and the @code{kill-ring-yank-pointer} points to the second clause, the
9992 value of @code{kill-ring-yank-pointer} is:
9993
9994 @smallexample
9995 ("a different piece of text" "yet more text")
9996 @end smallexample
9997
9998 As explained in the previous chapter (@pxref{List Implementation}), the
9999 computer does not keep two different copies of the text being pointed to
10000 by both the @code{kill-ring} and the @code{kill-ring-yank-pointer}. The
10001 words ``a different piece of text'' and ``yet more text'' are not
10002 duplicated. Instead, the two Lisp variables point to the same pieces of
10003 text. Here is a diagram:
10004
10005 @c cons-cell-diagram #5
10006 @ifnottex
10007 @smallexample
10008 @group
10009 kill-ring kill-ring-yank-pointer
10010 | |
10011 | ___ ___ | ___ ___ ___ ___
10012 ---> | | | --> | | | | | |
10013 |___|___|----> |___|___|--> |___|___|--> nil
10014 | | |
10015 | | |
10016 | | --> "yet more text"
10017 | |
10018 | --> "a different piece of text"
10019 |
10020 --> "some text"
10021 @end group
10022 @end smallexample
10023 @sp 1
10024 @end ifnottex
10025 @ifset print-postscript-figures
10026 @sp 1
10027 @tex
10028 @center @image{cons-5}
10029 @end tex
10030 @sp 1
10031 @end ifset
10032 @ifclear print-postscript-figures
10033 @iftex
10034 @smallexample
10035 @group
10036 kill-ring kill-ring-yank-pointer
10037 | |
10038 | ___ ___ | ___ ___ ___ ___
10039 ---> | | | --> | | | | | |
10040 |___|___|----> |___|___|--> |___|___|--> nil
10041 | | |
10042 | | |
10043 | | --> "yet more text"
10044 | |
10045 | --> "a different piece of text
10046 |
10047 --> "some text"
10048 @end group
10049 @end smallexample
10050 @sp 1
10051 @end iftex
10052 @end ifclear
10053
10054 Both the variable @code{kill-ring} and the variable
10055 @code{kill-ring-yank-pointer} are pointers. But the kill ring itself is
10056 usually described as if it were actually what it is composed of. The
10057 @code{kill-ring} is spoken of as if it were the list rather than that it
10058 points to the list. Conversely, the @code{kill-ring-yank-pointer} is
10059 spoken of as pointing to a list.
10060
10061 These two ways of talking about the same thing sound confusing at first but
10062 make sense on reflection. The kill ring is generally thought of as the
10063 complete structure of data that holds the information of what has recently
10064 been cut out of the Emacs buffers. The @code{kill-ring-yank-pointer}
10065 on the other hand, serves to indicate---that is, to `point to'---that part
10066 of the kill ring of which the first element (the @sc{car}) will be
10067 inserted.
10068
10069 @ignore
10070 In GNU Emacs 22, the @code{kill-new} function calls
10071
10072 @code{(setq kill-ring-yank-pointer kill-ring)}
10073
10074 (defun rotate-yank-pointer (arg)
10075 "Rotate the yanking point in the kill ring.
10076 With argument, rotate that many kills forward (or backward, if negative)."
10077 (interactive "p")
10078 (current-kill arg))
10079
10080 (defun current-kill (n &optional do-not-move)
10081 "Rotate the yanking point by N places, and then return that kill.
10082 If N is zero, `interprogram-paste-function' is set, and calling it
10083 returns a string, then that string is added to the front of the
10084 kill ring and returned as the latest kill.
10085 If optional arg DO-NOT-MOVE is non-nil, then don't actually move the
10086 yanking point; just return the Nth kill forward."
10087 (let ((interprogram-paste (and (= n 0)
10088 interprogram-paste-function
10089 (funcall interprogram-paste-function))))
10090 (if interprogram-paste
10091 (progn
10092 ;; Disable the interprogram cut function when we add the new
10093 ;; text to the kill ring, so Emacs doesn't try to own the
10094 ;; selection, with identical text.
10095 (let ((interprogram-cut-function nil))
10096 (kill-new interprogram-paste))
10097 interprogram-paste)
10098 (or kill-ring (error "Kill ring is empty"))
10099 (let ((ARGth-kill-element
10100 (nthcdr (mod (- n (length kill-ring-yank-pointer))
10101 (length kill-ring))
10102 kill-ring)))
10103 (or do-not-move
10104 (setq kill-ring-yank-pointer ARGth-kill-element))
10105 (car ARGth-kill-element)))))
10106
10107 @end ignore
10108
10109 @need 1500
10110 @node yank nthcdr Exercises
10111 @section Exercises with @code{yank} and @code{nthcdr}
10112
10113 @itemize @bullet
10114 @item
10115 Using @kbd{C-h v} (@code{describe-variable}), look at the value of
10116 your kill ring. Add several items to your kill ring; look at its
10117 value again. Using @kbd{M-y} (@code{yank-pop)}, move all the way
10118 around the kill ring. How many items were in your kill ring? Find
10119 the value of @code{kill-ring-max}. Was your kill ring full, or could
10120 you have kept more blocks of text within it?
10121
10122 @item
10123 Using @code{nthcdr} and @code{car}, construct a series of expressions
10124 to return the first, second, third, and fourth elements of a list.
10125 @end itemize
10126
10127 @node Loops & Recursion
10128 @chapter Loops and Recursion
10129 @cindex Loops and recursion
10130 @cindex Recursion and loops
10131 @cindex Repetition (loops)
10132
10133 Emacs Lisp has two primary ways to cause an expression, or a series of
10134 expressions, to be evaluated repeatedly: one uses a @code{while}
10135 loop, and the other uses @dfn{recursion}.
10136
10137 Repetition can be very valuable. For example, to move forward four
10138 sentences, you need only write a program that will move forward one
10139 sentence and then repeat the process four times. Since a computer does
10140 not get bored or tired, such repetitive action does not have the
10141 deleterious effects that excessive or the wrong kinds of repetition can
10142 have on humans.
10143
10144 People mostly write Emacs Lisp functions using @code{while} loops and
10145 their kin; but you can use recursion, which provides a very powerful
10146 way to think about and then to solve problems@footnote{You can write
10147 recursive functions to be frugal or wasteful of mental or computer
10148 resources; as it happens, methods that people find easy---that are
10149 frugal of `mental resources'---sometimes use considerable computer
10150 resources. Emacs was designed to run on machines that we now consider
10151 limited and its default settings are conservative. You may want to
10152 increase the values of @code{max-specpdl-size} and
10153 @code{max-lisp-eval-depth}. In my @file{.emacs} file, I set them to
10154 15 and 30 times their default value.}.
10155
10156 @menu
10157 * while:: Causing a stretch of code to repeat.
10158 * dolist dotimes::
10159 * Recursion:: Causing a function to call itself.
10160 * Looping exercise::
10161 @end menu
10162
10163 @node while
10164 @section @code{while}
10165 @cindex Loops
10166 @findex while
10167
10168 The @code{while} special form tests whether the value returned by
10169 evaluating its first argument is true or false. This is similar to what
10170 the Lisp interpreter does with an @code{if}; what the interpreter does
10171 next, however, is different.
10172
10173 In a @code{while} expression, if the value returned by evaluating the
10174 first argument is false, the Lisp interpreter skips the rest of the
10175 expression (the @dfn{body} of the expression) and does not evaluate it.
10176 However, if the value is true, the Lisp interpreter evaluates the body
10177 of the expression and then again tests whether the first argument to
10178 @code{while} is true or false. If the value returned by evaluating the
10179 first argument is again true, the Lisp interpreter again evaluates the
10180 body of the expression.
10181
10182 @need 1200
10183 The template for a @code{while} expression looks like this:
10184
10185 @smallexample
10186 @group
10187 (while @var{true-or-false-test}
10188 @var{body}@dots{})
10189 @end group
10190 @end smallexample
10191
10192 @menu
10193 * Looping with while:: Repeat so long as test returns true.
10194 * Loop Example:: A @code{while} loop that uses a list.
10195 * print-elements-of-list:: Uses @code{while}, @code{car}, @code{cdr}.
10196 * Incrementing Loop:: A loop with an incrementing counter.
10197 * Incrementing Loop Details::
10198 * Decrementing Loop:: A loop with a decrementing counter.
10199 @end menu
10200
10201 @ifnottex
10202 @node Looping with while
10203 @unnumberedsubsec Looping with @code{while}
10204 @end ifnottex
10205
10206 So long as the true-or-false-test of the @code{while} expression
10207 returns a true value when it is evaluated, the body is repeatedly
10208 evaluated. This process is called a loop since the Lisp interpreter
10209 repeats the same thing again and again, like an airplane doing a loop.
10210 When the result of evaluating the true-or-false-test is false, the
10211 Lisp interpreter does not evaluate the rest of the @code{while}
10212 expression and `exits the loop'.
10213
10214 Clearly, if the value returned by evaluating the first argument to
10215 @code{while} is always true, the body following will be evaluated
10216 again and again @dots{} and again @dots{} forever. Conversely, if the
10217 value returned is never true, the expressions in the body will never
10218 be evaluated. The craft of writing a @code{while} loop consists of
10219 choosing a mechanism such that the true-or-false-test returns true
10220 just the number of times that you want the subsequent expressions to
10221 be evaluated, and then have the test return false.
10222
10223 The value returned by evaluating a @code{while} is the value of the
10224 true-or-false-test. An interesting consequence of this is that a
10225 @code{while} loop that evaluates without error will return @code{nil}
10226 or false regardless of whether it has looped 1 or 100 times or none at
10227 all. A @code{while} expression that evaluates successfully never
10228 returns a true value! What this means is that @code{while} is always
10229 evaluated for its side effects, which is to say, the consequences of
10230 evaluating the expressions within the body of the @code{while} loop.
10231 This makes sense. It is not the mere act of looping that is desired,
10232 but the consequences of what happens when the expressions in the loop
10233 are repeatedly evaluated.
10234
10235 @node Loop Example
10236 @subsection A @code{while} Loop and a List
10237
10238 A common way to control a @code{while} loop is to test whether a list
10239 has any elements. If it does, the loop is repeated; but if it does not,
10240 the repetition is ended. Since this is an important technique, we will
10241 create a short example to illustrate it.
10242
10243 A simple way to test whether a list has elements is to evaluate the
10244 list: if it has no elements, it is an empty list and will return the
10245 empty list, @code{()}, which is a synonym for @code{nil} or false. On
10246 the other hand, a list with elements will return those elements when it
10247 is evaluated. Since Emacs Lisp considers as true any value that is not
10248 @code{nil}, a list that returns elements will test true in a
10249 @code{while} loop.
10250
10251 @need 1200
10252 For example, you can set the variable @code{empty-list} to @code{nil} by
10253 evaluating the following @code{setq} expression:
10254
10255 @smallexample
10256 (setq empty-list ())
10257 @end smallexample
10258
10259 @noindent
10260 After evaluating the @code{setq} expression, you can evaluate the
10261 variable @code{empty-list} in the usual way, by placing the cursor after
10262 the symbol and typing @kbd{C-x C-e}; @code{nil} will appear in your
10263 echo area:
10264
10265 @smallexample
10266 empty-list
10267 @end smallexample
10268
10269 On the other hand, if you set a variable to be a list with elements, the
10270 list will appear when you evaluate the variable, as you can see by
10271 evaluating the following two expressions:
10272
10273 @smallexample
10274 @group
10275 (setq animals '(gazelle giraffe lion tiger))
10276
10277 animals
10278 @end group
10279 @end smallexample
10280
10281 Thus, to create a @code{while} loop that tests whether there are any
10282 items in the list @code{animals}, the first part of the loop will be
10283 written like this:
10284
10285 @smallexample
10286 @group
10287 (while animals
10288 @dots{}
10289 @end group
10290 @end smallexample
10291
10292 @noindent
10293 When the @code{while} tests its first argument, the variable
10294 @code{animals} is evaluated. It returns a list. So long as the list
10295 has elements, the @code{while} considers the results of the test to be
10296 true; but when the list is empty, it considers the results of the test
10297 to be false.
10298
10299 To prevent the @code{while} loop from running forever, some mechanism
10300 needs to be provided to empty the list eventually. An oft-used
10301 technique is to have one of the subsequent forms in the @code{while}
10302 expression set the value of the list to be the @sc{cdr} of the list.
10303 Each time the @code{cdr} function is evaluated, the list will be made
10304 shorter, until eventually only the empty list will be left. At this
10305 point, the test of the @code{while} loop will return false, and the
10306 arguments to the @code{while} will no longer be evaluated.
10307
10308 For example, the list of animals bound to the variable @code{animals}
10309 can be set to be the @sc{cdr} of the original list with the
10310 following expression:
10311
10312 @smallexample
10313 (setq animals (cdr animals))
10314 @end smallexample
10315
10316 @noindent
10317 If you have evaluated the previous expressions and then evaluate this
10318 expression, you will see @code{(giraffe lion tiger)} appear in the echo
10319 area. If you evaluate the expression again, @code{(lion tiger)} will
10320 appear in the echo area. If you evaluate it again and yet again,
10321 @code{(tiger)} appears and then the empty list, shown by @code{nil}.
10322
10323 A template for a @code{while} loop that uses the @code{cdr} function
10324 repeatedly to cause the true-or-false-test eventually to test false
10325 looks like this:
10326
10327 @smallexample
10328 @group
10329 (while @var{test-whether-list-is-empty}
10330 @var{body}@dots{}
10331 @var{set-list-to-cdr-of-list})
10332 @end group
10333 @end smallexample
10334
10335 This test and use of @code{cdr} can be put together in a function that
10336 goes through a list and prints each element of the list on a line of its
10337 own.
10338
10339 @node print-elements-of-list
10340 @subsection An Example: @code{print-elements-of-list}
10341 @findex print-elements-of-list
10342
10343 The @code{print-elements-of-list} function illustrates a @code{while}
10344 loop with a list.
10345
10346 @cindex @file{*scratch*} buffer
10347 The function requires several lines for its output. If you are
10348 reading this in a recent instance of GNU Emacs,
10349 @c GNU Emacs 21, GNU Emacs 22, or a later version,
10350 you can evaluate the following expression inside of Info, as usual.
10351
10352 If you are using an earlier version of Emacs, you need to copy the
10353 necessary expressions to your @file{*scratch*} buffer and evaluate
10354 them there. This is because the echo area had only one line in the
10355 earlier versions.
10356
10357 You can copy the expressions by marking the beginning of the region
10358 with @kbd{C-@key{SPC}} (@code{set-mark-command}), moving the cursor to
10359 the end of the region and then copying the region using @kbd{M-w}
10360 (@code{kill-ring-save}, which calls @code{copy-region-as-kill} and
10361 then provides visual feedback). In the @file{*scratch*}
10362 buffer, you can yank the expressions back by typing @kbd{C-y}
10363 (@code{yank}).
10364
10365 After you have copied the expressions to the @file{*scratch*} buffer,
10366 evaluate each expression in turn. Be sure to evaluate the last
10367 expression, @code{(print-elements-of-list animals)}, by typing
10368 @kbd{C-u C-x C-e}, that is, by giving an argument to
10369 @code{eval-last-sexp}. This will cause the result of the evaluation
10370 to be printed in the @file{*scratch*} buffer instead of being printed
10371 in the echo area. (Otherwise you will see something like this in your
10372 echo area: @code{^Jgazelle^J^Jgiraffe^J^Jlion^J^Jtiger^Jnil}, in which
10373 each @samp{^J} stands for a `newline'.)
10374
10375 @need 1500
10376 In a recent instance of GNU Emacs, you can evaluate these expressions
10377 directly in the Info buffer, and the echo area will grow to show the
10378 results.
10379
10380 @smallexample
10381 @group
10382 (setq animals '(gazelle giraffe lion tiger))
10383
10384 (defun print-elements-of-list (list)
10385 "Print each element of LIST on a line of its own."
10386 (while list
10387 (print (car list))
10388 (setq list (cdr list))))
10389
10390 (print-elements-of-list animals)
10391 @end group
10392 @end smallexample
10393
10394 @need 1200
10395 @noindent
10396 When you evaluate the three expressions in sequence, you will see
10397 this:
10398
10399 @smallexample
10400 @group
10401 gazelle
10402
10403 giraffe
10404
10405 lion
10406
10407 tiger
10408 nil
10409 @end group
10410 @end smallexample
10411
10412 Each element of the list is printed on a line of its own (that is what
10413 the function @code{print} does) and then the value returned by the
10414 function is printed. Since the last expression in the function is the
10415 @code{while} loop, and since @code{while} loops always return
10416 @code{nil}, a @code{nil} is printed after the last element of the list.
10417
10418 @node Incrementing Loop
10419 @subsection A Loop with an Incrementing Counter
10420
10421 A loop is not useful unless it stops when it ought. Besides
10422 controlling a loop with a list, a common way of stopping a loop is to
10423 write the first argument as a test that returns false when the correct
10424 number of repetitions are complete. This means that the loop must
10425 have a counter---an expression that counts how many times the loop
10426 repeats itself.
10427
10428 @ifnottex
10429 @node Incrementing Loop Details
10430 @unnumberedsubsec Details of an Incrementing Loop
10431 @end ifnottex
10432
10433 The test for a loop with an incrementing counter can be an expression
10434 such as @code{(< count desired-number)} which returns @code{t} for
10435 true if the value of @code{count} is less than the
10436 @code{desired-number} of repetitions and @code{nil} for false if the
10437 value of @code{count} is equal to or is greater than the
10438 @code{desired-number}. The expression that increments the count can
10439 be a simple @code{setq} such as @code{(setq count (1+ count))}, where
10440 @code{1+} is a built-in function in Emacs Lisp that adds 1 to its
10441 argument. (The expression @w{@code{(1+ count)}} has the same result
10442 as @w{@code{(+ count 1)}}, but is easier for a human to read.)
10443
10444 @need 1250
10445 The template for a @code{while} loop controlled by an incrementing
10446 counter looks like this:
10447
10448 @smallexample
10449 @group
10450 @var{set-count-to-initial-value}
10451 (while (< count desired-number) ; @r{true-or-false-test}
10452 @var{body}@dots{}
10453 (setq count (1+ count))) ; @r{incrementer}
10454 @end group
10455 @end smallexample
10456
10457 @noindent
10458 Note that you need to set the initial value of @code{count}; usually it
10459 is set to 1.
10460
10461 @menu
10462 * Incrementing Example:: Counting pebbles in a triangle.
10463 * Inc Example parts:: The parts of the function definition.
10464 * Inc Example altogether:: Putting the function definition together.
10465 @end menu
10466
10467 @node Incrementing Example
10468 @unnumberedsubsubsec Example with incrementing counter
10469
10470 Suppose you are playing on the beach and decide to make a triangle of
10471 pebbles, putting one pebble in the first row, two in the second row,
10472 three in the third row and so on, like this:
10473
10474 @sp 1
10475 @c pebble diagram
10476 @ifnottex
10477 @smallexample
10478 @group
10479 *
10480 * *
10481 * * *
10482 * * * *
10483 @end group
10484 @end smallexample
10485 @end ifnottex
10486 @iftex
10487 @smallexample
10488 @group
10489 @bullet{}
10490 @bullet{} @bullet{}
10491 @bullet{} @bullet{} @bullet{}
10492 @bullet{} @bullet{} @bullet{} @bullet{}
10493 @end group
10494 @end smallexample
10495 @end iftex
10496 @sp 1
10497
10498 @noindent
10499 (About 2500 years ago, Pythagoras and others developed the beginnings of
10500 number theory by considering questions such as this.)
10501
10502 Suppose you want to know how many pebbles you will need to make a
10503 triangle with 7 rows?
10504
10505 Clearly, what you need to do is add up the numbers from 1 to 7. There
10506 are two ways to do this; start with the smallest number, one, and add up
10507 the list in sequence, 1, 2, 3, 4 and so on; or start with the largest
10508 number and add the list going down: 7, 6, 5, 4 and so on. Because both
10509 mechanisms illustrate common ways of writing @code{while} loops, we will
10510 create two examples, one counting up and the other counting down. In
10511 this first example, we will start with 1 and add 2, 3, 4 and so on.
10512
10513 If you are just adding up a short list of numbers, the easiest way to do
10514 it is to add up all the numbers at once. However, if you do not know
10515 ahead of time how many numbers your list will have, or if you want to be
10516 prepared for a very long list, then you need to design your addition so
10517 that what you do is repeat a simple process many times instead of doing
10518 a more complex process once.
10519
10520 For example, instead of adding up all the pebbles all at once, what you
10521 can do is add the number of pebbles in the first row, 1, to the number
10522 in the second row, 2, and then add the total of those two rows to the
10523 third row, 3. Then you can add the number in the fourth row, 4, to the
10524 total of the first three rows; and so on.
10525
10526 The critical characteristic of the process is that each repetitive
10527 action is simple. In this case, at each step we add only two numbers,
10528 the number of pebbles in the row and the total already found. This
10529 process of adding two numbers is repeated again and again until the last
10530 row has been added to the total of all the preceding rows. In a more
10531 complex loop the repetitive action might not be so simple, but it will
10532 be simpler than doing everything all at once.
10533
10534 @node Inc Example parts
10535 @unnumberedsubsubsec The parts of the function definition
10536
10537 The preceding analysis gives us the bones of our function definition:
10538 first, we will need a variable that we can call @code{total} that will
10539 be the total number of pebbles. This will be the value returned by
10540 the function.
10541
10542 Second, we know that the function will require an argument: this
10543 argument will be the total number of rows in the triangle. It can be
10544 called @code{number-of-rows}.
10545
10546 Finally, we need a variable to use as a counter. We could call this
10547 variable @code{counter}, but a better name is @code{row-number}. That
10548 is because what the counter does in this function is count rows, and a
10549 program should be written to be as understandable as possible.
10550
10551 When the Lisp interpreter first starts evaluating the expressions in the
10552 function, the value of @code{total} should be set to zero, since we have
10553 not added anything to it. Then the function should add the number of
10554 pebbles in the first row to the total, and then add the number of
10555 pebbles in the second to the total, and then add the number of
10556 pebbles in the third row to the total, and so on, until there are no
10557 more rows left to add.
10558
10559 Both @code{total} and @code{row-number} are used only inside the
10560 function, so they can be declared as local variables with @code{let}
10561 and given initial values. Clearly, the initial value for @code{total}
10562 should be 0. The initial value of @code{row-number} should be 1,
10563 since we start with the first row. This means that the @code{let}
10564 statement will look like this:
10565
10566 @smallexample
10567 @group
10568 (let ((total 0)
10569 (row-number 1))
10570 @var{body}@dots{})
10571 @end group
10572 @end smallexample
10573
10574 After the internal variables are declared and bound to their initial
10575 values, we can begin the @code{while} loop. The expression that serves
10576 as the test should return a value of @code{t} for true so long as the
10577 @code{row-number} is less than or equal to the @code{number-of-rows}.
10578 (If the expression tests true only so long as the row number is less
10579 than the number of rows in the triangle, the last row will never be
10580 added to the total; hence the row number has to be either less than or
10581 equal to the number of rows.)
10582
10583 @need 1500
10584 @findex <= @r{(less than or equal)}
10585 Lisp provides the @code{<=} function that returns true if the value of
10586 its first argument is less than or equal to the value of its second
10587 argument and false otherwise. So the expression that the @code{while}
10588 will evaluate as its test should look like this:
10589
10590 @smallexample
10591 (<= row-number number-of-rows)
10592 @end smallexample
10593
10594 The total number of pebbles can be found by repeatedly adding the number
10595 of pebbles in a row to the total already found. Since the number of
10596 pebbles in the row is equal to the row number, the total can be found by
10597 adding the row number to the total. (Clearly, in a more complex
10598 situation, the number of pebbles in the row might be related to the row
10599 number in a more complicated way; if this were the case, the row number
10600 would be replaced by the appropriate expression.)
10601
10602 @smallexample
10603 (setq total (+ total row-number))
10604 @end smallexample
10605
10606 @noindent
10607 What this does is set the new value of @code{total} to be equal to the
10608 sum of adding the number of pebbles in the row to the previous total.
10609
10610 After setting the value of @code{total}, the conditions need to be
10611 established for the next repetition of the loop, if there is one. This
10612 is done by incrementing the value of the @code{row-number} variable,
10613 which serves as a counter. After the @code{row-number} variable has
10614 been incremented, the true-or-false-test at the beginning of the
10615 @code{while} loop tests whether its value is still less than or equal to
10616 the value of the @code{number-of-rows} and if it is, adds the new value
10617 of the @code{row-number} variable to the @code{total} of the previous
10618 repetition of the loop.
10619
10620 @need 1200
10621 The built-in Emacs Lisp function @code{1+} adds 1 to a number, so the
10622 @code{row-number} variable can be incremented with this expression:
10623
10624 @smallexample
10625 (setq row-number (1+ row-number))
10626 @end smallexample
10627
10628 @node Inc Example altogether
10629 @unnumberedsubsubsec Putting the function definition together
10630
10631 We have created the parts for the function definition; now we need to
10632 put them together.
10633
10634 @need 800
10635 First, the contents of the @code{while} expression:
10636
10637 @smallexample
10638 @group
10639 (while (<= row-number number-of-rows) ; @r{true-or-false-test}
10640 (setq total (+ total row-number))
10641 (setq row-number (1+ row-number))) ; @r{incrementer}
10642 @end group
10643 @end smallexample
10644
10645 Along with the @code{let} expression varlist, this very nearly
10646 completes the body of the function definition. However, it requires
10647 one final element, the need for which is somewhat subtle.
10648
10649 The final touch is to place the variable @code{total} on a line by
10650 itself after the @code{while} expression. Otherwise, the value returned
10651 by the whole function is the value of the last expression that is
10652 evaluated in the body of the @code{let}, and this is the value
10653 returned by the @code{while}, which is always @code{nil}.
10654
10655 This may not be evident at first sight. It almost looks as if the
10656 incrementing expression is the last expression of the whole function.
10657 But that expression is part of the body of the @code{while}; it is the
10658 last element of the list that starts with the symbol @code{while}.
10659 Moreover, the whole of the @code{while} loop is a list within the body
10660 of the @code{let}.
10661
10662 @need 1250
10663 In outline, the function will look like this:
10664
10665 @smallexample
10666 @group
10667 (defun @var{name-of-function} (@var{argument-list})
10668 "@var{documentation}@dots{}"
10669 (let (@var{varlist})
10670 (while (@var{true-or-false-test})
10671 @var{body-of-while}@dots{} )
10672 @dots{} )) ; @r{Need final expression here.}
10673 @end group
10674 @end smallexample
10675
10676 The result of evaluating the @code{let} is what is going to be returned
10677 by the @code{defun} since the @code{let} is not embedded within any
10678 containing list, except for the @code{defun} as a whole. However, if
10679 the @code{while} is the last element of the @code{let} expression, the
10680 function will always return @code{nil}. This is not what we want!
10681 Instead, what we want is the value of the variable @code{total}. This
10682 is returned by simply placing the symbol as the last element of the list
10683 starting with @code{let}. It gets evaluated after the preceding
10684 elements of the list are evaluated, which means it gets evaluated after
10685 it has been assigned the correct value for the total.
10686
10687 It may be easier to see this by printing the list starting with
10688 @code{let} all on one line. This format makes it evident that the
10689 @var{varlist} and @code{while} expressions are the second and third
10690 elements of the list starting with @code{let}, and the @code{total} is
10691 the last element:
10692
10693 @smallexample
10694 @group
10695 (let (@var{varlist}) (while (@var{true-or-false-test}) @var{body-of-while}@dots{} ) total)
10696 @end group
10697 @end smallexample
10698
10699 @need 1200
10700 Putting everything together, the @code{triangle} function definition
10701 looks like this:
10702
10703 @smallexample
10704 @group
10705 (defun triangle (number-of-rows) ; @r{Version with}
10706 ; @r{ incrementing counter.}
10707 "Add up the number of pebbles in a triangle.
10708 The first row has one pebble, the second row two pebbles,
10709 the third row three pebbles, and so on.
10710 The argument is NUMBER-OF-ROWS."
10711 @end group
10712 @group
10713 (let ((total 0)
10714 (row-number 1))
10715 (while (<= row-number number-of-rows)
10716 (setq total (+ total row-number))
10717 (setq row-number (1+ row-number)))
10718 total))
10719 @end group
10720 @end smallexample
10721
10722 @need 1200
10723 After you have installed @code{triangle} by evaluating the function, you
10724 can try it out. Here are two examples:
10725
10726 @smallexample
10727 @group
10728 (triangle 4)
10729
10730 (triangle 7)
10731 @end group
10732 @end smallexample
10733
10734 @noindent
10735 The sum of the first four numbers is 10 and the sum of the first seven
10736 numbers is 28.
10737
10738 @node Decrementing Loop
10739 @subsection Loop with a Decrementing Counter
10740
10741 Another common way to write a @code{while} loop is to write the test
10742 so that it determines whether a counter is greater than zero. So long
10743 as the counter is greater than zero, the loop is repeated. But when
10744 the counter is equal to or less than zero, the loop is stopped. For
10745 this to work, the counter has to start out greater than zero and then
10746 be made smaller and smaller by a form that is evaluated
10747 repeatedly.
10748
10749 The test will be an expression such as @code{(> counter 0)} which
10750 returns @code{t} for true if the value of @code{counter} is greater
10751 than zero, and @code{nil} for false if the value of @code{counter} is
10752 equal to or less than zero. The expression that makes the number
10753 smaller and smaller can be a simple @code{setq} such as @code{(setq
10754 counter (1- counter))}, where @code{1-} is a built-in function in
10755 Emacs Lisp that subtracts 1 from its argument.
10756
10757 @need 1250
10758 The template for a decrementing @code{while} loop looks like this:
10759
10760 @smallexample
10761 @group
10762 (while (> counter 0) ; @r{true-or-false-test}
10763 @var{body}@dots{}
10764 (setq counter (1- counter))) ; @r{decrementer}
10765 @end group
10766 @end smallexample
10767
10768 @menu
10769 * Decrementing Example:: More pebbles on the beach.
10770 * Dec Example parts:: The parts of the function definition.
10771 * Dec Example altogether:: Putting the function definition together.
10772 @end menu
10773
10774 @node Decrementing Example
10775 @unnumberedsubsubsec Example with decrementing counter
10776
10777 To illustrate a loop with a decrementing counter, we will rewrite the
10778 @code{triangle} function so the counter decreases to zero.
10779
10780 This is the reverse of the earlier version of the function. In this
10781 case, to find out how many pebbles are needed to make a triangle with
10782 3 rows, add the number of pebbles in the third row, 3, to the number
10783 in the preceding row, 2, and then add the total of those two rows to
10784 the row that precedes them, which is 1.
10785
10786 Likewise, to find the number of pebbles in a triangle with 7 rows, add
10787 the number of pebbles in the seventh row, 7, to the number in the
10788 preceding row, which is 6, and then add the total of those two rows to
10789 the row that precedes them, which is 5, and so on. As in the previous
10790 example, each addition only involves adding two numbers, the total of
10791 the rows already added up and the number of pebbles in the row that is
10792 being added to the total. This process of adding two numbers is
10793 repeated again and again until there are no more pebbles to add.
10794
10795 We know how many pebbles to start with: the number of pebbles in the
10796 last row is equal to the number of rows. If the triangle has seven
10797 rows, the number of pebbles in the last row is 7. Likewise, we know how
10798 many pebbles are in the preceding row: it is one less than the number in
10799 the row.
10800
10801 @node Dec Example parts
10802 @unnumberedsubsubsec The parts of the function definition
10803
10804 We start with three variables: the total number of rows in the
10805 triangle; the number of pebbles in a row; and the total number of
10806 pebbles, which is what we want to calculate. These variables can be
10807 named @code{number-of-rows}, @code{number-of-pebbles-in-row}, and
10808 @code{total}, respectively.
10809
10810 Both @code{total} and @code{number-of-pebbles-in-row} are used only
10811 inside the function and are declared with @code{let}. The initial
10812 value of @code{total} should, of course, be zero. However, the
10813 initial value of @code{number-of-pebbles-in-row} should be equal to
10814 the number of rows in the triangle, since the addition will start with
10815 the longest row.
10816
10817 @need 1250
10818 This means that the beginning of the @code{let} expression will look
10819 like this:
10820
10821 @smallexample
10822 @group
10823 (let ((total 0)
10824 (number-of-pebbles-in-row number-of-rows))
10825 @var{body}@dots{})
10826 @end group
10827 @end smallexample
10828
10829 The total number of pebbles can be found by repeatedly adding the number
10830 of pebbles in a row to the total already found, that is, by repeatedly
10831 evaluating the following expression:
10832
10833 @smallexample
10834 (setq total (+ total number-of-pebbles-in-row))
10835 @end smallexample
10836
10837 @noindent
10838 After the @code{number-of-pebbles-in-row} is added to the @code{total},
10839 the @code{number-of-pebbles-in-row} should be decremented by one, since
10840 the next time the loop repeats, the preceding row will be
10841 added to the total.
10842
10843 The number of pebbles in a preceding row is one less than the number of
10844 pebbles in a row, so the built-in Emacs Lisp function @code{1-} can be
10845 used to compute the number of pebbles in the preceding row. This can be
10846 done with the following expression:
10847
10848 @smallexample
10849 @group
10850 (setq number-of-pebbles-in-row
10851 (1- number-of-pebbles-in-row))
10852 @end group
10853 @end smallexample
10854
10855 Finally, we know that the @code{while} loop should stop making repeated
10856 additions when there are no pebbles in a row. So the test for
10857 the @code{while} loop is simply:
10858
10859 @smallexample
10860 (while (> number-of-pebbles-in-row 0)
10861 @end smallexample
10862
10863 @node Dec Example altogether
10864 @unnumberedsubsubsec Putting the function definition together
10865
10866 We can put these expressions together to create a function definition
10867 that works. However, on examination, we find that one of the local
10868 variables is unneeded!
10869
10870 @need 1250
10871 The function definition looks like this:
10872
10873 @smallexample
10874 @group
10875 ;;; @r{First subtractive version.}
10876 (defun triangle (number-of-rows)
10877 "Add up the number of pebbles in a triangle."
10878 (let ((total 0)
10879 (number-of-pebbles-in-row number-of-rows))
10880 (while (> number-of-pebbles-in-row 0)
10881 (setq total (+ total number-of-pebbles-in-row))
10882 (setq number-of-pebbles-in-row
10883 (1- number-of-pebbles-in-row)))
10884 total))
10885 @end group
10886 @end smallexample
10887
10888 As written, this function works.
10889
10890 However, we do not need @code{number-of-pebbles-in-row}.
10891
10892 @cindex Argument as local variable
10893 When the @code{triangle} function is evaluated, the symbol
10894 @code{number-of-rows} will be bound to a number, giving it an initial
10895 value. That number can be changed in the body of the function as if
10896 it were a local variable, without any fear that such a change will
10897 effect the value of the variable outside of the function. This is a
10898 very useful characteristic of Lisp; it means that the variable
10899 @code{number-of-rows} can be used anywhere in the function where
10900 @code{number-of-pebbles-in-row} is used.
10901
10902 @need 800
10903 Here is a second version of the function written a bit more cleanly:
10904
10905 @smallexample
10906 @group
10907 (defun triangle (number) ; @r{Second version.}
10908 "Return sum of numbers 1 through NUMBER inclusive."
10909 (let ((total 0))
10910 (while (> number 0)
10911 (setq total (+ total number))
10912 (setq number (1- number)))
10913 total))
10914 @end group
10915 @end smallexample
10916
10917 In brief, a properly written @code{while} loop will consist of three parts:
10918
10919 @enumerate
10920 @item
10921 A test that will return false after the loop has repeated itself the
10922 correct number of times.
10923
10924 @item
10925 An expression the evaluation of which will return the value desired
10926 after being repeatedly evaluated.
10927
10928 @item
10929 An expression to change the value passed to the true-or-false-test so
10930 that the test returns false after the loop has repeated itself the right
10931 number of times.
10932 @end enumerate
10933
10934 @node dolist dotimes
10935 @section Save your time: @code{dolist} and @code{dotimes}
10936
10937 In addition to @code{while}, both @code{dolist} and @code{dotimes}
10938 provide for looping. Sometimes these are quicker to write than the
10939 equivalent @code{while} loop. Both are Lisp macros. (@xref{Macros, ,
10940 Macros, elisp, The GNU Emacs Lisp Reference Manual}. )
10941
10942 @code{dolist} works like a @code{while} loop that `@sc{cdr}s down a
10943 list': @code{dolist} automatically shortens the list each time it
10944 loops---takes the @sc{cdr} of the list---and binds the @sc{car} of
10945 each shorter version of the list to the first of its arguments.
10946
10947 @code{dotimes} loops a specific number of times: you specify the number.
10948
10949 @menu
10950 * dolist::
10951 * dotimes::
10952 @end menu
10953
10954 @node dolist
10955 @unnumberedsubsec The @code{dolist} Macro
10956 @findex dolist
10957
10958 Suppose, for example, you want to reverse a list, so that
10959 ``first'' ``second'' ``third'' becomes ``third'' ``second'' ``first''.
10960
10961 @need 1250
10962 In practice, you would use the @code{reverse} function, like this:
10963
10964 @smallexample
10965 @group
10966 (setq animals '(gazelle giraffe lion tiger))
10967
10968 (reverse animals)
10969 @end group
10970 @end smallexample
10971
10972 @need 800
10973 @noindent
10974 Here is how you could reverse the list using a @code{while} loop:
10975
10976 @smallexample
10977 @group
10978 (setq animals '(gazelle giraffe lion tiger))
10979
10980 (defun reverse-list-with-while (list)
10981 "Using while, reverse the order of LIST."
10982 (let (value) ; make sure list starts empty
10983 (while list
10984 (setq value (cons (car list) value))
10985 (setq list (cdr list)))
10986 value))
10987
10988 (reverse-list-with-while animals)
10989 @end group
10990 @end smallexample
10991
10992 @need 800
10993 @noindent
10994 And here is how you could use the @code{dolist} macro:
10995
10996 @smallexample
10997 @group
10998 (setq animals '(gazelle giraffe lion tiger))
10999
11000 (defun reverse-list-with-dolist (list)
11001 "Using dolist, reverse the order of LIST."
11002 (let (value) ; make sure list starts empty
11003 (dolist (element list value)
11004 (setq value (cons element value)))))
11005
11006 (reverse-list-with-dolist animals)
11007 @end group
11008 @end smallexample
11009
11010 @need 1250
11011 @noindent
11012 In Info, you can place your cursor after the closing parenthesis of
11013 each expression and type @kbd{C-x C-e}; in each case, you should see
11014
11015 @smallexample
11016 (tiger lion giraffe gazelle)
11017 @end smallexample
11018
11019 @noindent
11020 in the echo area.
11021
11022 For this example, the existing @code{reverse} function is obviously best.
11023 The @code{while} loop is just like our first example (@pxref{Loop
11024 Example, , A @code{while} Loop and a List}). The @code{while} first
11025 checks whether the list has elements; if so, it constructs a new list
11026 by adding the first element of the list to the existing list (which in
11027 the first iteration of the loop is @code{nil}). Since the second
11028 element is prepended in front of the first element, and the third
11029 element is prepended in front of the second element, the list is reversed.
11030
11031 In the expression using a @code{while} loop,
11032 the @w{@code{(setq list (cdr list))}}
11033 expression shortens the list, so the @code{while} loop eventually
11034 stops. In addition, it provides the @code{cons} expression with a new
11035 first element by creating a new and shorter list at each repetition of
11036 the loop.
11037
11038 The @code{dolist} expression does very much the same as the
11039 @code{while} expression, except that the @code{dolist} macro does some
11040 of the work you have to do when writing a @code{while} expression.
11041
11042 Like a @code{while} loop, a @code{dolist} loops. What is different is
11043 that it automatically shortens the list each time it loops---it
11044 `@sc{cdr}s down the list' on its own---and it automatically binds
11045 the @sc{car} of each shorter version of the list to the first of its
11046 arguments.
11047
11048 In the example, the @sc{car} of each shorter version of the list is
11049 referred to using the symbol @samp{element}, the list itself is called
11050 @samp{list}, and the value returned is called @samp{value}. The
11051 remainder of the @code{dolist} expression is the body.
11052
11053 The @code{dolist} expression binds the @sc{car} of each shorter
11054 version of the list to @code{element} and then evaluates the body of
11055 the expression; and repeats the loop. The result is returned in
11056 @code{value}.
11057
11058 @node dotimes
11059 @unnumberedsubsec The @code{dotimes} Macro
11060 @findex dotimes
11061
11062 The @code{dotimes} macro is similar to @code{dolist}, except that it
11063 loops a specific number of times.
11064
11065 The first argument to @code{dotimes} is assigned the numbers 0, 1, 2
11066 and so forth each time around the loop, and the value of the third
11067 argument is returned. You need to provide the value of the second
11068 argument, which is how many times the macro loops.
11069
11070 @need 1250
11071 For example, the following binds the numbers from 0 up to, but not
11072 including, the number 3 to the first argument, @var{number}, and then
11073 constructs a list of the three numbers. (The first number is 0, the
11074 second number is 1, and the third number is 2; this makes a total of
11075 three numbers in all, starting with zero as the first number.)
11076
11077 @smallexample
11078 @group
11079 (let (value) ; otherwise a value is a void variable
11080 (dotimes (number 3 value)
11081 (setq value (cons number value))))
11082
11083 @result{} (2 1 0)
11084 @end group
11085 @end smallexample
11086
11087 @noindent
11088 @code{dotimes} returns @code{value}, so the way to use
11089 @code{dotimes} is to operate on some expression @var{number} number of
11090 times and then return the result, either as a list or an atom.
11091
11092 @need 1250
11093 Here is an example of a @code{defun} that uses @code{dotimes} to add
11094 up the number of pebbles in a triangle.
11095
11096 @smallexample
11097 @group
11098 (defun triangle-using-dotimes (number-of-rows)
11099 "Using dotimes, add up the number of pebbles in a triangle."
11100 (let ((total 0)) ; otherwise a total is a void variable
11101 (dotimes (number number-of-rows total)
11102 (setq total (+ total (1+ number))))))
11103
11104 (triangle-using-dotimes 4)
11105 @end group
11106 @end smallexample
11107
11108 @node Recursion
11109 @section Recursion
11110 @cindex Recursion
11111
11112 A recursive function contains code that tells the Lisp interpreter to
11113 call a program that runs exactly like itself, but with slightly
11114 different arguments. The code runs exactly the same because it has
11115 the same name. However, even though the program has the same name, it
11116 is not the same entity. It is different. In the jargon, it is a
11117 different `instance'.
11118
11119 Eventually, if the program is written correctly, the `slightly
11120 different arguments' will become sufficiently different from the first
11121 arguments that the final instance will stop.
11122
11123 @menu
11124 * Building Robots:: Same model, different serial number ...
11125 * Recursive Definition Parts:: Walk until you stop ...
11126 * Recursion with list:: Using a list as the test whether to recurse.
11127 * Recursive triangle function::
11128 * Recursion with cond::
11129 * Recursive Patterns:: Often used templates.
11130 * No Deferment:: Don't store up work ...
11131 * No deferment solution::
11132 @end menu
11133
11134 @node Building Robots
11135 @subsection Building Robots: Extending the Metaphor
11136 @cindex Building robots
11137 @cindex Robots, building
11138
11139 It is sometimes helpful to think of a running program as a robot that
11140 does a job. In doing its job, a recursive function calls on a second
11141 robot to help it. The second robot is identical to the first in every
11142 way, except that the second robot helps the first and has been
11143 passed different arguments than the first.
11144
11145 In a recursive function, the second robot may call a third; and the
11146 third may call a fourth, and so on. Each of these is a different
11147 entity; but all are clones.
11148
11149 Since each robot has slightly different instructions---the arguments
11150 will differ from one robot to the next---the last robot should know
11151 when to stop.
11152
11153 Let's expand on the metaphor in which a computer program is a robot.
11154
11155 A function definition provides the blueprints for a robot. When you
11156 install a function definition, that is, when you evaluate a
11157 @code{defun} macro, you install the necessary equipment to build
11158 robots. It is as if you were in a factory, setting up an assembly
11159 line. Robots with the same name are built according to the same
11160 blueprints. So they have, as it were, the same `model number', but a
11161 different `serial number'.
11162
11163 We often say that a recursive function `calls itself'. What we mean
11164 is that the instructions in a recursive function cause the Lisp
11165 interpreter to run a different function that has the same name and
11166 does the same job as the first, but with different arguments.
11167
11168 It is important that the arguments differ from one instance to the
11169 next; otherwise, the process will never stop.
11170
11171 @node Recursive Definition Parts
11172 @subsection The Parts of a Recursive Definition
11173 @cindex Parts of a Recursive Definition
11174 @cindex Recursive Definition Parts
11175
11176 A recursive function typically contains a conditional expression which
11177 has three parts:
11178
11179 @enumerate
11180 @item
11181 A true-or-false-test that determines whether the function is called
11182 again, here called the @dfn{do-again-test}.
11183
11184 @item
11185 The name of the function. When this name is called, a new instance of
11186 the function---a new robot, as it were---is created and told what to do.
11187
11188 @item
11189 An expression that returns a different value each time the function is
11190 called, here called the @dfn{next-step-expression}. Consequently, the
11191 argument (or arguments) passed to the new instance of the function
11192 will be different from that passed to the previous instance. This
11193 causes the conditional expression, the @dfn{do-again-test}, to test
11194 false after the correct number of repetitions.
11195 @end enumerate
11196
11197 Recursive functions can be much simpler than any other kind of
11198 function. Indeed, when people first start to use them, they often look
11199 so mysteriously simple as to be incomprehensible. Like riding a
11200 bicycle, reading a recursive function definition takes a certain knack
11201 which is hard at first but then seems simple.
11202
11203 @need 1200
11204 There are several different common recursive patterns. A very simple
11205 pattern looks like this:
11206
11207 @smallexample
11208 @group
11209 (defun @var{name-of-recursive-function} (@var{argument-list})
11210 "@var{documentation}@dots{}"
11211 (if @var{do-again-test}
11212 @var{body}@dots{}
11213 (@var{name-of-recursive-function}
11214 @var{next-step-expression})))
11215 @end group
11216 @end smallexample
11217
11218 Each time a recursive function is evaluated, a new instance of it is
11219 created and told what to do. The arguments tell the instance what to do.
11220
11221 An argument is bound to the value of the next-step-expression. Each
11222 instance runs with a different value of the next-step-expression.
11223
11224 The value in the next-step-expression is used in the do-again-test.
11225
11226 The value returned by the next-step-expression is passed to the new
11227 instance of the function, which evaluates it (or some
11228 transmogrification of it) to determine whether to continue or stop.
11229 The next-step-expression is designed so that the do-again-test returns
11230 false when the function should no longer be repeated.
11231
11232 The do-again-test is sometimes called the @dfn{stop condition},
11233 since it stops the repetitions when it tests false.
11234
11235 @node Recursion with list
11236 @subsection Recursion with a List
11237
11238 The example of a @code{while} loop that printed the elements of a list
11239 of numbers can be written recursively. Here is the code, including
11240 an expression to set the value of the variable @code{animals} to a list.
11241
11242 If you are reading this in Info in Emacs, you can evaluate this
11243 expression directly in Info. Otherwise, you must copy the example
11244 to the @file{*scratch*} buffer and evaluate each expression there.
11245 Use @kbd{C-u C-x C-e} to evaluate the
11246 @code{(print-elements-recursively animals)} expression so that the
11247 results are printed in the buffer; otherwise the Lisp interpreter will
11248 try to squeeze the results into the one line of the echo area.
11249
11250 Also, place your cursor immediately after the last closing parenthesis
11251 of the @code{print-elements-recursively} function, before the comment.
11252 Otherwise, the Lisp interpreter will try to evaluate the comment.
11253
11254 @findex print-elements-recursively
11255 @smallexample
11256 @group
11257 (setq animals '(gazelle giraffe lion tiger))
11258
11259 (defun print-elements-recursively (list)
11260 "Print each element of LIST on a line of its own.
11261 Uses recursion."
11262 (when list ; @r{do-again-test}
11263 (print (car list)) ; @r{body}
11264 (print-elements-recursively ; @r{recursive call}
11265 (cdr list)))) ; @r{next-step-expression}
11266
11267 (print-elements-recursively animals)
11268 @end group
11269 @end smallexample
11270
11271 The @code{print-elements-recursively} function first tests whether
11272 there is any content in the list; if there is, the function prints the
11273 first element of the list, the @sc{car} of the list. Then the
11274 function `invokes itself', but gives itself as its argument, not the
11275 whole list, but the second and subsequent elements of the list, the
11276 @sc{cdr} of the list.
11277
11278 Put another way, if the list is not empty, the function invokes
11279 another instance of code that is similar to the initial code, but is a
11280 different thread of execution, with different arguments than the first
11281 instance.
11282
11283 Put in yet another way, if the list is not empty, the first robot
11284 assembles a second robot and tells it what to do; the second robot is
11285 a different individual from the first, but is the same model.
11286
11287 When the second evaluation occurs, the @code{when} expression is
11288 evaluated and if true, prints the first element of the list it
11289 receives as its argument (which is the second element of the original
11290 list). Then the function `calls itself' with the @sc{cdr} of the list
11291 it is invoked with, which (the second time around) is the @sc{cdr} of
11292 the @sc{cdr} of the original list.
11293
11294 Note that although we say that the function `calls itself', what we
11295 mean is that the Lisp interpreter assembles and instructs a new
11296 instance of the program. The new instance is a clone of the first,
11297 but is a separate individual.
11298
11299 Each time the function `invokes itself', it invokes itself on a
11300 shorter version of the original list. It creates a new instance that
11301 works on a shorter list.
11302
11303 Eventually, the function invokes itself on an empty list. It creates
11304 a new instance whose argument is @code{nil}. The conditional expression
11305 tests the value of @code{list}. Since the value of @code{list} is
11306 @code{nil}, the @code{when} expression tests false so the then-part is
11307 not evaluated. The function as a whole then returns @code{nil}.
11308
11309 @need 1200
11310 When you evaluate the expression @code{(print-elements-recursively
11311 animals)} in the @file{*scratch*} buffer, you see this result:
11312
11313 @smallexample
11314 @group
11315 gazelle
11316
11317 giraffe
11318
11319 lion
11320
11321 tiger
11322 nil
11323 @end group
11324 @end smallexample
11325
11326 @need 2000
11327 @node Recursive triangle function
11328 @subsection Recursion in Place of a Counter
11329 @findex triangle-recursively
11330
11331 @need 1200
11332 The @code{triangle} function described in a previous section can also
11333 be written recursively. It looks like this:
11334
11335 @smallexample
11336 @group
11337 (defun triangle-recursively (number)
11338 "Return the sum of the numbers 1 through NUMBER inclusive.
11339 Uses recursion."
11340 (if (= number 1) ; @r{do-again-test}
11341 1 ; @r{then-part}
11342 (+ number ; @r{else-part}
11343 (triangle-recursively ; @r{recursive call}
11344 (1- number))))) ; @r{next-step-expression}
11345
11346 (triangle-recursively 7)
11347 @end group
11348 @end smallexample
11349
11350 @noindent
11351 You can install this function by evaluating it and then try it by
11352 evaluating @code{(triangle-recursively 7)}. (Remember to put your
11353 cursor immediately after the last parenthesis of the function
11354 definition, before the comment.) The function evaluates to 28.
11355
11356 To understand how this function works, let's consider what happens in the
11357 various cases when the function is passed 1, 2, 3, or 4 as the value of
11358 its argument.
11359
11360 @menu
11361 * Recursive Example arg of 1 or 2::
11362 * Recursive Example arg of 3 or 4::
11363 @end menu
11364
11365 @ifnottex
11366 @node Recursive Example arg of 1 or 2
11367 @unnumberedsubsubsec An argument of 1 or 2
11368 @end ifnottex
11369
11370 First, what happens if the value of the argument is 1?
11371
11372 The function has an @code{if} expression after the documentation
11373 string. It tests whether the value of @code{number} is equal to 1; if
11374 so, Emacs evaluates the then-part of the @code{if} expression, which
11375 returns the number 1 as the value of the function. (A triangle with
11376 one row has one pebble in it.)
11377
11378 Suppose, however, that the value of the argument is 2. In this case,
11379 Emacs evaluates the else-part of the @code{if} expression.
11380
11381 @need 1200
11382 The else-part consists of an addition, the recursive call to
11383 @code{triangle-recursively} and a decrementing action; and it looks like
11384 this:
11385
11386 @smallexample
11387 (+ number (triangle-recursively (1- number)))
11388 @end smallexample
11389
11390 When Emacs evaluates this expression, the innermost expression is
11391 evaluated first; then the other parts in sequence. Here are the steps
11392 in detail:
11393
11394 @table @i
11395 @item Step 1 @w{ } Evaluate the innermost expression.
11396
11397 The innermost expression is @code{(1- number)} so Emacs decrements the
11398 value of @code{number} from 2 to 1.
11399
11400 @item Step 2 @w{ } Evaluate the @code{triangle-recursively} function.
11401
11402 The Lisp interpreter creates an individual instance of
11403 @code{triangle-recursively}. It does not matter that this function is
11404 contained within itself. Emacs passes the result Step 1 as the
11405 argument used by this instance of the @code{triangle-recursively}
11406 function
11407
11408 In this case, Emacs evaluates @code{triangle-recursively} with an
11409 argument of 1. This means that this evaluation of
11410 @code{triangle-recursively} returns 1.
11411
11412 @item Step 3 @w{ } Evaluate the value of @code{number}.
11413
11414 The variable @code{number} is the second element of the list that
11415 starts with @code{+}; its value is 2.
11416
11417 @item Step 4 @w{ } Evaluate the @code{+} expression.
11418
11419 The @code{+} expression receives two arguments, the first
11420 from the evaluation of @code{number} (Step 3) and the second from the
11421 evaluation of @code{triangle-recursively} (Step 2).
11422
11423 The result of the addition is the sum of 2 plus 1, and the number 3 is
11424 returned, which is correct. A triangle with two rows has three
11425 pebbles in it.
11426 @end table
11427
11428 @node Recursive Example arg of 3 or 4
11429 @unnumberedsubsubsec An argument of 3 or 4
11430
11431 Suppose that @code{triangle-recursively} is called with an argument of
11432 3.
11433
11434 @table @i
11435 @item Step 1 @w{ } Evaluate the do-again-test.
11436
11437 The @code{if} expression is evaluated first. This is the do-again
11438 test and returns false, so the else-part of the @code{if} expression
11439 is evaluated. (Note that in this example, the do-again-test causes
11440 the function to call itself when it tests false, not when it tests
11441 true.)
11442
11443 @item Step 2 @w{ } Evaluate the innermost expression of the else-part.
11444
11445 The innermost expression of the else-part is evaluated, which decrements
11446 3 to 2. This is the next-step-expression.
11447
11448 @item Step 3 @w{ } Evaluate the @code{triangle-recursively} function.
11449
11450 The number 2 is passed to the @code{triangle-recursively} function.
11451
11452 We already know what happens when Emacs evaluates @code{triangle-recursively} with
11453 an argument of 2. After going through the sequence of actions described
11454 earlier, it returns a value of 3. So that is what will happen here.
11455
11456 @item Step 4 @w{ } Evaluate the addition.
11457
11458 3 will be passed as an argument to the addition and will be added to the
11459 number with which the function was called, which is 3.
11460 @end table
11461
11462 @noindent
11463 The value returned by the function as a whole will be 6.
11464
11465 Now that we know what will happen when @code{triangle-recursively} is
11466 called with an argument of 3, it is evident what will happen if it is
11467 called with an argument of 4:
11468
11469 @quotation
11470 @need 800
11471 In the recursive call, the evaluation of
11472
11473 @smallexample
11474 (triangle-recursively (1- 4))
11475 @end smallexample
11476
11477 @need 800
11478 @noindent
11479 will return the value of evaluating
11480
11481 @smallexample
11482 (triangle-recursively 3)
11483 @end smallexample
11484
11485 @noindent
11486 which is 6 and this value will be added to 4 by the addition in the
11487 third line.
11488 @end quotation
11489
11490 @noindent
11491 The value returned by the function as a whole will be 10.
11492
11493 Each time @code{triangle-recursively} is evaluated, it evaluates a
11494 version of itself---a different instance of itself---with a smaller
11495 argument, until the argument is small enough so that it does not
11496 evaluate itself.
11497
11498 Note that this particular design for a recursive function
11499 requires that operations be deferred.
11500
11501 Before @code{(triangle-recursively 7)} can calculate its answer, it
11502 must call @code{(triangle-recursively 6)}; and before
11503 @code{(triangle-recursively 6)} can calculate its answer, it must call
11504 @code{(triangle-recursively 5)}; and so on. That is to say, the
11505 calculation that @code{(triangle-recursively 7)} makes must be
11506 deferred until @code{(triangle-recursively 6)} makes its calculation;
11507 and @code{(triangle-recursively 6)} must defer until
11508 @code{(triangle-recursively 5)} completes; and so on.
11509
11510 If each of these instances of @code{triangle-recursively} are thought
11511 of as different robots, the first robot must wait for the second to
11512 complete its job, which must wait until the third completes, and so
11513 on.
11514
11515 There is a way around this kind of waiting, which we will discuss in
11516 @ref{No Deferment, , Recursion without Deferments}.
11517
11518 @node Recursion with cond
11519 @subsection Recursion Example Using @code{cond}
11520 @findex cond
11521
11522 The version of @code{triangle-recursively} described earlier is written
11523 with the @code{if} special form. It can also be written using another
11524 special form called @code{cond}. The name of the special form
11525 @code{cond} is an abbreviation of the word @samp{conditional}.
11526
11527 Although the @code{cond} special form is not used as often in the
11528 Emacs Lisp sources as @code{if}, it is used often enough to justify
11529 explaining it.
11530
11531 @need 800
11532 The template for a @code{cond} expression looks like this:
11533
11534 @smallexample
11535 @group
11536 (cond
11537 @var{body}@dots{})
11538 @end group
11539 @end smallexample
11540
11541 @noindent
11542 where the @var{body} is a series of lists.
11543
11544 @need 800
11545 Written out more fully, the template looks like this:
11546
11547 @smallexample
11548 @group
11549 (cond
11550 (@var{first-true-or-false-test} @var{first-consequent})
11551 (@var{second-true-or-false-test} @var{second-consequent})
11552 (@var{third-true-or-false-test} @var{third-consequent})
11553 @dots{})
11554 @end group
11555 @end smallexample
11556
11557 When the Lisp interpreter evaluates the @code{cond} expression, it
11558 evaluates the first element (the @sc{car} or true-or-false-test) of
11559 the first expression in a series of expressions within the body of the
11560 @code{cond}.
11561
11562 If the true-or-false-test returns @code{nil} the rest of that
11563 expression, the consequent, is skipped and the true-or-false-test of the
11564 next expression is evaluated. When an expression is found whose
11565 true-or-false-test returns a value that is not @code{nil}, the
11566 consequent of that expression is evaluated. The consequent can be one
11567 or more expressions. If the consequent consists of more than one
11568 expression, the expressions are evaluated in sequence and the value of
11569 the last one is returned. If the expression does not have a consequent,
11570 the value of the true-or-false-test is returned.
11571
11572 If none of the true-or-false-tests test true, the @code{cond} expression
11573 returns @code{nil}.
11574
11575 @need 1250
11576 Written using @code{cond}, the @code{triangle} function looks like this:
11577
11578 @smallexample
11579 @group
11580 (defun triangle-using-cond (number)
11581 (cond ((<= number 0) 0)
11582 ((= number 1) 1)
11583 ((> number 1)
11584 (+ number (triangle-using-cond (1- number))))))
11585 @end group
11586 @end smallexample
11587
11588 @noindent
11589 In this example, the @code{cond} returns 0 if the number is less than or
11590 equal to 0, it returns 1 if the number is 1 and it evaluates @code{(+
11591 number (triangle-using-cond (1- number)))} if the number is greater than
11592 1.
11593
11594 @node Recursive Patterns
11595 @subsection Recursive Patterns
11596 @cindex Recursive Patterns
11597
11598 Here are three common recursive patterns. Each involves a list.
11599 Recursion does not need to involve lists, but Lisp is designed for lists
11600 and this provides a sense of its primal capabilities.
11601
11602 @menu
11603 * Every::
11604 * Accumulate::
11605 * Keep::
11606 @end menu
11607
11608 @node Every
11609 @unnumberedsubsubsec Recursive Pattern: @emph{every}
11610 @cindex Every, type of recursive pattern
11611 @cindex Recursive pattern: every
11612
11613 In the @code{every} recursive pattern, an action is performed on every
11614 element of a list.
11615
11616 @need 1500
11617 The basic pattern is:
11618
11619 @itemize @bullet
11620 @item
11621 If a list be empty, return @code{nil}.
11622 @item
11623 Else, act on the beginning of the list (the @sc{car} of the list)
11624 @itemize @minus
11625 @item
11626 through a recursive call by the function on the rest (the
11627 @sc{cdr}) of the list,
11628 @item
11629 and, optionally, combine the acted-on element, using @code{cons},
11630 with the results of acting on the rest.
11631 @end itemize
11632 @end itemize
11633
11634 @need 1500
11635 Here is example:
11636
11637 @smallexample
11638 @group
11639 (defun square-each (numbers-list)
11640 "Square each of a NUMBERS LIST, recursively."
11641 (if (not numbers-list) ; do-again-test
11642 nil
11643 (cons
11644 (* (car numbers-list) (car numbers-list))
11645 (square-each (cdr numbers-list))))) ; next-step-expression
11646 @end group
11647
11648 @group
11649 (square-each '(1 2 3))
11650 @result{} (1 4 9)
11651 @end group
11652 @end smallexample
11653
11654 @need 1200
11655 @noindent
11656 If @code{numbers-list} is empty, do nothing. But if it has content,
11657 construct a list combining the square of the first number in the list
11658 with the result of the recursive call.
11659
11660 (The example follows the pattern exactly: @code{nil} is returned if
11661 the numbers' list is empty. In practice, you would write the
11662 conditional so it carries out the action when the numbers' list is not
11663 empty.)
11664
11665 The @code{print-elements-recursively} function (@pxref{Recursion with
11666 list, , Recursion with a List}) is another example of an @code{every}
11667 pattern, except in this case, rather than bring the results together
11668 using @code{cons}, we print each element of output.
11669
11670 @need 1250
11671 The @code{print-elements-recursively} function looks like this:
11672
11673 @smallexample
11674 @group
11675 (setq animals '(gazelle giraffe lion tiger))
11676 @end group
11677
11678 @group
11679 (defun print-elements-recursively (list)
11680 "Print each element of LIST on a line of its own.
11681 Uses recursion."
11682 (when list ; @r{do-again-test}
11683 (print (car list)) ; @r{body}
11684 (print-elements-recursively ; @r{recursive call}
11685 (cdr list)))) ; @r{next-step-expression}
11686
11687 (print-elements-recursively animals)
11688 @end group
11689 @end smallexample
11690
11691 @need 1500
11692 The pattern for @code{print-elements-recursively} is:
11693
11694 @itemize @bullet
11695 @item
11696 When the list is empty, do nothing.
11697 @item
11698 But when the list has at least one element,
11699 @itemize @minus
11700 @item
11701 act on the beginning of the list (the @sc{car} of the list),
11702 @item
11703 and make a recursive call on the rest (the @sc{cdr}) of the list.
11704 @end itemize
11705 @end itemize
11706
11707 @node Accumulate
11708 @unnumberedsubsubsec Recursive Pattern: @emph{accumulate}
11709 @cindex Accumulate, type of recursive pattern
11710 @cindex Recursive pattern: accumulate
11711
11712 Another recursive pattern is called the @code{accumulate} pattern. In
11713 the @code{accumulate} recursive pattern, an action is performed on
11714 every element of a list and the result of that action is accumulated
11715 with the results of performing the action on the other elements.
11716
11717 This is very like the `every' pattern using @code{cons}, except that
11718 @code{cons} is not used, but some other combiner.
11719
11720 @need 1500
11721 The pattern is:
11722
11723 @itemize @bullet
11724 @item
11725 If a list be empty, return zero or some other constant.
11726 @item
11727 Else, act on the beginning of the list (the @sc{car} of the list),
11728 @itemize @minus
11729 @item
11730 and combine that acted-on element, using @code{+} or
11731 some other combining function, with
11732 @item
11733 a recursive call by the function on the rest (the @sc{cdr}) of the list.
11734 @end itemize
11735 @end itemize
11736
11737 @need 1500
11738 Here is an example:
11739
11740 @smallexample
11741 @group
11742 (defun add-elements (numbers-list)
11743 "Add the elements of NUMBERS-LIST together."
11744 (if (not numbers-list)
11745 0
11746 (+ (car numbers-list) (add-elements (cdr numbers-list)))))
11747 @end group
11748
11749 @group
11750 (add-elements '(1 2 3 4))
11751 @result{} 10
11752 @end group
11753 @end smallexample
11754
11755 @xref{Files List, , Making a List of Files}, for an example of the
11756 accumulate pattern.
11757
11758 @node Keep
11759 @unnumberedsubsubsec Recursive Pattern: @emph{keep}
11760 @cindex Keep, type of recursive pattern
11761 @cindex Recursive pattern: keep
11762
11763 A third recursive pattern is called the @code{keep} pattern.
11764 In the @code{keep} recursive pattern, each element of a list is tested;
11765 the element is acted on and the results are kept only if the element
11766 meets a criterion.
11767
11768 Again, this is very like the `every' pattern, except the element is
11769 skipped unless it meets a criterion.
11770
11771 @need 1500
11772 The pattern has three parts:
11773
11774 @itemize @bullet
11775 @item
11776 If a list be empty, return @code{nil}.
11777 @item
11778 Else, if the beginning of the list (the @sc{car} of the list) passes
11779 a test
11780 @itemize @minus
11781 @item
11782 act on that element and combine it, using @code{cons} with
11783 @item
11784 a recursive call by the function on the rest (the @sc{cdr}) of the list.
11785 @end itemize
11786 @item
11787 Otherwise, if the beginning of the list (the @sc{car} of the list) fails
11788 the test
11789 @itemize @minus
11790 @item
11791 skip on that element,
11792 @item
11793 and, recursively call the function on the rest (the @sc{cdr}) of the list.
11794 @end itemize
11795 @end itemize
11796
11797 @need 1500
11798 Here is an example that uses @code{cond}:
11799
11800 @smallexample
11801 @group
11802 (defun keep-three-letter-words (word-list)
11803 "Keep three letter words in WORD-LIST."
11804 (cond
11805 ;; First do-again-test: stop-condition
11806 ((not word-list) nil)
11807
11808 ;; Second do-again-test: when to act
11809 ((eq 3 (length (symbol-name (car word-list))))
11810 ;; combine acted-on element with recursive call on shorter list
11811 (cons (car word-list) (keep-three-letter-words (cdr word-list))))
11812
11813 ;; Third do-again-test: when to skip element;
11814 ;; recursively call shorter list with next-step expression
11815 (t (keep-three-letter-words (cdr word-list)))))
11816 @end group
11817
11818 @group
11819 (keep-three-letter-words '(one two three four five six))
11820 @result{} (one two six)
11821 @end group
11822 @end smallexample
11823
11824 It goes without saying that you need not use @code{nil} as the test for
11825 when to stop; and you can, of course, combine these patterns.
11826
11827 @node No Deferment
11828 @subsection Recursion without Deferments
11829 @cindex Deferment in recursion
11830 @cindex Recursion without Deferments
11831
11832 Let's consider again what happens with the @code{triangle-recursively}
11833 function. We will find that the intermediate calculations are
11834 deferred until all can be done.
11835
11836 @need 800
11837 Here is the function definition:
11838
11839 @smallexample
11840 @group
11841 (defun triangle-recursively (number)
11842 "Return the sum of the numbers 1 through NUMBER inclusive.
11843 Uses recursion."
11844 (if (= number 1) ; @r{do-again-test}
11845 1 ; @r{then-part}
11846 (+ number ; @r{else-part}
11847 (triangle-recursively ; @r{recursive call}
11848 (1- number))))) ; @r{next-step-expression}
11849 @end group
11850 @end smallexample
11851
11852 What happens when we call this function with a argument of 7?
11853
11854 The first instance of the @code{triangle-recursively} function adds
11855 the number 7 to the value returned by a second instance of
11856 @code{triangle-recursively}, an instance that has been passed an
11857 argument of 6. That is to say, the first calculation is:
11858
11859 @smallexample
11860 (+ 7 (triangle-recursively 6))
11861 @end smallexample
11862
11863 @noindent
11864 The first instance of @code{triangle-recursively}---you may want to
11865 think of it as a little robot---cannot complete its job. It must hand
11866 off the calculation for @code{(triangle-recursively 6)} to a second
11867 instance of the program, to a second robot. This second individual is
11868 completely different from the first one; it is, in the jargon, a
11869 `different instantiation'. Or, put another way, it is a different
11870 robot. It is the same model as the first; it calculates triangle
11871 numbers recursively; but it has a different serial number.
11872
11873 And what does @code{(triangle-recursively 6)} return? It returns the
11874 number 6 added to the value returned by evaluating
11875 @code{triangle-recursively} with an argument of 5. Using the robot
11876 metaphor, it asks yet another robot to help it.
11877
11878 @need 800
11879 Now the total is:
11880
11881 @smallexample
11882 (+ 7 6 (triangle-recursively 5))
11883 @end smallexample
11884
11885 @need 800
11886 And what happens next?
11887
11888 @smallexample
11889 (+ 7 6 5 (triangle-recursively 4))
11890 @end smallexample
11891
11892 Each time @code{triangle-recursively} is called, except for the last
11893 time, it creates another instance of the program---another robot---and
11894 asks it to make a calculation.
11895
11896 @need 800
11897 Eventually, the full addition is set up and performed:
11898
11899 @smallexample
11900 (+ 7 6 5 4 3 2 1)
11901 @end smallexample
11902
11903 This design for the function defers the calculation of the first step
11904 until the second can be done, and defers that until the third can be
11905 done, and so on. Each deferment means the computer must remember what
11906 is being waited on. This is not a problem when there are only a few
11907 steps, as in this example. But it can be a problem when there are
11908 more steps.
11909
11910 @node No deferment solution
11911 @subsection No Deferment Solution
11912 @cindex No deferment solution
11913 @cindex Defermentless solution
11914 @cindex Solution without deferment
11915
11916 The solution to the problem of deferred operations is to write in a
11917 manner that does not defer operations@footnote{The phrase @dfn{tail
11918 recursive} is used to describe such a process, one that uses
11919 `constant space'.}. This requires
11920 writing to a different pattern, often one that involves writing two
11921 function definitions, an `initialization' function and a `helper'
11922 function.
11923
11924 The `initialization' function sets up the job; the `helper' function
11925 does the work.
11926
11927 @need 1200
11928 Here are the two function definitions for adding up numbers. They are
11929 so simple, I find them hard to understand.
11930
11931 @smallexample
11932 @group
11933 (defun triangle-initialization (number)
11934 "Return the sum of the numbers 1 through NUMBER inclusive.
11935 This is the `initialization' component of a two function
11936 duo that uses recursion."
11937 (triangle-recursive-helper 0 0 number))
11938 @end group
11939 @end smallexample
11940
11941 @smallexample
11942 @group
11943 (defun triangle-recursive-helper (sum counter number)
11944 "Return SUM, using COUNTER, through NUMBER inclusive.
11945 This is the `helper' component of a two function duo
11946 that uses recursion."
11947 (if (> counter number)
11948 sum
11949 (triangle-recursive-helper (+ sum counter) ; @r{sum}
11950 (1+ counter) ; @r{counter}
11951 number))) ; @r{number}
11952 @end group
11953 @end smallexample
11954
11955 @need 1250
11956 Install both function definitions by evaluating them, then call
11957 @code{triangle-initialization} with 2 rows:
11958
11959 @smallexample
11960 @group
11961 (triangle-initialization 2)
11962 @result{} 3
11963 @end group
11964 @end smallexample
11965
11966 The `initialization' function calls the first instance of the `helper'
11967 function with three arguments: zero, zero, and a number which is the
11968 number of rows in the triangle.
11969
11970 The first two arguments passed to the `helper' function are
11971 initialization values. These values are changed when
11972 @code{triangle-recursive-helper} invokes new instances.@footnote{The
11973 jargon is mildly confusing: @code{triangle-recursive-helper} uses a
11974 process that is iterative in a procedure that is recursive. The
11975 process is called iterative because the computer need only record the
11976 three values, @code{sum}, @code{counter}, and @code{number}; the
11977 procedure is recursive because the function `calls itself'. On the
11978 other hand, both the process and the procedure used by
11979 @code{triangle-recursively} are called recursive. The word
11980 `recursive' has different meanings in the two contexts.}
11981
11982 Let's see what happens when we have a triangle that has one row. (This
11983 triangle will have one pebble in it!)
11984
11985 @need 1200
11986 @code{triangle-initialization} will call its helper with
11987 the arguments @w{@code{0 0 1}}. That function will run the conditional
11988 test whether @code{(> counter number)}:
11989
11990 @smallexample
11991 (> 0 1)
11992 @end smallexample
11993
11994 @need 1200
11995 @noindent
11996 and find that the result is false, so it will invoke
11997 the else-part of the @code{if} clause:
11998
11999 @smallexample
12000 @group
12001 (triangle-recursive-helper
12002 (+ sum counter) ; @r{sum plus counter} @result{} @r{sum}
12003 (1+ counter) ; @r{increment counter} @result{} @r{counter}
12004 number) ; @r{number stays the same}
12005 @end group
12006 @end smallexample
12007
12008 @need 800
12009 @noindent
12010 which will first compute:
12011
12012 @smallexample
12013 @group
12014 (triangle-recursive-helper (+ 0 0) ; @r{sum}
12015 (1+ 0) ; @r{counter}
12016 1) ; @r{number}
12017 @exdent which is:
12018
12019 (triangle-recursive-helper 0 1 1)
12020 @end group
12021 @end smallexample
12022
12023 Again, @code{(> counter number)} will be false, so again, the Lisp
12024 interpreter will evaluate @code{triangle-recursive-helper}, creating a
12025 new instance with new arguments.
12026
12027 @need 800
12028 This new instance will be;
12029
12030 @smallexample
12031 @group
12032 (triangle-recursive-helper
12033 (+ sum counter) ; @r{sum plus counter} @result{} @r{sum}
12034 (1+ counter) ; @r{increment counter} @result{} @r{counter}
12035 number) ; @r{number stays the same}
12036
12037 @exdent which is:
12038
12039 (triangle-recursive-helper 1 2 1)
12040 @end group
12041 @end smallexample
12042
12043 In this case, the @code{(> counter number)} test will be true! So the
12044 instance will return the value of the sum, which will be 1, as
12045 expected.
12046
12047 Now, let's pass @code{triangle-initialization} an argument
12048 of 2, to find out how many pebbles there are in a triangle with two rows.
12049
12050 That function calls @code{(triangle-recursive-helper 0 0 2)}.
12051
12052 @need 800
12053 In stages, the instances called will be:
12054
12055 @smallexample
12056 @group
12057 @r{sum counter number}
12058 (triangle-recursive-helper 0 1 2)
12059
12060 (triangle-recursive-helper 1 2 2)
12061
12062 (triangle-recursive-helper 3 3 2)
12063 @end group
12064 @end smallexample
12065
12066 When the last instance is called, the @code{(> counter number)} test
12067 will be true, so the instance will return the value of @code{sum},
12068 which will be 3.
12069
12070 This kind of pattern helps when you are writing functions that can use
12071 many resources in a computer.
12072
12073 @need 1500
12074 @node Looping exercise
12075 @section Looping Exercise
12076
12077 @itemize @bullet
12078 @item
12079 Write a function similar to @code{triangle} in which each row has a
12080 value which is the square of the row number. Use a @code{while} loop.
12081
12082 @item
12083 Write a function similar to @code{triangle} that multiplies instead of
12084 adds the values.
12085
12086 @item
12087 Rewrite these two functions recursively. Rewrite these functions
12088 using @code{cond}.
12089
12090 @c comma in printed title causes problem in Info cross reference
12091 @item
12092 Write a function for Texinfo mode that creates an index entry at the
12093 beginning of a paragraph for every @samp{@@dfn} within the paragraph.
12094 (In a Texinfo file, @samp{@@dfn} marks a definition. This book is
12095 written in Texinfo.)
12096
12097 Many of the functions you will need are described in two of the
12098 previous chapters, @ref{Cutting & Storing Text, , Cutting and Storing
12099 Text}, and @ref{Yanking, , Yanking Text Back}. If you use
12100 @code{forward-paragraph} to put the index entry at the beginning of
12101 the paragraph, you will have to use @w{@kbd{C-h f}}
12102 (@code{describe-function}) to find out how to make the command go
12103 backwards.
12104
12105 For more information, see
12106 @ifinfo
12107 @ref{Indicating, , Indicating Definitions, texinfo}.
12108 @end ifinfo
12109 @ifhtml
12110 @ref{Indicating, , Indicating, texinfo, Texinfo Manual}, which goes to
12111 a Texinfo manual in the current directory. Or, if you are on the
12112 Internet, see
12113 @uref{http://www.gnu.org/software/texinfo/manual/texinfo/}
12114 @end ifhtml
12115 @iftex
12116 ``Indicating Definitions, Commands, etc.'' in @cite{Texinfo, The GNU
12117 Documentation Format}.
12118 @end iftex
12119 @end itemize
12120
12121 @node Regexp Search
12122 @chapter Regular Expression Searches
12123 @cindex Searches, illustrating
12124 @cindex Regular expression searches
12125 @cindex Patterns, searching for
12126 @cindex Motion by sentence and paragraph
12127 @cindex Sentences, movement by
12128 @cindex Paragraphs, movement by
12129
12130 Regular expression searches are used extensively in GNU Emacs. The
12131 two functions, @code{forward-sentence} and @code{forward-paragraph},
12132 illustrate these searches well. They use regular expressions to find
12133 where to move point. The phrase `regular expression' is often written
12134 as `regexp'.
12135
12136 Regular expression searches are described in @ref{Regexp Search, ,
12137 Regular Expression Search, emacs, The GNU Emacs Manual}, as well as in
12138 @ref{Regular Expressions, , , elisp, The GNU Emacs Lisp Reference
12139 Manual}. In writing this chapter, I am presuming that you have at
12140 least a mild acquaintance with them. The major point to remember is
12141 that regular expressions permit you to search for patterns as well as
12142 for literal strings of characters. For example, the code in
12143 @code{forward-sentence} searches for the pattern of possible
12144 characters that could mark the end of a sentence, and moves point to
12145 that spot.
12146
12147 Before looking at the code for the @code{forward-sentence} function, it
12148 is worth considering what the pattern that marks the end of a sentence
12149 must be. The pattern is discussed in the next section; following that
12150 is a description of the regular expression search function,
12151 @code{re-search-forward}. The @code{forward-sentence} function
12152 is described in the section following. Finally, the
12153 @code{forward-paragraph} function is described in the last section of
12154 this chapter. @code{forward-paragraph} is a complex function that
12155 introduces several new features.
12156
12157 @menu
12158 * sentence-end:: The regular expression for @code{sentence-end}.
12159 * re-search-forward:: Very similar to @code{search-forward}.
12160 * forward-sentence:: A straightforward example of regexp search.
12161 * forward-paragraph:: A somewhat complex example.
12162 * etags:: How to create your own @file{TAGS} table.
12163 * Regexp Review::
12164 * re-search Exercises::
12165 @end menu
12166
12167 @node sentence-end
12168 @section The Regular Expression for @code{sentence-end}
12169 @findex sentence-end
12170
12171 The symbol @code{sentence-end} is bound to the pattern that marks the
12172 end of a sentence. What should this regular expression be?
12173
12174 Clearly, a sentence may be ended by a period, a question mark, or an
12175 exclamation mark. Indeed, in English, only clauses that end with one
12176 of those three characters should be considered the end of a sentence.
12177 This means that the pattern should include the character set:
12178
12179 @smallexample
12180 [.?!]
12181 @end smallexample
12182
12183 However, we do not want @code{forward-sentence} merely to jump to a
12184 period, a question mark, or an exclamation mark, because such a character
12185 might be used in the middle of a sentence. A period, for example, is
12186 used after abbreviations. So other information is needed.
12187
12188 According to convention, you type two spaces after every sentence, but
12189 only one space after a period, a question mark, or an exclamation mark in
12190 the body of a sentence. So a period, a question mark, or an exclamation
12191 mark followed by two spaces is a good indicator of an end of sentence.
12192 However, in a file, the two spaces may instead be a tab or the end of a
12193 line. This means that the regular expression should include these three
12194 items as alternatives.
12195
12196 @need 800
12197 This group of alternatives will look like this:
12198
12199 @smallexample
12200 @group
12201 \\($\\| \\| \\)
12202 ^ ^^
12203 TAB SPC
12204 @end group
12205 @end smallexample
12206
12207 @noindent
12208 Here, @samp{$} indicates the end of the line, and I have pointed out
12209 where the tab and two spaces are inserted in the expression. Both are
12210 inserted by putting the actual characters into the expression.
12211
12212 Two backslashes, @samp{\\}, are required before the parentheses and
12213 vertical bars: the first backslash quotes the following backslash in
12214 Emacs; and the second indicates that the following character, the
12215 parenthesis or the vertical bar, is special.
12216
12217 @need 1000
12218 Also, a sentence may be followed by one or more carriage returns, like
12219 this:
12220
12221 @smallexample
12222 @group
12223 [
12224 ]*
12225 @end group
12226 @end smallexample
12227
12228 @noindent
12229 Like tabs and spaces, a carriage return is inserted into a regular
12230 expression by inserting it literally. The asterisk indicates that the
12231 @key{RET} is repeated zero or more times.
12232
12233 But a sentence end does not consist only of a period, a question mark or
12234 an exclamation mark followed by appropriate space: a closing quotation
12235 mark or a closing brace of some kind may precede the space. Indeed more
12236 than one such mark or brace may precede the space. These require a
12237 expression that looks like this:
12238
12239 @smallexample
12240 []\"')@}]*
12241 @end smallexample
12242
12243 In this expression, the first @samp{]} is the first character in the
12244 expression; the second character is @samp{"}, which is preceded by a
12245 @samp{\} to tell Emacs the @samp{"} is @emph{not} special. The last
12246 three characters are @samp{'}, @samp{)}, and @samp{@}}.
12247
12248 All this suggests what the regular expression pattern for matching the
12249 end of a sentence should be; and, indeed, if we evaluate
12250 @code{sentence-end} we find that it returns the following value:
12251
12252 @smallexample
12253 @group
12254 sentence-end
12255 @result{} "[.?!][]\"')@}]*\\($\\| \\| \\)[
12256 ]*"
12257 @end group
12258 @end smallexample
12259
12260 @noindent
12261 (Well, not in GNU Emacs 22; that is because of an effort to make the
12262 process simpler and to handle more glyphs and languages. When the
12263 value of @code{sentence-end} is @code{nil}, then use the value defined
12264 by the function @code{sentence-end}. (Here is a use of the difference
12265 between a value and a function in Emacs Lisp.) The function returns a
12266 value constructed from the variables @code{sentence-end-base},
12267 @code{sentence-end-double-space}, @code{sentence-end-without-period},
12268 and @code{sentence-end-without-space}. The critical variable is
12269 @code{sentence-end-base}; its global value is similar to the one
12270 described above but it also contains two additional quotation marks.
12271 These have differing degrees of curliness. The
12272 @code{sentence-end-without-period} variable, when true, tells Emacs
12273 that a sentence may end without a period, such as text in Thai.)
12274
12275 @ignore
12276 @noindent
12277 (Note that here the @key{TAB}, two spaces, and @key{RET} are shown
12278 literally in the pattern.)
12279
12280 This regular expression can be deciphered as follows:
12281
12282 @table @code
12283 @item [.?!]
12284 The first part of the pattern is the three characters, a period, a question
12285 mark and an exclamation mark, within square brackets. The pattern must
12286 begin with one or other of these characters.
12287
12288 @item []\"')@}]*
12289 The second part of the pattern is the group of closing braces and
12290 quotation marks, which can appear zero or more times. These may follow
12291 the period, question mark or exclamation mark. In a regular expression,
12292 the backslash, @samp{\}, followed by the double quotation mark,
12293 @samp{"}, indicates the class of string-quote characters. Usually, the
12294 double quotation mark is the only character in this class. The
12295 asterisk, @samp{*}, indicates that the items in the previous group (the
12296 group surrounded by square brackets, @samp{[]}) may be repeated zero or
12297 more times.
12298
12299 @item \\($\\| \\| \\)
12300 The third part of the pattern is one or other of: either the end of a
12301 line, or two blank spaces, or a tab. The double back-slashes are used
12302 to prevent Emacs from reading the parentheses and vertical bars as part
12303 of the search pattern; the parentheses are used to mark the group and
12304 the vertical bars are used to indicated that the patterns to either side
12305 of them are alternatives. The dollar sign is used to indicate the end
12306 of a line and both the two spaces and the tab are each inserted as is to
12307 indicate what they are.
12308
12309 @item [@key{RET}]*
12310 Finally, the last part of the pattern indicates that the end of the line
12311 or the whitespace following the period, question mark or exclamation
12312 mark may, but need not, be followed by one or more carriage returns. In
12313 the pattern, the carriage return is inserted as an actual carriage
12314 return between square brackets but here it is shown as @key{RET}.
12315 @end table
12316 @end ignore
12317
12318 @node re-search-forward
12319 @section The @code{re-search-forward} Function
12320 @findex re-search-forward
12321
12322 The @code{re-search-forward} function is very like the
12323 @code{search-forward} function. (@xref{search-forward, , The
12324 @code{search-forward} Function}.)
12325
12326 @code{re-search-forward} searches for a regular expression. If the
12327 search is successful, it leaves point immediately after the last
12328 character in the target. If the search is backwards, it leaves point
12329 just before the first character in the target. You may tell
12330 @code{re-search-forward} to return @code{t} for true. (Moving point
12331 is therefore a `side effect'.)
12332
12333 Like @code{search-forward}, the @code{re-search-forward} function takes
12334 four arguments:
12335
12336 @enumerate
12337 @item
12338 The first argument is the regular expression that the function searches
12339 for. The regular expression will be a string between quotation marks.
12340
12341 @item
12342 The optional second argument limits how far the function will search; it is a
12343 bound, which is specified as a position in the buffer.
12344
12345 @item
12346 The optional third argument specifies how the function responds to
12347 failure: @code{nil} as the third argument causes the function to
12348 signal an error (and print a message) when the search fails; any other
12349 value causes it to return @code{nil} if the search fails and @code{t}
12350 if the search succeeds.
12351
12352 @item
12353 The optional fourth argument is the repeat count. A negative repeat
12354 count causes @code{re-search-forward} to search backwards.
12355 @end enumerate
12356
12357 @need 800
12358 The template for @code{re-search-forward} looks like this:
12359
12360 @smallexample
12361 @group
12362 (re-search-forward "@var{regular-expression}"
12363 @var{limit-of-search}
12364 @var{what-to-do-if-search-fails}
12365 @var{repeat-count})
12366 @end group
12367 @end smallexample
12368
12369 The second, third, and fourth arguments are optional. However, if you
12370 want to pass a value to either or both of the last two arguments, you
12371 must also pass a value to all the preceding arguments. Otherwise, the
12372 Lisp interpreter will mistake which argument you are passing the value
12373 to.
12374
12375 @need 1200
12376 In the @code{forward-sentence} function, the regular expression will be
12377 the value of the variable @code{sentence-end}. In simple form, that is:
12378
12379 @smallexample
12380 @group
12381 "[.?!][]\"')@}]*\\($\\| \\| \\)[
12382 ]*"
12383 @end group
12384 @end smallexample
12385
12386 @noindent
12387 The limit of the search will be the end of the paragraph (since a
12388 sentence cannot go beyond a paragraph). If the search fails, the
12389 function will return @code{nil}; and the repeat count will be provided
12390 by the argument to the @code{forward-sentence} function.
12391
12392 @node forward-sentence
12393 @section @code{forward-sentence}
12394 @findex forward-sentence
12395
12396 The command to move the cursor forward a sentence is a straightforward
12397 illustration of how to use regular expression searches in Emacs Lisp.
12398 Indeed, the function looks longer and more complicated than it is; this
12399 is because the function is designed to go backwards as well as forwards;
12400 and, optionally, over more than one sentence. The function is usually
12401 bound to the key command @kbd{M-e}.
12402
12403 @menu
12404 * Complete forward-sentence::
12405 * fwd-sentence while loops:: Two @code{while} loops.
12406 * fwd-sentence re-search:: A regular expression search.
12407 @end menu
12408
12409 @ifnottex
12410 @node Complete forward-sentence
12411 @unnumberedsubsec Complete @code{forward-sentence} function definition
12412 @end ifnottex
12413
12414 @need 1250
12415 Here is the code for @code{forward-sentence}:
12416
12417 @c in GNU Emacs 22
12418 @smallexample
12419 @group
12420 (defun forward-sentence (&optional arg)
12421 "Move forward to next `sentence-end'. With argument, repeat.
12422 With negative argument, move backward repeatedly to `sentence-beginning'.
12423
12424 The variable `sentence-end' is a regular expression that matches ends of
12425 sentences. Also, every paragraph boundary terminates sentences as well."
12426 @end group
12427 @group
12428 (interactive "p")
12429 (or arg (setq arg 1))
12430 (let ((opoint (point))
12431 (sentence-end (sentence-end)))
12432 (while (< arg 0)
12433 (let ((pos (point))
12434 (par-beg (save-excursion (start-of-paragraph-text) (point))))
12435 (if (and (re-search-backward sentence-end par-beg t)
12436 (or (< (match-end 0) pos)
12437 (re-search-backward sentence-end par-beg t)))
12438 (goto-char (match-end 0))
12439 (goto-char par-beg)))
12440 (setq arg (1+ arg)))
12441 @end group
12442 @group
12443 (while (> arg 0)
12444 (let ((par-end (save-excursion (end-of-paragraph-text) (point))))
12445 (if (re-search-forward sentence-end par-end t)
12446 (skip-chars-backward " \t\n")
12447 (goto-char par-end)))
12448 (setq arg (1- arg)))
12449 (constrain-to-field nil opoint t)))
12450 @end group
12451 @end smallexample
12452
12453 @ignore
12454 GNU Emacs 21
12455 @smallexample
12456 @group
12457 (defun forward-sentence (&optional arg)
12458 "Move forward to next sentence-end. With argument, repeat.
12459 With negative argument, move backward repeatedly to sentence-beginning.
12460 Sentence ends are identified by the value of sentence-end
12461 treated as a regular expression. Also, every paragraph boundary
12462 terminates sentences as well."
12463 @end group
12464 @group
12465 (interactive "p")
12466 (or arg (setq arg 1))
12467 (while (< arg 0)
12468 (let ((par-beg
12469 (save-excursion (start-of-paragraph-text) (point))))
12470 (if (re-search-backward
12471 (concat sentence-end "[^ \t\n]") par-beg t)
12472 (goto-char (1- (match-end 0)))
12473 (goto-char par-beg)))
12474 (setq arg (1+ arg)))
12475 (while (> arg 0)
12476 (let ((par-end
12477 (save-excursion (end-of-paragraph-text) (point))))
12478 (if (re-search-forward sentence-end par-end t)
12479 (skip-chars-backward " \t\n")
12480 (goto-char par-end)))
12481 (setq arg (1- arg))))
12482 @end group
12483 @end smallexample
12484 @end ignore
12485
12486 The function looks long at first sight and it is best to look at its
12487 skeleton first, and then its muscle. The way to see the skeleton is to
12488 look at the expressions that start in the left-most columns:
12489
12490 @smallexample
12491 @group
12492 (defun forward-sentence (&optional arg)
12493 "@var{documentation}@dots{}"
12494 (interactive "p")
12495 (or arg (setq arg 1))
12496 (let ((opoint (point)) (sentence-end (sentence-end)))
12497 (while (< arg 0)
12498 (let ((pos (point))
12499 (par-beg (save-excursion (start-of-paragraph-text) (point))))
12500 @var{rest-of-body-of-while-loop-when-going-backwards}
12501 (while (> arg 0)
12502 (let ((par-end (save-excursion (end-of-paragraph-text) (point))))
12503 @var{rest-of-body-of-while-loop-when-going-forwards}
12504 @var{handle-forms-and-equivalent}
12505 @end group
12506 @end smallexample
12507
12508 This looks much simpler! The function definition consists of
12509 documentation, an @code{interactive} expression, an @code{or}
12510 expression, a @code{let} expression, and @code{while} loops.
12511
12512 Let's look at each of these parts in turn.
12513
12514 We note that the documentation is thorough and understandable.
12515
12516 The function has an @code{interactive "p"} declaration. This means
12517 that the processed prefix argument, if any, is passed to the
12518 function as its argument. (This will be a number.) If the function
12519 is not passed an argument (it is optional) then the argument
12520 @code{arg} will be bound to 1.
12521
12522 When @code{forward-sentence} is called non-interactively without an
12523 argument, @code{arg} is bound to @code{nil}. The @code{or} expression
12524 handles this. What it does is either leave the value of @code{arg} as
12525 it is, but only if @code{arg} is bound to a value; or it sets the
12526 value of @code{arg} to 1, in the case when @code{arg} is bound to
12527 @code{nil}.
12528
12529 Next is a @code{let}. That specifies the values of two local
12530 variables, @code{point} and @code{sentence-end}. The local value of
12531 point, from before the search, is used in the
12532 @code{constrain-to-field} function which handles forms and
12533 equivalents. The @code{sentence-end} variable is set by the
12534 @code{sentence-end} function.
12535
12536 @node fwd-sentence while loops
12537 @unnumberedsubsec The @code{while} loops
12538
12539 Two @code{while} loops follow. The first @code{while} has a
12540 true-or-false-test that tests true if the prefix argument for
12541 @code{forward-sentence} is a negative number. This is for going
12542 backwards. The body of this loop is similar to the body of the second
12543 @code{while} clause, but it is not exactly the same. We will skip
12544 this @code{while} loop and concentrate on the second @code{while}
12545 loop.
12546
12547 @need 1500
12548 The second @code{while} loop is for moving point forward. Its skeleton
12549 looks like this:
12550
12551 @smallexample
12552 @group
12553 (while (> arg 0) ; @r{true-or-false-test}
12554 (let @var{varlist}
12555 (if (@var{true-or-false-test})
12556 @var{then-part}
12557 @var{else-part}
12558 (setq arg (1- arg)))) ; @code{while} @r{loop decrementer}
12559 @end group
12560 @end smallexample
12561
12562 The @code{while} loop is of the decrementing kind.
12563 (@xref{Decrementing Loop, , A Loop with a Decrementing Counter}.) It
12564 has a true-or-false-test that tests true so long as the counter (in
12565 this case, the variable @code{arg}) is greater than zero; and it has a
12566 decrementer that subtracts 1 from the value of the counter every time
12567 the loop repeats.
12568
12569 If no prefix argument is given to @code{forward-sentence}, which is
12570 the most common way the command is used, this @code{while} loop will
12571 run once, since the value of @code{arg} will be 1.
12572
12573 The body of the @code{while} loop consists of a @code{let} expression,
12574 which creates and binds a local variable, and has, as its body, an
12575 @code{if} expression.
12576
12577 @need 1250
12578 The body of the @code{while} loop looks like this:
12579
12580 @smallexample
12581 @group
12582 (let ((par-end
12583 (save-excursion (end-of-paragraph-text) (point))))
12584 (if (re-search-forward sentence-end par-end t)
12585 (skip-chars-backward " \t\n")
12586 (goto-char par-end)))
12587 @end group
12588 @end smallexample
12589
12590 The @code{let} expression creates and binds the local variable
12591 @code{par-end}. As we shall see, this local variable is designed to
12592 provide a bound or limit to the regular expression search. If the
12593 search fails to find a proper sentence ending in the paragraph, it will
12594 stop on reaching the end of the paragraph.
12595
12596 But first, let us examine how @code{par-end} is bound to the value of
12597 the end of the paragraph. What happens is that the @code{let} sets the
12598 value of @code{par-end} to the value returned when the Lisp interpreter
12599 evaluates the expression
12600
12601 @smallexample
12602 @group
12603 (save-excursion (end-of-paragraph-text) (point))
12604 @end group
12605 @end smallexample
12606
12607 @noindent
12608 In this expression, @code{(end-of-paragraph-text)} moves point to the
12609 end of the paragraph, @code{(point)} returns the value of point, and then
12610 @code{save-excursion} restores point to its original position. Thus,
12611 the @code{let} binds @code{par-end} to the value returned by the
12612 @code{save-excursion} expression, which is the position of the end of
12613 the paragraph. (The @code{end-of-paragraph-text} function uses
12614 @code{forward-paragraph}, which we will discuss shortly.)
12615
12616 @need 1200
12617 Emacs next evaluates the body of the @code{let}, which is an @code{if}
12618 expression that looks like this:
12619
12620 @smallexample
12621 @group
12622 (if (re-search-forward sentence-end par-end t) ; @r{if-part}
12623 (skip-chars-backward " \t\n") ; @r{then-part}
12624 (goto-char par-end))) ; @r{else-part}
12625 @end group
12626 @end smallexample
12627
12628 The @code{if} tests whether its first argument is true and if so,
12629 evaluates its then-part; otherwise, the Emacs Lisp interpreter
12630 evaluates the else-part. The true-or-false-test of the @code{if}
12631 expression is the regular expression search.
12632
12633 It may seem odd to have what looks like the `real work' of
12634 the @code{forward-sentence} function buried here, but this is a common
12635 way this kind of operation is carried out in Lisp.
12636
12637 @node fwd-sentence re-search
12638 @unnumberedsubsec The regular expression search
12639
12640 The @code{re-search-forward} function searches for the end of the
12641 sentence, that is, for the pattern defined by the @code{sentence-end}
12642 regular expression. If the pattern is found---if the end of the sentence is
12643 found---then the @code{re-search-forward} function does two things:
12644
12645 @enumerate
12646 @item
12647 The @code{re-search-forward} function carries out a side effect, which
12648 is to move point to the end of the occurrence found.
12649
12650 @item
12651 The @code{re-search-forward} function returns a value of true. This is
12652 the value received by the @code{if}, and means that the search was
12653 successful.
12654 @end enumerate
12655
12656 @noindent
12657 The side effect, the movement of point, is completed before the
12658 @code{if} function is handed the value returned by the successful
12659 conclusion of the search.
12660
12661 When the @code{if} function receives the value of true from a successful
12662 call to @code{re-search-forward}, the @code{if} evaluates the then-part,
12663 which is the expression @code{(skip-chars-backward " \t\n")}. This
12664 expression moves backwards over any blank spaces, tabs or carriage
12665 returns until a printed character is found and then leaves point after
12666 the character. Since point has already been moved to the end of the
12667 pattern that marks the end of the sentence, this action leaves point
12668 right after the closing printed character of the sentence, which is
12669 usually a period.
12670
12671 On the other hand, if the @code{re-search-forward} function fails to
12672 find a pattern marking the end of the sentence, the function returns
12673 false. The false then causes the @code{if} to evaluate its third
12674 argument, which is @code{(goto-char par-end)}: it moves point to the
12675 end of the paragraph.
12676
12677 (And if the text is in a form or equivalent, and point may not move
12678 fully, then the @code{constrain-to-field} function comes into play.)
12679
12680 Regular expression searches are exceptionally useful and the pattern
12681 illustrated by @code{re-search-forward}, in which the search is the
12682 test of an @code{if} expression, is handy. You will see or write code
12683 incorporating this pattern often.
12684
12685 @node forward-paragraph
12686 @section @code{forward-paragraph}: a Goldmine of Functions
12687 @findex forward-paragraph
12688
12689 @ignore
12690 @c in GNU Emacs 22
12691 (defun forward-paragraph (&optional arg)
12692 "Move forward to end of paragraph.
12693 With argument ARG, do it ARG times;
12694 a negative argument ARG = -N means move backward N paragraphs.
12695
12696 A line which `paragraph-start' matches either separates paragraphs
12697 \(if `paragraph-separate' matches it also) or is the first line of a paragraph.
12698 A paragraph end is the beginning of a line which is not part of the paragraph
12699 to which the end of the previous line belongs, or the end of the buffer.
12700 Returns the count of paragraphs left to move."
12701 (interactive "p")
12702 (or arg (setq arg 1))
12703 (let* ((opoint (point))
12704 (fill-prefix-regexp
12705 (and fill-prefix (not (equal fill-prefix ""))
12706 (not paragraph-ignore-fill-prefix)
12707 (regexp-quote fill-prefix)))
12708 ;; Remove ^ from paragraph-start and paragraph-sep if they are there.
12709 ;; These regexps shouldn't be anchored, because we look for them
12710 ;; starting at the left-margin. This allows paragraph commands to
12711 ;; work normally with indented text.
12712 ;; This hack will not find problem cases like "whatever\\|^something".
12713 (parstart (if (and (not (equal "" paragraph-start))
12714 (equal ?^ (aref paragraph-start 0)))
12715 (substring paragraph-start 1)
12716 paragraph-start))
12717 (parsep (if (and (not (equal "" paragraph-separate))
12718 (equal ?^ (aref paragraph-separate 0)))
12719 (substring paragraph-separate 1)
12720 paragraph-separate))
12721 (parsep
12722 (if fill-prefix-regexp
12723 (concat parsep "\\|"
12724 fill-prefix-regexp "[ \t]*$")
12725 parsep))
12726 ;; This is used for searching.
12727 (sp-parstart (concat "^[ \t]*\\(?:" parstart "\\|" parsep "\\)"))
12728 start found-start)
12729 (while (and (< arg 0) (not (bobp)))
12730 (if (and (not (looking-at parsep))
12731 (re-search-backward "^\n" (max (1- (point)) (point-min)) t)
12732 (looking-at parsep))
12733 (setq arg (1+ arg))
12734 (setq start (point))
12735 ;; Move back over paragraph-separating lines.
12736 (forward-char -1) (beginning-of-line)
12737 (while (and (not (bobp))
12738 (progn (move-to-left-margin)
12739 (looking-at parsep)))
12740 (forward-line -1))
12741 (if (bobp)
12742 nil
12743 (setq arg (1+ arg))
12744 ;; Go to end of the previous (non-separating) line.
12745 (end-of-line)
12746 ;; Search back for line that starts or separates paragraphs.
12747 (if (if fill-prefix-regexp
12748 ;; There is a fill prefix; it overrides parstart.
12749 (let (multiple-lines)
12750 (while (and (progn (beginning-of-line) (not (bobp)))
12751 (progn (move-to-left-margin)
12752 (not (looking-at parsep)))
12753 (looking-at fill-prefix-regexp))
12754 (unless (= (point) start)
12755 (setq multiple-lines t))
12756 (forward-line -1))
12757 (move-to-left-margin)
12758 ;; This deleted code caused a long hanging-indent line
12759 ;; not to be filled together with the following lines.
12760 ;; ;; Don't move back over a line before the paragraph
12761 ;; ;; which doesn't start with fill-prefix
12762 ;; ;; unless that is the only line we've moved over.
12763 ;; (and (not (looking-at fill-prefix-regexp))
12764 ;; multiple-lines
12765 ;; (forward-line 1))
12766 (not (bobp)))
12767 (while (and (re-search-backward sp-parstart nil 1)
12768 (setq found-start t)
12769 ;; Found a candidate, but need to check if it is a
12770 ;; REAL parstart.
12771 (progn (setq start (point))
12772 (move-to-left-margin)
12773 (not (looking-at parsep)))
12774 (not (and (looking-at parstart)
12775 (or (not use-hard-newlines)
12776 (bobp)
12777 (get-text-property
12778 (1- start) 'hard)))))
12779 (setq found-start nil)
12780 (goto-char start))
12781 found-start)
12782 ;; Found one.
12783 (progn
12784 ;; Move forward over paragraph separators.
12785 ;; We know this cannot reach the place we started
12786 ;; because we know we moved back over a non-separator.
12787 (while (and (not (eobp))
12788 (progn (move-to-left-margin)
12789 (looking-at parsep)))
12790 (forward-line 1))
12791 ;; If line before paragraph is just margin, back up to there.
12792 (end-of-line 0)
12793 (if (> (current-column) (current-left-margin))
12794 (forward-char 1)
12795 (skip-chars-backward " \t")
12796 (if (not (bolp))
12797 (forward-line 1))))
12798 ;; No starter or separator line => use buffer beg.
12799 (goto-char (point-min))))))
12800
12801 (while (and (> arg 0) (not (eobp)))
12802 ;; Move forward over separator lines...
12803 (while (and (not (eobp))
12804 (progn (move-to-left-margin) (not (eobp)))
12805 (looking-at parsep))
12806 (forward-line 1))
12807 (unless (eobp) (setq arg (1- arg)))
12808 ;; ... and one more line.
12809 (forward-line 1)
12810 (if fill-prefix-regexp
12811 ;; There is a fill prefix; it overrides parstart.
12812 (while (and (not (eobp))
12813 (progn (move-to-left-margin) (not (eobp)))
12814 (not (looking-at parsep))
12815 (looking-at fill-prefix-regexp))
12816 (forward-line 1))
12817 (while (and (re-search-forward sp-parstart nil 1)
12818 (progn (setq start (match-beginning 0))
12819 (goto-char start)
12820 (not (eobp)))
12821 (progn (move-to-left-margin)
12822 (not (looking-at parsep)))
12823 (or (not (looking-at parstart))
12824 (and use-hard-newlines
12825 (not (get-text-property (1- start) 'hard)))))
12826 (forward-char 1))
12827 (if (< (point) (point-max))
12828 (goto-char start))))
12829 (constrain-to-field nil opoint t)
12830 ;; Return the number of steps that could not be done.
12831 arg))
12832 @end ignore
12833
12834 The @code{forward-paragraph} function moves point forward to the end
12835 of the paragraph. It is usually bound to @kbd{M-@}} and makes use of a
12836 number of functions that are important in themselves, including
12837 @code{let*}, @code{match-beginning}, and @code{looking-at}.
12838
12839 The function definition for @code{forward-paragraph} is considerably
12840 longer than the function definition for @code{forward-sentence}
12841 because it works with a paragraph, each line of which may begin with a
12842 fill prefix.
12843
12844 A fill prefix consists of a string of characters that are repeated at
12845 the beginning of each line. For example, in Lisp code, it is a
12846 convention to start each line of a paragraph-long comment with
12847 @samp{;;; }. In Text mode, four blank spaces make up another common
12848 fill prefix, creating an indented paragraph. (@xref{Fill Prefix, , ,
12849 emacs, The GNU Emacs Manual}, for more information about fill
12850 prefixes.)
12851
12852 The existence of a fill prefix means that in addition to being able to
12853 find the end of a paragraph whose lines begin on the left-most
12854 column, the @code{forward-paragraph} function must be able to find the
12855 end of a paragraph when all or many of the lines in the buffer begin
12856 with the fill prefix.
12857
12858 Moreover, it is sometimes practical to ignore a fill prefix that
12859 exists, especially when blank lines separate paragraphs.
12860 This is an added complication.
12861
12862 @menu
12863 * forward-paragraph in brief:: Key parts of the function definition.
12864 * fwd-para let:: The @code{let*} expression.
12865 * fwd-para while:: The forward motion @code{while} loop.
12866 @end menu
12867
12868 @ifnottex
12869 @node forward-paragraph in brief
12870 @unnumberedsubsec Shortened @code{forward-paragraph} function definition
12871 @end ifnottex
12872
12873 Rather than print all of the @code{forward-paragraph} function, we
12874 will only print parts of it. Read without preparation, the function
12875 can be daunting!
12876
12877 @need 800
12878 In outline, the function looks like this:
12879
12880 @smallexample
12881 @group
12882 (defun forward-paragraph (&optional arg)
12883 "@var{documentation}@dots{}"
12884 (interactive "p")
12885 (or arg (setq arg 1))
12886 (let*
12887 @var{varlist}
12888 (while (and (< arg 0) (not (bobp))) ; @r{backward-moving-code}
12889 @dots{}
12890 (while (and (> arg 0) (not (eobp))) ; @r{forward-moving-code}
12891 @dots{}
12892 @end group
12893 @end smallexample
12894
12895 The first parts of the function are routine: the function's argument
12896 list consists of one optional argument. Documentation follows.
12897
12898 The lower case @samp{p} in the @code{interactive} declaration means
12899 that the processed prefix argument, if any, is passed to the function.
12900 This will be a number, and is the repeat count of how many paragraphs
12901 point will move. The @code{or} expression in the next line handles
12902 the common case when no argument is passed to the function, which occurs
12903 if the function is called from other code rather than interactively.
12904 This case was described earlier. (@xref{forward-sentence, The
12905 @code{forward-sentence} function}.) Now we reach the end of the
12906 familiar part of this function.
12907
12908 @node fwd-para let
12909 @unnumberedsubsec The @code{let*} expression
12910
12911 The next line of the @code{forward-paragraph} function begins a
12912 @code{let*} expression. This is a different than @code{let}. The
12913 symbol is @code{let*} not @code{let}.
12914
12915 The @code{let*} special form is like @code{let} except that Emacs sets
12916 each variable in sequence, one after another, and variables in the
12917 latter part of the varlist can make use of the values to which Emacs
12918 set variables in the earlier part of the varlist.
12919
12920 @ignore
12921 ( refappend save-excursion, , code save-excursion in code append-to-buffer .)
12922 @end ignore
12923
12924 (@ref{append save-excursion, , @code{save-excursion} in @code{append-to-buffer}}.)
12925
12926 In the @code{let*} expression in this function, Emacs binds a total of
12927 seven variables: @code{opoint}, @code{fill-prefix-regexp},
12928 @code{parstart}, @code{parsep}, @code{sp-parstart}, @code{start}, and
12929 @code{found-start}.
12930
12931 The variable @code{parsep} appears twice, first, to remove instances
12932 of @samp{^}, and second, to handle fill prefixes.
12933
12934 The variable @code{opoint} is just the value of @code{point}. As you
12935 can guess, it is used in a @code{constrain-to-field} expression, just
12936 as in @code{forward-sentence}.
12937
12938 The variable @code{fill-prefix-regexp} is set to the value returned by
12939 evaluating the following list:
12940
12941 @smallexample
12942 @group
12943 (and fill-prefix
12944 (not (equal fill-prefix ""))
12945 (not paragraph-ignore-fill-prefix)
12946 (regexp-quote fill-prefix))
12947 @end group
12948 @end smallexample
12949
12950 @noindent
12951 This is an expression whose first element is the @code{and} special form.
12952
12953 As we learned earlier (@pxref{kill-new function, , The @code{kill-new}
12954 function}), the @code{and} special form evaluates each of its
12955 arguments until one of the arguments returns a value of @code{nil}, in
12956 which case the @code{and} expression returns @code{nil}; however, if
12957 none of the arguments returns a value of @code{nil}, the value
12958 resulting from evaluating the last argument is returned. (Since such
12959 a value is not @code{nil}, it is considered true in Lisp.) In other
12960 words, an @code{and} expression returns a true value only if all its
12961 arguments are true.
12962 @findex and
12963
12964 In this case, the variable @code{fill-prefix-regexp} is bound to a
12965 non-@code{nil} value only if the following four expressions produce a
12966 true (i.e., a non-@code{nil}) value when they are evaluated; otherwise,
12967 @code{fill-prefix-regexp} is bound to @code{nil}.
12968
12969 @table @code
12970 @item fill-prefix
12971 When this variable is evaluated, the value of the fill prefix, if any,
12972 is returned. If there is no fill prefix, this variable returns
12973 @code{nil}.
12974
12975 @item (not (equal fill-prefix "")
12976 This expression checks whether an existing fill prefix is an empty
12977 string, that is, a string with no characters in it. An empty string is
12978 not a useful fill prefix.
12979
12980 @item (not paragraph-ignore-fill-prefix)
12981 This expression returns @code{nil} if the variable
12982 @code{paragraph-ignore-fill-prefix} has been turned on by being set to a
12983 true value such as @code{t}.
12984
12985 @item (regexp-quote fill-prefix)
12986 This is the last argument to the @code{and} special form. If all the
12987 arguments to the @code{and} are true, the value resulting from
12988 evaluating this expression will be returned by the @code{and} expression
12989 and bound to the variable @code{fill-prefix-regexp},
12990 @end table
12991
12992 @findex regexp-quote
12993 @noindent
12994 The result of evaluating this @code{and} expression successfully is that
12995 @code{fill-prefix-regexp} will be bound to the value of
12996 @code{fill-prefix} as modified by the @code{regexp-quote} function.
12997 What @code{regexp-quote} does is read a string and return a regular
12998 expression that will exactly match the string and match nothing else.
12999 This means that @code{fill-prefix-regexp} will be set to a value that
13000 will exactly match the fill prefix if the fill prefix exists.
13001 Otherwise, the variable will be set to @code{nil}.
13002
13003 The next two local variables in the @code{let*} expression are
13004 designed to remove instances of @samp{^} from @code{parstart} and
13005 @code{parsep}, the local variables which indicate the paragraph start
13006 and the paragraph separator. The next expression sets @code{parsep}
13007 again. That is to handle fill prefixes.
13008
13009 This is the setting that requires the definition call @code{let*}
13010 rather than @code{let}. The true-or-false-test for the @code{if}
13011 depends on whether the variable @code{fill-prefix-regexp} evaluates to
13012 @code{nil} or some other value.
13013
13014 If @code{fill-prefix-regexp} does not have a value, Emacs evaluates
13015 the else-part of the @code{if} expression and binds @code{parsep} to
13016 its local value. (@code{parsep} is a regular expression that matches
13017 what separates paragraphs.)
13018
13019 But if @code{fill-prefix-regexp} does have a value, Emacs evaluates
13020 the then-part of the @code{if} expression and binds @code{parsep} to a
13021 regular expression that includes the @code{fill-prefix-regexp} as part
13022 of the pattern.
13023
13024 Specifically, @code{parsep} is set to the original value of the
13025 paragraph separate regular expression concatenated with an alternative
13026 expression that consists of the @code{fill-prefix-regexp} followed by
13027 optional whitespace to the end of the line. The whitespace is defined
13028 by @w{@code{"[ \t]*$"}}.) The @samp{\\|} defines this portion of the
13029 regexp as an alternative to @code{parsep}.
13030
13031 According to a comment in the code, the next local variable,
13032 @code{sp-parstart}, is used for searching, and then the final two,
13033 @code{start} and @code{found-start}, are set to @code{nil}.
13034
13035 Now we get into the body of the @code{let*}. The first part of the body
13036 of the @code{let*} deals with the case when the function is given a
13037 negative argument and is therefore moving backwards. We will skip this
13038 section.
13039
13040 @node fwd-para while
13041 @unnumberedsubsec The forward motion @code{while} loop
13042
13043 The second part of the body of the @code{let*} deals with forward
13044 motion. It is a @code{while} loop that repeats itself so long as the
13045 value of @code{arg} is greater than zero. In the most common use of
13046 the function, the value of the argument is 1, so the body of the
13047 @code{while} loop is evaluated exactly once, and the cursor moves
13048 forward one paragraph.
13049
13050 @ignore
13051 (while (and (> arg 0) (not (eobp)))
13052
13053 ;; Move forward over separator lines...
13054 (while (and (not (eobp))
13055 (progn (move-to-left-margin) (not (eobp)))
13056 (looking-at parsep))
13057 (forward-line 1))
13058 (unless (eobp) (setq arg (1- arg)))
13059 ;; ... and one more line.
13060 (forward-line 1)
13061
13062 (if fill-prefix-regexp
13063 ;; There is a fill prefix; it overrides parstart.
13064 (while (and (not (eobp))
13065 (progn (move-to-left-margin) (not (eobp)))
13066 (not (looking-at parsep))
13067 (looking-at fill-prefix-regexp))
13068 (forward-line 1))
13069
13070 (while (and (re-search-forward sp-parstart nil 1)
13071 (progn (setq start (match-beginning 0))
13072 (goto-char start)
13073 (not (eobp)))
13074 (progn (move-to-left-margin)
13075 (not (looking-at parsep)))
13076 (or (not (looking-at parstart))
13077 (and use-hard-newlines
13078 (not (get-text-property (1- start) 'hard)))))
13079 (forward-char 1))
13080
13081 (if (< (point) (point-max))
13082 (goto-char start))))
13083 @end ignore
13084
13085 This part handles three situations: when point is between paragraphs,
13086 when there is a fill prefix and when there is no fill prefix.
13087
13088 @need 800
13089 The @code{while} loop looks like this:
13090
13091 @smallexample
13092 @group
13093 ;; @r{going forwards and not at the end of the buffer}
13094 (while (and (> arg 0) (not (eobp)))
13095
13096 ;; @r{between paragraphs}
13097 ;; Move forward over separator lines...
13098 (while (and (not (eobp))
13099 (progn (move-to-left-margin) (not (eobp)))
13100 (looking-at parsep))
13101 (forward-line 1))
13102 ;; @r{This decrements the loop}
13103 (unless (eobp) (setq arg (1- arg)))
13104 ;; ... and one more line.
13105 (forward-line 1)
13106 @end group
13107
13108 @group
13109 (if fill-prefix-regexp
13110 ;; There is a fill prefix; it overrides parstart;
13111 ;; we go forward line by line
13112 (while (and (not (eobp))
13113 (progn (move-to-left-margin) (not (eobp)))
13114 (not (looking-at parsep))
13115 (looking-at fill-prefix-regexp))
13116 (forward-line 1))
13117 @end group
13118
13119 @group
13120 ;; There is no fill prefix;
13121 ;; we go forward character by character
13122 (while (and (re-search-forward sp-parstart nil 1)
13123 (progn (setq start (match-beginning 0))
13124 (goto-char start)
13125 (not (eobp)))
13126 (progn (move-to-left-margin)
13127 (not (looking-at parsep)))
13128 (or (not (looking-at parstart))
13129 (and use-hard-newlines
13130 (not (get-text-property (1- start) 'hard)))))
13131 (forward-char 1))
13132 @end group
13133
13134 @group
13135 ;; and if there is no fill prefix and if we are not at the end,
13136 ;; go to whatever was found in the regular expression search
13137 ;; for sp-parstart
13138 (if (< (point) (point-max))
13139 (goto-char start))))
13140 @end group
13141 @end smallexample
13142
13143 @findex eobp
13144 We can see that this is a decrementing counter @code{while} loop,
13145 using the expression @code{(setq arg (1- arg))} as the decrementer.
13146 That expression is not far from the @code{while}, but is hidden in
13147 another Lisp macro, an @code{unless} macro. Unless we are at the end
13148 of the buffer---that is what the @code{eobp} function determines; it
13149 is an abbreviation of @samp{End Of Buffer P}---we decrease the value
13150 of @code{arg} by one.
13151
13152 (If we are at the end of the buffer, we cannot go forward any more and
13153 the next loop of the @code{while} expression will test false since the
13154 test is an @code{and} with @code{(not (eobp))}. The @code{not}
13155 function means exactly as you expect; it is another name for
13156 @code{null}, a function that returns true when its argument is false.)
13157
13158 Interestingly, the loop count is not decremented until we leave the
13159 space between paragraphs, unless we come to the end of buffer or stop
13160 seeing the local value of the paragraph separator.
13161
13162 That second @code{while} also has a @code{(move-to-left-margin)}
13163 expression. The function is self-explanatory. It is inside a
13164 @code{progn} expression and not the last element of its body, so it is
13165 only invoked for its side effect, which is to move point to the left
13166 margin of the current line.
13167
13168 @findex looking-at
13169 The @code{looking-at} function is also self-explanatory; it returns
13170 true if the text after point matches the regular expression given as
13171 its argument.
13172
13173 The rest of the body of the loop looks difficult at first, but makes
13174 sense as you come to understand it.
13175
13176 @need 800
13177 First consider what happens if there is a fill prefix:
13178
13179 @smallexample
13180 @group
13181 (if fill-prefix-regexp
13182 ;; There is a fill prefix; it overrides parstart;
13183 ;; we go forward line by line
13184 (while (and (not (eobp))
13185 (progn (move-to-left-margin) (not (eobp)))
13186 (not (looking-at parsep))
13187 (looking-at fill-prefix-regexp))
13188 (forward-line 1))
13189 @end group
13190 @end smallexample
13191
13192 @noindent
13193 This expression moves point forward line by line so long
13194 as four conditions are true:
13195
13196 @enumerate
13197 @item
13198 Point is not at the end of the buffer.
13199
13200 @item
13201 We can move to the left margin of the text and are
13202 not at the end of the buffer.
13203
13204 @item
13205 The text following point does not separate paragraphs.
13206
13207 @item
13208 The pattern following point is the fill prefix regular expression.
13209 @end enumerate
13210
13211 The last condition may be puzzling, until you remember that point was
13212 moved to the beginning of the line early in the @code{forward-paragraph}
13213 function. This means that if the text has a fill prefix, the
13214 @code{looking-at} function will see it.
13215
13216 @need 1250
13217 Consider what happens when there is no fill prefix.
13218
13219 @smallexample
13220 @group
13221 (while (and (re-search-forward sp-parstart nil 1)
13222 (progn (setq start (match-beginning 0))
13223 (goto-char start)
13224 (not (eobp)))
13225 (progn (move-to-left-margin)
13226 (not (looking-at parsep)))
13227 (or (not (looking-at parstart))
13228 (and use-hard-newlines
13229 (not (get-text-property (1- start) 'hard)))))
13230 (forward-char 1))
13231 @end group
13232 @end smallexample
13233
13234 @noindent
13235 This @code{while} loop has us searching forward for
13236 @code{sp-parstart}, which is the combination of possible whitespace
13237 with a the local value of the start of a paragraph or of a paragraph
13238 separator. (The latter two are within an expression starting
13239 @code{\(?:} so that they are not referenced by the
13240 @code{match-beginning} function.)
13241
13242 @need 800
13243 The two expressions,
13244
13245 @smallexample
13246 @group
13247 (setq start (match-beginning 0))
13248 (goto-char start)
13249 @end group
13250 @end smallexample
13251
13252 @noindent
13253 mean go to the start of the text matched by the regular expression
13254 search.
13255
13256 The @code{(match-beginning 0)} expression is new. It returns a number
13257 specifying the location of the start of the text that was matched by
13258 the last search.
13259
13260 The @code{match-beginning} function is used here because of a
13261 characteristic of a forward search: a successful forward search,
13262 regardless of whether it is a plain search or a regular expression
13263 search, moves point to the end of the text that is found. In this
13264 case, a successful search moves point to the end of the pattern for
13265 @code{sp-parstart}.
13266
13267 However, we want to put point at the end of the current paragraph, not
13268 somewhere else. Indeed, since the search possibly includes the
13269 paragraph separator, point may end up at the beginning of the next one
13270 unless we use an expression that includes @code{match-beginning}.
13271
13272 @findex match-beginning
13273 When given an argument of 0, @code{match-beginning} returns the
13274 position that is the start of the text matched by the most recent
13275 search. In this case, the most recent search looks for
13276 @code{sp-parstart}. The @code{(match-beginning 0)} expression returns
13277 the beginning position of that pattern, rather than the end position
13278 of that pattern.
13279
13280 (Incidentally, when passed a positive number as an argument, the
13281 @code{match-beginning} function returns the location of point at that
13282 parenthesized expression in the last search unless that parenthesized
13283 expression begins with @code{\(?:}. I don't know why @code{\(?:}
13284 appears here since the argument is 0.)
13285
13286 @need 1250
13287 The last expression when there is no fill prefix is
13288
13289 @smallexample
13290 @group
13291 (if (< (point) (point-max))
13292 (goto-char start))))
13293 @end group
13294 @end smallexample
13295
13296 @noindent
13297 This says that if there is no fill prefix and if we are not at the
13298 end, point should move to the beginning of whatever was found by the
13299 regular expression search for @code{sp-parstart}.
13300
13301 The full definition for the @code{forward-paragraph} function not only
13302 includes code for going forwards, but also code for going backwards.
13303
13304 If you are reading this inside of GNU Emacs and you want to see the
13305 whole function, you can type @kbd{C-h f} (@code{describe-function})
13306 and the name of the function. This gives you the function
13307 documentation and the name of the library containing the function's
13308 source. Place point over the name of the library and press the RET
13309 key; you will be taken directly to the source. (Be sure to install
13310 your sources! Without them, you are like a person who tries to drive
13311 a car with his eyes shut!)
13312
13313 @node etags
13314 @section Create Your Own @file{TAGS} File
13315 @findex etags
13316 @cindex @file{TAGS} file, create own
13317
13318 Besides @kbd{C-h f} (@code{describe-function}), another way to see the
13319 source of a function is to type @kbd{M-.} (@code{find-tag}) and the
13320 name of the function when prompted for it. This is a good habit to
13321 get into. The @kbd{M-.} (@code{find-tag}) command takes you directly
13322 to the source for a function, variable, or node. The function depends
13323 on tags tables to tell it where to go.
13324
13325 If the @code{find-tag} function first asks you for the name of a
13326 @file{TAGS} table, give it the name of a @file{TAGS} file such as
13327 @file{/usr/local/src/emacs/src/TAGS}. (The exact path to your
13328 @file{TAGS} file depends on how your copy of Emacs was installed. I
13329 just told you the location that provides both my C and my Emacs Lisp
13330 sources.)
13331
13332 You can also create your own @file{TAGS} file for directories that
13333 lack one.
13334
13335 You often need to build and install tags tables yourself. They are
13336 not built automatically. A tags table is called a @file{TAGS} file;
13337 the name is in upper case letters.
13338
13339 You can create a @file{TAGS} file by calling the @code{etags} program
13340 that comes as a part of the Emacs distribution. Usually, @code{etags}
13341 is compiled and installed when Emacs is built. (@code{etags} is not
13342 an Emacs Lisp function or a part of Emacs; it is a C program.)
13343
13344 @need 1250
13345 To create a @file{TAGS} file, first switch to the directory in which
13346 you want to create the file. In Emacs you can do this with the
13347 @kbd{M-x cd} command, or by visiting a file in the directory, or by
13348 listing the directory with @kbd{C-x d} (@code{dired}). Then run the
13349 compile command, with @w{@code{etags *.el}} as the command to execute
13350
13351 @smallexample
13352 M-x compile RET etags *.el RET
13353 @end smallexample
13354
13355 @noindent
13356 to create a @file{TAGS} file for Emacs Lisp.
13357
13358 For example, if you have a large number of files in your
13359 @file{~/emacs} directory, as I do---I have 137 @file{.el} files in it,
13360 of which I load 12---you can create a @file{TAGS} file for the Emacs
13361 Lisp files in that directory.
13362
13363 @need 1250
13364 The @code{etags} program takes all the usual shell `wildcards'. For
13365 example, if you have two directories for which you want a single
13366 @file{TAGS} file, type @w{@code{etags *.el ../elisp/*.el}}, where
13367 @file{../elisp/} is the second directory:
13368
13369 @smallexample
13370 M-x compile RET etags *.el ../elisp/*.el RET
13371 @end smallexample
13372
13373 @need 1250
13374 Type
13375
13376 @smallexample
13377 M-x compile RET etags --help RET
13378 @end smallexample
13379
13380 @noindent
13381 to see a list of the options accepted by @code{etags} as well as a
13382 list of supported languages.
13383
13384 The @code{etags} program handles more than 20 languages, including
13385 Emacs Lisp, Common Lisp, Scheme, C, C++, Ada, Fortran, HTML, Java,
13386 LaTeX, Pascal, Perl, PostScript, Python, TeX, Texinfo, makefiles, and
13387 most assemblers. The program has no switches for specifying the
13388 language; it recognizes the language in an input file according to its
13389 file name and contents.
13390
13391 @file{etags} is very helpful when you are writing code yourself and
13392 want to refer back to functions you have already written. Just run
13393 @code{etags} again at intervals as you write new functions, so they
13394 become part of the @file{TAGS} file.
13395
13396 If you think an appropriate @file{TAGS} file already exists for what
13397 you want, but do not know where it is, you can use the @code{locate}
13398 program to attempt to find it.
13399
13400 Type @w{@kbd{M-x locate @key{RET} TAGS @key{RET}}} and Emacs will list
13401 for you the full path names of all your @file{TAGS} files. On my
13402 system, this command lists 34 @file{TAGS} files. On the other hand, a
13403 `plain vanilla' system I recently installed did not contain any
13404 @file{TAGS} files.
13405
13406 If the tags table you want has been created, you can use the @code{M-x
13407 visit-tags-table} command to specify it. Otherwise, you will need to
13408 create the tag table yourself and then use @code{M-x
13409 visit-tags-table}.
13410
13411 @subsubheading Building Tags in the Emacs sources
13412 @cindex Building Tags in the Emacs sources
13413 @cindex Tags in the Emacs sources
13414 @findex make tags
13415
13416 The GNU Emacs sources come with a @file{Makefile} that contains a
13417 sophisticated @code{etags} command that creates, collects, and merges
13418 tags tables from all over the Emacs sources and puts the information
13419 into one @file{TAGS} file in the @file{src/} directory. (The
13420 @file{src/} directory is below the top level of your Emacs directory.)
13421
13422 @need 1250
13423 To build this @file{TAGS} file, go to the top level of your Emacs
13424 source directory and run the compile command @code{make tags}:
13425
13426 @smallexample
13427 M-x compile RET make tags RET
13428 @end smallexample
13429
13430 @noindent
13431 (The @code{make tags} command works well with the GNU Emacs sources,
13432 as well as with some other source packages.)
13433
13434 For more information, see @ref{Tags, , Tag Tables, emacs, The GNU Emacs
13435 Manual}.
13436
13437 @node Regexp Review
13438 @section Review
13439
13440 Here is a brief summary of some recently introduced functions.
13441
13442 @table @code
13443 @item while
13444 Repeatedly evaluate the body of the expression so long as the first
13445 element of the body tests true. Then return @code{nil}. (The
13446 expression is evaluated only for its side effects.)
13447
13448 @need 1250
13449 For example:
13450
13451 @smallexample
13452 @group
13453 (let ((foo 2))
13454 (while (> foo 0)
13455 (insert (format "foo is %d.\n" foo))
13456 (setq foo (1- foo))))
13457
13458 @result{} foo is 2.
13459 foo is 1.
13460 nil
13461 @end group
13462 @end smallexample
13463
13464 @noindent
13465 (The @code{insert} function inserts its arguments at point; the
13466 @code{format} function returns a string formatted from its arguments
13467 the way @code{message} formats its arguments; @code{\n} produces a new
13468 line.)
13469
13470 @item re-search-forward
13471 Search for a pattern, and if the pattern is found, move point to rest
13472 just after it.
13473
13474 @noindent
13475 Takes four arguments, like @code{search-forward}:
13476
13477 @enumerate
13478 @item
13479 A regular expression that specifies the pattern to search for.
13480 (Remember to put quotation marks around this argument!)
13481
13482 @item
13483 Optionally, the limit of the search.
13484
13485 @item
13486 Optionally, what to do if the search fails, return @code{nil} or an
13487 error message.
13488
13489 @item
13490 Optionally, how many times to repeat the search; if negative, the
13491 search goes backwards.
13492 @end enumerate
13493
13494 @item let*
13495 Bind some variables locally to particular values,
13496 and then evaluate the remaining arguments, returning the value of the
13497 last one. While binding the local variables, use the local values of
13498 variables bound earlier, if any.
13499
13500 @need 1250
13501 For example:
13502
13503 @smallexample
13504 @group
13505 (let* ((foo 7)
13506 (bar (* 3 foo)))
13507 (message "`bar' is %d." bar))
13508 @result{} `bar' is 21.
13509 @end group
13510 @end smallexample
13511
13512 @item match-beginning
13513 Return the position of the start of the text found by the last regular
13514 expression search.
13515
13516 @item looking-at
13517 Return @code{t} for true if the text after point matches the argument,
13518 which should be a regular expression.
13519
13520 @item eobp
13521 Return @code{t} for true if point is at the end of the accessible part
13522 of a buffer. The end of the accessible part is the end of the buffer
13523 if the buffer is not narrowed; it is the end of the narrowed part if
13524 the buffer is narrowed.
13525 @end table
13526
13527 @need 1500
13528 @node re-search Exercises
13529 @section Exercises with @code{re-search-forward}
13530
13531 @itemize @bullet
13532 @item
13533 Write a function to search for a regular expression that matches two
13534 or more blank lines in sequence.
13535
13536 @item
13537 Write a function to search for duplicated words, such as `the the'.
13538 @xref{Regexps, , Syntax of Regular Expressions, emacs, The GNU Emacs
13539 Manual}, for information on how to write a regexp (a regular
13540 expression) to match a string that is composed of two identical
13541 halves. You can devise several regexps; some are better than others.
13542 The function I use is described in an appendix, along with several
13543 regexps. @xref{the-the, , @code{the-the} Duplicated Words Function}.
13544 @end itemize
13545
13546 @node Counting Words
13547 @chapter Counting via Repetition and Regexps
13548 @cindex Repetition for word counting
13549 @cindex Regular expressions for word counting
13550
13551 Repetition and regular expression searches are powerful tools that you
13552 often use when you write code in Emacs Lisp. This chapter illustrates
13553 the use of regular expression searches through the construction of
13554 word count commands using @code{while} loops and recursion.
13555
13556 @menu
13557 * Why Count Words::
13558 * @value{COUNT-WORDS}:: Use a regexp, but find a problem.
13559 * recursive-count-words:: Start with case of no words in region.
13560 * Counting Exercise::
13561 @end menu
13562
13563 @ifnottex
13564 @node Why Count Words
13565 @unnumberedsec Counting words
13566 @end ifnottex
13567
13568 The standard Emacs distribution contains functions for counting the
13569 number of lines and words within a region.
13570
13571 Certain types of writing ask you to count words. Thus, if you write
13572 an essay, you may be limited to 800 words; if you write a novel, you
13573 may discipline yourself to write 1000 words a day. It seems odd, but
13574 for a long time, Emacs lacked a word count command. Perhaps people used
13575 Emacs mostly for code or types of documentation that did not require
13576 word counts; or perhaps they restricted themselves to the operating
13577 system word count command, @code{wc}. Alternatively, people may have
13578 followed the publishers' convention and computed a word count by
13579 dividing the number of characters in a document by five.
13580
13581 There are many ways to implement a command to count words. Here are
13582 some examples, which you may wish to compare with the standard Emacs
13583 command, @code{count-words-region}.
13584
13585 @node @value{COUNT-WORDS}
13586 @section The @code{@value{COUNT-WORDS}} Function
13587 @findex @value{COUNT-WORDS}
13588
13589 A word count command could count words in a line, paragraph, region,
13590 or buffer. What should the command cover? You could design the
13591 command to count the number of words in a complete buffer. However,
13592 the Emacs tradition encourages flexibility---you may want to count
13593 words in just a section, rather than all of a buffer. So it makes
13594 more sense to design the command to count the number of words in a
13595 region. Once you have a command to count words in a region, you can,
13596 if you wish, count words in a whole buffer by marking it with
13597 @w{@kbd{C-x h}} (@code{mark-whole-buffer}).
13598
13599 Clearly, counting words is a repetitive act: starting from the
13600 beginning of the region, you count the first word, then the second
13601 word, then the third word, and so on, until you reach the end of the
13602 region. This means that word counting is ideally suited to recursion
13603 or to a @code{while} loop.
13604
13605 @menu
13606 * Design @value{COUNT-WORDS}:: The definition using a @code{while} loop.
13607 * Whitespace Bug:: The Whitespace Bug in @code{@value{COUNT-WORDS}}.
13608 @end menu
13609
13610 @ifnottex
13611 @node Design @value{COUNT-WORDS}
13612 @unnumberedsubsec Designing @code{@value{COUNT-WORDS}}
13613 @end ifnottex
13614
13615 First, we will implement the word count command with a @code{while}
13616 loop, then with recursion. The command will, of course, be
13617 interactive.
13618
13619 @need 800
13620 The template for an interactive function definition is, as always:
13621
13622 @smallexample
13623 @group
13624 (defun @var{name-of-function} (@var{argument-list})
13625 "@var{documentation}@dots{}"
13626 (@var{interactive-expression}@dots{})
13627 @var{body}@dots{})
13628 @end group
13629 @end smallexample
13630
13631 What we need to do is fill in the slots.
13632
13633 The name of the function should be self-explanatory and similar to the
13634 existing @code{count-lines-region} name. This makes the name easier
13635 to remember. @code{count-words-region} is the obvious choice. Since
13636 that name is now used for the standard Emacs command to count words, we
13637 will name our implementation @code{@value{COUNT-WORDS}}.
13638
13639 The function counts words within a region. This means that the
13640 argument list must contain symbols that are bound to the two
13641 positions, the beginning and end of the region. These two positions
13642 can be called @samp{beginning} and @samp{end} respectively. The first
13643 line of the documentation should be a single sentence, since that is
13644 all that is printed as documentation by a command such as
13645 @code{apropos}. The interactive expression will be of the form
13646 @samp{(interactive "r")}, since that will cause Emacs to pass the
13647 beginning and end of the region to the function's argument list. All
13648 this is routine.
13649
13650 The body of the function needs to be written to do three tasks:
13651 first, to set up conditions under which the @code{while} loop can
13652 count words, second, to run the @code{while} loop, and third, to send
13653 a message to the user.
13654
13655 When a user calls @code{@value{COUNT-WORDS}}, point may be at the
13656 beginning or the end of the region. However, the counting process
13657 must start at the beginning of the region. This means we will want
13658 to put point there if it is not already there. Executing
13659 @code{(goto-char beginning)} ensures this. Of course, we will want to
13660 return point to its expected position when the function finishes its
13661 work. For this reason, the body must be enclosed in a
13662 @code{save-excursion} expression.
13663
13664 The central part of the body of the function consists of a
13665 @code{while} loop in which one expression jumps point forward word by
13666 word, and another expression counts those jumps. The true-or-false-test
13667 of the @code{while} loop should test true so long as point should jump
13668 forward, and false when point is at the end of the region.
13669
13670 We could use @code{(forward-word 1)} as the expression for moving point
13671 forward word by word, but it is easier to see what Emacs identifies as a
13672 `word' if we use a regular expression search.
13673
13674 A regular expression search that finds the pattern for which it is
13675 searching leaves point after the last character matched. This means
13676 that a succession of successful word searches will move point forward
13677 word by word.
13678
13679 As a practical matter, we want the regular expression search to jump
13680 over whitespace and punctuation between words as well as over the
13681 words themselves. A regexp that refuses to jump over interword
13682 whitespace would never jump more than one word! This means that
13683 the regexp should include the whitespace and punctuation that follows
13684 a word, if any, as well as the word itself. (A word may end a buffer
13685 and not have any following whitespace or punctuation, so that part of
13686 the regexp must be optional.)
13687
13688 Thus, what we want for the regexp is a pattern defining one or more
13689 word constituent characters followed, optionally, by one or more
13690 characters that are not word constituents. The regular expression for
13691 this is:
13692
13693 @smallexample
13694 \w+\W*
13695 @end smallexample
13696
13697 @noindent
13698 The buffer's syntax table determines which characters are and are not
13699 word constituents. For more information about syntax,
13700 @pxref{Syntax Tables, , Syntax Tables, elisp, The GNU Emacs Lisp
13701 Reference Manual}.
13702
13703 @need 800
13704 The search expression looks like this:
13705
13706 @smallexample
13707 (re-search-forward "\\w+\\W*")
13708 @end smallexample
13709
13710 @noindent
13711 (Note that paired backslashes precede the @samp{w} and @samp{W}. A
13712 single backslash has special meaning to the Emacs Lisp interpreter.
13713 It indicates that the following character is interpreted differently
13714 than usual. For example, the two characters, @samp{\n}, stand for
13715 @samp{newline}, rather than for a backslash followed by @samp{n}. Two
13716 backslashes in a row stand for an ordinary, `unspecial' backslash, so
13717 Emacs Lisp interpreter ends of seeing a single backslash followed by a
13718 letter. So it discovers the letter is special.)
13719
13720 We need a counter to count how many words there are; this variable
13721 must first be set to 0 and then incremented each time Emacs goes
13722 around the @code{while} loop. The incrementing expression is simply:
13723
13724 @smallexample
13725 (setq count (1+ count))
13726 @end smallexample
13727
13728 Finally, we want to tell the user how many words there are in the
13729 region. The @code{message} function is intended for presenting this
13730 kind of information to the user. The message has to be phrased so
13731 that it reads properly regardless of how many words there are in the
13732 region: we don't want to say that ``there are 1 words in the region''.
13733 The conflict between singular and plural is ungrammatical. We can
13734 solve this problem by using a conditional expression that evaluates
13735 different messages depending on the number of words in the region.
13736 There are three possibilities: no words in the region, one word in the
13737 region, and more than one word. This means that the @code{cond}
13738 special form is appropriate.
13739
13740 @need 1500
13741 All this leads to the following function definition:
13742
13743 @smallexample
13744 @group
13745 ;;; @r{First version; has bugs!}
13746 (defun @value{COUNT-WORDS} (beginning end)
13747 "Print number of words in the region.
13748 Words are defined as at least one word-constituent
13749 character followed by at least one character that
13750 is not a word-constituent. The buffer's syntax
13751 table determines which characters these are."
13752 (interactive "r")
13753 (message "Counting words in region ... ")
13754 @end group
13755
13756 @group
13757 ;;; @r{1. Set up appropriate conditions.}
13758 (save-excursion
13759 (goto-char beginning)
13760 (let ((count 0))
13761 @end group
13762
13763 @group
13764 ;;; @r{2. Run the} while @r{loop.}
13765 (while (< (point) end)
13766 (re-search-forward "\\w+\\W*")
13767 (setq count (1+ count)))
13768 @end group
13769
13770 @group
13771 ;;; @r{3. Send a message to the user.}
13772 (cond ((zerop count)
13773 (message
13774 "The region does NOT have any words."))
13775 ((= 1 count)
13776 (message
13777 "The region has 1 word."))
13778 (t
13779 (message
13780 "The region has %d words." count))))))
13781 @end group
13782 @end smallexample
13783
13784 @noindent
13785 As written, the function works, but not in all circumstances.
13786
13787 @node Whitespace Bug
13788 @subsection The Whitespace Bug in @code{@value{COUNT-WORDS}}
13789
13790 The @code{@value{COUNT-WORDS}} command described in the preceding
13791 section has two bugs, or rather, one bug with two manifestations.
13792 First, if you mark a region containing only whitespace in the middle
13793 of some text, the @code{@value{COUNT-WORDS}} command tells you that the
13794 region contains one word! Second, if you mark a region containing
13795 only whitespace at the end of the buffer or the accessible portion of
13796 a narrowed buffer, the command displays an error message that looks
13797 like this:
13798
13799 @smallexample
13800 Search failed: "\\w+\\W*"
13801 @end smallexample
13802
13803 If you are reading this in Info in GNU Emacs, you can test for these
13804 bugs yourself.
13805
13806 First, evaluate the function in the usual manner to install it.
13807 @ifinfo
13808 Here is a copy of the definition. Place your cursor after the closing
13809 parenthesis and type @kbd{C-x C-e} to install it.
13810
13811 @smallexample
13812 @group
13813 ;; @r{First version; has bugs!}
13814 (defun @value{COUNT-WORDS} (beginning end)
13815 "Print number of words in the region.
13816 Words are defined as at least one word-constituent character followed
13817 by at least one character that is not a word-constituent. The buffer's
13818 syntax table determines which characters these are."
13819 @end group
13820 @group
13821 (interactive "r")
13822 (message "Counting words in region ... ")
13823 @end group
13824
13825 @group
13826 ;;; @r{1. Set up appropriate conditions.}
13827 (save-excursion
13828 (goto-char beginning)
13829 (let ((count 0))
13830 @end group
13831
13832 @group
13833 ;;; @r{2. Run the} while @r{loop.}
13834 (while (< (point) end)
13835 (re-search-forward "\\w+\\W*")
13836 (setq count (1+ count)))
13837 @end group
13838
13839 @group
13840 ;;; @r{3. Send a message to the user.}
13841 (cond ((zerop count)
13842 (message "The region does NOT have any words."))
13843 ((= 1 count) (message "The region has 1 word."))
13844 (t (message "The region has %d words." count))))))
13845 @end group
13846 @end smallexample
13847 @end ifinfo
13848
13849 @need 1000
13850 If you wish, you can also install this keybinding by evaluating it:
13851
13852 @smallexample
13853 (global-set-key "\C-c=" '@value{COUNT-WORDS})
13854 @end smallexample
13855
13856 To conduct the first test, set mark and point to the beginning and end
13857 of the following line and then type @kbd{C-c =} (or @kbd{M-x
13858 @value{COUNT-WORDS}} if you have not bound @kbd{C-c =}):
13859
13860 @smallexample
13861 one two three
13862 @end smallexample
13863
13864 @noindent
13865 Emacs will tell you, correctly, that the region has three words.
13866
13867 Repeat the test, but place mark at the beginning of the line and place
13868 point just @emph{before} the word @samp{one}. Again type the command
13869 @kbd{C-c =} (or @kbd{M-x @value{COUNT-WORDS}}). Emacs should tell you
13870 that the region has no words, since it is composed only of the
13871 whitespace at the beginning of the line. But instead Emacs tells you
13872 that the region has one word!
13873
13874 For the third test, copy the sample line to the end of the
13875 @file{*scratch*} buffer and then type several spaces at the end of the
13876 line. Place mark right after the word @samp{three} and point at the
13877 end of line. (The end of the line will be the end of the buffer.)
13878 Type @kbd{C-c =} (or @kbd{M-x @value{COUNT-WORDS}}) as you did before.
13879 Again, Emacs should tell you that the region has no words, since it is
13880 composed only of the whitespace at the end of the line. Instead,
13881 Emacs displays an error message saying @samp{Search failed}.
13882
13883 The two bugs stem from the same problem.
13884
13885 Consider the first manifestation of the bug, in which the command
13886 tells you that the whitespace at the beginning of the line contains
13887 one word. What happens is this: The @code{M-x @value{COUNT-WORDS}}
13888 command moves point to the beginning of the region. The @code{while}
13889 tests whether the value of point is smaller than the value of
13890 @code{end}, which it is. Consequently, the regular expression search
13891 looks for and finds the first word. It leaves point after the word.
13892 @code{count} is set to one. The @code{while} loop repeats; but this
13893 time the value of point is larger than the value of @code{end}, the
13894 loop is exited; and the function displays a message saying the number
13895 of words in the region is one. In brief, the regular expression
13896 search looks for and finds the word even though it is outside
13897 the marked region.
13898
13899 In the second manifestation of the bug, the region is whitespace at
13900 the end of the buffer. Emacs says @samp{Search failed}. What happens
13901 is that the true-or-false-test in the @code{while} loop tests true, so
13902 the search expression is executed. But since there are no more words
13903 in the buffer, the search fails.
13904
13905 In both manifestations of the bug, the search extends or attempts to
13906 extend outside of the region.
13907
13908 The solution is to limit the search to the region---this is a fairly
13909 simple action, but as you may have come to expect, it is not quite as
13910 simple as you might think.
13911
13912 As we have seen, the @code{re-search-forward} function takes a search
13913 pattern as its first argument. But in addition to this first,
13914 mandatory argument, it accepts three optional arguments. The optional
13915 second argument bounds the search. The optional third argument, if
13916 @code{t}, causes the function to return @code{nil} rather than signal
13917 an error if the search fails. The optional fourth argument is a
13918 repeat count. (In Emacs, you can see a function's documentation by
13919 typing @kbd{C-h f}, the name of the function, and then @key{RET}.)
13920
13921 In the @code{@value{COUNT-WORDS}} definition, the value of the end of
13922 the region is held by the variable @code{end} which is passed as an
13923 argument to the function. Thus, we can add @code{end} as an argument
13924 to the regular expression search expression:
13925
13926 @smallexample
13927 (re-search-forward "\\w+\\W*" end)
13928 @end smallexample
13929
13930 However, if you make only this change to the @code{@value{COUNT-WORDS}}
13931 definition and then test the new version of the definition on a
13932 stretch of whitespace, you will receive an error message saying
13933 @samp{Search failed}.
13934
13935 What happens is this: the search is limited to the region, and fails
13936 as you expect because there are no word-constituent characters in the
13937 region. Since it fails, we receive an error message. But we do not
13938 want to receive an error message in this case; we want to receive the
13939 message that "The region does NOT have any words."
13940
13941 The solution to this problem is to provide @code{re-search-forward}
13942 with a third argument of @code{t}, which causes the function to return
13943 @code{nil} rather than signal an error if the search fails.
13944
13945 However, if you make this change and try it, you will see the message
13946 ``Counting words in region ... '' and @dots{} you will keep on seeing
13947 that message @dots{}, until you type @kbd{C-g} (@code{keyboard-quit}).
13948
13949 Here is what happens: the search is limited to the region, as before,
13950 and it fails because there are no word-constituent characters in the
13951 region, as expected. Consequently, the @code{re-search-forward}
13952 expression returns @code{nil}. It does nothing else. In particular,
13953 it does not move point, which it does as a side effect if it finds the
13954 search target. After the @code{re-search-forward} expression returns
13955 @code{nil}, the next expression in the @code{while} loop is evaluated.
13956 This expression increments the count. Then the loop repeats. The
13957 true-or-false-test tests true because the value of point is still less
13958 than the value of end, since the @code{re-search-forward} expression
13959 did not move point. @dots{} and the cycle repeats @dots{}
13960
13961 The @code{@value{COUNT-WORDS}} definition requires yet another
13962 modification, to cause the true-or-false-test of the @code{while} loop
13963 to test false if the search fails. Put another way, there are two
13964 conditions that must be satisfied in the true-or-false-test before the
13965 word count variable is incremented: point must still be within the
13966 region and the search expression must have found a word to count.
13967
13968 Since both the first condition and the second condition must be true
13969 together, the two expressions, the region test and the search
13970 expression, can be joined with an @code{and} special form and embedded in
13971 the @code{while} loop as the true-or-false-test, like this:
13972
13973 @smallexample
13974 (and (< (point) end) (re-search-forward "\\w+\\W*" end t))
13975 @end smallexample
13976
13977 @c colon in printed section title causes problem in Info cross reference
13978 @c also trouble with an overfull hbox
13979 @iftex
13980 @noindent
13981 (For information about @code{and}, see
13982 @ref{kill-new function, , The @code{kill-new} function}.)
13983 @end iftex
13984 @ifinfo
13985 @noindent
13986 (@xref{kill-new function, , The @code{kill-new} function}, for
13987 information about @code{and}.)
13988 @end ifinfo
13989
13990 The @code{re-search-forward} expression returns @code{t} if the search
13991 succeeds and as a side effect moves point. Consequently, as words are
13992 found, point is moved through the region. When the search expression
13993 fails to find another word, or when point reaches the end of the
13994 region, the true-or-false-test tests false, the @code{while} loop
13995 exits, and the @code{@value{COUNT-WORDS}} function displays one or
13996 other of its messages.
13997
13998 After incorporating these final changes, the @code{@value{COUNT-WORDS}}
13999 works without bugs (or at least, without bugs that I have found!).
14000 Here is what it looks like:
14001
14002 @smallexample
14003 @group
14004 ;;; @r{Final version:} @code{while}
14005 (defun @value{COUNT-WORDS} (beginning end)
14006 "Print number of words in the region."
14007 (interactive "r")
14008 (message "Counting words in region ... ")
14009 @end group
14010
14011 @group
14012 ;;; @r{1. Set up appropriate conditions.}
14013 (save-excursion
14014 (let ((count 0))
14015 (goto-char beginning)
14016 @end group
14017
14018 @group
14019 ;;; @r{2. Run the} while @r{loop.}
14020 (while (and (< (point) end)
14021 (re-search-forward "\\w+\\W*" end t))
14022 (setq count (1+ count)))
14023 @end group
14024
14025 @group
14026 ;;; @r{3. Send a message to the user.}
14027 (cond ((zerop count)
14028 (message
14029 "The region does NOT have any words."))
14030 ((= 1 count)
14031 (message
14032 "The region has 1 word."))
14033 (t
14034 (message
14035 "The region has %d words." count))))))
14036 @end group
14037 @end smallexample
14038
14039 @node recursive-count-words
14040 @section Count Words Recursively
14041 @cindex Count words recursively
14042 @cindex Recursively counting words
14043 @cindex Words, counted recursively
14044
14045 You can write the function for counting words recursively as well as
14046 with a @code{while} loop. Let's see how this is done.
14047
14048 First, we need to recognize that the @code{@value{COUNT-WORDS}}
14049 function has three jobs: it sets up the appropriate conditions for
14050 counting to occur; it counts the words in the region; and it sends a
14051 message to the user telling how many words there are.
14052
14053 If we write a single recursive function to do everything, we will
14054 receive a message for every recursive call. If the region contains 13
14055 words, we will receive thirteen messages, one right after the other.
14056 We don't want this! Instead, we must write two functions to do the
14057 job, one of which (the recursive function) will be used inside of the
14058 other. One function will set up the conditions and display the
14059 message; the other will return the word count.
14060
14061 Let us start with the function that causes the message to be displayed.
14062 We can continue to call this @code{@value{COUNT-WORDS}}.
14063
14064 This is the function that the user will call. It will be interactive.
14065 Indeed, it will be similar to our previous versions of this
14066 function, except that it will call @code{recursive-count-words} to
14067 determine how many words are in the region.
14068
14069 @need 1250
14070 We can readily construct a template for this function, based on our
14071 previous versions:
14072
14073 @smallexample
14074 @group
14075 ;; @r{Recursive version; uses regular expression search}
14076 (defun @value{COUNT-WORDS} (beginning end)
14077 "@var{documentation}@dots{}"
14078 (@var{interactive-expression}@dots{})
14079 @end group
14080 @group
14081
14082 ;;; @r{1. Set up appropriate conditions.}
14083 (@var{explanatory message})
14084 (@var{set-up functions}@dots{}
14085 @end group
14086 @group
14087
14088 ;;; @r{2. Count the words.}
14089 @var{recursive call}
14090 @end group
14091 @group
14092
14093 ;;; @r{3. Send a message to the user.}
14094 @var{message providing word count}))
14095 @end group
14096 @end smallexample
14097
14098 The definition looks straightforward, except that somehow the count
14099 returned by the recursive call must be passed to the message
14100 displaying the word count. A little thought suggests that this can be
14101 done by making use of a @code{let} expression: we can bind a variable
14102 in the varlist of a @code{let} expression to the number of words in
14103 the region, as returned by the recursive call; and then the
14104 @code{cond} expression, using binding, can display the value to the
14105 user.
14106
14107 Often, one thinks of the binding within a @code{let} expression as
14108 somehow secondary to the `primary' work of a function. But in this
14109 case, what you might consider the `primary' job of the function,
14110 counting words, is done within the @code{let} expression.
14111
14112 @need 1250
14113 Using @code{let}, the function definition looks like this:
14114
14115 @smallexample
14116 @group
14117 (defun @value{COUNT-WORDS} (beginning end)
14118 "Print number of words in the region."
14119 (interactive "r")
14120 @end group
14121
14122 @group
14123 ;;; @r{1. Set up appropriate conditions.}
14124 (message "Counting words in region ... ")
14125 (save-excursion
14126 (goto-char beginning)
14127 @end group
14128
14129 @group
14130 ;;; @r{2. Count the words.}
14131 (let ((count (recursive-count-words end)))
14132 @end group
14133
14134 @group
14135 ;;; @r{3. Send a message to the user.}
14136 (cond ((zerop count)
14137 (message
14138 "The region does NOT have any words."))
14139 ((= 1 count)
14140 (message
14141 "The region has 1 word."))
14142 (t
14143 (message
14144 "The region has %d words." count))))))
14145 @end group
14146 @end smallexample
14147
14148 Next, we need to write the recursive counting function.
14149
14150 A recursive function has at least three parts: the `do-again-test', the
14151 `next-step-expression', and the recursive call.
14152
14153 The do-again-test determines whether the function will or will not be
14154 called again. Since we are counting words in a region and can use a
14155 function that moves point forward for every word, the do-again-test
14156 can check whether point is still within the region. The do-again-test
14157 should find the value of point and determine whether point is before,
14158 at, or after the value of the end of the region. We can use the
14159 @code{point} function to locate point. Clearly, we must pass the
14160 value of the end of the region to the recursive counting function as an
14161 argument.
14162
14163 In addition, the do-again-test should also test whether the search finds a
14164 word. If it does not, the function should not call itself again.
14165
14166 The next-step-expression changes a value so that when the recursive
14167 function is supposed to stop calling itself, it stops. More
14168 precisely, the next-step-expression changes a value so that at the
14169 right time, the do-again-test stops the recursive function from
14170 calling itself again. In this case, the next-step-expression can be
14171 the expression that moves point forward, word by word.
14172
14173 The third part of a recursive function is the recursive call.
14174
14175 Somewhere, also, we also need a part that does the `work' of the
14176 function, a part that does the counting. A vital part!
14177
14178 @need 1250
14179 But already, we have an outline of the recursive counting function:
14180
14181 @smallexample
14182 @group
14183 (defun recursive-count-words (region-end)
14184 "@var{documentation}@dots{}"
14185 @var{do-again-test}
14186 @var{next-step-expression}
14187 @var{recursive call})
14188 @end group
14189 @end smallexample
14190
14191 Now we need to fill in the slots. Let's start with the simplest cases
14192 first: if point is at or beyond the end of the region, there cannot
14193 be any words in the region, so the function should return zero.
14194 Likewise, if the search fails, there are no words to count, so the
14195 function should return zero.
14196
14197 On the other hand, if point is within the region and the search
14198 succeeds, the function should call itself again.
14199
14200 @need 800
14201 Thus, the do-again-test should look like this:
14202
14203 @smallexample
14204 @group
14205 (and (< (point) region-end)
14206 (re-search-forward "\\w+\\W*" region-end t))
14207 @end group
14208 @end smallexample
14209
14210 Note that the search expression is part of the do-again-test---the
14211 function returns @code{t} if its search succeeds and @code{nil} if it
14212 fails. (@xref{Whitespace Bug, , The Whitespace Bug in
14213 @code{@value{COUNT-WORDS}}}, for an explanation of how
14214 @code{re-search-forward} works.)
14215
14216 The do-again-test is the true-or-false test of an @code{if} clause.
14217 Clearly, if the do-again-test succeeds, the then-part of the @code{if}
14218 clause should call the function again; but if it fails, the else-part
14219 should return zero since either point is outside the region or the
14220 search failed because there were no words to find.
14221
14222 But before considering the recursive call, we need to consider the
14223 next-step-expression. What is it? Interestingly, it is the search
14224 part of the do-again-test.
14225
14226 In addition to returning @code{t} or @code{nil} for the
14227 do-again-test, @code{re-search-forward} moves point forward as a side
14228 effect of a successful search. This is the action that changes the
14229 value of point so that the recursive function stops calling itself
14230 when point completes its movement through the region. Consequently,
14231 the @code{re-search-forward} expression is the next-step-expression.
14232
14233 @need 1200
14234 In outline, then, the body of the @code{recursive-count-words}
14235 function looks like this:
14236
14237 @smallexample
14238 @group
14239 (if @var{do-again-test-and-next-step-combined}
14240 ;; @r{then}
14241 @var{recursive-call-returning-count}
14242 ;; @r{else}
14243 @var{return-zero})
14244 @end group
14245 @end smallexample
14246
14247 How to incorporate the mechanism that counts?
14248
14249 If you are not used to writing recursive functions, a question like
14250 this can be troublesome. But it can and should be approached
14251 systematically.
14252
14253 We know that the counting mechanism should be associated in some way
14254 with the recursive call. Indeed, since the next-step-expression moves
14255 point forward by one word, and since a recursive call is made for
14256 each word, the counting mechanism must be an expression that adds one
14257 to the value returned by a call to @code{recursive-count-words}.
14258
14259 @need 800
14260 Consider several cases:
14261
14262 @itemize @bullet
14263 @item
14264 If there are two words in the region, the function should return
14265 a value resulting from adding one to the value returned when it counts
14266 the first word, plus the number returned when it counts the remaining
14267 words in the region, which in this case is one.
14268
14269 @item
14270 If there is one word in the region, the function should return
14271 a value resulting from adding one to the value returned when it counts
14272 that word, plus the number returned when it counts the remaining
14273 words in the region, which in this case is zero.
14274
14275 @item
14276 If there are no words in the region, the function should return zero.
14277 @end itemize
14278
14279 From the sketch we can see that the else-part of the @code{if} returns
14280 zero for the case of no words. This means that the then-part of the
14281 @code{if} must return a value resulting from adding one to the value
14282 returned from a count of the remaining words.
14283
14284 @need 1200
14285 The expression will look like this, where @code{1+} is a function that
14286 adds one to its argument.
14287
14288 @smallexample
14289 (1+ (recursive-count-words region-end))
14290 @end smallexample
14291
14292 @need 1200
14293 The whole @code{recursive-count-words} function will then look like
14294 this:
14295
14296 @smallexample
14297 @group
14298 (defun recursive-count-words (region-end)
14299 "@var{documentation}@dots{}"
14300
14301 ;;; @r{1. do-again-test}
14302 (if (and (< (point) region-end)
14303 (re-search-forward "\\w+\\W*" region-end t))
14304 @end group
14305
14306 @group
14307 ;;; @r{2. then-part: the recursive call}
14308 (1+ (recursive-count-words region-end))
14309
14310 ;;; @r{3. else-part}
14311 0))
14312 @end group
14313 @end smallexample
14314
14315 @need 1250
14316 Let's examine how this works:
14317
14318 If there are no words in the region, the else part of the @code{if}
14319 expression is evaluated and consequently the function returns zero.
14320
14321 If there is one word in the region, the value of point is less than
14322 the value of @code{region-end} and the search succeeds. In this case,
14323 the true-or-false-test of the @code{if} expression tests true, and the
14324 then-part of the @code{if} expression is evaluated. The counting
14325 expression is evaluated. This expression returns a value (which will
14326 be the value returned by the whole function) that is the sum of one
14327 added to the value returned by a recursive call.
14328
14329 Meanwhile, the next-step-expression has caused point to jump over the
14330 first (and in this case only) word in the region. This means that
14331 when @code{(recursive-count-words region-end)} is evaluated a second
14332 time, as a result of the recursive call, the value of point will be
14333 equal to or greater than the value of region end. So this time,
14334 @code{recursive-count-words} will return zero. The zero will be added
14335 to one, and the original evaluation of @code{recursive-count-words}
14336 will return one plus zero, which is one, which is the correct amount.
14337
14338 Clearly, if there are two words in the region, the first call to
14339 @code{recursive-count-words} returns one added to the value returned
14340 by calling @code{recursive-count-words} on a region containing the
14341 remaining word---that is, it adds one to one, producing two, which is
14342 the correct amount.
14343
14344 Similarly, if there are three words in the region, the first call to
14345 @code{recursive-count-words} returns one added to the value returned
14346 by calling @code{recursive-count-words} on a region containing the
14347 remaining two words---and so on and so on.
14348
14349 @need 1250
14350 @noindent
14351 With full documentation the two functions look like this:
14352
14353 @need 1250
14354 @noindent
14355 The recursive function:
14356
14357 @findex recursive-count-words
14358 @smallexample
14359 @group
14360 (defun recursive-count-words (region-end)
14361 "Number of words between point and REGION-END."
14362 @end group
14363
14364 @group
14365 ;;; @r{1. do-again-test}
14366 (if (and (< (point) region-end)
14367 (re-search-forward "\\w+\\W*" region-end t))
14368 @end group
14369
14370 @group
14371 ;;; @r{2. then-part: the recursive call}
14372 (1+ (recursive-count-words region-end))
14373
14374 ;;; @r{3. else-part}
14375 0))
14376 @end group
14377 @end smallexample
14378
14379 @need 800
14380 @noindent
14381 The wrapper:
14382
14383 @smallexample
14384 @group
14385 ;;; @r{Recursive version}
14386 (defun @value{COUNT-WORDS} (beginning end)
14387 "Print number of words in the region.
14388 @end group
14389
14390 @group
14391 Words are defined as at least one word-constituent
14392 character followed by at least one character that is
14393 not a word-constituent. The buffer's syntax table
14394 determines which characters these are."
14395 @end group
14396 @group
14397 (interactive "r")
14398 (message "Counting words in region ... ")
14399 (save-excursion
14400 (goto-char beginning)
14401 (let ((count (recursive-count-words end)))
14402 @end group
14403 @group
14404 (cond ((zerop count)
14405 (message
14406 "The region does NOT have any words."))
14407 @end group
14408 @group
14409 ((= 1 count)
14410 (message "The region has 1 word."))
14411 (t
14412 (message
14413 "The region has %d words." count))))))
14414 @end group
14415 @end smallexample
14416
14417 @node Counting Exercise
14418 @section Exercise: Counting Punctuation
14419
14420 Using a @code{while} loop, write a function to count the number of
14421 punctuation marks in a region---period, comma, semicolon, colon,
14422 exclamation mark, and question mark. Do the same using recursion.
14423
14424 @node Words in a defun
14425 @chapter Counting Words in a @code{defun}
14426 @cindex Counting words in a @code{defun}
14427 @cindex Word counting in a @code{defun}
14428
14429 Our next project is to count the number of words in a function
14430 definition. Clearly, this can be done using some variant of
14431 @code{@value{COUNT-WORDS}}. @xref{Counting Words, , Counting via
14432 Repetition and Regexps}. If we are just going to count the words in
14433 one definition, it is easy enough to mark the definition with the
14434 @kbd{C-M-h} (@code{mark-defun}) command, and then call
14435 @code{@value{COUNT-WORDS}}.
14436
14437 However, I am more ambitious: I want to count the words and symbols in
14438 every definition in the Emacs sources and then print a graph that
14439 shows how many functions there are of each length: how many contain 40
14440 to 49 words or symbols, how many contain 50 to 59 words or symbols,
14441 and so on. I have often been curious how long a typical function is,
14442 and this will tell.
14443
14444 @menu
14445 * Divide and Conquer::
14446 * Words and Symbols:: What to count?
14447 * Syntax:: What constitutes a word or symbol?
14448 * count-words-in-defun:: Very like @code{@value{COUNT-WORDS}}.
14449 * Several defuns:: Counting several defuns in a file.
14450 * Find a File:: Do you want to look at a file?
14451 * lengths-list-file:: A list of the lengths of many definitions.
14452 * Several files:: Counting in definitions in different files.
14453 * Several files recursively:: Recursively counting in different files.
14454 * Prepare the data:: Prepare the data for display in a graph.
14455 @end menu
14456
14457 @ifnottex
14458 @node Divide and Conquer
14459 @unnumberedsec Divide and Conquer
14460 @end ifnottex
14461
14462 Described in one phrase, the histogram project is daunting; but
14463 divided into numerous small steps, each of which we can take one at a
14464 time, the project becomes less fearsome. Let us consider what the
14465 steps must be:
14466
14467 @itemize @bullet
14468 @item
14469 First, write a function to count the words in one definition. This
14470 includes the problem of handling symbols as well as words.
14471
14472 @item
14473 Second, write a function to list the numbers of words in each function
14474 in a file. This function can use the @code{count-words-in-defun}
14475 function.
14476
14477 @item
14478 Third, write a function to list the numbers of words in each function
14479 in each of several files. This entails automatically finding the
14480 various files, switching to them, and counting the words in the
14481 definitions within them.
14482
14483 @item
14484 Fourth, write a function to convert the list of numbers that we
14485 created in step three to a form that will be suitable for printing as
14486 a graph.
14487
14488 @item
14489 Fifth, write a function to print the results as a graph.
14490 @end itemize
14491
14492 This is quite a project! But if we take each step slowly, it will not
14493 be difficult.
14494
14495 @node Words and Symbols
14496 @section What to Count?
14497 @cindex Words and symbols in defun
14498
14499 When we first start thinking about how to count the words in a
14500 function definition, the first question is (or ought to be) what are
14501 we going to count? When we speak of `words' with respect to a Lisp
14502 function definition, we are actually speaking, in large part, of
14503 `symbols'. For example, the following @code{multiply-by-seven}
14504 function contains the five symbols @code{defun},
14505 @code{multiply-by-seven}, @code{number}, @code{*}, and @code{7}. In
14506 addition, in the documentation string, it contains the four words
14507 @samp{Multiply}, @samp{NUMBER}, @samp{by}, and @samp{seven}. The
14508 symbol @samp{number} is repeated, so the definition contains a total
14509 of ten words and symbols.
14510
14511 @smallexample
14512 @group
14513 (defun multiply-by-seven (number)
14514 "Multiply NUMBER by seven."
14515 (* 7 number))
14516 @end group
14517 @end smallexample
14518
14519 @noindent
14520 However, if we mark the @code{multiply-by-seven} definition with
14521 @kbd{C-M-h} (@code{mark-defun}), and then call
14522 @code{@value{COUNT-WORDS}} on it, we will find that
14523 @code{@value{COUNT-WORDS}} claims the definition has eleven words, not
14524 ten! Something is wrong!
14525
14526 The problem is twofold: @code{@value{COUNT-WORDS}} does not count the
14527 @samp{*} as a word, and it counts the single symbol,
14528 @code{multiply-by-seven}, as containing three words. The hyphens are
14529 treated as if they were interword spaces rather than intraword
14530 connectors: @samp{multiply-by-seven} is counted as if it were written
14531 @samp{multiply by seven}.
14532
14533 The cause of this confusion is the regular expression search within
14534 the @code{@value{COUNT-WORDS}} definition that moves point forward word
14535 by word. In the canonical version of @code{@value{COUNT-WORDS}}, the
14536 regexp is:
14537
14538 @smallexample
14539 "\\w+\\W*"
14540 @end smallexample
14541
14542 @noindent
14543 This regular expression is a pattern defining one or more word
14544 constituent characters possibly followed by one or more characters
14545 that are not word constituents. What is meant by `word constituent
14546 characters' brings us to the issue of syntax, which is worth a section
14547 of its own.
14548
14549 @node Syntax
14550 @section What Constitutes a Word or Symbol?
14551 @cindex Syntax categories and tables
14552
14553 Emacs treats different characters as belonging to different
14554 @dfn{syntax categories}. For example, the regular expression,
14555 @samp{\\w+}, is a pattern specifying one or more @emph{word
14556 constituent} characters. Word constituent characters are members of
14557 one syntax category. Other syntax categories include the class of
14558 punctuation characters, such as the period and the comma, and the
14559 class of whitespace characters, such as the blank space and the tab
14560 character. (For more information, @pxref{Syntax Tables, , Syntax
14561 Tables, elisp, The GNU Emacs Lisp Reference Manual}.)
14562
14563 Syntax tables specify which characters belong to which categories.
14564 Usually, a hyphen is not specified as a `word constituent character'.
14565 Instead, it is specified as being in the `class of characters that are
14566 part of symbol names but not words.' This means that the
14567 @code{@value{COUNT-WORDS}} function treats it in the same way it treats
14568 an interword white space, which is why @code{@value{COUNT-WORDS}}
14569 counts @samp{multiply-by-seven} as three words.
14570
14571 There are two ways to cause Emacs to count @samp{multiply-by-seven} as
14572 one symbol: modify the syntax table or modify the regular expression.
14573
14574 We could redefine a hyphen as a word constituent character by
14575 modifying the syntax table that Emacs keeps for each mode. This
14576 action would serve our purpose, except that a hyphen is merely the
14577 most common character within symbols that is not typically a word
14578 constituent character; there are others, too.
14579
14580 Alternatively, we can redefine the regexp used in the
14581 @code{@value{COUNT-WORDS}} definition so as to include symbols. This
14582 procedure has the merit of clarity, but the task is a little tricky.
14583
14584 @need 1200
14585 The first part is simple enough: the pattern must match ``at least one
14586 character that is a word or symbol constituent''. Thus:
14587
14588 @smallexample
14589 "\\(\\w\\|\\s_\\)+"
14590 @end smallexample
14591
14592 @noindent
14593 The @samp{\\(} is the first part of the grouping construct that
14594 includes the @samp{\\w} and the @samp{\\s_} as alternatives, separated
14595 by the @samp{\\|}. The @samp{\\w} matches any word-constituent
14596 character and the @samp{\\s_} matches any character that is part of a
14597 symbol name but not a word-constituent character. The @samp{+}
14598 following the group indicates that the word or symbol constituent
14599 characters must be matched at least once.
14600
14601 However, the second part of the regexp is more difficult to design.
14602 What we want is to follow the first part with ``optionally one or more
14603 characters that are not constituents of a word or symbol''. At first,
14604 I thought I could define this with the following:
14605
14606 @smallexample
14607 "\\(\\W\\|\\S_\\)*"
14608 @end smallexample
14609
14610 @noindent
14611 The upper case @samp{W} and @samp{S} match characters that are
14612 @emph{not} word or symbol constituents. Unfortunately, this
14613 expression matches any character that is either not a word constituent
14614 or not a symbol constituent. This matches any character!
14615
14616 I then noticed that every word or symbol in my test region was
14617 followed by white space (blank space, tab, or newline). So I tried
14618 placing a pattern to match one or more blank spaces after the pattern
14619 for one or more word or symbol constituents. This failed, too. Words
14620 and symbols are often separated by whitespace, but in actual code
14621 parentheses may follow symbols and punctuation may follow words. So
14622 finally, I designed a pattern in which the word or symbol constituents
14623 are followed optionally by characters that are not white space and
14624 then followed optionally by white space.
14625
14626 @need 800
14627 Here is the full regular expression:
14628
14629 @smallexample
14630 "\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*"
14631 @end smallexample
14632
14633 @node count-words-in-defun
14634 @section The @code{count-words-in-defun} Function
14635 @cindex Counting words in a @code{defun}
14636
14637 We have seen that there are several ways to write a
14638 @code{count-words-region} function. To write a
14639 @code{count-words-in-defun}, we need merely adapt one of these
14640 versions.
14641
14642 The version that uses a @code{while} loop is easy to understand, so I
14643 am going to adapt that. Because @code{count-words-in-defun} will be
14644 part of a more complex program, it need not be interactive and it need
14645 not display a message but just return the count. These considerations
14646 simplify the definition a little.
14647
14648 On the other hand, @code{count-words-in-defun} will be used within a
14649 buffer that contains function definitions. Consequently, it is
14650 reasonable to ask that the function determine whether it is called
14651 when point is within a function definition, and if it is, to return
14652 the count for that definition. This adds complexity to the
14653 definition, but saves us from needing to pass arguments to the
14654 function.
14655
14656 @need 1250
14657 These considerations lead us to prepare the following template:
14658
14659 @smallexample
14660 @group
14661 (defun count-words-in-defun ()
14662 "@var{documentation}@dots{}"
14663 (@var{set up}@dots{}
14664 (@var{while loop}@dots{})
14665 @var{return count})
14666 @end group
14667 @end smallexample
14668
14669 @noindent
14670 As usual, our job is to fill in the slots.
14671
14672 First, the set up.
14673
14674 We are presuming that this function will be called within a buffer
14675 containing function definitions. Point will either be within a
14676 function definition or not. For @code{count-words-in-defun} to work,
14677 point must move to the beginning of the definition, a counter must
14678 start at zero, and the counting loop must stop when point reaches the
14679 end of the definition.
14680
14681 The @code{beginning-of-defun} function searches backwards for an
14682 opening delimiter such as a @samp{(} at the beginning of a line, and
14683 moves point to that position, or else to the limit of the search. In
14684 practice, this means that @code{beginning-of-defun} moves point to the
14685 beginning of an enclosing or preceding function definition, or else to
14686 the beginning of the buffer. We can use @code{beginning-of-defun} to
14687 place point where we wish to start.
14688
14689 The @code{while} loop requires a counter to keep track of the words or
14690 symbols being counted. A @code{let} expression can be used to create
14691 a local variable for this purpose, and bind it to an initial value of zero.
14692
14693 The @code{end-of-defun} function works like @code{beginning-of-defun}
14694 except that it moves point to the end of the definition.
14695 @code{end-of-defun} can be used as part of an expression that
14696 determines the position of the end of the definition.
14697
14698 The set up for @code{count-words-in-defun} takes shape rapidly: first
14699 we move point to the beginning of the definition, then we create a
14700 local variable to hold the count, and finally, we record the position
14701 of the end of the definition so the @code{while} loop will know when to stop
14702 looping.
14703
14704 @need 1250
14705 The code looks like this:
14706
14707 @smallexample
14708 @group
14709 (beginning-of-defun)
14710 (let ((count 0)
14711 (end (save-excursion (end-of-defun) (point))))
14712 @end group
14713 @end smallexample
14714
14715 @noindent
14716 The code is simple. The only slight complication is likely to concern
14717 @code{end}: it is bound to the position of the end of the definition
14718 by a @code{save-excursion} expression that returns the value of point
14719 after @code{end-of-defun} temporarily moves it to the end of the
14720 definition.
14721
14722 The second part of the @code{count-words-in-defun}, after the set up,
14723 is the @code{while} loop.
14724
14725 The loop must contain an expression that jumps point forward word by
14726 word and symbol by symbol, and another expression that counts the
14727 jumps. The true-or-false-test for the @code{while} loop should test
14728 true so long as point should jump forward, and false when point is at
14729 the end of the definition. We have already redefined the regular
14730 expression for this, so the loop is straightforward:
14731
14732 @smallexample
14733 @group
14734 (while (and (< (point) end)
14735 (re-search-forward
14736 "\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*" end t))
14737 (setq count (1+ count)))
14738 @end group
14739 @end smallexample
14740
14741 The third part of the function definition returns the count of words
14742 and symbols. This part is the last expression within the body of the
14743 @code{let} expression, and can be, very simply, the local variable
14744 @code{count}, which when evaluated returns the count.
14745
14746 @need 1250
14747 Put together, the @code{count-words-in-defun} definition looks like this:
14748
14749 @findex count-words-in-defun
14750 @smallexample
14751 @group
14752 (defun count-words-in-defun ()
14753 "Return the number of words and symbols in a defun."
14754 (beginning-of-defun)
14755 (let ((count 0)
14756 (end (save-excursion (end-of-defun) (point))))
14757 @end group
14758 @group
14759 (while
14760 (and (< (point) end)
14761 (re-search-forward
14762 "\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*"
14763 end t))
14764 (setq count (1+ count)))
14765 count))
14766 @end group
14767 @end smallexample
14768
14769 How to test this? The function is not interactive, but it is easy to
14770 put a wrapper around the function to make it interactive; we can use
14771 almost the same code as for the recursive version of
14772 @code{@value{COUNT-WORDS}}:
14773
14774 @smallexample
14775 @group
14776 ;;; @r{Interactive version.}
14777 (defun count-words-defun ()
14778 "Number of words and symbols in a function definition."
14779 (interactive)
14780 (message
14781 "Counting words and symbols in function definition ... ")
14782 @end group
14783 @group
14784 (let ((count (count-words-in-defun)))
14785 (cond
14786 ((zerop count)
14787 (message
14788 "The definition does NOT have any words or symbols."))
14789 @end group
14790 @group
14791 ((= 1 count)
14792 (message
14793 "The definition has 1 word or symbol."))
14794 (t
14795 (message
14796 "The definition has %d words or symbols." count)))))
14797 @end group
14798 @end smallexample
14799
14800 @need 800
14801 @noindent
14802 Let's re-use @kbd{C-c =} as a convenient keybinding:
14803
14804 @smallexample
14805 (global-set-key "\C-c=" 'count-words-defun)
14806 @end smallexample
14807
14808 Now we can try out @code{count-words-defun}: install both
14809 @code{count-words-in-defun} and @code{count-words-defun}, and set the
14810 keybinding, and then place the cursor within the following definition:
14811
14812 @smallexample
14813 @group
14814 (defun multiply-by-seven (number)
14815 "Multiply NUMBER by seven."
14816 (* 7 number))
14817 @result{} 10
14818 @end group
14819 @end smallexample
14820
14821 @noindent
14822 Success! The definition has 10 words and symbols.
14823
14824 The next problem is to count the numbers of words and symbols in
14825 several definitions within a single file.
14826
14827 @node Several defuns
14828 @section Count Several @code{defuns} Within a File
14829
14830 A file such as @file{simple.el} may have a hundred or more function
14831 definitions within it. Our long term goal is to collect statistics on
14832 many files, but as a first step, our immediate goal is to collect
14833 statistics on one file.
14834
14835 The information will be a series of numbers, each number being the
14836 length of a function definition. We can store the numbers in a list.
14837
14838 We know that we will want to incorporate the information regarding one
14839 file with information about many other files; this means that the
14840 function for counting definition lengths within one file need only
14841 return the list of lengths. It need not and should not display any
14842 messages.
14843
14844 The word count commands contain one expression to jump point forward
14845 word by word and another expression to count the jumps. The function
14846 to return the lengths of definitions can be designed to work the same
14847 way, with one expression to jump point forward definition by
14848 definition and another expression to construct the lengths' list.
14849
14850 This statement of the problem makes it elementary to write the
14851 function definition. Clearly, we will start the count at the
14852 beginning of the file, so the first command will be @code{(goto-char
14853 (point-min))}. Next, we start the @code{while} loop; and the
14854 true-or-false test of the loop can be a regular expression search for
14855 the next function definition---so long as the search succeeds, point
14856 is moved forward and then the body of the loop is evaluated. The body
14857 needs an expression that constructs the lengths' list. @code{cons},
14858 the list construction command, can be used to create the list. That
14859 is almost all there is to it.
14860
14861 @need 800
14862 Here is what this fragment of code looks like:
14863
14864 @smallexample
14865 @group
14866 (goto-char (point-min))
14867 (while (re-search-forward "^(defun" nil t)
14868 (setq lengths-list
14869 (cons (count-words-in-defun) lengths-list)))
14870 @end group
14871 @end smallexample
14872
14873 What we have left out is the mechanism for finding the file that
14874 contains the function definitions.
14875
14876 In previous examples, we either used this, the Info file, or we
14877 switched back and forth to some other buffer, such as the
14878 @file{*scratch*} buffer.
14879
14880 Finding a file is a new process that we have not yet discussed.
14881
14882 @node Find a File
14883 @section Find a File
14884 @cindex Find a File
14885
14886 To find a file in Emacs, you use the @kbd{C-x C-f} (@code{find-file})
14887 command. This command is almost, but not quite right for the lengths
14888 problem.
14889
14890 @need 1200
14891 Let's look at the source for @code{find-file}:
14892
14893 @smallexample
14894 @group
14895 (defun find-file (filename)
14896 "Edit file FILENAME.
14897 Switch to a buffer visiting file FILENAME,
14898 creating one if none already exists."
14899 (interactive "FFind file: ")
14900 (switch-to-buffer (find-file-noselect filename)))
14901 @end group
14902 @end smallexample
14903
14904 @noindent
14905 (The most recent version of the @code{find-file} function definition
14906 permits you to specify optional wildcards to visit multiple files; that
14907 makes the definition more complex and we will not discuss it here,
14908 since it is not relevant. You can see its source using either
14909 @kbd{M-.} (@code{find-tag}) or @kbd{C-h f} (@code{describe-function}).)
14910
14911 @ignore
14912 In Emacs 22
14913 (defun find-file (filename &optional wildcards)
14914 "Edit file FILENAME.
14915 Switch to a buffer visiting file FILENAME,
14916 creating one if none already exists.
14917 Interactively, the default if you just type RET is the current directory,
14918 but the visited file name is available through the minibuffer history:
14919 type M-n to pull it into the minibuffer.
14920
14921 Interactively, or if WILDCARDS is non-nil in a call from Lisp,
14922 expand wildcards (if any) and visit multiple files. You can
14923 suppress wildcard expansion by setting `find-file-wildcards' to nil.
14924
14925 To visit a file without any kind of conversion and without
14926 automatically choosing a major mode, use \\[find-file-literally]."
14927 (interactive (find-file-read-args "Find file: " nil))
14928 (let ((value (find-file-noselect filename nil nil wildcards)))
14929 (if (listp value)
14930 (mapcar 'switch-to-buffer (nreverse value))
14931 (switch-to-buffer value))))
14932 @end ignore
14933
14934 The definition I am showing possesses short but complete documentation
14935 and an interactive specification that prompts you for a file name when
14936 you use the command interactively. The body of the definition
14937 contains two functions, @code{find-file-noselect} and
14938 @code{switch-to-buffer}.
14939
14940 According to its documentation as shown by @kbd{C-h f} (the
14941 @code{describe-function} command), the @code{find-file-noselect}
14942 function reads the named file into a buffer and returns the buffer.
14943 (Its most recent version includes an optional wildcards argument,
14944 too, as well as another to read a file literally and an other you
14945 suppress warning messages. These optional arguments are irrelevant.)
14946
14947 However, the @code{find-file-noselect} function does not select the
14948 buffer in which it puts the file. Emacs does not switch its attention
14949 (or yours if you are using @code{find-file-noselect}) to the selected
14950 buffer. That is what @code{switch-to-buffer} does: it switches the
14951 buffer to which Emacs attention is directed; and it switches the
14952 buffer displayed in the window to the new buffer. We have discussed
14953 buffer switching elsewhere. (@xref{Switching Buffers}.)
14954
14955 In this histogram project, we do not need to display each file on the
14956 screen as the program determines the length of each definition within
14957 it. Instead of employing @code{switch-to-buffer}, we can work with
14958 @code{set-buffer}, which redirects the attention of the computer
14959 program to a different buffer but does not redisplay it on the screen.
14960 So instead of calling on @code{find-file} to do the job, we must write
14961 our own expression.
14962
14963 The task is easy: use @code{find-file-noselect} and @code{set-buffer}.
14964
14965 @node lengths-list-file
14966 @section @code{lengths-list-file} in Detail
14967
14968 The core of the @code{lengths-list-file} function is a @code{while}
14969 loop containing a function to move point forward `defun by defun' and
14970 a function to count the number of words and symbols in each defun.
14971 This core must be surrounded by functions that do various other tasks,
14972 including finding the file, and ensuring that point starts out at the
14973 beginning of the file. The function definition looks like this:
14974 @findex lengths-list-file
14975
14976 @smallexample
14977 @group
14978 (defun lengths-list-file (filename)
14979 "Return list of definitions' lengths within FILE.
14980 The returned list is a list of numbers.
14981 Each number is the number of words or
14982 symbols in one function definition."
14983 @end group
14984 @group
14985 (message "Working on `%s' ... " filename)
14986 (save-excursion
14987 (let ((buffer (find-file-noselect filename))
14988 (lengths-list))
14989 (set-buffer buffer)
14990 (setq buffer-read-only t)
14991 (widen)
14992 (goto-char (point-min))
14993 (while (re-search-forward "^(defun" nil t)
14994 (setq lengths-list
14995 (cons (count-words-in-defun) lengths-list)))
14996 (kill-buffer buffer)
14997 lengths-list)))
14998 @end group
14999 @end smallexample
15000
15001 @noindent
15002 The function is passed one argument, the name of the file on which it
15003 will work. It has four lines of documentation, but no interactive
15004 specification. Since people worry that a computer is broken if they
15005 don't see anything going on, the first line of the body is a
15006 message.
15007
15008 The next line contains a @code{save-excursion} that returns Emacs's
15009 attention to the current buffer when the function completes. This is
15010 useful in case you embed this function in another function that
15011 presumes point is restored to the original buffer.
15012
15013 In the varlist of the @code{let} expression, Emacs finds the file and
15014 binds the local variable @code{buffer} to the buffer containing the
15015 file. At the same time, Emacs creates @code{lengths-list} as a local
15016 variable.
15017
15018 Next, Emacs switches its attention to the buffer.
15019
15020 In the following line, Emacs makes the buffer read-only. Ideally,
15021 this line is not necessary. None of the functions for counting words
15022 and symbols in a function definition should change the buffer.
15023 Besides, the buffer is not going to be saved, even if it were changed.
15024 This line is entirely the consequence of great, perhaps excessive,
15025 caution. The reason for the caution is that this function and those
15026 it calls work on the sources for Emacs and it is inconvenient if they
15027 are inadvertently modified. It goes without saying that I did not
15028 realize a need for this line until an experiment went awry and started
15029 to modify my Emacs source files @dots{}
15030
15031 Next comes a call to widen the buffer if it is narrowed. This
15032 function is usually not needed---Emacs creates a fresh buffer if none
15033 already exists; but if a buffer visiting the file already exists Emacs
15034 returns that one. In this case, the buffer may be narrowed and must
15035 be widened. If we wanted to be fully `user-friendly', we would
15036 arrange to save the restriction and the location of point, but we
15037 won't.
15038
15039 The @code{(goto-char (point-min))} expression moves point to the
15040 beginning of the buffer.
15041
15042 Then comes a @code{while} loop in which the `work' of the function is
15043 carried out. In the loop, Emacs determines the length of each
15044 definition and constructs a lengths' list containing the information.
15045
15046 Emacs kills the buffer after working through it. This is to save
15047 space inside of Emacs. My version of GNU Emacs 19 contained over 300
15048 source files of interest; GNU Emacs 22 contains over a thousand source
15049 files. Another function will apply @code{lengths-list-file} to each
15050 of the files.
15051
15052 Finally, the last expression within the @code{let} expression is the
15053 @code{lengths-list} variable; its value is returned as the value of
15054 the whole function.
15055
15056 You can try this function by installing it in the usual fashion. Then
15057 place your cursor after the following expression and type @kbd{C-x
15058 C-e} (@code{eval-last-sexp}).
15059
15060 @c !!! 22.1.1 lisp sources location here
15061 @smallexample
15062 (lengths-list-file
15063 "/usr/local/share/emacs/22.1.1/lisp/emacs-lisp/debug.el")
15064 @end smallexample
15065
15066 @noindent
15067 (You may need to change the pathname of the file; the one here is for
15068 GNU Emacs version 22.1.1. To change the expression, copy it to
15069 the @file{*scratch*} buffer and edit it.
15070
15071 @need 1200
15072 @noindent
15073 (Also, to see the full length of the list, rather than a truncated
15074 version, you may have to evaluate the following:
15075
15076 @smallexample
15077 (custom-set-variables '(eval-expression-print-length nil))
15078 @end smallexample
15079
15080 @noindent
15081 (@xref{defcustom, , Specifying Variables using @code{defcustom}}.
15082 Then evaluate the @code{lengths-list-file} expression.)
15083
15084 @need 1200
15085 The lengths' list for @file{debug.el} takes less than a second to
15086 produce and looks like this in GNU Emacs 22:
15087
15088 @smallexample
15089 (83 113 105 144 289 22 30 97 48 89 25 52 52 88 28 29 77 49 43 290 232 587)
15090 @end smallexample
15091
15092 @need 1500
15093 (Using my old machine, the version 19 lengths' list for @file{debug.el}
15094 took seven seconds to produce and looked like this:
15095
15096 @smallexample
15097 (75 41 80 62 20 45 44 68 45 12 34 235)
15098 @end smallexample
15099
15100 (The newer version of @file{debug.el} contains more defuns than the
15101 earlier one; and my new machine is much faster than the old one.)
15102
15103 Note that the length of the last definition in the file is first in
15104 the list.
15105
15106 @node Several files
15107 @section Count Words in @code{defuns} in Different Files
15108
15109 In the previous section, we created a function that returns a list of
15110 the lengths of each definition in a file. Now, we want to define a
15111 function to return a master list of the lengths of the definitions in
15112 a list of files.
15113
15114 Working on each of a list of files is a repetitious act, so we can use
15115 either a @code{while} loop or recursion.
15116
15117 @menu
15118 * lengths-list-many-files:: Return a list of the lengths of defuns.
15119 * append:: Attach one list to another.
15120 @end menu
15121
15122 @ifnottex
15123 @node lengths-list-many-files
15124 @unnumberedsubsec Determine the lengths of @code{defuns}
15125 @end ifnottex
15126
15127 The design using a @code{while} loop is routine. The argument passed
15128 the function is a list of files. As we saw earlier (@pxref{Loop
15129 Example}), you can write a @code{while} loop so that the body of the
15130 loop is evaluated if such a list contains elements, but to exit the
15131 loop if the list is empty. For this design to work, the body of the
15132 loop must contain an expression that shortens the list each time the
15133 body is evaluated, so that eventually the list is empty. The usual
15134 technique is to set the value of the list to the value of the @sc{cdr}
15135 of the list each time the body is evaluated.
15136
15137 @need 800
15138 The template looks like this:
15139
15140 @smallexample
15141 @group
15142 (while @var{test-whether-list-is-empty}
15143 @var{body}@dots{}
15144 @var{set-list-to-cdr-of-list})
15145 @end group
15146 @end smallexample
15147
15148 Also, we remember that a @code{while} loop returns @code{nil} (the
15149 result of evaluating the true-or-false-test), not the result of any
15150 evaluation within its body. (The evaluations within the body of the
15151 loop are done for their side effects.) However, the expression that
15152 sets the lengths' list is part of the body---and that is the value
15153 that we want returned by the function as a whole. To do this, we
15154 enclose the @code{while} loop within a @code{let} expression, and
15155 arrange that the last element of the @code{let} expression contains
15156 the value of the lengths' list. (@xref{Incrementing Example, , Loop
15157 Example with an Incrementing Counter}.)
15158
15159 @findex lengths-list-many-files
15160 @need 1250
15161 These considerations lead us directly to the function itself:
15162
15163 @smallexample
15164 @group
15165 ;;; @r{Use @code{while} loop.}
15166 (defun lengths-list-many-files (list-of-files)
15167 "Return list of lengths of defuns in LIST-OF-FILES."
15168 @end group
15169 @group
15170 (let (lengths-list)
15171
15172 ;;; @r{true-or-false-test}
15173 (while list-of-files
15174 (setq lengths-list
15175 (append
15176 lengths-list
15177
15178 ;;; @r{Generate a lengths' list.}
15179 (lengths-list-file
15180 (expand-file-name (car list-of-files)))))
15181 @end group
15182
15183 @group
15184 ;;; @r{Make files' list shorter.}
15185 (setq list-of-files (cdr list-of-files)))
15186
15187 ;;; @r{Return final value of lengths' list.}
15188 lengths-list))
15189 @end group
15190 @end smallexample
15191
15192 @code{expand-file-name} is a built-in function that converts a file
15193 name to the absolute, long, path name form. The function employs the
15194 name of the directory in which the function is called.
15195
15196 @c !!! 22.1.1 lisp sources location here
15197 @need 1500
15198 Thus, if @code{expand-file-name} is called on @code{debug.el} when
15199 Emacs is visiting the
15200 @file{/usr/local/share/emacs/22.1.1/lisp/emacs-lisp/} directory,
15201
15202 @smallexample
15203 debug.el
15204 @end smallexample
15205
15206 @need 800
15207 @noindent
15208 becomes
15209
15210 @c !!! 22.1.1 lisp sources location here
15211 @smallexample
15212 /usr/local/share/emacs/22.1.1/lisp/emacs-lisp/debug.el
15213 @end smallexample
15214
15215 The only other new element of this function definition is the as yet
15216 unstudied function @code{append}, which merits a short section for
15217 itself.
15218
15219 @node append
15220 @subsection The @code{append} Function
15221
15222 @need 800
15223 The @code{append} function attaches one list to another. Thus,
15224
15225 @smallexample
15226 (append '(1 2 3 4) '(5 6 7 8))
15227 @end smallexample
15228
15229 @need 800
15230 @noindent
15231 produces the list
15232
15233 @smallexample
15234 (1 2 3 4 5 6 7 8)
15235 @end smallexample
15236
15237 This is exactly how we want to attach two lengths' lists produced by
15238 @code{lengths-list-file} to each other. The results contrast with
15239 @code{cons},
15240
15241 @smallexample
15242 (cons '(1 2 3 4) '(5 6 7 8))
15243 @end smallexample
15244
15245 @need 1250
15246 @noindent
15247 which constructs a new list in which the first argument to @code{cons}
15248 becomes the first element of the new list:
15249
15250 @smallexample
15251 ((1 2 3 4) 5 6 7 8)
15252 @end smallexample
15253
15254 @node Several files recursively
15255 @section Recursively Count Words in Different Files
15256
15257 Besides a @code{while} loop, you can work on each of a list of files
15258 with recursion. A recursive version of @code{lengths-list-many-files}
15259 is short and simple.
15260
15261 The recursive function has the usual parts: the `do-again-test', the
15262 `next-step-expression', and the recursive call. The `do-again-test'
15263 determines whether the function should call itself again, which it
15264 will do if the @code{list-of-files} contains any remaining elements;
15265 the `next-step-expression' resets the @code{list-of-files} to the
15266 @sc{cdr} of itself, so eventually the list will be empty; and the
15267 recursive call calls itself on the shorter list. The complete
15268 function is shorter than this description!
15269 @findex recursive-lengths-list-many-files
15270
15271 @smallexample
15272 @group
15273 (defun recursive-lengths-list-many-files (list-of-files)
15274 "Return list of lengths of each defun in LIST-OF-FILES."
15275 (if list-of-files ; @r{do-again-test}
15276 (append
15277 (lengths-list-file
15278 (expand-file-name (car list-of-files)))
15279 (recursive-lengths-list-many-files
15280 (cdr list-of-files)))))
15281 @end group
15282 @end smallexample
15283
15284 @noindent
15285 In a sentence, the function returns the lengths' list for the first of
15286 the @code{list-of-files} appended to the result of calling itself on
15287 the rest of the @code{list-of-files}.
15288
15289 Here is a test of @code{recursive-lengths-list-many-files}, along with
15290 the results of running @code{lengths-list-file} on each of the files
15291 individually.
15292
15293 Install @code{recursive-lengths-list-many-files} and
15294 @code{lengths-list-file}, if necessary, and then evaluate the
15295 following expressions. You may need to change the files' pathnames;
15296 those here work when this Info file and the Emacs sources are located
15297 in their customary places. To change the expressions, copy them to
15298 the @file{*scratch*} buffer, edit them, and then evaluate them.
15299
15300 The results are shown after the @samp{@result{}}. (These results are
15301 for files from Emacs version 22.1.1; files from other versions of
15302 Emacs may produce different results.)
15303
15304 @c !!! 22.1.1 lisp sources location here
15305 @smallexample
15306 @group
15307 (cd "/usr/local/share/emacs/22.1.1/")
15308
15309 (lengths-list-file "./lisp/macros.el")
15310 @result{} (283 263 480 90)
15311 @end group
15312
15313 @group
15314 (lengths-list-file "./lisp/mail/mailalias.el")
15315 @result{} (38 32 29 95 178 180 321 218 324)
15316 @end group
15317
15318 @group
15319 (lengths-list-file "./lisp/makesum.el")
15320 @result{} (85 181)
15321 @end group
15322
15323 @group
15324 (recursive-lengths-list-many-files
15325 '("./lisp/macros.el"
15326 "./lisp/mail/mailalias.el"
15327 "./lisp/makesum.el"))
15328 @result{} (283 263 480 90 38 32 29 95 178 180 321 218 324 85 181)
15329 @end group
15330 @end smallexample
15331
15332 The @code{recursive-lengths-list-many-files} function produces the
15333 output we want.
15334
15335 The next step is to prepare the data in the list for display in a graph.
15336
15337 @node Prepare the data
15338 @section Prepare the Data for Display in a Graph
15339
15340 The @code{recursive-lengths-list-many-files} function returns a list
15341 of numbers. Each number records the length of a function definition.
15342 What we need to do now is transform this data into a list of numbers
15343 suitable for generating a graph. The new list will tell how many
15344 functions definitions contain less than 10 words and
15345 symbols, how many contain between 10 and 19 words and symbols, how
15346 many contain between 20 and 29 words and symbols, and so on.
15347
15348 In brief, we need to go through the lengths' list produced by the
15349 @code{recursive-lengths-list-many-files} function and count the number
15350 of defuns within each range of lengths, and produce a list of those
15351 numbers.
15352
15353 @menu
15354 * Data for Display in Detail::
15355 * Sorting:: Sorting lists.
15356 * Files List:: Making a list of files.
15357 * Counting function definitions::
15358 @end menu
15359
15360 @ifnottex
15361 @node Data for Display in Detail
15362 @unnumberedsubsec The Data for Display in Detail
15363 @end ifnottex
15364
15365 Based on what we have done before, we can readily foresee that it
15366 should not be too hard to write a function that `@sc{cdr}s' down the
15367 lengths' list, looks at each element, determines which length range it
15368 is in, and increments a counter for that range.
15369
15370 However, before beginning to write such a function, we should consider
15371 the advantages of sorting the lengths' list first, so the numbers are
15372 ordered from smallest to largest. First, sorting will make it easier
15373 to count the numbers in each range, since two adjacent numbers will
15374 either be in the same length range or in adjacent ranges. Second, by
15375 inspecting a sorted list, we can discover the highest and lowest
15376 number, and thereby determine the largest and smallest length range
15377 that we will need.
15378
15379 @node Sorting
15380 @subsection Sorting Lists
15381 @findex sort
15382
15383 Emacs contains a function to sort lists, called (as you might guess)
15384 @code{sort}. The @code{sort} function takes two arguments, the list
15385 to be sorted, and a predicate that determines whether the first of
15386 two list elements is ``less'' than the second.
15387
15388 As we saw earlier (@pxref{Wrong Type of Argument, , Using the Wrong
15389 Type Object as an Argument}), a predicate is a function that
15390 determines whether some property is true or false. The @code{sort}
15391 function will reorder a list according to whatever property the
15392 predicate uses; this means that @code{sort} can be used to sort
15393 non-numeric lists by non-numeric criteria---it can, for example,
15394 alphabetize a list.
15395
15396 @need 1250
15397 The @code{<} function is used when sorting a numeric list. For example,
15398
15399 @smallexample
15400 (sort '(4 8 21 17 33 7 21 7) '<)
15401 @end smallexample
15402
15403 @need 800
15404 @noindent
15405 produces this:
15406
15407 @smallexample
15408 (4 7 7 8 17 21 21 33)
15409 @end smallexample
15410
15411 @noindent
15412 (Note that in this example, both the arguments are quoted so that the
15413 symbols are not evaluated before being passed to @code{sort} as
15414 arguments.)
15415
15416 Sorting the list returned by the
15417 @code{recursive-lengths-list-many-files} function is straightforward;
15418 it uses the @code{<} function:
15419
15420 @ignore
15421 2006 Oct 29
15422 In GNU Emacs 22, eval
15423 (progn
15424 (cd "/usr/local/share/emacs/22.0.50/")
15425 (sort
15426 (recursive-lengths-list-many-files
15427 '("./lisp/macros.el"
15428 "./lisp/mail/mailalias.el"
15429 "./lisp/makesum.el"))
15430 '<))
15431
15432 @end ignore
15433
15434 @smallexample
15435 @group
15436 (sort
15437 (recursive-lengths-list-many-files
15438 '("./lisp/macros.el"
15439 "./lisp/mailalias.el"
15440 "./lisp/makesum.el"))
15441 '<)
15442 @end group
15443 @end smallexample
15444
15445 @need 800
15446 @noindent
15447 which produces:
15448
15449 @smallexample
15450 (29 32 38 85 90 95 178 180 181 218 263 283 321 324 480)
15451 @end smallexample
15452
15453 @noindent
15454 (Note that in this example, the first argument to @code{sort} is not
15455 quoted, since the expression must be evaluated so as to produce the
15456 list that is passed to @code{sort}.)
15457
15458 @node Files List
15459 @subsection Making a List of Files
15460
15461 The @code{recursive-lengths-list-many-files} function requires a list
15462 of files as its argument. For our test examples, we constructed such
15463 a list by hand; but the Emacs Lisp source directory is too large for
15464 us to do for that. Instead, we will write a function to do the job
15465 for us. In this function, we will use both a @code{while} loop and a
15466 recursive call.
15467
15468 @findex directory-files
15469 We did not have to write a function like this for older versions of
15470 GNU Emacs, since they placed all the @samp{.el} files in one
15471 directory. Instead, we were able to use the @code{directory-files}
15472 function, which lists the names of files that match a specified
15473 pattern within a single directory.
15474
15475 However, recent versions of Emacs place Emacs Lisp files in
15476 sub-directories of the top level @file{lisp} directory. This
15477 re-arrangement eases navigation. For example, all the mail related
15478 files are in a @file{lisp} sub-directory called @file{mail}. But at
15479 the same time, this arrangement forces us to create a file listing
15480 function that descends into the sub-directories.
15481
15482 @findex files-in-below-directory
15483 We can create this function, called @code{files-in-below-directory},
15484 using familiar functions such as @code{car}, @code{nthcdr}, and
15485 @code{substring} in conjunction with an existing function called
15486 @code{directory-files-and-attributes}. This latter function not only
15487 lists all the filenames in a directory, including the names
15488 of sub-directories, but also their attributes.
15489
15490 To restate our goal: to create a function that will enable us
15491 to feed filenames to @code{recursive-lengths-list-many-files}
15492 as a list that looks like this (but with more elements):
15493
15494 @smallexample
15495 @group
15496 ("./lisp/macros.el"
15497 "./lisp/mail/rmail.el"
15498 "./lisp/makesum.el")
15499 @end group
15500 @end smallexample
15501
15502 The @code{directory-files-and-attributes} function returns a list of
15503 lists. Each of the lists within the main list consists of 13
15504 elements. The first element is a string that contains the name of the
15505 file---which, in GNU/Linux, may be a `directory file', that is to
15506 say, a file with the special attributes of a directory. The second
15507 element of the list is @code{t} for a directory, a string
15508 for symbolic link (the string is the name linked to), or @code{nil}.
15509
15510 For example, the first @samp{.el} file in the @file{lisp/} directory
15511 is @file{abbrev.el}. Its name is
15512 @file{/usr/local/share/emacs/22.1.1/lisp/abbrev.el} and it is not a
15513 directory or a symbolic link.
15514
15515 @need 1000
15516 This is how @code{directory-files-and-attributes} lists that file and
15517 its attributes:
15518
15519 @smallexample
15520 @group
15521 ("abbrev.el"
15522 nil
15523 1
15524 1000
15525 100
15526 @end group
15527 @group
15528 (20615 27034 579989 697000)
15529 (17905 55681 0 0)
15530 (20615 26327 734791 805000)
15531 13188
15532 "-rw-r--r--"
15533 @end group
15534 @group
15535 t
15536 2971624
15537 773)
15538 @end group
15539 @end smallexample
15540
15541 @need 1200
15542 On the other hand, @file{mail/} is a directory within the @file{lisp/}
15543 directory. The beginning of its listing looks like this:
15544
15545 @smallexample
15546 @group
15547 ("mail"
15548 t
15549 @dots{}
15550 )
15551 @end group
15552 @end smallexample
15553
15554 (To learn about the different attributes, look at the documentation of
15555 @code{file-attributes}. Bear in mind that the @code{file-attributes}
15556 function does not list the filename, so its first element is
15557 @code{directory-files-and-attributes}'s second element.)
15558
15559 We will want our new function, @code{files-in-below-directory}, to
15560 list the @samp{.el} files in the directory it is told to check, and in
15561 any directories below that directory.
15562
15563 This gives us a hint on how to construct
15564 @code{files-in-below-directory}: within a directory, the function
15565 should add @samp{.el} filenames to a list; and if, within a directory,
15566 the function comes upon a sub-directory, it should go into that
15567 sub-directory and repeat its actions.
15568
15569 However, we should note that every directory contains a name that
15570 refers to itself, called @file{.}, (``dot'') and a name that refers to
15571 its parent directory, called @file{..} (``double dot''). (In
15572 @file{/}, the root directory, @file{..} refers to itself, since
15573 @file{/} has no parent.) Clearly, we do not want our
15574 @code{files-in-below-directory} function to enter those directories,
15575 since they always lead us, directly or indirectly, to the current
15576 directory.
15577
15578 Consequently, our @code{files-in-below-directory} function must do
15579 several tasks:
15580
15581 @itemize @bullet
15582 @item
15583 Check to see whether it is looking at a filename that ends in
15584 @samp{.el}; and if so, add its name to a list.
15585
15586 @item
15587 Check to see whether it is looking at a filename that is the name of a
15588 directory; and if so,
15589
15590 @itemize @minus
15591 @item
15592 Check to see whether it is looking at @file{.} or @file{..}; and if
15593 so skip it.
15594
15595 @item
15596 Or else, go into that directory and repeat the process.
15597 @end itemize
15598 @end itemize
15599
15600 Let's write a function definition to do these tasks. We will use a
15601 @code{while} loop to move from one filename to another within a
15602 directory, checking what needs to be done; and we will use a recursive
15603 call to repeat the actions on each sub-directory. The recursive
15604 pattern is `accumulate'
15605 (@pxref{Accumulate}),
15606 using @code{append} as the combiner.
15607
15608 @ignore
15609 (directory-files "/usr/local/src/emacs/lisp/" t "\\.el$")
15610 (shell-command "find /usr/local/src/emacs/lisp/ -name '*.el'")
15611
15612 (directory-files "/usr/local/share/emacs/22.1.1/lisp/" t "\\.el$")
15613 (shell-command "find /usr/local/share/emacs/22.1.1/lisp/ -name '*.el'")
15614 @end ignore
15615
15616 @c /usr/local/share/emacs/22.1.1/lisp/
15617
15618 @need 800
15619 Here is the function:
15620
15621 @smallexample
15622 @group
15623 (defun files-in-below-directory (directory)
15624 "List the .el files in DIRECTORY and in its sub-directories."
15625 ;; Although the function will be used non-interactively,
15626 ;; it will be easier to test if we make it interactive.
15627 ;; The directory will have a name such as
15628 ;; "/usr/local/share/emacs/22.1.1/lisp/"
15629 (interactive "DDirectory name: ")
15630 @end group
15631 @group
15632 (let (el-files-list
15633 (current-directory-list
15634 (directory-files-and-attributes directory t)))
15635 ;; while we are in the current directory
15636 (while current-directory-list
15637 @end group
15638 @group
15639 (cond
15640 ;; check to see whether filename ends in `.el'
15641 ;; and if so, append its name to a list.
15642 ((equal ".el" (substring (car (car current-directory-list)) -3))
15643 (setq el-files-list
15644 (cons (car (car current-directory-list)) el-files-list)))
15645 @end group
15646 @group
15647 ;; check whether filename is that of a directory
15648 ((eq t (car (cdr (car current-directory-list))))
15649 ;; decide whether to skip or recurse
15650 (if
15651 (equal "."
15652 (substring (car (car current-directory-list)) -1))
15653 ;; then do nothing since filename is that of
15654 ;; current directory or parent, "." or ".."
15655 ()
15656 @end group
15657 @group
15658 ;; else descend into the directory and repeat the process
15659 (setq el-files-list
15660 (append
15661 (files-in-below-directory
15662 (car (car current-directory-list)))
15663 el-files-list)))))
15664 ;; move to the next filename in the list; this also
15665 ;; shortens the list so the while loop eventually comes to an end
15666 (setq current-directory-list (cdr current-directory-list)))
15667 ;; return the filenames
15668 el-files-list))
15669 @end group
15670 @end smallexample
15671
15672 @c (files-in-below-directory "/usr/local/src/emacs/lisp/")
15673 @c (files-in-below-directory "/usr/local/share/emacs/22.1.1/lisp/")
15674
15675 The @code{files-in-below-directory} @code{directory-files} function
15676 takes one argument, the name of a directory.
15677
15678 @need 1250
15679 Thus, on my system,
15680
15681 @c (length (files-in-below-directory "/usr/local/src/emacs/lisp/"))
15682
15683 @c !!! 22.1.1 lisp sources location here
15684 @smallexample
15685 @group
15686 (length
15687 (files-in-below-directory "/usr/local/share/emacs/22.1.1/lisp/"))
15688 @end group
15689 @end smallexample
15690
15691 @noindent
15692 tells me that in and below my Lisp sources directory are 1031
15693 @samp{.el} files.
15694
15695 @code{files-in-below-directory} returns a list in reverse alphabetical
15696 order. An expression to sort the list in alphabetical order looks
15697 like this:
15698
15699 @smallexample
15700 @group
15701 (sort
15702 (files-in-below-directory "/usr/local/share/emacs/22.1.1/lisp/")
15703 'string-lessp)
15704 @end group
15705 @end smallexample
15706
15707 @ignore
15708 (defun test ()
15709 "Test how long it takes to find lengths of all sorted elisp defuns."
15710 (insert "\n" (current-time-string) "\n")
15711 (sit-for 0)
15712 (sort
15713 (recursive-lengths-list-many-files
15714 (files-in-below-directory "/usr/local/src/emacs/lisp/"))
15715 '<)
15716 (insert (format "%s" (current-time-string))))
15717 @end ignore
15718
15719 @node Counting function definitions
15720 @subsection Counting function definitions
15721
15722 Our immediate goal is to generate a list that tells us how many
15723 function definitions contain fewer than 10 words and symbols, how many
15724 contain between 10 and 19 words and symbols, how many contain between
15725 20 and 29 words and symbols, and so on.
15726
15727 With a sorted list of numbers, this is easy: count how many elements
15728 of the list are smaller than 10, then, after moving past the numbers
15729 just counted, count how many are smaller than 20, then, after moving
15730 past the numbers just counted, count how many are smaller than 30, and
15731 so on. Each of the numbers, 10, 20, 30, 40, and the like, is one
15732 larger than the top of that range. We can call the list of such
15733 numbers the @code{top-of-ranges} list.
15734
15735 @need 1200
15736 If we wished, we could generate this list automatically, but it is
15737 simpler to write a list manually. Here it is:
15738 @vindex top-of-ranges
15739
15740 @smallexample
15741 @group
15742 (defvar top-of-ranges
15743 '(10 20 30 40 50
15744 60 70 80 90 100
15745 110 120 130 140 150
15746 160 170 180 190 200
15747 210 220 230 240 250
15748 260 270 280 290 300)
15749 "List specifying ranges for `defuns-per-range'.")
15750 @end group
15751 @end smallexample
15752
15753 To change the ranges, we edit this list.
15754
15755 Next, we need to write the function that creates the list of the
15756 number of definitions within each range. Clearly, this function must
15757 take the @code{sorted-lengths} and the @code{top-of-ranges} lists
15758 as arguments.
15759
15760 The @code{defuns-per-range} function must do two things again and
15761 again: it must count the number of definitions within a range
15762 specified by the current top-of-range value; and it must shift to the
15763 next higher value in the @code{top-of-ranges} list after counting the
15764 number of definitions in the current range. Since each of these
15765 actions is repetitive, we can use @code{while} loops for the job.
15766 One loop counts the number of definitions in the range defined by the
15767 current top-of-range value, and the other loop selects each of the
15768 top-of-range values in turn.
15769
15770 Several entries of the @code{sorted-lengths} list are counted for each
15771 range; this means that the loop for the @code{sorted-lengths} list
15772 will be inside the loop for the @code{top-of-ranges} list, like a
15773 small gear inside a big gear.
15774
15775 The inner loop counts the number of definitions within the range. It
15776 is a simple counting loop of the type we have seen before.
15777 (@xref{Incrementing Loop, , A loop with an incrementing counter}.)
15778 The true-or-false test of the loop tests whether the value from the
15779 @code{sorted-lengths} list is smaller than the current value of the
15780 top of the range. If it is, the function increments the counter and
15781 tests the next value from the @code{sorted-lengths} list.
15782
15783 @need 1250
15784 The inner loop looks like this:
15785
15786 @smallexample
15787 @group
15788 (while @var{length-element-smaller-than-top-of-range}
15789 (setq number-within-range (1+ number-within-range))
15790 (setq sorted-lengths (cdr sorted-lengths)))
15791 @end group
15792 @end smallexample
15793
15794 The outer loop must start with the lowest value of the
15795 @code{top-of-ranges} list, and then be set to each of the succeeding
15796 higher values in turn. This can be done with a loop like this:
15797
15798 @smallexample
15799 @group
15800 (while top-of-ranges
15801 @var{body-of-loop}@dots{}
15802 (setq top-of-ranges (cdr top-of-ranges)))
15803 @end group
15804 @end smallexample
15805
15806 @need 1200
15807 Put together, the two loops look like this:
15808
15809 @smallexample
15810 @group
15811 (while top-of-ranges
15812
15813 ;; @r{Count the number of elements within the current range.}
15814 (while @var{length-element-smaller-than-top-of-range}
15815 (setq number-within-range (1+ number-within-range))
15816 (setq sorted-lengths (cdr sorted-lengths)))
15817
15818 ;; @r{Move to next range.}
15819 (setq top-of-ranges (cdr top-of-ranges)))
15820 @end group
15821 @end smallexample
15822
15823 In addition, in each circuit of the outer loop, Emacs should record
15824 the number of definitions within that range (the value of
15825 @code{number-within-range}) in a list. We can use @code{cons} for
15826 this purpose. (@xref{cons, , @code{cons}}.)
15827
15828 The @code{cons} function works fine, except that the list it
15829 constructs will contain the number of definitions for the highest
15830 range at its beginning and the number of definitions for the lowest
15831 range at its end. This is because @code{cons} attaches new elements
15832 of the list to the beginning of the list, and since the two loops are
15833 working their way through the lengths' list from the lower end first,
15834 the @code{defuns-per-range-list} will end up largest number first.
15835 But we will want to print our graph with smallest values first and the
15836 larger later. The solution is to reverse the order of the
15837 @code{defuns-per-range-list}. We can do this using the
15838 @code{nreverse} function, which reverses the order of a list.
15839 @findex nreverse
15840
15841 @need 800
15842 For example,
15843
15844 @smallexample
15845 (nreverse '(1 2 3 4))
15846 @end smallexample
15847
15848 @need 800
15849 @noindent
15850 produces:
15851
15852 @smallexample
15853 (4 3 2 1)
15854 @end smallexample
15855
15856 Note that the @code{nreverse} function is ``destructive''---that is,
15857 it changes the list to which it is applied; this contrasts with the
15858 @code{car} and @code{cdr} functions, which are non-destructive. In
15859 this case, we do not want the original @code{defuns-per-range-list},
15860 so it does not matter that it is destroyed. (The @code{reverse}
15861 function provides a reversed copy of a list, leaving the original list
15862 as is.)
15863 @findex reverse
15864
15865 @need 1250
15866 Put all together, the @code{defuns-per-range} looks like this:
15867
15868 @smallexample
15869 @group
15870 (defun defuns-per-range (sorted-lengths top-of-ranges)
15871 "SORTED-LENGTHS defuns in each TOP-OF-RANGES range."
15872 (let ((top-of-range (car top-of-ranges))
15873 (number-within-range 0)
15874 defuns-per-range-list)
15875 @end group
15876
15877 @group
15878 ;; @r{Outer loop.}
15879 (while top-of-ranges
15880 @end group
15881
15882 @group
15883 ;; @r{Inner loop.}
15884 (while (and
15885 ;; @r{Need number for numeric test.}
15886 (car sorted-lengths)
15887 (< (car sorted-lengths) top-of-range))
15888 @end group
15889
15890 @group
15891 ;; @r{Count number of definitions within current range.}
15892 (setq number-within-range (1+ number-within-range))
15893 (setq sorted-lengths (cdr sorted-lengths)))
15894
15895 ;; @r{Exit inner loop but remain within outer loop.}
15896 @end group
15897
15898 @group
15899 (setq defuns-per-range-list
15900 (cons number-within-range defuns-per-range-list))
15901 (setq number-within-range 0) ; @r{Reset count to zero.}
15902 @end group
15903
15904 @group
15905 ;; @r{Move to next range.}
15906 (setq top-of-ranges (cdr top-of-ranges))
15907 ;; @r{Specify next top of range value.}
15908 (setq top-of-range (car top-of-ranges)))
15909 @end group
15910
15911 @group
15912 ;; @r{Exit outer loop and count the number of defuns larger than}
15913 ;; @r{ the largest top-of-range value.}
15914 (setq defuns-per-range-list
15915 (cons
15916 (length sorted-lengths)
15917 defuns-per-range-list))
15918 @end group
15919
15920 @group
15921 ;; @r{Return a list of the number of definitions within each range,}
15922 ;; @r{ smallest to largest.}
15923 (nreverse defuns-per-range-list)))
15924 @end group
15925 @end smallexample
15926
15927 @need 1200
15928 @noindent
15929 The function is straightforward except for one subtle feature. The
15930 true-or-false test of the inner loop looks like this:
15931
15932 @smallexample
15933 @group
15934 (and (car sorted-lengths)
15935 (< (car sorted-lengths) top-of-range))
15936 @end group
15937 @end smallexample
15938
15939 @need 800
15940 @noindent
15941 instead of like this:
15942
15943 @smallexample
15944 (< (car sorted-lengths) top-of-range)
15945 @end smallexample
15946
15947 The purpose of the test is to determine whether the first item in the
15948 @code{sorted-lengths} list is less than the value of the top of the
15949 range.
15950
15951 The simple version of the test works fine unless the
15952 @code{sorted-lengths} list has a @code{nil} value. In that case, the
15953 @code{(car sorted-lengths)} expression function returns
15954 @code{nil}. The @code{<} function cannot compare a number to
15955 @code{nil}, which is an empty list, so Emacs signals an error and
15956 stops the function from attempting to continue to execute.
15957
15958 The @code{sorted-lengths} list always becomes @code{nil} when the
15959 counter reaches the end of the list. This means that any attempt to
15960 use the @code{defuns-per-range} function with the simple version of
15961 the test will fail.
15962
15963 We solve the problem by using the @code{(car sorted-lengths)}
15964 expression in conjunction with the @code{and} expression. The
15965 @code{(car sorted-lengths)} expression returns a non-@code{nil}
15966 value so long as the list has at least one number within it, but
15967 returns @code{nil} if the list is empty. The @code{and} expression
15968 first evaluates the @code{(car sorted-lengths)} expression, and
15969 if it is @code{nil}, returns false @emph{without} evaluating the
15970 @code{<} expression. But if the @code{(car sorted-lengths)}
15971 expression returns a non-@code{nil} value, the @code{and} expression
15972 evaluates the @code{<} expression, and returns that value as the value
15973 of the @code{and} expression.
15974
15975 @c colon in printed section title causes problem in Info cross reference
15976 This way, we avoid an error.
15977 @iftex
15978 @noindent
15979 (For information about @code{and}, see
15980 @ref{kill-new function, , The @code{kill-new} function}.)
15981 @end iftex
15982 @ifinfo
15983 @noindent
15984 (@xref{kill-new function, , The @code{kill-new} function}, for
15985 information about @code{and}.)
15986 @end ifinfo
15987
15988 Here is a short test of the @code{defuns-per-range} function. First,
15989 evaluate the expression that binds (a shortened)
15990 @code{top-of-ranges} list to the list of values, then evaluate the
15991 expression for binding the @code{sorted-lengths} list, and then
15992 evaluate the @code{defuns-per-range} function.
15993
15994 @smallexample
15995 @group
15996 ;; @r{(Shorter list than we will use later.)}
15997 (setq top-of-ranges
15998 '(110 120 130 140 150
15999 160 170 180 190 200))
16000
16001 (setq sorted-lengths
16002 '(85 86 110 116 122 129 154 176 179 200 265 300 300))
16003
16004 (defuns-per-range sorted-lengths top-of-ranges)
16005 @end group
16006 @end smallexample
16007
16008 @need 800
16009 @noindent
16010 The list returned looks like this:
16011
16012 @smallexample
16013 (2 2 2 0 0 1 0 2 0 0 4)
16014 @end smallexample
16015
16016 @noindent
16017 Indeed, there are two elements of the @code{sorted-lengths} list
16018 smaller than 110, two elements between 110 and 119, two elements
16019 between 120 and 129, and so on. There are four elements with a value
16020 of 200 or larger.
16021
16022 @c The next step is to turn this numbers' list into a graph.
16023 @node Readying a Graph
16024 @chapter Readying a Graph
16025 @cindex Readying a graph
16026 @cindex Graph prototype
16027 @cindex Prototype graph
16028 @cindex Body of graph
16029
16030 Our goal is to construct a graph showing the numbers of function
16031 definitions of various lengths in the Emacs lisp sources.
16032
16033 As a practical matter, if you were creating a graph, you would
16034 probably use a program such as @code{gnuplot} to do the job.
16035 (@code{gnuplot} is nicely integrated into GNU Emacs.) In this case,
16036 however, we create one from scratch, and in the process we will
16037 re-acquaint ourselves with some of what we learned before and learn
16038 more.
16039
16040 In this chapter, we will first write a simple graph printing function.
16041 This first definition will be a @dfn{prototype}, a rapidly written
16042 function that enables us to reconnoiter this unknown graph-making
16043 territory. We will discover dragons, or find that they are myth.
16044 After scouting the terrain, we will feel more confident and enhance
16045 the function to label the axes automatically.
16046
16047 @menu
16048 * Columns of a graph::
16049 * graph-body-print:: How to print the body of a graph.
16050 * recursive-graph-body-print::
16051 * Printed Axes::
16052 * Line Graph Exercise::
16053 @end menu
16054
16055 @ifnottex
16056 @node Columns of a graph
16057 @unnumberedsec Printing the Columns of a Graph
16058 @end ifnottex
16059
16060 Since Emacs is designed to be flexible and work with all kinds of
16061 terminals, including character-only terminals, the graph will need to
16062 be made from one of the `typewriter' symbols. An asterisk will do; as
16063 we enhance the graph-printing function, we can make the choice of
16064 symbol a user option.
16065
16066 We can call this function @code{graph-body-print}; it will take a
16067 @code{numbers-list} as its only argument. At this stage, we will not
16068 label the graph, but only print its body.
16069
16070 The @code{graph-body-print} function inserts a vertical column of
16071 asterisks for each element in the @code{numbers-list}. The height of
16072 each line is determined by the value of that element of the
16073 @code{numbers-list}.
16074
16075 Inserting columns is a repetitive act; that means that this function can
16076 be written either with a @code{while} loop or recursively.
16077
16078 Our first challenge is to discover how to print a column of asterisks.
16079 Usually, in Emacs, we print characters onto a screen horizontally,
16080 line by line, by typing. We have two routes we can follow: write our
16081 own column-insertion function or discover whether one exists in Emacs.
16082
16083 To see whether there is one in Emacs, we can use the @kbd{M-x apropos}
16084 command. This command is like the @kbd{C-h a} (@code{command-apropos})
16085 command, except that the latter finds only those functions that are
16086 commands. The @kbd{M-x apropos} command lists all symbols that match
16087 a regular expression, including functions that are not interactive.
16088 @findex apropos
16089
16090 What we want to look for is some command that prints or inserts
16091 columns. Very likely, the name of the function will contain either
16092 the word `print' or the word `insert' or the word `column'.
16093 Therefore, we can simply type @kbd{M-x apropos RET
16094 print\|insert\|column RET} and look at the result. On my system, this
16095 command once too takes quite some time, and then produced a list of 79
16096 functions and variables. Now it does not take much time at all and
16097 produces a list of 211 functions and variables. Scanning down the
16098 list, the only function that looks as if it might do the job is
16099 @code{insert-rectangle}.
16100
16101 @need 1200
16102 Indeed, this is the function we want; its documentation says:
16103
16104 @smallexample
16105 @group
16106 insert-rectangle:
16107 Insert text of RECTANGLE with upper left corner at point.
16108 RECTANGLE's first line is inserted at point,
16109 its second line is inserted at a point vertically under point, etc.
16110 RECTANGLE should be a list of strings.
16111 After this command, the mark is at the upper left corner
16112 and point is at the lower right corner.
16113 @end group
16114 @end smallexample
16115
16116 We can run a quick test, to make sure it does what we expect of it.
16117
16118 Here is the result of placing the cursor after the
16119 @code{insert-rectangle} expression and typing @kbd{C-u C-x C-e}
16120 (@code{eval-last-sexp}). The function inserts the strings
16121 @samp{"first"}, @samp{"second"}, and @samp{"third"} at and below
16122 point. Also the function returns @code{nil}.
16123
16124 @smallexample
16125 @group
16126 (insert-rectangle '("first" "second" "third"))first
16127 second
16128 thirdnil
16129 @end group
16130 @end smallexample
16131
16132 @noindent
16133 Of course, we won't be inserting the text of the
16134 @code{insert-rectangle} expression itself into the buffer in which we
16135 are making the graph, but will call the function from our program. We
16136 shall, however, have to make sure that point is in the buffer at the
16137 place where the @code{insert-rectangle} function will insert its
16138 column of strings.
16139
16140 If you are reading this in Info, you can see how this works by
16141 switching to another buffer, such as the @file{*scratch*} buffer,
16142 placing point somewhere in the buffer, typing @kbd{M-:}, typing the
16143 @code{insert-rectangle} expression into the minibuffer at the prompt,
16144 and then typing @key{RET}. This causes Emacs to evaluate the
16145 expression in the minibuffer, but to use as the value of point the
16146 position of point in the @file{*scratch*} buffer. (@kbd{M-:} is the
16147 keybinding for @code{eval-expression}. Also, @code{nil} does not
16148 appear in the @file{*scratch*} buffer since the expression is
16149 evaluated in the minibuffer.)
16150
16151 We find when we do this that point ends up at the end of the last
16152 inserted line---that is to say, this function moves point as a
16153 side-effect. If we were to repeat the command, with point at this
16154 position, the next insertion would be below and to the right of the
16155 previous insertion. We don't want this! If we are going to make a
16156 bar graph, the columns need to be beside each other.
16157
16158 So we discover that each cycle of the column-inserting @code{while}
16159 loop must reposition point to the place we want it, and that place
16160 will be at the top, not the bottom, of the column. Moreover, we
16161 remember that when we print a graph, we do not expect all the columns
16162 to be the same height. This means that the top of each column may be
16163 at a different height from the previous one. We cannot simply
16164 reposition point to the same line each time, but moved over to the
16165 right---or perhaps we can@dots{}
16166
16167 We are planning to make the columns of the bar graph out of asterisks.
16168 The number of asterisks in the column is the number specified by the
16169 current element of the @code{numbers-list}. We need to construct a
16170 list of asterisks of the right length for each call to
16171 @code{insert-rectangle}. If this list consists solely of the requisite
16172 number of asterisks, then we will have position point the right number
16173 of lines above the base for the graph to print correctly. This could
16174 be difficult.
16175
16176 Alternatively, if we can figure out some way to pass
16177 @code{insert-rectangle} a list of the same length each time, then we
16178 can place point on the same line each time, but move it over one
16179 column to the right for each new column. If we do this, however, some
16180 of the entries in the list passed to @code{insert-rectangle} must be
16181 blanks rather than asterisks. For example, if the maximum height of
16182 the graph is 5, but the height of the column is 3, then
16183 @code{insert-rectangle} requires an argument that looks like this:
16184
16185 @smallexample
16186 (" " " " "*" "*" "*")
16187 @end smallexample
16188
16189 This last proposal is not so difficult, so long as we can determine
16190 the column height. There are two ways for us to specify the column
16191 height: we can arbitrarily state what it will be, which would work
16192 fine for graphs of that height; or we can search through the list of
16193 numbers and use the maximum height of the list as the maximum height
16194 of the graph. If the latter operation were difficult, then the former
16195 procedure would be easiest, but there is a function built into Emacs
16196 that determines the maximum of its arguments. We can use that
16197 function. The function is called @code{max} and it returns the
16198 largest of all its arguments, which must be numbers. Thus, for
16199 example,
16200
16201 @smallexample
16202 (max 3 4 6 5 7 3)
16203 @end smallexample
16204
16205 @noindent
16206 returns 7. (A corresponding function called @code{min} returns the
16207 smallest of all its arguments.)
16208 @findex max
16209 @findex min
16210
16211 However, we cannot simply call @code{max} on the @code{numbers-list};
16212 the @code{max} function expects numbers as its argument, not a list of
16213 numbers. Thus, the following expression,
16214
16215 @smallexample
16216 (max '(3 4 6 5 7 3))
16217 @end smallexample
16218
16219 @need 800
16220 @noindent
16221 produces the following error message;
16222
16223 @smallexample
16224 Wrong type of argument: number-or-marker-p, (3 4 6 5 7 3)
16225 @end smallexample
16226
16227 @findex apply
16228 We need a function that passes a list of arguments to a function.
16229 This function is @code{apply}. This function `applies' its first
16230 argument (a function) to its remaining arguments, the last of which
16231 may be a list.
16232
16233 @need 1250
16234 For example,
16235
16236 @smallexample
16237 (apply 'max 3 4 7 3 '(4 8 5))
16238 @end smallexample
16239
16240 @noindent
16241 returns 8.
16242
16243 (Incidentally, I don't know how you would learn of this function
16244 without a book such as this. It is possible to discover other
16245 functions, like @code{search-forward} or @code{insert-rectangle}, by
16246 guessing at a part of their names and then using @code{apropos}. Even
16247 though its base in metaphor is clear---`apply' its first argument to
16248 the rest---I doubt a novice would come up with that particular word
16249 when using @code{apropos} or other aid. Of course, I could be wrong;
16250 after all, the function was first named by someone who had to invent
16251 it.)
16252
16253 The second and subsequent arguments to @code{apply} are optional, so
16254 we can use @code{apply} to call a function and pass the elements of a
16255 list to it, like this, which also returns 8:
16256
16257 @smallexample
16258 (apply 'max '(4 8 5))
16259 @end smallexample
16260
16261 This latter way is how we will use @code{apply}. The
16262 @code{recursive-lengths-list-many-files} function returns a numbers'
16263 list to which we can apply @code{max} (we could also apply @code{max} to
16264 the sorted numbers' list; it does not matter whether the list is
16265 sorted or not.)
16266
16267 @need 800
16268 Hence, the operation for finding the maximum height of the graph is this:
16269
16270 @smallexample
16271 (setq max-graph-height (apply 'max numbers-list))
16272 @end smallexample
16273
16274 Now we can return to the question of how to create a list of strings
16275 for a column of the graph. Told the maximum height of the graph
16276 and the number of asterisks that should appear in the column, the
16277 function should return a list of strings for the
16278 @code{insert-rectangle} command to insert.
16279
16280 Each column is made up of asterisks or blanks. Since the function is
16281 passed the value of the height of the column and the number of
16282 asterisks in the column, the number of blanks can be found by
16283 subtracting the number of asterisks from the height of the column.
16284 Given the number of blanks and the number of asterisks, two
16285 @code{while} loops can be used to construct the list:
16286
16287 @smallexample
16288 @group
16289 ;;; @r{First version.}
16290 (defun column-of-graph (max-graph-height actual-height)
16291 "Return list of strings that is one column of a graph."
16292 (let ((insert-list nil)
16293 (number-of-top-blanks
16294 (- max-graph-height actual-height)))
16295 @end group
16296
16297 @group
16298 ;; @r{Fill in asterisks.}
16299 (while (> actual-height 0)
16300 (setq insert-list (cons "*" insert-list))
16301 (setq actual-height (1- actual-height)))
16302 @end group
16303
16304 @group
16305 ;; @r{Fill in blanks.}
16306 (while (> number-of-top-blanks 0)
16307 (setq insert-list (cons " " insert-list))
16308 (setq number-of-top-blanks
16309 (1- number-of-top-blanks)))
16310 @end group
16311
16312 @group
16313 ;; @r{Return whole list.}
16314 insert-list))
16315 @end group
16316 @end smallexample
16317
16318 If you install this function and then evaluate the following
16319 expression you will see that it returns the list as desired:
16320
16321 @smallexample
16322 (column-of-graph 5 3)
16323 @end smallexample
16324
16325 @need 800
16326 @noindent
16327 returns
16328
16329 @smallexample
16330 (" " " " "*" "*" "*")
16331 @end smallexample
16332
16333 As written, @code{column-of-graph} contains a major flaw: the symbols
16334 used for the blank and for the marked entries in the column are
16335 `hard-coded' as a space and asterisk. This is fine for a prototype,
16336 but you, or another user, may wish to use other symbols. For example,
16337 in testing the graph function, you many want to use a period in place
16338 of the space, to make sure the point is being repositioned properly
16339 each time the @code{insert-rectangle} function is called; or you might
16340 want to substitute a @samp{+} sign or other symbol for the asterisk.
16341 You might even want to make a graph-column that is more than one
16342 display column wide. The program should be more flexible. The way to
16343 do that is to replace the blank and the asterisk with two variables
16344 that we can call @code{graph-blank} and @code{graph-symbol} and define
16345 those variables separately.
16346
16347 Also, the documentation is not well written. These considerations
16348 lead us to the second version of the function:
16349
16350 @smallexample
16351 @group
16352 (defvar graph-symbol "*"
16353 "String used as symbol in graph, usually an asterisk.")
16354 @end group
16355
16356 @group
16357 (defvar graph-blank " "
16358 "String used as blank in graph, usually a blank space.
16359 graph-blank must be the same number of columns wide
16360 as graph-symbol.")
16361 @end group
16362 @end smallexample
16363
16364 @noindent
16365 (For an explanation of @code{defvar}, see
16366 @ref{defvar, , Initializing a Variable with @code{defvar}}.)
16367
16368 @smallexample
16369 @group
16370 ;;; @r{Second version.}
16371 (defun column-of-graph (max-graph-height actual-height)
16372 "Return MAX-GRAPH-HEIGHT strings; ACTUAL-HEIGHT are graph-symbols.
16373
16374 @end group
16375 @group
16376 The graph-symbols are contiguous entries at the end
16377 of the list.
16378 The list will be inserted as one column of a graph.
16379 The strings are either graph-blank or graph-symbol."
16380 @end group
16381
16382 @group
16383 (let ((insert-list nil)
16384 (number-of-top-blanks
16385 (- max-graph-height actual-height)))
16386 @end group
16387
16388 @group
16389 ;; @r{Fill in @code{graph-symbols}.}
16390 (while (> actual-height 0)
16391 (setq insert-list (cons graph-symbol insert-list))
16392 (setq actual-height (1- actual-height)))
16393 @end group
16394
16395 @group
16396 ;; @r{Fill in @code{graph-blanks}.}
16397 (while (> number-of-top-blanks 0)
16398 (setq insert-list (cons graph-blank insert-list))
16399 (setq number-of-top-blanks
16400 (1- number-of-top-blanks)))
16401
16402 ;; @r{Return whole list.}
16403 insert-list))
16404 @end group
16405 @end smallexample
16406
16407 If we wished, we could rewrite @code{column-of-graph} a third time to
16408 provide optionally for a line graph as well as for a bar graph. This
16409 would not be hard to do. One way to think of a line graph is that it
16410 is no more than a bar graph in which the part of each bar that is
16411 below the top is blank. To construct a column for a line graph, the
16412 function first constructs a list of blanks that is one shorter than
16413 the value, then it uses @code{cons} to attach a graph symbol to the
16414 list; then it uses @code{cons} again to attach the `top blanks' to
16415 the list.
16416
16417 It is easy to see how to write such a function, but since we don't
16418 need it, we will not do it. But the job could be done, and if it were
16419 done, it would be done with @code{column-of-graph}. Even more
16420 important, it is worth noting that few changes would have to be made
16421 anywhere else. The enhancement, if we ever wish to make it, is
16422 simple.
16423
16424 Now, finally, we come to our first actual graph printing function.
16425 This prints the body of a graph, not the labels for the vertical and
16426 horizontal axes, so we can call this @code{graph-body-print}.
16427
16428 @node graph-body-print
16429 @section The @code{graph-body-print} Function
16430 @findex graph-body-print
16431
16432 After our preparation in the preceding section, the
16433 @code{graph-body-print} function is straightforward. The function
16434 will print column after column of asterisks and blanks, using the
16435 elements of a numbers' list to specify the number of asterisks in each
16436 column. This is a repetitive act, which means we can use a
16437 decrementing @code{while} loop or recursive function for the job. In
16438 this section, we will write the definition using a @code{while} loop.
16439
16440 The @code{column-of-graph} function requires the height of the graph
16441 as an argument, so we should determine and record that as a local variable.
16442
16443 This leads us to the following template for the @code{while} loop
16444 version of this function:
16445
16446 @smallexample
16447 @group
16448 (defun graph-body-print (numbers-list)
16449 "@var{documentation}@dots{}"
16450 (let ((height @dots{}
16451 @dots{}))
16452 @end group
16453
16454 @group
16455 (while numbers-list
16456 @var{insert-columns-and-reposition-point}
16457 (setq numbers-list (cdr numbers-list)))))
16458 @end group
16459 @end smallexample
16460
16461 @noindent
16462 We need to fill in the slots of the template.
16463
16464 Clearly, we can use the @code{(apply 'max numbers-list)} expression to
16465 determine the height of the graph.
16466
16467 The @code{while} loop will cycle through the @code{numbers-list} one
16468 element at a time. As it is shortened by the @code{(setq numbers-list
16469 (cdr numbers-list))} expression, the @sc{car} of each instance of the
16470 list is the value of the argument for @code{column-of-graph}.
16471
16472 At each cycle of the @code{while} loop, the @code{insert-rectangle}
16473 function inserts the list returned by @code{column-of-graph}. Since
16474 the @code{insert-rectangle} function moves point to the lower right of
16475 the inserted rectangle, we need to save the location of point at the
16476 time the rectangle is inserted, move back to that position after the
16477 rectangle is inserted, and then move horizontally to the next place
16478 from which @code{insert-rectangle} is called.
16479
16480 If the inserted columns are one character wide, as they will be if
16481 single blanks and asterisks are used, the repositioning command is
16482 simply @code{(forward-char 1)}; however, the width of a column may be
16483 greater than one. This means that the repositioning command should be
16484 written @code{(forward-char symbol-width)}. The @code{symbol-width}
16485 itself is the length of a @code{graph-blank} and can be found using
16486 the expression @code{(length graph-blank)}. The best place to bind
16487 the @code{symbol-width} variable to the value of the width of graph
16488 column is in the varlist of the @code{let} expression.
16489
16490 @need 1250
16491 These considerations lead to the following function definition:
16492
16493 @smallexample
16494 @group
16495 (defun graph-body-print (numbers-list)
16496 "Print a bar graph of the NUMBERS-LIST.
16497 The numbers-list consists of the Y-axis values."
16498
16499 (let ((height (apply 'max numbers-list))
16500 (symbol-width (length graph-blank))
16501 from-position)
16502 @end group
16503
16504 @group
16505 (while numbers-list
16506 (setq from-position (point))
16507 (insert-rectangle
16508 (column-of-graph height (car numbers-list)))
16509 (goto-char from-position)
16510 (forward-char symbol-width)
16511 @end group
16512 @group
16513 ;; @r{Draw graph column by column.}
16514 (sit-for 0)
16515 (setq numbers-list (cdr numbers-list)))
16516 @end group
16517 @group
16518 ;; @r{Place point for X axis labels.}
16519 (forward-line height)
16520 (insert "\n")
16521 ))
16522 @end group
16523 @end smallexample
16524
16525 @noindent
16526 The one unexpected expression in this function is the
16527 @w{@code{(sit-for 0)}} expression in the @code{while} loop. This
16528 expression makes the graph printing operation more interesting to
16529 watch than it would be otherwise. The expression causes Emacs to
16530 `sit' or do nothing for a zero length of time and then redraw the
16531 screen. Placed here, it causes Emacs to redraw the screen column by
16532 column. Without it, Emacs would not redraw the screen until the
16533 function exits.
16534
16535 We can test @code{graph-body-print} with a short list of numbers.
16536
16537 @enumerate
16538 @item
16539 Install @code{graph-symbol}, @code{graph-blank},
16540 @code{column-of-graph}, which are in
16541 @iftex
16542 @ref{Readying a Graph, , Readying a Graph},
16543 @end iftex
16544 @ifinfo
16545 @ref{Columns of a graph},
16546 @end ifinfo
16547 and @code{graph-body-print}.
16548
16549 @need 800
16550 @item
16551 Copy the following expression:
16552
16553 @smallexample
16554 (graph-body-print '(1 2 3 4 6 4 3 5 7 6 5 2 3))
16555 @end smallexample
16556
16557 @item
16558 Switch to the @file{*scratch*} buffer and place the cursor where you
16559 want the graph to start.
16560
16561 @item
16562 Type @kbd{M-:} (@code{eval-expression}).
16563
16564 @item
16565 Yank the @code{graph-body-print} expression into the minibuffer
16566 with @kbd{C-y} (@code{yank)}.
16567
16568 @item
16569 Press @key{RET} to evaluate the @code{graph-body-print} expression.
16570 @end enumerate
16571
16572 @need 800
16573 Emacs will print a graph like this:
16574
16575 @smallexample
16576 @group
16577 *
16578 * **
16579 * ****
16580 *** ****
16581 ********* *
16582 ************
16583 *************
16584 @end group
16585 @end smallexample
16586
16587 @node recursive-graph-body-print
16588 @section The @code{recursive-graph-body-print} Function
16589 @findex recursive-graph-body-print
16590
16591 The @code{graph-body-print} function may also be written recursively.
16592 The recursive solution is divided into two parts: an outside `wrapper'
16593 that uses a @code{let} expression to determine the values of several
16594 variables that need only be found once, such as the maximum height of
16595 the graph, and an inside function that is called recursively to print
16596 the graph.
16597
16598 @need 1250
16599 The `wrapper' is uncomplicated:
16600
16601 @smallexample
16602 @group
16603 (defun recursive-graph-body-print (numbers-list)
16604 "Print a bar graph of the NUMBERS-LIST.
16605 The numbers-list consists of the Y-axis values."
16606 (let ((height (apply 'max numbers-list))
16607 (symbol-width (length graph-blank))
16608 from-position)
16609 (recursive-graph-body-print-internal
16610 numbers-list
16611 height
16612 symbol-width)))
16613 @end group
16614 @end smallexample
16615
16616 The recursive function is a little more difficult. It has four parts:
16617 the `do-again-test', the printing code, the recursive call, and the
16618 `next-step-expression'. The `do-again-test' is a @code{when}
16619 expression that determines whether the @code{numbers-list} contains
16620 any remaining elements; if it does, the function prints one column of
16621 the graph using the printing code and calls itself again. The
16622 function calls itself again according to the value produced by the
16623 `next-step-expression' which causes the call to act on a shorter
16624 version of the @code{numbers-list}.
16625
16626 @smallexample
16627 @group
16628 (defun recursive-graph-body-print-internal
16629 (numbers-list height symbol-width)
16630 "Print a bar graph.
16631 Used within recursive-graph-body-print function."
16632 @end group
16633
16634 @group
16635 (when numbers-list
16636 (setq from-position (point))
16637 (insert-rectangle
16638 (column-of-graph height (car numbers-list)))
16639 @end group
16640 @group
16641 (goto-char from-position)
16642 (forward-char symbol-width)
16643 (sit-for 0) ; @r{Draw graph column by column.}
16644 (recursive-graph-body-print-internal
16645 (cdr numbers-list) height symbol-width)))
16646 @end group
16647 @end smallexample
16648
16649 @need 1250
16650 After installation, this expression can be tested; here is a sample:
16651
16652 @smallexample
16653 (recursive-graph-body-print '(3 2 5 6 7 5 3 4 6 4 3 2 1))
16654 @end smallexample
16655
16656 @need 800
16657 Here is what @code{recursive-graph-body-print} produces:
16658
16659 @smallexample
16660 @group
16661 *
16662 ** *
16663 **** *
16664 **** ***
16665 * *********
16666 ************
16667 *************
16668 @end group
16669 @end smallexample
16670
16671 Either of these two functions, @code{graph-body-print} or
16672 @code{recursive-graph-body-print}, create the body of a graph.
16673
16674 @node Printed Axes
16675 @section Need for Printed Axes
16676
16677 A graph needs printed axes, so you can orient yourself. For a do-once
16678 project, it may be reasonable to draw the axes by hand using Emacs's
16679 Picture mode; but a graph drawing function may be used more than once.
16680
16681 For this reason, I have written enhancements to the basic
16682 @code{print-graph-body} function that automatically print labels for
16683 the horizontal and vertical axes. Since the label printing functions
16684 do not contain much new material, I have placed their description in
16685 an appendix. @xref{Full Graph, , A Graph with Labeled Axes}.
16686
16687 @node Line Graph Exercise
16688 @section Exercise
16689
16690 Write a line graph version of the graph printing functions.
16691
16692 @node Emacs Initialization
16693 @chapter Your @file{.emacs} File
16694 @cindex @file{.emacs} file
16695 @cindex Customizing your @file{.emacs} file
16696 @cindex Initialization file
16697
16698 ``You don't have to like Emacs to like it''---this seemingly
16699 paradoxical statement is the secret of GNU Emacs. The plain, `out of
16700 the box' Emacs is a generic tool. Most people who use it, customize
16701 it to suit themselves.
16702
16703 GNU Emacs is mostly written in Emacs Lisp; this means that by writing
16704 expressions in Emacs Lisp you can change or extend Emacs.
16705
16706 @menu
16707 * Default Configuration::
16708 * Site-wide Init:: You can write site-wide init files.
16709 * defcustom:: Emacs will write code for you.
16710 * Beginning init File:: How to write a @file{.emacs} init file.
16711 * Text and Auto-fill:: Automatically wrap lines.
16712 * Mail Aliases:: Use abbreviations for email addresses.
16713 * Indent Tabs Mode:: Don't use tabs with @TeX{}
16714 * Keybindings:: Create some personal keybindings.
16715 * Keymaps:: More about key binding.
16716 * Loading Files:: Load (i.e., evaluate) files automatically.
16717 * Autoload:: Make functions available.
16718 * Simple Extension:: Define a function; bind it to a key.
16719 * X11 Colors:: Colors in X.
16720 * Miscellaneous::
16721 * Mode Line:: How to customize your mode line.
16722 @end menu
16723
16724 @ifnottex
16725 @node Default Configuration
16726 @unnumberedsec Emacs's Default Configuration
16727 @end ifnottex
16728
16729 There are those who appreciate Emacs's default configuration. After
16730 all, Emacs starts you in C mode when you edit a C file, starts you in
16731 Fortran mode when you edit a Fortran file, and starts you in
16732 Fundamental mode when you edit an unadorned file. This all makes
16733 sense, if you do not know who is going to use Emacs. Who knows what a
16734 person hopes to do with an unadorned file? Fundamental mode is the
16735 right default for such a file, just as C mode is the right default for
16736 editing C code. (Enough programming languages have syntaxes
16737 that enable them to share or nearly share features, so C mode is
16738 now provided by CC mode, the `C Collection'.)
16739
16740 But when you do know who is going to use Emacs---you,
16741 yourself---then it makes sense to customize Emacs.
16742
16743 For example, I seldom want Fundamental mode when I edit an
16744 otherwise undistinguished file; I want Text mode. This is why I
16745 customize Emacs: so it suits me.
16746
16747 You can customize and extend Emacs by writing or adapting a
16748 @file{~/.emacs} file. This is your personal initialization file; its
16749 contents, written in Emacs Lisp, tell Emacs what to do.@footnote{You
16750 may also add @file{.el} to @file{~/.emacs} and call it a
16751 @file{~/.emacs.el} file. In the past, you were forbidden to type the
16752 extra keystrokes that the name @file{~/.emacs.el} requires, but now
16753 you may. The new format is consistent with the Emacs Lisp file
16754 naming conventions; the old format saves typing.}
16755
16756 A @file{~/.emacs} file contains Emacs Lisp code. You can write this
16757 code yourself; or you can use Emacs's @code{customize} feature to write
16758 the code for you. You can combine your own expressions and
16759 auto-written Customize expressions in your @file{.emacs} file.
16760
16761 (I myself prefer to write my own expressions, except for those,
16762 particularly fonts, that I find easier to manipulate using the
16763 @code{customize} command. I combine the two methods.)
16764
16765 Most of this chapter is about writing expressions yourself. It
16766 describes a simple @file{.emacs} file; for more information, see
16767 @ref{Init File, , The Init File, emacs, The GNU Emacs Manual}, and
16768 @ref{Init File, , The Init File, elisp, The GNU Emacs Lisp Reference
16769 Manual}.
16770
16771 @node Site-wide Init
16772 @section Site-wide Initialization Files
16773
16774 @cindex @file{default.el} init file
16775 @cindex @file{site-init.el} init file
16776 @cindex @file{site-load.el} init file
16777 In addition to your personal initialization file, Emacs automatically
16778 loads various site-wide initialization files, if they exist. These
16779 have the same form as your @file{.emacs} file, but are loaded by
16780 everyone.
16781
16782 Two site-wide initialization files, @file{site-load.el} and
16783 @file{site-init.el}, are loaded into Emacs and then `dumped' if a
16784 `dumped' version of Emacs is created, as is most common. (Dumped
16785 copies of Emacs load more quickly. However, once a file is loaded and
16786 dumped, a change to it does not lead to a change in Emacs unless you
16787 load it yourself or re-dump Emacs. @xref{Building Emacs, , Building
16788 Emacs, elisp, The GNU Emacs Lisp Reference Manual}, and the
16789 @file{INSTALL} file.)
16790
16791 Three other site-wide initialization files are loaded automatically
16792 each time you start Emacs, if they exist. These are
16793 @file{site-start.el}, which is loaded @emph{before} your @file{.emacs}
16794 file, and @file{default.el}, and the terminal type file, which are both
16795 loaded @emph{after} your @file{.emacs} file.
16796
16797 Settings and definitions in your @file{.emacs} file will overwrite
16798 conflicting settings and definitions in a @file{site-start.el} file,
16799 if it exists; but the settings and definitions in a @file{default.el}
16800 or terminal type file will overwrite those in your @file{.emacs} file.
16801 (You can prevent interference from a terminal type file by setting
16802 @code{term-file-prefix} to @code{nil}. @xref{Simple Extension, , A
16803 Simple Extension}.)
16804
16805 @c Rewritten to avoid overfull hbox.
16806 The @file{INSTALL} file that comes in the distribution contains
16807 descriptions of the @file{site-init.el} and @file{site-load.el} files.
16808
16809 The @file{loadup.el}, @file{startup.el}, and @file{loaddefs.el} files
16810 control loading. These files are in the @file{lisp} directory of the
16811 Emacs distribution and are worth perusing.
16812
16813 The @file{loaddefs.el} file contains a good many suggestions as to
16814 what to put into your own @file{.emacs} file, or into a site-wide
16815 initialization file.
16816
16817 @node defcustom
16818 @section Specifying Variables using @code{defcustom}
16819 @findex defcustom
16820
16821 You can specify variables using @code{defcustom} so that you and
16822 others can then use Emacs's @code{customize} feature to set their
16823 values. (You cannot use @code{customize} to write function
16824 definitions; but you can write @code{defuns} in your @file{.emacs}
16825 file. Indeed, you can write any Lisp expression in your @file{.emacs}
16826 file.)
16827
16828 The @code{customize} feature depends on the @code{defcustom} macro.
16829 Although you can use @code{defvar} or @code{setq} for variables that
16830 users set, the @code{defcustom} macro is designed for the job.
16831
16832 You can use your knowledge of @code{defvar} for writing the
16833 first three arguments for @code{defcustom}. The first argument to
16834 @code{defcustom} is the name of the variable. The second argument is
16835 the variable's initial value, if any; and this value is set only if
16836 the value has not already been set. The third argument is the
16837 documentation.
16838
16839 The fourth and subsequent arguments to @code{defcustom} specify types
16840 and options; these are not featured in @code{defvar}. (These
16841 arguments are optional.)
16842
16843 Each of these arguments consists of a keyword followed by a value.
16844 Each keyword starts with the colon character @samp{:}.
16845
16846 @need 1250
16847 For example, the customizable user option variable
16848 @code{text-mode-hook} looks like this:
16849
16850 @smallexample
16851 @group
16852 (defcustom text-mode-hook nil
16853 "Normal hook run when entering Text mode and many related modes."
16854 :type 'hook
16855 :options '(turn-on-auto-fill flyspell-mode)
16856 :group 'wp)
16857 @end group
16858 @end smallexample
16859
16860 @noindent
16861 The name of the variable is @code{text-mode-hook}; it has no default
16862 value; and its documentation string tells you what it does.
16863
16864 The @code{:type} keyword tells Emacs the kind of data to which
16865 @code{text-mode-hook} should be set and how to display the value in a
16866 Customization buffer.
16867
16868 The @code{:options} keyword specifies a suggested list of values for
16869 the variable. Usually, @code{:options} applies to a hook.
16870 The list is only a suggestion; it is not exclusive; a person who sets
16871 the variable may set it to other values; the list shown following the
16872 @code{:options} keyword is intended to offer convenient choices to a
16873 user.
16874
16875 Finally, the @code{:group} keyword tells the Emacs Customization
16876 command in which group the variable is located. This tells where to
16877 find it.
16878
16879 The @code{defcustom} macro recognizes more than a dozen keywords.
16880 For more information, see @ref{Customization, , Writing Customization
16881 Definitions, elisp, The GNU Emacs Lisp Reference Manual}.
16882
16883 Consider @code{text-mode-hook} as an example.
16884
16885 There are two ways to customize this variable. You can use the
16886 customization command or write the appropriate expressions yourself.
16887
16888 @need 800
16889 Using the customization command, you can type:
16890
16891 @smallexample
16892 M-x customize
16893 @end smallexample
16894
16895 @noindent
16896 and find that the group for editing files of data is called `data'.
16897 Enter that group. Text Mode Hook is the first member. You can click
16898 on its various options, such as @code{turn-on-auto-fill}, to set the
16899 values. After you click on the button to
16900
16901 @smallexample
16902 Save for Future Sessions
16903 @end smallexample
16904
16905 @noindent
16906 Emacs will write an expression into your @file{.emacs} file.
16907 It will look like this:
16908
16909 @smallexample
16910 @group
16911 (custom-set-variables
16912 ;; custom-set-variables was added by Custom.
16913 ;; If you edit it by hand, you could mess it up, so be careful.
16914 ;; Your init file should contain only one such instance.
16915 ;; If there is more than one, they won't work right.
16916 '(text-mode-hook (quote (turn-on-auto-fill text-mode-hook-identify))))
16917 @end group
16918 @end smallexample
16919
16920 @noindent
16921 (The @code{text-mode-hook-identify} function tells
16922 @code{toggle-text-mode-auto-fill} which buffers are in Text mode.
16923 It comes on automatically.)
16924
16925 The @code{custom-set-variables} function works somewhat differently
16926 than a @code{setq}. While I have never learned the differences, I
16927 modify the @code{custom-set-variables} expressions in my @file{.emacs}
16928 file by hand: I make the changes in what appears to me to be a
16929 reasonable manner and have not had any problems. Others prefer to use
16930 the Customization command and let Emacs do the work for them.
16931
16932 Another @code{custom-set-@dots{}} function is @code{custom-set-faces}.
16933 This function sets the various font faces. Over time, I have set a
16934 considerable number of faces. Some of the time, I re-set them using
16935 @code{customize}; other times, I simply edit the
16936 @code{custom-set-faces} expression in my @file{.emacs} file itself.
16937
16938 The second way to customize your @code{text-mode-hook} is to set it
16939 yourself in your @file{.emacs} file using code that has nothing to do
16940 with the @code{custom-set-@dots{}} functions.
16941
16942 @need 800
16943 When you do this, and later use @code{customize}, you will see a
16944 message that says
16945
16946 @smallexample
16947 CHANGED outside Customize; operating on it here may be unreliable.
16948 @end smallexample
16949
16950 @need 800
16951 This message is only a warning. If you click on the button to
16952
16953 @smallexample
16954 Save for Future Sessions
16955 @end smallexample
16956
16957 @noindent
16958 Emacs will write a @code{custom-set-@dots{}} expression near the end
16959 of your @file{.emacs} file that will be evaluated after your
16960 hand-written expression. It will, therefore, overrule your
16961 hand-written expression. No harm will be done. When you do this,
16962 however, be careful to remember which expression is active; if you
16963 forget, you may confuse yourself.
16964
16965 So long as you remember where the values are set, you will have no
16966 trouble. In any event, the values are always set in your
16967 initialization file, which is usually called @file{.emacs}.
16968
16969 I myself use @code{customize} for hardly anything. Mostly, I write
16970 expressions myself.
16971
16972 @findex defsubst
16973 @findex defconst
16974 Incidentally, to be more complete concerning defines: @code{defsubst}
16975 defines an inline function. The syntax is just like that of
16976 @code{defun}. @code{defconst} defines a symbol as a constant. The
16977 intent is that neither programs nor users should ever change a value
16978 set by @code{defconst}. (You can change it; the value set is a
16979 variable; but please do not.)
16980
16981 @node Beginning init File
16982 @section Beginning a @file{.emacs} File
16983 @cindex @file{.emacs} file, beginning of
16984
16985 When you start Emacs, it loads your @file{.emacs} file unless you tell
16986 it not to by specifying @samp{-q} on the command line. (The
16987 @code{emacs -q} command gives you a plain, out-of-the-box Emacs.)
16988
16989 A @file{.emacs} file contains Lisp expressions. Often, these are no
16990 more than expressions to set values; sometimes they are function
16991 definitions.
16992
16993 @xref{Init File, , The Init File @file{~/.emacs}, emacs, The GNU Emacs
16994 Manual}, for a short description of initialization files.
16995
16996 This chapter goes over some of the same ground, but is a walk among
16997 extracts from a complete, long-used @file{.emacs} file---my own.
16998
16999 The first part of the file consists of comments: reminders to myself.
17000 By now, of course, I remember these things, but when I started, I did
17001 not.
17002
17003 @need 1200
17004 @smallexample
17005 @group
17006 ;;;; Bob's .emacs file
17007 ; Robert J. Chassell
17008 ; 26 September 1985
17009 @end group
17010 @end smallexample
17011
17012 @noindent
17013 Look at that date! I started this file a long time ago. I have been
17014 adding to it ever since.
17015
17016 @smallexample
17017 @group
17018 ; Each section in this file is introduced by a
17019 ; line beginning with four semicolons; and each
17020 ; entry is introduced by a line beginning with
17021 ; three semicolons.
17022 @end group
17023 @end smallexample
17024
17025 @noindent
17026 This describes the usual conventions for comments in Emacs Lisp.
17027 Everything on a line that follows a semicolon is a comment. Two,
17028 three, and four semicolons are used as subsection and section markers.
17029 (@xref{Comments, ,, elisp, The GNU Emacs Lisp Reference Manual}, for
17030 more about comments.)
17031
17032 @smallexample
17033 @group
17034 ;;;; The Help Key
17035 ; Control-h is the help key;
17036 ; after typing control-h, type a letter to
17037 ; indicate the subject about which you want help.
17038 ; For an explanation of the help facility,
17039 ; type control-h two times in a row.
17040 @end group
17041 @end smallexample
17042
17043 @noindent
17044 Just remember: type @kbd{C-h} two times for help.
17045
17046 @smallexample
17047 @group
17048 ; To find out about any mode, type control-h m
17049 ; while in that mode. For example, to find out
17050 ; about mail mode, enter mail mode and then type
17051 ; control-h m.
17052 @end group
17053 @end smallexample
17054
17055 @noindent
17056 `Mode help', as I call this, is very helpful. Usually, it tells you
17057 all you need to know.
17058
17059 Of course, you don't need to include comments like these in your
17060 @file{.emacs} file. I included them in mine because I kept forgetting
17061 about Mode help or the conventions for comments---but I was able to
17062 remember to look here to remind myself.
17063
17064 @node Text and Auto-fill
17065 @section Text and Auto Fill Mode
17066
17067 Now we come to the part that `turns on' Text mode and
17068 Auto Fill mode.
17069
17070 @smallexample
17071 @group
17072 ;;; Text mode and Auto Fill mode
17073 ;; The next two lines put Emacs into Text mode
17074 ;; and Auto Fill mode, and are for writers who
17075 ;; want to start writing prose rather than code.
17076 (setq-default major-mode 'text-mode)
17077 (add-hook 'text-mode-hook 'turn-on-auto-fill)
17078 @end group
17079 @end smallexample
17080
17081 Here is the first part of this @file{.emacs} file that does something
17082 besides remind a forgetful human!
17083
17084 The first of the two lines in parentheses tells Emacs to turn on Text
17085 mode when you find a file, @emph{unless} that file should go into some
17086 other mode, such as C mode.
17087
17088 @cindex Per-buffer, local variables list
17089 @cindex Local variables list, per-buffer,
17090 @cindex Automatic mode selection
17091 @cindex Mode selection, automatic
17092 When Emacs reads a file, it looks at the extension to the file name,
17093 if any. (The extension is the part that comes after a @samp{.}.) If
17094 the file ends with a @samp{.c} or @samp{.h} extension then Emacs turns
17095 on C mode. Also, Emacs looks at first nonblank line of the file; if
17096 the line says @w{@samp{-*- C -*-}}, Emacs turns on C mode. Emacs
17097 possesses a list of extensions and specifications that it uses
17098 automatically. In addition, Emacs looks near the last page for a
17099 per-buffer, ``local variables list'', if any.
17100
17101 @ifinfo
17102 @xref{Choosing Modes, , How Major Modes are Chosen, emacs, The GNU
17103 Emacs Manual}.
17104
17105 @xref{File Variables, , Local Variables in Files, emacs, The GNU Emacs
17106 Manual}.
17107 @end ifinfo
17108 @iftex
17109 See sections ``How Major Modes are Chosen'' and ``Local Variables in
17110 Files'' in @cite{The GNU Emacs Manual}.
17111 @end iftex
17112
17113 Now, back to the @file{.emacs} file.
17114
17115 @need 800
17116 Here is the line again; how does it work?
17117
17118 @cindex Text Mode turned on
17119 @smallexample
17120 (setq major-mode 'text-mode)
17121 @end smallexample
17122
17123 @noindent
17124 This line is a short, but complete Emacs Lisp expression.
17125
17126 We are already familiar with @code{setq}. It sets the following variable,
17127 @code{major-mode}, to the subsequent value, which is @code{text-mode}.
17128 The single quote mark before @code{text-mode} tells Emacs to deal directly
17129 with the @code{text-mode} symbol, not with whatever it might stand for.
17130 @xref{set & setq, , Setting the Value of a Variable},
17131 for a reminder of how @code{setq} works.
17132 The main point is that there is no difference between the procedure you
17133 use to set a value in your @file{.emacs} file and the procedure you use
17134 anywhere else in Emacs.
17135
17136 @need 800
17137 Here is the next line:
17138
17139 @cindex Auto Fill mode turned on
17140 @findex add-hook
17141 @smallexample
17142 (add-hook 'text-mode-hook 'turn-on-auto-fill)
17143 @end smallexample
17144
17145 @noindent
17146 In this line, the @code{add-hook} command adds
17147 @code{turn-on-auto-fill} to the variable.
17148
17149 @code{turn-on-auto-fill} is the name of a program, that, you guessed
17150 it!, turns on Auto Fill mode.
17151
17152 Every time Emacs turns on Text mode, Emacs runs the commands `hooked'
17153 onto Text mode. So every time Emacs turns on Text mode, Emacs also
17154 turns on Auto Fill mode.
17155
17156 In brief, the first line causes Emacs to enter Text mode when you edit a
17157 file, unless the file name extension, a first non-blank line, or local
17158 variables to tell Emacs otherwise.
17159
17160 Text mode among other actions, sets the syntax table to work
17161 conveniently for writers. In Text mode, Emacs considers an apostrophe
17162 as part of a word like a letter; but Emacs does not consider a period
17163 or a space as part of a word. Thus, @kbd{M-f} moves you over
17164 @samp{it's}. On the other hand, in C mode, @kbd{M-f} stops just after
17165 the @samp{t} of @samp{it's}.
17166
17167 The second line causes Emacs to turn on Auto Fill mode when it turns
17168 on Text mode. In Auto Fill mode, Emacs automatically breaks a line
17169 that is too wide and brings the excessively wide part of the line down
17170 to the next line. Emacs breaks lines between words, not within them.
17171
17172 When Auto Fill mode is turned off, lines continue to the right as you
17173 type them. Depending on how you set the value of
17174 @code{truncate-lines}, the words you type either disappear off the
17175 right side of the screen, or else are shown, in a rather ugly and
17176 unreadable manner, as a continuation line on the screen.
17177
17178 @need 1250
17179 In addition, in this part of my @file{.emacs} file, I tell the Emacs
17180 fill commands to insert two spaces after a colon:
17181
17182 @smallexample
17183 (setq colon-double-space t)
17184 @end smallexample
17185
17186 @node Mail Aliases
17187 @section Mail Aliases
17188
17189 Here is a @code{setq} that `turns on' mail aliases, along with more
17190 reminders.
17191
17192 @smallexample
17193 @group
17194 ;;; Mail mode
17195 ; To enter mail mode, type `C-x m'
17196 ; To enter RMAIL (for reading mail),
17197 ; type `M-x rmail'
17198 (setq mail-aliases t)
17199 @end group
17200 @end smallexample
17201
17202 @cindex Mail aliases
17203 @noindent
17204 This @code{setq} command sets the value of the variable
17205 @code{mail-aliases} to @code{t}. Since @code{t} means true, the line
17206 says, in effect, ``Yes, use mail aliases.''
17207
17208 Mail aliases are convenient short names for long email addresses or
17209 for lists of email addresses. The file where you keep your `aliases'
17210 is @file{~/.mailrc}. You write an alias like this:
17211
17212 @smallexample
17213 alias geo george@@foobar.wiz.edu
17214 @end smallexample
17215
17216 @noindent
17217 When you write a message to George, address it to @samp{geo}; the
17218 mailer will automatically expand @samp{geo} to the full address.
17219
17220 @node Indent Tabs Mode
17221 @section Indent Tabs Mode
17222 @cindex Tabs, preventing
17223 @findex indent-tabs-mode
17224
17225 By default, Emacs inserts tabs in place of multiple spaces when it
17226 formats a region. (For example, you might indent many lines of text
17227 all at once with the @code{indent-region} command.) Tabs look fine on
17228 a terminal or with ordinary printing, but they produce badly indented
17229 output when you use @TeX{} or Texinfo since @TeX{} ignores tabs.
17230
17231 @need 1250
17232 The following turns off Indent Tabs mode:
17233
17234 @smallexample
17235 @group
17236 ;;; Prevent Extraneous Tabs
17237 (setq-default indent-tabs-mode nil)
17238 @end group
17239 @end smallexample
17240
17241 Note that this line uses @code{setq-default} rather than the
17242 @code{setq} command that we have seen before. The @code{setq-default}
17243 command sets values only in buffers that do not have their own local
17244 values for the variable.
17245
17246 @ifinfo
17247 @xref{Just Spaces, , Tabs vs. Spaces, emacs, The GNU Emacs Manual}.
17248
17249 @xref{File Variables, , Local Variables in Files, emacs, The GNU Emacs
17250 Manual}.
17251 @end ifinfo
17252 @iftex
17253 See sections ``Tabs vs.@: Spaces'' and ``Local Variables in
17254 Files'' in @cite{The GNU Emacs Manual}.
17255 @end iftex
17256
17257 @need 1700
17258 @node Keybindings
17259 @section Some Keybindings
17260
17261 Now for some personal keybindings:
17262
17263 @smallexample
17264 @group
17265 ;;; Compare windows
17266 (global-set-key "\C-cw" 'compare-windows)
17267 @end group
17268 @end smallexample
17269
17270 @findex compare-windows
17271 @code{compare-windows} is a nifty command that compares the text in
17272 your current window with text in the next window. It makes the
17273 comparison by starting at point in each window, moving over text in
17274 each window as far as they match. I use this command all the time.
17275
17276 This also shows how to set a key globally, for all modes.
17277
17278 @cindex Setting a key globally
17279 @cindex Global set key
17280 @cindex Key setting globally
17281 @findex global-set-key
17282 The command is @code{global-set-key}. It is followed by the
17283 keybinding. In a @file{.emacs} file, the keybinding is written as
17284 shown: @code{\C-c} stands for `control-c', which means `press the
17285 control key and the @key{c} key at the same time'. The @code{w} means
17286 `press the @key{w} key'. The keybinding is surrounded by double
17287 quotation marks. In documentation, you would write this as
17288 @w{@kbd{C-c w}}. (If you were binding a @key{META} key, such as
17289 @kbd{M-c}, rather than a @key{CTRL} key, you would write
17290 @w{@code{\M-c}} in your @file{.emacs} file. @xref{Init Rebinding, ,
17291 Rebinding Keys in Your Init File, emacs, The GNU Emacs Manual}, for
17292 details.)
17293
17294 The command invoked by the keys is @code{compare-windows}. Note that
17295 @code{compare-windows} is preceded by a single quote; otherwise, Emacs
17296 would first try to evaluate the symbol to determine its value.
17297
17298 These three things, the double quotation marks, the backslash before
17299 the @samp{C}, and the single quote mark are necessary parts of
17300 keybinding that I tend to forget. Fortunately, I have come to
17301 remember that I should look at my existing @file{.emacs} file, and
17302 adapt what is there.
17303
17304 As for the keybinding itself: @kbd{C-c w}. This combines the prefix
17305 key, @kbd{C-c}, with a single character, in this case, @kbd{w}. This
17306 set of keys, @kbd{C-c} followed by a single character, is strictly
17307 reserved for individuals' own use. (I call these `own' keys, since
17308 these are for my own use.) You should always be able to create such a
17309 keybinding for your own use without stomping on someone else's
17310 keybinding. If you ever write an extension to Emacs, please avoid
17311 taking any of these keys for public use. Create a key like @kbd{C-c
17312 C-w} instead. Otherwise, we will run out of `own' keys.
17313
17314 @need 1250
17315 Here is another keybinding, with a comment:
17316
17317 @smallexample
17318 @group
17319 ;;; Keybinding for `occur'
17320 ; I use occur a lot, so let's bind it to a key:
17321 (global-set-key "\C-co" 'occur)
17322 @end group
17323 @end smallexample
17324
17325 @findex occur
17326 The @code{occur} command shows all the lines in the current buffer
17327 that contain a match for a regular expression. Matching lines are
17328 shown in a buffer called @file{*Occur*}. That buffer serves as a menu
17329 to jump to occurrences.
17330
17331 @findex global-unset-key
17332 @cindex Unbinding key
17333 @cindex Key unbinding
17334 @need 1250
17335 Here is how to unbind a key, so it does not
17336 work:
17337
17338 @smallexample
17339 @group
17340 ;;; Unbind `C-x f'
17341 (global-unset-key "\C-xf")
17342 @end group
17343 @end smallexample
17344
17345 There is a reason for this unbinding: I found I inadvertently typed
17346 @w{@kbd{C-x f}} when I meant to type @kbd{C-x C-f}. Rather than find a
17347 file, as I intended, I accidentally set the width for filled text,
17348 almost always to a width I did not want. Since I hardly ever reset my
17349 default width, I simply unbound the key.
17350
17351 @findex list-buffers, @r{rebound}
17352 @findex buffer-menu, @r{bound to key}
17353 @need 1250
17354 The following rebinds an existing key:
17355
17356 @smallexample
17357 @group
17358 ;;; Rebind `C-x C-b' for `buffer-menu'
17359 (global-set-key "\C-x\C-b" 'buffer-menu)
17360 @end group
17361 @end smallexample
17362
17363 By default, @kbd{C-x C-b} runs the
17364 @code{list-buffers} command. This command lists
17365 your buffers in @emph{another} window. Since I
17366 almost always want to do something in that
17367 window, I prefer the @code{buffer-menu}
17368 command, which not only lists the buffers,
17369 but moves point into that window.
17370
17371 @node Keymaps
17372 @section Keymaps
17373 @cindex Keymaps
17374 @cindex Rebinding keys
17375
17376 Emacs uses @dfn{keymaps} to record which keys call which commands.
17377 When you use @code{global-set-key} to set the keybinding for a single
17378 command in all parts of Emacs, you are specifying the keybinding in
17379 @code{current-global-map}.
17380
17381 Specific modes, such as C mode or Text mode, have their own keymaps;
17382 the mode-specific keymaps override the global map that is shared by
17383 all buffers.
17384
17385 The @code{global-set-key} function binds, or rebinds, the global
17386 keymap. For example, the following binds the key @kbd{C-x C-b} to the
17387 function @code{buffer-menu}:
17388
17389 @smallexample
17390 (global-set-key "\C-x\C-b" 'buffer-menu)
17391 @end smallexample
17392
17393 Mode-specific keymaps are bound using the @code{define-key} function,
17394 which takes a specific keymap as an argument, as well as the key and
17395 the command. For example, my @file{.emacs} file contains the
17396 following expression to bind the @code{texinfo-insert-@@group} command
17397 to @kbd{C-c C-c g}:
17398
17399 @smallexample
17400 @group
17401 (define-key texinfo-mode-map "\C-c\C-cg" 'texinfo-insert-@@group)
17402 @end group
17403 @end smallexample
17404
17405 @noindent
17406 The @code{texinfo-insert-@@group} function itself is a little extension
17407 to Texinfo mode that inserts @samp{@@group} into a Texinfo file. I
17408 use this command all the time and prefer to type the three strokes
17409 @kbd{C-c C-c g} rather than the six strokes @kbd{@@ g r o u p}.
17410 (@samp{@@group} and its matching @samp{@@end group} are commands that
17411 keep all enclosed text together on one page; many multi-line examples
17412 in this book are surrounded by @samp{@@group @dots{} @@end group}.)
17413
17414 @need 1250
17415 Here is the @code{texinfo-insert-@@group} function definition:
17416
17417 @smallexample
17418 @group
17419 (defun texinfo-insert-@@group ()
17420 "Insert the string @@group in a Texinfo buffer."
17421 (interactive)
17422 (beginning-of-line)
17423 (insert "@@group\n"))
17424 @end group
17425 @end smallexample
17426
17427 (Of course, I could have used Abbrev mode to save typing, rather than
17428 write a function to insert a word; but I prefer key strokes consistent
17429 with other Texinfo mode key bindings.)
17430
17431 You will see numerous @code{define-key} expressions in
17432 @file{loaddefs.el} as well as in the various mode libraries, such as
17433 @file{cc-mode.el} and @file{lisp-mode.el}.
17434
17435 @xref{Key Bindings, , Customizing Key Bindings, emacs, The GNU Emacs
17436 Manual}, and @ref{Keymaps, , Keymaps, elisp, The GNU Emacs Lisp
17437 Reference Manual}, for more information about keymaps.
17438
17439 @node Loading Files
17440 @section Loading Files
17441 @cindex Loading files
17442 @c findex load
17443
17444 Many people in the GNU Emacs community have written extensions to
17445 Emacs. As time goes by, these extensions are often included in new
17446 releases. For example, the Calendar and Diary packages are now part
17447 of the standard GNU Emacs, as is Calc.
17448
17449 You can use a @code{load} command to evaluate a complete file and
17450 thereby install all the functions and variables in the file into Emacs.
17451 For example:
17452
17453 @c (auto-compression-mode t)
17454
17455 @smallexample
17456 (load "~/emacs/slowsplit")
17457 @end smallexample
17458
17459 This evaluates, i.e., loads, the @file{slowsplit.el} file or if it
17460 exists, the faster, byte compiled @file{slowsplit.elc} file from the
17461 @file{emacs} sub-directory of your home directory. The file contains
17462 the function @code{split-window-quietly}, which John Robinson wrote in
17463 1989.
17464
17465 The @code{split-window-quietly} function splits a window with the
17466 minimum of redisplay. I installed it in 1989 because it worked well
17467 with the slow 1200 baud terminals I was then using. Nowadays, I only
17468 occasionally come across such a slow connection, but I continue to use
17469 the function because I like the way it leaves the bottom half of a
17470 buffer in the lower of the new windows and the top half in the upper
17471 window.
17472
17473 @need 1250
17474 To replace the key binding for the default
17475 @code{split-window-vertically}, you must also unset that key and bind
17476 the keys to @code{split-window-quietly}, like this:
17477
17478 @smallexample
17479 @group
17480 (global-unset-key "\C-x2")
17481 (global-set-key "\C-x2" 'split-window-quietly)
17482 @end group
17483 @end smallexample
17484
17485 @vindex load-path
17486 If you load many extensions, as I do, then instead of specifying the
17487 exact location of the extension file, as shown above, you can specify
17488 that directory as part of Emacs's @code{load-path}. Then, when Emacs
17489 loads a file, it will search that directory as well as its default
17490 list of directories. (The default list is specified in @file{paths.h}
17491 when Emacs is built.)
17492
17493 @need 1250
17494 The following command adds your @file{~/emacs} directory to the
17495 existing load path:
17496
17497 @smallexample
17498 @group
17499 ;;; Emacs Load Path
17500 (setq load-path (cons "~/emacs" load-path))
17501 @end group
17502 @end smallexample
17503
17504 Incidentally, @code{load-library} is an interactive interface to the
17505 @code{load} function. The complete function looks like this:
17506
17507 @findex load-library
17508 @smallexample
17509 @group
17510 (defun load-library (library)
17511 "Load the library named LIBRARY.
17512 This is an interface to the function `load'."
17513 (interactive
17514 (list (completing-read "Load library: "
17515 (apply-partially 'locate-file-completion-table
17516 load-path
17517 (get-load-suffixes)))))
17518 (load library))
17519 @end group
17520 @end smallexample
17521
17522 The name of the function, @code{load-library}, comes from the use of
17523 `library' as a conventional synonym for `file'. The source for the
17524 @code{load-library} command is in the @file{files.el} library.
17525
17526 Another interactive command that does a slightly different job is
17527 @code{load-file}. @xref{Lisp Libraries, , Libraries of Lisp Code for
17528 Emacs, emacs, The GNU Emacs Manual}, for information on the
17529 distinction between @code{load-library} and this command.
17530
17531 @node Autoload
17532 @section Autoloading
17533 @findex autoload
17534
17535 Instead of installing a function by loading the file that contains it,
17536 or by evaluating the function definition, you can make the function
17537 available but not actually install it until it is first called. This
17538 is called @dfn{autoloading}.
17539
17540 When you execute an autoloaded function, Emacs automatically evaluates
17541 the file that contains the definition, and then calls the function.
17542
17543 Emacs starts quicker with autoloaded functions, since their libraries
17544 are not loaded right away; but you need to wait a moment when you
17545 first use such a function, while its containing file is evaluated.
17546
17547 Rarely used functions are frequently autoloaded. The
17548 @file{loaddefs.el} library contains hundreds of autoloaded functions,
17549 from @code{bookmark-set} to @code{wordstar-mode}. Of course, you may
17550 come to use a `rare' function frequently. When you do, you should
17551 load that function's file with a @code{load} expression in your
17552 @file{.emacs} file.
17553
17554 In my @file{.emacs} file, I load 14 libraries that contain functions
17555 that would otherwise be autoloaded. (Actually, it would have been
17556 better to include these files in my `dumped' Emacs, but I forgot.
17557 @xref{Building Emacs, , Building Emacs, elisp, The GNU Emacs Lisp
17558 Reference Manual}, and the @file{INSTALL} file for more about
17559 dumping.)
17560
17561 You may also want to include autoloaded expressions in your @file{.emacs}
17562 file. @code{autoload} is a built-in function that takes up to five
17563 arguments, the final three of which are optional. The first argument
17564 is the name of the function to be autoloaded; the second is the name
17565 of the file to be loaded. The third argument is documentation for the
17566 function, and the fourth tells whether the function can be called
17567 interactively. The fifth argument tells what type of
17568 object---@code{autoload} can handle a keymap or macro as well as a
17569 function (the default is a function).
17570
17571 @need 800
17572 Here is a typical example:
17573
17574 @smallexample
17575 @group
17576 (autoload 'html-helper-mode
17577 "html-helper-mode" "Edit HTML documents" t)
17578 @end group
17579 @end smallexample
17580
17581 @noindent
17582 (@code{html-helper-mode} is an older alternative to @code{html-mode},
17583 which is a standard part of the distribution.)
17584
17585 @noindent
17586 This expression autoloads the @code{html-helper-mode} function. It
17587 takes it from the @file{html-helper-mode.el} file (or from the byte
17588 compiled version @file{html-helper-mode.elc}, if that exists.) The
17589 file must be located in a directory specified by @code{load-path}.
17590 The documentation says that this is a mode to help you edit documents
17591 written in the HyperText Markup Language. You can call this mode
17592 interactively by typing @kbd{M-x html-helper-mode}. (You need to
17593 duplicate the function's regular documentation in the autoload
17594 expression because the regular function is not yet loaded, so its
17595 documentation is not available.)
17596
17597 @xref{Autoload, , Autoload, elisp, The GNU Emacs Lisp Reference
17598 Manual}, for more information.
17599
17600 @node Simple Extension
17601 @section A Simple Extension: @code{line-to-top-of-window}
17602 @findex line-to-top-of-window
17603 @cindex Simple extension in @file{.emacs} file
17604
17605 Here is a simple extension to Emacs that moves the line point is on to
17606 the top of the window. I use this all the time, to make text easier
17607 to read.
17608
17609 You can put the following code into a separate file and then load it
17610 from your @file{.emacs} file, or you can include it within your
17611 @file{.emacs} file.
17612
17613 @need 1250
17614 Here is the definition:
17615
17616 @smallexample
17617 @group
17618 ;;; Line to top of window;
17619 ;;; replace three keystroke sequence C-u 0 C-l
17620 (defun line-to-top-of-window ()
17621 "Move the line point is on to top of window."
17622 (interactive)
17623 (recenter 0))
17624 @end group
17625 @end smallexample
17626
17627 @need 1250
17628 Now for the keybinding.
17629
17630 Nowadays, function keys as well as mouse button events and
17631 non-@sc{ascii} characters are written within square brackets, without
17632 quotation marks. (In Emacs version 18 and before, you had to write
17633 different function key bindings for each different make of terminal.)
17634
17635 I bind @code{line-to-top-of-window} to my @key{F6} function key like
17636 this:
17637
17638 @smallexample
17639 (global-set-key [f6] 'line-to-top-of-window)
17640 @end smallexample
17641
17642 For more information, see @ref{Init Rebinding, , Rebinding Keys in
17643 Your Init File, emacs, The GNU Emacs Manual}.
17644
17645 @cindex Conditional 'twixt two versions of Emacs
17646 @cindex Version of Emacs, choosing
17647 @cindex Emacs version, choosing
17648 If you run two versions of GNU Emacs, such as versions 22 and 23, and
17649 use one @file{.emacs} file, you can select which code to evaluate with
17650 the following conditional:
17651
17652 @smallexample
17653 @group
17654 (cond
17655 ((= 22 emacs-major-version)
17656 ;; evaluate version 22 code
17657 ( @dots{} ))
17658 ((= 23 emacs-major-version)
17659 ;; evaluate version 23 code
17660 ( @dots{} )))
17661 @end group
17662 @end smallexample
17663
17664 For example, recent versions blink
17665 their cursors by default. I hate such blinking, as well as other
17666 features, so I placed the following in my @file{.emacs}
17667 file@footnote{When I start instances of Emacs that do not load my
17668 @file{.emacs} file or any site file, I also turn off blinking:
17669
17670 @smallexample
17671 emacs -q --no-site-file -eval '(blink-cursor-mode nil)'
17672
17673 @exdent Or nowadays, using an even more sophisticated set of options,
17674
17675 emacs -Q -D
17676 @end smallexample
17677 }:
17678
17679 @smallexample
17680 @group
17681 (when (>= emacs-major-version 21)
17682 (blink-cursor-mode 0)
17683 ;; Insert newline when you press `C-n' (next-line)
17684 ;; at the end of the buffer
17685 (setq next-line-add-newlines t)
17686 @end group
17687 @group
17688 ;; Turn on image viewing
17689 (auto-image-file-mode t)
17690 @end group
17691 @group
17692 ;; Turn on menu bar (this bar has text)
17693 ;; (Use numeric argument to turn on)
17694 (menu-bar-mode 1)
17695 @end group
17696 @group
17697 ;; Turn off tool bar (this bar has icons)
17698 ;; (Use numeric argument to turn on)
17699 (tool-bar-mode nil)
17700 @end group
17701 @group
17702 ;; Turn off tooltip mode for tool bar
17703 ;; (This mode causes icon explanations to pop up)
17704 ;; (Use numeric argument to turn on)
17705 (tooltip-mode nil)
17706 ;; If tooltips turned on, make tips appear promptly
17707 (setq tooltip-delay 0.1) ; default is 0.7 second
17708 )
17709 @end group
17710 @end smallexample
17711
17712 @node X11 Colors
17713 @section X11 Colors
17714
17715 You can specify colors when you use Emacs with the MIT X Windowing
17716 system.
17717
17718 I dislike the default colors and specify my own.
17719
17720 @need 1250
17721 Here are the expressions in my @file{.emacs}
17722 file that set values:
17723
17724 @smallexample
17725 @group
17726 ;; Set cursor color
17727 (set-cursor-color "white")
17728
17729 ;; Set mouse color
17730 (set-mouse-color "white")
17731
17732 ;; Set foreground and background
17733 (set-foreground-color "white")
17734 (set-background-color "darkblue")
17735 @end group
17736
17737 @group
17738 ;;; Set highlighting colors for isearch and drag
17739 (set-face-foreground 'highlight "white")
17740 (set-face-background 'highlight "blue")
17741 @end group
17742
17743 @group
17744 (set-face-foreground 'region "cyan")
17745 (set-face-background 'region "blue")
17746 @end group
17747
17748 @group
17749 (set-face-foreground 'secondary-selection "skyblue")
17750 (set-face-background 'secondary-selection "darkblue")
17751 @end group
17752
17753 @group
17754 ;; Set calendar highlighting colors
17755 (setq calendar-load-hook
17756 (lambda ()
17757 (set-face-foreground 'diary-face "skyblue")
17758 (set-face-background 'holiday-face "slate blue")
17759 (set-face-foreground 'holiday-face "white")))
17760 @end group
17761 @end smallexample
17762
17763 The various shades of blue soothe my eye and prevent me from seeing
17764 the screen flicker.
17765
17766 Alternatively, I could have set my specifications in various X
17767 initialization files. For example, I could set the foreground,
17768 background, cursor, and pointer (i.e., mouse) colors in my
17769 @file{~/.Xresources} file like this:
17770
17771 @smallexample
17772 @group
17773 Emacs*foreground: white
17774 Emacs*background: darkblue
17775 Emacs*cursorColor: white
17776 Emacs*pointerColor: white
17777 @end group
17778 @end smallexample
17779
17780 In any event, since it is not part of Emacs, I set the root color of
17781 my X window in my @file{~/.xinitrc} file, like this@footnote{I also
17782 run more modern window managers, such as Enlightenment, Gnome, or KDE;
17783 in those cases, I often specify an image rather than a plain color.}:
17784
17785 @smallexample
17786 xsetroot -solid Navy -fg white &
17787 @end smallexample
17788
17789 @need 1700
17790 @node Miscellaneous
17791 @section Miscellaneous Settings for a @file{.emacs} File
17792
17793 @need 1250
17794 Here are a few miscellaneous settings:
17795 @sp 1
17796
17797 @itemize @minus
17798 @item
17799 Set the shape and color of the mouse cursor:
17800
17801 @smallexample
17802 @group
17803 ; Cursor shapes are defined in
17804 ; `/usr/include/X11/cursorfont.h';
17805 ; for example, the `target' cursor is number 128;
17806 ; the `top_left_arrow' cursor is number 132.
17807 @end group
17808
17809 @group
17810 (let ((mpointer (x-get-resource "*mpointer"
17811 "*emacs*mpointer")))
17812 ;; If you have not set your mouse pointer
17813 ;; then set it, otherwise leave as is:
17814 (if (eq mpointer nil)
17815 (setq mpointer "132")) ; top_left_arrow
17816 @end group
17817 @group
17818 (setq x-pointer-shape (string-to-int mpointer))
17819 (set-mouse-color "white"))
17820 @end group
17821 @end smallexample
17822
17823 @item
17824 Or you can set the values of a variety of features in an alist, like
17825 this:
17826
17827 @smallexample
17828 @group
17829 (setq-default
17830 default-frame-alist
17831 '((cursor-color . "white")
17832 (mouse-color . "white")
17833 (foreground-color . "white")
17834 (background-color . "DodgerBlue4")
17835 ;; (cursor-type . bar)
17836 (cursor-type . box)
17837 @end group
17838 @group
17839 (tool-bar-lines . 0)
17840 (menu-bar-lines . 1)
17841 (width . 80)
17842 (height . 58)
17843 (font .
17844 "-Misc-Fixed-Medium-R-Normal--20-200-75-75-C-100-ISO8859-1")
17845 ))
17846 @end group
17847 @end smallexample
17848
17849 @item
17850 Convert @kbd{@key{CTRL}-h} into @key{DEL} and @key{DEL}
17851 into @kbd{@key{CTRL}-h}.@*
17852 (Some older keyboards needed this, although I have not seen the
17853 problem recently.)
17854
17855 @smallexample
17856 @group
17857 ;; Translate `C-h' to <DEL>.
17858 ; (keyboard-translate ?\C-h ?\C-?)
17859
17860 ;; Translate <DEL> to `C-h'.
17861 (keyboard-translate ?\C-? ?\C-h)
17862 @end group
17863 @end smallexample
17864
17865 @item Turn off a blinking cursor!
17866
17867 @smallexample
17868 @group
17869 (if (fboundp 'blink-cursor-mode)
17870 (blink-cursor-mode -1))
17871 @end group
17872 @end smallexample
17873
17874 @noindent
17875 or start GNU Emacs with the command @code{emacs -nbc}.
17876
17877 @need 1250
17878 @item When using `grep'@*
17879 @samp{-i}@w{ } Ignore case distinctions@*
17880 @samp{-n}@w{ } Prefix each line of output with line number@*
17881 @samp{-H}@w{ } Print the filename for each match.@*
17882 @samp{-e}@w{ } Protect patterns beginning with a hyphen character, @samp{-}
17883
17884 @smallexample
17885 (setq grep-command "grep -i -nH -e ")
17886 @end smallexample
17887
17888 @ignore
17889 @c Evidently, no longer needed in GNU Emacs 22
17890
17891 item Automatically uncompress compressed files when visiting them
17892
17893 smallexample
17894 (load "uncompress")
17895 end smallexample
17896
17897 @end ignore
17898
17899 @item Find an existing buffer, even if it has a different name@*
17900 This avoids problems with symbolic links.
17901
17902 @smallexample
17903 (setq find-file-existing-other-name t)
17904 @end smallexample
17905
17906 @item Set your language environment and default input method
17907
17908 @smallexample
17909 @group
17910 (set-language-environment "latin-1")
17911 ;; Remember you can enable or disable multilingual text input
17912 ;; with the @code{toggle-input-method'} (@kbd{C-\}) command
17913 (setq default-input-method "latin-1-prefix")
17914 @end group
17915 @end smallexample
17916
17917 If you want to write with Chinese `GB' characters, set this instead:
17918
17919 @smallexample
17920 @group
17921 (set-language-environment "Chinese-GB")
17922 (setq default-input-method "chinese-tonepy")
17923 @end group
17924 @end smallexample
17925 @end itemize
17926
17927 @subsubheading Fixing Unpleasant Key Bindings
17928 @cindex Key bindings, fixing
17929 @cindex Bindings, key, fixing unpleasant
17930
17931 Some systems bind keys unpleasantly. Sometimes, for example, the
17932 @key{CTRL} key appears in an awkward spot rather than at the far left
17933 of the home row.
17934
17935 Usually, when people fix these sorts of keybindings, they do not
17936 change their @file{~/.emacs} file. Instead, they bind the proper keys
17937 on their consoles with the @code{loadkeys} or @code{install-keymap}
17938 commands in their boot script and then include @code{xmodmap} commands
17939 in their @file{.xinitrc} or @file{.Xsession} file for X Windows.
17940
17941 @need 1250
17942 @noindent
17943 For a boot script:
17944
17945 @smallexample
17946 @group
17947 loadkeys /usr/share/keymaps/i386/qwerty/emacs2.kmap.gz
17948 @exdent or
17949 install-keymap emacs2
17950 @end group
17951 @end smallexample
17952
17953 @need 1250
17954 @noindent
17955 For a @file{.xinitrc} or @file{.Xsession} file when the @key{Caps
17956 Lock} key is at the far left of the home row:
17957
17958 @smallexample
17959 @group
17960 # Bind the key labeled `Caps Lock' to `Control'
17961 # (Such a broken user interface suggests that keyboard manufacturers
17962 # think that computers are typewriters from 1885.)
17963
17964 xmodmap -e "clear Lock"
17965 xmodmap -e "add Control = Caps_Lock"
17966 @end group
17967 @end smallexample
17968
17969 @need 1250
17970 @noindent
17971 In a @file{.xinitrc} or @file{.Xsession} file, to convert an @key{ALT}
17972 key to a @key{META} key:
17973
17974 @smallexample
17975 @group
17976 # Some ill designed keyboards have a key labeled ALT and no Meta
17977 xmodmap -e "keysym Alt_L = Meta_L Alt_L"
17978 @end group
17979 @end smallexample
17980
17981 @need 1700
17982 @node Mode Line
17983 @section A Modified Mode Line
17984 @vindex mode-line-format
17985 @cindex Mode line format
17986
17987 Finally, a feature I really like: a modified mode line.
17988
17989 When I work over a network, I forget which machine I am using. Also,
17990 I tend to I lose track of where I am, and which line point is on.
17991
17992 So I reset my mode line to look like this:
17993
17994 @smallexample
17995 -:-- foo.texi rattlesnake:/home/bob/ Line 1 (Texinfo Fill) Top
17996 @end smallexample
17997
17998 I am visiting a file called @file{foo.texi}, on my machine
17999 @file{rattlesnake} in my @file{/home/bob} buffer. I am on line 1, in
18000 Texinfo mode, and am at the top of the buffer.
18001
18002 @need 1200
18003 My @file{.emacs} file has a section that looks like this:
18004
18005 @smallexample
18006 @group
18007 ;; Set a Mode Line that tells me which machine, which directory,
18008 ;; and which line I am on, plus the other customary information.
18009 (setq-default mode-line-format
18010 (quote
18011 (#("-" 0 1
18012 (help-echo
18013 "mouse-1: select window, mouse-2: delete others ..."))
18014 mode-line-mule-info
18015 mode-line-modified
18016 mode-line-frame-identification
18017 " "
18018 @end group
18019 @group
18020 mode-line-buffer-identification
18021 " "
18022 (:eval (substring
18023 (system-name) 0 (string-match "\\..+" (system-name))))
18024 ":"
18025 default-directory
18026 #(" " 0 1
18027 (help-echo
18028 "mouse-1: select window, mouse-2: delete others ..."))
18029 (line-number-mode " Line %l ")
18030 global-mode-string
18031 @end group
18032 @group
18033 #(" %[(" 0 6
18034 (help-echo
18035 "mouse-1: select window, mouse-2: delete others ..."))
18036 (:eval (mode-line-mode-name))
18037 mode-line-process
18038 minor-mode-alist
18039 #("%n" 0 2 (help-echo "mouse-2: widen" local-map (keymap ...)))
18040 ")%] "
18041 (-3 . "%P")
18042 ;; "-%-"
18043 )))
18044 @end group
18045 @end smallexample
18046
18047 @noindent
18048 Here, I redefine the default mode line. Most of the parts are from
18049 the original; but I make a few changes. I set the @emph{default} mode
18050 line format so as to permit various modes, such as Info, to override
18051 it.
18052
18053 Many elements in the list are self-explanatory:
18054 @code{mode-line-modified} is a variable that tells whether the buffer
18055 has been modified, @code{mode-name} tells the name of the mode, and so
18056 on. However, the format looks complicated because of two features we
18057 have not discussed.
18058
18059 @cindex Properties, in mode line example
18060 The first string in the mode line is a dash or hyphen, @samp{-}. In
18061 the old days, it would have been specified simply as @code{"-"}. But
18062 nowadays, Emacs can add properties to a string, such as highlighting
18063 or, as in this case, a help feature. If you place your mouse cursor
18064 over the hyphen, some help information appears (By default, you must
18065 wait seven-tenths of a second before the information appears. You can
18066 change that timing by changing the value of @code{tooltip-delay}.)
18067
18068 @need 1000
18069 The new string format has a special syntax:
18070
18071 @smallexample
18072 #("-" 0 1 (help-echo "mouse-1: select window, ..."))
18073 @end smallexample
18074
18075 @noindent
18076 The @code{#(} begins a list. The first element of the list is the
18077 string itself, just one @samp{-}. The second and third
18078 elements specify the range over which the fourth element applies. A
18079 range starts @emph{after} a character, so a zero means the range
18080 starts just before the first character; a 1 means that the range ends
18081 just after the first character. The third element is the property for
18082 the range. It consists of a property list, a
18083 property name, in this case, @samp{help-echo}, followed by a value, in this
18084 case, a string. The second, third, and fourth elements of this new
18085 string format can be repeated.
18086
18087 @xref{Text Properties, , Text Properties, elisp, The GNU Emacs Lisp
18088 Reference Manual}, and see @ref{Mode Line Format, , Mode Line Format,
18089 elisp, The GNU Emacs Lisp Reference Manual}, for more information.
18090
18091 @code{mode-line-buffer-identification}
18092 displays the current buffer name. It is a list
18093 beginning @code{(#("%12b" 0 4 @dots{}}.
18094 The @code{#(} begins the list.
18095
18096 The @samp{"%12b"} displays the current buffer name, using the
18097 @code{buffer-name} function with which we are familiar; the `12'
18098 specifies the maximum number of characters that will be displayed.
18099 When a name has fewer characters, whitespace is added to fill out to
18100 this number. (Buffer names can and often should be longer than 12
18101 characters; this length works well in a typical 80 column wide
18102 window.)
18103
18104 @code{:eval} says to evaluate the following form and use the result as
18105 a string to display. In this case, the expression displays the first
18106 component of the full system name. The end of the first component is
18107 a @samp{.} (`period'), so I use the @code{string-match} function to
18108 tell me the length of the first component. The substring from the
18109 zeroth character to that length is the name of the machine.
18110
18111 @need 1250
18112 This is the expression:
18113
18114 @smallexample
18115 @group
18116 (:eval (substring
18117 (system-name) 0 (string-match "\\..+" (system-name))))
18118 @end group
18119 @end smallexample
18120
18121 @samp{%[} and @samp{%]} cause a pair of square brackets
18122 to appear for each recursive editing level. @samp{%n} says `Narrow'
18123 when narrowing is in effect. @samp{%P} tells you the percentage of
18124 the buffer that is above the bottom of the window, or `Top', `Bottom',
18125 or `All'. (A lower case @samp{p} tell you the percentage above the
18126 @emph{top} of the window.) @samp{%-} inserts enough dashes to fill
18127 out the line.
18128
18129 Remember, ``You don't have to like Emacs to like it''---your own
18130 Emacs can have different colors, different commands, and different
18131 keys than a default Emacs.
18132
18133 On the other hand, if you want to bring up a plain `out of the box'
18134 Emacs, with no customization, type:
18135
18136 @smallexample
18137 emacs -q
18138 @end smallexample
18139
18140 @noindent
18141 This will start an Emacs that does @emph{not} load your
18142 @file{~/.emacs} initialization file. A plain, default Emacs. Nothing
18143 more.
18144
18145 @node Debugging
18146 @chapter Debugging
18147 @cindex debugging
18148
18149 GNU Emacs has two debuggers, @code{debug} and @code{edebug}. The
18150 first is built into the internals of Emacs and is always with you;
18151 the second requires that you instrument a function before you can use it.
18152
18153 Both debuggers are described extensively in @ref{Debugging, ,
18154 Debugging Lisp Programs, elisp, The GNU Emacs Lisp Reference Manual}.
18155 In this chapter, I will walk through a short example of each.
18156
18157 @menu
18158 * debug:: How to use the built-in debugger.
18159 * debug-on-entry:: Start debugging when you call a function.
18160 * debug-on-quit:: Start debugging when you quit with @kbd{C-g}.
18161 * edebug:: How to use Edebug, a source level debugger.
18162 * Debugging Exercises::
18163 @end menu
18164
18165 @node debug
18166 @section @code{debug}
18167 @findex debug
18168
18169 Suppose you have written a function definition that is intended to
18170 return the sum of the numbers 1 through a given number. (This is the
18171 @code{triangle} function discussed earlier. @xref{Decrementing
18172 Example, , Example with Decrementing Counter}, for a discussion.)
18173 @c xref{Decrementing Loop,, Loop with a Decrementing Counter}, for a discussion.)
18174
18175 However, your function definition has a bug. You have mistyped
18176 @samp{1=} for @samp{1-}. Here is the broken definition:
18177
18178 @findex triangle-bugged
18179 @smallexample
18180 @group
18181 (defun triangle-bugged (number)
18182 "Return sum of numbers 1 through NUMBER inclusive."
18183 (let ((total 0))
18184 (while (> number 0)
18185 (setq total (+ total number))
18186 (setq number (1= number))) ; @r{Error here.}
18187 total))
18188 @end group
18189 @end smallexample
18190
18191 If you are reading this in Info, you can evaluate this definition in
18192 the normal fashion. You will see @code{triangle-bugged} appear in the
18193 echo area.
18194
18195 @need 1250
18196 Now evaluate the @code{triangle-bugged} function with an
18197 argument of 4:
18198
18199 @smallexample
18200 (triangle-bugged 4)
18201 @end smallexample
18202
18203 @noindent
18204 In a recent GNU Emacs, you will create and enter a @file{*Backtrace*}
18205 buffer that says:
18206
18207 @noindent
18208 @smallexample
18209 @group
18210 ---------- Buffer: *Backtrace* ----------
18211 Debugger entered--Lisp error: (void-function 1=)
18212 (1= number)
18213 (setq number (1= number))
18214 (while (> number 0) (setq total (+ total number))
18215 (setq number (1= number)))
18216 (let ((total 0)) (while (> number 0) (setq total ...)
18217 (setq number ...)) total)
18218 triangle-bugged(4)
18219 @end group
18220 @group
18221 eval((triangle-bugged 4))
18222 eval-last-sexp-1(nil)
18223 eval-last-sexp(nil)
18224 call-interactively(eval-last-sexp)
18225 ---------- Buffer: *Backtrace* ----------
18226 @end group
18227 @end smallexample
18228
18229 @noindent
18230 (I have reformatted this example slightly; the debugger does not fold
18231 long lines. As usual, you can quit the debugger by typing @kbd{q} in
18232 the @file{*Backtrace*} buffer.)
18233
18234 In practice, for a bug as simple as this, the `Lisp error' line will
18235 tell you what you need to know to correct the definition. The
18236 function @code{1=} is `void'.
18237
18238 @ignore
18239 @need 800
18240 In GNU Emacs 20 and before, you will see:
18241
18242 @smallexample
18243 Symbol's function definition is void:@: 1=
18244 @end smallexample
18245
18246 @noindent
18247 which has the same meaning as the @file{*Backtrace*} buffer line in
18248 version 21.
18249 @end ignore
18250
18251 However, suppose you are not quite certain what is going on?
18252 You can read the complete backtrace.
18253
18254 In this case, you need to run a recent GNU Emacs, which automatically
18255 starts the debugger that puts you in the @file{*Backtrace*} buffer; or
18256 else, you need to start the debugger manually as described below.
18257
18258 Read the @file{*Backtrace*} buffer from the bottom up; it tells you
18259 what Emacs did that led to the error. Emacs made an interactive call
18260 to @kbd{C-x C-e} (@code{eval-last-sexp}), which led to the evaluation
18261 of the @code{triangle-bugged} expression. Each line above tells you
18262 what the Lisp interpreter evaluated next.
18263
18264 @need 1250
18265 The third line from the top of the buffer is
18266
18267 @smallexample
18268 (setq number (1= number))
18269 @end smallexample
18270
18271 @noindent
18272 Emacs tried to evaluate this expression; in order to do so, it tried
18273 to evaluate the inner expression shown on the second line from the
18274 top:
18275
18276 @smallexample
18277 (1= number)
18278 @end smallexample
18279
18280 @need 1250
18281 @noindent
18282 This is where the error occurred; as the top line says:
18283
18284 @smallexample
18285 Debugger entered--Lisp error: (void-function 1=)
18286 @end smallexample
18287
18288 @noindent
18289 You can correct the mistake, re-evaluate the function definition, and
18290 then run your test again.
18291
18292 @node debug-on-entry
18293 @section @code{debug-on-entry}
18294 @findex debug-on-entry
18295
18296 A recent GNU Emacs starts the debugger automatically when your
18297 function has an error.
18298
18299 @ignore
18300 GNU Emacs version 20 and before did not; it simply
18301 presented you with an error message. You had to start the debugger
18302 manually.
18303 @end ignore
18304
18305 Incidentally, you can start the debugger manually for all versions of
18306 Emacs; the advantage is that the debugger runs even if you do not have
18307 a bug in your code. Sometimes your code will be free of bugs!
18308
18309 You can enter the debugger when you call the function by calling
18310 @code{debug-on-entry}.
18311
18312 @need 1250
18313 @noindent
18314 Type:
18315
18316 @smallexample
18317 M-x debug-on-entry RET triangle-bugged RET
18318 @end smallexample
18319
18320 @need 1250
18321 @noindent
18322 Now, evaluate the following:
18323
18324 @smallexample
18325 (triangle-bugged 5)
18326 @end smallexample
18327
18328 @noindent
18329 All versions of Emacs will create a @file{*Backtrace*} buffer and tell
18330 you that it is beginning to evaluate the @code{triangle-bugged}
18331 function:
18332
18333 @smallexample
18334 @group
18335 ---------- Buffer: *Backtrace* ----------
18336 Debugger entered--entering a function:
18337 * triangle-bugged(5)
18338 eval((triangle-bugged 5))
18339 @end group
18340 @group
18341 eval-last-sexp-1(nil)
18342 eval-last-sexp(nil)
18343 call-interactively(eval-last-sexp)
18344 ---------- Buffer: *Backtrace* ----------
18345 @end group
18346 @end smallexample
18347
18348 In the @file{*Backtrace*} buffer, type @kbd{d}. Emacs will evaluate
18349 the first expression in @code{triangle-bugged}; the buffer will look
18350 like this:
18351
18352 @smallexample
18353 @group
18354 ---------- Buffer: *Backtrace* ----------
18355 Debugger entered--beginning evaluation of function call form:
18356 * (let ((total 0)) (while (> number 0) (setq total ...)
18357 (setq number ...)) total)
18358 * triangle-bugged(5)
18359 eval((triangle-bugged 5))
18360 @end group
18361 @group
18362 eval-last-sexp-1(nil)
18363 eval-last-sexp(nil)
18364 call-interactively(eval-last-sexp)
18365 ---------- Buffer: *Backtrace* ----------
18366 @end group
18367 @end smallexample
18368
18369 @noindent
18370 Now, type @kbd{d} again, eight times, slowly. Each time you type
18371 @kbd{d}, Emacs will evaluate another expression in the function
18372 definition.
18373
18374 @need 1750
18375 Eventually, the buffer will look like this:
18376
18377 @smallexample
18378 @group
18379 ---------- Buffer: *Backtrace* ----------
18380 Debugger entered--beginning evaluation of function call form:
18381 * (setq number (1= number))
18382 * (while (> number 0) (setq total (+ total number))
18383 (setq number (1= number)))
18384 @group
18385 @end group
18386 * (let ((total 0)) (while (> number 0) (setq total ...)
18387 (setq number ...)) total)
18388 * triangle-bugged(5)
18389 eval((triangle-bugged 5))
18390 @group
18391 @end group
18392 eval-last-sexp-1(nil)
18393 eval-last-sexp(nil)
18394 call-interactively(eval-last-sexp)
18395 ---------- Buffer: *Backtrace* ----------
18396 @end group
18397 @end smallexample
18398
18399 @need 1500
18400 @noindent
18401 Finally, after you type @kbd{d} two more times, Emacs will reach the
18402 error, and the top two lines of the @file{*Backtrace*} buffer will look
18403 like this:
18404
18405 @smallexample
18406 @group
18407 ---------- Buffer: *Backtrace* ----------
18408 Debugger entered--Lisp error: (void-function 1=)
18409 * (1= number)
18410 @dots{}
18411 ---------- Buffer: *Backtrace* ----------
18412 @end group
18413 @end smallexample
18414
18415 By typing @kbd{d}, you were able to step through the function.
18416
18417 You can quit a @file{*Backtrace*} buffer by typing @kbd{q} in it; this
18418 quits the trace, but does not cancel @code{debug-on-entry}.
18419
18420 @findex cancel-debug-on-entry
18421 To cancel the effect of @code{debug-on-entry}, call
18422 @code{cancel-debug-on-entry} and the name of the function, like this:
18423
18424 @smallexample
18425 M-x cancel-debug-on-entry RET triangle-bugged RET
18426 @end smallexample
18427
18428 @noindent
18429 (If you are reading this in Info, cancel @code{debug-on-entry} now.)
18430
18431 @node debug-on-quit
18432 @section @code{debug-on-quit} and @code{(debug)}
18433
18434 In addition to setting @code{debug-on-error} or calling @code{debug-on-entry},
18435 there are two other ways to start @code{debug}.
18436
18437 @findex debug-on-quit
18438 You can start @code{debug} whenever you type @kbd{C-g}
18439 (@code{keyboard-quit}) by setting the variable @code{debug-on-quit} to
18440 @code{t}. This is useful for debugging infinite loops.
18441
18442 @need 1500
18443 @cindex @code{(debug)} in code
18444 Or, you can insert a line that says @code{(debug)} into your code
18445 where you want the debugger to start, like this:
18446
18447 @smallexample
18448 @group
18449 (defun triangle-bugged (number)
18450 "Return sum of numbers 1 through NUMBER inclusive."
18451 (let ((total 0))
18452 (while (> number 0)
18453 (setq total (+ total number))
18454 (debug) ; @r{Start debugger.}
18455 (setq number (1= number))) ; @r{Error here.}
18456 total))
18457 @end group
18458 @end smallexample
18459
18460 The @code{debug} function is described in detail in @ref{Debugger, ,
18461 The Lisp Debugger, elisp, The GNU Emacs Lisp Reference Manual}.
18462
18463 @node edebug
18464 @section The @code{edebug} Source Level Debugger
18465 @cindex Source level debugger
18466 @findex edebug
18467
18468 Edebug is a source level debugger. Edebug normally displays the
18469 source of the code you are debugging, with an arrow at the left that
18470 shows which line you are currently executing.
18471
18472 You can walk through the execution of a function, line by line, or run
18473 quickly until reaching a @dfn{breakpoint} where execution stops.
18474
18475 Edebug is described in @ref{Edebug, , , elisp, The GNU Emacs
18476 Lisp Reference Manual}.
18477
18478 @need 1250
18479 Here is a bugged function definition for @code{triangle-recursively}.
18480 @xref{Recursive triangle function, , Recursion in place of a counter},
18481 for a review of it.
18482
18483 @smallexample
18484 @group
18485 (defun triangle-recursively-bugged (number)
18486 "Return sum of numbers 1 through NUMBER inclusive.
18487 Uses recursion."
18488 (if (= number 1)
18489 1
18490 (+ number
18491 (triangle-recursively-bugged
18492 (1= number))))) ; @r{Error here.}
18493 @end group
18494 @end smallexample
18495
18496 @noindent
18497 Normally, you would install this definition by positioning your cursor
18498 after the function's closing parenthesis and typing @kbd{C-x C-e}
18499 (@code{eval-last-sexp}) or else by positioning your cursor within the
18500 definition and typing @kbd{C-M-x} (@code{eval-defun}). (By default,
18501 the @code{eval-defun} command works only in Emacs Lisp mode or in Lisp
18502 Interaction mode.)
18503
18504 @need 1500
18505 However, to prepare this function definition for Edebug, you must
18506 first @dfn{instrument} the code using a different command. You can do
18507 this by positioning your cursor within or just after the definition
18508 and typing
18509
18510 @smallexample
18511 M-x edebug-defun RET
18512 @end smallexample
18513
18514 @noindent
18515 This will cause Emacs to load Edebug automatically if it is not
18516 already loaded, and properly instrument the function.
18517
18518 After instrumenting the function, place your cursor after the
18519 following expression and type @kbd{C-x C-e} (@code{eval-last-sexp}):
18520
18521 @smallexample
18522 (triangle-recursively-bugged 3)
18523 @end smallexample
18524
18525 @noindent
18526 You will be jumped back to the source for
18527 @code{triangle-recursively-bugged} and the cursor positioned at the
18528 beginning of the @code{if} line of the function. Also, you will see
18529 an arrowhead at the left hand side of that line. The arrowhead marks
18530 the line where the function is executing. (In the following examples,
18531 we show the arrowhead with @samp{=>}; in a windowing system, you may
18532 see the arrowhead as a solid triangle in the window `fringe'.)
18533
18534 @smallexample
18535 =>@point{}(if (= number 1)
18536 @end smallexample
18537
18538 @noindent
18539 @iftex
18540 In the example, the location of point is displayed with a star,
18541 @samp{@point{}} (in Info, it is displayed as @samp{-!-}).
18542 @end iftex
18543 @ifnottex
18544 In the example, the location of point is displayed as @samp{@point{}}
18545 (in a printed book, it is displayed with a five pointed star).
18546 @end ifnottex
18547
18548 If you now press @key{SPC}, point will move to the next expression to
18549 be executed; the line will look like this:
18550
18551 @smallexample
18552 =>(if @point{}(= number 1)
18553 @end smallexample
18554
18555 @noindent
18556 As you continue to press @key{SPC}, point will move from expression to
18557 expression. At the same time, whenever an expression returns a value,
18558 that value will be displayed in the echo area. For example, after you
18559 move point past @code{number}, you will see the following:
18560
18561 @smallexample
18562 Result: 3 (#o3, #x3, ?\C-c)
18563 @end smallexample
18564
18565 @noindent
18566 This means the value of @code{number} is 3, which is octal three,
18567 hexadecimal three, and @sc{ascii} `control-c' (the third letter of the
18568 alphabet, in case you need to know this information).
18569
18570 You can continue moving through the code until you reach the line with
18571 the error. Before evaluation, that line looks like this:
18572
18573 @smallexample
18574 => @point{}(1= number))))) ; @r{Error here.}
18575 @end smallexample
18576
18577 @need 1250
18578 @noindent
18579 When you press @key{SPC} once again, you will produce an error message
18580 that says:
18581
18582 @smallexample
18583 Symbol's function definition is void:@: 1=
18584 @end smallexample
18585
18586 @noindent
18587 This is the bug.
18588
18589 Press @kbd{q} to quit Edebug.
18590
18591 To remove instrumentation from a function definition, simply
18592 re-evaluate it with a command that does not instrument it.
18593 For example, you could place your cursor after the definition's
18594 closing parenthesis and type @kbd{C-x C-e}.
18595
18596 Edebug does a great deal more than walk with you through a function.
18597 You can set it so it races through on its own, stopping only at an
18598 error or at specified stopping points; you can cause it to display the
18599 changing values of various expressions; you can find out how many
18600 times a function is called, and more.
18601
18602 Edebug is described in @ref{Edebug, , , elisp, The GNU Emacs
18603 Lisp Reference Manual}.
18604
18605 @need 1500
18606 @node Debugging Exercises
18607 @section Debugging Exercises
18608
18609 @itemize @bullet
18610 @item
18611 Install the @code{@value{COUNT-WORDS}} function and then cause it to
18612 enter the built-in debugger when you call it. Run the command on a
18613 region containing two words. You will need to press @kbd{d} a
18614 remarkable number of times. On your system, is a `hook' called after
18615 the command finishes? (For information on hooks, see @ref{Command
18616 Overview, , Command Loop Overview, elisp, The GNU Emacs Lisp Reference
18617 Manual}.)
18618
18619 @item
18620 Copy @code{@value{COUNT-WORDS}} into the @file{*scratch*} buffer,
18621 instrument the function for Edebug, and walk through its execution.
18622 The function does not need to have a bug, although you can introduce
18623 one if you wish. If the function lacks a bug, the walk-through
18624 completes without problems.
18625
18626 @item
18627 While running Edebug, type @kbd{?} to see a list of all the Edebug commands.
18628 (The @code{global-edebug-prefix} is usually @kbd{C-x X}, i.e.,
18629 @kbd{@key{CTRL}-x} followed by an upper case @kbd{X}; use this prefix
18630 for commands made outside of the Edebug debugging buffer.)
18631
18632 @item
18633 In the Edebug debugging buffer, use the @kbd{p}
18634 (@code{edebug-bounce-point}) command to see where in the region the
18635 @code{@value{COUNT-WORDS}} is working.
18636
18637 @item
18638 Move point to some spot further down the function and then type the
18639 @kbd{h} (@code{edebug-goto-here}) command to jump to that location.
18640
18641 @item
18642 Use the @kbd{t} (@code{edebug-trace-mode}) command to cause Edebug to
18643 walk through the function on its own; use an upper case @kbd{T} for
18644 @code{edebug-Trace-fast-mode}.
18645
18646 @item
18647 Set a breakpoint, then run Edebug in Trace mode until it reaches the
18648 stopping point.
18649 @end itemize
18650
18651 @node Conclusion
18652 @chapter Conclusion
18653
18654 We have now reached the end of this Introduction. You have now
18655 learned enough about programming in Emacs Lisp to set values, to write
18656 simple @file{.emacs} files for yourself and your friends, and write
18657 simple customizations and extensions to Emacs.
18658
18659 This is a place to stop. Or, if you wish, you can now go onward, and
18660 teach yourself.
18661
18662 You have learned some of the basic nuts and bolts of programming. But
18663 only some. There are a great many more brackets and hinges that are
18664 easy to use that we have not touched.
18665
18666 A path you can follow right now lies among the sources to GNU Emacs
18667 and in
18668 @ifnotinfo
18669 @cite{The GNU Emacs Lisp Reference Manual}.
18670 @end ifnotinfo
18671 @ifinfo
18672 @ref{Top, , The GNU Emacs Lisp Reference Manual, elisp, The GNU
18673 Emacs Lisp Reference Manual}.
18674 @end ifinfo
18675
18676 The Emacs Lisp sources are an adventure. When you read the sources and
18677 come across a function or expression that is unfamiliar, you need to
18678 figure out or find out what it does.
18679
18680 Go to the Reference Manual. It is a thorough, complete, and fairly
18681 easy-to-read description of Emacs Lisp. It is written not only for
18682 experts, but for people who know what you know. (The @cite{Reference
18683 Manual} comes with the standard GNU Emacs distribution. Like this
18684 introduction, it comes as a Texinfo source file, so you can read it
18685 on-line and as a typeset, printed book.)
18686
18687 Go to the other on-line help that is part of GNU Emacs: the on-line
18688 documentation for all functions and variables, and @code{find-tag},
18689 the program that takes you to sources.
18690
18691 Here is an example of how I explore the sources. Because of its name,
18692 @file{simple.el} is the file I looked at first, a long time ago. As
18693 it happens some of the functions in @file{simple.el} are complicated,
18694 or at least look complicated at first sight. The @code{open-line}
18695 function, for example, looks complicated.
18696
18697 You may want to walk through this function slowly, as we did with the
18698 @code{forward-sentence} function. (@xref{forward-sentence, The
18699 @code{forward-sentence} function}.) Or you may want to skip that
18700 function and look at another, such as @code{split-line}. You don't
18701 need to read all the functions. According to
18702 @code{count-words-in-defun}, the @code{split-line} function contains
18703 102 words and symbols.
18704
18705 Even though it is short, @code{split-line} contains expressions
18706 we have not studied: @code{skip-chars-forward}, @code{indent-to},
18707 @code{current-column} and @code{insert-and-inherit}.
18708
18709 Consider the @code{skip-chars-forward} function. (It is part of the
18710 function definition for @code{back-to-indentation}, which is shown in
18711 @ref{Review, , Review}.)
18712
18713 In GNU Emacs, you can find out more about @code{skip-chars-forward} by
18714 typing @kbd{C-h f} (@code{describe-function}) and the name of the
18715 function. This gives you the function documentation.
18716
18717 You may be able to guess what is done by a well named function such as
18718 @code{indent-to}; or you can look it up, too. Incidentally, the
18719 @code{describe-function} function itself is in @file{help.el}; it is
18720 one of those long, but decipherable functions. You can look up
18721 @code{describe-function} using the @kbd{C-h f} command!
18722
18723 In this instance, since the code is Lisp, the @file{*Help*} buffer
18724 contains the name of the library containing the function's source.
18725 You can put point over the name of the library and press the RET key,
18726 which in this situation is bound to @code{help-follow}, and be taken
18727 directly to the source, in the same way as @kbd{M-.}
18728 (@code{find-tag}).
18729
18730 The definition for @code{describe-function} illustrates how to
18731 customize the @code{interactive} expression without using the standard
18732 character codes; and it shows how to create a temporary buffer.
18733
18734 (The @code{indent-to} function is written in C rather than Emacs Lisp;
18735 it is a `built-in' function. @code{help-follow} takes you to its
18736 source as does @code{find-tag}, when properly set up.)
18737
18738 You can look at a function's source using @code{find-tag}, which is
18739 bound to @kbd{M-.} Finally, you can find out what the Reference
18740 Manual has to say by visiting the manual in Info, and typing @kbd{i}
18741 (@code{Info-index}) and the name of the function, or by looking up the
18742 function in the index to a printed copy of the manual.
18743
18744 Similarly, you can find out what is meant by
18745 @code{insert-and-inherit}.
18746
18747 Other interesting source files include @file{paragraphs.el},
18748 @file{loaddefs.el}, and @file{loadup.el}. The @file{paragraphs.el}
18749 file includes short, easily understood functions as well as longer
18750 ones. The @file{loaddefs.el} file contains the many standard
18751 autoloads and many keymaps. I have never looked at it all; only at
18752 parts. @file{loadup.el} is the file that loads the standard parts of
18753 Emacs; it tells you a great deal about how Emacs is built.
18754 (@xref{Building Emacs, , Building Emacs, elisp, The GNU Emacs Lisp
18755 Reference Manual}, for more about building.)
18756
18757 As I said, you have learned some nuts and bolts; however, and very
18758 importantly, we have hardly touched major aspects of programming; I
18759 have said nothing about how to sort information, except to use the
18760 predefined @code{sort} function; I have said nothing about how to store
18761 information, except to use variables and lists; I have said nothing
18762 about how to write programs that write programs. These are topics for
18763 another, and different kind of book, a different kind of learning.
18764
18765 What you have done is learn enough for much practical work with GNU
18766 Emacs. What you have done is get started. This is the end of a
18767 beginning.
18768
18769 @c ================ Appendix ================
18770
18771 @node the-the
18772 @appendix The @code{the-the} Function
18773 @findex the-the
18774 @cindex Duplicated words function
18775 @cindex Words, duplicated
18776
18777 Sometimes when you you write text, you duplicate words---as with ``you
18778 you'' near the beginning of this sentence. I find that most
18779 frequently, I duplicate ``the''; hence, I call the function for
18780 detecting duplicated words, @code{the-the}.
18781
18782 @need 1250
18783 As a first step, you could use the following regular expression to
18784 search for duplicates:
18785
18786 @smallexample
18787 \\(\\w+[ \t\n]+\\)\\1
18788 @end smallexample
18789
18790 @noindent
18791 This regexp matches one or more word-constituent characters followed
18792 by one or more spaces, tabs, or newlines. However, it does not detect
18793 duplicated words on different lines, since the ending of the first
18794 word, the end of the line, is different from the ending of the second
18795 word, a space. (For more information about regular expressions, see
18796 @ref{Regexp Search, , Regular Expression Searches}, as well as
18797 @ref{Regexps, , Syntax of Regular Expressions, emacs, The GNU Emacs
18798 Manual}, and @ref{Regular Expressions, , Regular Expressions, elisp,
18799 The GNU Emacs Lisp Reference Manual}.)
18800
18801 You might try searching just for duplicated word-constituent
18802 characters but that does not work since the pattern detects doubles
18803 such as the two occurrences of `th' in `with the'.
18804
18805 Another possible regexp searches for word-constituent characters
18806 followed by non-word-constituent characters, reduplicated. Here,
18807 @w{@samp{\\w+}} matches one or more word-constituent characters and
18808 @w{@samp{\\W*}} matches zero or more non-word-constituent characters.
18809
18810 @smallexample
18811 \\(\\(\\w+\\)\\W*\\)\\1
18812 @end smallexample
18813
18814 @noindent
18815 Again, not useful.
18816
18817 Here is the pattern that I use. It is not perfect, but good enough.
18818 @w{@samp{\\b}} matches the empty string, provided it is at the beginning
18819 or end of a word; @w{@samp{[^@@ \n\t]+}} matches one or more occurrences of
18820 any characters that are @emph{not} an @@-sign, space, newline, or tab.
18821
18822 @smallexample
18823 \\b\\([^@@ \n\t]+\\)[ \n\t]+\\1\\b
18824 @end smallexample
18825
18826 One can write more complicated expressions, but I found that this
18827 expression is good enough, so I use it.
18828
18829 Here is the @code{the-the} function, as I include it in my
18830 @file{.emacs} file, along with a handy global key binding:
18831
18832 @smallexample
18833 @group
18834 (defun the-the ()
18835 "Search forward for for a duplicated word."
18836 (interactive)
18837 (message "Searching for for duplicated words ...")
18838 (push-mark)
18839 @end group
18840 @group
18841 ;; This regexp is not perfect
18842 ;; but is fairly good over all:
18843 (if (re-search-forward
18844 "\\b\\([^@@ \n\t]+\\)[ \n\t]+\\1\\b" nil 'move)
18845 (message "Found duplicated word.")
18846 (message "End of buffer")))
18847 @end group
18848
18849 @group
18850 ;; Bind `the-the' to C-c \
18851 (global-set-key "\C-c\\" 'the-the)
18852 @end group
18853 @end smallexample
18854
18855 @sp 1
18856 Here is test text:
18857
18858 @smallexample
18859 @group
18860 one two two three four five
18861 five six seven
18862 @end group
18863 @end smallexample
18864
18865 You can substitute the other regular expressions shown above in the
18866 function definition and try each of them on this list.
18867
18868 @node Kill Ring
18869 @appendix Handling the Kill Ring
18870 @cindex Kill ring handling
18871 @cindex Handling the kill ring
18872 @cindex Ring, making a list like a
18873
18874 The kill ring is a list that is transformed into a ring by the
18875 workings of the @code{current-kill} function. The @code{yank} and
18876 @code{yank-pop} commands use the @code{current-kill} function.
18877
18878 This appendix describes the @code{current-kill} function as well as
18879 both the @code{yank} and the @code{yank-pop} commands, but first,
18880 consider the workings of the kill ring.
18881
18882 @menu
18883 * What the Kill Ring Does::
18884 * current-kill::
18885 * yank:: Paste a copy of a clipped element.
18886 * yank-pop:: Insert element pointed to.
18887 * ring file::
18888 @end menu
18889
18890 @ifnottex
18891 @node What the Kill Ring Does
18892 @unnumberedsec What the Kill Ring Does
18893 @end ifnottex
18894
18895 @need 1250
18896 The kill ring has a default maximum length of sixty items; this number
18897 is too large for an explanation. Instead, set it to four. Please
18898 evaluate the following:
18899
18900 @smallexample
18901 @group
18902 (setq old-kill-ring-max kill-ring-max)
18903 (setq kill-ring-max 4)
18904 @end group
18905 @end smallexample
18906
18907 @noindent
18908 Then, please copy each line of the following indented example into the
18909 kill ring. You may kill each line with @kbd{C-k} or mark it and copy
18910 it with @kbd{M-w}.
18911
18912 @noindent
18913 (In a read-only buffer, such as the @file{*info*} buffer, the kill
18914 command, @kbd{C-k} (@code{kill-line}), will not remove the text,
18915 merely copy it to the kill ring. However, your machine may beep at
18916 you. Alternatively, for silence, you may copy the region of each line
18917 with the @kbd{M-w} (@code{kill-ring-save}) command. You must mark
18918 each line for this command to succeed, but it does not matter at which
18919 end you put point or mark.)
18920
18921 @need 1250
18922 @noindent
18923 Please invoke the calls in order, so that five elements attempt to
18924 fill the kill ring:
18925
18926 @smallexample
18927 @group
18928 first some text
18929 second piece of text
18930 third line
18931 fourth line of text
18932 fifth bit of text
18933 @end group
18934 @end smallexample
18935
18936 @need 1250
18937 @noindent
18938 Then find the value of @code{kill-ring} by evaluating
18939
18940 @smallexample
18941 kill-ring
18942 @end smallexample
18943
18944 @need 800
18945 @noindent
18946 It is:
18947
18948 @smallexample
18949 @group
18950 ("fifth bit of text" "fourth line of text"
18951 "third line" "second piece of text")
18952 @end group
18953 @end smallexample
18954
18955 @noindent
18956 The first element, @samp{first some text}, was dropped.
18957
18958 @need 1250
18959 To return to the old value for the length of the kill ring, evaluate:
18960
18961 @smallexample
18962 (setq kill-ring-max old-kill-ring-max)
18963 @end smallexample
18964
18965 @node current-kill
18966 @appendixsec The @code{current-kill} Function
18967 @findex current-kill
18968
18969 The @code{current-kill} function changes the element in the kill ring
18970 to which @code{kill-ring-yank-pointer} points. (Also, the
18971 @code{kill-new} function sets @code{kill-ring-yank-pointer} to point
18972 to the latest element of the kill ring. The @code{kill-new}
18973 function is used directly or indirectly by @code{kill-append},
18974 @code{copy-region-as-kill}, @code{kill-ring-save}, @code{kill-line},
18975 and @code{kill-region}.)
18976
18977 @menu
18978 * Code for current-kill::
18979 * Understanding current-kill::
18980 @end menu
18981
18982 @ifnottex
18983 @node Code for current-kill
18984 @unnumberedsubsec The code for @code{current-kill}
18985 @end ifnottex
18986
18987
18988 @need 1500
18989 The @code{current-kill} function is used by @code{yank} and by
18990 @code{yank-pop}. Here is the code for @code{current-kill}:
18991
18992 @smallexample
18993 @group
18994 (defun current-kill (n &optional do-not-move)
18995 "Rotate the yanking point by N places, and then return that kill.
18996 If N is zero, `interprogram-paste-function' is set, and calling it
18997 returns a string, then that string is added to the front of the
18998 kill ring and returned as the latest kill.
18999 @end group
19000 @group
19001 If optional arg DO-NOT-MOVE is non-nil, then don't actually move the
19002 yanking point; just return the Nth kill forward."
19003 (let ((interprogram-paste (and (= n 0)
19004 interprogram-paste-function
19005 (funcall interprogram-paste-function))))
19006 @end group
19007 @group
19008 (if interprogram-paste
19009 (progn
19010 ;; Disable the interprogram cut function when we add the new
19011 ;; text to the kill ring, so Emacs doesn't try to own the
19012 ;; selection, with identical text.
19013 (let ((interprogram-cut-function nil))
19014 (kill-new interprogram-paste))
19015 interprogram-paste)
19016 @end group
19017 @group
19018 (or kill-ring (error "Kill ring is empty"))
19019 (let ((ARGth-kill-element
19020 (nthcdr (mod (- n (length kill-ring-yank-pointer))
19021 (length kill-ring))
19022 kill-ring)))
19023 (or do-not-move
19024 (setq kill-ring-yank-pointer ARGth-kill-element))
19025 (car ARGth-kill-element)))))
19026 @end group
19027 @end smallexample
19028
19029 Remember also that the @code{kill-new} function sets
19030 @code{kill-ring-yank-pointer} to the latest element of the kill
19031 ring, which means that all the functions that call it set the value
19032 indirectly: @code{kill-append}, @code{copy-region-as-kill},
19033 @code{kill-ring-save}, @code{kill-line}, and @code{kill-region}.
19034
19035 @need 1500
19036 Here is the line in @code{kill-new}, which is explained in
19037 @ref{kill-new function, , The @code{kill-new} function}.
19038
19039 @smallexample
19040 (setq kill-ring-yank-pointer kill-ring)
19041 @end smallexample
19042
19043 @ifnottex
19044 @node Understanding current-kill
19045 @unnumberedsubsec @code{current-kill} in Outline
19046 @end ifnottex
19047
19048 The @code{current-kill} function looks complex, but as usual, it can
19049 be understood by taking it apart piece by piece. First look at it in
19050 skeletal form:
19051
19052 @smallexample
19053 @group
19054 (defun current-kill (n &optional do-not-move)
19055 "Rotate the yanking point by N places, and then return that kill."
19056 (let @var{varlist}
19057 @var{body}@dots{})
19058 @end group
19059 @end smallexample
19060
19061 This function takes two arguments, one of which is optional. It has a
19062 documentation string. It is @emph{not} interactive.
19063
19064 @menu
19065 * Body of current-kill::
19066 * Digression concerning error:: How to mislead humans, but not computers.
19067 * Determining the Element::
19068 @end menu
19069
19070 @ifnottex
19071 @node Body of current-kill
19072 @unnumberedsubsubsec The Body of @code{current-kill}
19073 @end ifnottex
19074
19075 The body of the function definition is a @code{let} expression, which
19076 itself has a body as well as a @var{varlist}.
19077
19078 The @code{let} expression declares a variable that will be only usable
19079 within the bounds of this function. This variable is called
19080 @code{interprogram-paste} and is for copying to another program. It
19081 is not for copying within this instance of GNU Emacs. Most window
19082 systems provide a facility for interprogram pasting. Sadly, that
19083 facility usually provides only for the last element. Most windowing
19084 systems have not adopted a ring of many possibilities, even though
19085 Emacs has provided it for decades.
19086
19087 The @code{if} expression has two parts, one if there exists
19088 @code{interprogram-paste} and one if not.
19089
19090 @need 2000
19091 Let us consider the `if not' or else-part of the @code{current-kill}
19092 function. (The then-part uses the @code{kill-new} function, which
19093 we have already described. @xref{kill-new function, , The
19094 @code{kill-new} function}.)
19095
19096 @smallexample
19097 @group
19098 (or kill-ring (error "Kill ring is empty"))
19099 (let ((ARGth-kill-element
19100 (nthcdr (mod (- n (length kill-ring-yank-pointer))
19101 (length kill-ring))
19102 kill-ring)))
19103 (or do-not-move
19104 (setq kill-ring-yank-pointer ARGth-kill-element))
19105 (car ARGth-kill-element))
19106 @end group
19107 @end smallexample
19108
19109 @noindent
19110 The code first checks whether the kill ring has content; otherwise it
19111 signals an error.
19112
19113 @need 1000
19114 Note that the @code{or} expression is very similar to testing length
19115 with an @code{if}:
19116
19117 @findex zerop
19118 @findex error
19119 @smallexample
19120 @group
19121 (if (zerop (length kill-ring)) ; @r{if-part}
19122 (error "Kill ring is empty")) ; @r{then-part}
19123 ;; No else-part
19124 @end group
19125 @end smallexample
19126
19127 @noindent
19128 If there is not anything in the kill ring, its length must be zero and
19129 an error message sent to the user: @samp{Kill ring is empty}. The
19130 @code{current-kill} function uses an @code{or} expression which is
19131 simpler. But an @code{if} expression reminds us what goes on.
19132
19133 This @code{if} expression uses the function @code{zerop} which returns
19134 true if the value it is testing is zero. When @code{zerop} tests
19135 true, the then-part of the @code{if} is evaluated. The then-part is a
19136 list starting with the function @code{error}, which is a function that
19137 is similar to the @code{message} function
19138 (@pxref{message, , The @code{message} Function}) in that
19139 it prints a one-line message in the echo area. However, in addition
19140 to printing a message, @code{error} also stops evaluation of the
19141 function within which it is embedded. This means that the rest of the
19142 function will not be evaluated if the length of the kill ring is zero.
19143
19144 Then the @code{current-kill} function selects the element to return.
19145 The selection depends on the number of places that @code{current-kill}
19146 rotates and on where @code{kill-ring-yank-pointer} points.
19147
19148 Next, either the optional @code{do-not-move} argument is true or the
19149 current value of @code{kill-ring-yank-pointer} is set to point to the
19150 list. Finally, another expression returns the first element of the
19151 list even if the @code{do-not-move} argument is true.
19152
19153 @ifnottex
19154 @node Digression concerning error
19155 @unnumberedsubsubsec Digression about the word `error'
19156 @end ifnottex
19157
19158 In my opinion, it is slightly misleading, at least to humans, to use
19159 the term `error' as the name of the @code{error} function. A better
19160 term would be `cancel'. Strictly speaking, of course, you cannot
19161 point to, much less rotate a pointer to a list that has no length, so
19162 from the point of view of the computer, the word `error' is correct.
19163 But a human expects to attempt this sort of thing, if only to find out
19164 whether the kill ring is full or empty. This is an act of
19165 exploration.
19166
19167 From the human point of view, the act of exploration and discovery is
19168 not necessarily an error, and therefore should not be labeled as one,
19169 even in the bowels of a computer. As it is, the code in Emacs implies
19170 that a human who is acting virtuously, by exploring his or her
19171 environment, is making an error. This is bad. Even though the computer
19172 takes the same steps as it does when there is an `error', a term such as
19173 `cancel' would have a clearer connotation.
19174
19175 @ifnottex
19176 @node Determining the Element
19177 @unnumberedsubsubsec Determining the Element
19178 @end ifnottex
19179
19180 Among other actions, the else-part of the @code{if} expression sets
19181 the value of @code{kill-ring-yank-pointer} to
19182 @code{ARGth-kill-element} when the kill ring has something in it and
19183 the value of @code{do-not-move} is @code{nil}.
19184
19185 @need 800
19186 The code looks like this:
19187
19188 @smallexample
19189 @group
19190 (nthcdr (mod (- n (length kill-ring-yank-pointer))
19191 (length kill-ring))
19192 kill-ring)))
19193 @end group
19194 @end smallexample
19195
19196 This needs some examination. Unless it is not supposed to move the
19197 pointer, the @code{current-kill} function changes where
19198 @code{kill-ring-yank-pointer} points.
19199 That is what the
19200 @w{@code{(setq kill-ring-yank-pointer ARGth-kill-element))}}
19201 expression does. Also, clearly, @code{ARGth-kill-element} is being
19202 set to be equal to some @sc{cdr} of the kill ring, using the
19203 @code{nthcdr} function that is described in an earlier section.
19204 (@xref{copy-region-as-kill}.) How does it do this?
19205
19206 As we have seen before (@pxref{nthcdr}), the @code{nthcdr} function
19207 works by repeatedly taking the @sc{cdr} of a list---it takes the
19208 @sc{cdr} of the @sc{cdr} of the @sc{cdr} @dots{}
19209
19210 @need 800
19211 The two following expressions produce the same result:
19212
19213 @smallexample
19214 @group
19215 (setq kill-ring-yank-pointer (cdr kill-ring))
19216
19217 (setq kill-ring-yank-pointer (nthcdr 1 kill-ring))
19218 @end group
19219 @end smallexample
19220
19221 However, the @code{nthcdr} expression is more complicated. It uses
19222 the @code{mod} function to determine which @sc{cdr} to select.
19223
19224 (You will remember to look at inner functions first; indeed, we will
19225 have to go inside the @code{mod}.)
19226
19227 The @code{mod} function returns the value of its first argument modulo
19228 the second; that is to say, it returns the remainder after dividing
19229 the first argument by the second. The value returned has the same
19230 sign as the second argument.
19231
19232 @need 800
19233 Thus,
19234
19235 @smallexample
19236 @group
19237 (mod 12 4)
19238 @result{} 0 ;; @r{because there is no remainder}
19239 (mod 13 4)
19240 @result{} 1
19241 @end group
19242 @end smallexample
19243
19244 @need 1250
19245 In this case, the first argument is often smaller than the second.
19246 That is fine.
19247
19248 @smallexample
19249 @group
19250 (mod 0 4)
19251 @result{} 0
19252 (mod 1 4)
19253 @result{} 1
19254 @end group
19255 @end smallexample
19256
19257 We can guess what the @code{-} function does. It is like @code{+} but
19258 subtracts instead of adds; the @code{-} function subtracts its second
19259 argument from its first. Also, we already know what the @code{length}
19260 function does (@pxref{length}). It returns the length of a list.
19261
19262 And @code{n} is the name of the required argument to the
19263 @code{current-kill} function.
19264
19265 @need 1250
19266 So when the first argument to @code{nthcdr} is zero, the @code{nthcdr}
19267 expression returns the whole list, as you can see by evaluating the
19268 following:
19269
19270 @smallexample
19271 @group
19272 ;; kill-ring-yank-pointer @r{and} kill-ring @r{have a length of four}
19273 ;; @r{and} (mod (- 0 4) 4) @result{} 0
19274 (nthcdr (mod (- 0 4) 4)
19275 '("fourth line of text"
19276 "third line"
19277 "second piece of text"
19278 "first some text"))
19279 @end group
19280 @end smallexample
19281
19282 @need 1250
19283 When the first argument to the @code{current-kill} function is one,
19284 the @code{nthcdr} expression returns the list without its first
19285 element.
19286
19287 @smallexample
19288 @group
19289 (nthcdr (mod (- 1 4) 4)
19290 '("fourth line of text"
19291 "third line"
19292 "second piece of text"
19293 "first some text"))
19294 @end group
19295 @end smallexample
19296
19297 @cindex @samp{global variable} defined
19298 @cindex @samp{variable, global}, defined
19299 Incidentally, both @code{kill-ring} and @code{kill-ring-yank-pointer}
19300 are @dfn{global variables}. That means that any expression in Emacs
19301 Lisp can access them. They are not like the local variables set by
19302 @code{let} or like the symbols in an argument list.
19303 Local variables can only be accessed
19304 within the @code{let} that defines them or the function that specifies
19305 them in an argument list (and within expressions called by them).
19306
19307 @ignore
19308 @c texi2dvi fails when the name of the section is within ifnottex ...
19309 (@xref{Prevent confusion, , @code{let} Prevents Confusion}, and
19310 @ref{defun, , The @code{defun} Macro}.)
19311 @end ignore
19312
19313 @node yank
19314 @appendixsec @code{yank}
19315 @findex yank
19316
19317 After learning about @code{current-kill}, the code for the
19318 @code{yank} function is almost easy.
19319
19320 The @code{yank} function does not use the
19321 @code{kill-ring-yank-pointer} variable directly. It calls
19322 @code{insert-for-yank} which calls @code{current-kill} which sets the
19323 @code{kill-ring-yank-pointer} variable.
19324
19325 @need 1250
19326 The code looks like this:
19327
19328 @c in GNU Emacs 22
19329 @smallexample
19330 @group
19331 (defun yank (&optional arg)
19332 "Reinsert (\"paste\") the last stretch of killed text.
19333 More precisely, reinsert the stretch of killed text most recently
19334 killed OR yanked. Put point at end, and set mark at beginning.
19335 With just \\[universal-argument] as argument, same but put point at
19336 beginning (and mark at end). With argument N, reinsert the Nth most
19337 recently killed stretch of killed text.
19338
19339 When this command inserts killed text into the buffer, it honors
19340 `yank-excluded-properties' and `yank-handler' as described in the
19341 doc string for `insert-for-yank-1', which see.
19342
19343 See also the command \\[yank-pop]."
19344 @end group
19345 @group
19346 (interactive "*P")
19347 (setq yank-window-start (window-start))
19348 ;; If we don't get all the way thru, make last-command indicate that
19349 ;; for the following command.
19350 (setq this-command t)
19351 (push-mark (point))
19352 @end group
19353 @group
19354 (insert-for-yank (current-kill (cond
19355 ((listp arg) 0)
19356 ((eq arg '-) -2)
19357 (t (1- arg)))))
19358 (if (consp arg)
19359 ;; This is like exchange-point-and-mark,
19360 ;; but doesn't activate the mark.
19361 ;; It is cleaner to avoid activation, even though the command
19362 ;; loop would deactivate the mark because we inserted text.
19363 (goto-char (prog1 (mark t)
19364 (set-marker (mark-marker) (point) (current-buffer)))))
19365 @end group
19366 @group
19367 ;; If we do get all the way thru, make this-command indicate that.
19368 (if (eq this-command t)
19369 (setq this-command 'yank))
19370 nil)
19371 @end group
19372 @end smallexample
19373
19374 The key expression is @code{insert-for-yank}, which inserts the string
19375 returned by @code{current-kill}, but removes some text properties from
19376 it.
19377
19378 However, before getting to that expression, the function sets the value
19379 of @code{yank-window-start} to the position returned by the
19380 @code{(window-start)} expression, the position at which the display
19381 currently starts. The @code{yank} function also sets
19382 @code{this-command} and pushes the mark.
19383
19384 After it yanks the appropriate element, if the optional argument is a
19385 @sc{cons} rather than a number or nothing, it puts point at beginning
19386 of the yanked text and mark at its end.
19387
19388 (The @code{prog1} function is like @code{progn} but returns the value
19389 of its first argument rather than the value of its last argument. Its
19390 first argument is forced to return the buffer's mark as an integer.
19391 You can see the documentation for these functions by placing point
19392 over them in this buffer and then typing @kbd{C-h f}
19393 (@code{describe-function}) followed by a @kbd{RET}; the default is the
19394 function.)
19395
19396 The last part of the function tells what to do when it succeeds.
19397
19398 @node yank-pop
19399 @appendixsec @code{yank-pop}
19400 @findex yank-pop
19401
19402 After understanding @code{yank} and @code{current-kill}, you know how
19403 to approach the @code{yank-pop} function. Leaving out the
19404 documentation to save space, it looks like this:
19405
19406 @c GNU Emacs 22
19407 @smallexample
19408 @group
19409 (defun yank-pop (&optional arg)
19410 "@dots{}"
19411 (interactive "*p")
19412 (if (not (eq last-command 'yank))
19413 (error "Previous command was not a yank"))
19414 @end group
19415 @group
19416 (setq this-command 'yank)
19417 (unless arg (setq arg 1))
19418 (let ((inhibit-read-only t)
19419 (before (< (point) (mark t))))
19420 @end group
19421 @group
19422 (if before
19423 (funcall (or yank-undo-function 'delete-region) (point) (mark t))
19424 (funcall (or yank-undo-function 'delete-region) (mark t) (point)))
19425 (setq yank-undo-function nil)
19426 @end group
19427 @group
19428 (set-marker (mark-marker) (point) (current-buffer))
19429 (insert-for-yank (current-kill arg))
19430 ;; Set the window start back where it was in the yank command,
19431 ;; if possible.
19432 (set-window-start (selected-window) yank-window-start t)
19433 @end group
19434 @group
19435 (if before
19436 ;; This is like exchange-point-and-mark,
19437 ;; but doesn't activate the mark.
19438 ;; It is cleaner to avoid activation, even though the command
19439 ;; loop would deactivate the mark because we inserted text.
19440 (goto-char (prog1 (mark t)
19441 (set-marker (mark-marker)
19442 (point)
19443 (current-buffer))))))
19444 nil)
19445 @end group
19446 @end smallexample
19447
19448 The function is interactive with a small @samp{p} so the prefix
19449 argument is processed and passed to the function. The command can
19450 only be used after a previous yank; otherwise an error message is
19451 sent. This check uses the variable @code{last-command} which is set
19452 by @code{yank} and is discussed elsewhere.
19453 (@xref{copy-region-as-kill}.)
19454
19455 The @code{let} clause sets the variable @code{before} to true or false
19456 depending whether point is before or after mark and then the region
19457 between point and mark is deleted. This is the region that was just
19458 inserted by the previous yank and it is this text that will be
19459 replaced.
19460
19461 @code{funcall} calls its first argument as a function, passing
19462 remaining arguments to it. The first argument is whatever the
19463 @code{or} expression returns. The two remaining arguments are the
19464 positions of point and mark set by the preceding @code{yank} command.
19465
19466 There is more, but that is the hardest part.
19467
19468 @node ring file
19469 @appendixsec The @file{ring.el} File
19470 @cindex @file{ring.el} file
19471
19472 Interestingly, GNU Emacs posses a file called @file{ring.el} that
19473 provides many of the features we just discussed. But functions such
19474 as @code{kill-ring-yank-pointer} do not use this library, possibly
19475 because they were written earlier.
19476
19477 @node Full Graph
19478 @appendix A Graph with Labeled Axes
19479
19480 Printed axes help you understand a graph. They convey scale. In an
19481 earlier chapter (@pxref{Readying a Graph, , Readying a Graph}), we
19482 wrote the code to print the body of a graph. Here we write the code
19483 for printing and labeling vertical and horizontal axes, along with the
19484 body itself.
19485
19486 @menu
19487 * Labeled Example::
19488 * print-graph Varlist:: @code{let} expression in @code{print-graph}.
19489 * print-Y-axis:: Print a label for the vertical axis.
19490 * print-X-axis:: Print a horizontal label.
19491 * Print Whole Graph:: The function to print a complete graph.
19492 @end menu
19493
19494 @ifnottex
19495 @node Labeled Example
19496 @unnumberedsec Labeled Example Graph
19497 @end ifnottex
19498
19499 Since insertions fill a buffer to the right and below point, the new
19500 graph printing function should first print the Y or vertical axis,
19501 then the body of the graph, and finally the X or horizontal axis.
19502 This sequence lays out for us the contents of the function:
19503
19504 @enumerate
19505 @item
19506 Set up code.
19507
19508 @item
19509 Print Y axis.
19510
19511 @item
19512 Print body of graph.
19513
19514 @item
19515 Print X axis.
19516 @end enumerate
19517
19518 @need 800
19519 Here is an example of how a finished graph should look:
19520
19521 @smallexample
19522 @group
19523 10 -
19524 *
19525 * *
19526 * **
19527 * ***
19528 5 - * *******
19529 * *** *******
19530 *************
19531 ***************
19532 1 - ****************
19533 | | | |
19534 1 5 10 15
19535 @end group
19536 @end smallexample
19537
19538 @noindent
19539 In this graph, both the vertical and the horizontal axes are labeled
19540 with numbers. However, in some graphs, the horizontal axis is time
19541 and would be better labeled with months, like this:
19542
19543 @smallexample
19544 @group
19545 5 - *
19546 * ** *
19547 *******
19548 ********** **
19549 1 - **************
19550 | ^ |
19551 Jan June Jan
19552 @end group
19553 @end smallexample
19554
19555 Indeed, with a little thought, we can easily come up with a variety of
19556 vertical and horizontal labeling schemes. Our task could become
19557 complicated. But complications breed confusion. Rather than permit
19558 this, it is better choose a simple labeling scheme for our first
19559 effort, and to modify or replace it later.
19560
19561 @need 1200
19562 These considerations suggest the following outline for the
19563 @code{print-graph} function:
19564
19565 @smallexample
19566 @group
19567 (defun print-graph (numbers-list)
19568 "@var{documentation}@dots{}"
19569 (let ((height @dots{}
19570 @dots{}))
19571 @end group
19572 @group
19573 (print-Y-axis height @dots{} )
19574 (graph-body-print numbers-list)
19575 (print-X-axis @dots{} )))
19576 @end group
19577 @end smallexample
19578
19579 We can work on each part of the @code{print-graph} function definition
19580 in turn.
19581
19582 @node print-graph Varlist
19583 @appendixsec The @code{print-graph} Varlist
19584 @cindex @code{print-graph} varlist
19585
19586 In writing the @code{print-graph} function, the first task is to write
19587 the varlist in the @code{let} expression. (We will leave aside for the
19588 moment any thoughts about making the function interactive or about the
19589 contents of its documentation string.)
19590
19591 The varlist should set several values. Clearly, the top of the label
19592 for the vertical axis must be at least the height of the graph, which
19593 means that we must obtain this information here. Note that the
19594 @code{print-graph-body} function also requires this information. There
19595 is no reason to calculate the height of the graph in two different
19596 places, so we should change @code{print-graph-body} from the way we
19597 defined it earlier to take advantage of the calculation.
19598
19599 Similarly, both the function for printing the X axis labels and the
19600 @code{print-graph-body} function need to learn the value of the width of
19601 each symbol. We can perform the calculation here and change the
19602 definition for @code{print-graph-body} from the way we defined it in the
19603 previous chapter.
19604
19605 The length of the label for the horizontal axis must be at least as long
19606 as the graph. However, this information is used only in the function
19607 that prints the horizontal axis, so it does not need to be calculated here.
19608
19609 These thoughts lead us directly to the following form for the varlist
19610 in the @code{let} for @code{print-graph}:
19611
19612 @smallexample
19613 @group
19614 (let ((height (apply 'max numbers-list)) ; @r{First version.}
19615 (symbol-width (length graph-blank)))
19616 @end group
19617 @end smallexample
19618
19619 @noindent
19620 As we shall see, this expression is not quite right.
19621
19622 @need 2000
19623 @node print-Y-axis
19624 @appendixsec The @code{print-Y-axis} Function
19625 @cindex Axis, print vertical
19626 @cindex Y axis printing
19627 @cindex Vertical axis printing
19628 @cindex Print vertical axis
19629
19630 The job of the @code{print-Y-axis} function is to print a label for
19631 the vertical axis that looks like this:
19632
19633 @smallexample
19634 @group
19635 10 -
19636
19637
19638
19639
19640 5 -
19641
19642
19643
19644 1 -
19645 @end group
19646 @end smallexample
19647
19648 @noindent
19649 The function should be passed the height of the graph, and then should
19650 construct and insert the appropriate numbers and marks.
19651
19652 @menu
19653 * print-Y-axis in Detail::
19654 * Height of label:: What height for the Y axis?
19655 * Compute a Remainder:: How to compute the remainder of a division.
19656 * Y Axis Element:: Construct a line for the Y axis.
19657 * Y-axis-column:: Generate a list of Y axis labels.
19658 * print-Y-axis Penultimate:: A not quite final version.
19659 @end menu
19660
19661 @ifnottex
19662 @node print-Y-axis in Detail
19663 @unnumberedsubsec The @code{print-Y-axis} Function in Detail
19664 @end ifnottex
19665
19666 It is easy enough to see in the figure what the Y axis label should
19667 look like; but to say in words, and then to write a function
19668 definition to do the job is another matter. It is not quite true to
19669 say that we want a number and a tic every five lines: there are only
19670 three lines between the @samp{1} and the @samp{5} (lines 2, 3, and 4),
19671 but four lines between the @samp{5} and the @samp{10} (lines 6, 7, 8,
19672 and 9). It is better to say that we want a number and a tic mark on
19673 the base line (number 1) and then that we want a number and a tic on
19674 the fifth line from the bottom and on every line that is a multiple of
19675 five.
19676
19677 @ifnottex
19678 @node Height of label
19679 @unnumberedsubsec What height should the label be?
19680 @end ifnottex
19681
19682 The next issue is what height the label should be? Suppose the maximum
19683 height of tallest column of the graph is seven. Should the highest
19684 label on the Y axis be @samp{5 -}, and should the graph stick up above
19685 the label? Or should the highest label be @samp{7 -}, and mark the peak
19686 of the graph? Or should the highest label be @code{10 -}, which is a
19687 multiple of five, and be higher than the topmost value of the graph?
19688
19689 The latter form is preferred. Most graphs are drawn within rectangles
19690 whose sides are an integral number of steps long---5, 10, 15, and so
19691 on for a step distance of five. But as soon as we decide to use a
19692 step height for the vertical axis, we discover that the simple
19693 expression in the varlist for computing the height is wrong. The
19694 expression is @code{(apply 'max numbers-list)}. This returns the
19695 precise height, not the maximum height plus whatever is necessary to
19696 round up to the nearest multiple of five. A more complex expression
19697 is required.
19698
19699 As usual in cases like this, a complex problem becomes simpler if it is
19700 divided into several smaller problems.
19701
19702 First, consider the case when the highest value of the graph is an
19703 integral multiple of five---when it is 5, 10, 15, or some higher
19704 multiple of five. We can use this value as the Y axis height.
19705
19706 A fairly simply way to determine whether a number is a multiple of
19707 five is to divide it by five and see if the division results in a
19708 remainder. If there is no remainder, the number is a multiple of
19709 five. Thus, seven divided by five has a remainder of two, and seven
19710 is not an integral multiple of five. Put in slightly different
19711 language, more reminiscent of the classroom, five goes into seven
19712 once, with a remainder of two. However, five goes into ten twice,
19713 with no remainder: ten is an integral multiple of five.
19714
19715 @node Compute a Remainder
19716 @appendixsubsec Side Trip: Compute a Remainder
19717
19718 @findex % @r{(remainder function)}
19719 @cindex Remainder function, @code{%}
19720 In Lisp, the function for computing a remainder is @code{%}. The
19721 function returns the remainder of its first argument divided by its
19722 second argument. As it happens, @code{%} is a function in Emacs Lisp
19723 that you cannot discover using @code{apropos}: you find nothing if you
19724 type @kbd{M-x apropos @key{RET} remainder @key{RET}}. The only way to
19725 learn of the existence of @code{%} is to read about it in a book such
19726 as this or in the Emacs Lisp sources.
19727
19728 You can try the @code{%} function by evaluating the following two
19729 expressions:
19730
19731 @smallexample
19732 @group
19733 (% 7 5)
19734
19735 (% 10 5)
19736 @end group
19737 @end smallexample
19738
19739 @noindent
19740 The first expression returns 2 and the second expression returns 0.
19741
19742 To test whether the returned value is zero or some other number, we
19743 can use the @code{zerop} function. This function returns @code{t} if
19744 its argument, which must be a number, is zero.
19745
19746 @smallexample
19747 @group
19748 (zerop (% 7 5))
19749 @result{} nil
19750
19751 (zerop (% 10 5))
19752 @result{} t
19753 @end group
19754 @end smallexample
19755
19756 Thus, the following expression will return @code{t} if the height
19757 of the graph is evenly divisible by five:
19758
19759 @smallexample
19760 (zerop (% height 5))
19761 @end smallexample
19762
19763 @noindent
19764 (The value of @code{height}, of course, can be found from @code{(apply
19765 'max numbers-list)}.)
19766
19767 On the other hand, if the value of @code{height} is not a multiple of
19768 five, we want to reset the value to the next higher multiple of five.
19769 This is straightforward arithmetic using functions with which we are
19770 already familiar. First, we divide the value of @code{height} by five
19771 to determine how many times five goes into the number. Thus, five
19772 goes into twelve twice. If we add one to this quotient and multiply by
19773 five, we will obtain the value of the next multiple of five that is
19774 larger than the height. Five goes into twelve twice. Add one to two,
19775 and multiply by five; the result is fifteen, which is the next multiple
19776 of five that is higher than twelve. The Lisp expression for this is:
19777
19778 @smallexample
19779 (* (1+ (/ height 5)) 5)
19780 @end smallexample
19781
19782 @noindent
19783 For example, if you evaluate the following, the result is 15:
19784
19785 @smallexample
19786 (* (1+ (/ 12 5)) 5)
19787 @end smallexample
19788
19789 All through this discussion, we have been using `five' as the value
19790 for spacing labels on the Y axis; but we may want to use some other
19791 value. For generality, we should replace `five' with a variable to
19792 which we can assign a value. The best name I can think of for this
19793 variable is @code{Y-axis-label-spacing}.
19794
19795 @need 1250
19796 Using this term, and an @code{if} expression, we produce the
19797 following:
19798
19799 @smallexample
19800 @group
19801 (if (zerop (% height Y-axis-label-spacing))
19802 height
19803 ;; @r{else}
19804 (* (1+ (/ height Y-axis-label-spacing))
19805 Y-axis-label-spacing))
19806 @end group
19807 @end smallexample
19808
19809 @noindent
19810 This expression returns the value of @code{height} itself if the height
19811 is an even multiple of the value of the @code{Y-axis-label-spacing} or
19812 else it computes and returns a value of @code{height} that is equal to
19813 the next higher multiple of the value of the @code{Y-axis-label-spacing}.
19814
19815 We can now include this expression in the @code{let} expression of the
19816 @code{print-graph} function (after first setting the value of
19817 @code{Y-axis-label-spacing}):
19818 @vindex Y-axis-label-spacing
19819
19820 @smallexample
19821 @group
19822 (defvar Y-axis-label-spacing 5
19823 "Number of lines from one Y axis label to next.")
19824 @end group
19825
19826 @group
19827 @dots{}
19828 (let* ((height (apply 'max numbers-list))
19829 (height-of-top-line
19830 (if (zerop (% height Y-axis-label-spacing))
19831 height
19832 @end group
19833 @group
19834 ;; @r{else}
19835 (* (1+ (/ height Y-axis-label-spacing))
19836 Y-axis-label-spacing)))
19837 (symbol-width (length graph-blank))))
19838 @dots{}
19839 @end group
19840 @end smallexample
19841
19842 @noindent
19843 (Note use of the @code{let*} function: the initial value of height is
19844 computed once by the @code{(apply 'max numbers-list)} expression and
19845 then the resulting value of @code{height} is used to compute its
19846 final value. @xref{fwd-para let, , The @code{let*} expression}, for
19847 more about @code{let*}.)
19848
19849 @node Y Axis Element
19850 @appendixsubsec Construct a Y Axis Element
19851
19852 When we print the vertical axis, we want to insert strings such as
19853 @w{@samp{5 -}} and @w{@samp{10 - }} every five lines.
19854 Moreover, we want the numbers and dashes to line up, so shorter
19855 numbers must be padded with leading spaces. If some of the strings
19856 use two digit numbers, the strings with single digit numbers must
19857 include a leading blank space before the number.
19858
19859 @findex number-to-string
19860 To figure out the length of the number, the @code{length} function is
19861 used. But the @code{length} function works only with a string, not with
19862 a number. So the number has to be converted from being a number to
19863 being a string. This is done with the @code{number-to-string} function.
19864 For example,
19865
19866 @smallexample
19867 @group
19868 (length (number-to-string 35))
19869 @result{} 2
19870
19871 (length (number-to-string 100))
19872 @result{} 3
19873 @end group
19874 @end smallexample
19875
19876 @noindent
19877 (@code{number-to-string} is also called @code{int-to-string}; you will
19878 see this alternative name in various sources.)
19879
19880 In addition, in each label, each number is followed by a string such
19881 as @w{@samp{ - }}, which we will call the @code{Y-axis-tic} marker.
19882 This variable is defined with @code{defvar}:
19883
19884 @vindex Y-axis-tic
19885 @smallexample
19886 @group
19887 (defvar Y-axis-tic " - "
19888 "String that follows number in a Y axis label.")
19889 @end group
19890 @end smallexample
19891
19892 The length of the Y label is the sum of the length of the Y axis tic
19893 mark and the length of the number of the top of the graph.
19894
19895 @smallexample
19896 (length (concat (number-to-string height) Y-axis-tic)))
19897 @end smallexample
19898
19899 This value will be calculated by the @code{print-graph} function in
19900 its varlist as @code{full-Y-label-width} and passed on. (Note that we
19901 did not think to include this in the varlist when we first proposed it.)
19902
19903 To make a complete vertical axis label, a tic mark is concatenated
19904 with a number; and the two together may be preceded by one or more
19905 spaces depending on how long the number is. The label consists of
19906 three parts: the (optional) leading spaces, the number, and the tic
19907 mark. The function is passed the value of the number for the specific
19908 row, and the value of the width of the top line, which is calculated
19909 (just once) by @code{print-graph}.
19910
19911 @smallexample
19912 @group
19913 (defun Y-axis-element (number full-Y-label-width)
19914 "Construct a NUMBERed label element.
19915 A numbered element looks like this ` 5 - ',
19916 and is padded as needed so all line up with
19917 the element for the largest number."
19918 @end group
19919 @group
19920 (let* ((leading-spaces
19921 (- full-Y-label-width
19922 (length
19923 (concat (number-to-string number)
19924 Y-axis-tic)))))
19925 @end group
19926 @group
19927 (concat
19928 (make-string leading-spaces ? )
19929 (number-to-string number)
19930 Y-axis-tic)))
19931 @end group
19932 @end smallexample
19933
19934 The @code{Y-axis-element} function concatenates together the leading
19935 spaces, if any; the number, as a string; and the tic mark.
19936
19937 To figure out how many leading spaces the label will need, the
19938 function subtracts the actual length of the label---the length of the
19939 number plus the length of the tic mark---from the desired label width.
19940
19941 @findex make-string
19942 Blank spaces are inserted using the @code{make-string} function. This
19943 function takes two arguments: the first tells it how long the string
19944 will be and the second is a symbol for the character to insert, in a
19945 special format. The format is a question mark followed by a blank
19946 space, like this, @samp{? }. @xref{Character Type, , Character Type,
19947 elisp, The GNU Emacs Lisp Reference Manual}, for a description of the
19948 syntax for characters. (Of course, you might want to replace the
19949 blank space by some other character @dots{} You know what to do.)
19950
19951 The @code{number-to-string} function is used in the concatenation
19952 expression, to convert the number to a string that is concatenated
19953 with the leading spaces and the tic mark.
19954
19955 @node Y-axis-column
19956 @appendixsubsec Create a Y Axis Column
19957
19958 The preceding functions provide all the tools needed to construct a
19959 function that generates a list of numbered and blank strings to insert
19960 as the label for the vertical axis:
19961
19962 @findex Y-axis-column
19963 @smallexample
19964 @group
19965 (defun Y-axis-column (height width-of-label)
19966 "Construct list of Y axis labels and blank strings.
19967 For HEIGHT of line above base and WIDTH-OF-LABEL."
19968 (let (Y-axis)
19969 @group
19970 @end group
19971 (while (> height 1)
19972 (if (zerop (% height Y-axis-label-spacing))
19973 ;; @r{Insert label.}
19974 (setq Y-axis
19975 (cons
19976 (Y-axis-element height width-of-label)
19977 Y-axis))
19978 @group
19979 @end group
19980 ;; @r{Else, insert blanks.}
19981 (setq Y-axis
19982 (cons
19983 (make-string width-of-label ? )
19984 Y-axis)))
19985 (setq height (1- height)))
19986 ;; @r{Insert base line.}
19987 (setq Y-axis
19988 (cons (Y-axis-element 1 width-of-label) Y-axis))
19989 (nreverse Y-axis)))
19990 @end group
19991 @end smallexample
19992
19993 In this function, we start with the value of @code{height} and
19994 repetitively subtract one from its value. After each subtraction, we
19995 test to see whether the value is an integral multiple of the
19996 @code{Y-axis-label-spacing}. If it is, we construct a numbered label
19997 using the @code{Y-axis-element} function; if not, we construct a
19998 blank label using the @code{make-string} function. The base line
19999 consists of the number one followed by a tic mark.
20000
20001 @need 2000
20002 @node print-Y-axis Penultimate
20003 @appendixsubsec The Not Quite Final Version of @code{print-Y-axis}
20004
20005 The list constructed by the @code{Y-axis-column} function is passed to
20006 the @code{print-Y-axis} function, which inserts the list as a column.
20007
20008 @findex print-Y-axis
20009 @smallexample
20010 @group
20011 (defun print-Y-axis (height full-Y-label-width)
20012 "Insert Y axis using HEIGHT and FULL-Y-LABEL-WIDTH.
20013 Height must be the maximum height of the graph.
20014 Full width is the width of the highest label element."
20015 ;; Value of height and full-Y-label-width
20016 ;; are passed by `print-graph'.
20017 @end group
20018 @group
20019 (let ((start (point)))
20020 (insert-rectangle
20021 (Y-axis-column height full-Y-label-width))
20022 ;; @r{Place point ready for inserting graph.}
20023 (goto-char start)
20024 ;; @r{Move point forward by value of} full-Y-label-width
20025 (forward-char full-Y-label-width)))
20026 @end group
20027 @end smallexample
20028
20029 The @code{print-Y-axis} uses the @code{insert-rectangle} function to
20030 insert the Y axis labels created by the @code{Y-axis-column} function.
20031 In addition, it places point at the correct position for printing the body of
20032 the graph.
20033
20034 You can test @code{print-Y-axis}:
20035
20036 @enumerate
20037 @item
20038 Install
20039
20040 @smallexample
20041 @group
20042 Y-axis-label-spacing
20043 Y-axis-tic
20044 Y-axis-element
20045 Y-axis-column
20046 print-Y-axis
20047 @end group
20048 @end smallexample
20049
20050 @item
20051 Copy the following expression:
20052
20053 @smallexample
20054 (print-Y-axis 12 5)
20055 @end smallexample
20056
20057 @item
20058 Switch to the @file{*scratch*} buffer and place the cursor where you
20059 want the axis labels to start.
20060
20061 @item
20062 Type @kbd{M-:} (@code{eval-expression}).
20063
20064 @item
20065 Yank the @code{graph-body-print} expression into the minibuffer
20066 with @kbd{C-y} (@code{yank)}.
20067
20068 @item
20069 Press @key{RET} to evaluate the expression.
20070 @end enumerate
20071
20072 Emacs will print labels vertically, the top one being @w{@samp{10 -@w{
20073 }}}. (The @code{print-graph} function will pass the value of
20074 @code{height-of-top-line}, which in this case will end up as 15,
20075 thereby getting rid of what might appear as a bug.)
20076
20077 @need 2000
20078 @node print-X-axis
20079 @appendixsec The @code{print-X-axis} Function
20080 @cindex Axis, print horizontal
20081 @cindex X axis printing
20082 @cindex Print horizontal axis
20083 @cindex Horizontal axis printing
20084
20085 X axis labels are much like Y axis labels, except that the ticks are on a
20086 line above the numbers. Labels should look like this:
20087
20088 @smallexample
20089 @group
20090 | | | |
20091 1 5 10 15
20092 @end group
20093 @end smallexample
20094
20095 The first tic is under the first column of the graph and is preceded by
20096 several blank spaces. These spaces provide room in rows above for the Y
20097 axis labels. The second, third, fourth, and subsequent ticks are all
20098 spaced equally, according to the value of @code{X-axis-label-spacing}.
20099
20100 The second row of the X axis consists of numbers, preceded by several
20101 blank spaces and also separated according to the value of the variable
20102 @code{X-axis-label-spacing}.
20103
20104 The value of the variable @code{X-axis-label-spacing} should itself be
20105 measured in units of @code{symbol-width}, since you may want to change
20106 the width of the symbols that you are using to print the body of the
20107 graph without changing the ways the graph is labeled.
20108
20109 @menu
20110 * Similarities differences:: Much like @code{print-Y-axis}, but not exactly.
20111 * X Axis Tic Marks:: Create tic marks for the horizontal axis.
20112 @end menu
20113
20114 @ifnottex
20115 @node Similarities differences
20116 @unnumberedsubsec Similarities and differences
20117 @end ifnottex
20118
20119 The @code{print-X-axis} function is constructed in more or less the
20120 same fashion as the @code{print-Y-axis} function except that it has
20121 two lines: the line of tic marks and the numbers. We will write a
20122 separate function to print each line and then combine them within the
20123 @code{print-X-axis} function.
20124
20125 This is a three step process:
20126
20127 @enumerate
20128 @item
20129 Write a function to print the X axis tic marks, @code{print-X-axis-tic-line}.
20130
20131 @item
20132 Write a function to print the X numbers, @code{print-X-axis-numbered-line}.
20133
20134 @item
20135 Write a function to print both lines, the @code{print-X-axis} function,
20136 using @code{print-X-axis-tic-line} and
20137 @code{print-X-axis-numbered-line}.
20138 @end enumerate
20139
20140 @node X Axis Tic Marks
20141 @appendixsubsec X Axis Tic Marks
20142
20143 The first function should print the X axis tic marks. We must specify
20144 the tic marks themselves and their spacing:
20145
20146 @smallexample
20147 @group
20148 (defvar X-axis-label-spacing
20149 (if (boundp 'graph-blank)
20150 (* 5 (length graph-blank)) 5)
20151 "Number of units from one X axis label to next.")
20152 @end group
20153 @end smallexample
20154
20155 @noindent
20156 (Note that the value of @code{graph-blank} is set by another
20157 @code{defvar}. The @code{boundp} predicate checks whether it has
20158 already been set; @code{boundp} returns @code{nil} if it has not. If
20159 @code{graph-blank} were unbound and we did not use this conditional
20160 construction, in a recent GNU Emacs, we would enter the debugger and
20161 see an error message saying @samp{@w{Debugger entered--Lisp error:}
20162 @w{(void-variable graph-blank)}}.)
20163
20164 @need 1200
20165 Here is the @code{defvar} for @code{X-axis-tic-symbol}:
20166
20167 @smallexample
20168 @group
20169 (defvar X-axis-tic-symbol "|"
20170 "String to insert to point to a column in X axis.")
20171 @end group
20172 @end smallexample
20173
20174 @need 1250
20175 The goal is to make a line that looks like this:
20176
20177 @smallexample
20178 | | | |
20179 @end smallexample
20180
20181 The first tic is indented so that it is under the first column, which is
20182 indented to provide space for the Y axis labels.
20183
20184 A tic element consists of the blank spaces that stretch from one tic to
20185 the next plus a tic symbol. The number of blanks is determined by the
20186 width of the tic symbol and the @code{X-axis-label-spacing}.
20187
20188 @need 1250
20189 The code looks like this:
20190
20191 @smallexample
20192 @group
20193 ;;; X-axis-tic-element
20194 @dots{}
20195 (concat
20196 (make-string
20197 ;; @r{Make a string of blanks.}
20198 (- (* symbol-width X-axis-label-spacing)
20199 (length X-axis-tic-symbol))
20200 ? )
20201 ;; @r{Concatenate blanks with tic symbol.}
20202 X-axis-tic-symbol)
20203 @dots{}
20204 @end group
20205 @end smallexample
20206
20207 Next, we determine how many blanks are needed to indent the first tic
20208 mark to the first column of the graph. This uses the value of
20209 @code{full-Y-label-width} passed it by the @code{print-graph} function.
20210
20211 @need 1250
20212 The code to make @code{X-axis-leading-spaces}
20213 looks like this:
20214
20215 @smallexample
20216 @group
20217 ;; X-axis-leading-spaces
20218 @dots{}
20219 (make-string full-Y-label-width ? )
20220 @dots{}
20221 @end group
20222 @end smallexample
20223
20224 We also need to determine the length of the horizontal axis, which is
20225 the length of the numbers list, and the number of ticks in the horizontal
20226 axis:
20227
20228 @smallexample
20229 @group
20230 ;; X-length
20231 @dots{}
20232 (length numbers-list)
20233 @end group
20234
20235 @group
20236 ;; tic-width
20237 @dots{}
20238 (* symbol-width X-axis-label-spacing)
20239 @end group
20240
20241 @group
20242 ;; number-of-X-ticks
20243 (if (zerop (% (X-length tic-width)))
20244 (/ (X-length tic-width))
20245 (1+ (/ (X-length tic-width))))
20246 @end group
20247 @end smallexample
20248
20249 @need 1250
20250 All this leads us directly to the function for printing the X axis tic line:
20251
20252 @findex print-X-axis-tic-line
20253 @smallexample
20254 @group
20255 (defun print-X-axis-tic-line
20256 (number-of-X-tics X-axis-leading-spaces X-axis-tic-element)
20257 "Print ticks for X axis."
20258 (insert X-axis-leading-spaces)
20259 (insert X-axis-tic-symbol) ; @r{Under first column.}
20260 @end group
20261 @group
20262 ;; @r{Insert second tic in the right spot.}
20263 (insert (concat
20264 (make-string
20265 (- (* symbol-width X-axis-label-spacing)
20266 ;; @r{Insert white space up to second tic symbol.}
20267 (* 2 (length X-axis-tic-symbol)))
20268 ? )
20269 X-axis-tic-symbol))
20270 @end group
20271 @group
20272 ;; @r{Insert remaining ticks.}
20273 (while (> number-of-X-tics 1)
20274 (insert X-axis-tic-element)
20275 (setq number-of-X-tics (1- number-of-X-tics))))
20276 @end group
20277 @end smallexample
20278
20279 The line of numbers is equally straightforward:
20280
20281 @need 1250
20282 First, we create a numbered element with blank spaces before each number:
20283
20284 @findex X-axis-element
20285 @smallexample
20286 @group
20287 (defun X-axis-element (number)
20288 "Construct a numbered X axis element."
20289 (let ((leading-spaces
20290 (- (* symbol-width X-axis-label-spacing)
20291 (length (number-to-string number)))))
20292 (concat (make-string leading-spaces ? )
20293 (number-to-string number))))
20294 @end group
20295 @end smallexample
20296
20297 Next, we create the function to print the numbered line, starting with
20298 the number ``1'' under the first column:
20299
20300 @findex print-X-axis-numbered-line
20301 @smallexample
20302 @group
20303 (defun print-X-axis-numbered-line
20304 (number-of-X-tics X-axis-leading-spaces)
20305 "Print line of X-axis numbers"
20306 (let ((number X-axis-label-spacing))
20307 (insert X-axis-leading-spaces)
20308 (insert "1")
20309 @end group
20310 @group
20311 (insert (concat
20312 (make-string
20313 ;; @r{Insert white space up to next number.}
20314 (- (* symbol-width X-axis-label-spacing) 2)
20315 ? )
20316 (number-to-string number)))
20317 @end group
20318 @group
20319 ;; @r{Insert remaining numbers.}
20320 (setq number (+ number X-axis-label-spacing))
20321 (while (> number-of-X-tics 1)
20322 (insert (X-axis-element number))
20323 (setq number (+ number X-axis-label-spacing))
20324 (setq number-of-X-tics (1- number-of-X-tics)))))
20325 @end group
20326 @end smallexample
20327
20328 Finally, we need to write the @code{print-X-axis} that uses
20329 @code{print-X-axis-tic-line} and
20330 @code{print-X-axis-numbered-line}.
20331
20332 The function must determine the local values of the variables used by both
20333 @code{print-X-axis-tic-line} and @code{print-X-axis-numbered-line}, and
20334 then it must call them. Also, it must print the carriage return that
20335 separates the two lines.
20336
20337 The function consists of a varlist that specifies five local variables,
20338 and calls to each of the two line printing functions:
20339
20340 @findex print-X-axis
20341 @smallexample
20342 @group
20343 (defun print-X-axis (numbers-list)
20344 "Print X axis labels to length of NUMBERS-LIST."
20345 (let* ((leading-spaces
20346 (make-string full-Y-label-width ? ))
20347 @end group
20348 @group
20349 ;; symbol-width @r{is provided by} graph-body-print
20350 (tic-width (* symbol-width X-axis-label-spacing))
20351 (X-length (length numbers-list))
20352 @end group
20353 @group
20354 (X-tic
20355 (concat
20356 (make-string
20357 @end group
20358 @group
20359 ;; @r{Make a string of blanks.}
20360 (- (* symbol-width X-axis-label-spacing)
20361 (length X-axis-tic-symbol))
20362 ? )
20363 @end group
20364 @group
20365 ;; @r{Concatenate blanks with tic symbol.}
20366 X-axis-tic-symbol))
20367 @end group
20368 @group
20369 (tic-number
20370 (if (zerop (% X-length tic-width))
20371 (/ X-length tic-width)
20372 (1+ (/ X-length tic-width)))))
20373 @end group
20374 @group
20375 (print-X-axis-tic-line tic-number leading-spaces X-tic)
20376 (insert "\n")
20377 (print-X-axis-numbered-line tic-number leading-spaces)))
20378 @end group
20379 @end smallexample
20380
20381 @need 1250
20382 You can test @code{print-X-axis}:
20383
20384 @enumerate
20385 @item
20386 Install @code{X-axis-tic-symbol}, @code{X-axis-label-spacing},
20387 @code{print-X-axis-tic-line}, as well as @code{X-axis-element},
20388 @code{print-X-axis-numbered-line}, and @code{print-X-axis}.
20389
20390 @item
20391 Copy the following expression:
20392
20393 @smallexample
20394 @group
20395 (progn
20396 (let ((full-Y-label-width 5)
20397 (symbol-width 1))
20398 (print-X-axis
20399 '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16))))
20400 @end group
20401 @end smallexample
20402
20403 @item
20404 Switch to the @file{*scratch*} buffer and place the cursor where you
20405 want the axis labels to start.
20406
20407 @item
20408 Type @kbd{M-:} (@code{eval-expression}).
20409
20410 @item
20411 Yank the test expression into the minibuffer
20412 with @kbd{C-y} (@code{yank)}.
20413
20414 @item
20415 Press @key{RET} to evaluate the expression.
20416 @end enumerate
20417
20418 @need 1250
20419 Emacs will print the horizontal axis like this:
20420 @sp 1
20421
20422 @smallexample
20423 @group
20424 | | | | |
20425 1 5 10 15 20
20426 @end group
20427 @end smallexample
20428
20429 @node Print Whole Graph
20430 @appendixsec Printing the Whole Graph
20431 @cindex Printing the whole graph
20432 @cindex Whole graph printing
20433 @cindex Graph, printing all
20434
20435 Now we are nearly ready to print the whole graph.
20436
20437 The function to print the graph with the proper labels follows the
20438 outline we created earlier (@pxref{Full Graph, , A Graph with Labeled
20439 Axes}), but with additions.
20440
20441 @need 1250
20442 Here is the outline:
20443
20444 @smallexample
20445 @group
20446 (defun print-graph (numbers-list)
20447 "@var{documentation}@dots{}"
20448 (let ((height @dots{}
20449 @dots{}))
20450 @end group
20451 @group
20452 (print-Y-axis height @dots{} )
20453 (graph-body-print numbers-list)
20454 (print-X-axis @dots{} )))
20455 @end group
20456 @end smallexample
20457
20458 @menu
20459 * The final version:: A few changes.
20460 * Test print-graph:: Run a short test.
20461 * Graphing words in defuns:: Executing the final code.
20462 * lambda:: How to write an anonymous function.
20463 * mapcar:: Apply a function to elements of a list.
20464 * Another Bug:: Yet another bug @dots{} most insidious.
20465 * Final printed graph:: The graph itself!
20466 @end menu
20467
20468 @ifnottex
20469 @node The final version
20470 @unnumberedsubsec Changes for the Final Version
20471 @end ifnottex
20472
20473 The final version is different from what we planned in two ways:
20474 first, it contains additional values calculated once in the varlist;
20475 second, it carries an option to specify the labels' increment per row.
20476 This latter feature turns out to be essential; otherwise, a graph may
20477 have more rows than fit on a display or on a sheet of paper.
20478
20479 @need 1500
20480 This new feature requires a change to the @code{Y-axis-column}
20481 function, to add @code{vertical-step} to it. The function looks like
20482 this:
20483
20484 @findex Y-axis-column @r{Final version.}
20485 @smallexample
20486 @group
20487 ;;; @r{Final version.}
20488 (defun Y-axis-column
20489 (height width-of-label &optional vertical-step)
20490 "Construct list of labels for Y axis.
20491 HEIGHT is maximum height of graph.
20492 WIDTH-OF-LABEL is maximum width of label.
20493 VERTICAL-STEP, an option, is a positive integer
20494 that specifies how much a Y axis label increments
20495 for each line. For example, a step of 5 means
20496 that each line is five units of the graph."
20497 @end group
20498 @group
20499 (let (Y-axis
20500 (number-per-line (or vertical-step 1)))
20501 (while (> height 1)
20502 (if (zerop (% height Y-axis-label-spacing))
20503 @end group
20504 @group
20505 ;; @r{Insert label.}
20506 (setq Y-axis
20507 (cons
20508 (Y-axis-element
20509 (* height number-per-line)
20510 width-of-label)
20511 Y-axis))
20512 @end group
20513 @group
20514 ;; @r{Else, insert blanks.}
20515 (setq Y-axis
20516 (cons
20517 (make-string width-of-label ? )
20518 Y-axis)))
20519 (setq height (1- height)))
20520 @end group
20521 @group
20522 ;; @r{Insert base line.}
20523 (setq Y-axis (cons (Y-axis-element
20524 (or vertical-step 1)
20525 width-of-label)
20526 Y-axis))
20527 (nreverse Y-axis)))
20528 @end group
20529 @end smallexample
20530
20531 The values for the maximum height of graph and the width of a symbol
20532 are computed by @code{print-graph} in its @code{let} expression; so
20533 @code{graph-body-print} must be changed to accept them.
20534
20535 @findex graph-body-print @r{Final version.}
20536 @smallexample
20537 @group
20538 ;;; @r{Final version.}
20539 (defun graph-body-print (numbers-list height symbol-width)
20540 "Print a bar graph of the NUMBERS-LIST.
20541 The numbers-list consists of the Y-axis values.
20542 HEIGHT is maximum height of graph.
20543 SYMBOL-WIDTH is number of each column."
20544 @end group
20545 @group
20546 (let (from-position)
20547 (while numbers-list
20548 (setq from-position (point))
20549 (insert-rectangle
20550 (column-of-graph height (car numbers-list)))
20551 (goto-char from-position)
20552 (forward-char symbol-width)
20553 @end group
20554 @group
20555 ;; @r{Draw graph column by column.}
20556 (sit-for 0)
20557 (setq numbers-list (cdr numbers-list)))
20558 ;; @r{Place point for X axis labels.}
20559 (forward-line height)
20560 (insert "\n")))
20561 @end group
20562 @end smallexample
20563
20564 @need 1250
20565 Finally, the code for the @code{print-graph} function:
20566
20567 @findex print-graph @r{Final version.}
20568 @smallexample
20569 @group
20570 ;;; @r{Final version.}
20571 (defun print-graph
20572 (numbers-list &optional vertical-step)
20573 "Print labeled bar graph of the NUMBERS-LIST.
20574 The numbers-list consists of the Y-axis values.
20575 @end group
20576
20577 @group
20578 Optionally, VERTICAL-STEP, a positive integer,
20579 specifies how much a Y axis label increments for
20580 each line. For example, a step of 5 means that
20581 each row is five units."
20582 @end group
20583 @group
20584 (let* ((symbol-width (length graph-blank))
20585 ;; @code{height} @r{is both the largest number}
20586 ;; @r{and the number with the most digits.}
20587 (height (apply 'max numbers-list))
20588 @end group
20589 @group
20590 (height-of-top-line
20591 (if (zerop (% height Y-axis-label-spacing))
20592 height
20593 ;; @r{else}
20594 (* (1+ (/ height Y-axis-label-spacing))
20595 Y-axis-label-spacing)))
20596 @end group
20597 @group
20598 (vertical-step (or vertical-step 1))
20599 (full-Y-label-width
20600 (length
20601 @end group
20602 @group
20603 (concat
20604 (number-to-string
20605 (* height-of-top-line vertical-step))
20606 Y-axis-tic))))
20607 @end group
20608
20609 @group
20610 (print-Y-axis
20611 height-of-top-line full-Y-label-width vertical-step)
20612 @end group
20613 @group
20614 (graph-body-print
20615 numbers-list height-of-top-line symbol-width)
20616 (print-X-axis numbers-list)))
20617 @end group
20618 @end smallexample
20619
20620 @node Test print-graph
20621 @appendixsubsec Testing @code{print-graph}
20622
20623 @need 1250
20624 We can test the @code{print-graph} function with a short list of numbers:
20625
20626 @enumerate
20627 @item
20628 Install the final versions of @code{Y-axis-column},
20629 @code{graph-body-print}, and @code{print-graph} (in addition to the
20630 rest of the code.)
20631
20632 @item
20633 Copy the following expression:
20634
20635 @smallexample
20636 (print-graph '(3 2 5 6 7 5 3 4 6 4 3 2 1))
20637 @end smallexample
20638
20639 @item
20640 Switch to the @file{*scratch*} buffer and place the cursor where you
20641 want the axis labels to start.
20642
20643 @item
20644 Type @kbd{M-:} (@code{eval-expression}).
20645
20646 @item
20647 Yank the test expression into the minibuffer
20648 with @kbd{C-y} (@code{yank)}.
20649
20650 @item
20651 Press @key{RET} to evaluate the expression.
20652 @end enumerate
20653
20654 @need 1250
20655 Emacs will print a graph that looks like this:
20656
20657 @smallexample
20658 @group
20659 10 -
20660
20661
20662 *
20663 ** *
20664 5 - **** *
20665 **** ***
20666 * *********
20667 ************
20668 1 - *************
20669
20670 | | | |
20671 1 5 10 15
20672 @end group
20673 @end smallexample
20674
20675 @need 1200
20676 On the other hand, if you pass @code{print-graph} a
20677 @code{vertical-step} value of 2, by evaluating this expression:
20678
20679 @smallexample
20680 (print-graph '(3 2 5 6 7 5 3 4 6 4 3 2 1) 2)
20681 @end smallexample
20682
20683 @need 1250
20684 @noindent
20685 The graph looks like this:
20686
20687 @smallexample
20688 @group
20689 20 -
20690
20691
20692 *
20693 ** *
20694 10 - **** *
20695 **** ***
20696 * *********
20697 ************
20698 2 - *************
20699
20700 | | | |
20701 1 5 10 15
20702 @end group
20703 @end smallexample
20704
20705 @noindent
20706 (A question: is the `2' on the bottom of the vertical axis a bug or a
20707 feature? If you think it is a bug, and should be a `1' instead, (or
20708 even a `0'), you can modify the sources.)
20709
20710 @node Graphing words in defuns
20711 @appendixsubsec Graphing Numbers of Words and Symbols
20712
20713 Now for the graph for which all this code was written: a graph that
20714 shows how many function definitions contain fewer than 10 words and
20715 symbols, how many contain between 10 and 19 words and symbols, how
20716 many contain between 20 and 29 words and symbols, and so on.
20717
20718 This is a multi-step process. First make sure you have loaded all the
20719 requisite code.
20720
20721 @need 1500
20722 It is a good idea to reset the value of @code{top-of-ranges} in case
20723 you have set it to some different value. You can evaluate the
20724 following:
20725
20726 @smallexample
20727 @group
20728 (setq top-of-ranges
20729 '(10 20 30 40 50
20730 60 70 80 90 100
20731 110 120 130 140 150
20732 160 170 180 190 200
20733 210 220 230 240 250
20734 260 270 280 290 300)
20735 @end group
20736 @end smallexample
20737
20738 @noindent
20739 Next create a list of the number of words and symbols in each range.
20740
20741 @need 1500
20742 @noindent
20743 Evaluate the following:
20744
20745 @smallexample
20746 @group
20747 (setq list-for-graph
20748 (defuns-per-range
20749 (sort
20750 (recursive-lengths-list-many-files
20751 (directory-files "/usr/local/emacs/lisp"
20752 t ".+el$"))
20753 '<)
20754 top-of-ranges))
20755 @end group
20756 @end smallexample
20757
20758 @noindent
20759 On my old machine, this took about an hour. It looked though 303 Lisp
20760 files in my copy of Emacs version 19.23. After all that computing,
20761 the @code{list-for-graph} had this value:
20762
20763 @smallexample
20764 @group
20765 (537 1027 955 785 594 483 349 292 224 199 166 120 116 99
20766 90 80 67 48 52 45 41 33 28 26 25 20 12 28 11 13 220)
20767 @end group
20768 @end smallexample
20769
20770 @noindent
20771 This means that my copy of Emacs had 537 function definitions with
20772 fewer than 10 words or symbols in them, 1,027 function definitions
20773 with 10 to 19 words or symbols in them, 955 function definitions with
20774 20 to 29 words or symbols in them, and so on.
20775
20776 Clearly, just by looking at this list we can see that most function
20777 definitions contain ten to thirty words and symbols.
20778
20779 Now for printing. We do @emph{not} want to print a graph that is
20780 1,030 lines high @dots{} Instead, we should print a graph that is
20781 fewer than twenty-five lines high. A graph that height can be
20782 displayed on almost any monitor, and easily printed on a sheet of paper.
20783
20784 This means that each value in @code{list-for-graph} must be reduced to
20785 one-fiftieth its present value.
20786
20787 Here is a short function to do just that, using two functions we have
20788 not yet seen, @code{mapcar} and @code{lambda}.
20789
20790 @smallexample
20791 @group
20792 (defun one-fiftieth (full-range)
20793 "Return list, each number one-fiftieth of previous."
20794 (mapcar (lambda (arg) (/ arg 50)) full-range))
20795 @end group
20796 @end smallexample
20797
20798 @node lambda
20799 @appendixsubsec A @code{lambda} Expression: Useful Anonymity
20800 @cindex Anonymous function
20801 @findex lambda
20802
20803 @code{lambda} is the symbol for an anonymous function, a function
20804 without a name. Every time you use an anonymous function, you need to
20805 include its whole body.
20806
20807 @need 1250
20808 @noindent
20809 Thus,
20810
20811 @smallexample
20812 (lambda (arg) (/ arg 50))
20813 @end smallexample
20814
20815 @noindent
20816 is a function definition that says `return the value resulting from
20817 dividing whatever is passed to me as @code{arg} by 50'.
20818
20819 @need 1200
20820 Earlier, for example, we had a function @code{multiply-by-seven}; it
20821 multiplied its argument by 7. This function is similar, except it
20822 divides its argument by 50; and, it has no name. The anonymous
20823 equivalent of @code{multiply-by-seven} is:
20824
20825 @smallexample
20826 (lambda (number) (* 7 number))
20827 @end smallexample
20828
20829 @noindent
20830 (@xref{defun, , The @code{defun} Macro}.)
20831
20832 @need 1250
20833 @noindent
20834 If we want to multiply 3 by 7, we can write:
20835
20836 @c clear print-postscript-figures
20837 @c lambda example diagram #1
20838 @ifnottex
20839 @smallexample
20840 @group
20841 (multiply-by-seven 3)
20842 \_______________/ ^
20843 | |
20844 function argument
20845 @end group
20846 @end smallexample
20847 @end ifnottex
20848 @ifset print-postscript-figures
20849 @sp 1
20850 @tex
20851 @center @image{lambda-1}
20852 @end tex
20853 @sp 1
20854 @end ifset
20855 @ifclear print-postscript-figures
20856 @iftex
20857 @smallexample
20858 @group
20859 (multiply-by-seven 3)
20860 \_______________/ ^
20861 | |
20862 function argument
20863 @end group
20864 @end smallexample
20865 @end iftex
20866 @end ifclear
20867
20868 @noindent
20869 This expression returns 21.
20870
20871 @need 1250
20872 @noindent
20873 Similarly, we can write:
20874
20875 @c lambda example diagram #2
20876 @ifnottex
20877 @smallexample
20878 @group
20879 ((lambda (number) (* 7 number)) 3)
20880 \____________________________/ ^
20881 | |
20882 anonymous function argument
20883 @end group
20884 @end smallexample
20885 @end ifnottex
20886 @ifset print-postscript-figures
20887 @sp 1
20888 @tex
20889 @center @image{lambda-2}
20890 @end tex
20891 @sp 1
20892 @end ifset
20893 @ifclear print-postscript-figures
20894 @iftex
20895 @smallexample
20896 @group
20897 ((lambda (number) (* 7 number)) 3)
20898 \____________________________/ ^
20899 | |
20900 anonymous function argument
20901 @end group
20902 @end smallexample
20903 @end iftex
20904 @end ifclear
20905
20906 @need 1250
20907 @noindent
20908 If we want to divide 100 by 50, we can write:
20909
20910 @c lambda example diagram #3
20911 @ifnottex
20912 @smallexample
20913 @group
20914 ((lambda (arg) (/ arg 50)) 100)
20915 \______________________/ \_/
20916 | |
20917 anonymous function argument
20918 @end group
20919 @end smallexample
20920 @end ifnottex
20921 @ifset print-postscript-figures
20922 @sp 1
20923 @tex
20924 @center @image{lambda-3}
20925 @end tex
20926 @sp 1
20927 @end ifset
20928 @ifclear print-postscript-figures
20929 @iftex
20930 @smallexample
20931 @group
20932 ((lambda (arg) (/ arg 50)) 100)
20933 \______________________/ \_/
20934 | |
20935 anonymous function argument
20936 @end group
20937 @end smallexample
20938 @end iftex
20939 @end ifclear
20940
20941 @noindent
20942 This expression returns 2. The 100 is passed to the function, which
20943 divides that number by 50.
20944
20945 @xref{Lambda Expressions, , Lambda Expressions, elisp, The GNU Emacs
20946 Lisp Reference Manual}, for more about @code{lambda}. Lisp and lambda
20947 expressions derive from the Lambda Calculus.
20948
20949 @node mapcar
20950 @appendixsubsec The @code{mapcar} Function
20951 @findex mapcar
20952
20953 @code{mapcar} is a function that calls its first argument with each
20954 element of its second argument, in turn. The second argument must be
20955 a sequence.
20956
20957 The @samp{map} part of the name comes from the mathematical phrase,
20958 `mapping over a domain', meaning to apply a function to each of the
20959 elements in a domain. The mathematical phrase is based on the
20960 metaphor of a surveyor walking, one step at a time, over an area he is
20961 mapping. And @samp{car}, of course, comes from the Lisp notion of the
20962 first of a list.
20963
20964 @need 1250
20965 @noindent
20966 For example,
20967
20968 @smallexample
20969 @group
20970 (mapcar '1+ '(2 4 6))
20971 @result{} (3 5 7)
20972 @end group
20973 @end smallexample
20974
20975 @noindent
20976 The function @code{1+} which adds one to its argument, is executed on
20977 @emph{each} element of the list, and a new list is returned.
20978
20979 Contrast this with @code{apply}, which applies its first argument to
20980 all the remaining.
20981 (@xref{Readying a Graph, , Readying a Graph}, for a explanation of
20982 @code{apply}.)
20983
20984 @need 1250
20985 In the definition of @code{one-fiftieth}, the first argument is the
20986 anonymous function:
20987
20988 @smallexample
20989 (lambda (arg) (/ arg 50))
20990 @end smallexample
20991
20992 @noindent
20993 and the second argument is @code{full-range}, which will be bound to
20994 @code{list-for-graph}.
20995
20996 @need 1250
20997 The whole expression looks like this:
20998
20999 @smallexample
21000 (mapcar (lambda (arg) (/ arg 50)) full-range))
21001 @end smallexample
21002
21003 @xref{Mapping Functions, , Mapping Functions, elisp, The GNU Emacs
21004 Lisp Reference Manual}, for more about @code{mapcar}.
21005
21006 Using the @code{one-fiftieth} function, we can generate a list in
21007 which each element is one-fiftieth the size of the corresponding
21008 element in @code{list-for-graph}.
21009
21010 @smallexample
21011 @group
21012 (setq fiftieth-list-for-graph
21013 (one-fiftieth list-for-graph))
21014 @end group
21015 @end smallexample
21016
21017 @need 1250
21018 The resulting list looks like this:
21019
21020 @smallexample
21021 @group
21022 (10 20 19 15 11 9 6 5 4 3 3 2 2
21023 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4)
21024 @end group
21025 @end smallexample
21026
21027 @noindent
21028 This, we are almost ready to print! (We also notice the loss of
21029 information: many of the higher ranges are 0, meaning that fewer than
21030 50 defuns had that many words or symbols---but not necessarily meaning
21031 that none had that many words or symbols.)
21032
21033 @node Another Bug
21034 @appendixsubsec Another Bug @dots{} Most Insidious
21035 @cindex Bug, most insidious type
21036 @cindex Insidious type of bug
21037
21038 I said `almost ready to print'! Of course, there is a bug in the
21039 @code{print-graph} function @dots{} It has a @code{vertical-step}
21040 option, but not a @code{horizontal-step} option. The
21041 @code{top-of-range} scale goes from 10 to 300 by tens. But the
21042 @code{print-graph} function will print only by ones.
21043
21044 This is a classic example of what some consider the most insidious
21045 type of bug, the bug of omission. This is not the kind of bug you can
21046 find by studying the code, for it is not in the code; it is an omitted
21047 feature. Your best actions are to try your program early and often;
21048 and try to arrange, as much as you can, to write code that is easy to
21049 understand and easy to change. Try to be aware, whenever you can,
21050 that whatever you have written, @emph{will} be rewritten, if not soon,
21051 eventually. A hard maxim to follow.
21052
21053 It is the @code{print-X-axis-numbered-line} function that needs the
21054 work; and then the @code{print-X-axis} and the @code{print-graph}
21055 functions need to be adapted. Not much needs to be done; there is one
21056 nicety: the numbers ought to line up under the tic marks. This takes
21057 a little thought.
21058
21059 @need 1250
21060 Here is the corrected @code{print-X-axis-numbered-line}:
21061
21062 @smallexample
21063 @group
21064 (defun print-X-axis-numbered-line
21065 (number-of-X-tics X-axis-leading-spaces
21066 &optional horizontal-step)
21067 "Print line of X-axis numbers"
21068 (let ((number X-axis-label-spacing)
21069 (horizontal-step (or horizontal-step 1)))
21070 @end group
21071 @group
21072 (insert X-axis-leading-spaces)
21073 ;; @r{Delete extra leading spaces.}
21074 (delete-char
21075 (- (1-
21076 (length (number-to-string horizontal-step)))))
21077 (insert (concat
21078 (make-string
21079 @end group
21080 @group
21081 ;; @r{Insert white space.}
21082 (- (* symbol-width
21083 X-axis-label-spacing)
21084 (1-
21085 (length
21086 (number-to-string horizontal-step)))
21087 2)
21088 ? )
21089 (number-to-string
21090 (* number horizontal-step))))
21091 @end group
21092 @group
21093 ;; @r{Insert remaining numbers.}
21094 (setq number (+ number X-axis-label-spacing))
21095 (while (> number-of-X-tics 1)
21096 (insert (X-axis-element
21097 (* number horizontal-step)))
21098 (setq number (+ number X-axis-label-spacing))
21099 (setq number-of-X-tics (1- number-of-X-tics)))))
21100 @end group
21101 @end smallexample
21102
21103 @need 1500
21104 If you are reading this in Info, you can see the new versions of
21105 @code{print-X-axis} @code{print-graph} and evaluate them. If you are
21106 reading this in a printed book, you can see the changed lines here
21107 (the full text is too much to print).
21108
21109 @iftex
21110 @smallexample
21111 @group
21112 (defun print-X-axis (numbers-list horizontal-step)
21113 @dots{}
21114 (print-X-axis-numbered-line
21115 tic-number leading-spaces horizontal-step))
21116 @end group
21117 @end smallexample
21118
21119 @smallexample
21120 @group
21121 (defun print-graph
21122 (numbers-list
21123 &optional vertical-step horizontal-step)
21124 @dots{}
21125 (print-X-axis numbers-list horizontal-step))
21126 @end group
21127 @end smallexample
21128 @end iftex
21129
21130 @ifnottex
21131 @smallexample
21132 @group
21133 (defun print-X-axis (numbers-list horizontal-step)
21134 "Print X axis labels to length of NUMBERS-LIST.
21135 Optionally, HORIZONTAL-STEP, a positive integer,
21136 specifies how much an X axis label increments for
21137 each column."
21138 @end group
21139 @group
21140 ;; Value of symbol-width and full-Y-label-width
21141 ;; are passed by `print-graph'.
21142 (let* ((leading-spaces
21143 (make-string full-Y-label-width ? ))
21144 ;; symbol-width @r{is provided by} graph-body-print
21145 (tic-width (* symbol-width X-axis-label-spacing))
21146 (X-length (length numbers-list))
21147 @end group
21148 @group
21149 (X-tic
21150 (concat
21151 (make-string
21152 ;; @r{Make a string of blanks.}
21153 (- (* symbol-width X-axis-label-spacing)
21154 (length X-axis-tic-symbol))
21155 ? )
21156 @end group
21157 @group
21158 ;; @r{Concatenate blanks with tic symbol.}
21159 X-axis-tic-symbol))
21160 (tic-number
21161 (if (zerop (% X-length tic-width))
21162 (/ X-length tic-width)
21163 (1+ (/ X-length tic-width)))))
21164 @end group
21165
21166 @group
21167 (print-X-axis-tic-line
21168 tic-number leading-spaces X-tic)
21169 (insert "\n")
21170 (print-X-axis-numbered-line
21171 tic-number leading-spaces horizontal-step)))
21172 @end group
21173 @end smallexample
21174
21175 @smallexample
21176 @group
21177 (defun print-graph
21178 (numbers-list &optional vertical-step horizontal-step)
21179 "Print labeled bar graph of the NUMBERS-LIST.
21180 The numbers-list consists of the Y-axis values.
21181 @end group
21182
21183 @group
21184 Optionally, VERTICAL-STEP, a positive integer,
21185 specifies how much a Y axis label increments for
21186 each line. For example, a step of 5 means that
21187 each row is five units.
21188 @end group
21189
21190 @group
21191 Optionally, HORIZONTAL-STEP, a positive integer,
21192 specifies how much an X axis label increments for
21193 each column."
21194 (let* ((symbol-width (length graph-blank))
21195 ;; @code{height} @r{is both the largest number}
21196 ;; @r{and the number with the most digits.}
21197 (height (apply 'max numbers-list))
21198 @end group
21199 @group
21200 (height-of-top-line
21201 (if (zerop (% height Y-axis-label-spacing))
21202 height
21203 ;; @r{else}
21204 (* (1+ (/ height Y-axis-label-spacing))
21205 Y-axis-label-spacing)))
21206 @end group
21207 @group
21208 (vertical-step (or vertical-step 1))
21209 (full-Y-label-width
21210 (length
21211 (concat
21212 (number-to-string
21213 (* height-of-top-line vertical-step))
21214 Y-axis-tic))))
21215 @end group
21216 @group
21217 (print-Y-axis
21218 height-of-top-line full-Y-label-width vertical-step)
21219 (graph-body-print
21220 numbers-list height-of-top-line symbol-width)
21221 (print-X-axis numbers-list horizontal-step)))
21222 @end group
21223 @end smallexample
21224 @end ifnottex
21225
21226 @c qqq
21227 @ignore
21228 Graphing Definitions Re-listed
21229
21230 @need 1250
21231 Here are all the graphing definitions in their final form:
21232
21233 @smallexample
21234 @group
21235 (defvar top-of-ranges
21236 '(10 20 30 40 50
21237 60 70 80 90 100
21238 110 120 130 140 150
21239 160 170 180 190 200
21240 210 220 230 240 250)
21241 "List specifying ranges for `defuns-per-range'.")
21242 @end group
21243
21244 @group
21245 (defvar graph-symbol "*"
21246 "String used as symbol in graph, usually an asterisk.")
21247 @end group
21248
21249 @group
21250 (defvar graph-blank " "
21251 "String used as blank in graph, usually a blank space.
21252 graph-blank must be the same number of columns wide
21253 as graph-symbol.")
21254 @end group
21255
21256 @group
21257 (defvar Y-axis-tic " - "
21258 "String that follows number in a Y axis label.")
21259 @end group
21260
21261 @group
21262 (defvar Y-axis-label-spacing 5
21263 "Number of lines from one Y axis label to next.")
21264 @end group
21265
21266 @group
21267 (defvar X-axis-tic-symbol "|"
21268 "String to insert to point to a column in X axis.")
21269 @end group
21270
21271 @group
21272 (defvar X-axis-label-spacing
21273 (if (boundp 'graph-blank)
21274 (* 5 (length graph-blank)) 5)
21275 "Number of units from one X axis label to next.")
21276 @end group
21277 @end smallexample
21278
21279 @smallexample
21280 @group
21281 (defun count-words-in-defun ()
21282 "Return the number of words and symbols in a defun."
21283 (beginning-of-defun)
21284 (let ((count 0)
21285 (end (save-excursion (end-of-defun) (point))))
21286 @end group
21287
21288 @group
21289 (while
21290 (and (< (point) end)
21291 (re-search-forward
21292 "\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*"
21293 end t))
21294 (setq count (1+ count)))
21295 count))
21296 @end group
21297 @end smallexample
21298
21299 @smallexample
21300 @group
21301 (defun lengths-list-file (filename)
21302 "Return list of definitions' lengths within FILE.
21303 The returned list is a list of numbers.
21304 Each number is the number of words or
21305 symbols in one function definition."
21306 @end group
21307
21308 @group
21309 (message "Working on `%s' ... " filename)
21310 (save-excursion
21311 (let ((buffer (find-file-noselect filename))
21312 (lengths-list))
21313 (set-buffer buffer)
21314 (setq buffer-read-only t)
21315 (widen)
21316 (goto-char (point-min))
21317 @end group
21318
21319 @group
21320 (while (re-search-forward "^(defun" nil t)
21321 (setq lengths-list
21322 (cons (count-words-in-defun) lengths-list)))
21323 (kill-buffer buffer)
21324 lengths-list)))
21325 @end group
21326 @end smallexample
21327
21328 @smallexample
21329 @group
21330 (defun lengths-list-many-files (list-of-files)
21331 "Return list of lengths of defuns in LIST-OF-FILES."
21332 (let (lengths-list)
21333 ;;; @r{true-or-false-test}
21334 (while list-of-files
21335 (setq lengths-list
21336 (append
21337 lengths-list
21338 @end group
21339 @group
21340 ;;; @r{Generate a lengths' list.}
21341 (lengths-list-file
21342 (expand-file-name (car list-of-files)))))
21343 ;;; @r{Make files' list shorter.}
21344 (setq list-of-files (cdr list-of-files)))
21345 ;;; @r{Return final value of lengths' list.}
21346 lengths-list))
21347 @end group
21348 @end smallexample
21349
21350 @smallexample
21351 @group
21352 (defun defuns-per-range (sorted-lengths top-of-ranges)
21353 "SORTED-LENGTHS defuns in each TOP-OF-RANGES range."
21354 (let ((top-of-range (car top-of-ranges))
21355 (number-within-range 0)
21356 defuns-per-range-list)
21357 @end group
21358
21359 @group
21360 ;; @r{Outer loop.}
21361 (while top-of-ranges
21362
21363 ;; @r{Inner loop.}
21364 (while (and
21365 ;; @r{Need number for numeric test.}
21366 (car sorted-lengths)
21367 (< (car sorted-lengths) top-of-range))
21368
21369 ;; @r{Count number of definitions within current range.}
21370 (setq number-within-range (1+ number-within-range))
21371 (setq sorted-lengths (cdr sorted-lengths)))
21372 @end group
21373
21374 @group
21375 ;; @r{Exit inner loop but remain within outer loop.}
21376
21377 (setq defuns-per-range-list
21378 (cons number-within-range defuns-per-range-list))
21379 (setq number-within-range 0) ; @r{Reset count to zero.}
21380
21381 ;; @r{Move to next range.}
21382 (setq top-of-ranges (cdr top-of-ranges))
21383 ;; @r{Specify next top of range value.}
21384 (setq top-of-range (car top-of-ranges)))
21385 @end group
21386
21387 @group
21388 ;; @r{Exit outer loop and count the number of defuns larger than}
21389 ;; @r{ the largest top-of-range value.}
21390 (setq defuns-per-range-list
21391 (cons
21392 (length sorted-lengths)
21393 defuns-per-range-list))
21394
21395 ;; @r{Return a list of the number of definitions within each range,}
21396 ;; @r{ smallest to largest.}
21397 (nreverse defuns-per-range-list)))
21398 @end group
21399 @end smallexample
21400
21401 @smallexample
21402 @group
21403 (defun column-of-graph (max-graph-height actual-height)
21404 "Return list of MAX-GRAPH-HEIGHT strings;
21405 ACTUAL-HEIGHT are graph-symbols.
21406 The graph-symbols are contiguous entries at the end
21407 of the list.
21408 The list will be inserted as one column of a graph.
21409 The strings are either graph-blank or graph-symbol."
21410 @end group
21411
21412 @group
21413 (let ((insert-list nil)
21414 (number-of-top-blanks
21415 (- max-graph-height actual-height)))
21416
21417 ;; @r{Fill in @code{graph-symbols}.}
21418 (while (> actual-height 0)
21419 (setq insert-list (cons graph-symbol insert-list))
21420 (setq actual-height (1- actual-height)))
21421 @end group
21422
21423 @group
21424 ;; @r{Fill in @code{graph-blanks}.}
21425 (while (> number-of-top-blanks 0)
21426 (setq insert-list (cons graph-blank insert-list))
21427 (setq number-of-top-blanks
21428 (1- number-of-top-blanks)))
21429
21430 ;; @r{Return whole list.}
21431 insert-list))
21432 @end group
21433 @end smallexample
21434
21435 @smallexample
21436 @group
21437 (defun Y-axis-element (number full-Y-label-width)
21438 "Construct a NUMBERed label element.
21439 A numbered element looks like this ` 5 - ',
21440 and is padded as needed so all line up with
21441 the element for the largest number."
21442 @end group
21443 @group
21444 (let* ((leading-spaces
21445 (- full-Y-label-width
21446 (length
21447 (concat (number-to-string number)
21448 Y-axis-tic)))))
21449 @end group
21450 @group
21451 (concat
21452 (make-string leading-spaces ? )
21453 (number-to-string number)
21454 Y-axis-tic)))
21455 @end group
21456 @end smallexample
21457
21458 @smallexample
21459 @group
21460 (defun print-Y-axis
21461 (height full-Y-label-width &optional vertical-step)
21462 "Insert Y axis by HEIGHT and FULL-Y-LABEL-WIDTH.
21463 Height must be the maximum height of the graph.
21464 Full width is the width of the highest label element.
21465 Optionally, print according to VERTICAL-STEP."
21466 @end group
21467 @group
21468 ;; Value of height and full-Y-label-width
21469 ;; are passed by `print-graph'.
21470 (let ((start (point)))
21471 (insert-rectangle
21472 (Y-axis-column height full-Y-label-width vertical-step))
21473 @end group
21474 @group
21475 ;; @r{Place point ready for inserting graph.}
21476 (goto-char start)
21477 ;; @r{Move point forward by value of} full-Y-label-width
21478 (forward-char full-Y-label-width)))
21479 @end group
21480 @end smallexample
21481
21482 @smallexample
21483 @group
21484 (defun print-X-axis-tic-line
21485 (number-of-X-tics X-axis-leading-spaces X-axis-tic-element)
21486 "Print ticks for X axis."
21487 (insert X-axis-leading-spaces)
21488 (insert X-axis-tic-symbol) ; @r{Under first column.}
21489 @end group
21490 @group
21491 ;; @r{Insert second tic in the right spot.}
21492 (insert (concat
21493 (make-string
21494 (- (* symbol-width X-axis-label-spacing)
21495 ;; @r{Insert white space up to second tic symbol.}
21496 (* 2 (length X-axis-tic-symbol)))
21497 ? )
21498 X-axis-tic-symbol))
21499 @end group
21500 @group
21501 ;; @r{Insert remaining ticks.}
21502 (while (> number-of-X-tics 1)
21503 (insert X-axis-tic-element)
21504 (setq number-of-X-tics (1- number-of-X-tics))))
21505 @end group
21506 @end smallexample
21507
21508 @smallexample
21509 @group
21510 (defun X-axis-element (number)
21511 "Construct a numbered X axis element."
21512 (let ((leading-spaces
21513 (- (* symbol-width X-axis-label-spacing)
21514 (length (number-to-string number)))))
21515 (concat (make-string leading-spaces ? )
21516 (number-to-string number))))
21517 @end group
21518 @end smallexample
21519
21520 @smallexample
21521 @group
21522 (defun graph-body-print (numbers-list height symbol-width)
21523 "Print a bar graph of the NUMBERS-LIST.
21524 The numbers-list consists of the Y-axis values.
21525 HEIGHT is maximum height of graph.
21526 SYMBOL-WIDTH is number of each column."
21527 @end group
21528 @group
21529 (let (from-position)
21530 (while numbers-list
21531 (setq from-position (point))
21532 (insert-rectangle
21533 (column-of-graph height (car numbers-list)))
21534 (goto-char from-position)
21535 (forward-char symbol-width)
21536 @end group
21537 @group
21538 ;; @r{Draw graph column by column.}
21539 (sit-for 0)
21540 (setq numbers-list (cdr numbers-list)))
21541 ;; @r{Place point for X axis labels.}
21542 (forward-line height)
21543 (insert "\n")))
21544 @end group
21545 @end smallexample
21546
21547 @smallexample
21548 @group
21549 (defun Y-axis-column
21550 (height width-of-label &optional vertical-step)
21551 "Construct list of labels for Y axis.
21552 HEIGHT is maximum height of graph.
21553 WIDTH-OF-LABEL is maximum width of label.
21554 @end group
21555 @group
21556 VERTICAL-STEP, an option, is a positive integer
21557 that specifies how much a Y axis label increments
21558 for each line. For example, a step of 5 means
21559 that each line is five units of the graph."
21560 (let (Y-axis
21561 (number-per-line (or vertical-step 1)))
21562 @end group
21563 @group
21564 (while (> height 1)
21565 (if (zerop (% height Y-axis-label-spacing))
21566 ;; @r{Insert label.}
21567 (setq Y-axis
21568 (cons
21569 (Y-axis-element
21570 (* height number-per-line)
21571 width-of-label)
21572 Y-axis))
21573 @end group
21574 @group
21575 ;; @r{Else, insert blanks.}
21576 (setq Y-axis
21577 (cons
21578 (make-string width-of-label ? )
21579 Y-axis)))
21580 (setq height (1- height)))
21581 @end group
21582 @group
21583 ;; @r{Insert base line.}
21584 (setq Y-axis (cons (Y-axis-element
21585 (or vertical-step 1)
21586 width-of-label)
21587 Y-axis))
21588 (nreverse Y-axis)))
21589 @end group
21590 @end smallexample
21591
21592 @smallexample
21593 @group
21594 (defun print-X-axis-numbered-line
21595 (number-of-X-tics X-axis-leading-spaces
21596 &optional horizontal-step)
21597 "Print line of X-axis numbers"
21598 (let ((number X-axis-label-spacing)
21599 (horizontal-step (or horizontal-step 1)))
21600 @end group
21601 @group
21602 (insert X-axis-leading-spaces)
21603 ;; line up number
21604 (delete-char (- (1- (length (number-to-string horizontal-step)))))
21605 (insert (concat
21606 (make-string
21607 ;; @r{Insert white space up to next number.}
21608 (- (* symbol-width X-axis-label-spacing)
21609 (1- (length (number-to-string horizontal-step)))
21610 2)
21611 ? )
21612 (number-to-string (* number horizontal-step))))
21613 @end group
21614 @group
21615 ;; @r{Insert remaining numbers.}
21616 (setq number (+ number X-axis-label-spacing))
21617 (while (> number-of-X-tics 1)
21618 (insert (X-axis-element (* number horizontal-step)))
21619 (setq number (+ number X-axis-label-spacing))
21620 (setq number-of-X-tics (1- number-of-X-tics)))))
21621 @end group
21622 @end smallexample
21623
21624 @smallexample
21625 @group
21626 (defun print-X-axis (numbers-list horizontal-step)
21627 "Print X axis labels to length of NUMBERS-LIST.
21628 Optionally, HORIZONTAL-STEP, a positive integer,
21629 specifies how much an X axis label increments for
21630 each column."
21631 @end group
21632 @group
21633 ;; Value of symbol-width and full-Y-label-width
21634 ;; are passed by `print-graph'.
21635 (let* ((leading-spaces
21636 (make-string full-Y-label-width ? ))
21637 ;; symbol-width @r{is provided by} graph-body-print
21638 (tic-width (* symbol-width X-axis-label-spacing))
21639 (X-length (length numbers-list))
21640 @end group
21641 @group
21642 (X-tic
21643 (concat
21644 (make-string
21645 ;; @r{Make a string of blanks.}
21646 (- (* symbol-width X-axis-label-spacing)
21647 (length X-axis-tic-symbol))
21648 ? )
21649 @end group
21650 @group
21651 ;; @r{Concatenate blanks with tic symbol.}
21652 X-axis-tic-symbol))
21653 (tic-number
21654 (if (zerop (% X-length tic-width))
21655 (/ X-length tic-width)
21656 (1+ (/ X-length tic-width)))))
21657 @end group
21658
21659 @group
21660 (print-X-axis-tic-line
21661 tic-number leading-spaces X-tic)
21662 (insert "\n")
21663 (print-X-axis-numbered-line
21664 tic-number leading-spaces horizontal-step)))
21665 @end group
21666 @end smallexample
21667
21668 @smallexample
21669 @group
21670 (defun one-fiftieth (full-range)
21671 "Return list, each number of which is 1/50th previous."
21672 (mapcar (lambda (arg) (/ arg 50)) full-range))
21673 @end group
21674 @end smallexample
21675
21676 @smallexample
21677 @group
21678 (defun print-graph
21679 (numbers-list &optional vertical-step horizontal-step)
21680 "Print labeled bar graph of the NUMBERS-LIST.
21681 The numbers-list consists of the Y-axis values.
21682 @end group
21683
21684 @group
21685 Optionally, VERTICAL-STEP, a positive integer,
21686 specifies how much a Y axis label increments for
21687 each line. For example, a step of 5 means that
21688 each row is five units.
21689 @end group
21690
21691 @group
21692 Optionally, HORIZONTAL-STEP, a positive integer,
21693 specifies how much an X axis label increments for
21694 each column."
21695 (let* ((symbol-width (length graph-blank))
21696 ;; @code{height} @r{is both the largest number}
21697 ;; @r{and the number with the most digits.}
21698 (height (apply 'max numbers-list))
21699 @end group
21700 @group
21701 (height-of-top-line
21702 (if (zerop (% height Y-axis-label-spacing))
21703 height
21704 ;; @r{else}
21705 (* (1+ (/ height Y-axis-label-spacing))
21706 Y-axis-label-spacing)))
21707 @end group
21708 @group
21709 (vertical-step (or vertical-step 1))
21710 (full-Y-label-width
21711 (length
21712 (concat
21713 (number-to-string
21714 (* height-of-top-line vertical-step))
21715 Y-axis-tic))))
21716 @end group
21717 @group
21718
21719 (print-Y-axis
21720 height-of-top-line full-Y-label-width vertical-step)
21721 (graph-body-print
21722 numbers-list height-of-top-line symbol-width)
21723 (print-X-axis numbers-list horizontal-step)))
21724 @end group
21725 @end smallexample
21726 @c qqq
21727 @end ignore
21728
21729 @page
21730 @node Final printed graph
21731 @appendixsubsec The Printed Graph
21732
21733 When made and installed, you can call the @code{print-graph} command
21734 like this:
21735 @sp 1
21736
21737 @smallexample
21738 @group
21739 (print-graph fiftieth-list-for-graph 50 10)
21740 @end group
21741 @end smallexample
21742 @sp 1
21743
21744 @noindent
21745 Here is the graph:
21746 @sp 2
21747
21748 @smallexample
21749 @group
21750 1000 - *
21751 **
21752 **
21753 **
21754 **
21755 750 - ***
21756 ***
21757 ***
21758 ***
21759 ****
21760 500 - *****
21761 ******
21762 ******
21763 ******
21764 *******
21765 250 - ********
21766 ********* *
21767 *********** *
21768 ************* *
21769 50 - ***************** * *
21770 | | | | | | | |
21771 10 50 100 150 200 250 300 350
21772 @end group
21773 @end smallexample
21774
21775 @sp 2
21776
21777 @noindent
21778 The largest group of functions contain 10--19 words and symbols each.
21779
21780 @node Free Software and Free Manuals
21781 @appendix Free Software and Free Manuals
21782
21783 @strong{by Richard M. Stallman}
21784 @sp 1
21785
21786 The biggest deficiency in free operating systems is not in the
21787 software---it is the lack of good free manuals that we can include in
21788 these systems. Many of our most important programs do not come with
21789 full manuals. Documentation is an essential part of any software
21790 package; when an important free software package does not come with a
21791 free manual, that is a major gap. We have many such gaps today.
21792
21793 Once upon a time, many years ago, I thought I would learn Perl. I got
21794 a copy of a free manual, but I found it hard to read. When I asked
21795 Perl users about alternatives, they told me that there were better
21796 introductory manuals---but those were not free.
21797
21798 Why was this? The authors of the good manuals had written them for
21799 O'Reilly Associates, which published them with restrictive terms---no
21800 copying, no modification, source files not available---which exclude
21801 them from the free software community.
21802
21803 That wasn't the first time this sort of thing has happened, and (to
21804 our community's great loss) it was far from the last. Proprietary
21805 manual publishers have enticed a great many authors to restrict their
21806 manuals since then. Many times I have heard a GNU user eagerly tell me
21807 about a manual that he is writing, with which he expects to help the
21808 GNU project---and then had my hopes dashed, as he proceeded to explain
21809 that he had signed a contract with a publisher that would restrict it
21810 so that we cannot use it.
21811
21812 Given that writing good English is a rare skill among programmers, we
21813 can ill afford to lose manuals this way.
21814
21815 Free documentation, like free software, is a matter of freedom, not
21816 price. The problem with these manuals was not that O'Reilly Associates
21817 charged a price for printed copies---that in itself is fine. The Free
21818 Software Foundation @uref{http://shop.fsf.org, sells printed copies} of
21819 free @uref{http://www.gnu.org/doc/doc.html, GNU manuals}, too.
21820 But GNU manuals are available in source code form, while these manuals
21821 are available only on paper. GNU manuals come with permission to copy
21822 and modify; the Perl manuals do not. These restrictions are the
21823 problems.
21824
21825 The criterion for a free manual is pretty much the same as for free
21826 software: it is a matter of giving all users certain
21827 freedoms. Redistribution (including commercial redistribution) must be
21828 permitted, so that the manual can accompany every copy of the program,
21829 on-line or on paper. Permission for modification is crucial too.
21830
21831 As a general rule, I don't believe that it is essential for people to
21832 have permission to modify all sorts of articles and books. The issues
21833 for writings are not necessarily the same as those for software. For
21834 example, I don't think you or I are obliged to give permission to
21835 modify articles like this one, which describe our actions and our
21836 views.
21837
21838 But there is a particular reason why the freedom to modify is crucial
21839 for documentation for free software. When people exercise their right
21840 to modify the software, and add or change its features, if they are
21841 conscientious they will change the manual too---so they can provide
21842 accurate and usable documentation with the modified program. A manual
21843 which forbids programmers to be conscientious and finish the job, or
21844 more precisely requires them to write a new manual from scratch if
21845 they change the program, does not fill our community's needs.
21846
21847 While a blanket prohibition on modification is unacceptable, some
21848 kinds of limits on the method of modification pose no problem. For
21849 example, requirements to preserve the original author's copyright
21850 notice, the distribution terms, or the list of authors, are ok. It is
21851 also no problem to require modified versions to include notice that
21852 they were modified, even to have entire sections that may not be
21853 deleted or changed, as long as these sections deal with nontechnical
21854 topics. (Some GNU manuals have them.)
21855
21856 These kinds of restrictions are not a problem because, as a practical
21857 matter, they don't stop the conscientious programmer from adapting the
21858 manual to fit the modified program. In other words, they don't block
21859 the free software community from making full use of the manual.
21860
21861 However, it must be possible to modify all the technical content of
21862 the manual, and then distribute the result in all the usual media,
21863 through all the usual channels; otherwise, the restrictions do block
21864 the community, the manual is not free, and so we need another manual.
21865
21866 Unfortunately, it is often hard to find someone to write another
21867 manual when a proprietary manual exists. The obstacle is that many
21868 users think that a proprietary manual is good enough---so they don't
21869 see the need to write a free manual. They do not see that the free
21870 operating system has a gap that needs filling.
21871
21872 Why do users think that proprietary manuals are good enough? Some have
21873 not considered the issue. I hope this article will do something to
21874 change that.
21875
21876 Other users consider proprietary manuals acceptable for the same
21877 reason so many people consider proprietary software acceptable: they
21878 judge in purely practical terms, not using freedom as a
21879 criterion. These people are entitled to their opinions, but since
21880 those opinions spring from values which do not include freedom, they
21881 are no guide for those of us who do value freedom.
21882
21883 Please spread the word about this issue. We continue to lose manuals
21884 to proprietary publishing. If we spread the word that proprietary
21885 manuals are not sufficient, perhaps the next person who wants to help
21886 GNU by writing documentation will realize, before it is too late, that
21887 he must above all make it free.
21888
21889 We can also encourage commercial publishers to sell free, copylefted
21890 manuals instead of proprietary ones. One way you can help this is to
21891 check the distribution terms of a manual before you buy it, and prefer
21892 copylefted manuals to non-copylefted ones.
21893
21894 @sp 2
21895 @noindent
21896 Note: The Free Software Foundation maintains a page on its Web site
21897 that lists free books available from other publishers:@*
21898 @uref{http://www.gnu.org/doc/other-free-books.html}
21899
21900 @node GNU Free Documentation License
21901 @appendix GNU Free Documentation License
21902
21903 @cindex FDL, GNU Free Documentation License
21904 @include doclicense.texi
21905
21906 @node Index
21907 @unnumbered Index
21908
21909 @ignore
21910 MENU ENTRY: NODE NAME.
21911 @end ignore
21912
21913 @printindex cp
21914
21915 @iftex
21916 @c Place biographical information on right-hand (verso) page
21917
21918 @tex
21919 \par\vfill\supereject
21920 \ifodd\pageno
21921 \global\evenheadline={\hfil} \global\evenfootline={\hfil}
21922 \global\oddheadline={\hfil} \global\oddfootline={\hfil}
21923 %\page\hbox{}\page
21924 \else
21925 % \par\vfill\supereject
21926 \global\evenheadline={\hfil} \global\evenfootline={\hfil}
21927 \global\oddheadline={\hfil} \global\oddfootline={\hfil}
21928 %\page\hbox{}%\page
21929 %\page\hbox{}%\page
21930 \fi
21931 @end tex
21932
21933 @c page
21934 @w{ }
21935
21936 @c ================ Biographical information ================
21937
21938 @w{ }
21939 @sp 8
21940 @center About the Author
21941 @sp 1
21942 @end iftex
21943
21944 @ifnottex
21945 @node About the Author
21946 @unnumbered About the Author
21947 @end ifnottex
21948
21949 @quotation
21950 Robert J. Chassell has worked with GNU Emacs since 1985. He writes
21951 and edits, teaches Emacs and Emacs Lisp, and speaks throughout the
21952 world on software freedom. Chassell was a founding Director and
21953 Treasurer of the Free Software Foundation, Inc. He is co-author of
21954 the @cite{Texinfo} manual, and has edited more than a dozen other
21955 books. He graduated from Cambridge University, in England. He has an
21956 abiding interest in social and economic history and flies his own
21957 airplane.
21958 @end quotation
21959
21960 @c @page
21961 @c @w{ }
21962 @c
21963 @c @c Prevent page number on blank verso, so eject it first.
21964 @c @tex
21965 @c \par\vfill\supereject
21966 @c @end tex
21967
21968 @c @iftex
21969 @c @headings off
21970 @c @evenheading @thispage @| @| @thistitle
21971 @c @oddheading @| @| @thispage
21972 @c @end iftex
21973
21974 @bye