Assume C89 or later.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 Lisp_Object Qstring_lessp;
46 static Lisp_Object Qprovide, Qrequire;
47 static Lisp_Object Qyes_or_no_p_history;
48 Lisp_Object Qcursor_in_echo_area;
49 static Lisp_Object Qwidget_type;
50 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51
52 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78
79 if (EQ (limit, Qt))
80 {
81 EMACS_TIME t;
82 EMACS_GET_TIME (t);
83 seed_random (getpid () ^ EMACS_SECS (t) ^ EMACS_USECS (t));
84 }
85
86 if (NATNUMP (limit) && XFASTINT (limit) != 0)
87 {
88 /* Try to take our random number from the higher bits of VAL,
89 not the lower, since (says Gentzel) the low bits of `random'
90 are less random than the higher ones. We do this by using the
91 quotient rather than the remainder. At the high end of the RNG
92 it's possible to get a quotient larger than n; discarding
93 these values eliminates the bias that would otherwise appear
94 when using a large n. */
95 EMACS_INT denominator = (INTMASK + 1) / XFASTINT (limit);
96 do
97 val = get_random () / denominator;
98 while (val >= XFASTINT (limit));
99 }
100 else
101 val = get_random ();
102 XSETINT (lispy_val, val);
103 return lispy_val;
104 }
105 \f
106 /* Heuristic on how many iterations of a tight loop can be safely done
107 before it's time to do a QUIT. This must be a power of 2. */
108 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
109
110 /* Random data-structure functions */
111
112 DEFUN ("length", Flength, Slength, 1, 1, 0,
113 doc: /* Return the length of vector, list or string SEQUENCE.
114 A byte-code function object is also allowed.
115 If the string contains multibyte characters, this is not necessarily
116 the number of bytes in the string; it is the number of characters.
117 To get the number of bytes, use `string-bytes'. */)
118 (register Lisp_Object sequence)
119 {
120 register Lisp_Object val;
121
122 if (STRINGP (sequence))
123 XSETFASTINT (val, SCHARS (sequence));
124 else if (VECTORP (sequence))
125 XSETFASTINT (val, ASIZE (sequence));
126 else if (CHAR_TABLE_P (sequence))
127 XSETFASTINT (val, MAX_CHAR);
128 else if (BOOL_VECTOR_P (sequence))
129 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
130 else if (COMPILEDP (sequence))
131 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
132 else if (CONSP (sequence))
133 {
134 EMACS_INT i = 0;
135
136 do
137 {
138 ++i;
139 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
140 {
141 if (MOST_POSITIVE_FIXNUM < i)
142 error ("List too long");
143 QUIT;
144 }
145 sequence = XCDR (sequence);
146 }
147 while (CONSP (sequence));
148
149 CHECK_LIST_END (sequence, sequence);
150
151 val = make_number (i);
152 }
153 else if (NILP (sequence))
154 XSETFASTINT (val, 0);
155 else
156 wrong_type_argument (Qsequencep, sequence);
157
158 return val;
159 }
160
161 /* This does not check for quits. That is safe since it must terminate. */
162
163 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
164 doc: /* Return the length of a list, but avoid error or infinite loop.
165 This function never gets an error. If LIST is not really a list,
166 it returns 0. If LIST is circular, it returns a finite value
167 which is at least the number of distinct elements. */)
168 (Lisp_Object list)
169 {
170 Lisp_Object tail, halftail;
171 double hilen = 0;
172 uintmax_t lolen = 1;
173
174 if (! CONSP (list))
175 return make_number (0);
176
177 /* halftail is used to detect circular lists. */
178 for (tail = halftail = list; ; )
179 {
180 tail = XCDR (tail);
181 if (! CONSP (tail))
182 break;
183 if (EQ (tail, halftail))
184 break;
185 lolen++;
186 if ((lolen & 1) == 0)
187 {
188 halftail = XCDR (halftail);
189 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
190 {
191 QUIT;
192 if (lolen == 0)
193 hilen += UINTMAX_MAX + 1.0;
194 }
195 }
196 }
197
198 /* If the length does not fit into a fixnum, return a float.
199 On all known practical machines this returns an upper bound on
200 the true length. */
201 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
202 }
203
204 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
205 doc: /* Return the number of bytes in STRING.
206 If STRING is multibyte, this may be greater than the length of STRING. */)
207 (Lisp_Object string)
208 {
209 CHECK_STRING (string);
210 return make_number (SBYTES (string));
211 }
212
213 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
214 doc: /* Return t if two strings have identical contents.
215 Case is significant, but text properties are ignored.
216 Symbols are also allowed; their print names are used instead. */)
217 (register Lisp_Object s1, Lisp_Object s2)
218 {
219 if (SYMBOLP (s1))
220 s1 = SYMBOL_NAME (s1);
221 if (SYMBOLP (s2))
222 s2 = SYMBOL_NAME (s2);
223 CHECK_STRING (s1);
224 CHECK_STRING (s2);
225
226 if (SCHARS (s1) != SCHARS (s2)
227 || SBYTES (s1) != SBYTES (s2)
228 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
229 return Qnil;
230 return Qt;
231 }
232
233 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
234 doc: /* Compare the contents of two strings, converting to multibyte if needed.
235 In string STR1, skip the first START1 characters and stop at END1.
236 In string STR2, skip the first START2 characters and stop at END2.
237 END1 and END2 default to the full lengths of the respective strings.
238
239 Case is significant in this comparison if IGNORE-CASE is nil.
240 Unibyte strings are converted to multibyte for comparison.
241
242 The value is t if the strings (or specified portions) match.
243 If string STR1 is less, the value is a negative number N;
244 - 1 - N is the number of characters that match at the beginning.
245 If string STR1 is greater, the value is a positive number N;
246 N - 1 is the number of characters that match at the beginning. */)
247 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
248 {
249 register EMACS_INT end1_char, end2_char;
250 register EMACS_INT i1, i1_byte, i2, i2_byte;
251
252 CHECK_STRING (str1);
253 CHECK_STRING (str2);
254 if (NILP (start1))
255 start1 = make_number (0);
256 if (NILP (start2))
257 start2 = make_number (0);
258 CHECK_NATNUM (start1);
259 CHECK_NATNUM (start2);
260 if (! NILP (end1))
261 CHECK_NATNUM (end1);
262 if (! NILP (end2))
263 CHECK_NATNUM (end2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 end1_char = SCHARS (str1);
272 if (! NILP (end1) && end1_char > XINT (end1))
273 end1_char = XINT (end1);
274
275 end2_char = SCHARS (str2);
276 if (! NILP (end2) && end2_char > XINT (end2))
277 end2_char = XINT (end2);
278
279 while (i1 < end1_char && i2 < end2_char)
280 {
281 /* When we find a mismatch, we must compare the
282 characters, not just the bytes. */
283 int c1, c2;
284
285 if (STRING_MULTIBYTE (str1))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
287 else
288 {
289 c1 = SREF (str1, i1++);
290 MAKE_CHAR_MULTIBYTE (c1);
291 }
292
293 if (STRING_MULTIBYTE (str2))
294 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
295 else
296 {
297 c2 = SREF (str2, i2++);
298 MAKE_CHAR_MULTIBYTE (c2);
299 }
300
301 if (c1 == c2)
302 continue;
303
304 if (! NILP (ignore_case))
305 {
306 Lisp_Object tem;
307
308 tem = Fupcase (make_number (c1));
309 c1 = XINT (tem);
310 tem = Fupcase (make_number (c2));
311 c2 = XINT (tem);
312 }
313
314 if (c1 == c2)
315 continue;
316
317 /* Note that I1 has already been incremented
318 past the character that we are comparing;
319 hence we don't add or subtract 1 here. */
320 if (c1 < c2)
321 return make_number (- i1 + XINT (start1));
322 else
323 return make_number (i1 - XINT (start1));
324 }
325
326 if (i1 < end1_char)
327 return make_number (i1 - XINT (start1) + 1);
328 if (i2 < end2_char)
329 return make_number (- i1 + XINT (start1) - 1);
330
331 return Qt;
332 }
333
334 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
335 doc: /* Return t if first arg string is less than second in lexicographic order.
336 Case is significant.
337 Symbols are also allowed; their print names are used instead. */)
338 (register Lisp_Object s1, Lisp_Object s2)
339 {
340 register EMACS_INT end;
341 register EMACS_INT i1, i1_byte, i2, i2_byte;
342
343 if (SYMBOLP (s1))
344 s1 = SYMBOL_NAME (s1);
345 if (SYMBOLP (s2))
346 s2 = SYMBOL_NAME (s2);
347 CHECK_STRING (s1);
348 CHECK_STRING (s2);
349
350 i1 = i1_byte = i2 = i2_byte = 0;
351
352 end = SCHARS (s1);
353 if (end > SCHARS (s2))
354 end = SCHARS (s2);
355
356 while (i1 < end)
357 {
358 /* When we find a mismatch, we must compare the
359 characters, not just the bytes. */
360 int c1, c2;
361
362 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
363 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
364
365 if (c1 != c2)
366 return c1 < c2 ? Qt : Qnil;
367 }
368 return i1 < SCHARS (s2) ? Qt : Qnil;
369 }
370 \f
371 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
372 enum Lisp_Type target_type, int last_special);
373
374 /* ARGSUSED */
375 Lisp_Object
376 concat2 (Lisp_Object s1, Lisp_Object s2)
377 {
378 Lisp_Object args[2];
379 args[0] = s1;
380 args[1] = s2;
381 return concat (2, args, Lisp_String, 0);
382 }
383
384 /* ARGSUSED */
385 Lisp_Object
386 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
387 {
388 Lisp_Object args[3];
389 args[0] = s1;
390 args[1] = s2;
391 args[2] = s3;
392 return concat (3, args, Lisp_String, 0);
393 }
394
395 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
396 doc: /* Concatenate all the arguments and make the result a list.
397 The result is a list whose elements are the elements of all the arguments.
398 Each argument may be a list, vector or string.
399 The last argument is not copied, just used as the tail of the new list.
400 usage: (append &rest SEQUENCES) */)
401 (ptrdiff_t nargs, Lisp_Object *args)
402 {
403 return concat (nargs, args, Lisp_Cons, 1);
404 }
405
406 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
407 doc: /* Concatenate all the arguments and make the result a string.
408 The result is a string whose elements are the elements of all the arguments.
409 Each argument may be a string or a list or vector of characters (integers).
410 usage: (concat &rest SEQUENCES) */)
411 (ptrdiff_t nargs, Lisp_Object *args)
412 {
413 return concat (nargs, args, Lisp_String, 0);
414 }
415
416 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
417 doc: /* Concatenate all the arguments and make the result a vector.
418 The result is a vector whose elements are the elements of all the arguments.
419 Each argument may be a list, vector or string.
420 usage: (vconcat &rest SEQUENCES) */)
421 (ptrdiff_t nargs, Lisp_Object *args)
422 {
423 return concat (nargs, args, Lisp_Vectorlike, 0);
424 }
425
426
427 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
428 doc: /* Return a copy of a list, vector, string or char-table.
429 The elements of a list or vector are not copied; they are shared
430 with the original. */)
431 (Lisp_Object arg)
432 {
433 if (NILP (arg)) return arg;
434
435 if (CHAR_TABLE_P (arg))
436 {
437 return copy_char_table (arg);
438 }
439
440 if (BOOL_VECTOR_P (arg))
441 {
442 Lisp_Object val;
443 ptrdiff_t size_in_chars
444 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
445 / BOOL_VECTOR_BITS_PER_CHAR);
446
447 val = Fmake_bool_vector (Flength (arg), Qnil);
448 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
449 size_in_chars);
450 return val;
451 }
452
453 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
454 wrong_type_argument (Qsequencep, arg);
455
456 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
457 }
458
459 /* This structure holds information of an argument of `concat' that is
460 a string and has text properties to be copied. */
461 struct textprop_rec
462 {
463 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
464 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
465 EMACS_INT to; /* refer to VAL (the target string) */
466 };
467
468 static Lisp_Object
469 concat (ptrdiff_t nargs, Lisp_Object *args,
470 enum Lisp_Type target_type, int last_special)
471 {
472 Lisp_Object val;
473 register Lisp_Object tail;
474 register Lisp_Object this;
475 EMACS_INT toindex;
476 EMACS_INT toindex_byte = 0;
477 register EMACS_INT result_len;
478 register EMACS_INT result_len_byte;
479 ptrdiff_t argnum;
480 Lisp_Object last_tail;
481 Lisp_Object prev;
482 int some_multibyte;
483 /* When we make a multibyte string, we can't copy text properties
484 while concatenating each string because the length of resulting
485 string can't be decided until we finish the whole concatenation.
486 So, we record strings that have text properties to be copied
487 here, and copy the text properties after the concatenation. */
488 struct textprop_rec *textprops = NULL;
489 /* Number of elements in textprops. */
490 ptrdiff_t num_textprops = 0;
491 USE_SAFE_ALLOCA;
492
493 tail = Qnil;
494
495 /* In append, the last arg isn't treated like the others */
496 if (last_special && nargs > 0)
497 {
498 nargs--;
499 last_tail = args[nargs];
500 }
501 else
502 last_tail = Qnil;
503
504 /* Check each argument. */
505 for (argnum = 0; argnum < nargs; argnum++)
506 {
507 this = args[argnum];
508 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
509 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
510 wrong_type_argument (Qsequencep, this);
511 }
512
513 /* Compute total length in chars of arguments in RESULT_LEN.
514 If desired output is a string, also compute length in bytes
515 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
516 whether the result should be a multibyte string. */
517 result_len_byte = 0;
518 result_len = 0;
519 some_multibyte = 0;
520 for (argnum = 0; argnum < nargs; argnum++)
521 {
522 EMACS_INT len;
523 this = args[argnum];
524 len = XFASTINT (Flength (this));
525 if (target_type == Lisp_String)
526 {
527 /* We must count the number of bytes needed in the string
528 as well as the number of characters. */
529 EMACS_INT i;
530 Lisp_Object ch;
531 int c;
532 EMACS_INT this_len_byte;
533
534 if (VECTORP (this) || COMPILEDP (this))
535 for (i = 0; i < len; i++)
536 {
537 ch = AREF (this, i);
538 CHECK_CHARACTER (ch);
539 c = XFASTINT (ch);
540 this_len_byte = CHAR_BYTES (c);
541 result_len_byte += this_len_byte;
542 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
543 some_multibyte = 1;
544 }
545 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
546 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
547 else if (CONSP (this))
548 for (; CONSP (this); this = XCDR (this))
549 {
550 ch = XCAR (this);
551 CHECK_CHARACTER (ch);
552 c = XFASTINT (ch);
553 this_len_byte = CHAR_BYTES (c);
554 result_len_byte += this_len_byte;
555 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
556 some_multibyte = 1;
557 }
558 else if (STRINGP (this))
559 {
560 if (STRING_MULTIBYTE (this))
561 {
562 some_multibyte = 1;
563 result_len_byte += SBYTES (this);
564 }
565 else
566 result_len_byte += count_size_as_multibyte (SDATA (this),
567 SCHARS (this));
568 }
569 }
570
571 result_len += len;
572 if (STRING_BYTES_BOUND < result_len)
573 string_overflow ();
574 }
575
576 if (! some_multibyte)
577 result_len_byte = result_len;
578
579 /* Create the output object. */
580 if (target_type == Lisp_Cons)
581 val = Fmake_list (make_number (result_len), Qnil);
582 else if (target_type == Lisp_Vectorlike)
583 val = Fmake_vector (make_number (result_len), Qnil);
584 else if (some_multibyte)
585 val = make_uninit_multibyte_string (result_len, result_len_byte);
586 else
587 val = make_uninit_string (result_len);
588
589 /* In `append', if all but last arg are nil, return last arg. */
590 if (target_type == Lisp_Cons && EQ (val, Qnil))
591 return last_tail;
592
593 /* Copy the contents of the args into the result. */
594 if (CONSP (val))
595 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
596 else
597 toindex = 0, toindex_byte = 0;
598
599 prev = Qnil;
600 if (STRINGP (val))
601 SAFE_NALLOCA (textprops, 1, nargs);
602
603 for (argnum = 0; argnum < nargs; argnum++)
604 {
605 Lisp_Object thislen;
606 EMACS_INT thisleni = 0;
607 register EMACS_INT thisindex = 0;
608 register EMACS_INT thisindex_byte = 0;
609
610 this = args[argnum];
611 if (!CONSP (this))
612 thislen = Flength (this), thisleni = XINT (thislen);
613
614 /* Between strings of the same kind, copy fast. */
615 if (STRINGP (this) && STRINGP (val)
616 && STRING_MULTIBYTE (this) == some_multibyte)
617 {
618 EMACS_INT thislen_byte = SBYTES (this);
619
620 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
621 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
622 {
623 textprops[num_textprops].argnum = argnum;
624 textprops[num_textprops].from = 0;
625 textprops[num_textprops++].to = toindex;
626 }
627 toindex_byte += thislen_byte;
628 toindex += thisleni;
629 }
630 /* Copy a single-byte string to a multibyte string. */
631 else if (STRINGP (this) && STRINGP (val))
632 {
633 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
634 {
635 textprops[num_textprops].argnum = argnum;
636 textprops[num_textprops].from = 0;
637 textprops[num_textprops++].to = toindex;
638 }
639 toindex_byte += copy_text (SDATA (this),
640 SDATA (val) + toindex_byte,
641 SCHARS (this), 0, 1);
642 toindex += thisleni;
643 }
644 else
645 /* Copy element by element. */
646 while (1)
647 {
648 register Lisp_Object elt;
649
650 /* Fetch next element of `this' arg into `elt', or break if
651 `this' is exhausted. */
652 if (NILP (this)) break;
653 if (CONSP (this))
654 elt = XCAR (this), this = XCDR (this);
655 else if (thisindex >= thisleni)
656 break;
657 else if (STRINGP (this))
658 {
659 int c;
660 if (STRING_MULTIBYTE (this))
661 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
662 thisindex,
663 thisindex_byte);
664 else
665 {
666 c = SREF (this, thisindex); thisindex++;
667 if (some_multibyte && !ASCII_CHAR_P (c))
668 c = BYTE8_TO_CHAR (c);
669 }
670 XSETFASTINT (elt, c);
671 }
672 else if (BOOL_VECTOR_P (this))
673 {
674 int byte;
675 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
676 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
677 elt = Qt;
678 else
679 elt = Qnil;
680 thisindex++;
681 }
682 else
683 {
684 elt = AREF (this, thisindex);
685 thisindex++;
686 }
687
688 /* Store this element into the result. */
689 if (toindex < 0)
690 {
691 XSETCAR (tail, elt);
692 prev = tail;
693 tail = XCDR (tail);
694 }
695 else if (VECTORP (val))
696 {
697 ASET (val, toindex, elt);
698 toindex++;
699 }
700 else
701 {
702 int c;
703 CHECK_CHARACTER (elt);
704 c = XFASTINT (elt);
705 if (some_multibyte)
706 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
707 else
708 SSET (val, toindex_byte++, c);
709 toindex++;
710 }
711 }
712 }
713 if (!NILP (prev))
714 XSETCDR (prev, last_tail);
715
716 if (num_textprops > 0)
717 {
718 Lisp_Object props;
719 EMACS_INT last_to_end = -1;
720
721 for (argnum = 0; argnum < num_textprops; argnum++)
722 {
723 this = args[textprops[argnum].argnum];
724 props = text_property_list (this,
725 make_number (0),
726 make_number (SCHARS (this)),
727 Qnil);
728 /* If successive arguments have properties, be sure that the
729 value of `composition' property be the copy. */
730 if (last_to_end == textprops[argnum].to)
731 make_composition_value_copy (props);
732 add_text_properties_from_list (val, props,
733 make_number (textprops[argnum].to));
734 last_to_end = textprops[argnum].to + SCHARS (this);
735 }
736 }
737
738 SAFE_FREE ();
739 return val;
740 }
741 \f
742 static Lisp_Object string_char_byte_cache_string;
743 static EMACS_INT string_char_byte_cache_charpos;
744 static EMACS_INT string_char_byte_cache_bytepos;
745
746 void
747 clear_string_char_byte_cache (void)
748 {
749 string_char_byte_cache_string = Qnil;
750 }
751
752 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
753
754 EMACS_INT
755 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
756 {
757 EMACS_INT i_byte;
758 EMACS_INT best_below, best_below_byte;
759 EMACS_INT best_above, best_above_byte;
760
761 best_below = best_below_byte = 0;
762 best_above = SCHARS (string);
763 best_above_byte = SBYTES (string);
764 if (best_above == best_above_byte)
765 return char_index;
766
767 if (EQ (string, string_char_byte_cache_string))
768 {
769 if (string_char_byte_cache_charpos < char_index)
770 {
771 best_below = string_char_byte_cache_charpos;
772 best_below_byte = string_char_byte_cache_bytepos;
773 }
774 else
775 {
776 best_above = string_char_byte_cache_charpos;
777 best_above_byte = string_char_byte_cache_bytepos;
778 }
779 }
780
781 if (char_index - best_below < best_above - char_index)
782 {
783 unsigned char *p = SDATA (string) + best_below_byte;
784
785 while (best_below < char_index)
786 {
787 p += BYTES_BY_CHAR_HEAD (*p);
788 best_below++;
789 }
790 i_byte = p - SDATA (string);
791 }
792 else
793 {
794 unsigned char *p = SDATA (string) + best_above_byte;
795
796 while (best_above > char_index)
797 {
798 p--;
799 while (!CHAR_HEAD_P (*p)) p--;
800 best_above--;
801 }
802 i_byte = p - SDATA (string);
803 }
804
805 string_char_byte_cache_bytepos = i_byte;
806 string_char_byte_cache_charpos = char_index;
807 string_char_byte_cache_string = string;
808
809 return i_byte;
810 }
811 \f
812 /* Return the character index corresponding to BYTE_INDEX in STRING. */
813
814 EMACS_INT
815 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
816 {
817 EMACS_INT i, i_byte;
818 EMACS_INT best_below, best_below_byte;
819 EMACS_INT best_above, best_above_byte;
820
821 best_below = best_below_byte = 0;
822 best_above = SCHARS (string);
823 best_above_byte = SBYTES (string);
824 if (best_above == best_above_byte)
825 return byte_index;
826
827 if (EQ (string, string_char_byte_cache_string))
828 {
829 if (string_char_byte_cache_bytepos < byte_index)
830 {
831 best_below = string_char_byte_cache_charpos;
832 best_below_byte = string_char_byte_cache_bytepos;
833 }
834 else
835 {
836 best_above = string_char_byte_cache_charpos;
837 best_above_byte = string_char_byte_cache_bytepos;
838 }
839 }
840
841 if (byte_index - best_below_byte < best_above_byte - byte_index)
842 {
843 unsigned char *p = SDATA (string) + best_below_byte;
844 unsigned char *pend = SDATA (string) + byte_index;
845
846 while (p < pend)
847 {
848 p += BYTES_BY_CHAR_HEAD (*p);
849 best_below++;
850 }
851 i = best_below;
852 i_byte = p - SDATA (string);
853 }
854 else
855 {
856 unsigned char *p = SDATA (string) + best_above_byte;
857 unsigned char *pbeg = SDATA (string) + byte_index;
858
859 while (p > pbeg)
860 {
861 p--;
862 while (!CHAR_HEAD_P (*p)) p--;
863 best_above--;
864 }
865 i = best_above;
866 i_byte = p - SDATA (string);
867 }
868
869 string_char_byte_cache_bytepos = i_byte;
870 string_char_byte_cache_charpos = i;
871 string_char_byte_cache_string = string;
872
873 return i;
874 }
875 \f
876 /* Convert STRING to a multibyte string. */
877
878 static Lisp_Object
879 string_make_multibyte (Lisp_Object string)
880 {
881 unsigned char *buf;
882 EMACS_INT nbytes;
883 Lisp_Object ret;
884 USE_SAFE_ALLOCA;
885
886 if (STRING_MULTIBYTE (string))
887 return string;
888
889 nbytes = count_size_as_multibyte (SDATA (string),
890 SCHARS (string));
891 /* If all the chars are ASCII, they won't need any more bytes
892 once converted. In that case, we can return STRING itself. */
893 if (nbytes == SBYTES (string))
894 return string;
895
896 SAFE_ALLOCA (buf, unsigned char *, nbytes);
897 copy_text (SDATA (string), buf, SBYTES (string),
898 0, 1);
899
900 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
901 SAFE_FREE ();
902
903 return ret;
904 }
905
906
907 /* Convert STRING (if unibyte) to a multibyte string without changing
908 the number of characters. Characters 0200 trough 0237 are
909 converted to eight-bit characters. */
910
911 Lisp_Object
912 string_to_multibyte (Lisp_Object string)
913 {
914 unsigned char *buf;
915 EMACS_INT nbytes;
916 Lisp_Object ret;
917 USE_SAFE_ALLOCA;
918
919 if (STRING_MULTIBYTE (string))
920 return string;
921
922 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
923 /* If all the chars are ASCII, they won't need any more bytes once
924 converted. */
925 if (nbytes == SBYTES (string))
926 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
927
928 SAFE_ALLOCA (buf, unsigned char *, nbytes);
929 memcpy (buf, SDATA (string), SBYTES (string));
930 str_to_multibyte (buf, nbytes, SBYTES (string));
931
932 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
933 SAFE_FREE ();
934
935 return ret;
936 }
937
938
939 /* Convert STRING to a single-byte string. */
940
941 Lisp_Object
942 string_make_unibyte (Lisp_Object string)
943 {
944 EMACS_INT nchars;
945 unsigned char *buf;
946 Lisp_Object ret;
947 USE_SAFE_ALLOCA;
948
949 if (! STRING_MULTIBYTE (string))
950 return string;
951
952 nchars = SCHARS (string);
953
954 SAFE_ALLOCA (buf, unsigned char *, nchars);
955 copy_text (SDATA (string), buf, SBYTES (string),
956 1, 0);
957
958 ret = make_unibyte_string ((char *) buf, nchars);
959 SAFE_FREE ();
960
961 return ret;
962 }
963
964 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
965 1, 1, 0,
966 doc: /* Return the multibyte equivalent of STRING.
967 If STRING is unibyte and contains non-ASCII characters, the function
968 `unibyte-char-to-multibyte' is used to convert each unibyte character
969 to a multibyte character. In this case, the returned string is a
970 newly created string with no text properties. If STRING is multibyte
971 or entirely ASCII, it is returned unchanged. In particular, when
972 STRING is unibyte and entirely ASCII, the returned string is unibyte.
973 \(When the characters are all ASCII, Emacs primitives will treat the
974 string the same way whether it is unibyte or multibyte.) */)
975 (Lisp_Object string)
976 {
977 CHECK_STRING (string);
978
979 return string_make_multibyte (string);
980 }
981
982 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
983 1, 1, 0,
984 doc: /* Return the unibyte equivalent of STRING.
985 Multibyte character codes are converted to unibyte according to
986 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
987 If the lookup in the translation table fails, this function takes just
988 the low 8 bits of each character. */)
989 (Lisp_Object string)
990 {
991 CHECK_STRING (string);
992
993 return string_make_unibyte (string);
994 }
995
996 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
997 1, 1, 0,
998 doc: /* Return a unibyte string with the same individual bytes as STRING.
999 If STRING is unibyte, the result is STRING itself.
1000 Otherwise it is a newly created string, with no text properties.
1001 If STRING is multibyte and contains a character of charset
1002 `eight-bit', it is converted to the corresponding single byte. */)
1003 (Lisp_Object string)
1004 {
1005 CHECK_STRING (string);
1006
1007 if (STRING_MULTIBYTE (string))
1008 {
1009 EMACS_INT bytes = SBYTES (string);
1010 unsigned char *str = (unsigned char *) xmalloc (bytes);
1011
1012 memcpy (str, SDATA (string), bytes);
1013 bytes = str_as_unibyte (str, bytes);
1014 string = make_unibyte_string ((char *) str, bytes);
1015 xfree (str);
1016 }
1017 return string;
1018 }
1019
1020 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1021 1, 1, 0,
1022 doc: /* Return a multibyte string with the same individual bytes as STRING.
1023 If STRING is multibyte, the result is STRING itself.
1024 Otherwise it is a newly created string, with no text properties.
1025
1026 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1027 part of a correct utf-8 sequence), it is converted to the corresponding
1028 multibyte character of charset `eight-bit'.
1029 See also `string-to-multibyte'.
1030
1031 Beware, this often doesn't really do what you think it does.
1032 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1033 If you're not sure, whether to use `string-as-multibyte' or
1034 `string-to-multibyte', use `string-to-multibyte'. */)
1035 (Lisp_Object string)
1036 {
1037 CHECK_STRING (string);
1038
1039 if (! STRING_MULTIBYTE (string))
1040 {
1041 Lisp_Object new_string;
1042 EMACS_INT nchars, nbytes;
1043
1044 parse_str_as_multibyte (SDATA (string),
1045 SBYTES (string),
1046 &nchars, &nbytes);
1047 new_string = make_uninit_multibyte_string (nchars, nbytes);
1048 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1049 if (nbytes != SBYTES (string))
1050 str_as_multibyte (SDATA (new_string), nbytes,
1051 SBYTES (string), NULL);
1052 string = new_string;
1053 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1054 }
1055 return string;
1056 }
1057
1058 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1059 1, 1, 0,
1060 doc: /* Return a multibyte string with the same individual chars as STRING.
1061 If STRING is multibyte, the result is STRING itself.
1062 Otherwise it is a newly created string, with no text properties.
1063
1064 If STRING is unibyte and contains an 8-bit byte, it is converted to
1065 the corresponding multibyte character of charset `eight-bit'.
1066
1067 This differs from `string-as-multibyte' by converting each byte of a correct
1068 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1069 correct sequence. */)
1070 (Lisp_Object string)
1071 {
1072 CHECK_STRING (string);
1073
1074 return string_to_multibyte (string);
1075 }
1076
1077 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1078 1, 1, 0,
1079 doc: /* Return a unibyte string with the same individual chars as STRING.
1080 If STRING is unibyte, the result is STRING itself.
1081 Otherwise it is a newly created string, with no text properties,
1082 where each `eight-bit' character is converted to the corresponding byte.
1083 If STRING contains a non-ASCII, non-`eight-bit' character,
1084 an error is signaled. */)
1085 (Lisp_Object string)
1086 {
1087 CHECK_STRING (string);
1088
1089 if (STRING_MULTIBYTE (string))
1090 {
1091 EMACS_INT chars = SCHARS (string);
1092 unsigned char *str = (unsigned char *) xmalloc (chars);
1093 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1094
1095 if (converted < chars)
1096 error ("Can't convert the %"pI"dth character to unibyte", converted);
1097 string = make_unibyte_string ((char *) str, chars);
1098 xfree (str);
1099 }
1100 return string;
1101 }
1102
1103 \f
1104 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1105 doc: /* Return a copy of ALIST.
1106 This is an alist which represents the same mapping from objects to objects,
1107 but does not share the alist structure with ALIST.
1108 The objects mapped (cars and cdrs of elements of the alist)
1109 are shared, however.
1110 Elements of ALIST that are not conses are also shared. */)
1111 (Lisp_Object alist)
1112 {
1113 register Lisp_Object tem;
1114
1115 CHECK_LIST (alist);
1116 if (NILP (alist))
1117 return alist;
1118 alist = concat (1, &alist, Lisp_Cons, 0);
1119 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1120 {
1121 register Lisp_Object car;
1122 car = XCAR (tem);
1123
1124 if (CONSP (car))
1125 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1126 }
1127 return alist;
1128 }
1129
1130 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1131 doc: /* Return a new string whose contents are a substring of STRING.
1132 The returned string consists of the characters between index FROM
1133 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1134 zero-indexed: 0 means the first character of STRING. Negative values
1135 are counted from the end of STRING. If TO is nil, the substring runs
1136 to the end of STRING.
1137
1138 The STRING argument may also be a vector. In that case, the return
1139 value is a new vector that contains the elements between index FROM
1140 \(inclusive) and index TO (exclusive) of that vector argument. */)
1141 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1142 {
1143 Lisp_Object res;
1144 EMACS_INT size;
1145 EMACS_INT size_byte = 0;
1146 EMACS_INT from_char, to_char;
1147 EMACS_INT from_byte = 0, to_byte = 0;
1148
1149 CHECK_VECTOR_OR_STRING (string);
1150 CHECK_NUMBER (from);
1151
1152 if (STRINGP (string))
1153 {
1154 size = SCHARS (string);
1155 size_byte = SBYTES (string);
1156 }
1157 else
1158 size = ASIZE (string);
1159
1160 if (NILP (to))
1161 {
1162 to_char = size;
1163 to_byte = size_byte;
1164 }
1165 else
1166 {
1167 CHECK_NUMBER (to);
1168
1169 to_char = XINT (to);
1170 if (to_char < 0)
1171 to_char += size;
1172
1173 if (STRINGP (string))
1174 to_byte = string_char_to_byte (string, to_char);
1175 }
1176
1177 from_char = XINT (from);
1178 if (from_char < 0)
1179 from_char += size;
1180 if (STRINGP (string))
1181 from_byte = string_char_to_byte (string, from_char);
1182
1183 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1184 args_out_of_range_3 (string, make_number (from_char),
1185 make_number (to_char));
1186
1187 if (STRINGP (string))
1188 {
1189 res = make_specified_string (SSDATA (string) + from_byte,
1190 to_char - from_char, to_byte - from_byte,
1191 STRING_MULTIBYTE (string));
1192 copy_text_properties (make_number (from_char), make_number (to_char),
1193 string, make_number (0), res, Qnil);
1194 }
1195 else
1196 res = Fvector (to_char - from_char, &AREF (string, from_char));
1197
1198 return res;
1199 }
1200
1201
1202 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1203 doc: /* Return a substring of STRING, without text properties.
1204 It starts at index FROM and ends before TO.
1205 TO may be nil or omitted; then the substring runs to the end of STRING.
1206 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1207 If FROM or TO is negative, it counts from the end.
1208
1209 With one argument, just copy STRING without its properties. */)
1210 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1211 {
1212 EMACS_INT size, size_byte;
1213 EMACS_INT from_char, to_char;
1214 EMACS_INT from_byte, to_byte;
1215
1216 CHECK_STRING (string);
1217
1218 size = SCHARS (string);
1219 size_byte = SBYTES (string);
1220
1221 if (NILP (from))
1222 from_char = from_byte = 0;
1223 else
1224 {
1225 CHECK_NUMBER (from);
1226 from_char = XINT (from);
1227 if (from_char < 0)
1228 from_char += size;
1229
1230 from_byte = string_char_to_byte (string, from_char);
1231 }
1232
1233 if (NILP (to))
1234 {
1235 to_char = size;
1236 to_byte = size_byte;
1237 }
1238 else
1239 {
1240 CHECK_NUMBER (to);
1241
1242 to_char = XINT (to);
1243 if (to_char < 0)
1244 to_char += size;
1245
1246 to_byte = string_char_to_byte (string, to_char);
1247 }
1248
1249 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1250 args_out_of_range_3 (string, make_number (from_char),
1251 make_number (to_char));
1252
1253 return make_specified_string (SSDATA (string) + from_byte,
1254 to_char - from_char, to_byte - from_byte,
1255 STRING_MULTIBYTE (string));
1256 }
1257
1258 /* Extract a substring of STRING, giving start and end positions
1259 both in characters and in bytes. */
1260
1261 Lisp_Object
1262 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1263 EMACS_INT to, EMACS_INT to_byte)
1264 {
1265 Lisp_Object res;
1266 EMACS_INT size;
1267
1268 CHECK_VECTOR_OR_STRING (string);
1269
1270 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1271
1272 if (!(0 <= from && from <= to && to <= size))
1273 args_out_of_range_3 (string, make_number (from), make_number (to));
1274
1275 if (STRINGP (string))
1276 {
1277 res = make_specified_string (SSDATA (string) + from_byte,
1278 to - from, to_byte - from_byte,
1279 STRING_MULTIBYTE (string));
1280 copy_text_properties (make_number (from), make_number (to),
1281 string, make_number (0), res, Qnil);
1282 }
1283 else
1284 res = Fvector (to - from, &AREF (string, from));
1285
1286 return res;
1287 }
1288 \f
1289 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1290 doc: /* Take cdr N times on LIST, return the result. */)
1291 (Lisp_Object n, Lisp_Object list)
1292 {
1293 EMACS_INT i, num;
1294 CHECK_NUMBER (n);
1295 num = XINT (n);
1296 for (i = 0; i < num && !NILP (list); i++)
1297 {
1298 QUIT;
1299 CHECK_LIST_CONS (list, list);
1300 list = XCDR (list);
1301 }
1302 return list;
1303 }
1304
1305 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1306 doc: /* Return the Nth element of LIST.
1307 N counts from zero. If LIST is not that long, nil is returned. */)
1308 (Lisp_Object n, Lisp_Object list)
1309 {
1310 return Fcar (Fnthcdr (n, list));
1311 }
1312
1313 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1314 doc: /* Return element of SEQUENCE at index N. */)
1315 (register Lisp_Object sequence, Lisp_Object n)
1316 {
1317 CHECK_NUMBER (n);
1318 if (CONSP (sequence) || NILP (sequence))
1319 return Fcar (Fnthcdr (n, sequence));
1320
1321 /* Faref signals a "not array" error, so check here. */
1322 CHECK_ARRAY (sequence, Qsequencep);
1323 return Faref (sequence, n);
1324 }
1325
1326 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1328 The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330 {
1331 register Lisp_Object tail;
1332 for (tail = list; CONSP (tail); tail = XCDR (tail))
1333 {
1334 register Lisp_Object tem;
1335 CHECK_LIST_CONS (tail, list);
1336 tem = XCAR (tail);
1337 if (! NILP (Fequal (elt, tem)))
1338 return tail;
1339 QUIT;
1340 }
1341 return Qnil;
1342 }
1343
1344 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1345 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1346 The value is actually the tail of LIST whose car is ELT. */)
1347 (register Lisp_Object elt, Lisp_Object list)
1348 {
1349 while (1)
1350 {
1351 if (!CONSP (list) || EQ (XCAR (list), elt))
1352 break;
1353
1354 list = XCDR (list);
1355 if (!CONSP (list) || EQ (XCAR (list), elt))
1356 break;
1357
1358 list = XCDR (list);
1359 if (!CONSP (list) || EQ (XCAR (list), elt))
1360 break;
1361
1362 list = XCDR (list);
1363 QUIT;
1364 }
1365
1366 CHECK_LIST (list);
1367 return list;
1368 }
1369
1370 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1371 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1372 The value is actually the tail of LIST whose car is ELT. */)
1373 (register Lisp_Object elt, Lisp_Object list)
1374 {
1375 register Lisp_Object tail;
1376
1377 if (!FLOATP (elt))
1378 return Fmemq (elt, list);
1379
1380 for (tail = list; CONSP (tail); tail = XCDR (tail))
1381 {
1382 register Lisp_Object tem;
1383 CHECK_LIST_CONS (tail, list);
1384 tem = XCAR (tail);
1385 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1386 return tail;
1387 QUIT;
1388 }
1389 return Qnil;
1390 }
1391
1392 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1393 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1394 The value is actually the first element of LIST whose car is KEY.
1395 Elements of LIST that are not conses are ignored. */)
1396 (Lisp_Object key, Lisp_Object list)
1397 {
1398 while (1)
1399 {
1400 if (!CONSP (list)
1401 || (CONSP (XCAR (list))
1402 && EQ (XCAR (XCAR (list)), key)))
1403 break;
1404
1405 list = XCDR (list);
1406 if (!CONSP (list)
1407 || (CONSP (XCAR (list))
1408 && EQ (XCAR (XCAR (list)), key)))
1409 break;
1410
1411 list = XCDR (list);
1412 if (!CONSP (list)
1413 || (CONSP (XCAR (list))
1414 && EQ (XCAR (XCAR (list)), key)))
1415 break;
1416
1417 list = XCDR (list);
1418 QUIT;
1419 }
1420
1421 return CAR (list);
1422 }
1423
1424 /* Like Fassq but never report an error and do not allow quits.
1425 Use only on lists known never to be circular. */
1426
1427 Lisp_Object
1428 assq_no_quit (Lisp_Object key, Lisp_Object list)
1429 {
1430 while (CONSP (list)
1431 && (!CONSP (XCAR (list))
1432 || !EQ (XCAR (XCAR (list)), key)))
1433 list = XCDR (list);
1434
1435 return CAR_SAFE (list);
1436 }
1437
1438 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1439 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1440 The value is actually the first element of LIST whose car equals KEY. */)
1441 (Lisp_Object key, Lisp_Object list)
1442 {
1443 Lisp_Object car;
1444
1445 while (1)
1446 {
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1452
1453 list = XCDR (list);
1454 if (!CONSP (list)
1455 || (CONSP (XCAR (list))
1456 && (car = XCAR (XCAR (list)),
1457 EQ (car, key) || !NILP (Fequal (car, key)))))
1458 break;
1459
1460 list = XCDR (list);
1461 if (!CONSP (list)
1462 || (CONSP (XCAR (list))
1463 && (car = XCAR (XCAR (list)),
1464 EQ (car, key) || !NILP (Fequal (car, key)))))
1465 break;
1466
1467 list = XCDR (list);
1468 QUIT;
1469 }
1470
1471 return CAR (list);
1472 }
1473
1474 /* Like Fassoc but never report an error and do not allow quits.
1475 Use only on lists known never to be circular. */
1476
1477 Lisp_Object
1478 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1479 {
1480 while (CONSP (list)
1481 && (!CONSP (XCAR (list))
1482 || (!EQ (XCAR (XCAR (list)), key)
1483 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1484 list = XCDR (list);
1485
1486 return CONSP (list) ? XCAR (list) : Qnil;
1487 }
1488
1489 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1490 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1491 The value is actually the first element of LIST whose cdr is KEY. */)
1492 (register Lisp_Object key, Lisp_Object list)
1493 {
1494 while (1)
1495 {
1496 if (!CONSP (list)
1497 || (CONSP (XCAR (list))
1498 && EQ (XCDR (XCAR (list)), key)))
1499 break;
1500
1501 list = XCDR (list);
1502 if (!CONSP (list)
1503 || (CONSP (XCAR (list))
1504 && EQ (XCDR (XCAR (list)), key)))
1505 break;
1506
1507 list = XCDR (list);
1508 if (!CONSP (list)
1509 || (CONSP (XCAR (list))
1510 && EQ (XCDR (XCAR (list)), key)))
1511 break;
1512
1513 list = XCDR (list);
1514 QUIT;
1515 }
1516
1517 return CAR (list);
1518 }
1519
1520 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1521 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1522 The value is actually the first element of LIST whose cdr equals KEY. */)
1523 (Lisp_Object key, Lisp_Object list)
1524 {
1525 Lisp_Object cdr;
1526
1527 while (1)
1528 {
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1534
1535 list = XCDR (list);
1536 if (!CONSP (list)
1537 || (CONSP (XCAR (list))
1538 && (cdr = XCDR (XCAR (list)),
1539 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1540 break;
1541
1542 list = XCDR (list);
1543 if (!CONSP (list)
1544 || (CONSP (XCAR (list))
1545 && (cdr = XCDR (XCAR (list)),
1546 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1547 break;
1548
1549 list = XCDR (list);
1550 QUIT;
1551 }
1552
1553 return CAR (list);
1554 }
1555 \f
1556 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1557 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1558 The modified LIST is returned. Comparison is done with `eq'.
1559 If the first member of LIST is ELT, there is no way to remove it by side effect;
1560 therefore, write `(setq foo (delq element foo))'
1561 to be sure of changing the value of `foo'. */)
1562 (register Lisp_Object elt, Lisp_Object list)
1563 {
1564 register Lisp_Object tail, prev;
1565 register Lisp_Object tem;
1566
1567 tail = list;
1568 prev = Qnil;
1569 while (!NILP (tail))
1570 {
1571 CHECK_LIST_CONS (tail, list);
1572 tem = XCAR (tail);
1573 if (EQ (elt, tem))
1574 {
1575 if (NILP (prev))
1576 list = XCDR (tail);
1577 else
1578 Fsetcdr (prev, XCDR (tail));
1579 }
1580 else
1581 prev = tail;
1582 tail = XCDR (tail);
1583 QUIT;
1584 }
1585 return list;
1586 }
1587
1588 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1589 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1590 SEQ must be a list, a vector, or a string.
1591 The modified SEQ is returned. Comparison is done with `equal'.
1592 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1593 is not a side effect; it is simply using a different sequence.
1594 Therefore, write `(setq foo (delete element foo))'
1595 to be sure of changing the value of `foo'. */)
1596 (Lisp_Object elt, Lisp_Object seq)
1597 {
1598 if (VECTORP (seq))
1599 {
1600 EMACS_INT i, n;
1601
1602 for (i = n = 0; i < ASIZE (seq); ++i)
1603 if (NILP (Fequal (AREF (seq, i), elt)))
1604 ++n;
1605
1606 if (n != ASIZE (seq))
1607 {
1608 struct Lisp_Vector *p = allocate_vector (n);
1609
1610 for (i = n = 0; i < ASIZE (seq); ++i)
1611 if (NILP (Fequal (AREF (seq, i), elt)))
1612 p->contents[n++] = AREF (seq, i);
1613
1614 XSETVECTOR (seq, p);
1615 }
1616 }
1617 else if (STRINGP (seq))
1618 {
1619 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1620 int c;
1621
1622 for (i = nchars = nbytes = ibyte = 0;
1623 i < SCHARS (seq);
1624 ++i, ibyte += cbytes)
1625 {
1626 if (STRING_MULTIBYTE (seq))
1627 {
1628 c = STRING_CHAR (SDATA (seq) + ibyte);
1629 cbytes = CHAR_BYTES (c);
1630 }
1631 else
1632 {
1633 c = SREF (seq, i);
1634 cbytes = 1;
1635 }
1636
1637 if (!INTEGERP (elt) || c != XINT (elt))
1638 {
1639 ++nchars;
1640 nbytes += cbytes;
1641 }
1642 }
1643
1644 if (nchars != SCHARS (seq))
1645 {
1646 Lisp_Object tem;
1647
1648 tem = make_uninit_multibyte_string (nchars, nbytes);
1649 if (!STRING_MULTIBYTE (seq))
1650 STRING_SET_UNIBYTE (tem);
1651
1652 for (i = nchars = nbytes = ibyte = 0;
1653 i < SCHARS (seq);
1654 ++i, ibyte += cbytes)
1655 {
1656 if (STRING_MULTIBYTE (seq))
1657 {
1658 c = STRING_CHAR (SDATA (seq) + ibyte);
1659 cbytes = CHAR_BYTES (c);
1660 }
1661 else
1662 {
1663 c = SREF (seq, i);
1664 cbytes = 1;
1665 }
1666
1667 if (!INTEGERP (elt) || c != XINT (elt))
1668 {
1669 unsigned char *from = SDATA (seq) + ibyte;
1670 unsigned char *to = SDATA (tem) + nbytes;
1671 EMACS_INT n;
1672
1673 ++nchars;
1674 nbytes += cbytes;
1675
1676 for (n = cbytes; n--; )
1677 *to++ = *from++;
1678 }
1679 }
1680
1681 seq = tem;
1682 }
1683 }
1684 else
1685 {
1686 Lisp_Object tail, prev;
1687
1688 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1689 {
1690 CHECK_LIST_CONS (tail, seq);
1691
1692 if (!NILP (Fequal (elt, XCAR (tail))))
1693 {
1694 if (NILP (prev))
1695 seq = XCDR (tail);
1696 else
1697 Fsetcdr (prev, XCDR (tail));
1698 }
1699 else
1700 prev = tail;
1701 QUIT;
1702 }
1703 }
1704
1705 return seq;
1706 }
1707
1708 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1709 doc: /* Reverse LIST by modifying cdr pointers.
1710 Return the reversed list. */)
1711 (Lisp_Object list)
1712 {
1713 register Lisp_Object prev, tail, next;
1714
1715 if (NILP (list)) return list;
1716 prev = Qnil;
1717 tail = list;
1718 while (!NILP (tail))
1719 {
1720 QUIT;
1721 CHECK_LIST_CONS (tail, list);
1722 next = XCDR (tail);
1723 Fsetcdr (tail, prev);
1724 prev = tail;
1725 tail = next;
1726 }
1727 return prev;
1728 }
1729
1730 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1731 doc: /* Reverse LIST, copying. Return the reversed list.
1732 See also the function `nreverse', which is used more often. */)
1733 (Lisp_Object list)
1734 {
1735 Lisp_Object new;
1736
1737 for (new = Qnil; CONSP (list); list = XCDR (list))
1738 {
1739 QUIT;
1740 new = Fcons (XCAR (list), new);
1741 }
1742 CHECK_LIST_END (list, list);
1743 return new;
1744 }
1745 \f
1746 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1747
1748 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1749 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1750 Returns the sorted list. LIST is modified by side effects.
1751 PREDICATE is called with two elements of LIST, and should return non-nil
1752 if the first element should sort before the second. */)
1753 (Lisp_Object list, Lisp_Object predicate)
1754 {
1755 Lisp_Object front, back;
1756 register Lisp_Object len, tem;
1757 struct gcpro gcpro1, gcpro2;
1758 EMACS_INT length;
1759
1760 front = list;
1761 len = Flength (list);
1762 length = XINT (len);
1763 if (length < 2)
1764 return list;
1765
1766 XSETINT (len, (length / 2) - 1);
1767 tem = Fnthcdr (len, list);
1768 back = Fcdr (tem);
1769 Fsetcdr (tem, Qnil);
1770
1771 GCPRO2 (front, back);
1772 front = Fsort (front, predicate);
1773 back = Fsort (back, predicate);
1774 UNGCPRO;
1775 return merge (front, back, predicate);
1776 }
1777
1778 Lisp_Object
1779 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1780 {
1781 Lisp_Object value;
1782 register Lisp_Object tail;
1783 Lisp_Object tem;
1784 register Lisp_Object l1, l2;
1785 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1786
1787 l1 = org_l1;
1788 l2 = org_l2;
1789 tail = Qnil;
1790 value = Qnil;
1791
1792 /* It is sufficient to protect org_l1 and org_l2.
1793 When l1 and l2 are updated, we copy the new values
1794 back into the org_ vars. */
1795 GCPRO4 (org_l1, org_l2, pred, value);
1796
1797 while (1)
1798 {
1799 if (NILP (l1))
1800 {
1801 UNGCPRO;
1802 if (NILP (tail))
1803 return l2;
1804 Fsetcdr (tail, l2);
1805 return value;
1806 }
1807 if (NILP (l2))
1808 {
1809 UNGCPRO;
1810 if (NILP (tail))
1811 return l1;
1812 Fsetcdr (tail, l1);
1813 return value;
1814 }
1815 tem = call2 (pred, Fcar (l2), Fcar (l1));
1816 if (NILP (tem))
1817 {
1818 tem = l1;
1819 l1 = Fcdr (l1);
1820 org_l1 = l1;
1821 }
1822 else
1823 {
1824 tem = l2;
1825 l2 = Fcdr (l2);
1826 org_l2 = l2;
1827 }
1828 if (NILP (tail))
1829 value = tem;
1830 else
1831 Fsetcdr (tail, tem);
1832 tail = tem;
1833 }
1834 }
1835
1836 \f
1837 /* This does not check for quits. That is safe since it must terminate. */
1838
1839 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1840 doc: /* Extract a value from a property list.
1841 PLIST is a property list, which is a list of the form
1842 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1843 corresponding to the given PROP, or nil if PROP is not one of the
1844 properties on the list. This function never signals an error. */)
1845 (Lisp_Object plist, Lisp_Object prop)
1846 {
1847 Lisp_Object tail, halftail;
1848
1849 /* halftail is used to detect circular lists. */
1850 tail = halftail = plist;
1851 while (CONSP (tail) && CONSP (XCDR (tail)))
1852 {
1853 if (EQ (prop, XCAR (tail)))
1854 return XCAR (XCDR (tail));
1855
1856 tail = XCDR (XCDR (tail));
1857 halftail = XCDR (halftail);
1858 if (EQ (tail, halftail))
1859 break;
1860
1861 #if 0 /* Unsafe version. */
1862 /* This function can be called asynchronously
1863 (setup_coding_system). Don't QUIT in that case. */
1864 if (!interrupt_input_blocked)
1865 QUIT;
1866 #endif
1867 }
1868
1869 return Qnil;
1870 }
1871
1872 DEFUN ("get", Fget, Sget, 2, 2, 0,
1873 doc: /* Return the value of SYMBOL's PROPNAME property.
1874 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1875 (Lisp_Object symbol, Lisp_Object propname)
1876 {
1877 CHECK_SYMBOL (symbol);
1878 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1879 }
1880
1881 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1882 doc: /* Change value in PLIST of PROP to VAL.
1883 PLIST is a property list, which is a list of the form
1884 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1885 If PROP is already a property on the list, its value is set to VAL,
1886 otherwise the new PROP VAL pair is added. The new plist is returned;
1887 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1888 The PLIST is modified by side effects. */)
1889 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1890 {
1891 register Lisp_Object tail, prev;
1892 Lisp_Object newcell;
1893 prev = Qnil;
1894 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1895 tail = XCDR (XCDR (tail)))
1896 {
1897 if (EQ (prop, XCAR (tail)))
1898 {
1899 Fsetcar (XCDR (tail), val);
1900 return plist;
1901 }
1902
1903 prev = tail;
1904 QUIT;
1905 }
1906 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1907 if (NILP (prev))
1908 return newcell;
1909 else
1910 Fsetcdr (XCDR (prev), newcell);
1911 return plist;
1912 }
1913
1914 DEFUN ("put", Fput, Sput, 3, 3, 0,
1915 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1916 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1917 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1918 {
1919 CHECK_SYMBOL (symbol);
1920 XSYMBOL (symbol)->plist
1921 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1922 return value;
1923 }
1924 \f
1925 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1926 doc: /* Extract a value from a property list, comparing with `equal'.
1927 PLIST is a property list, which is a list of the form
1928 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1929 corresponding to the given PROP, or nil if PROP is not
1930 one of the properties on the list. */)
1931 (Lisp_Object plist, Lisp_Object prop)
1932 {
1933 Lisp_Object tail;
1934
1935 for (tail = plist;
1936 CONSP (tail) && CONSP (XCDR (tail));
1937 tail = XCDR (XCDR (tail)))
1938 {
1939 if (! NILP (Fequal (prop, XCAR (tail))))
1940 return XCAR (XCDR (tail));
1941
1942 QUIT;
1943 }
1944
1945 CHECK_LIST_END (tail, prop);
1946
1947 return Qnil;
1948 }
1949
1950 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1951 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1952 PLIST is a property list, which is a list of the form
1953 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1954 If PROP is already a property on the list, its value is set to VAL,
1955 otherwise the new PROP VAL pair is added. The new plist is returned;
1956 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1957 The PLIST is modified by side effects. */)
1958 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1959 {
1960 register Lisp_Object tail, prev;
1961 Lisp_Object newcell;
1962 prev = Qnil;
1963 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1964 tail = XCDR (XCDR (tail)))
1965 {
1966 if (! NILP (Fequal (prop, XCAR (tail))))
1967 {
1968 Fsetcar (XCDR (tail), val);
1969 return plist;
1970 }
1971
1972 prev = tail;
1973 QUIT;
1974 }
1975 newcell = Fcons (prop, Fcons (val, Qnil));
1976 if (NILP (prev))
1977 return newcell;
1978 else
1979 Fsetcdr (XCDR (prev), newcell);
1980 return plist;
1981 }
1982 \f
1983 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1984 doc: /* Return t if the two args are the same Lisp object.
1985 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1986 (Lisp_Object obj1, Lisp_Object obj2)
1987 {
1988 if (FLOATP (obj1))
1989 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1990 else
1991 return EQ (obj1, obj2) ? Qt : Qnil;
1992 }
1993
1994 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1995 doc: /* Return t if two Lisp objects have similar structure and contents.
1996 They must have the same data type.
1997 Conses are compared by comparing the cars and the cdrs.
1998 Vectors and strings are compared element by element.
1999 Numbers are compared by value, but integers cannot equal floats.
2000 (Use `=' if you want integers and floats to be able to be equal.)
2001 Symbols must match exactly. */)
2002 (register Lisp_Object o1, Lisp_Object o2)
2003 {
2004 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2005 }
2006
2007 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2008 doc: /* Return t if two Lisp objects have similar structure and contents.
2009 This is like `equal' except that it compares the text properties
2010 of strings. (`equal' ignores text properties.) */)
2011 (register Lisp_Object o1, Lisp_Object o2)
2012 {
2013 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2014 }
2015
2016 /* DEPTH is current depth of recursion. Signal an error if it
2017 gets too deep.
2018 PROPS, if non-nil, means compare string text properties too. */
2019
2020 static int
2021 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2022 {
2023 if (depth > 200)
2024 error ("Stack overflow in equal");
2025
2026 tail_recurse:
2027 QUIT;
2028 if (EQ (o1, o2))
2029 return 1;
2030 if (XTYPE (o1) != XTYPE (o2))
2031 return 0;
2032
2033 switch (XTYPE (o1))
2034 {
2035 case Lisp_Float:
2036 {
2037 double d1, d2;
2038
2039 d1 = extract_float (o1);
2040 d2 = extract_float (o2);
2041 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2042 though they are not =. */
2043 return d1 == d2 || (d1 != d1 && d2 != d2);
2044 }
2045
2046 case Lisp_Cons:
2047 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2048 return 0;
2049 o1 = XCDR (o1);
2050 o2 = XCDR (o2);
2051 goto tail_recurse;
2052
2053 case Lisp_Misc:
2054 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2055 return 0;
2056 if (OVERLAYP (o1))
2057 {
2058 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2059 depth + 1, props)
2060 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2061 depth + 1, props))
2062 return 0;
2063 o1 = XOVERLAY (o1)->plist;
2064 o2 = XOVERLAY (o2)->plist;
2065 goto tail_recurse;
2066 }
2067 if (MARKERP (o1))
2068 {
2069 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2070 && (XMARKER (o1)->buffer == 0
2071 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2072 }
2073 break;
2074
2075 case Lisp_Vectorlike:
2076 {
2077 register int i;
2078 EMACS_INT size = ASIZE (o1);
2079 /* Pseudovectors have the type encoded in the size field, so this test
2080 actually checks that the objects have the same type as well as the
2081 same size. */
2082 if (ASIZE (o2) != size)
2083 return 0;
2084 /* Boolvectors are compared much like strings. */
2085 if (BOOL_VECTOR_P (o1))
2086 {
2087 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2088 return 0;
2089 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2090 ((XBOOL_VECTOR (o1)->size
2091 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2092 / BOOL_VECTOR_BITS_PER_CHAR)))
2093 return 0;
2094 return 1;
2095 }
2096 if (WINDOW_CONFIGURATIONP (o1))
2097 return compare_window_configurations (o1, o2, 0);
2098
2099 /* Aside from them, only true vectors, char-tables, compiled
2100 functions, and fonts (font-spec, font-entity, font-object)
2101 are sensible to compare, so eliminate the others now. */
2102 if (size & PSEUDOVECTOR_FLAG)
2103 {
2104 if (!(size & (PVEC_COMPILED
2105 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2106 return 0;
2107 size &= PSEUDOVECTOR_SIZE_MASK;
2108 }
2109 for (i = 0; i < size; i++)
2110 {
2111 Lisp_Object v1, v2;
2112 v1 = AREF (o1, i);
2113 v2 = AREF (o2, i);
2114 if (!internal_equal (v1, v2, depth + 1, props))
2115 return 0;
2116 }
2117 return 1;
2118 }
2119 break;
2120
2121 case Lisp_String:
2122 if (SCHARS (o1) != SCHARS (o2))
2123 return 0;
2124 if (SBYTES (o1) != SBYTES (o2))
2125 return 0;
2126 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2127 return 0;
2128 if (props && !compare_string_intervals (o1, o2))
2129 return 0;
2130 return 1;
2131
2132 default:
2133 break;
2134 }
2135
2136 return 0;
2137 }
2138 \f
2139
2140 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2141 doc: /* Store each element of ARRAY with ITEM.
2142 ARRAY is a vector, string, char-table, or bool-vector. */)
2143 (Lisp_Object array, Lisp_Object item)
2144 {
2145 register EMACS_INT size, idx;
2146
2147 if (VECTORP (array))
2148 {
2149 register Lisp_Object *p = XVECTOR (array)->contents;
2150 size = ASIZE (array);
2151 for (idx = 0; idx < size; idx++)
2152 p[idx] = item;
2153 }
2154 else if (CHAR_TABLE_P (array))
2155 {
2156 int i;
2157
2158 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2159 XCHAR_TABLE (array)->contents[i] = item;
2160 XCHAR_TABLE (array)->defalt = item;
2161 }
2162 else if (STRINGP (array))
2163 {
2164 register unsigned char *p = SDATA (array);
2165 int charval;
2166 CHECK_CHARACTER (item);
2167 charval = XFASTINT (item);
2168 size = SCHARS (array);
2169 if (STRING_MULTIBYTE (array))
2170 {
2171 unsigned char str[MAX_MULTIBYTE_LENGTH];
2172 int len = CHAR_STRING (charval, str);
2173 EMACS_INT size_byte = SBYTES (array);
2174
2175 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2176 || SCHARS (array) * len != size_byte)
2177 error ("Attempt to change byte length of a string");
2178 for (idx = 0; idx < size_byte; idx++)
2179 *p++ = str[idx % len];
2180 }
2181 else
2182 for (idx = 0; idx < size; idx++)
2183 p[idx] = charval;
2184 }
2185 else if (BOOL_VECTOR_P (array))
2186 {
2187 register unsigned char *p = XBOOL_VECTOR (array)->data;
2188 EMACS_INT size_in_chars;
2189 size = XBOOL_VECTOR (array)->size;
2190 size_in_chars
2191 = ((size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2192 / BOOL_VECTOR_BITS_PER_CHAR);
2193
2194 if (size_in_chars)
2195 {
2196 memset (p, ! NILP (item) ? -1 : 0, size_in_chars);
2197
2198 /* Clear any extraneous bits in the last byte. */
2199 p[size_in_chars - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2200 }
2201 }
2202 else
2203 wrong_type_argument (Qarrayp, array);
2204 return array;
2205 }
2206
2207 DEFUN ("clear-string", Fclear_string, Sclear_string,
2208 1, 1, 0,
2209 doc: /* Clear the contents of STRING.
2210 This makes STRING unibyte and may change its length. */)
2211 (Lisp_Object string)
2212 {
2213 EMACS_INT len;
2214 CHECK_STRING (string);
2215 len = SBYTES (string);
2216 memset (SDATA (string), 0, len);
2217 STRING_SET_CHARS (string, len);
2218 STRING_SET_UNIBYTE (string);
2219 return Qnil;
2220 }
2221 \f
2222 /* ARGSUSED */
2223 Lisp_Object
2224 nconc2 (Lisp_Object s1, Lisp_Object s2)
2225 {
2226 Lisp_Object args[2];
2227 args[0] = s1;
2228 args[1] = s2;
2229 return Fnconc (2, args);
2230 }
2231
2232 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2233 doc: /* Concatenate any number of lists by altering them.
2234 Only the last argument is not altered, and need not be a list.
2235 usage: (nconc &rest LISTS) */)
2236 (ptrdiff_t nargs, Lisp_Object *args)
2237 {
2238 ptrdiff_t argnum;
2239 register Lisp_Object tail, tem, val;
2240
2241 val = tail = Qnil;
2242
2243 for (argnum = 0; argnum < nargs; argnum++)
2244 {
2245 tem = args[argnum];
2246 if (NILP (tem)) continue;
2247
2248 if (NILP (val))
2249 val = tem;
2250
2251 if (argnum + 1 == nargs) break;
2252
2253 CHECK_LIST_CONS (tem, tem);
2254
2255 while (CONSP (tem))
2256 {
2257 tail = tem;
2258 tem = XCDR (tail);
2259 QUIT;
2260 }
2261
2262 tem = args[argnum + 1];
2263 Fsetcdr (tail, tem);
2264 if (NILP (tem))
2265 args[argnum + 1] = tail;
2266 }
2267
2268 return val;
2269 }
2270 \f
2271 /* This is the guts of all mapping functions.
2272 Apply FN to each element of SEQ, one by one,
2273 storing the results into elements of VALS, a C vector of Lisp_Objects.
2274 LENI is the length of VALS, which should also be the length of SEQ. */
2275
2276 static void
2277 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2278 {
2279 register Lisp_Object tail;
2280 Lisp_Object dummy;
2281 register EMACS_INT i;
2282 struct gcpro gcpro1, gcpro2, gcpro3;
2283
2284 if (vals)
2285 {
2286 /* Don't let vals contain any garbage when GC happens. */
2287 for (i = 0; i < leni; i++)
2288 vals[i] = Qnil;
2289
2290 GCPRO3 (dummy, fn, seq);
2291 gcpro1.var = vals;
2292 gcpro1.nvars = leni;
2293 }
2294 else
2295 GCPRO2 (fn, seq);
2296 /* We need not explicitly protect `tail' because it is used only on lists, and
2297 1) lists are not relocated and 2) the list is marked via `seq' so will not
2298 be freed */
2299
2300 if (VECTORP (seq) || COMPILEDP (seq))
2301 {
2302 for (i = 0; i < leni; i++)
2303 {
2304 dummy = call1 (fn, AREF (seq, i));
2305 if (vals)
2306 vals[i] = dummy;
2307 }
2308 }
2309 else if (BOOL_VECTOR_P (seq))
2310 {
2311 for (i = 0; i < leni; i++)
2312 {
2313 unsigned char byte;
2314 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2315 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2316 dummy = call1 (fn, dummy);
2317 if (vals)
2318 vals[i] = dummy;
2319 }
2320 }
2321 else if (STRINGP (seq))
2322 {
2323 EMACS_INT i_byte;
2324
2325 for (i = 0, i_byte = 0; i < leni;)
2326 {
2327 int c;
2328 EMACS_INT i_before = i;
2329
2330 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2331 XSETFASTINT (dummy, c);
2332 dummy = call1 (fn, dummy);
2333 if (vals)
2334 vals[i_before] = dummy;
2335 }
2336 }
2337 else /* Must be a list, since Flength did not get an error */
2338 {
2339 tail = seq;
2340 for (i = 0; i < leni && CONSP (tail); i++)
2341 {
2342 dummy = call1 (fn, XCAR (tail));
2343 if (vals)
2344 vals[i] = dummy;
2345 tail = XCDR (tail);
2346 }
2347 }
2348
2349 UNGCPRO;
2350 }
2351
2352 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2353 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2354 In between each pair of results, stick in SEPARATOR. Thus, " " as
2355 SEPARATOR results in spaces between the values returned by FUNCTION.
2356 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2357 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2358 {
2359 Lisp_Object len;
2360 register EMACS_INT leni;
2361 ptrdiff_t i, nargs;
2362 register Lisp_Object *args;
2363 struct gcpro gcpro1;
2364 Lisp_Object ret;
2365 USE_SAFE_ALLOCA;
2366
2367 len = Flength (sequence);
2368 if (CHAR_TABLE_P (sequence))
2369 wrong_type_argument (Qlistp, sequence);
2370 leni = XINT (len);
2371 nargs = leni + leni - 1;
2372 if (nargs < 0) return empty_unibyte_string;
2373
2374 SAFE_ALLOCA_LISP (args, nargs);
2375
2376 GCPRO1 (separator);
2377 mapcar1 (leni, args, function, sequence);
2378 UNGCPRO;
2379
2380 for (i = leni - 1; i > 0; i--)
2381 args[i + i] = args[i];
2382
2383 for (i = 1; i < nargs; i += 2)
2384 args[i] = separator;
2385
2386 ret = Fconcat (nargs, args);
2387 SAFE_FREE ();
2388
2389 return ret;
2390 }
2391
2392 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2393 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2394 The result is a list just as long as SEQUENCE.
2395 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2396 (Lisp_Object function, Lisp_Object sequence)
2397 {
2398 register Lisp_Object len;
2399 register EMACS_INT leni;
2400 register Lisp_Object *args;
2401 Lisp_Object ret;
2402 USE_SAFE_ALLOCA;
2403
2404 len = Flength (sequence);
2405 if (CHAR_TABLE_P (sequence))
2406 wrong_type_argument (Qlistp, sequence);
2407 leni = XFASTINT (len);
2408
2409 SAFE_ALLOCA_LISP (args, leni);
2410
2411 mapcar1 (leni, args, function, sequence);
2412
2413 ret = Flist (leni, args);
2414 SAFE_FREE ();
2415
2416 return ret;
2417 }
2418
2419 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2420 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2421 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2422 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2423 (Lisp_Object function, Lisp_Object sequence)
2424 {
2425 register EMACS_INT leni;
2426
2427 leni = XFASTINT (Flength (sequence));
2428 if (CHAR_TABLE_P (sequence))
2429 wrong_type_argument (Qlistp, sequence);
2430 mapcar1 (leni, 0, function, sequence);
2431
2432 return sequence;
2433 }
2434 \f
2435 /* This is how C code calls `yes-or-no-p' and allows the user
2436 to redefined it.
2437
2438 Anything that calls this function must protect from GC! */
2439
2440 Lisp_Object
2441 do_yes_or_no_p (Lisp_Object prompt)
2442 {
2443 return call1 (intern ("yes-or-no-p"), prompt);
2444 }
2445
2446 /* Anything that calls this function must protect from GC! */
2447
2448 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2449 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2450 PROMPT is the string to display to ask the question. It should end in
2451 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2452
2453 The user must confirm the answer with RET, and can edit it until it
2454 has been confirmed.
2455
2456 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2457 is nil, and `use-dialog-box' is non-nil. */)
2458 (Lisp_Object prompt)
2459 {
2460 register Lisp_Object ans;
2461 Lisp_Object args[2];
2462 struct gcpro gcpro1;
2463
2464 CHECK_STRING (prompt);
2465
2466 #ifdef HAVE_MENUS
2467 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2468 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2469 && use_dialog_box
2470 && have_menus_p ())
2471 {
2472 Lisp_Object pane, menu, obj;
2473 redisplay_preserve_echo_area (4);
2474 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2475 Fcons (Fcons (build_string ("No"), Qnil),
2476 Qnil));
2477 GCPRO1 (pane);
2478 menu = Fcons (prompt, pane);
2479 obj = Fx_popup_dialog (Qt, menu, Qnil);
2480 UNGCPRO;
2481 return obj;
2482 }
2483 #endif /* HAVE_MENUS */
2484
2485 args[0] = prompt;
2486 args[1] = build_string ("(yes or no) ");
2487 prompt = Fconcat (2, args);
2488
2489 GCPRO1 (prompt);
2490
2491 while (1)
2492 {
2493 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2494 Qyes_or_no_p_history, Qnil,
2495 Qnil));
2496 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2497 {
2498 UNGCPRO;
2499 return Qt;
2500 }
2501 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2502 {
2503 UNGCPRO;
2504 return Qnil;
2505 }
2506
2507 Fding (Qnil);
2508 Fdiscard_input ();
2509 message ("Please answer yes or no.");
2510 Fsleep_for (make_number (2), Qnil);
2511 }
2512 }
2513 \f
2514 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2515 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2516
2517 Each of the three load averages is multiplied by 100, then converted
2518 to integer.
2519
2520 When USE-FLOATS is non-nil, floats will be used instead of integers.
2521 These floats are not multiplied by 100.
2522
2523 If the 5-minute or 15-minute load averages are not available, return a
2524 shortened list, containing only those averages which are available.
2525
2526 An error is thrown if the load average can't be obtained. In some
2527 cases making it work would require Emacs being installed setuid or
2528 setgid so that it can read kernel information, and that usually isn't
2529 advisable. */)
2530 (Lisp_Object use_floats)
2531 {
2532 double load_ave[3];
2533 int loads = getloadavg (load_ave, 3);
2534 Lisp_Object ret = Qnil;
2535
2536 if (loads < 0)
2537 error ("load-average not implemented for this operating system");
2538
2539 while (loads-- > 0)
2540 {
2541 Lisp_Object load = (NILP (use_floats)
2542 ? make_number (100.0 * load_ave[loads])
2543 : make_float (load_ave[loads]));
2544 ret = Fcons (load, ret);
2545 }
2546
2547 return ret;
2548 }
2549 \f
2550 static Lisp_Object Qsubfeatures;
2551
2552 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2553 doc: /* Return t if FEATURE is present in this Emacs.
2554
2555 Use this to conditionalize execution of lisp code based on the
2556 presence or absence of Emacs or environment extensions.
2557 Use `provide' to declare that a feature is available. This function
2558 looks at the value of the variable `features'. The optional argument
2559 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2560 (Lisp_Object feature, Lisp_Object subfeature)
2561 {
2562 register Lisp_Object tem;
2563 CHECK_SYMBOL (feature);
2564 tem = Fmemq (feature, Vfeatures);
2565 if (!NILP (tem) && !NILP (subfeature))
2566 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2567 return (NILP (tem)) ? Qnil : Qt;
2568 }
2569
2570 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2571 doc: /* Announce that FEATURE is a feature of the current Emacs.
2572 The optional argument SUBFEATURES should be a list of symbols listing
2573 particular subfeatures supported in this version of FEATURE. */)
2574 (Lisp_Object feature, Lisp_Object subfeatures)
2575 {
2576 register Lisp_Object tem;
2577 CHECK_SYMBOL (feature);
2578 CHECK_LIST (subfeatures);
2579 if (!NILP (Vautoload_queue))
2580 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2581 Vautoload_queue);
2582 tem = Fmemq (feature, Vfeatures);
2583 if (NILP (tem))
2584 Vfeatures = Fcons (feature, Vfeatures);
2585 if (!NILP (subfeatures))
2586 Fput (feature, Qsubfeatures, subfeatures);
2587 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2588
2589 /* Run any load-hooks for this file. */
2590 tem = Fassq (feature, Vafter_load_alist);
2591 if (CONSP (tem))
2592 Fprogn (XCDR (tem));
2593
2594 return feature;
2595 }
2596 \f
2597 /* `require' and its subroutines. */
2598
2599 /* List of features currently being require'd, innermost first. */
2600
2601 static Lisp_Object require_nesting_list;
2602
2603 static Lisp_Object
2604 require_unwind (Lisp_Object old_value)
2605 {
2606 return require_nesting_list = old_value;
2607 }
2608
2609 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2610 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2611 If FEATURE is not a member of the list `features', then the feature
2612 is not loaded; so load the file FILENAME.
2613 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2614 and `load' will try to load this name appended with the suffix `.elc' or
2615 `.el', in that order. The name without appended suffix will not be used.
2616 See `get-load-suffixes' for the complete list of suffixes.
2617 If the optional third argument NOERROR is non-nil,
2618 then return nil if the file is not found instead of signaling an error.
2619 Normally the return value is FEATURE.
2620 The normal messages at start and end of loading FILENAME are suppressed. */)
2621 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2622 {
2623 register Lisp_Object tem;
2624 struct gcpro gcpro1, gcpro2;
2625 int from_file = load_in_progress;
2626
2627 CHECK_SYMBOL (feature);
2628
2629 /* Record the presence of `require' in this file
2630 even if the feature specified is already loaded.
2631 But not more than once in any file,
2632 and not when we aren't loading or reading from a file. */
2633 if (!from_file)
2634 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2635 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2636 from_file = 1;
2637
2638 if (from_file)
2639 {
2640 tem = Fcons (Qrequire, feature);
2641 if (NILP (Fmember (tem, Vcurrent_load_list)))
2642 LOADHIST_ATTACH (tem);
2643 }
2644 tem = Fmemq (feature, Vfeatures);
2645
2646 if (NILP (tem))
2647 {
2648 int count = SPECPDL_INDEX ();
2649 int nesting = 0;
2650
2651 /* This is to make sure that loadup.el gives a clear picture
2652 of what files are preloaded and when. */
2653 if (! NILP (Vpurify_flag))
2654 error ("(require %s) while preparing to dump",
2655 SDATA (SYMBOL_NAME (feature)));
2656
2657 /* A certain amount of recursive `require' is legitimate,
2658 but if we require the same feature recursively 3 times,
2659 signal an error. */
2660 tem = require_nesting_list;
2661 while (! NILP (tem))
2662 {
2663 if (! NILP (Fequal (feature, XCAR (tem))))
2664 nesting++;
2665 tem = XCDR (tem);
2666 }
2667 if (nesting > 3)
2668 error ("Recursive `require' for feature `%s'",
2669 SDATA (SYMBOL_NAME (feature)));
2670
2671 /* Update the list for any nested `require's that occur. */
2672 record_unwind_protect (require_unwind, require_nesting_list);
2673 require_nesting_list = Fcons (feature, require_nesting_list);
2674
2675 /* Value saved here is to be restored into Vautoload_queue */
2676 record_unwind_protect (un_autoload, Vautoload_queue);
2677 Vautoload_queue = Qt;
2678
2679 /* Load the file. */
2680 GCPRO2 (feature, filename);
2681 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2682 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2683 UNGCPRO;
2684
2685 /* If load failed entirely, return nil. */
2686 if (NILP (tem))
2687 return unbind_to (count, Qnil);
2688
2689 tem = Fmemq (feature, Vfeatures);
2690 if (NILP (tem))
2691 error ("Required feature `%s' was not provided",
2692 SDATA (SYMBOL_NAME (feature)));
2693
2694 /* Once loading finishes, don't undo it. */
2695 Vautoload_queue = Qt;
2696 feature = unbind_to (count, feature);
2697 }
2698
2699 return feature;
2700 }
2701 \f
2702 /* Primitives for work of the "widget" library.
2703 In an ideal world, this section would not have been necessary.
2704 However, lisp function calls being as slow as they are, it turns
2705 out that some functions in the widget library (wid-edit.el) are the
2706 bottleneck of Widget operation. Here is their translation to C,
2707 for the sole reason of efficiency. */
2708
2709 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2710 doc: /* Return non-nil if PLIST has the property PROP.
2711 PLIST is a property list, which is a list of the form
2712 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2713 Unlike `plist-get', this allows you to distinguish between a missing
2714 property and a property with the value nil.
2715 The value is actually the tail of PLIST whose car is PROP. */)
2716 (Lisp_Object plist, Lisp_Object prop)
2717 {
2718 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2719 {
2720 QUIT;
2721 plist = XCDR (plist);
2722 plist = CDR (plist);
2723 }
2724 return plist;
2725 }
2726
2727 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2728 doc: /* In WIDGET, set PROPERTY to VALUE.
2729 The value can later be retrieved with `widget-get'. */)
2730 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2731 {
2732 CHECK_CONS (widget);
2733 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2734 return value;
2735 }
2736
2737 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2738 doc: /* In WIDGET, get the value of PROPERTY.
2739 The value could either be specified when the widget was created, or
2740 later with `widget-put'. */)
2741 (Lisp_Object widget, Lisp_Object property)
2742 {
2743 Lisp_Object tmp;
2744
2745 while (1)
2746 {
2747 if (NILP (widget))
2748 return Qnil;
2749 CHECK_CONS (widget);
2750 tmp = Fplist_member (XCDR (widget), property);
2751 if (CONSP (tmp))
2752 {
2753 tmp = XCDR (tmp);
2754 return CAR (tmp);
2755 }
2756 tmp = XCAR (widget);
2757 if (NILP (tmp))
2758 return Qnil;
2759 widget = Fget (tmp, Qwidget_type);
2760 }
2761 }
2762
2763 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2764 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2765 ARGS are passed as extra arguments to the function.
2766 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2767 (ptrdiff_t nargs, Lisp_Object *args)
2768 {
2769 /* This function can GC. */
2770 Lisp_Object newargs[3];
2771 struct gcpro gcpro1, gcpro2;
2772 Lisp_Object result;
2773
2774 newargs[0] = Fwidget_get (args[0], args[1]);
2775 newargs[1] = args[0];
2776 newargs[2] = Flist (nargs - 2, args + 2);
2777 GCPRO2 (newargs[0], newargs[2]);
2778 result = Fapply (3, newargs);
2779 UNGCPRO;
2780 return result;
2781 }
2782
2783 #ifdef HAVE_LANGINFO_CODESET
2784 #include <langinfo.h>
2785 #endif
2786
2787 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2788 doc: /* Access locale data ITEM for the current C locale, if available.
2789 ITEM should be one of the following:
2790
2791 `codeset', returning the character set as a string (locale item CODESET);
2792
2793 `days', returning a 7-element vector of day names (locale items DAY_n);
2794
2795 `months', returning a 12-element vector of month names (locale items MON_n);
2796
2797 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2798 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2799
2800 If the system can't provide such information through a call to
2801 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2802
2803 See also Info node `(libc)Locales'.
2804
2805 The data read from the system are decoded using `locale-coding-system'. */)
2806 (Lisp_Object item)
2807 {
2808 char *str = NULL;
2809 #ifdef HAVE_LANGINFO_CODESET
2810 Lisp_Object val;
2811 if (EQ (item, Qcodeset))
2812 {
2813 str = nl_langinfo (CODESET);
2814 return build_string (str);
2815 }
2816 #ifdef DAY_1
2817 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2818 {
2819 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2820 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2821 int i;
2822 struct gcpro gcpro1;
2823 GCPRO1 (v);
2824 synchronize_system_time_locale ();
2825 for (i = 0; i < 7; i++)
2826 {
2827 str = nl_langinfo (days[i]);
2828 val = make_unibyte_string (str, strlen (str));
2829 /* Fixme: Is this coding system necessarily right, even if
2830 it is consistent with CODESET? If not, what to do? */
2831 Faset (v, make_number (i),
2832 code_convert_string_norecord (val, Vlocale_coding_system,
2833 0));
2834 }
2835 UNGCPRO;
2836 return v;
2837 }
2838 #endif /* DAY_1 */
2839 #ifdef MON_1
2840 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2841 {
2842 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2843 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2844 MON_8, MON_9, MON_10, MON_11, MON_12};
2845 int i;
2846 struct gcpro gcpro1;
2847 GCPRO1 (v);
2848 synchronize_system_time_locale ();
2849 for (i = 0; i < 12; i++)
2850 {
2851 str = nl_langinfo (months[i]);
2852 val = make_unibyte_string (str, strlen (str));
2853 Faset (v, make_number (i),
2854 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2855 }
2856 UNGCPRO;
2857 return v;
2858 }
2859 #endif /* MON_1 */
2860 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2861 but is in the locale files. This could be used by ps-print. */
2862 #ifdef PAPER_WIDTH
2863 else if (EQ (item, Qpaper))
2864 {
2865 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2866 make_number (nl_langinfo (PAPER_HEIGHT)));
2867 }
2868 #endif /* PAPER_WIDTH */
2869 #endif /* HAVE_LANGINFO_CODESET*/
2870 return Qnil;
2871 }
2872 \f
2873 /* base64 encode/decode functions (RFC 2045).
2874 Based on code from GNU recode. */
2875
2876 #define MIME_LINE_LENGTH 76
2877
2878 #define IS_ASCII(Character) \
2879 ((Character) < 128)
2880 #define IS_BASE64(Character) \
2881 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2882 #define IS_BASE64_IGNORABLE(Character) \
2883 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2884 || (Character) == '\f' || (Character) == '\r')
2885
2886 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2887 character or return retval if there are no characters left to
2888 process. */
2889 #define READ_QUADRUPLET_BYTE(retval) \
2890 do \
2891 { \
2892 if (i == length) \
2893 { \
2894 if (nchars_return) \
2895 *nchars_return = nchars; \
2896 return (retval); \
2897 } \
2898 c = from[i++]; \
2899 } \
2900 while (IS_BASE64_IGNORABLE (c))
2901
2902 /* Table of characters coding the 64 values. */
2903 static const char base64_value_to_char[64] =
2904 {
2905 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2906 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2907 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2908 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2909 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2910 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2911 '8', '9', '+', '/' /* 60-63 */
2912 };
2913
2914 /* Table of base64 values for first 128 characters. */
2915 static const short base64_char_to_value[128] =
2916 {
2917 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2918 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2919 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2920 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2921 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2922 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2923 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2924 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2925 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2926 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2927 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2928 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2929 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2930 };
2931
2932 /* The following diagram shows the logical steps by which three octets
2933 get transformed into four base64 characters.
2934
2935 .--------. .--------. .--------.
2936 |aaaaaabb| |bbbbcccc| |ccdddddd|
2937 `--------' `--------' `--------'
2938 6 2 4 4 2 6
2939 .--------+--------+--------+--------.
2940 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2941 `--------+--------+--------+--------'
2942
2943 .--------+--------+--------+--------.
2944 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2945 `--------+--------+--------+--------'
2946
2947 The octets are divided into 6 bit chunks, which are then encoded into
2948 base64 characters. */
2949
2950
2951 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2952 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2953 EMACS_INT *);
2954
2955 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2956 2, 3, "r",
2957 doc: /* Base64-encode the region between BEG and END.
2958 Return the length of the encoded text.
2959 Optional third argument NO-LINE-BREAK means do not break long lines
2960 into shorter lines. */)
2961 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2962 {
2963 char *encoded;
2964 EMACS_INT allength, length;
2965 EMACS_INT ibeg, iend, encoded_length;
2966 EMACS_INT old_pos = PT;
2967 USE_SAFE_ALLOCA;
2968
2969 validate_region (&beg, &end);
2970
2971 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2972 iend = CHAR_TO_BYTE (XFASTINT (end));
2973 move_gap_both (XFASTINT (beg), ibeg);
2974
2975 /* We need to allocate enough room for encoding the text.
2976 We need 33 1/3% more space, plus a newline every 76
2977 characters, and then we round up. */
2978 length = iend - ibeg;
2979 allength = length + length/3 + 1;
2980 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2981
2982 SAFE_ALLOCA (encoded, char *, allength);
2983 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2984 encoded, length, NILP (no_line_break),
2985 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2986 if (encoded_length > allength)
2987 abort ();
2988
2989 if (encoded_length < 0)
2990 {
2991 /* The encoding wasn't possible. */
2992 SAFE_FREE ();
2993 error ("Multibyte character in data for base64 encoding");
2994 }
2995
2996 /* Now we have encoded the region, so we insert the new contents
2997 and delete the old. (Insert first in order to preserve markers.) */
2998 SET_PT_BOTH (XFASTINT (beg), ibeg);
2999 insert (encoded, encoded_length);
3000 SAFE_FREE ();
3001 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3002
3003 /* If point was outside of the region, restore it exactly; else just
3004 move to the beginning of the region. */
3005 if (old_pos >= XFASTINT (end))
3006 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3007 else if (old_pos > XFASTINT (beg))
3008 old_pos = XFASTINT (beg);
3009 SET_PT (old_pos);
3010
3011 /* We return the length of the encoded text. */
3012 return make_number (encoded_length);
3013 }
3014
3015 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3016 1, 2, 0,
3017 doc: /* Base64-encode STRING and return the result.
3018 Optional second argument NO-LINE-BREAK means do not break long lines
3019 into shorter lines. */)
3020 (Lisp_Object string, Lisp_Object no_line_break)
3021 {
3022 EMACS_INT allength, length, encoded_length;
3023 char *encoded;
3024 Lisp_Object encoded_string;
3025 USE_SAFE_ALLOCA;
3026
3027 CHECK_STRING (string);
3028
3029 /* We need to allocate enough room for encoding the text.
3030 We need 33 1/3% more space, plus a newline every 76
3031 characters, and then we round up. */
3032 length = SBYTES (string);
3033 allength = length + length/3 + 1;
3034 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3035
3036 /* We need to allocate enough room for decoding the text. */
3037 SAFE_ALLOCA (encoded, char *, allength);
3038
3039 encoded_length = base64_encode_1 (SSDATA (string),
3040 encoded, length, NILP (no_line_break),
3041 STRING_MULTIBYTE (string));
3042 if (encoded_length > allength)
3043 abort ();
3044
3045 if (encoded_length < 0)
3046 {
3047 /* The encoding wasn't possible. */
3048 SAFE_FREE ();
3049 error ("Multibyte character in data for base64 encoding");
3050 }
3051
3052 encoded_string = make_unibyte_string (encoded, encoded_length);
3053 SAFE_FREE ();
3054
3055 return encoded_string;
3056 }
3057
3058 static EMACS_INT
3059 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3060 int line_break, int multibyte)
3061 {
3062 int counter = 0;
3063 EMACS_INT i = 0;
3064 char *e = to;
3065 int c;
3066 unsigned int value;
3067 int bytes;
3068
3069 while (i < length)
3070 {
3071 if (multibyte)
3072 {
3073 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3074 if (CHAR_BYTE8_P (c))
3075 c = CHAR_TO_BYTE8 (c);
3076 else if (c >= 256)
3077 return -1;
3078 i += bytes;
3079 }
3080 else
3081 c = from[i++];
3082
3083 /* Wrap line every 76 characters. */
3084
3085 if (line_break)
3086 {
3087 if (counter < MIME_LINE_LENGTH / 4)
3088 counter++;
3089 else
3090 {
3091 *e++ = '\n';
3092 counter = 1;
3093 }
3094 }
3095
3096 /* Process first byte of a triplet. */
3097
3098 *e++ = base64_value_to_char[0x3f & c >> 2];
3099 value = (0x03 & c) << 4;
3100
3101 /* Process second byte of a triplet. */
3102
3103 if (i == length)
3104 {
3105 *e++ = base64_value_to_char[value];
3106 *e++ = '=';
3107 *e++ = '=';
3108 break;
3109 }
3110
3111 if (multibyte)
3112 {
3113 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3114 if (CHAR_BYTE8_P (c))
3115 c = CHAR_TO_BYTE8 (c);
3116 else if (c >= 256)
3117 return -1;
3118 i += bytes;
3119 }
3120 else
3121 c = from[i++];
3122
3123 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3124 value = (0x0f & c) << 2;
3125
3126 /* Process third byte of a triplet. */
3127
3128 if (i == length)
3129 {
3130 *e++ = base64_value_to_char[value];
3131 *e++ = '=';
3132 break;
3133 }
3134
3135 if (multibyte)
3136 {
3137 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3138 if (CHAR_BYTE8_P (c))
3139 c = CHAR_TO_BYTE8 (c);
3140 else if (c >= 256)
3141 return -1;
3142 i += bytes;
3143 }
3144 else
3145 c = from[i++];
3146
3147 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3148 *e++ = base64_value_to_char[0x3f & c];
3149 }
3150
3151 return e - to;
3152 }
3153
3154
3155 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3156 2, 2, "r",
3157 doc: /* Base64-decode the region between BEG and END.
3158 Return the length of the decoded text.
3159 If the region can't be decoded, signal an error and don't modify the buffer. */)
3160 (Lisp_Object beg, Lisp_Object end)
3161 {
3162 EMACS_INT ibeg, iend, length, allength;
3163 char *decoded;
3164 EMACS_INT old_pos = PT;
3165 EMACS_INT decoded_length;
3166 EMACS_INT inserted_chars;
3167 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3168 USE_SAFE_ALLOCA;
3169
3170 validate_region (&beg, &end);
3171
3172 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3173 iend = CHAR_TO_BYTE (XFASTINT (end));
3174
3175 length = iend - ibeg;
3176
3177 /* We need to allocate enough room for decoding the text. If we are
3178 working on a multibyte buffer, each decoded code may occupy at
3179 most two bytes. */
3180 allength = multibyte ? length * 2 : length;
3181 SAFE_ALLOCA (decoded, char *, allength);
3182
3183 move_gap_both (XFASTINT (beg), ibeg);
3184 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3185 decoded, length,
3186 multibyte, &inserted_chars);
3187 if (decoded_length > allength)
3188 abort ();
3189
3190 if (decoded_length < 0)
3191 {
3192 /* The decoding wasn't possible. */
3193 SAFE_FREE ();
3194 error ("Invalid base64 data");
3195 }
3196
3197 /* Now we have decoded the region, so we insert the new contents
3198 and delete the old. (Insert first in order to preserve markers.) */
3199 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3200 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3201 SAFE_FREE ();
3202
3203 /* Delete the original text. */
3204 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3205 iend + decoded_length, 1);
3206
3207 /* If point was outside of the region, restore it exactly; else just
3208 move to the beginning of the region. */
3209 if (old_pos >= XFASTINT (end))
3210 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3211 else if (old_pos > XFASTINT (beg))
3212 old_pos = XFASTINT (beg);
3213 SET_PT (old_pos > ZV ? ZV : old_pos);
3214
3215 return make_number (inserted_chars);
3216 }
3217
3218 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3219 1, 1, 0,
3220 doc: /* Base64-decode STRING and return the result. */)
3221 (Lisp_Object string)
3222 {
3223 char *decoded;
3224 EMACS_INT length, decoded_length;
3225 Lisp_Object decoded_string;
3226 USE_SAFE_ALLOCA;
3227
3228 CHECK_STRING (string);
3229
3230 length = SBYTES (string);
3231 /* We need to allocate enough room for decoding the text. */
3232 SAFE_ALLOCA (decoded, char *, length);
3233
3234 /* The decoded result should be unibyte. */
3235 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3236 0, NULL);
3237 if (decoded_length > length)
3238 abort ();
3239 else if (decoded_length >= 0)
3240 decoded_string = make_unibyte_string (decoded, decoded_length);
3241 else
3242 decoded_string = Qnil;
3243
3244 SAFE_FREE ();
3245 if (!STRINGP (decoded_string))
3246 error ("Invalid base64 data");
3247
3248 return decoded_string;
3249 }
3250
3251 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3252 MULTIBYTE is nonzero, the decoded result should be in multibyte
3253 form. If NCHARS_RETURN is not NULL, store the number of produced
3254 characters in *NCHARS_RETURN. */
3255
3256 static EMACS_INT
3257 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3258 int multibyte, EMACS_INT *nchars_return)
3259 {
3260 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3261 char *e = to;
3262 unsigned char c;
3263 unsigned long value;
3264 EMACS_INT nchars = 0;
3265
3266 while (1)
3267 {
3268 /* Process first byte of a quadruplet. */
3269
3270 READ_QUADRUPLET_BYTE (e-to);
3271
3272 if (!IS_BASE64 (c))
3273 return -1;
3274 value = base64_char_to_value[c] << 18;
3275
3276 /* Process second byte of a quadruplet. */
3277
3278 READ_QUADRUPLET_BYTE (-1);
3279
3280 if (!IS_BASE64 (c))
3281 return -1;
3282 value |= base64_char_to_value[c] << 12;
3283
3284 c = (unsigned char) (value >> 16);
3285 if (multibyte && c >= 128)
3286 e += BYTE8_STRING (c, e);
3287 else
3288 *e++ = c;
3289 nchars++;
3290
3291 /* Process third byte of a quadruplet. */
3292
3293 READ_QUADRUPLET_BYTE (-1);
3294
3295 if (c == '=')
3296 {
3297 READ_QUADRUPLET_BYTE (-1);
3298
3299 if (c != '=')
3300 return -1;
3301 continue;
3302 }
3303
3304 if (!IS_BASE64 (c))
3305 return -1;
3306 value |= base64_char_to_value[c] << 6;
3307
3308 c = (unsigned char) (0xff & value >> 8);
3309 if (multibyte && c >= 128)
3310 e += BYTE8_STRING (c, e);
3311 else
3312 *e++ = c;
3313 nchars++;
3314
3315 /* Process fourth byte of a quadruplet. */
3316
3317 READ_QUADRUPLET_BYTE (-1);
3318
3319 if (c == '=')
3320 continue;
3321
3322 if (!IS_BASE64 (c))
3323 return -1;
3324 value |= base64_char_to_value[c];
3325
3326 c = (unsigned char) (0xff & value);
3327 if (multibyte && c >= 128)
3328 e += BYTE8_STRING (c, e);
3329 else
3330 *e++ = c;
3331 nchars++;
3332 }
3333 }
3334
3335
3336 \f
3337 /***********************************************************************
3338 ***** *****
3339 ***** Hash Tables *****
3340 ***** *****
3341 ***********************************************************************/
3342
3343 /* Implemented by gerd@gnu.org. This hash table implementation was
3344 inspired by CMUCL hash tables. */
3345
3346 /* Ideas:
3347
3348 1. For small tables, association lists are probably faster than
3349 hash tables because they have lower overhead.
3350
3351 For uses of hash tables where the O(1) behavior of table
3352 operations is not a requirement, it might therefore be a good idea
3353 not to hash. Instead, we could just do a linear search in the
3354 key_and_value vector of the hash table. This could be done
3355 if a `:linear-search t' argument is given to make-hash-table. */
3356
3357
3358 /* The list of all weak hash tables. Don't staticpro this one. */
3359
3360 static struct Lisp_Hash_Table *weak_hash_tables;
3361
3362 /* Various symbols. */
3363
3364 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3365 Lisp_Object Qeq, Qeql, Qequal;
3366 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3367 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3368
3369 /* Function prototypes. */
3370
3371 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3372 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3373 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3374 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3375
3376
3377 \f
3378 /***********************************************************************
3379 Utilities
3380 ***********************************************************************/
3381
3382 /* If OBJ is a Lisp hash table, return a pointer to its struct
3383 Lisp_Hash_Table. Otherwise, signal an error. */
3384
3385 static struct Lisp_Hash_Table *
3386 check_hash_table (Lisp_Object obj)
3387 {
3388 CHECK_HASH_TABLE (obj);
3389 return XHASH_TABLE (obj);
3390 }
3391
3392
3393 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3394 number. A number is "almost" a prime number if it is not divisible
3395 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3396
3397 EMACS_INT
3398 next_almost_prime (EMACS_INT n)
3399 {
3400 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3401 for (n |= 1; ; n += 2)
3402 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3403 return n;
3404 }
3405
3406
3407 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3408 which USED[I] is non-zero. If found at index I in ARGS, set
3409 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3410 0. This function is used to extract a keyword/argument pair from
3411 a DEFUN parameter list. */
3412
3413 static ptrdiff_t
3414 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3415 {
3416 ptrdiff_t i;
3417
3418 for (i = 1; i < nargs; i++)
3419 if (!used[i - 1] && EQ (args[i - 1], key))
3420 {
3421 used[i - 1] = 1;
3422 used[i] = 1;
3423 return i;
3424 }
3425
3426 return 0;
3427 }
3428
3429
3430 /* Return a Lisp vector which has the same contents as VEC but has
3431 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3432 vector that are not copied from VEC are set to INIT. */
3433
3434 Lisp_Object
3435 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3436 {
3437 struct Lisp_Vector *v;
3438 EMACS_INT i, old_size;
3439
3440 xassert (VECTORP (vec));
3441 old_size = ASIZE (vec);
3442 xassert (new_size >= old_size);
3443
3444 v = allocate_vector (new_size);
3445 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3446 for (i = old_size; i < new_size; ++i)
3447 v->contents[i] = init;
3448 XSETVECTOR (vec, v);
3449 return vec;
3450 }
3451
3452
3453 /***********************************************************************
3454 Low-level Functions
3455 ***********************************************************************/
3456
3457 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3458 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3459 KEY2 are the same. */
3460
3461 static int
3462 cmpfn_eql (struct Lisp_Hash_Table *h,
3463 Lisp_Object key1, EMACS_UINT hash1,
3464 Lisp_Object key2, EMACS_UINT hash2)
3465 {
3466 return (FLOATP (key1)
3467 && FLOATP (key2)
3468 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3469 }
3470
3471
3472 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3473 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3474 KEY2 are the same. */
3475
3476 static int
3477 cmpfn_equal (struct Lisp_Hash_Table *h,
3478 Lisp_Object key1, EMACS_UINT hash1,
3479 Lisp_Object key2, EMACS_UINT hash2)
3480 {
3481 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3482 }
3483
3484
3485 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3486 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3487 if KEY1 and KEY2 are the same. */
3488
3489 static int
3490 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3491 Lisp_Object key1, EMACS_UINT hash1,
3492 Lisp_Object key2, EMACS_UINT hash2)
3493 {
3494 if (hash1 == hash2)
3495 {
3496 Lisp_Object args[3];
3497
3498 args[0] = h->user_cmp_function;
3499 args[1] = key1;
3500 args[2] = key2;
3501 return !NILP (Ffuncall (3, args));
3502 }
3503 else
3504 return 0;
3505 }
3506
3507
3508 /* Value is a hash code for KEY for use in hash table H which uses
3509 `eq' to compare keys. The hash code returned is guaranteed to fit
3510 in a Lisp integer. */
3511
3512 static EMACS_UINT
3513 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3514 {
3515 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3516 xassert ((hash & ~INTMASK) == 0);
3517 return hash;
3518 }
3519
3520
3521 /* Value is a hash code for KEY for use in hash table H which uses
3522 `eql' to compare keys. The hash code returned is guaranteed to fit
3523 in a Lisp integer. */
3524
3525 static EMACS_UINT
3526 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3527 {
3528 EMACS_UINT hash;
3529 if (FLOATP (key))
3530 hash = sxhash (key, 0);
3531 else
3532 hash = XUINT (key) ^ XTYPE (key);
3533 xassert ((hash & ~INTMASK) == 0);
3534 return hash;
3535 }
3536
3537
3538 /* Value is a hash code for KEY for use in hash table H which uses
3539 `equal' to compare keys. The hash code returned is guaranteed to fit
3540 in a Lisp integer. */
3541
3542 static EMACS_UINT
3543 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3544 {
3545 EMACS_UINT hash = sxhash (key, 0);
3546 xassert ((hash & ~INTMASK) == 0);
3547 return hash;
3548 }
3549
3550
3551 /* Value is a hash code for KEY for use in hash table H which uses as
3552 user-defined function to compare keys. The hash code returned is
3553 guaranteed to fit in a Lisp integer. */
3554
3555 static EMACS_UINT
3556 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3557 {
3558 Lisp_Object args[2], hash;
3559
3560 args[0] = h->user_hash_function;
3561 args[1] = key;
3562 hash = Ffuncall (2, args);
3563 if (!INTEGERP (hash))
3564 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3565 return XUINT (hash);
3566 }
3567
3568
3569 /* Create and initialize a new hash table.
3570
3571 TEST specifies the test the hash table will use to compare keys.
3572 It must be either one of the predefined tests `eq', `eql' or
3573 `equal' or a symbol denoting a user-defined test named TEST with
3574 test and hash functions USER_TEST and USER_HASH.
3575
3576 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3577
3578 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3579 new size when it becomes full is computed by adding REHASH_SIZE to
3580 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3581 table's new size is computed by multiplying its old size with
3582 REHASH_SIZE.
3583
3584 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3585 be resized when the ratio of (number of entries in the table) /
3586 (table size) is >= REHASH_THRESHOLD.
3587
3588 WEAK specifies the weakness of the table. If non-nil, it must be
3589 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3590
3591 Lisp_Object
3592 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3593 Lisp_Object rehash_threshold, Lisp_Object weak,
3594 Lisp_Object user_test, Lisp_Object user_hash)
3595 {
3596 struct Lisp_Hash_Table *h;
3597 Lisp_Object table;
3598 EMACS_INT index_size, i, sz;
3599 double index_float;
3600
3601 /* Preconditions. */
3602 xassert (SYMBOLP (test));
3603 xassert (INTEGERP (size) && XINT (size) >= 0);
3604 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3605 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3606 xassert (FLOATP (rehash_threshold)
3607 && 0 < XFLOAT_DATA (rehash_threshold)
3608 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3609
3610 if (XFASTINT (size) == 0)
3611 size = make_number (1);
3612
3613 sz = XFASTINT (size);
3614 index_float = sz / XFLOAT_DATA (rehash_threshold);
3615 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3616 ? next_almost_prime (index_float)
3617 : MOST_POSITIVE_FIXNUM + 1);
3618 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3619 error ("Hash table too large");
3620
3621 /* Allocate a table and initialize it. */
3622 h = allocate_hash_table ();
3623
3624 /* Initialize hash table slots. */
3625 h->test = test;
3626 if (EQ (test, Qeql))
3627 {
3628 h->cmpfn = cmpfn_eql;
3629 h->hashfn = hashfn_eql;
3630 }
3631 else if (EQ (test, Qeq))
3632 {
3633 h->cmpfn = NULL;
3634 h->hashfn = hashfn_eq;
3635 }
3636 else if (EQ (test, Qequal))
3637 {
3638 h->cmpfn = cmpfn_equal;
3639 h->hashfn = hashfn_equal;
3640 }
3641 else
3642 {
3643 h->user_cmp_function = user_test;
3644 h->user_hash_function = user_hash;
3645 h->cmpfn = cmpfn_user_defined;
3646 h->hashfn = hashfn_user_defined;
3647 }
3648
3649 h->weak = weak;
3650 h->rehash_threshold = rehash_threshold;
3651 h->rehash_size = rehash_size;
3652 h->count = 0;
3653 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3654 h->hash = Fmake_vector (size, Qnil);
3655 h->next = Fmake_vector (size, Qnil);
3656 h->index = Fmake_vector (make_number (index_size), Qnil);
3657
3658 /* Set up the free list. */
3659 for (i = 0; i < sz - 1; ++i)
3660 HASH_NEXT (h, i) = make_number (i + 1);
3661 h->next_free = make_number (0);
3662
3663 XSET_HASH_TABLE (table, h);
3664 xassert (HASH_TABLE_P (table));
3665 xassert (XHASH_TABLE (table) == h);
3666
3667 /* Maybe add this hash table to the list of all weak hash tables. */
3668 if (NILP (h->weak))
3669 h->next_weak = NULL;
3670 else
3671 {
3672 h->next_weak = weak_hash_tables;
3673 weak_hash_tables = h;
3674 }
3675
3676 return table;
3677 }
3678
3679
3680 /* Return a copy of hash table H1. Keys and values are not copied,
3681 only the table itself is. */
3682
3683 static Lisp_Object
3684 copy_hash_table (struct Lisp_Hash_Table *h1)
3685 {
3686 Lisp_Object table;
3687 struct Lisp_Hash_Table *h2;
3688 struct Lisp_Vector *next;
3689
3690 h2 = allocate_hash_table ();
3691 next = h2->header.next.vector;
3692 memcpy (h2, h1, sizeof *h2);
3693 h2->header.next.vector = next;
3694 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3695 h2->hash = Fcopy_sequence (h1->hash);
3696 h2->next = Fcopy_sequence (h1->next);
3697 h2->index = Fcopy_sequence (h1->index);
3698 XSET_HASH_TABLE (table, h2);
3699
3700 /* Maybe add this hash table to the list of all weak hash tables. */
3701 if (!NILP (h2->weak))
3702 {
3703 h2->next_weak = weak_hash_tables;
3704 weak_hash_tables = h2;
3705 }
3706
3707 return table;
3708 }
3709
3710
3711 /* Resize hash table H if it's too full. If H cannot be resized
3712 because it's already too large, throw an error. */
3713
3714 static inline void
3715 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3716 {
3717 if (NILP (h->next_free))
3718 {
3719 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3720 EMACS_INT i, new_size, index_size;
3721 EMACS_INT nsize;
3722 double index_float;
3723
3724 if (INTEGERP (h->rehash_size))
3725 new_size = old_size + XFASTINT (h->rehash_size);
3726 else
3727 {
3728 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3729 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3730 {
3731 new_size = float_new_size;
3732 if (new_size <= old_size)
3733 new_size = old_size + 1;
3734 }
3735 else
3736 new_size = MOST_POSITIVE_FIXNUM + 1;
3737 }
3738 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3739 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3740 ? next_almost_prime (index_float)
3741 : MOST_POSITIVE_FIXNUM + 1);
3742 nsize = max (index_size, 2 * new_size);
3743 if (nsize > MOST_POSITIVE_FIXNUM)
3744 error ("Hash table too large to resize");
3745
3746 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3747 h->next = larger_vector (h->next, new_size, Qnil);
3748 h->hash = larger_vector (h->hash, new_size, Qnil);
3749 h->index = Fmake_vector (make_number (index_size), Qnil);
3750
3751 /* Update the free list. Do it so that new entries are added at
3752 the end of the free list. This makes some operations like
3753 maphash faster. */
3754 for (i = old_size; i < new_size - 1; ++i)
3755 HASH_NEXT (h, i) = make_number (i + 1);
3756
3757 if (!NILP (h->next_free))
3758 {
3759 Lisp_Object last, next;
3760
3761 last = h->next_free;
3762 while (next = HASH_NEXT (h, XFASTINT (last)),
3763 !NILP (next))
3764 last = next;
3765
3766 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3767 }
3768 else
3769 XSETFASTINT (h->next_free, old_size);
3770
3771 /* Rehash. */
3772 for (i = 0; i < old_size; ++i)
3773 if (!NILP (HASH_HASH (h, i)))
3774 {
3775 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3776 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3777 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3778 HASH_INDEX (h, start_of_bucket) = make_number (i);
3779 }
3780 }
3781 }
3782
3783
3784 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3785 the hash code of KEY. Value is the index of the entry in H
3786 matching KEY, or -1 if not found. */
3787
3788 ptrdiff_t
3789 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3790 {
3791 EMACS_UINT hash_code;
3792 ptrdiff_t start_of_bucket;
3793 Lisp_Object idx;
3794
3795 hash_code = h->hashfn (h, key);
3796 if (hash)
3797 *hash = hash_code;
3798
3799 start_of_bucket = hash_code % ASIZE (h->index);
3800 idx = HASH_INDEX (h, start_of_bucket);
3801
3802 /* We need not gcpro idx since it's either an integer or nil. */
3803 while (!NILP (idx))
3804 {
3805 EMACS_INT i = XFASTINT (idx);
3806 if (EQ (key, HASH_KEY (h, i))
3807 || (h->cmpfn
3808 && h->cmpfn (h, key, hash_code,
3809 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3810 break;
3811 idx = HASH_NEXT (h, i);
3812 }
3813
3814 return NILP (idx) ? -1 : XFASTINT (idx);
3815 }
3816
3817
3818 /* Put an entry into hash table H that associates KEY with VALUE.
3819 HASH is a previously computed hash code of KEY.
3820 Value is the index of the entry in H matching KEY. */
3821
3822 ptrdiff_t
3823 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3824 EMACS_UINT hash)
3825 {
3826 ptrdiff_t start_of_bucket, i;
3827
3828 xassert ((hash & ~INTMASK) == 0);
3829
3830 /* Increment count after resizing because resizing may fail. */
3831 maybe_resize_hash_table (h);
3832 h->count++;
3833
3834 /* Store key/value in the key_and_value vector. */
3835 i = XFASTINT (h->next_free);
3836 h->next_free = HASH_NEXT (h, i);
3837 HASH_KEY (h, i) = key;
3838 HASH_VALUE (h, i) = value;
3839
3840 /* Remember its hash code. */
3841 HASH_HASH (h, i) = make_number (hash);
3842
3843 /* Add new entry to its collision chain. */
3844 start_of_bucket = hash % ASIZE (h->index);
3845 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3846 HASH_INDEX (h, start_of_bucket) = make_number (i);
3847 return i;
3848 }
3849
3850
3851 /* Remove the entry matching KEY from hash table H, if there is one. */
3852
3853 static void
3854 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3855 {
3856 EMACS_UINT hash_code;
3857 EMACS_INT start_of_bucket;
3858 Lisp_Object idx, prev;
3859
3860 hash_code = h->hashfn (h, key);
3861 start_of_bucket = hash_code % ASIZE (h->index);
3862 idx = HASH_INDEX (h, start_of_bucket);
3863 prev = Qnil;
3864
3865 /* We need not gcpro idx, prev since they're either integers or nil. */
3866 while (!NILP (idx))
3867 {
3868 EMACS_INT i = XFASTINT (idx);
3869
3870 if (EQ (key, HASH_KEY (h, i))
3871 || (h->cmpfn
3872 && h->cmpfn (h, key, hash_code,
3873 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3874 {
3875 /* Take entry out of collision chain. */
3876 if (NILP (prev))
3877 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3878 else
3879 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3880
3881 /* Clear slots in key_and_value and add the slots to
3882 the free list. */
3883 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3884 HASH_NEXT (h, i) = h->next_free;
3885 h->next_free = make_number (i);
3886 h->count--;
3887 xassert (h->count >= 0);
3888 break;
3889 }
3890 else
3891 {
3892 prev = idx;
3893 idx = HASH_NEXT (h, i);
3894 }
3895 }
3896 }
3897
3898
3899 /* Clear hash table H. */
3900
3901 static void
3902 hash_clear (struct Lisp_Hash_Table *h)
3903 {
3904 if (h->count > 0)
3905 {
3906 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3907
3908 for (i = 0; i < size; ++i)
3909 {
3910 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3911 HASH_KEY (h, i) = Qnil;
3912 HASH_VALUE (h, i) = Qnil;
3913 HASH_HASH (h, i) = Qnil;
3914 }
3915
3916 for (i = 0; i < ASIZE (h->index); ++i)
3917 ASET (h->index, i, Qnil);
3918
3919 h->next_free = make_number (0);
3920 h->count = 0;
3921 }
3922 }
3923
3924
3925 \f
3926 /************************************************************************
3927 Weak Hash Tables
3928 ************************************************************************/
3929
3930 void
3931 init_weak_hash_tables (void)
3932 {
3933 weak_hash_tables = NULL;
3934 }
3935
3936 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3937 entries from the table that don't survive the current GC.
3938 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3939 non-zero if anything was marked. */
3940
3941 static int
3942 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3943 {
3944 EMACS_INT bucket, n;
3945 int marked;
3946
3947 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3948 marked = 0;
3949
3950 for (bucket = 0; bucket < n; ++bucket)
3951 {
3952 Lisp_Object idx, next, prev;
3953
3954 /* Follow collision chain, removing entries that
3955 don't survive this garbage collection. */
3956 prev = Qnil;
3957 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3958 {
3959 EMACS_INT i = XFASTINT (idx);
3960 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3961 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3962 int remove_p;
3963
3964 if (EQ (h->weak, Qkey))
3965 remove_p = !key_known_to_survive_p;
3966 else if (EQ (h->weak, Qvalue))
3967 remove_p = !value_known_to_survive_p;
3968 else if (EQ (h->weak, Qkey_or_value))
3969 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3970 else if (EQ (h->weak, Qkey_and_value))
3971 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3972 else
3973 abort ();
3974
3975 next = HASH_NEXT (h, i);
3976
3977 if (remove_entries_p)
3978 {
3979 if (remove_p)
3980 {
3981 /* Take out of collision chain. */
3982 if (NILP (prev))
3983 HASH_INDEX (h, bucket) = next;
3984 else
3985 HASH_NEXT (h, XFASTINT (prev)) = next;
3986
3987 /* Add to free list. */
3988 HASH_NEXT (h, i) = h->next_free;
3989 h->next_free = idx;
3990
3991 /* Clear key, value, and hash. */
3992 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3993 HASH_HASH (h, i) = Qnil;
3994
3995 h->count--;
3996 }
3997 else
3998 {
3999 prev = idx;
4000 }
4001 }
4002 else
4003 {
4004 if (!remove_p)
4005 {
4006 /* Make sure key and value survive. */
4007 if (!key_known_to_survive_p)
4008 {
4009 mark_object (HASH_KEY (h, i));
4010 marked = 1;
4011 }
4012
4013 if (!value_known_to_survive_p)
4014 {
4015 mark_object (HASH_VALUE (h, i));
4016 marked = 1;
4017 }
4018 }
4019 }
4020 }
4021 }
4022
4023 return marked;
4024 }
4025
4026 /* Remove elements from weak hash tables that don't survive the
4027 current garbage collection. Remove weak tables that don't survive
4028 from Vweak_hash_tables. Called from gc_sweep. */
4029
4030 void
4031 sweep_weak_hash_tables (void)
4032 {
4033 struct Lisp_Hash_Table *h, *used, *next;
4034 int marked;
4035
4036 /* Mark all keys and values that are in use. Keep on marking until
4037 there is no more change. This is necessary for cases like
4038 value-weak table A containing an entry X -> Y, where Y is used in a
4039 key-weak table B, Z -> Y. If B comes after A in the list of weak
4040 tables, X -> Y might be removed from A, although when looking at B
4041 one finds that it shouldn't. */
4042 do
4043 {
4044 marked = 0;
4045 for (h = weak_hash_tables; h; h = h->next_weak)
4046 {
4047 if (h->header.size & ARRAY_MARK_FLAG)
4048 marked |= sweep_weak_table (h, 0);
4049 }
4050 }
4051 while (marked);
4052
4053 /* Remove tables and entries that aren't used. */
4054 for (h = weak_hash_tables, used = NULL; h; h = next)
4055 {
4056 next = h->next_weak;
4057
4058 if (h->header.size & ARRAY_MARK_FLAG)
4059 {
4060 /* TABLE is marked as used. Sweep its contents. */
4061 if (h->count > 0)
4062 sweep_weak_table (h, 1);
4063
4064 /* Add table to the list of used weak hash tables. */
4065 h->next_weak = used;
4066 used = h;
4067 }
4068 }
4069
4070 weak_hash_tables = used;
4071 }
4072
4073
4074 \f
4075 /***********************************************************************
4076 Hash Code Computation
4077 ***********************************************************************/
4078
4079 /* Maximum depth up to which to dive into Lisp structures. */
4080
4081 #define SXHASH_MAX_DEPTH 3
4082
4083 /* Maximum length up to which to take list and vector elements into
4084 account. */
4085
4086 #define SXHASH_MAX_LEN 7
4087
4088 /* Combine two integers X and Y for hashing. The result might not fit
4089 into a Lisp integer. */
4090
4091 #define SXHASH_COMBINE(X, Y) \
4092 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4093 + (EMACS_UINT) (Y))
4094
4095 /* Hash X, returning a value that fits into a Lisp integer. */
4096 #define SXHASH_REDUCE(X) \
4097 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4098
4099 /* Return a hash for string PTR which has length LEN. The hash value
4100 can be any EMACS_UINT value. */
4101
4102 EMACS_UINT
4103 hash_string (char const *ptr, ptrdiff_t len)
4104 {
4105 char const *p = ptr;
4106 char const *end = p + len;
4107 unsigned char c;
4108 EMACS_UINT hash = 0;
4109
4110 while (p != end)
4111 {
4112 c = *p++;
4113 hash = SXHASH_COMBINE (hash, c);
4114 }
4115
4116 return hash;
4117 }
4118
4119 /* Return a hash for string PTR which has length LEN. The hash
4120 code returned is guaranteed to fit in a Lisp integer. */
4121
4122 static EMACS_UINT
4123 sxhash_string (char const *ptr, ptrdiff_t len)
4124 {
4125 EMACS_UINT hash = hash_string (ptr, len);
4126 return SXHASH_REDUCE (hash);
4127 }
4128
4129 /* Return a hash for the floating point value VAL. */
4130
4131 static EMACS_INT
4132 sxhash_float (double val)
4133 {
4134 EMACS_UINT hash = 0;
4135 enum {
4136 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4137 + (sizeof val % sizeof hash != 0))
4138 };
4139 union {
4140 double val;
4141 EMACS_UINT word[WORDS_PER_DOUBLE];
4142 } u;
4143 int i;
4144 u.val = val;
4145 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4146 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4147 hash = SXHASH_COMBINE (hash, u.word[i]);
4148 return SXHASH_REDUCE (hash);
4149 }
4150
4151 /* Return a hash for list LIST. DEPTH is the current depth in the
4152 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4153
4154 static EMACS_UINT
4155 sxhash_list (Lisp_Object list, int depth)
4156 {
4157 EMACS_UINT hash = 0;
4158 int i;
4159
4160 if (depth < SXHASH_MAX_DEPTH)
4161 for (i = 0;
4162 CONSP (list) && i < SXHASH_MAX_LEN;
4163 list = XCDR (list), ++i)
4164 {
4165 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4166 hash = SXHASH_COMBINE (hash, hash2);
4167 }
4168
4169 if (!NILP (list))
4170 {
4171 EMACS_UINT hash2 = sxhash (list, depth + 1);
4172 hash = SXHASH_COMBINE (hash, hash2);
4173 }
4174
4175 return SXHASH_REDUCE (hash);
4176 }
4177
4178
4179 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4180 the Lisp structure. */
4181
4182 static EMACS_UINT
4183 sxhash_vector (Lisp_Object vec, int depth)
4184 {
4185 EMACS_UINT hash = ASIZE (vec);
4186 int i, n;
4187
4188 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4189 for (i = 0; i < n; ++i)
4190 {
4191 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4192 hash = SXHASH_COMBINE (hash, hash2);
4193 }
4194
4195 return SXHASH_REDUCE (hash);
4196 }
4197
4198 /* Return a hash for bool-vector VECTOR. */
4199
4200 static EMACS_UINT
4201 sxhash_bool_vector (Lisp_Object vec)
4202 {
4203 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4204 int i, n;
4205
4206 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4207 for (i = 0; i < n; ++i)
4208 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4209
4210 return SXHASH_REDUCE (hash);
4211 }
4212
4213
4214 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4215 structure. Value is an unsigned integer clipped to INTMASK. */
4216
4217 EMACS_UINT
4218 sxhash (Lisp_Object obj, int depth)
4219 {
4220 EMACS_UINT hash;
4221
4222 if (depth > SXHASH_MAX_DEPTH)
4223 return 0;
4224
4225 switch (XTYPE (obj))
4226 {
4227 case_Lisp_Int:
4228 hash = XUINT (obj);
4229 break;
4230
4231 case Lisp_Misc:
4232 hash = XUINT (obj);
4233 break;
4234
4235 case Lisp_Symbol:
4236 obj = SYMBOL_NAME (obj);
4237 /* Fall through. */
4238
4239 case Lisp_String:
4240 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4241 break;
4242
4243 /* This can be everything from a vector to an overlay. */
4244 case Lisp_Vectorlike:
4245 if (VECTORP (obj))
4246 /* According to the CL HyperSpec, two arrays are equal only if
4247 they are `eq', except for strings and bit-vectors. In
4248 Emacs, this works differently. We have to compare element
4249 by element. */
4250 hash = sxhash_vector (obj, depth);
4251 else if (BOOL_VECTOR_P (obj))
4252 hash = sxhash_bool_vector (obj);
4253 else
4254 /* Others are `equal' if they are `eq', so let's take their
4255 address as hash. */
4256 hash = XUINT (obj);
4257 break;
4258
4259 case Lisp_Cons:
4260 hash = sxhash_list (obj, depth);
4261 break;
4262
4263 case Lisp_Float:
4264 hash = sxhash_float (XFLOAT_DATA (obj));
4265 break;
4266
4267 default:
4268 abort ();
4269 }
4270
4271 return hash;
4272 }
4273
4274
4275 \f
4276 /***********************************************************************
4277 Lisp Interface
4278 ***********************************************************************/
4279
4280
4281 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4282 doc: /* Compute a hash code for OBJ and return it as integer. */)
4283 (Lisp_Object obj)
4284 {
4285 EMACS_UINT hash = sxhash (obj, 0);
4286 return make_number (hash);
4287 }
4288
4289
4290 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4291 doc: /* Create and return a new hash table.
4292
4293 Arguments are specified as keyword/argument pairs. The following
4294 arguments are defined:
4295
4296 :test TEST -- TEST must be a symbol that specifies how to compare
4297 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4298 `equal'. User-supplied test and hash functions can be specified via
4299 `define-hash-table-test'.
4300
4301 :size SIZE -- A hint as to how many elements will be put in the table.
4302 Default is 65.
4303
4304 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4305 fills up. If REHASH-SIZE is an integer, increase the size by that
4306 amount. If it is a float, it must be > 1.0, and the new size is the
4307 old size multiplied by that factor. Default is 1.5.
4308
4309 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4310 Resize the hash table when the ratio (number of entries / table size)
4311 is greater than or equal to THRESHOLD. Default is 0.8.
4312
4313 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4314 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4315 returned is a weak table. Key/value pairs are removed from a weak
4316 hash table when there are no non-weak references pointing to their
4317 key, value, one of key or value, or both key and value, depending on
4318 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4319 is nil.
4320
4321 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4322 (ptrdiff_t nargs, Lisp_Object *args)
4323 {
4324 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4325 Lisp_Object user_test, user_hash;
4326 char *used;
4327 ptrdiff_t i;
4328
4329 /* The vector `used' is used to keep track of arguments that
4330 have been consumed. */
4331 used = (char *) alloca (nargs * sizeof *used);
4332 memset (used, 0, nargs * sizeof *used);
4333
4334 /* See if there's a `:test TEST' among the arguments. */
4335 i = get_key_arg (QCtest, nargs, args, used);
4336 test = i ? args[i] : Qeql;
4337 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4338 {
4339 /* See if it is a user-defined test. */
4340 Lisp_Object prop;
4341
4342 prop = Fget (test, Qhash_table_test);
4343 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4344 signal_error ("Invalid hash table test", test);
4345 user_test = XCAR (prop);
4346 user_hash = XCAR (XCDR (prop));
4347 }
4348 else
4349 user_test = user_hash = Qnil;
4350
4351 /* See if there's a `:size SIZE' argument. */
4352 i = get_key_arg (QCsize, nargs, args, used);
4353 size = i ? args[i] : Qnil;
4354 if (NILP (size))
4355 size = make_number (DEFAULT_HASH_SIZE);
4356 else if (!INTEGERP (size) || XINT (size) < 0)
4357 signal_error ("Invalid hash table size", size);
4358
4359 /* Look for `:rehash-size SIZE'. */
4360 i = get_key_arg (QCrehash_size, nargs, args, used);
4361 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4362 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4363 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4364 signal_error ("Invalid hash table rehash size", rehash_size);
4365
4366 /* Look for `:rehash-threshold THRESHOLD'. */
4367 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4368 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4369 if (! (FLOATP (rehash_threshold)
4370 && 0 < XFLOAT_DATA (rehash_threshold)
4371 && XFLOAT_DATA (rehash_threshold) <= 1))
4372 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4373
4374 /* Look for `:weakness WEAK'. */
4375 i = get_key_arg (QCweakness, nargs, args, used);
4376 weak = i ? args[i] : Qnil;
4377 if (EQ (weak, Qt))
4378 weak = Qkey_and_value;
4379 if (!NILP (weak)
4380 && !EQ (weak, Qkey)
4381 && !EQ (weak, Qvalue)
4382 && !EQ (weak, Qkey_or_value)
4383 && !EQ (weak, Qkey_and_value))
4384 signal_error ("Invalid hash table weakness", weak);
4385
4386 /* Now, all args should have been used up, or there's a problem. */
4387 for (i = 0; i < nargs; ++i)
4388 if (!used[i])
4389 signal_error ("Invalid argument list", args[i]);
4390
4391 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4392 user_test, user_hash);
4393 }
4394
4395
4396 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4397 doc: /* Return a copy of hash table TABLE. */)
4398 (Lisp_Object table)
4399 {
4400 return copy_hash_table (check_hash_table (table));
4401 }
4402
4403
4404 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4405 doc: /* Return the number of elements in TABLE. */)
4406 (Lisp_Object table)
4407 {
4408 return make_number (check_hash_table (table)->count);
4409 }
4410
4411
4412 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4413 Shash_table_rehash_size, 1, 1, 0,
4414 doc: /* Return the current rehash size of TABLE. */)
4415 (Lisp_Object table)
4416 {
4417 return check_hash_table (table)->rehash_size;
4418 }
4419
4420
4421 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4422 Shash_table_rehash_threshold, 1, 1, 0,
4423 doc: /* Return the current rehash threshold of TABLE. */)
4424 (Lisp_Object table)
4425 {
4426 return check_hash_table (table)->rehash_threshold;
4427 }
4428
4429
4430 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4431 doc: /* Return the size of TABLE.
4432 The size can be used as an argument to `make-hash-table' to create
4433 a hash table than can hold as many elements as TABLE holds
4434 without need for resizing. */)
4435 (Lisp_Object table)
4436 {
4437 struct Lisp_Hash_Table *h = check_hash_table (table);
4438 return make_number (HASH_TABLE_SIZE (h));
4439 }
4440
4441
4442 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4443 doc: /* Return the test TABLE uses. */)
4444 (Lisp_Object table)
4445 {
4446 return check_hash_table (table)->test;
4447 }
4448
4449
4450 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4451 1, 1, 0,
4452 doc: /* Return the weakness of TABLE. */)
4453 (Lisp_Object table)
4454 {
4455 return check_hash_table (table)->weak;
4456 }
4457
4458
4459 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4460 doc: /* Return t if OBJ is a Lisp hash table object. */)
4461 (Lisp_Object obj)
4462 {
4463 return HASH_TABLE_P (obj) ? Qt : Qnil;
4464 }
4465
4466
4467 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4468 doc: /* Clear hash table TABLE and return it. */)
4469 (Lisp_Object table)
4470 {
4471 hash_clear (check_hash_table (table));
4472 /* Be compatible with XEmacs. */
4473 return table;
4474 }
4475
4476
4477 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4478 doc: /* Look up KEY in TABLE and return its associated value.
4479 If KEY is not found, return DFLT which defaults to nil. */)
4480 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4481 {
4482 struct Lisp_Hash_Table *h = check_hash_table (table);
4483 ptrdiff_t i = hash_lookup (h, key, NULL);
4484 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4485 }
4486
4487
4488 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4489 doc: /* Associate KEY with VALUE in hash table TABLE.
4490 If KEY is already present in table, replace its current value with
4491 VALUE. In any case, return VALUE. */)
4492 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4493 {
4494 struct Lisp_Hash_Table *h = check_hash_table (table);
4495 ptrdiff_t i;
4496 EMACS_UINT hash;
4497
4498 i = hash_lookup (h, key, &hash);
4499 if (i >= 0)
4500 HASH_VALUE (h, i) = value;
4501 else
4502 hash_put (h, key, value, hash);
4503
4504 return value;
4505 }
4506
4507
4508 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4509 doc: /* Remove KEY from TABLE. */)
4510 (Lisp_Object key, Lisp_Object table)
4511 {
4512 struct Lisp_Hash_Table *h = check_hash_table (table);
4513 hash_remove_from_table (h, key);
4514 return Qnil;
4515 }
4516
4517
4518 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4519 doc: /* Call FUNCTION for all entries in hash table TABLE.
4520 FUNCTION is called with two arguments, KEY and VALUE. */)
4521 (Lisp_Object function, Lisp_Object table)
4522 {
4523 struct Lisp_Hash_Table *h = check_hash_table (table);
4524 Lisp_Object args[3];
4525 EMACS_INT i;
4526
4527 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4528 if (!NILP (HASH_HASH (h, i)))
4529 {
4530 args[0] = function;
4531 args[1] = HASH_KEY (h, i);
4532 args[2] = HASH_VALUE (h, i);
4533 Ffuncall (3, args);
4534 }
4535
4536 return Qnil;
4537 }
4538
4539
4540 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4541 Sdefine_hash_table_test, 3, 3, 0,
4542 doc: /* Define a new hash table test with name NAME, a symbol.
4543
4544 In hash tables created with NAME specified as test, use TEST to
4545 compare keys, and HASH for computing hash codes of keys.
4546
4547 TEST must be a function taking two arguments and returning non-nil if
4548 both arguments are the same. HASH must be a function taking one
4549 argument and return an integer that is the hash code of the argument.
4550 Hash code computation should use the whole value range of integers,
4551 including negative integers. */)
4552 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4553 {
4554 return Fput (name, Qhash_table_test, list2 (test, hash));
4555 }
4556
4557
4558 \f
4559 /************************************************************************
4560 MD5, SHA-1, and SHA-2
4561 ************************************************************************/
4562
4563 #include "md5.h"
4564 #include "sha1.h"
4565 #include "sha256.h"
4566 #include "sha512.h"
4567
4568 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4569
4570 static Lisp_Object
4571 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4572 {
4573 int i;
4574 EMACS_INT size;
4575 EMACS_INT size_byte = 0;
4576 EMACS_INT start_char = 0, end_char = 0;
4577 EMACS_INT start_byte = 0, end_byte = 0;
4578 register EMACS_INT b, e;
4579 register struct buffer *bp;
4580 EMACS_INT temp;
4581 int digest_size;
4582 void *(*hash_func) (const char *, size_t, void *);
4583 Lisp_Object digest;
4584
4585 CHECK_SYMBOL (algorithm);
4586
4587 if (STRINGP (object))
4588 {
4589 if (NILP (coding_system))
4590 {
4591 /* Decide the coding-system to encode the data with. */
4592
4593 if (STRING_MULTIBYTE (object))
4594 /* use default, we can't guess correct value */
4595 coding_system = preferred_coding_system ();
4596 else
4597 coding_system = Qraw_text;
4598 }
4599
4600 if (NILP (Fcoding_system_p (coding_system)))
4601 {
4602 /* Invalid coding system. */
4603
4604 if (!NILP (noerror))
4605 coding_system = Qraw_text;
4606 else
4607 xsignal1 (Qcoding_system_error, coding_system);
4608 }
4609
4610 if (STRING_MULTIBYTE (object))
4611 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4612
4613 size = SCHARS (object);
4614 size_byte = SBYTES (object);
4615
4616 if (!NILP (start))
4617 {
4618 CHECK_NUMBER (start);
4619
4620 start_char = XINT (start);
4621
4622 if (start_char < 0)
4623 start_char += size;
4624
4625 start_byte = string_char_to_byte (object, start_char);
4626 }
4627
4628 if (NILP (end))
4629 {
4630 end_char = size;
4631 end_byte = size_byte;
4632 }
4633 else
4634 {
4635 CHECK_NUMBER (end);
4636
4637 end_char = XINT (end);
4638
4639 if (end_char < 0)
4640 end_char += size;
4641
4642 end_byte = string_char_to_byte (object, end_char);
4643 }
4644
4645 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4646 args_out_of_range_3 (object, make_number (start_char),
4647 make_number (end_char));
4648 }
4649 else
4650 {
4651 struct buffer *prev = current_buffer;
4652
4653 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4654
4655 CHECK_BUFFER (object);
4656
4657 bp = XBUFFER (object);
4658 if (bp != current_buffer)
4659 set_buffer_internal (bp);
4660
4661 if (NILP (start))
4662 b = BEGV;
4663 else
4664 {
4665 CHECK_NUMBER_COERCE_MARKER (start);
4666 b = XINT (start);
4667 }
4668
4669 if (NILP (end))
4670 e = ZV;
4671 else
4672 {
4673 CHECK_NUMBER_COERCE_MARKER (end);
4674 e = XINT (end);
4675 }
4676
4677 if (b > e)
4678 temp = b, b = e, e = temp;
4679
4680 if (!(BEGV <= b && e <= ZV))
4681 args_out_of_range (start, end);
4682
4683 if (NILP (coding_system))
4684 {
4685 /* Decide the coding-system to encode the data with.
4686 See fileio.c:Fwrite-region */
4687
4688 if (!NILP (Vcoding_system_for_write))
4689 coding_system = Vcoding_system_for_write;
4690 else
4691 {
4692 int force_raw_text = 0;
4693
4694 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4695 if (NILP (coding_system)
4696 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4697 {
4698 coding_system = Qnil;
4699 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4700 force_raw_text = 1;
4701 }
4702
4703 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4704 {
4705 /* Check file-coding-system-alist. */
4706 Lisp_Object args[4], val;
4707
4708 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4709 args[3] = Fbuffer_file_name (object);
4710 val = Ffind_operation_coding_system (4, args);
4711 if (CONSP (val) && !NILP (XCDR (val)))
4712 coding_system = XCDR (val);
4713 }
4714
4715 if (NILP (coding_system)
4716 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4717 {
4718 /* If we still have not decided a coding system, use the
4719 default value of buffer-file-coding-system. */
4720 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4721 }
4722
4723 if (!force_raw_text
4724 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4725 /* Confirm that VAL can surely encode the current region. */
4726 coding_system = call4 (Vselect_safe_coding_system_function,
4727 make_number (b), make_number (e),
4728 coding_system, Qnil);
4729
4730 if (force_raw_text)
4731 coding_system = Qraw_text;
4732 }
4733
4734 if (NILP (Fcoding_system_p (coding_system)))
4735 {
4736 /* Invalid coding system. */
4737
4738 if (!NILP (noerror))
4739 coding_system = Qraw_text;
4740 else
4741 xsignal1 (Qcoding_system_error, coding_system);
4742 }
4743 }
4744
4745 object = make_buffer_string (b, e, 0);
4746 if (prev != current_buffer)
4747 set_buffer_internal (prev);
4748 /* Discard the unwind protect for recovering the current
4749 buffer. */
4750 specpdl_ptr--;
4751
4752 if (STRING_MULTIBYTE (object))
4753 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4754 }
4755
4756 if (EQ (algorithm, Qmd5))
4757 {
4758 digest_size = MD5_DIGEST_SIZE;
4759 hash_func = md5_buffer;
4760 }
4761 else if (EQ (algorithm, Qsha1))
4762 {
4763 digest_size = SHA1_DIGEST_SIZE;
4764 hash_func = sha1_buffer;
4765 }
4766 else if (EQ (algorithm, Qsha224))
4767 {
4768 digest_size = SHA224_DIGEST_SIZE;
4769 hash_func = sha224_buffer;
4770 }
4771 else if (EQ (algorithm, Qsha256))
4772 {
4773 digest_size = SHA256_DIGEST_SIZE;
4774 hash_func = sha256_buffer;
4775 }
4776 else if (EQ (algorithm, Qsha384))
4777 {
4778 digest_size = SHA384_DIGEST_SIZE;
4779 hash_func = sha384_buffer;
4780 }
4781 else if (EQ (algorithm, Qsha512))
4782 {
4783 digest_size = SHA512_DIGEST_SIZE;
4784 hash_func = sha512_buffer;
4785 }
4786 else
4787 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4788
4789 /* allocate 2 x digest_size so that it can be re-used to hold the
4790 hexified value */
4791 digest = make_uninit_string (digest_size * 2);
4792
4793 hash_func (SSDATA (object) + start_byte,
4794 SBYTES (object) - (size_byte - end_byte),
4795 SSDATA (digest));
4796
4797 if (NILP (binary))
4798 {
4799 unsigned char *p = SDATA (digest);
4800 for (i = digest_size - 1; i >= 0; i--)
4801 {
4802 static char const hexdigit[16] = "0123456789abcdef";
4803 int p_i = p[i];
4804 p[2 * i] = hexdigit[p_i >> 4];
4805 p[2 * i + 1] = hexdigit[p_i & 0xf];
4806 }
4807 return digest;
4808 }
4809 else
4810 return make_unibyte_string (SSDATA (digest), digest_size);
4811 }
4812
4813 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4814 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4815
4816 A message digest is a cryptographic checksum of a document, and the
4817 algorithm to calculate it is defined in RFC 1321.
4818
4819 The two optional arguments START and END are character positions
4820 specifying for which part of OBJECT the message digest should be
4821 computed. If nil or omitted, the digest is computed for the whole
4822 OBJECT.
4823
4824 The MD5 message digest is computed from the result of encoding the
4825 text in a coding system, not directly from the internal Emacs form of
4826 the text. The optional fourth argument CODING-SYSTEM specifies which
4827 coding system to encode the text with. It should be the same coding
4828 system that you used or will use when actually writing the text into a
4829 file.
4830
4831 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4832 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4833 system would be chosen by default for writing this text into a file.
4834
4835 If OBJECT is a string, the most preferred coding system (see the
4836 command `prefer-coding-system') is used.
4837
4838 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4839 guesswork fails. Normally, an error is signaled in such case. */)
4840 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4841 {
4842 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4843 }
4844
4845 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4846 doc: /* Return the secure hash of OBJECT, a buffer or string.
4847 ALGORITHM is a symbol specifying the hash to use:
4848 md5, sha1, sha224, sha256, sha384 or sha512.
4849
4850 The two optional arguments START and END are positions specifying for
4851 which part of OBJECT to compute the hash. If nil or omitted, uses the
4852 whole OBJECT.
4853
4854 If BINARY is non-nil, returns a string in binary form. */)
4855 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4856 {
4857 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4858 }
4859 \f
4860 void
4861 syms_of_fns (void)
4862 {
4863 DEFSYM (Qmd5, "md5");
4864 DEFSYM (Qsha1, "sha1");
4865 DEFSYM (Qsha224, "sha224");
4866 DEFSYM (Qsha256, "sha256");
4867 DEFSYM (Qsha384, "sha384");
4868 DEFSYM (Qsha512, "sha512");
4869
4870 /* Hash table stuff. */
4871 DEFSYM (Qhash_table_p, "hash-table-p");
4872 DEFSYM (Qeq, "eq");
4873 DEFSYM (Qeql, "eql");
4874 DEFSYM (Qequal, "equal");
4875 DEFSYM (QCtest, ":test");
4876 DEFSYM (QCsize, ":size");
4877 DEFSYM (QCrehash_size, ":rehash-size");
4878 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4879 DEFSYM (QCweakness, ":weakness");
4880 DEFSYM (Qkey, "key");
4881 DEFSYM (Qvalue, "value");
4882 DEFSYM (Qhash_table_test, "hash-table-test");
4883 DEFSYM (Qkey_or_value, "key-or-value");
4884 DEFSYM (Qkey_and_value, "key-and-value");
4885
4886 defsubr (&Ssxhash);
4887 defsubr (&Smake_hash_table);
4888 defsubr (&Scopy_hash_table);
4889 defsubr (&Shash_table_count);
4890 defsubr (&Shash_table_rehash_size);
4891 defsubr (&Shash_table_rehash_threshold);
4892 defsubr (&Shash_table_size);
4893 defsubr (&Shash_table_test);
4894 defsubr (&Shash_table_weakness);
4895 defsubr (&Shash_table_p);
4896 defsubr (&Sclrhash);
4897 defsubr (&Sgethash);
4898 defsubr (&Sputhash);
4899 defsubr (&Sremhash);
4900 defsubr (&Smaphash);
4901 defsubr (&Sdefine_hash_table_test);
4902
4903 DEFSYM (Qstring_lessp, "string-lessp");
4904 DEFSYM (Qprovide, "provide");
4905 DEFSYM (Qrequire, "require");
4906 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4907 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4908 DEFSYM (Qwidget_type, "widget-type");
4909
4910 staticpro (&string_char_byte_cache_string);
4911 string_char_byte_cache_string = Qnil;
4912
4913 require_nesting_list = Qnil;
4914 staticpro (&require_nesting_list);
4915
4916 Fset (Qyes_or_no_p_history, Qnil);
4917
4918 DEFVAR_LISP ("features", Vfeatures,
4919 doc: /* A list of symbols which are the features of the executing Emacs.
4920 Used by `featurep' and `require', and altered by `provide'. */);
4921 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4922 DEFSYM (Qsubfeatures, "subfeatures");
4923
4924 #ifdef HAVE_LANGINFO_CODESET
4925 DEFSYM (Qcodeset, "codeset");
4926 DEFSYM (Qdays, "days");
4927 DEFSYM (Qmonths, "months");
4928 DEFSYM (Qpaper, "paper");
4929 #endif /* HAVE_LANGINFO_CODESET */
4930
4931 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4932 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4933 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4934 invoked by mouse clicks and mouse menu items.
4935
4936 On some platforms, file selection dialogs are also enabled if this is
4937 non-nil. */);
4938 use_dialog_box = 1;
4939
4940 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4941 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4942 This applies to commands from menus and tool bar buttons even when
4943 they are initiated from the keyboard. If `use-dialog-box' is nil,
4944 that disables the use of a file dialog, regardless of the value of
4945 this variable. */);
4946 use_file_dialog = 1;
4947
4948 defsubr (&Sidentity);
4949 defsubr (&Srandom);
4950 defsubr (&Slength);
4951 defsubr (&Ssafe_length);
4952 defsubr (&Sstring_bytes);
4953 defsubr (&Sstring_equal);
4954 defsubr (&Scompare_strings);
4955 defsubr (&Sstring_lessp);
4956 defsubr (&Sappend);
4957 defsubr (&Sconcat);
4958 defsubr (&Svconcat);
4959 defsubr (&Scopy_sequence);
4960 defsubr (&Sstring_make_multibyte);
4961 defsubr (&Sstring_make_unibyte);
4962 defsubr (&Sstring_as_multibyte);
4963 defsubr (&Sstring_as_unibyte);
4964 defsubr (&Sstring_to_multibyte);
4965 defsubr (&Sstring_to_unibyte);
4966 defsubr (&Scopy_alist);
4967 defsubr (&Ssubstring);
4968 defsubr (&Ssubstring_no_properties);
4969 defsubr (&Snthcdr);
4970 defsubr (&Snth);
4971 defsubr (&Selt);
4972 defsubr (&Smember);
4973 defsubr (&Smemq);
4974 defsubr (&Smemql);
4975 defsubr (&Sassq);
4976 defsubr (&Sassoc);
4977 defsubr (&Srassq);
4978 defsubr (&Srassoc);
4979 defsubr (&Sdelq);
4980 defsubr (&Sdelete);
4981 defsubr (&Snreverse);
4982 defsubr (&Sreverse);
4983 defsubr (&Ssort);
4984 defsubr (&Splist_get);
4985 defsubr (&Sget);
4986 defsubr (&Splist_put);
4987 defsubr (&Sput);
4988 defsubr (&Slax_plist_get);
4989 defsubr (&Slax_plist_put);
4990 defsubr (&Seql);
4991 defsubr (&Sequal);
4992 defsubr (&Sequal_including_properties);
4993 defsubr (&Sfillarray);
4994 defsubr (&Sclear_string);
4995 defsubr (&Snconc);
4996 defsubr (&Smapcar);
4997 defsubr (&Smapc);
4998 defsubr (&Smapconcat);
4999 defsubr (&Syes_or_no_p);
5000 defsubr (&Sload_average);
5001 defsubr (&Sfeaturep);
5002 defsubr (&Srequire);
5003 defsubr (&Sprovide);
5004 defsubr (&Splist_member);
5005 defsubr (&Swidget_put);
5006 defsubr (&Swidget_get);
5007 defsubr (&Swidget_apply);
5008 defsubr (&Sbase64_encode_region);
5009 defsubr (&Sbase64_decode_region);
5010 defsubr (&Sbase64_encode_string);
5011 defsubr (&Sbase64_decode_string);
5012 defsubr (&Smd5);
5013 defsubr (&Ssecure_hash);
5014 defsubr (&Slocale_info);
5015 }
5016
5017
5018 void
5019 init_fns (void)
5020 {
5021 }