* alloc.c (nzombies, ngcs, max_live, max_zombies): Now EMACS_INT, not 'int'.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #include <signal.h>
26
27 #ifdef HAVE_GTK_AND_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
34
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
52
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
55 #endif
56
57 #include <unistd.h>
58 #ifndef HAVE_UNISTD_H
59 extern POINTER_TYPE *sbrk ();
60 #endif
61
62 #include <fcntl.h>
63
64 #ifdef WINDOWSNT
65 #include "w32.h"
66 #endif
67
68 #ifdef DOUG_LEA_MALLOC
69
70 #include <malloc.h>
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t int
74 #endif
75
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
78
79 #define MMAP_MAX_AREAS 100000000
80
81 #else /* not DOUG_LEA_MALLOC */
82
83 /* The following come from gmalloc.c. */
84
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used;
87 extern __malloc_size_t __malloc_extra_blocks;
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 if (pthread_equal (pthread_self (), main_thread)) \
117 BLOCK_INPUT; \
118 pthread_mutex_lock (&alloc_mutex); \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 UNBLOCK_INPUT; \
127 } \
128 while (0)
129
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
137
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
140
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
144
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
148
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
151 strings. */
152
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
154
155 /* Global variables. */
156 struct emacs_globals globals;
157
158 /* Number of bytes of consing done since the last gc. */
159
160 EMACS_INT consing_since_gc;
161
162 /* Similar minimum, computed from Vgc_cons_percentage. */
163
164 EMACS_INT gc_relative_threshold;
165
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
168
169 EMACS_INT memory_full_cons_threshold;
170
171 /* Nonzero during GC. */
172
173 int gc_in_progress;
174
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
178
179 int abort_on_gc;
180
181 /* Number of live and free conses etc. */
182
183 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
184 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
185 static EMACS_INT total_free_floats, total_floats;
186
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
190
191 static char *spare_memory[7];
192
193 /* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
195
196 #define SPARE_MEMORY (1 << 14)
197
198 /* Number of extra blocks malloc should get when it needs more core. */
199
200 static int malloc_hysteresis;
201
202 /* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
207
208 #ifndef VIRT_ADDR_VARIES
209 static
210 #endif
211 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
212 #define PUREBEG (char *) pure
213
214 /* Pointer to the pure area, and its size. */
215
216 static char *purebeg;
217 static size_t pure_size;
218
219 /* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
221
222 static size_t pure_bytes_used_before_overflow;
223
224 /* Value is non-zero if P points into pure space. */
225
226 #define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
229 && ((PNTR_COMPARISON_TYPE) (P) \
230 >= (PNTR_COMPARISON_TYPE) purebeg))
231
232 /* Index in pure at which next pure Lisp object will be allocated.. */
233
234 static EMACS_INT pure_bytes_used_lisp;
235
236 /* Number of bytes allocated for non-Lisp objects in pure storage. */
237
238 static EMACS_INT pure_bytes_used_non_lisp;
239
240 /* If nonzero, this is a warning delivered by malloc and not yet
241 displayed. */
242
243 const char *pending_malloc_warning;
244
245 /* Maximum amount of C stack to save when a GC happens. */
246
247 #ifndef MAX_SAVE_STACK
248 #define MAX_SAVE_STACK 16000
249 #endif
250
251 /* Buffer in which we save a copy of the C stack at each GC. */
252
253 #if MAX_SAVE_STACK > 0
254 static char *stack_copy;
255 static size_t stack_copy_size;
256 #endif
257
258 /* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
260
261 static int ignore_warnings;
262
263 static Lisp_Object Qgc_cons_threshold;
264 Lisp_Object Qchar_table_extra_slots;
265
266 /* Hook run after GC has finished. */
267
268 static Lisp_Object Qpost_gc_hook;
269
270 static void mark_buffer (Lisp_Object);
271 static void mark_terminals (void);
272 static void gc_sweep (void);
273 static void mark_glyph_matrix (struct glyph_matrix *);
274 static void mark_face_cache (struct face_cache *);
275
276 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
277 static void refill_memory_reserve (void);
278 #endif
279 static struct Lisp_String *allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283 static void free_misc (Lisp_Object);
284
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
288
289 enum mem_type
290 {
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
303 };
304
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
307
308
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
310
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
314
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
318 static Lisp_Object Vdead;
319
320 #ifdef GC_MALLOC_CHECK
321
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
324
325 #endif /* GC_MALLOC_CHECK */
326
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351 struct mem_node
352 {
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
365
366 /* Memory type. */
367 enum mem_type type;
368 };
369
370 /* Base address of stack. Set in main. */
371
372 Lisp_Object *stack_base;
373
374 /* Root of the tree describing allocated Lisp memory. */
375
376 static struct mem_node *mem_root;
377
378 /* Lowest and highest known address in the heap. */
379
380 static void *min_heap_address, *max_heap_address;
381
382 /* Sentinel node of the tree. */
383
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
386
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static inline struct mem_node *mem_find (void *);
407
408
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
412
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
414
415 /* Recording what needs to be marked for gc. */
416
417 struct gcpro *gcprolist;
418
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
421
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
424
425 /* Index of next unused slot in staticvec. */
426
427 static int staticidx = 0;
428
429 static POINTER_TYPE *pure_alloc (size_t, int);
430
431
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
434
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
438
439
440 \f
441 /************************************************************************
442 Malloc
443 ************************************************************************/
444
445 /* Function malloc calls this if it finds we are near exhausting storage. */
446
447 void
448 malloc_warning (const char *str)
449 {
450 pending_malloc_warning = str;
451 }
452
453
454 /* Display an already-pending malloc warning. */
455
456 void
457 display_malloc_warning (void)
458 {
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
464 }
465 \f
466 /* Called if we can't allocate relocatable space for a buffer. */
467
468 void
469 buffer_memory_full (EMACS_INT nbytes)
470 {
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
476 malloc. */
477
478 #ifndef REL_ALLOC
479 memory_full (nbytes);
480 #endif
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 xsignal (Qnil, Vmemory_signal_data);
485 }
486
487
488 #ifndef XMALLOC_OVERRUN_CHECK
489 #define XMALLOC_OVERRUN_CHECK_SIZE 0
490 #else
491
492 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
493 and a 16 byte trailer around each block.
494
495 The header consists of 12 fixed bytes + a 4 byte integer contaning the
496 original block size, while the trailer consists of 16 fixed bytes.
497
498 The header is used to detect whether this block has been allocated
499 through these functions -- as it seems that some low-level libc
500 functions may bypass the malloc hooks.
501 */
502
503
504 #define XMALLOC_OVERRUN_CHECK_SIZE 16
505
506 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
507 { 0x9a, 0x9b, 0xae, 0xaf,
508 0xbf, 0xbe, 0xce, 0xcf,
509 0xea, 0xeb, 0xec, 0xed };
510
511 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
512 { 0xaa, 0xab, 0xac, 0xad,
513 0xba, 0xbb, 0xbc, 0xbd,
514 0xca, 0xcb, 0xcc, 0xcd,
515 0xda, 0xdb, 0xdc, 0xdd };
516
517 /* Macros to insert and extract the block size in the header. */
518
519 #define XMALLOC_PUT_SIZE(ptr, size) \
520 (ptr[-1] = (size & 0xff), \
521 ptr[-2] = ((size >> 8) & 0xff), \
522 ptr[-3] = ((size >> 16) & 0xff), \
523 ptr[-4] = ((size >> 24) & 0xff))
524
525 #define XMALLOC_GET_SIZE(ptr) \
526 (size_t)((unsigned)(ptr[-1]) | \
527 ((unsigned)(ptr[-2]) << 8) | \
528 ((unsigned)(ptr[-3]) << 16) | \
529 ((unsigned)(ptr[-4]) << 24))
530
531
532 /* The call depth in overrun_check functions. For example, this might happen:
533 xmalloc()
534 overrun_check_malloc()
535 -> malloc -> (via hook)_-> emacs_blocked_malloc
536 -> overrun_check_malloc
537 call malloc (hooks are NULL, so real malloc is called).
538 malloc returns 10000.
539 add overhead, return 10016.
540 <- (back in overrun_check_malloc)
541 add overhead again, return 10032
542 xmalloc returns 10032.
543
544 (time passes).
545
546 xfree(10032)
547 overrun_check_free(10032)
548 decrease overhed
549 free(10016) <- crash, because 10000 is the original pointer. */
550
551 static int check_depth;
552
553 /* Like malloc, but wraps allocated block with header and trailer. */
554
555 static POINTER_TYPE *
556 overrun_check_malloc (size_t size)
557 {
558 register unsigned char *val;
559 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
560
561 val = (unsigned char *) malloc (size + overhead);
562 if (val && check_depth == 1)
563 {
564 memcpy (val, xmalloc_overrun_check_header,
565 XMALLOC_OVERRUN_CHECK_SIZE - 4);
566 val += XMALLOC_OVERRUN_CHECK_SIZE;
567 XMALLOC_PUT_SIZE(val, size);
568 memcpy (val + size, xmalloc_overrun_check_trailer,
569 XMALLOC_OVERRUN_CHECK_SIZE);
570 }
571 --check_depth;
572 return (POINTER_TYPE *)val;
573 }
574
575
576 /* Like realloc, but checks old block for overrun, and wraps new block
577 with header and trailer. */
578
579 static POINTER_TYPE *
580 overrun_check_realloc (POINTER_TYPE *block, size_t size)
581 {
582 register unsigned char *val = (unsigned char *) block;
583 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
584
585 if (val
586 && check_depth == 1
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
590 {
591 size_t osize = XMALLOC_GET_SIZE (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 abort ();
595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
596 val -= XMALLOC_OVERRUN_CHECK_SIZE;
597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
598 }
599
600 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
601
602 if (val && check_depth == 1)
603 {
604 memcpy (val, xmalloc_overrun_check_header,
605 XMALLOC_OVERRUN_CHECK_SIZE - 4);
606 val += XMALLOC_OVERRUN_CHECK_SIZE;
607 XMALLOC_PUT_SIZE(val, size);
608 memcpy (val + size, xmalloc_overrun_check_trailer,
609 XMALLOC_OVERRUN_CHECK_SIZE);
610 }
611 --check_depth;
612 return (POINTER_TYPE *)val;
613 }
614
615 /* Like free, but checks block for overrun. */
616
617 static void
618 overrun_check_free (POINTER_TYPE *block)
619 {
620 unsigned char *val = (unsigned char *) block;
621
622 ++check_depth;
623 if (val
624 && check_depth == 1
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
628 {
629 size_t osize = XMALLOC_GET_SIZE (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 abort ();
633 #ifdef XMALLOC_CLEAR_FREE_MEMORY
634 val -= XMALLOC_OVERRUN_CHECK_SIZE;
635 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
636 #else
637 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
638 val -= XMALLOC_OVERRUN_CHECK_SIZE;
639 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
640 #endif
641 }
642
643 free (val);
644 --check_depth;
645 }
646
647 #undef malloc
648 #undef realloc
649 #undef free
650 #define malloc overrun_check_malloc
651 #define realloc overrun_check_realloc
652 #define free overrun_check_free
653 #endif
654
655 #ifdef SYNC_INPUT
656 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
657 there's no need to block input around malloc. */
658 #define MALLOC_BLOCK_INPUT ((void)0)
659 #define MALLOC_UNBLOCK_INPUT ((void)0)
660 #else
661 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
662 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
663 #endif
664
665 /* Like malloc but check for no memory and block interrupt input.. */
666
667 POINTER_TYPE *
668 xmalloc (size_t size)
669 {
670 register POINTER_TYPE *val;
671
672 MALLOC_BLOCK_INPUT;
673 val = (POINTER_TYPE *) malloc (size);
674 MALLOC_UNBLOCK_INPUT;
675
676 if (!val && size)
677 memory_full (size);
678 return val;
679 }
680
681
682 /* Like realloc but check for no memory and block interrupt input.. */
683
684 POINTER_TYPE *
685 xrealloc (POINTER_TYPE *block, size_t size)
686 {
687 register POINTER_TYPE *val;
688
689 MALLOC_BLOCK_INPUT;
690 /* We must call malloc explicitly when BLOCK is 0, since some
691 reallocs don't do this. */
692 if (! block)
693 val = (POINTER_TYPE *) malloc (size);
694 else
695 val = (POINTER_TYPE *) realloc (block, size);
696 MALLOC_UNBLOCK_INPUT;
697
698 if (!val && size)
699 memory_full (size);
700 return val;
701 }
702
703
704 /* Like free but block interrupt input. */
705
706 void
707 xfree (POINTER_TYPE *block)
708 {
709 if (!block)
710 return;
711 MALLOC_BLOCK_INPUT;
712 free (block);
713 MALLOC_UNBLOCK_INPUT;
714 /* We don't call refill_memory_reserve here
715 because that duplicates doing so in emacs_blocked_free
716 and the criterion should go there. */
717 }
718
719
720 /* Like strdup, but uses xmalloc. */
721
722 char *
723 xstrdup (const char *s)
724 {
725 size_t len = strlen (s) + 1;
726 char *p = (char *) xmalloc (len);
727 memcpy (p, s, len);
728 return p;
729 }
730
731
732 /* Unwind for SAFE_ALLOCA */
733
734 Lisp_Object
735 safe_alloca_unwind (Lisp_Object arg)
736 {
737 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
738
739 p->dogc = 0;
740 xfree (p->pointer);
741 p->pointer = 0;
742 free_misc (arg);
743 return Qnil;
744 }
745
746
747 /* Like malloc but used for allocating Lisp data. NBYTES is the
748 number of bytes to allocate, TYPE describes the intended use of the
749 allcated memory block (for strings, for conses, ...). */
750
751 #ifndef USE_LSB_TAG
752 static void *lisp_malloc_loser;
753 #endif
754
755 static POINTER_TYPE *
756 lisp_malloc (size_t nbytes, enum mem_type type)
757 {
758 register void *val;
759
760 MALLOC_BLOCK_INPUT;
761
762 #ifdef GC_MALLOC_CHECK
763 allocated_mem_type = type;
764 #endif
765
766 val = (void *) malloc (nbytes);
767
768 #ifndef USE_LSB_TAG
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be,
771 that's equivalent to running out of memory. */
772 if (val && type != MEM_TYPE_NON_LISP)
773 {
774 Lisp_Object tem;
775 XSETCONS (tem, (char *) val + nbytes - 1);
776 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
777 {
778 lisp_malloc_loser = val;
779 free (val);
780 val = 0;
781 }
782 }
783 #endif
784
785 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
786 if (val && type != MEM_TYPE_NON_LISP)
787 mem_insert (val, (char *) val + nbytes, type);
788 #endif
789
790 MALLOC_UNBLOCK_INPUT;
791 if (!val && nbytes)
792 memory_full (nbytes);
793 return val;
794 }
795
796 /* Free BLOCK. This must be called to free memory allocated with a
797 call to lisp_malloc. */
798
799 static void
800 lisp_free (POINTER_TYPE *block)
801 {
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
805 mem_delete (mem_find (block));
806 #endif
807 MALLOC_UNBLOCK_INPUT;
808 }
809
810 /* Allocation of aligned blocks of memory to store Lisp data. */
811 /* The entry point is lisp_align_malloc which returns blocks of at most */
812 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
813
814 /* Use posix_memalloc if the system has it and we're using the system's
815 malloc (because our gmalloc.c routines don't have posix_memalign although
816 its memalloc could be used). */
817 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
818 #define USE_POSIX_MEMALIGN 1
819 #endif
820
821 /* BLOCK_ALIGN has to be a power of 2. */
822 #define BLOCK_ALIGN (1 << 10)
823
824 /* Padding to leave at the end of a malloc'd block. This is to give
825 malloc a chance to minimize the amount of memory wasted to alignment.
826 It should be tuned to the particular malloc library used.
827 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
828 posix_memalign on the other hand would ideally prefer a value of 4
829 because otherwise, there's 1020 bytes wasted between each ablocks.
830 In Emacs, testing shows that those 1020 can most of the time be
831 efficiently used by malloc to place other objects, so a value of 0 can
832 still preferable unless you have a lot of aligned blocks and virtually
833 nothing else. */
834 #define BLOCK_PADDING 0
835 #define BLOCK_BYTES \
836 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
837
838 /* Internal data structures and constants. */
839
840 #define ABLOCKS_SIZE 16
841
842 /* An aligned block of memory. */
843 struct ablock
844 {
845 union
846 {
847 char payload[BLOCK_BYTES];
848 struct ablock *next_free;
849 } x;
850 /* `abase' is the aligned base of the ablocks. */
851 /* It is overloaded to hold the virtual `busy' field that counts
852 the number of used ablock in the parent ablocks.
853 The first ablock has the `busy' field, the others have the `abase'
854 field. To tell the difference, we assume that pointers will have
855 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
856 is used to tell whether the real base of the parent ablocks is `abase'
857 (if not, the word before the first ablock holds a pointer to the
858 real base). */
859 struct ablocks *abase;
860 /* The padding of all but the last ablock is unused. The padding of
861 the last ablock in an ablocks is not allocated. */
862 #if BLOCK_PADDING
863 char padding[BLOCK_PADDING];
864 #endif
865 };
866
867 /* A bunch of consecutive aligned blocks. */
868 struct ablocks
869 {
870 struct ablock blocks[ABLOCKS_SIZE];
871 };
872
873 /* Size of the block requested from malloc or memalign. */
874 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
875
876 #define ABLOCK_ABASE(block) \
877 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
878 ? (struct ablocks *)(block) \
879 : (block)->abase)
880
881 /* Virtual `busy' field. */
882 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
883
884 /* Pointer to the (not necessarily aligned) malloc block. */
885 #ifdef USE_POSIX_MEMALIGN
886 #define ABLOCKS_BASE(abase) (abase)
887 #else
888 #define ABLOCKS_BASE(abase) \
889 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
890 #endif
891
892 /* The list of free ablock. */
893 static struct ablock *free_ablock;
894
895 /* Allocate an aligned block of nbytes.
896 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
897 smaller or equal to BLOCK_BYTES. */
898 static POINTER_TYPE *
899 lisp_align_malloc (size_t nbytes, enum mem_type type)
900 {
901 void *base, *val;
902 struct ablocks *abase;
903
904 eassert (nbytes <= BLOCK_BYTES);
905
906 MALLOC_BLOCK_INPUT;
907
908 #ifdef GC_MALLOC_CHECK
909 allocated_mem_type = type;
910 #endif
911
912 if (!free_ablock)
913 {
914 int i;
915 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
916
917 #ifdef DOUG_LEA_MALLOC
918 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
919 because mapped region contents are not preserved in
920 a dumped Emacs. */
921 mallopt (M_MMAP_MAX, 0);
922 #endif
923
924 #ifdef USE_POSIX_MEMALIGN
925 {
926 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
927 if (err)
928 base = NULL;
929 abase = base;
930 }
931 #else
932 base = malloc (ABLOCKS_BYTES);
933 abase = ALIGN (base, BLOCK_ALIGN);
934 #endif
935
936 if (base == 0)
937 {
938 MALLOC_UNBLOCK_INPUT;
939 memory_full (ABLOCKS_BYTES);
940 }
941
942 aligned = (base == abase);
943 if (!aligned)
944 ((void**)abase)[-1] = base;
945
946 #ifdef DOUG_LEA_MALLOC
947 /* Back to a reasonable maximum of mmap'ed areas. */
948 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
949 #endif
950
951 #ifndef USE_LSB_TAG
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be, that's equivalent to
954 running out of memory. */
955 if (type != MEM_TYPE_NON_LISP)
956 {
957 Lisp_Object tem;
958 char *end = (char *) base + ABLOCKS_BYTES - 1;
959 XSETCONS (tem, end);
960 if ((char *) XCONS (tem) != end)
961 {
962 lisp_malloc_loser = base;
963 free (base);
964 MALLOC_UNBLOCK_INPUT;
965 memory_full (SIZE_MAX);
966 }
967 }
968 #endif
969
970 /* Initialize the blocks and put them on the free list.
971 Is `base' was not properly aligned, we can't use the last block. */
972 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
973 {
974 abase->blocks[i].abase = abase;
975 abase->blocks[i].x.next_free = free_ablock;
976 free_ablock = &abase->blocks[i];
977 }
978 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
979
980 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
981 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
982 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
983 eassert (ABLOCKS_BASE (abase) == base);
984 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
985 }
986
987 abase = ABLOCK_ABASE (free_ablock);
988 ABLOCKS_BUSY (abase) =
989 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
990 val = free_ablock;
991 free_ablock = free_ablock->x.next_free;
992
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 if (type != MEM_TYPE_NON_LISP)
995 mem_insert (val, (char *) val + nbytes, type);
996 #endif
997
998 MALLOC_UNBLOCK_INPUT;
999
1000 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1001 return val;
1002 }
1003
1004 static void
1005 lisp_align_free (POINTER_TYPE *block)
1006 {
1007 struct ablock *ablock = block;
1008 struct ablocks *abase = ABLOCK_ABASE (ablock);
1009
1010 MALLOC_BLOCK_INPUT;
1011 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1012 mem_delete (mem_find (block));
1013 #endif
1014 /* Put on free list. */
1015 ablock->x.next_free = free_ablock;
1016 free_ablock = ablock;
1017 /* Update busy count. */
1018 ABLOCKS_BUSY (abase) =
1019 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1020
1021 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1022 { /* All the blocks are free. */
1023 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1024 struct ablock **tem = &free_ablock;
1025 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1026
1027 while (*tem)
1028 {
1029 if (*tem >= (struct ablock *) abase && *tem < atop)
1030 {
1031 i++;
1032 *tem = (*tem)->x.next_free;
1033 }
1034 else
1035 tem = &(*tem)->x.next_free;
1036 }
1037 eassert ((aligned & 1) == aligned);
1038 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1039 #ifdef USE_POSIX_MEMALIGN
1040 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1041 #endif
1042 free (ABLOCKS_BASE (abase));
1043 }
1044 MALLOC_UNBLOCK_INPUT;
1045 }
1046
1047 /* Return a new buffer structure allocated from the heap with
1048 a call to lisp_malloc. */
1049
1050 struct buffer *
1051 allocate_buffer (void)
1052 {
1053 struct buffer *b
1054 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1055 MEM_TYPE_BUFFER);
1056 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1057 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1058 / sizeof (EMACS_INT)));
1059 return b;
1060 }
1061
1062 \f
1063 #ifndef SYSTEM_MALLOC
1064
1065 /* Arranging to disable input signals while we're in malloc.
1066
1067 This only works with GNU malloc. To help out systems which can't
1068 use GNU malloc, all the calls to malloc, realloc, and free
1069 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1070 pair; unfortunately, we have no idea what C library functions
1071 might call malloc, so we can't really protect them unless you're
1072 using GNU malloc. Fortunately, most of the major operating systems
1073 can use GNU malloc. */
1074
1075 #ifndef SYNC_INPUT
1076 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1077 there's no need to block input around malloc. */
1078
1079 #ifndef DOUG_LEA_MALLOC
1080 extern void * (*__malloc_hook) (size_t, const void *);
1081 extern void * (*__realloc_hook) (void *, size_t, const void *);
1082 extern void (*__free_hook) (void *, const void *);
1083 /* Else declared in malloc.h, perhaps with an extra arg. */
1084 #endif /* DOUG_LEA_MALLOC */
1085 static void * (*old_malloc_hook) (size_t, const void *);
1086 static void * (*old_realloc_hook) (void *, size_t, const void*);
1087 static void (*old_free_hook) (void*, const void*);
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 # define BYTES_USED (mallinfo ().uordblks)
1091 #else
1092 # define BYTES_USED _bytes_used
1093 #endif
1094
1095 static __malloc_size_t bytes_used_when_reconsidered;
1096
1097 /* Value of _bytes_used, when spare_memory was freed. */
1098
1099 static __malloc_size_t bytes_used_when_full;
1100
1101 /* This function is used as the hook for free to call. */
1102
1103 static void
1104 emacs_blocked_free (void *ptr, const void *ptr2)
1105 {
1106 BLOCK_INPUT_ALLOC;
1107
1108 #ifdef GC_MALLOC_CHECK
1109 if (ptr)
1110 {
1111 struct mem_node *m;
1112
1113 m = mem_find (ptr);
1114 if (m == MEM_NIL || m->start != ptr)
1115 {
1116 fprintf (stderr,
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1118 abort ();
1119 }
1120 else
1121 {
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1123 mem_delete (m);
1124 }
1125 }
1126 #endif /* GC_MALLOC_CHECK */
1127
1128 __free_hook = old_free_hook;
1129 free (ptr);
1130
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
1134 if (! NILP (Vmemory_full)
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
1140 > ((bytes_used_when_reconsidered = BYTES_USED)
1141 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1142 refill_memory_reserve ();
1143
1144 __free_hook = emacs_blocked_free;
1145 UNBLOCK_INPUT_ALLOC;
1146 }
1147
1148
1149 /* This function is the malloc hook that Emacs uses. */
1150
1151 static void *
1152 emacs_blocked_malloc (size_t size, const void *ptr)
1153 {
1154 void *value;
1155
1156 BLOCK_INPUT_ALLOC;
1157 __malloc_hook = old_malloc_hook;
1158 #ifdef DOUG_LEA_MALLOC
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1161 #else
1162 __malloc_extra_blocks = malloc_hysteresis;
1163 #endif
1164
1165 value = (void *) malloc (size);
1166
1167 #ifdef GC_MALLOC_CHECK
1168 {
1169 struct mem_node *m = mem_find (value);
1170 if (m != MEM_NIL)
1171 {
1172 fprintf (stderr, "Malloc returned %p which is already in use\n",
1173 value);
1174 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m->start, m->end, (char *) m->end - (char *) m->start,
1176 m->type);
1177 abort ();
1178 }
1179
1180 if (!dont_register_blocks)
1181 {
1182 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1183 allocated_mem_type = MEM_TYPE_NON_LISP;
1184 }
1185 }
1186 #endif /* GC_MALLOC_CHECK */
1187
1188 __malloc_hook = emacs_blocked_malloc;
1189 UNBLOCK_INPUT_ALLOC;
1190
1191 /* fprintf (stderr, "%p malloc\n", value); */
1192 return value;
1193 }
1194
1195
1196 /* This function is the realloc hook that Emacs uses. */
1197
1198 static void *
1199 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1200 {
1201 void *value;
1202
1203 BLOCK_INPUT_ALLOC;
1204 __realloc_hook = old_realloc_hook;
1205
1206 #ifdef GC_MALLOC_CHECK
1207 if (ptr)
1208 {
1209 struct mem_node *m = mem_find (ptr);
1210 if (m == MEM_NIL || m->start != ptr)
1211 {
1212 fprintf (stderr,
1213 "Realloc of %p which wasn't allocated with malloc\n",
1214 ptr);
1215 abort ();
1216 }
1217
1218 mem_delete (m);
1219 }
1220
1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1222
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks = 1;
1225 #endif /* GC_MALLOC_CHECK */
1226
1227 value = (void *) realloc (ptr, size);
1228
1229 #ifdef GC_MALLOC_CHECK
1230 dont_register_blocks = 0;
1231
1232 {
1233 struct mem_node *m = mem_find (value);
1234 if (m != MEM_NIL)
1235 {
1236 fprintf (stderr, "Realloc returns memory that is already in use\n");
1237 abort ();
1238 }
1239
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1242 }
1243
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245 #endif /* GC_MALLOC_CHECK */
1246
1247 __realloc_hook = emacs_blocked_realloc;
1248 UNBLOCK_INPUT_ALLOC;
1249
1250 return value;
1251 }
1252
1253
1254 #ifdef HAVE_GTK_AND_PTHREAD
1255 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1259
1260 void
1261 reset_malloc_hooks ()
1262 {
1263 __free_hook = old_free_hook;
1264 __malloc_hook = old_malloc_hook;
1265 __realloc_hook = old_realloc_hook;
1266 }
1267 #endif /* HAVE_GTK_AND_PTHREAD */
1268
1269
1270 /* Called from main to set up malloc to use our hooks. */
1271
1272 void
1273 uninterrupt_malloc (void)
1274 {
1275 #ifdef HAVE_GTK_AND_PTHREAD
1276 #ifdef DOUG_LEA_MALLOC
1277 pthread_mutexattr_t attr;
1278
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr);
1282 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1283 pthread_mutex_init (&alloc_mutex, &attr);
1284 #else /* !DOUG_LEA_MALLOC */
1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex, NULL);
1288 #endif /* !DOUG_LEA_MALLOC */
1289 #endif /* HAVE_GTK_AND_PTHREAD */
1290
1291 if (__free_hook != emacs_blocked_free)
1292 old_free_hook = __free_hook;
1293 __free_hook = emacs_blocked_free;
1294
1295 if (__malloc_hook != emacs_blocked_malloc)
1296 old_malloc_hook = __malloc_hook;
1297 __malloc_hook = emacs_blocked_malloc;
1298
1299 if (__realloc_hook != emacs_blocked_realloc)
1300 old_realloc_hook = __realloc_hook;
1301 __realloc_hook = emacs_blocked_realloc;
1302 }
1303
1304 #endif /* not SYNC_INPUT */
1305 #endif /* not SYSTEM_MALLOC */
1306
1307
1308 \f
1309 /***********************************************************************
1310 Interval Allocation
1311 ***********************************************************************/
1312
1313 /* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1315
1316 #define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1318
1319 /* Intervals are allocated in chunks in form of an interval_block
1320 structure. */
1321
1322 struct interval_block
1323 {
1324 /* Place `intervals' first, to preserve alignment. */
1325 struct interval intervals[INTERVAL_BLOCK_SIZE];
1326 struct interval_block *next;
1327 };
1328
1329 /* Current interval block. Its `next' pointer points to older
1330 blocks. */
1331
1332 static struct interval_block *interval_block;
1333
1334 /* Index in interval_block above of the next unused interval
1335 structure. */
1336
1337 static int interval_block_index;
1338
1339 /* Number of free and live intervals. */
1340
1341 static EMACS_INT total_free_intervals, total_intervals;
1342
1343 /* List of free intervals. */
1344
1345 static INTERVAL interval_free_list;
1346
1347
1348 /* Initialize interval allocation. */
1349
1350 static void
1351 init_intervals (void)
1352 {
1353 interval_block = NULL;
1354 interval_block_index = INTERVAL_BLOCK_SIZE;
1355 interval_free_list = 0;
1356 }
1357
1358
1359 /* Return a new interval. */
1360
1361 INTERVAL
1362 make_interval (void)
1363 {
1364 INTERVAL val;
1365
1366 /* eassert (!handling_signal); */
1367
1368 MALLOC_BLOCK_INPUT;
1369
1370 if (interval_free_list)
1371 {
1372 val = interval_free_list;
1373 interval_free_list = INTERVAL_PARENT (interval_free_list);
1374 }
1375 else
1376 {
1377 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1378 {
1379 register struct interval_block *newi;
1380
1381 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1382 MEM_TYPE_NON_LISP);
1383
1384 newi->next = interval_block;
1385 interval_block = newi;
1386 interval_block_index = 0;
1387 }
1388 val = &interval_block->intervals[interval_block_index++];
1389 }
1390
1391 MALLOC_UNBLOCK_INPUT;
1392
1393 consing_since_gc += sizeof (struct interval);
1394 intervals_consed++;
1395 RESET_INTERVAL (val);
1396 val->gcmarkbit = 0;
1397 return val;
1398 }
1399
1400
1401 /* Mark Lisp objects in interval I. */
1402
1403 static void
1404 mark_interval (register INTERVAL i, Lisp_Object dummy)
1405 {
1406 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1407 i->gcmarkbit = 1;
1408 mark_object (i->plist);
1409 }
1410
1411
1412 /* Mark the interval tree rooted in TREE. Don't call this directly;
1413 use the macro MARK_INTERVAL_TREE instead. */
1414
1415 static void
1416 mark_interval_tree (register INTERVAL tree)
1417 {
1418 /* No need to test if this tree has been marked already; this
1419 function is always called through the MARK_INTERVAL_TREE macro,
1420 which takes care of that. */
1421
1422 traverse_intervals_noorder (tree, mark_interval, Qnil);
1423 }
1424
1425
1426 /* Mark the interval tree rooted in I. */
1427
1428 #define MARK_INTERVAL_TREE(i) \
1429 do { \
1430 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1431 mark_interval_tree (i); \
1432 } while (0)
1433
1434
1435 #define UNMARK_BALANCE_INTERVALS(i) \
1436 do { \
1437 if (! NULL_INTERVAL_P (i)) \
1438 (i) = balance_intervals (i); \
1439 } while (0)
1440
1441 \f
1442 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1443 can't create number objects in macros. */
1444 #ifndef make_number
1445 Lisp_Object
1446 make_number (EMACS_INT n)
1447 {
1448 Lisp_Object obj;
1449 obj.s.val = n;
1450 obj.s.type = Lisp_Int;
1451 return obj;
1452 }
1453 #endif
1454 \f
1455 /***********************************************************************
1456 String Allocation
1457 ***********************************************************************/
1458
1459 /* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
1461 added to a free-list string_free_list. When a new Lisp_String is
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1464 we keep.
1465
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1469
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
1474
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `u.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
1481
1482 /* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
1484
1485 #define SBLOCK_SIZE 8188
1486
1487 /* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
1489
1490 #define LARGE_STRING_BYTES 1024
1491
1492 /* Structure describing string memory sub-allocated from an sblock.
1493 This is where the contents of Lisp strings are stored. */
1494
1495 struct sdata
1496 {
1497 /* Back-pointer to the string this sdata belongs to. If null, this
1498 structure is free, and the NBYTES member of the union below
1499 contains the string's byte size (the same value that STRING_BYTES
1500 would return if STRING were non-null). If non-null, STRING_BYTES
1501 (STRING) is the size of the data, and DATA contains the string's
1502 contents. */
1503 struct Lisp_String *string;
1504
1505 #ifdef GC_CHECK_STRING_BYTES
1506
1507 EMACS_INT nbytes;
1508 unsigned char data[1];
1509
1510 #define SDATA_NBYTES(S) (S)->nbytes
1511 #define SDATA_DATA(S) (S)->data
1512 #define SDATA_SELECTOR(member) member
1513
1514 #else /* not GC_CHECK_STRING_BYTES */
1515
1516 union
1517 {
1518 /* When STRING is non-null. */
1519 unsigned char data[1];
1520
1521 /* When STRING is null. */
1522 EMACS_INT nbytes;
1523 } u;
1524
1525 #define SDATA_NBYTES(S) (S)->u.nbytes
1526 #define SDATA_DATA(S) (S)->u.data
1527 #define SDATA_SELECTOR(member) u.member
1528
1529 #endif /* not GC_CHECK_STRING_BYTES */
1530
1531 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1532 };
1533
1534
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1539
1540 struct sblock
1541 {
1542 /* Next in list. */
1543 struct sblock *next;
1544
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1548
1549 /* Start of data. */
1550 struct sdata first_data;
1551 };
1552
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1555
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1558
1559 /* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1561
1562 struct string_block
1563 {
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
1566 struct string_block *next;
1567 };
1568
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1572
1573 static struct sblock *oldest_sblock, *current_sblock;
1574
1575 /* List of sblocks for large strings. */
1576
1577 static struct sblock *large_sblocks;
1578
1579 /* List of string_block structures. */
1580
1581 static struct string_block *string_blocks;
1582
1583 /* Free-list of Lisp_Strings. */
1584
1585 static struct Lisp_String *string_free_list;
1586
1587 /* Number of live and free Lisp_Strings. */
1588
1589 static EMACS_INT total_strings, total_free_strings;
1590
1591 /* Number of bytes used by live strings. */
1592
1593 static EMACS_INT total_string_size;
1594
1595 /* Given a pointer to a Lisp_String S which is on the free-list
1596 string_free_list, return a pointer to its successor in the
1597 free-list. */
1598
1599 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1600
1601 /* Return a pointer to the sdata structure belonging to Lisp string S.
1602 S must be live, i.e. S->data must not be null. S->data is actually
1603 a pointer to the `u.data' member of its sdata structure; the
1604 structure starts at a constant offset in front of that. */
1605
1606 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1607
1608
1609 #ifdef GC_CHECK_STRING_OVERRUN
1610
1611 /* We check for overrun in string data blocks by appending a small
1612 "cookie" after each allocated string data block, and check for the
1613 presence of this cookie during GC. */
1614
1615 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1616 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1617 { '\xde', '\xad', '\xbe', '\xef' };
1618
1619 #else
1620 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1621 #endif
1622
1623 /* Value is the size of an sdata structure large enough to hold NBYTES
1624 bytes of string data. The value returned includes a terminating
1625 NUL byte, the size of the sdata structure, and padding. */
1626
1627 #ifdef GC_CHECK_STRING_BYTES
1628
1629 #define SDATA_SIZE(NBYTES) \
1630 ((SDATA_DATA_OFFSET \
1631 + (NBYTES) + 1 \
1632 + sizeof (EMACS_INT) - 1) \
1633 & ~(sizeof (EMACS_INT) - 1))
1634
1635 #else /* not GC_CHECK_STRING_BYTES */
1636
1637 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1638 less than the size of that member. The 'max' is not needed when
1639 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1640 alignment code reserves enough space. */
1641
1642 #define SDATA_SIZE(NBYTES) \
1643 ((SDATA_DATA_OFFSET \
1644 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1645 ? NBYTES \
1646 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1647 + 1 \
1648 + sizeof (EMACS_INT) - 1) \
1649 & ~(sizeof (EMACS_INT) - 1))
1650
1651 #endif /* not GC_CHECK_STRING_BYTES */
1652
1653 /* Extra bytes to allocate for each string. */
1654
1655 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1656
1657 /* Exact bound on the number of bytes in a string, not counting the
1658 terminating null. A string cannot contain more bytes than
1659 STRING_BYTES_BOUND, nor can it be so long that the size_t
1660 arithmetic in allocate_string_data would overflow while it is
1661 calculating a value to be passed to malloc. */
1662 #define STRING_BYTES_MAX \
1663 min (STRING_BYTES_BOUND, \
1664 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_SIZE - GC_STRING_EXTRA \
1665 - offsetof (struct sblock, first_data) \
1666 - SDATA_DATA_OFFSET) \
1667 & ~(sizeof (EMACS_INT) - 1)))
1668
1669 /* Initialize string allocation. Called from init_alloc_once. */
1670
1671 static void
1672 init_strings (void)
1673 {
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1691
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1694 {
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703 }
1704
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1706
1707 static void
1708 check_sblock (struct sblock *b)
1709 {
1710 struct sdata *from, *end, *from_end;
1711
1712 end = b->next_free;
1713
1714 for (from = &b->first_data; from < end; from = from_end)
1715 {
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1718 EMACS_INT nbytes;
1719
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
1724
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
1729
1730 nbytes = SDATA_SIZE (nbytes);
1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1732 }
1733 }
1734
1735
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
1740 static void
1741 check_string_bytes (int all_p)
1742 {
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1752 }
1753
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1756 }
1757 else
1758 check_sblock (current_sblock);
1759 }
1760
1761 #endif /* GC_CHECK_STRING_BYTES */
1762
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1764
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
1768 static void
1769 check_string_free_list (void)
1770 {
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
1777 if ((uintptr_t) s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781 }
1782 #else
1783 #define check_string_free_list()
1784 #endif
1785
1786 /* Return a new Lisp_String. */
1787
1788 static struct Lisp_String *
1789 allocate_string (void)
1790 {
1791 struct Lisp_String *s;
1792
1793 /* eassert (!handling_signal); */
1794
1795 MALLOC_BLOCK_INPUT;
1796
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1800 {
1801 struct string_block *b;
1802 int i;
1803
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1808
1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1810 {
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
1814 }
1815
1816 total_free_strings += STRING_BLOCK_SIZE;
1817 }
1818
1819 check_string_free_list ();
1820
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
1824
1825 MALLOC_UNBLOCK_INPUT;
1826
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s, 0, sizeof *s);
1829
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
1834
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive)
1837 {
1838 if (++check_string_bytes_count == 200)
1839 {
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1842 }
1843 else
1844 check_string_bytes (0);
1845 }
1846 #endif /* GC_CHECK_STRING_BYTES */
1847
1848 return s;
1849 }
1850
1851
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1857
1858 void
1859 allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
1861 {
1862 struct sdata *data, *old_data;
1863 struct sblock *b;
1864 EMACS_INT needed, old_nbytes;
1865
1866 if (STRING_BYTES_MAX < nbytes)
1867 string_overflow ();
1868
1869 /* Determine the number of bytes needed to store NBYTES bytes
1870 of string data. */
1871 needed = SDATA_SIZE (nbytes);
1872 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1873 old_nbytes = GC_STRING_BYTES (s);
1874
1875 MALLOC_BLOCK_INPUT;
1876
1877 if (nbytes > LARGE_STRING_BYTES)
1878 {
1879 size_t size = offsetof (struct sblock, first_data) + needed;
1880
1881 #ifdef DOUG_LEA_MALLOC
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
1884 a dumped Emacs.
1885
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
1891 mallopt (M_MMAP_MAX, 0);
1892 #endif
1893
1894 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1895
1896 #ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1899 #endif
1900
1901 b->next_free = &b->first_data;
1902 b->first_data.string = NULL;
1903 b->next = large_sblocks;
1904 large_sblocks = b;
1905 }
1906 else if (current_sblock == NULL
1907 || (((char *) current_sblock + SBLOCK_SIZE
1908 - (char *) current_sblock->next_free)
1909 < (needed + GC_STRING_EXTRA)))
1910 {
1911 /* Not enough room in the current sblock. */
1912 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1913 b->next_free = &b->first_data;
1914 b->first_data.string = NULL;
1915 b->next = NULL;
1916
1917 if (current_sblock)
1918 current_sblock->next = b;
1919 else
1920 oldest_sblock = b;
1921 current_sblock = b;
1922 }
1923 else
1924 b = current_sblock;
1925
1926 data = b->next_free;
1927 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1928
1929 MALLOC_UNBLOCK_INPUT;
1930
1931 data->string = s;
1932 s->data = SDATA_DATA (data);
1933 #ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data) = nbytes;
1935 #endif
1936 s->size = nchars;
1937 s->size_byte = nbytes;
1938 s->data[nbytes] = '\0';
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 memcpy ((char *) data + needed, string_overrun_cookie,
1941 GC_STRING_OVERRUN_COOKIE_SIZE);
1942 #endif
1943
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1946 in it. */
1947 if (old_data)
1948 {
1949 SDATA_NBYTES (old_data) = old_nbytes;
1950 old_data->string = NULL;
1951 }
1952
1953 consing_since_gc += needed;
1954 }
1955
1956
1957 /* Sweep and compact strings. */
1958
1959 static void
1960 sweep_strings (void)
1961 {
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
1964
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1968
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1971 {
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1974
1975 next = b->next;
1976
1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1978 {
1979 struct Lisp_String *s = b->strings + i;
1980
1981 if (s->data)
1982 {
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1985 {
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
1988
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1991
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1994 }
1995 else
1996 {
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
1999
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006 #else
2007 data->u.nbytes = GC_STRING_BYTES (s);
2008 #endif
2009 data->string = NULL;
2010
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2014
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2019 }
2020 }
2021 else
2022 {
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2027 }
2028 }
2029
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2034 {
2035 lisp_free (b);
2036 string_free_list = free_list_before;
2037 }
2038 else
2039 {
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2043 }
2044 }
2045
2046 check_string_free_list ();
2047
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
2051
2052 check_string_free_list ();
2053 }
2054
2055
2056 /* Free dead large strings. */
2057
2058 static void
2059 free_large_strings (void)
2060 {
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
2063
2064 for (b = large_sblocks; b; b = next)
2065 {
2066 next = b->next;
2067
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2071 {
2072 b->next = live_blocks;
2073 live_blocks = b;
2074 }
2075 }
2076
2077 large_sblocks = live_blocks;
2078 }
2079
2080
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2083
2084 static void
2085 compact_small_strings (void)
2086 {
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2090
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2096
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2101 {
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2104
2105 for (from = &b->first_data; from < end; from = from_end)
2106 {
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2109 EMACS_INT nbytes;
2110
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117 #endif /* GC_CHECK_STRING_BYTES */
2118
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
2122 nbytes = SDATA_NBYTES (from);
2123
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
2126
2127 nbytes = SDATA_SIZE (nbytes);
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2129
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
2134 abort ();
2135 #endif
2136
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2139 {
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2142 if (to_end > tb_end)
2143 {
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2149 }
2150
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2153 {
2154 xassert (tb != b || to < from);
2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
2156 to->string->data = SDATA_DATA (to);
2157 }
2158
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2161 }
2162 }
2163 }
2164
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2168 {
2169 next = b->next;
2170 lisp_free (b);
2171 }
2172
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2176 }
2177
2178 void
2179 string_overflow (void)
2180 {
2181 error ("Maximum string size exceeded");
2182 }
2183
2184 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2185 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2186 LENGTH must be an integer.
2187 INIT must be an integer that represents a character. */)
2188 (Lisp_Object length, Lisp_Object init)
2189 {
2190 register Lisp_Object val;
2191 register unsigned char *p, *end;
2192 int c;
2193 EMACS_INT nbytes;
2194
2195 CHECK_NATNUM (length);
2196 CHECK_CHARACTER (init);
2197
2198 c = XFASTINT (init);
2199 if (ASCII_CHAR_P (c))
2200 {
2201 nbytes = XINT (length);
2202 val = make_uninit_string (nbytes);
2203 p = SDATA (val);
2204 end = p + SCHARS (val);
2205 while (p != end)
2206 *p++ = c;
2207 }
2208 else
2209 {
2210 unsigned char str[MAX_MULTIBYTE_LENGTH];
2211 int len = CHAR_STRING (c, str);
2212 EMACS_INT string_len = XINT (length);
2213
2214 if (string_len > STRING_BYTES_MAX / len)
2215 string_overflow ();
2216 nbytes = len * string_len;
2217 val = make_uninit_multibyte_string (string_len, nbytes);
2218 p = SDATA (val);
2219 end = p + nbytes;
2220 while (p != end)
2221 {
2222 memcpy (p, str, len);
2223 p += len;
2224 }
2225 }
2226
2227 *p = 0;
2228 return val;
2229 }
2230
2231
2232 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2233 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2234 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2235 (Lisp_Object length, Lisp_Object init)
2236 {
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2241
2242 CHECK_NATNUM (length);
2243
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2256
2257 p = XBOOL_VECTOR (val);
2258 p->size = XFASTINT (length);
2259
2260 memset (p->data, NILP (init) ? 0 : -1, length_in_chars);
2261
2262 /* Clear the extraneous bits in the last byte. */
2263 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2264 p->data[length_in_chars - 1]
2265 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2266
2267 return val;
2268 }
2269
2270
2271 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2272 of characters from the contents. This string may be unibyte or
2273 multibyte, depending on the contents. */
2274
2275 Lisp_Object
2276 make_string (const char *contents, EMACS_INT nbytes)
2277 {
2278 register Lisp_Object val;
2279 EMACS_INT nchars, multibyte_nbytes;
2280
2281 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2282 &nchars, &multibyte_nbytes);
2283 if (nbytes == nchars || nbytes != multibyte_nbytes)
2284 /* CONTENTS contains no multibyte sequences or contains an invalid
2285 multibyte sequence. We must make unibyte string. */
2286 val = make_unibyte_string (contents, nbytes);
2287 else
2288 val = make_multibyte_string (contents, nchars, nbytes);
2289 return val;
2290 }
2291
2292
2293 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2294
2295 Lisp_Object
2296 make_unibyte_string (const char *contents, EMACS_INT length)
2297 {
2298 register Lisp_Object val;
2299 val = make_uninit_string (length);
2300 memcpy (SDATA (val), contents, length);
2301 return val;
2302 }
2303
2304
2305 /* Make a multibyte string from NCHARS characters occupying NBYTES
2306 bytes at CONTENTS. */
2307
2308 Lisp_Object
2309 make_multibyte_string (const char *contents,
2310 EMACS_INT nchars, EMACS_INT nbytes)
2311 {
2312 register Lisp_Object val;
2313 val = make_uninit_multibyte_string (nchars, nbytes);
2314 memcpy (SDATA (val), contents, nbytes);
2315 return val;
2316 }
2317
2318
2319 /* Make a string from NCHARS characters occupying NBYTES bytes at
2320 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2321
2322 Lisp_Object
2323 make_string_from_bytes (const char *contents,
2324 EMACS_INT nchars, EMACS_INT nbytes)
2325 {
2326 register Lisp_Object val;
2327 val = make_uninit_multibyte_string (nchars, nbytes);
2328 memcpy (SDATA (val), contents, nbytes);
2329 if (SBYTES (val) == SCHARS (val))
2330 STRING_SET_UNIBYTE (val);
2331 return val;
2332 }
2333
2334
2335 /* Make a string from NCHARS characters occupying NBYTES bytes at
2336 CONTENTS. The argument MULTIBYTE controls whether to label the
2337 string as multibyte. If NCHARS is negative, it counts the number of
2338 characters by itself. */
2339
2340 Lisp_Object
2341 make_specified_string (const char *contents,
2342 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2343 {
2344 register Lisp_Object val;
2345
2346 if (nchars < 0)
2347 {
2348 if (multibyte)
2349 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2350 nbytes);
2351 else
2352 nchars = nbytes;
2353 }
2354 val = make_uninit_multibyte_string (nchars, nbytes);
2355 memcpy (SDATA (val), contents, nbytes);
2356 if (!multibyte)
2357 STRING_SET_UNIBYTE (val);
2358 return val;
2359 }
2360
2361
2362 /* Make a string from the data at STR, treating it as multibyte if the
2363 data warrants. */
2364
2365 Lisp_Object
2366 build_string (const char *str)
2367 {
2368 return make_string (str, strlen (str));
2369 }
2370
2371
2372 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2373 occupying LENGTH bytes. */
2374
2375 Lisp_Object
2376 make_uninit_string (EMACS_INT length)
2377 {
2378 Lisp_Object val;
2379
2380 if (!length)
2381 return empty_unibyte_string;
2382 val = make_uninit_multibyte_string (length, length);
2383 STRING_SET_UNIBYTE (val);
2384 return val;
2385 }
2386
2387
2388 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2389 which occupy NBYTES bytes. */
2390
2391 Lisp_Object
2392 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2393 {
2394 Lisp_Object string;
2395 struct Lisp_String *s;
2396
2397 if (nchars < 0)
2398 abort ();
2399 if (!nbytes)
2400 return empty_multibyte_string;
2401
2402 s = allocate_string ();
2403 allocate_string_data (s, nchars, nbytes);
2404 XSETSTRING (string, s);
2405 string_chars_consed += nbytes;
2406 return string;
2407 }
2408
2409
2410 \f
2411 /***********************************************************************
2412 Float Allocation
2413 ***********************************************************************/
2414
2415 /* We store float cells inside of float_blocks, allocating a new
2416 float_block with malloc whenever necessary. Float cells reclaimed
2417 by GC are put on a free list to be reallocated before allocating
2418 any new float cells from the latest float_block. */
2419
2420 #define FLOAT_BLOCK_SIZE \
2421 (((BLOCK_BYTES - sizeof (struct float_block *) \
2422 /* The compiler might add padding at the end. */ \
2423 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2424 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2425
2426 #define GETMARKBIT(block,n) \
2427 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2428 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2429 & 1)
2430
2431 #define SETMARKBIT(block,n) \
2432 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2433 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2434
2435 #define UNSETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2438
2439 #define FLOAT_BLOCK(fptr) \
2440 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2441
2442 #define FLOAT_INDEX(fptr) \
2443 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2444
2445 struct float_block
2446 {
2447 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2448 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2449 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2450 struct float_block *next;
2451 };
2452
2453 #define FLOAT_MARKED_P(fptr) \
2454 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2455
2456 #define FLOAT_MARK(fptr) \
2457 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 #define FLOAT_UNMARK(fptr) \
2460 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461
2462 /* Current float_block. */
2463
2464 static struct float_block *float_block;
2465
2466 /* Index of first unused Lisp_Float in the current float_block. */
2467
2468 static int float_block_index;
2469
2470 /* Free-list of Lisp_Floats. */
2471
2472 static struct Lisp_Float *float_free_list;
2473
2474
2475 /* Initialize float allocation. */
2476
2477 static void
2478 init_float (void)
2479 {
2480 float_block = NULL;
2481 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2482 float_free_list = 0;
2483 }
2484
2485
2486 /* Return a new float object with value FLOAT_VALUE. */
2487
2488 Lisp_Object
2489 make_float (double float_value)
2490 {
2491 register Lisp_Object val;
2492
2493 /* eassert (!handling_signal); */
2494
2495 MALLOC_BLOCK_INPUT;
2496
2497 if (float_free_list)
2498 {
2499 /* We use the data field for chaining the free list
2500 so that we won't use the same field that has the mark bit. */
2501 XSETFLOAT (val, float_free_list);
2502 float_free_list = float_free_list->u.chain;
2503 }
2504 else
2505 {
2506 if (float_block_index == FLOAT_BLOCK_SIZE)
2507 {
2508 register struct float_block *new;
2509
2510 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2511 MEM_TYPE_FLOAT);
2512 new->next = float_block;
2513 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2514 float_block = new;
2515 float_block_index = 0;
2516 }
2517 XSETFLOAT (val, &float_block->floats[float_block_index]);
2518 float_block_index++;
2519 }
2520
2521 MALLOC_UNBLOCK_INPUT;
2522
2523 XFLOAT_INIT (val, float_value);
2524 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2525 consing_since_gc += sizeof (struct Lisp_Float);
2526 floats_consed++;
2527 return val;
2528 }
2529
2530
2531 \f
2532 /***********************************************************************
2533 Cons Allocation
2534 ***********************************************************************/
2535
2536 /* We store cons cells inside of cons_blocks, allocating a new
2537 cons_block with malloc whenever necessary. Cons cells reclaimed by
2538 GC are put on a free list to be reallocated before allocating
2539 any new cons cells from the latest cons_block. */
2540
2541 #define CONS_BLOCK_SIZE \
2542 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2543 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2544
2545 #define CONS_BLOCK(fptr) \
2546 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2547
2548 #define CONS_INDEX(fptr) \
2549 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2550
2551 struct cons_block
2552 {
2553 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2554 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2555 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2556 struct cons_block *next;
2557 };
2558
2559 #define CONS_MARKED_P(fptr) \
2560 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2561
2562 #define CONS_MARK(fptr) \
2563 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2564
2565 #define CONS_UNMARK(fptr) \
2566 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2567
2568 /* Current cons_block. */
2569
2570 static struct cons_block *cons_block;
2571
2572 /* Index of first unused Lisp_Cons in the current block. */
2573
2574 static int cons_block_index;
2575
2576 /* Free-list of Lisp_Cons structures. */
2577
2578 static struct Lisp_Cons *cons_free_list;
2579
2580
2581 /* Initialize cons allocation. */
2582
2583 static void
2584 init_cons (void)
2585 {
2586 cons_block = NULL;
2587 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2588 cons_free_list = 0;
2589 }
2590
2591
2592 /* Explicitly free a cons cell by putting it on the free-list. */
2593
2594 void
2595 free_cons (struct Lisp_Cons *ptr)
2596 {
2597 ptr->u.chain = cons_free_list;
2598 #if GC_MARK_STACK
2599 ptr->car = Vdead;
2600 #endif
2601 cons_free_list = ptr;
2602 }
2603
2604 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2605 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2606 (Lisp_Object car, Lisp_Object cdr)
2607 {
2608 register Lisp_Object val;
2609
2610 /* eassert (!handling_signal); */
2611
2612 MALLOC_BLOCK_INPUT;
2613
2614 if (cons_free_list)
2615 {
2616 /* We use the cdr for chaining the free list
2617 so that we won't use the same field that has the mark bit. */
2618 XSETCONS (val, cons_free_list);
2619 cons_free_list = cons_free_list->u.chain;
2620 }
2621 else
2622 {
2623 if (cons_block_index == CONS_BLOCK_SIZE)
2624 {
2625 register struct cons_block *new;
2626 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2627 MEM_TYPE_CONS);
2628 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2629 new->next = cons_block;
2630 cons_block = new;
2631 cons_block_index = 0;
2632 }
2633 XSETCONS (val, &cons_block->conses[cons_block_index]);
2634 cons_block_index++;
2635 }
2636
2637 MALLOC_UNBLOCK_INPUT;
2638
2639 XSETCAR (val, car);
2640 XSETCDR (val, cdr);
2641 eassert (!CONS_MARKED_P (XCONS (val)));
2642 consing_since_gc += sizeof (struct Lisp_Cons);
2643 cons_cells_consed++;
2644 return val;
2645 }
2646
2647 #ifdef GC_CHECK_CONS_LIST
2648 /* Get an error now if there's any junk in the cons free list. */
2649 void
2650 check_cons_list (void)
2651 {
2652 struct Lisp_Cons *tail = cons_free_list;
2653
2654 while (tail)
2655 tail = tail->u.chain;
2656 }
2657 #endif
2658
2659 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2660
2661 Lisp_Object
2662 list1 (Lisp_Object arg1)
2663 {
2664 return Fcons (arg1, Qnil);
2665 }
2666
2667 Lisp_Object
2668 list2 (Lisp_Object arg1, Lisp_Object arg2)
2669 {
2670 return Fcons (arg1, Fcons (arg2, Qnil));
2671 }
2672
2673
2674 Lisp_Object
2675 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2676 {
2677 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2678 }
2679
2680
2681 Lisp_Object
2682 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2683 {
2684 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2685 }
2686
2687
2688 Lisp_Object
2689 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2692 Fcons (arg5, Qnil)))));
2693 }
2694
2695
2696 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2697 doc: /* Return a newly created list with specified arguments as elements.
2698 Any number of arguments, even zero arguments, are allowed.
2699 usage: (list &rest OBJECTS) */)
2700 (size_t nargs, register Lisp_Object *args)
2701 {
2702 register Lisp_Object val;
2703 val = Qnil;
2704
2705 while (nargs > 0)
2706 {
2707 nargs--;
2708 val = Fcons (args[nargs], val);
2709 }
2710 return val;
2711 }
2712
2713
2714 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2715 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2716 (register Lisp_Object length, Lisp_Object init)
2717 {
2718 register Lisp_Object val;
2719 register EMACS_INT size;
2720
2721 CHECK_NATNUM (length);
2722 size = XFASTINT (length);
2723
2724 val = Qnil;
2725 while (size > 0)
2726 {
2727 val = Fcons (init, val);
2728 --size;
2729
2730 if (size > 0)
2731 {
2732 val = Fcons (init, val);
2733 --size;
2734
2735 if (size > 0)
2736 {
2737 val = Fcons (init, val);
2738 --size;
2739
2740 if (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
2749 }
2750 }
2751 }
2752 }
2753
2754 QUIT;
2755 }
2756
2757 return val;
2758 }
2759
2760
2761 \f
2762 /***********************************************************************
2763 Vector Allocation
2764 ***********************************************************************/
2765
2766 /* Singly-linked list of all vectors. */
2767
2768 static struct Lisp_Vector *all_vectors;
2769
2770
2771 /* Value is a pointer to a newly allocated Lisp_Vector structure
2772 with room for LEN Lisp_Objects. */
2773
2774 static struct Lisp_Vector *
2775 allocate_vectorlike (EMACS_INT len)
2776 {
2777 struct Lisp_Vector *p;
2778 size_t nbytes;
2779 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2780 int header_size = offsetof (struct Lisp_Vector, contents);
2781 int word_size = sizeof p->contents[0];
2782
2783 if ((nbytes_max - header_size) / word_size < len)
2784 memory_full (SIZE_MAX);
2785
2786 MALLOC_BLOCK_INPUT;
2787
2788 #ifdef DOUG_LEA_MALLOC
2789 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2790 because mapped region contents are not preserved in
2791 a dumped Emacs. */
2792 mallopt (M_MMAP_MAX, 0);
2793 #endif
2794
2795 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2796 /* eassert (!handling_signal); */
2797
2798 nbytes = header_size + len * word_size;
2799 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2800
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Back to a reasonable maximum of mmap'ed areas. */
2803 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2804 #endif
2805
2806 consing_since_gc += nbytes;
2807 vector_cells_consed += len;
2808
2809 p->header.next.vector = all_vectors;
2810 all_vectors = p;
2811
2812 MALLOC_UNBLOCK_INPUT;
2813
2814 return p;
2815 }
2816
2817
2818 /* Allocate a vector with NSLOTS slots. */
2819
2820 struct Lisp_Vector *
2821 allocate_vector (EMACS_INT nslots)
2822 {
2823 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2824 v->header.size = nslots;
2825 return v;
2826 }
2827
2828
2829 /* Allocate other vector-like structures. */
2830
2831 struct Lisp_Vector *
2832 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2833 {
2834 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2835 EMACS_INT i;
2836
2837 /* Only the first lisplen slots will be traced normally by the GC. */
2838 for (i = 0; i < lisplen; ++i)
2839 v->contents[i] = Qnil;
2840
2841 XSETPVECTYPESIZE (v, tag, lisplen);
2842 return v;
2843 }
2844
2845 struct Lisp_Hash_Table *
2846 allocate_hash_table (void)
2847 {
2848 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2849 }
2850
2851
2852 struct window *
2853 allocate_window (void)
2854 {
2855 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2856 }
2857
2858
2859 struct terminal *
2860 allocate_terminal (void)
2861 {
2862 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2863 next_terminal, PVEC_TERMINAL);
2864 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2865 memset (&t->next_terminal, 0,
2866 (char*) (t + 1) - (char*) &t->next_terminal);
2867
2868 return t;
2869 }
2870
2871 struct frame *
2872 allocate_frame (void)
2873 {
2874 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2875 face_cache, PVEC_FRAME);
2876 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2877 memset (&f->face_cache, 0,
2878 (char *) (f + 1) - (char *) &f->face_cache);
2879 return f;
2880 }
2881
2882
2883 struct Lisp_Process *
2884 allocate_process (void)
2885 {
2886 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2887 }
2888
2889
2890 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2891 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2892 See also the function `vector'. */)
2893 (register Lisp_Object length, Lisp_Object init)
2894 {
2895 Lisp_Object vector;
2896 register EMACS_INT sizei;
2897 register EMACS_INT i;
2898 register struct Lisp_Vector *p;
2899
2900 CHECK_NATNUM (length);
2901 sizei = XFASTINT (length);
2902
2903 p = allocate_vector (sizei);
2904 for (i = 0; i < sizei; i++)
2905 p->contents[i] = init;
2906
2907 XSETVECTOR (vector, p);
2908 return vector;
2909 }
2910
2911
2912 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2913 doc: /* Return a newly created vector with specified arguments as elements.
2914 Any number of arguments, even zero arguments, are allowed.
2915 usage: (vector &rest OBJECTS) */)
2916 (register size_t nargs, Lisp_Object *args)
2917 {
2918 register Lisp_Object len, val;
2919 register size_t i;
2920 register struct Lisp_Vector *p;
2921
2922 XSETFASTINT (len, nargs);
2923 val = Fmake_vector (len, Qnil);
2924 p = XVECTOR (val);
2925 for (i = 0; i < nargs; i++)
2926 p->contents[i] = args[i];
2927 return val;
2928 }
2929
2930
2931 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2932 doc: /* Create a byte-code object with specified arguments as elements.
2933 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2934 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2935 and (optional) INTERACTIVE-SPEC.
2936 The first four arguments are required; at most six have any
2937 significance.
2938 The ARGLIST can be either like the one of `lambda', in which case the arguments
2939 will be dynamically bound before executing the byte code, or it can be an
2940 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2941 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2942 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2943 argument to catch the left-over arguments. If such an integer is used, the
2944 arguments will not be dynamically bound but will be instead pushed on the
2945 stack before executing the byte-code.
2946 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2947 (register size_t nargs, Lisp_Object *args)
2948 {
2949 register Lisp_Object len, val;
2950 register size_t i;
2951 register struct Lisp_Vector *p;
2952
2953 XSETFASTINT (len, nargs);
2954 if (!NILP (Vpurify_flag))
2955 val = make_pure_vector ((EMACS_INT) nargs);
2956 else
2957 val = Fmake_vector (len, Qnil);
2958
2959 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2960 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2961 earlier because they produced a raw 8-bit string for byte-code
2962 and now such a byte-code string is loaded as multibyte while
2963 raw 8-bit characters converted to multibyte form. Thus, now we
2964 must convert them back to the original unibyte form. */
2965 args[1] = Fstring_as_unibyte (args[1]);
2966
2967 p = XVECTOR (val);
2968 for (i = 0; i < nargs; i++)
2969 {
2970 if (!NILP (Vpurify_flag))
2971 args[i] = Fpurecopy (args[i]);
2972 p->contents[i] = args[i];
2973 }
2974 XSETPVECTYPE (p, PVEC_COMPILED);
2975 XSETCOMPILED (val, p);
2976 return val;
2977 }
2978
2979
2980 \f
2981 /***********************************************************************
2982 Symbol Allocation
2983 ***********************************************************************/
2984
2985 /* Each symbol_block is just under 1020 bytes long, since malloc
2986 really allocates in units of powers of two and uses 4 bytes for its
2987 own overhead. */
2988
2989 #define SYMBOL_BLOCK_SIZE \
2990 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2991
2992 struct symbol_block
2993 {
2994 /* Place `symbols' first, to preserve alignment. */
2995 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2996 struct symbol_block *next;
2997 };
2998
2999 /* Current symbol block and index of first unused Lisp_Symbol
3000 structure in it. */
3001
3002 static struct symbol_block *symbol_block;
3003 static int symbol_block_index;
3004
3005 /* List of free symbols. */
3006
3007 static struct Lisp_Symbol *symbol_free_list;
3008
3009
3010 /* Initialize symbol allocation. */
3011
3012 static void
3013 init_symbol (void)
3014 {
3015 symbol_block = NULL;
3016 symbol_block_index = SYMBOL_BLOCK_SIZE;
3017 symbol_free_list = 0;
3018 }
3019
3020
3021 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3022 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3023 Its value and function definition are void, and its property list is nil. */)
3024 (Lisp_Object name)
3025 {
3026 register Lisp_Object val;
3027 register struct Lisp_Symbol *p;
3028
3029 CHECK_STRING (name);
3030
3031 /* eassert (!handling_signal); */
3032
3033 MALLOC_BLOCK_INPUT;
3034
3035 if (symbol_free_list)
3036 {
3037 XSETSYMBOL (val, symbol_free_list);
3038 symbol_free_list = symbol_free_list->next;
3039 }
3040 else
3041 {
3042 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3043 {
3044 struct symbol_block *new;
3045 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3046 MEM_TYPE_SYMBOL);
3047 new->next = symbol_block;
3048 symbol_block = new;
3049 symbol_block_index = 0;
3050 }
3051 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3052 symbol_block_index++;
3053 }
3054
3055 MALLOC_UNBLOCK_INPUT;
3056
3057 p = XSYMBOL (val);
3058 p->xname = name;
3059 p->plist = Qnil;
3060 p->redirect = SYMBOL_PLAINVAL;
3061 SET_SYMBOL_VAL (p, Qunbound);
3062 p->function = Qunbound;
3063 p->next = NULL;
3064 p->gcmarkbit = 0;
3065 p->interned = SYMBOL_UNINTERNED;
3066 p->constant = 0;
3067 p->declared_special = 0;
3068 consing_since_gc += sizeof (struct Lisp_Symbol);
3069 symbols_consed++;
3070 return val;
3071 }
3072
3073
3074 \f
3075 /***********************************************************************
3076 Marker (Misc) Allocation
3077 ***********************************************************************/
3078
3079 /* Allocation of markers and other objects that share that structure.
3080 Works like allocation of conses. */
3081
3082 #define MARKER_BLOCK_SIZE \
3083 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3084
3085 struct marker_block
3086 {
3087 /* Place `markers' first, to preserve alignment. */
3088 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3089 struct marker_block *next;
3090 };
3091
3092 static struct marker_block *marker_block;
3093 static int marker_block_index;
3094
3095 static union Lisp_Misc *marker_free_list;
3096
3097 static void
3098 init_marker (void)
3099 {
3100 marker_block = NULL;
3101 marker_block_index = MARKER_BLOCK_SIZE;
3102 marker_free_list = 0;
3103 }
3104
3105 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3106
3107 Lisp_Object
3108 allocate_misc (void)
3109 {
3110 Lisp_Object val;
3111
3112 /* eassert (!handling_signal); */
3113
3114 MALLOC_BLOCK_INPUT;
3115
3116 if (marker_free_list)
3117 {
3118 XSETMISC (val, marker_free_list);
3119 marker_free_list = marker_free_list->u_free.chain;
3120 }
3121 else
3122 {
3123 if (marker_block_index == MARKER_BLOCK_SIZE)
3124 {
3125 struct marker_block *new;
3126 new = (struct marker_block *) lisp_malloc (sizeof *new,
3127 MEM_TYPE_MISC);
3128 new->next = marker_block;
3129 marker_block = new;
3130 marker_block_index = 0;
3131 total_free_markers += MARKER_BLOCK_SIZE;
3132 }
3133 XSETMISC (val, &marker_block->markers[marker_block_index]);
3134 marker_block_index++;
3135 }
3136
3137 MALLOC_UNBLOCK_INPUT;
3138
3139 --total_free_markers;
3140 consing_since_gc += sizeof (union Lisp_Misc);
3141 misc_objects_consed++;
3142 XMISCANY (val)->gcmarkbit = 0;
3143 return val;
3144 }
3145
3146 /* Free a Lisp_Misc object */
3147
3148 static void
3149 free_misc (Lisp_Object misc)
3150 {
3151 XMISCTYPE (misc) = Lisp_Misc_Free;
3152 XMISC (misc)->u_free.chain = marker_free_list;
3153 marker_free_list = XMISC (misc);
3154
3155 total_free_markers++;
3156 }
3157
3158 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3159 INTEGER. This is used to package C values to call record_unwind_protect.
3160 The unwind function can get the C values back using XSAVE_VALUE. */
3161
3162 Lisp_Object
3163 make_save_value (void *pointer, int integer)
3164 {
3165 register Lisp_Object val;
3166 register struct Lisp_Save_Value *p;
3167
3168 val = allocate_misc ();
3169 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3170 p = XSAVE_VALUE (val);
3171 p->pointer = pointer;
3172 p->integer = integer;
3173 p->dogc = 0;
3174 return val;
3175 }
3176
3177 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3178 doc: /* Return a newly allocated marker which does not point at any place. */)
3179 (void)
3180 {
3181 register Lisp_Object val;
3182 register struct Lisp_Marker *p;
3183
3184 val = allocate_misc ();
3185 XMISCTYPE (val) = Lisp_Misc_Marker;
3186 p = XMARKER (val);
3187 p->buffer = 0;
3188 p->bytepos = 0;
3189 p->charpos = 0;
3190 p->next = NULL;
3191 p->insertion_type = 0;
3192 return val;
3193 }
3194
3195 /* Put MARKER back on the free list after using it temporarily. */
3196
3197 void
3198 free_marker (Lisp_Object marker)
3199 {
3200 unchain_marker (XMARKER (marker));
3201 free_misc (marker);
3202 }
3203
3204 \f
3205 /* Return a newly created vector or string with specified arguments as
3206 elements. If all the arguments are characters that can fit
3207 in a string of events, make a string; otherwise, make a vector.
3208
3209 Any number of arguments, even zero arguments, are allowed. */
3210
3211 Lisp_Object
3212 make_event_array (register int nargs, Lisp_Object *args)
3213 {
3214 int i;
3215
3216 for (i = 0; i < nargs; i++)
3217 /* The things that fit in a string
3218 are characters that are in 0...127,
3219 after discarding the meta bit and all the bits above it. */
3220 if (!INTEGERP (args[i])
3221 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3222 return Fvector (nargs, args);
3223
3224 /* Since the loop exited, we know that all the things in it are
3225 characters, so we can make a string. */
3226 {
3227 Lisp_Object result;
3228
3229 result = Fmake_string (make_number (nargs), make_number (0));
3230 for (i = 0; i < nargs; i++)
3231 {
3232 SSET (result, i, XINT (args[i]));
3233 /* Move the meta bit to the right place for a string char. */
3234 if (XINT (args[i]) & CHAR_META)
3235 SSET (result, i, SREF (result, i) | 0x80);
3236 }
3237
3238 return result;
3239 }
3240 }
3241
3242
3243 \f
3244 /************************************************************************
3245 Memory Full Handling
3246 ************************************************************************/
3247
3248
3249 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3250 there may have been size_t overflow so that malloc was never
3251 called, or perhaps malloc was invoked successfully but the
3252 resulting pointer had problems fitting into a tagged EMACS_INT. In
3253 either case this counts as memory being full even though malloc did
3254 not fail. */
3255
3256 void
3257 memory_full (size_t nbytes)
3258 {
3259 /* Do not go into hysterics merely because a large request failed. */
3260 int enough_free_memory = 0;
3261 if (SPARE_MEMORY < nbytes)
3262 {
3263 void *p = malloc (SPARE_MEMORY);
3264 if (p)
3265 {
3266 free (p);
3267 enough_free_memory = 1;
3268 }
3269 }
3270
3271 if (! enough_free_memory)
3272 {
3273 int i;
3274
3275 Vmemory_full = Qt;
3276
3277 memory_full_cons_threshold = sizeof (struct cons_block);
3278
3279 /* The first time we get here, free the spare memory. */
3280 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3281 if (spare_memory[i])
3282 {
3283 if (i == 0)
3284 free (spare_memory[i]);
3285 else if (i >= 1 && i <= 4)
3286 lisp_align_free (spare_memory[i]);
3287 else
3288 lisp_free (spare_memory[i]);
3289 spare_memory[i] = 0;
3290 }
3291
3292 /* Record the space now used. When it decreases substantially,
3293 we can refill the memory reserve. */
3294 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3295 bytes_used_when_full = BYTES_USED;
3296 #endif
3297 }
3298
3299 /* This used to call error, but if we've run out of memory, we could
3300 get infinite recursion trying to build the string. */
3301 xsignal (Qnil, Vmemory_signal_data);
3302 }
3303
3304 /* If we released our reserve (due to running out of memory),
3305 and we have a fair amount free once again,
3306 try to set aside another reserve in case we run out once more.
3307
3308 This is called when a relocatable block is freed in ralloc.c,
3309 and also directly from this file, in case we're not using ralloc.c. */
3310
3311 void
3312 refill_memory_reserve (void)
3313 {
3314 #ifndef SYSTEM_MALLOC
3315 if (spare_memory[0] == 0)
3316 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3317 if (spare_memory[1] == 0)
3318 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3319 MEM_TYPE_CONS);
3320 if (spare_memory[2] == 0)
3321 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3322 MEM_TYPE_CONS);
3323 if (spare_memory[3] == 0)
3324 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3325 MEM_TYPE_CONS);
3326 if (spare_memory[4] == 0)
3327 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3328 MEM_TYPE_CONS);
3329 if (spare_memory[5] == 0)
3330 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3331 MEM_TYPE_STRING);
3332 if (spare_memory[6] == 0)
3333 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3334 MEM_TYPE_STRING);
3335 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3336 Vmemory_full = Qnil;
3337 #endif
3338 }
3339 \f
3340 /************************************************************************
3341 C Stack Marking
3342 ************************************************************************/
3343
3344 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3345
3346 /* Conservative C stack marking requires a method to identify possibly
3347 live Lisp objects given a pointer value. We do this by keeping
3348 track of blocks of Lisp data that are allocated in a red-black tree
3349 (see also the comment of mem_node which is the type of nodes in
3350 that tree). Function lisp_malloc adds information for an allocated
3351 block to the red-black tree with calls to mem_insert, and function
3352 lisp_free removes it with mem_delete. Functions live_string_p etc
3353 call mem_find to lookup information about a given pointer in the
3354 tree, and use that to determine if the pointer points to a Lisp
3355 object or not. */
3356
3357 /* Initialize this part of alloc.c. */
3358
3359 static void
3360 mem_init (void)
3361 {
3362 mem_z.left = mem_z.right = MEM_NIL;
3363 mem_z.parent = NULL;
3364 mem_z.color = MEM_BLACK;
3365 mem_z.start = mem_z.end = NULL;
3366 mem_root = MEM_NIL;
3367 }
3368
3369
3370 /* Value is a pointer to the mem_node containing START. Value is
3371 MEM_NIL if there is no node in the tree containing START. */
3372
3373 static inline struct mem_node *
3374 mem_find (void *start)
3375 {
3376 struct mem_node *p;
3377
3378 if (start < min_heap_address || start > max_heap_address)
3379 return MEM_NIL;
3380
3381 /* Make the search always successful to speed up the loop below. */
3382 mem_z.start = start;
3383 mem_z.end = (char *) start + 1;
3384
3385 p = mem_root;
3386 while (start < p->start || start >= p->end)
3387 p = start < p->start ? p->left : p->right;
3388 return p;
3389 }
3390
3391
3392 /* Insert a new node into the tree for a block of memory with start
3393 address START, end address END, and type TYPE. Value is a
3394 pointer to the node that was inserted. */
3395
3396 static struct mem_node *
3397 mem_insert (void *start, void *end, enum mem_type type)
3398 {
3399 struct mem_node *c, *parent, *x;
3400
3401 if (min_heap_address == NULL || start < min_heap_address)
3402 min_heap_address = start;
3403 if (max_heap_address == NULL || end > max_heap_address)
3404 max_heap_address = end;
3405
3406 /* See where in the tree a node for START belongs. In this
3407 particular application, it shouldn't happen that a node is already
3408 present. For debugging purposes, let's check that. */
3409 c = mem_root;
3410 parent = NULL;
3411
3412 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3413
3414 while (c != MEM_NIL)
3415 {
3416 if (start >= c->start && start < c->end)
3417 abort ();
3418 parent = c;
3419 c = start < c->start ? c->left : c->right;
3420 }
3421
3422 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3423
3424 while (c != MEM_NIL)
3425 {
3426 parent = c;
3427 c = start < c->start ? c->left : c->right;
3428 }
3429
3430 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3431
3432 /* Create a new node. */
3433 #ifdef GC_MALLOC_CHECK
3434 x = (struct mem_node *) _malloc_internal (sizeof *x);
3435 if (x == NULL)
3436 abort ();
3437 #else
3438 x = (struct mem_node *) xmalloc (sizeof *x);
3439 #endif
3440 x->start = start;
3441 x->end = end;
3442 x->type = type;
3443 x->parent = parent;
3444 x->left = x->right = MEM_NIL;
3445 x->color = MEM_RED;
3446
3447 /* Insert it as child of PARENT or install it as root. */
3448 if (parent)
3449 {
3450 if (start < parent->start)
3451 parent->left = x;
3452 else
3453 parent->right = x;
3454 }
3455 else
3456 mem_root = x;
3457
3458 /* Re-establish red-black tree properties. */
3459 mem_insert_fixup (x);
3460
3461 return x;
3462 }
3463
3464
3465 /* Re-establish the red-black properties of the tree, and thereby
3466 balance the tree, after node X has been inserted; X is always red. */
3467
3468 static void
3469 mem_insert_fixup (struct mem_node *x)
3470 {
3471 while (x != mem_root && x->parent->color == MEM_RED)
3472 {
3473 /* X is red and its parent is red. This is a violation of
3474 red-black tree property #3. */
3475
3476 if (x->parent == x->parent->parent->left)
3477 {
3478 /* We're on the left side of our grandparent, and Y is our
3479 "uncle". */
3480 struct mem_node *y = x->parent->parent->right;
3481
3482 if (y->color == MEM_RED)
3483 {
3484 /* Uncle and parent are red but should be black because
3485 X is red. Change the colors accordingly and proceed
3486 with the grandparent. */
3487 x->parent->color = MEM_BLACK;
3488 y->color = MEM_BLACK;
3489 x->parent->parent->color = MEM_RED;
3490 x = x->parent->parent;
3491 }
3492 else
3493 {
3494 /* Parent and uncle have different colors; parent is
3495 red, uncle is black. */
3496 if (x == x->parent->right)
3497 {
3498 x = x->parent;
3499 mem_rotate_left (x);
3500 }
3501
3502 x->parent->color = MEM_BLACK;
3503 x->parent->parent->color = MEM_RED;
3504 mem_rotate_right (x->parent->parent);
3505 }
3506 }
3507 else
3508 {
3509 /* This is the symmetrical case of above. */
3510 struct mem_node *y = x->parent->parent->left;
3511
3512 if (y->color == MEM_RED)
3513 {
3514 x->parent->color = MEM_BLACK;
3515 y->color = MEM_BLACK;
3516 x->parent->parent->color = MEM_RED;
3517 x = x->parent->parent;
3518 }
3519 else
3520 {
3521 if (x == x->parent->left)
3522 {
3523 x = x->parent;
3524 mem_rotate_right (x);
3525 }
3526
3527 x->parent->color = MEM_BLACK;
3528 x->parent->parent->color = MEM_RED;
3529 mem_rotate_left (x->parent->parent);
3530 }
3531 }
3532 }
3533
3534 /* The root may have been changed to red due to the algorithm. Set
3535 it to black so that property #5 is satisfied. */
3536 mem_root->color = MEM_BLACK;
3537 }
3538
3539
3540 /* (x) (y)
3541 / \ / \
3542 a (y) ===> (x) c
3543 / \ / \
3544 b c a b */
3545
3546 static void
3547 mem_rotate_left (struct mem_node *x)
3548 {
3549 struct mem_node *y;
3550
3551 /* Turn y's left sub-tree into x's right sub-tree. */
3552 y = x->right;
3553 x->right = y->left;
3554 if (y->left != MEM_NIL)
3555 y->left->parent = x;
3556
3557 /* Y's parent was x's parent. */
3558 if (y != MEM_NIL)
3559 y->parent = x->parent;
3560
3561 /* Get the parent to point to y instead of x. */
3562 if (x->parent)
3563 {
3564 if (x == x->parent->left)
3565 x->parent->left = y;
3566 else
3567 x->parent->right = y;
3568 }
3569 else
3570 mem_root = y;
3571
3572 /* Put x on y's left. */
3573 y->left = x;
3574 if (x != MEM_NIL)
3575 x->parent = y;
3576 }
3577
3578
3579 /* (x) (Y)
3580 / \ / \
3581 (y) c ===> a (x)
3582 / \ / \
3583 a b b c */
3584
3585 static void
3586 mem_rotate_right (struct mem_node *x)
3587 {
3588 struct mem_node *y = x->left;
3589
3590 x->left = y->right;
3591 if (y->right != MEM_NIL)
3592 y->right->parent = x;
3593
3594 if (y != MEM_NIL)
3595 y->parent = x->parent;
3596 if (x->parent)
3597 {
3598 if (x == x->parent->right)
3599 x->parent->right = y;
3600 else
3601 x->parent->left = y;
3602 }
3603 else
3604 mem_root = y;
3605
3606 y->right = x;
3607 if (x != MEM_NIL)
3608 x->parent = y;
3609 }
3610
3611
3612 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3613
3614 static void
3615 mem_delete (struct mem_node *z)
3616 {
3617 struct mem_node *x, *y;
3618
3619 if (!z || z == MEM_NIL)
3620 return;
3621
3622 if (z->left == MEM_NIL || z->right == MEM_NIL)
3623 y = z;
3624 else
3625 {
3626 y = z->right;
3627 while (y->left != MEM_NIL)
3628 y = y->left;
3629 }
3630
3631 if (y->left != MEM_NIL)
3632 x = y->left;
3633 else
3634 x = y->right;
3635
3636 x->parent = y->parent;
3637 if (y->parent)
3638 {
3639 if (y == y->parent->left)
3640 y->parent->left = x;
3641 else
3642 y->parent->right = x;
3643 }
3644 else
3645 mem_root = x;
3646
3647 if (y != z)
3648 {
3649 z->start = y->start;
3650 z->end = y->end;
3651 z->type = y->type;
3652 }
3653
3654 if (y->color == MEM_BLACK)
3655 mem_delete_fixup (x);
3656
3657 #ifdef GC_MALLOC_CHECK
3658 _free_internal (y);
3659 #else
3660 xfree (y);
3661 #endif
3662 }
3663
3664
3665 /* Re-establish the red-black properties of the tree, after a
3666 deletion. */
3667
3668 static void
3669 mem_delete_fixup (struct mem_node *x)
3670 {
3671 while (x != mem_root && x->color == MEM_BLACK)
3672 {
3673 if (x == x->parent->left)
3674 {
3675 struct mem_node *w = x->parent->right;
3676
3677 if (w->color == MEM_RED)
3678 {
3679 w->color = MEM_BLACK;
3680 x->parent->color = MEM_RED;
3681 mem_rotate_left (x->parent);
3682 w = x->parent->right;
3683 }
3684
3685 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3686 {
3687 w->color = MEM_RED;
3688 x = x->parent;
3689 }
3690 else
3691 {
3692 if (w->right->color == MEM_BLACK)
3693 {
3694 w->left->color = MEM_BLACK;
3695 w->color = MEM_RED;
3696 mem_rotate_right (w);
3697 w = x->parent->right;
3698 }
3699 w->color = x->parent->color;
3700 x->parent->color = MEM_BLACK;
3701 w->right->color = MEM_BLACK;
3702 mem_rotate_left (x->parent);
3703 x = mem_root;
3704 }
3705 }
3706 else
3707 {
3708 struct mem_node *w = x->parent->left;
3709
3710 if (w->color == MEM_RED)
3711 {
3712 w->color = MEM_BLACK;
3713 x->parent->color = MEM_RED;
3714 mem_rotate_right (x->parent);
3715 w = x->parent->left;
3716 }
3717
3718 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3719 {
3720 w->color = MEM_RED;
3721 x = x->parent;
3722 }
3723 else
3724 {
3725 if (w->left->color == MEM_BLACK)
3726 {
3727 w->right->color = MEM_BLACK;
3728 w->color = MEM_RED;
3729 mem_rotate_left (w);
3730 w = x->parent->left;
3731 }
3732
3733 w->color = x->parent->color;
3734 x->parent->color = MEM_BLACK;
3735 w->left->color = MEM_BLACK;
3736 mem_rotate_right (x->parent);
3737 x = mem_root;
3738 }
3739 }
3740 }
3741
3742 x->color = MEM_BLACK;
3743 }
3744
3745
3746 /* Value is non-zero if P is a pointer to a live Lisp string on
3747 the heap. M is a pointer to the mem_block for P. */
3748
3749 static inline int
3750 live_string_p (struct mem_node *m, void *p)
3751 {
3752 if (m->type == MEM_TYPE_STRING)
3753 {
3754 struct string_block *b = (struct string_block *) m->start;
3755 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3756
3757 /* P must point to the start of a Lisp_String structure, and it
3758 must not be on the free-list. */
3759 return (offset >= 0
3760 && offset % sizeof b->strings[0] == 0
3761 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3762 && ((struct Lisp_String *) p)->data != NULL);
3763 }
3764 else
3765 return 0;
3766 }
3767
3768
3769 /* Value is non-zero if P is a pointer to a live Lisp cons on
3770 the heap. M is a pointer to the mem_block for P. */
3771
3772 static inline int
3773 live_cons_p (struct mem_node *m, void *p)
3774 {
3775 if (m->type == MEM_TYPE_CONS)
3776 {
3777 struct cons_block *b = (struct cons_block *) m->start;
3778 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3779
3780 /* P must point to the start of a Lisp_Cons, not be
3781 one of the unused cells in the current cons block,
3782 and not be on the free-list. */
3783 return (offset >= 0
3784 && offset % sizeof b->conses[0] == 0
3785 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3786 && (b != cons_block
3787 || offset / sizeof b->conses[0] < cons_block_index)
3788 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3789 }
3790 else
3791 return 0;
3792 }
3793
3794
3795 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3796 the heap. M is a pointer to the mem_block for P. */
3797
3798 static inline int
3799 live_symbol_p (struct mem_node *m, void *p)
3800 {
3801 if (m->type == MEM_TYPE_SYMBOL)
3802 {
3803 struct symbol_block *b = (struct symbol_block *) m->start;
3804 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3805
3806 /* P must point to the start of a Lisp_Symbol, not be
3807 one of the unused cells in the current symbol block,
3808 and not be on the free-list. */
3809 return (offset >= 0
3810 && offset % sizeof b->symbols[0] == 0
3811 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3812 && (b != symbol_block
3813 || offset / sizeof b->symbols[0] < symbol_block_index)
3814 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3815 }
3816 else
3817 return 0;
3818 }
3819
3820
3821 /* Value is non-zero if P is a pointer to a live Lisp float on
3822 the heap. M is a pointer to the mem_block for P. */
3823
3824 static inline int
3825 live_float_p (struct mem_node *m, void *p)
3826 {
3827 if (m->type == MEM_TYPE_FLOAT)
3828 {
3829 struct float_block *b = (struct float_block *) m->start;
3830 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3831
3832 /* P must point to the start of a Lisp_Float and not be
3833 one of the unused cells in the current float block. */
3834 return (offset >= 0
3835 && offset % sizeof b->floats[0] == 0
3836 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3837 && (b != float_block
3838 || offset / sizeof b->floats[0] < float_block_index));
3839 }
3840 else
3841 return 0;
3842 }
3843
3844
3845 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3846 the heap. M is a pointer to the mem_block for P. */
3847
3848 static inline int
3849 live_misc_p (struct mem_node *m, void *p)
3850 {
3851 if (m->type == MEM_TYPE_MISC)
3852 {
3853 struct marker_block *b = (struct marker_block *) m->start;
3854 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3855
3856 /* P must point to the start of a Lisp_Misc, not be
3857 one of the unused cells in the current misc block,
3858 and not be on the free-list. */
3859 return (offset >= 0
3860 && offset % sizeof b->markers[0] == 0
3861 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3862 && (b != marker_block
3863 || offset / sizeof b->markers[0] < marker_block_index)
3864 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3865 }
3866 else
3867 return 0;
3868 }
3869
3870
3871 /* Value is non-zero if P is a pointer to a live vector-like object.
3872 M is a pointer to the mem_block for P. */
3873
3874 static inline int
3875 live_vector_p (struct mem_node *m, void *p)
3876 {
3877 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3878 }
3879
3880
3881 /* Value is non-zero if P is a pointer to a live buffer. M is a
3882 pointer to the mem_block for P. */
3883
3884 static inline int
3885 live_buffer_p (struct mem_node *m, void *p)
3886 {
3887 /* P must point to the start of the block, and the buffer
3888 must not have been killed. */
3889 return (m->type == MEM_TYPE_BUFFER
3890 && p == m->start
3891 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3892 }
3893
3894 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3895
3896 #if GC_MARK_STACK
3897
3898 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3899
3900 /* Array of objects that are kept alive because the C stack contains
3901 a pattern that looks like a reference to them . */
3902
3903 #define MAX_ZOMBIES 10
3904 static Lisp_Object zombies[MAX_ZOMBIES];
3905
3906 /* Number of zombie objects. */
3907
3908 static EMACS_INT nzombies;
3909
3910 /* Number of garbage collections. */
3911
3912 static EMACS_INT ngcs;
3913
3914 /* Average percentage of zombies per collection. */
3915
3916 static double avg_zombies;
3917
3918 /* Max. number of live and zombie objects. */
3919
3920 static EMACS_INT max_live, max_zombies;
3921
3922 /* Average number of live objects per GC. */
3923
3924 static double avg_live;
3925
3926 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3927 doc: /* Show information about live and zombie objects. */)
3928 (void)
3929 {
3930 Lisp_Object args[8], zombie_list = Qnil;
3931 EMACS_INT i;
3932 for (i = 0; i < nzombies; i++)
3933 zombie_list = Fcons (zombies[i], zombie_list);
3934 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3935 args[1] = make_number (ngcs);
3936 args[2] = make_float (avg_live);
3937 args[3] = make_float (avg_zombies);
3938 args[4] = make_float (avg_zombies / avg_live / 100);
3939 args[5] = make_number (max_live);
3940 args[6] = make_number (max_zombies);
3941 args[7] = zombie_list;
3942 return Fmessage (8, args);
3943 }
3944
3945 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3946
3947
3948 /* Mark OBJ if we can prove it's a Lisp_Object. */
3949
3950 static inline void
3951 mark_maybe_object (Lisp_Object obj)
3952 {
3953 void *po;
3954 struct mem_node *m;
3955
3956 if (INTEGERP (obj))
3957 return;
3958
3959 po = (void *) XPNTR (obj);
3960 m = mem_find (po);
3961
3962 if (m != MEM_NIL)
3963 {
3964 int mark_p = 0;
3965
3966 switch (XTYPE (obj))
3967 {
3968 case Lisp_String:
3969 mark_p = (live_string_p (m, po)
3970 && !STRING_MARKED_P ((struct Lisp_String *) po));
3971 break;
3972
3973 case Lisp_Cons:
3974 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3975 break;
3976
3977 case Lisp_Symbol:
3978 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3979 break;
3980
3981 case Lisp_Float:
3982 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3983 break;
3984
3985 case Lisp_Vectorlike:
3986 /* Note: can't check BUFFERP before we know it's a
3987 buffer because checking that dereferences the pointer
3988 PO which might point anywhere. */
3989 if (live_vector_p (m, po))
3990 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3991 else if (live_buffer_p (m, po))
3992 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3993 break;
3994
3995 case Lisp_Misc:
3996 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3997 break;
3998
3999 default:
4000 break;
4001 }
4002
4003 if (mark_p)
4004 {
4005 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4006 if (nzombies < MAX_ZOMBIES)
4007 zombies[nzombies] = obj;
4008 ++nzombies;
4009 #endif
4010 mark_object (obj);
4011 }
4012 }
4013 }
4014
4015
4016 /* If P points to Lisp data, mark that as live if it isn't already
4017 marked. */
4018
4019 static inline void
4020 mark_maybe_pointer (void *p)
4021 {
4022 struct mem_node *m;
4023
4024 /* Quickly rule out some values which can't point to Lisp data. */
4025 if ((intptr_t) p %
4026 #ifdef USE_LSB_TAG
4027 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4028 #else
4029 2 /* We assume that Lisp data is aligned on even addresses. */
4030 #endif
4031 )
4032 return;
4033
4034 m = mem_find (p);
4035 if (m != MEM_NIL)
4036 {
4037 Lisp_Object obj = Qnil;
4038
4039 switch (m->type)
4040 {
4041 case MEM_TYPE_NON_LISP:
4042 /* Nothing to do; not a pointer to Lisp memory. */
4043 break;
4044
4045 case MEM_TYPE_BUFFER:
4046 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4047 XSETVECTOR (obj, p);
4048 break;
4049
4050 case MEM_TYPE_CONS:
4051 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4052 XSETCONS (obj, p);
4053 break;
4054
4055 case MEM_TYPE_STRING:
4056 if (live_string_p (m, p)
4057 && !STRING_MARKED_P ((struct Lisp_String *) p))
4058 XSETSTRING (obj, p);
4059 break;
4060
4061 case MEM_TYPE_MISC:
4062 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4063 XSETMISC (obj, p);
4064 break;
4065
4066 case MEM_TYPE_SYMBOL:
4067 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4068 XSETSYMBOL (obj, p);
4069 break;
4070
4071 case MEM_TYPE_FLOAT:
4072 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4073 XSETFLOAT (obj, p);
4074 break;
4075
4076 case MEM_TYPE_VECTORLIKE:
4077 if (live_vector_p (m, p))
4078 {
4079 Lisp_Object tem;
4080 XSETVECTOR (tem, p);
4081 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4082 obj = tem;
4083 }
4084 break;
4085
4086 default:
4087 abort ();
4088 }
4089
4090 if (!NILP (obj))
4091 mark_object (obj);
4092 }
4093 }
4094
4095
4096 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4097 or END+OFFSET..START. */
4098
4099 static void
4100 mark_memory (void *start, void *end, int offset)
4101 {
4102 Lisp_Object *p;
4103 void **pp;
4104
4105 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4106 nzombies = 0;
4107 #endif
4108
4109 /* Make START the pointer to the start of the memory region,
4110 if it isn't already. */
4111 if (end < start)
4112 {
4113 void *tem = start;
4114 start = end;
4115 end = tem;
4116 }
4117
4118 /* Mark Lisp_Objects. */
4119 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4120 mark_maybe_object (*p);
4121
4122 /* Mark Lisp data pointed to. This is necessary because, in some
4123 situations, the C compiler optimizes Lisp objects away, so that
4124 only a pointer to them remains. Example:
4125
4126 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4127 ()
4128 {
4129 Lisp_Object obj = build_string ("test");
4130 struct Lisp_String *s = XSTRING (obj);
4131 Fgarbage_collect ();
4132 fprintf (stderr, "test `%s'\n", s->data);
4133 return Qnil;
4134 }
4135
4136 Here, `obj' isn't really used, and the compiler optimizes it
4137 away. The only reference to the life string is through the
4138 pointer `s'. */
4139
4140 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4141 mark_maybe_pointer (*pp);
4142 }
4143
4144 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4145 the GCC system configuration. In gcc 3.2, the only systems for
4146 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4147 by others?) and ns32k-pc532-min. */
4148
4149 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4150
4151 static int setjmp_tested_p, longjmps_done;
4152
4153 #define SETJMP_WILL_LIKELY_WORK "\
4154 \n\
4155 Emacs garbage collector has been changed to use conservative stack\n\
4156 marking. Emacs has determined that the method it uses to do the\n\
4157 marking will likely work on your system, but this isn't sure.\n\
4158 \n\
4159 If you are a system-programmer, or can get the help of a local wizard\n\
4160 who is, please take a look at the function mark_stack in alloc.c, and\n\
4161 verify that the methods used are appropriate for your system.\n\
4162 \n\
4163 Please mail the result to <emacs-devel@gnu.org>.\n\
4164 "
4165
4166 #define SETJMP_WILL_NOT_WORK "\
4167 \n\
4168 Emacs garbage collector has been changed to use conservative stack\n\
4169 marking. Emacs has determined that the default method it uses to do the\n\
4170 marking will not work on your system. We will need a system-dependent\n\
4171 solution for your system.\n\
4172 \n\
4173 Please take a look at the function mark_stack in alloc.c, and\n\
4174 try to find a way to make it work on your system.\n\
4175 \n\
4176 Note that you may get false negatives, depending on the compiler.\n\
4177 In particular, you need to use -O with GCC for this test.\n\
4178 \n\
4179 Please mail the result to <emacs-devel@gnu.org>.\n\
4180 "
4181
4182
4183 /* Perform a quick check if it looks like setjmp saves registers in a
4184 jmp_buf. Print a message to stderr saying so. When this test
4185 succeeds, this is _not_ a proof that setjmp is sufficient for
4186 conservative stack marking. Only the sources or a disassembly
4187 can prove that. */
4188
4189 static void
4190 test_setjmp (void)
4191 {
4192 char buf[10];
4193 register int x;
4194 jmp_buf jbuf;
4195 int result = 0;
4196
4197 /* Arrange for X to be put in a register. */
4198 sprintf (buf, "1");
4199 x = strlen (buf);
4200 x = 2 * x - 1;
4201
4202 setjmp (jbuf);
4203 if (longjmps_done == 1)
4204 {
4205 /* Came here after the longjmp at the end of the function.
4206
4207 If x == 1, the longjmp has restored the register to its
4208 value before the setjmp, and we can hope that setjmp
4209 saves all such registers in the jmp_buf, although that
4210 isn't sure.
4211
4212 For other values of X, either something really strange is
4213 taking place, or the setjmp just didn't save the register. */
4214
4215 if (x == 1)
4216 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4217 else
4218 {
4219 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4220 exit (1);
4221 }
4222 }
4223
4224 ++longjmps_done;
4225 x = 2;
4226 if (longjmps_done == 1)
4227 longjmp (jbuf, 1);
4228 }
4229
4230 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4231
4232
4233 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4234
4235 /* Abort if anything GCPRO'd doesn't survive the GC. */
4236
4237 static void
4238 check_gcpros (void)
4239 {
4240 struct gcpro *p;
4241 size_t i;
4242
4243 for (p = gcprolist; p; p = p->next)
4244 for (i = 0; i < p->nvars; ++i)
4245 if (!survives_gc_p (p->var[i]))
4246 /* FIXME: It's not necessarily a bug. It might just be that the
4247 GCPRO is unnecessary or should release the object sooner. */
4248 abort ();
4249 }
4250
4251 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4252
4253 static void
4254 dump_zombies (void)
4255 {
4256 int i;
4257
4258 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
4259 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4260 {
4261 fprintf (stderr, " %d = ", i);
4262 debug_print (zombies[i]);
4263 }
4264 }
4265
4266 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4267
4268
4269 /* Mark live Lisp objects on the C stack.
4270
4271 There are several system-dependent problems to consider when
4272 porting this to new architectures:
4273
4274 Processor Registers
4275
4276 We have to mark Lisp objects in CPU registers that can hold local
4277 variables or are used to pass parameters.
4278
4279 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4280 something that either saves relevant registers on the stack, or
4281 calls mark_maybe_object passing it each register's contents.
4282
4283 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4284 implementation assumes that calling setjmp saves registers we need
4285 to see in a jmp_buf which itself lies on the stack. This doesn't
4286 have to be true! It must be verified for each system, possibly
4287 by taking a look at the source code of setjmp.
4288
4289 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4290 can use it as a machine independent method to store all registers
4291 to the stack. In this case the macros described in the previous
4292 two paragraphs are not used.
4293
4294 Stack Layout
4295
4296 Architectures differ in the way their processor stack is organized.
4297 For example, the stack might look like this
4298
4299 +----------------+
4300 | Lisp_Object | size = 4
4301 +----------------+
4302 | something else | size = 2
4303 +----------------+
4304 | Lisp_Object | size = 4
4305 +----------------+
4306 | ... |
4307
4308 In such a case, not every Lisp_Object will be aligned equally. To
4309 find all Lisp_Object on the stack it won't be sufficient to walk
4310 the stack in steps of 4 bytes. Instead, two passes will be
4311 necessary, one starting at the start of the stack, and a second
4312 pass starting at the start of the stack + 2. Likewise, if the
4313 minimal alignment of Lisp_Objects on the stack is 1, four passes
4314 would be necessary, each one starting with one byte more offset
4315 from the stack start.
4316
4317 The current code assumes by default that Lisp_Objects are aligned
4318 equally on the stack. */
4319
4320 static void
4321 mark_stack (void)
4322 {
4323 int i;
4324 void *end;
4325
4326 #ifdef HAVE___BUILTIN_UNWIND_INIT
4327 /* Force callee-saved registers and register windows onto the stack.
4328 This is the preferred method if available, obviating the need for
4329 machine dependent methods. */
4330 __builtin_unwind_init ();
4331 end = &end;
4332 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4333 #ifndef GC_SAVE_REGISTERS_ON_STACK
4334 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4335 union aligned_jmpbuf {
4336 Lisp_Object o;
4337 jmp_buf j;
4338 } j;
4339 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4340 #endif
4341 /* This trick flushes the register windows so that all the state of
4342 the process is contained in the stack. */
4343 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4344 needed on ia64 too. See mach_dep.c, where it also says inline
4345 assembler doesn't work with relevant proprietary compilers. */
4346 #ifdef __sparc__
4347 #if defined (__sparc64__) && defined (__FreeBSD__)
4348 /* FreeBSD does not have a ta 3 handler. */
4349 asm ("flushw");
4350 #else
4351 asm ("ta 3");
4352 #endif
4353 #endif
4354
4355 /* Save registers that we need to see on the stack. We need to see
4356 registers used to hold register variables and registers used to
4357 pass parameters. */
4358 #ifdef GC_SAVE_REGISTERS_ON_STACK
4359 GC_SAVE_REGISTERS_ON_STACK (end);
4360 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4361
4362 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4363 setjmp will definitely work, test it
4364 and print a message with the result
4365 of the test. */
4366 if (!setjmp_tested_p)
4367 {
4368 setjmp_tested_p = 1;
4369 test_setjmp ();
4370 }
4371 #endif /* GC_SETJMP_WORKS */
4372
4373 setjmp (j.j);
4374 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4375 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4376 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4377
4378 /* This assumes that the stack is a contiguous region in memory. If
4379 that's not the case, something has to be done here to iterate
4380 over the stack segments. */
4381 #ifndef GC_LISP_OBJECT_ALIGNMENT
4382 #ifdef __GNUC__
4383 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4384 #else
4385 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4386 #endif
4387 #endif
4388 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4389 mark_memory (stack_base, end, i);
4390 /* Allow for marking a secondary stack, like the register stack on the
4391 ia64. */
4392 #ifdef GC_MARK_SECONDARY_STACK
4393 GC_MARK_SECONDARY_STACK ();
4394 #endif
4395
4396 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4397 check_gcpros ();
4398 #endif
4399 }
4400
4401 #endif /* GC_MARK_STACK != 0 */
4402
4403
4404 /* Determine whether it is safe to access memory at address P. */
4405 static int
4406 valid_pointer_p (void *p)
4407 {
4408 #ifdef WINDOWSNT
4409 return w32_valid_pointer_p (p, 16);
4410 #else
4411 int fd;
4412
4413 /* Obviously, we cannot just access it (we would SEGV trying), so we
4414 trick the o/s to tell us whether p is a valid pointer.
4415 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4416 not validate p in that case. */
4417
4418 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4419 {
4420 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4421 emacs_close (fd);
4422 unlink ("__Valid__Lisp__Object__");
4423 return valid;
4424 }
4425
4426 return -1;
4427 #endif
4428 }
4429
4430 /* Return 1 if OBJ is a valid lisp object.
4431 Return 0 if OBJ is NOT a valid lisp object.
4432 Return -1 if we cannot validate OBJ.
4433 This function can be quite slow,
4434 so it should only be used in code for manual debugging. */
4435
4436 int
4437 valid_lisp_object_p (Lisp_Object obj)
4438 {
4439 void *p;
4440 #if GC_MARK_STACK
4441 struct mem_node *m;
4442 #endif
4443
4444 if (INTEGERP (obj))
4445 return 1;
4446
4447 p = (void *) XPNTR (obj);
4448 if (PURE_POINTER_P (p))
4449 return 1;
4450
4451 #if !GC_MARK_STACK
4452 return valid_pointer_p (p);
4453 #else
4454
4455 m = mem_find (p);
4456
4457 if (m == MEM_NIL)
4458 {
4459 int valid = valid_pointer_p (p);
4460 if (valid <= 0)
4461 return valid;
4462
4463 if (SUBRP (obj))
4464 return 1;
4465
4466 return 0;
4467 }
4468
4469 switch (m->type)
4470 {
4471 case MEM_TYPE_NON_LISP:
4472 return 0;
4473
4474 case MEM_TYPE_BUFFER:
4475 return live_buffer_p (m, p);
4476
4477 case MEM_TYPE_CONS:
4478 return live_cons_p (m, p);
4479
4480 case MEM_TYPE_STRING:
4481 return live_string_p (m, p);
4482
4483 case MEM_TYPE_MISC:
4484 return live_misc_p (m, p);
4485
4486 case MEM_TYPE_SYMBOL:
4487 return live_symbol_p (m, p);
4488
4489 case MEM_TYPE_FLOAT:
4490 return live_float_p (m, p);
4491
4492 case MEM_TYPE_VECTORLIKE:
4493 return live_vector_p (m, p);
4494
4495 default:
4496 break;
4497 }
4498
4499 return 0;
4500 #endif
4501 }
4502
4503
4504
4505 \f
4506 /***********************************************************************
4507 Pure Storage Management
4508 ***********************************************************************/
4509
4510 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4511 pointer to it. TYPE is the Lisp type for which the memory is
4512 allocated. TYPE < 0 means it's not used for a Lisp object. */
4513
4514 static POINTER_TYPE *
4515 pure_alloc (size_t size, int type)
4516 {
4517 POINTER_TYPE *result;
4518 #ifdef USE_LSB_TAG
4519 size_t alignment = (1 << GCTYPEBITS);
4520 #else
4521 size_t alignment = sizeof (EMACS_INT);
4522
4523 /* Give Lisp_Floats an extra alignment. */
4524 if (type == Lisp_Float)
4525 {
4526 #if defined __GNUC__ && __GNUC__ >= 2
4527 alignment = __alignof (struct Lisp_Float);
4528 #else
4529 alignment = sizeof (struct Lisp_Float);
4530 #endif
4531 }
4532 #endif
4533
4534 again:
4535 if (type >= 0)
4536 {
4537 /* Allocate space for a Lisp object from the beginning of the free
4538 space with taking account of alignment. */
4539 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4540 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4541 }
4542 else
4543 {
4544 /* Allocate space for a non-Lisp object from the end of the free
4545 space. */
4546 pure_bytes_used_non_lisp += size;
4547 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4548 }
4549 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4550
4551 if (pure_bytes_used <= pure_size)
4552 return result;
4553
4554 /* Don't allocate a large amount here,
4555 because it might get mmap'd and then its address
4556 might not be usable. */
4557 purebeg = (char *) xmalloc (10000);
4558 pure_size = 10000;
4559 pure_bytes_used_before_overflow += pure_bytes_used - size;
4560 pure_bytes_used = 0;
4561 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4562 goto again;
4563 }
4564
4565
4566 /* Print a warning if PURESIZE is too small. */
4567
4568 void
4569 check_pure_size (void)
4570 {
4571 if (pure_bytes_used_before_overflow)
4572 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4573 " bytes needed)"),
4574 pure_bytes_used + pure_bytes_used_before_overflow);
4575 }
4576
4577
4578 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4579 the non-Lisp data pool of the pure storage, and return its start
4580 address. Return NULL if not found. */
4581
4582 static char *
4583 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4584 {
4585 int i;
4586 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4587 const unsigned char *p;
4588 char *non_lisp_beg;
4589
4590 if (pure_bytes_used_non_lisp < nbytes + 1)
4591 return NULL;
4592
4593 /* Set up the Boyer-Moore table. */
4594 skip = nbytes + 1;
4595 for (i = 0; i < 256; i++)
4596 bm_skip[i] = skip;
4597
4598 p = (const unsigned char *) data;
4599 while (--skip > 0)
4600 bm_skip[*p++] = skip;
4601
4602 last_char_skip = bm_skip['\0'];
4603
4604 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4605 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4606
4607 /* See the comments in the function `boyer_moore' (search.c) for the
4608 use of `infinity'. */
4609 infinity = pure_bytes_used_non_lisp + 1;
4610 bm_skip['\0'] = infinity;
4611
4612 p = (const unsigned char *) non_lisp_beg + nbytes;
4613 start = 0;
4614 do
4615 {
4616 /* Check the last character (== '\0'). */
4617 do
4618 {
4619 start += bm_skip[*(p + start)];
4620 }
4621 while (start <= start_max);
4622
4623 if (start < infinity)
4624 /* Couldn't find the last character. */
4625 return NULL;
4626
4627 /* No less than `infinity' means we could find the last
4628 character at `p[start - infinity]'. */
4629 start -= infinity;
4630
4631 /* Check the remaining characters. */
4632 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4633 /* Found. */
4634 return non_lisp_beg + start;
4635
4636 start += last_char_skip;
4637 }
4638 while (start <= start_max);
4639
4640 return NULL;
4641 }
4642
4643
4644 /* Return a string allocated in pure space. DATA is a buffer holding
4645 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4646 non-zero means make the result string multibyte.
4647
4648 Must get an error if pure storage is full, since if it cannot hold
4649 a large string it may be able to hold conses that point to that
4650 string; then the string is not protected from gc. */
4651
4652 Lisp_Object
4653 make_pure_string (const char *data,
4654 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4655 {
4656 Lisp_Object string;
4657 struct Lisp_String *s;
4658
4659 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4660 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4661 if (s->data == NULL)
4662 {
4663 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4664 memcpy (s->data, data, nbytes);
4665 s->data[nbytes] = '\0';
4666 }
4667 s->size = nchars;
4668 s->size_byte = multibyte ? nbytes : -1;
4669 s->intervals = NULL_INTERVAL;
4670 XSETSTRING (string, s);
4671 return string;
4672 }
4673
4674 /* Return a string a string allocated in pure space. Do not allocate
4675 the string data, just point to DATA. */
4676
4677 Lisp_Object
4678 make_pure_c_string (const char *data)
4679 {
4680 Lisp_Object string;
4681 struct Lisp_String *s;
4682 EMACS_INT nchars = strlen (data);
4683
4684 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4685 s->size = nchars;
4686 s->size_byte = -1;
4687 s->data = (unsigned char *) data;
4688 s->intervals = NULL_INTERVAL;
4689 XSETSTRING (string, s);
4690 return string;
4691 }
4692
4693 /* Return a cons allocated from pure space. Give it pure copies
4694 of CAR as car and CDR as cdr. */
4695
4696 Lisp_Object
4697 pure_cons (Lisp_Object car, Lisp_Object cdr)
4698 {
4699 register Lisp_Object new;
4700 struct Lisp_Cons *p;
4701
4702 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4703 XSETCONS (new, p);
4704 XSETCAR (new, Fpurecopy (car));
4705 XSETCDR (new, Fpurecopy (cdr));
4706 return new;
4707 }
4708
4709
4710 /* Value is a float object with value NUM allocated from pure space. */
4711
4712 static Lisp_Object
4713 make_pure_float (double num)
4714 {
4715 register Lisp_Object new;
4716 struct Lisp_Float *p;
4717
4718 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4719 XSETFLOAT (new, p);
4720 XFLOAT_INIT (new, num);
4721 return new;
4722 }
4723
4724
4725 /* Return a vector with room for LEN Lisp_Objects allocated from
4726 pure space. */
4727
4728 Lisp_Object
4729 make_pure_vector (EMACS_INT len)
4730 {
4731 Lisp_Object new;
4732 struct Lisp_Vector *p;
4733 size_t size = (offsetof (struct Lisp_Vector, contents)
4734 + len * sizeof (Lisp_Object));
4735
4736 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4737 XSETVECTOR (new, p);
4738 XVECTOR (new)->header.size = len;
4739 return new;
4740 }
4741
4742
4743 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4744 doc: /* Make a copy of object OBJ in pure storage.
4745 Recursively copies contents of vectors and cons cells.
4746 Does not copy symbols. Copies strings without text properties. */)
4747 (register Lisp_Object obj)
4748 {
4749 if (NILP (Vpurify_flag))
4750 return obj;
4751
4752 if (PURE_POINTER_P (XPNTR (obj)))
4753 return obj;
4754
4755 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4756 {
4757 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4758 if (!NILP (tmp))
4759 return tmp;
4760 }
4761
4762 if (CONSP (obj))
4763 obj = pure_cons (XCAR (obj), XCDR (obj));
4764 else if (FLOATP (obj))
4765 obj = make_pure_float (XFLOAT_DATA (obj));
4766 else if (STRINGP (obj))
4767 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4768 SBYTES (obj),
4769 STRING_MULTIBYTE (obj));
4770 else if (COMPILEDP (obj) || VECTORP (obj))
4771 {
4772 register struct Lisp_Vector *vec;
4773 register EMACS_INT i;
4774 EMACS_INT size;
4775
4776 size = ASIZE (obj);
4777 if (size & PSEUDOVECTOR_FLAG)
4778 size &= PSEUDOVECTOR_SIZE_MASK;
4779 vec = XVECTOR (make_pure_vector (size));
4780 for (i = 0; i < size; i++)
4781 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4782 if (COMPILEDP (obj))
4783 {
4784 XSETPVECTYPE (vec, PVEC_COMPILED);
4785 XSETCOMPILED (obj, vec);
4786 }
4787 else
4788 XSETVECTOR (obj, vec);
4789 }
4790 else if (MARKERP (obj))
4791 error ("Attempt to copy a marker to pure storage");
4792 else
4793 /* Not purified, don't hash-cons. */
4794 return obj;
4795
4796 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4797 Fputhash (obj, obj, Vpurify_flag);
4798
4799 return obj;
4800 }
4801
4802
4803 \f
4804 /***********************************************************************
4805 Protection from GC
4806 ***********************************************************************/
4807
4808 /* Put an entry in staticvec, pointing at the variable with address
4809 VARADDRESS. */
4810
4811 void
4812 staticpro (Lisp_Object *varaddress)
4813 {
4814 staticvec[staticidx++] = varaddress;
4815 if (staticidx >= NSTATICS)
4816 abort ();
4817 }
4818
4819 \f
4820 /***********************************************************************
4821 Protection from GC
4822 ***********************************************************************/
4823
4824 /* Temporarily prevent garbage collection. */
4825
4826 int
4827 inhibit_garbage_collection (void)
4828 {
4829 int count = SPECPDL_INDEX ();
4830 int nbits = min (VALBITS, BITS_PER_INT);
4831
4832 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4833 return count;
4834 }
4835
4836
4837 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4838 doc: /* Reclaim storage for Lisp objects no longer needed.
4839 Garbage collection happens automatically if you cons more than
4840 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4841 `garbage-collect' normally returns a list with info on amount of space in use:
4842 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4843 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4844 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4845 (USED-STRINGS . FREE-STRINGS))
4846 However, if there was overflow in pure space, `garbage-collect'
4847 returns nil, because real GC can't be done. */)
4848 (void)
4849 {
4850 register struct specbinding *bind;
4851 char stack_top_variable;
4852 register size_t i;
4853 int message_p;
4854 Lisp_Object total[8];
4855 int count = SPECPDL_INDEX ();
4856 EMACS_TIME t1, t2, t3;
4857
4858 if (abort_on_gc)
4859 abort ();
4860
4861 /* Can't GC if pure storage overflowed because we can't determine
4862 if something is a pure object or not. */
4863 if (pure_bytes_used_before_overflow)
4864 return Qnil;
4865
4866 CHECK_CONS_LIST ();
4867
4868 /* Don't keep undo information around forever.
4869 Do this early on, so it is no problem if the user quits. */
4870 {
4871 register struct buffer *nextb = all_buffers;
4872
4873 while (nextb)
4874 {
4875 /* If a buffer's undo list is Qt, that means that undo is
4876 turned off in that buffer. Calling truncate_undo_list on
4877 Qt tends to return NULL, which effectively turns undo back on.
4878 So don't call truncate_undo_list if undo_list is Qt. */
4879 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4880 truncate_undo_list (nextb);
4881
4882 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4883 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4884 && ! nextb->text->inhibit_shrinking)
4885 {
4886 /* If a buffer's gap size is more than 10% of the buffer
4887 size, or larger than 2000 bytes, then shrink it
4888 accordingly. Keep a minimum size of 20 bytes. */
4889 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4890
4891 if (nextb->text->gap_size > size)
4892 {
4893 struct buffer *save_current = current_buffer;
4894 current_buffer = nextb;
4895 make_gap (-(nextb->text->gap_size - size));
4896 current_buffer = save_current;
4897 }
4898 }
4899
4900 nextb = nextb->header.next.buffer;
4901 }
4902 }
4903
4904 EMACS_GET_TIME (t1);
4905
4906 /* In case user calls debug_print during GC,
4907 don't let that cause a recursive GC. */
4908 consing_since_gc = 0;
4909
4910 /* Save what's currently displayed in the echo area. */
4911 message_p = push_message ();
4912 record_unwind_protect (pop_message_unwind, Qnil);
4913
4914 /* Save a copy of the contents of the stack, for debugging. */
4915 #if MAX_SAVE_STACK > 0
4916 if (NILP (Vpurify_flag))
4917 {
4918 char *stack;
4919 size_t stack_size;
4920 if (&stack_top_variable < stack_bottom)
4921 {
4922 stack = &stack_top_variable;
4923 stack_size = stack_bottom - &stack_top_variable;
4924 }
4925 else
4926 {
4927 stack = stack_bottom;
4928 stack_size = &stack_top_variable - stack_bottom;
4929 }
4930 if (stack_size <= MAX_SAVE_STACK)
4931 {
4932 if (stack_copy_size < stack_size)
4933 {
4934 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4935 stack_copy_size = stack_size;
4936 }
4937 memcpy (stack_copy, stack, stack_size);
4938 }
4939 }
4940 #endif /* MAX_SAVE_STACK > 0 */
4941
4942 if (garbage_collection_messages)
4943 message1_nolog ("Garbage collecting...");
4944
4945 BLOCK_INPUT;
4946
4947 shrink_regexp_cache ();
4948
4949 gc_in_progress = 1;
4950
4951 /* clear_marks (); */
4952
4953 /* Mark all the special slots that serve as the roots of accessibility. */
4954
4955 for (i = 0; i < staticidx; i++)
4956 mark_object (*staticvec[i]);
4957
4958 for (bind = specpdl; bind != specpdl_ptr; bind++)
4959 {
4960 mark_object (bind->symbol);
4961 mark_object (bind->old_value);
4962 }
4963 mark_terminals ();
4964 mark_kboards ();
4965 mark_ttys ();
4966
4967 #ifdef USE_GTK
4968 {
4969 extern void xg_mark_data (void);
4970 xg_mark_data ();
4971 }
4972 #endif
4973
4974 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4975 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4976 mark_stack ();
4977 #else
4978 {
4979 register struct gcpro *tail;
4980 for (tail = gcprolist; tail; tail = tail->next)
4981 for (i = 0; i < tail->nvars; i++)
4982 mark_object (tail->var[i]);
4983 }
4984 mark_byte_stack ();
4985 {
4986 struct catchtag *catch;
4987 struct handler *handler;
4988
4989 for (catch = catchlist; catch; catch = catch->next)
4990 {
4991 mark_object (catch->tag);
4992 mark_object (catch->val);
4993 }
4994 for (handler = handlerlist; handler; handler = handler->next)
4995 {
4996 mark_object (handler->handler);
4997 mark_object (handler->var);
4998 }
4999 }
5000 mark_backtrace ();
5001 #endif
5002
5003 #ifdef HAVE_WINDOW_SYSTEM
5004 mark_fringe_data ();
5005 #endif
5006
5007 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5008 mark_stack ();
5009 #endif
5010
5011 /* Everything is now marked, except for the things that require special
5012 finalization, i.e. the undo_list.
5013 Look thru every buffer's undo list
5014 for elements that update markers that were not marked,
5015 and delete them. */
5016 {
5017 register struct buffer *nextb = all_buffers;
5018
5019 while (nextb)
5020 {
5021 /* If a buffer's undo list is Qt, that means that undo is
5022 turned off in that buffer. Calling truncate_undo_list on
5023 Qt tends to return NULL, which effectively turns undo back on.
5024 So don't call truncate_undo_list if undo_list is Qt. */
5025 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5026 {
5027 Lisp_Object tail, prev;
5028 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5029 prev = Qnil;
5030 while (CONSP (tail))
5031 {
5032 if (CONSP (XCAR (tail))
5033 && MARKERP (XCAR (XCAR (tail)))
5034 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5035 {
5036 if (NILP (prev))
5037 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5038 else
5039 {
5040 tail = XCDR (tail);
5041 XSETCDR (prev, tail);
5042 }
5043 }
5044 else
5045 {
5046 prev = tail;
5047 tail = XCDR (tail);
5048 }
5049 }
5050 }
5051 /* Now that we have stripped the elements that need not be in the
5052 undo_list any more, we can finally mark the list. */
5053 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5054
5055 nextb = nextb->header.next.buffer;
5056 }
5057 }
5058
5059 gc_sweep ();
5060
5061 /* Clear the mark bits that we set in certain root slots. */
5062
5063 unmark_byte_stack ();
5064 VECTOR_UNMARK (&buffer_defaults);
5065 VECTOR_UNMARK (&buffer_local_symbols);
5066
5067 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5068 dump_zombies ();
5069 #endif
5070
5071 UNBLOCK_INPUT;
5072
5073 CHECK_CONS_LIST ();
5074
5075 /* clear_marks (); */
5076 gc_in_progress = 0;
5077
5078 consing_since_gc = 0;
5079 if (gc_cons_threshold < 10000)
5080 gc_cons_threshold = 10000;
5081
5082 gc_relative_threshold = 0;
5083 if (FLOATP (Vgc_cons_percentage))
5084 { /* Set gc_cons_combined_threshold. */
5085 double tot = 0;
5086
5087 tot += total_conses * sizeof (struct Lisp_Cons);
5088 tot += total_symbols * sizeof (struct Lisp_Symbol);
5089 tot += total_markers * sizeof (union Lisp_Misc);
5090 tot += total_string_size;
5091 tot += total_vector_size * sizeof (Lisp_Object);
5092 tot += total_floats * sizeof (struct Lisp_Float);
5093 tot += total_intervals * sizeof (struct interval);
5094 tot += total_strings * sizeof (struct Lisp_String);
5095
5096 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5097 if (0 < tot)
5098 {
5099 if (tot < TYPE_MAXIMUM (EMACS_INT))
5100 gc_relative_threshold = tot;
5101 else
5102 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5103 }
5104 }
5105
5106 if (garbage_collection_messages)
5107 {
5108 if (message_p || minibuf_level > 0)
5109 restore_message ();
5110 else
5111 message1_nolog ("Garbage collecting...done");
5112 }
5113
5114 unbind_to (count, Qnil);
5115
5116 total[0] = Fcons (make_number (total_conses),
5117 make_number (total_free_conses));
5118 total[1] = Fcons (make_number (total_symbols),
5119 make_number (total_free_symbols));
5120 total[2] = Fcons (make_number (total_markers),
5121 make_number (total_free_markers));
5122 total[3] = make_number (total_string_size);
5123 total[4] = make_number (total_vector_size);
5124 total[5] = Fcons (make_number (total_floats),
5125 make_number (total_free_floats));
5126 total[6] = Fcons (make_number (total_intervals),
5127 make_number (total_free_intervals));
5128 total[7] = Fcons (make_number (total_strings),
5129 make_number (total_free_strings));
5130
5131 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5132 {
5133 /* Compute average percentage of zombies. */
5134 double nlive = 0;
5135
5136 for (i = 0; i < 7; ++i)
5137 if (CONSP (total[i]))
5138 nlive += XFASTINT (XCAR (total[i]));
5139
5140 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5141 max_live = max (nlive, max_live);
5142 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5143 max_zombies = max (nzombies, max_zombies);
5144 ++ngcs;
5145 }
5146 #endif
5147
5148 if (!NILP (Vpost_gc_hook))
5149 {
5150 int gc_count = inhibit_garbage_collection ();
5151 safe_run_hooks (Qpost_gc_hook);
5152 unbind_to (gc_count, Qnil);
5153 }
5154
5155 /* Accumulate statistics. */
5156 EMACS_GET_TIME (t2);
5157 EMACS_SUB_TIME (t3, t2, t1);
5158 if (FLOATP (Vgc_elapsed))
5159 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5160 EMACS_SECS (t3) +
5161 EMACS_USECS (t3) * 1.0e-6);
5162 gcs_done++;
5163
5164 return Flist (sizeof total / sizeof *total, total);
5165 }
5166
5167
5168 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5169 only interesting objects referenced from glyphs are strings. */
5170
5171 static void
5172 mark_glyph_matrix (struct glyph_matrix *matrix)
5173 {
5174 struct glyph_row *row = matrix->rows;
5175 struct glyph_row *end = row + matrix->nrows;
5176
5177 for (; row < end; ++row)
5178 if (row->enabled_p)
5179 {
5180 int area;
5181 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5182 {
5183 struct glyph *glyph = row->glyphs[area];
5184 struct glyph *end_glyph = glyph + row->used[area];
5185
5186 for (; glyph < end_glyph; ++glyph)
5187 if (STRINGP (glyph->object)
5188 && !STRING_MARKED_P (XSTRING (glyph->object)))
5189 mark_object (glyph->object);
5190 }
5191 }
5192 }
5193
5194
5195 /* Mark Lisp faces in the face cache C. */
5196
5197 static void
5198 mark_face_cache (struct face_cache *c)
5199 {
5200 if (c)
5201 {
5202 int i, j;
5203 for (i = 0; i < c->used; ++i)
5204 {
5205 struct face *face = FACE_FROM_ID (c->f, i);
5206
5207 if (face)
5208 {
5209 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5210 mark_object (face->lface[j]);
5211 }
5212 }
5213 }
5214 }
5215
5216
5217 \f
5218 /* Mark reference to a Lisp_Object.
5219 If the object referred to has not been seen yet, recursively mark
5220 all the references contained in it. */
5221
5222 #define LAST_MARKED_SIZE 500
5223 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5224 static int last_marked_index;
5225
5226 /* For debugging--call abort when we cdr down this many
5227 links of a list, in mark_object. In debugging,
5228 the call to abort will hit a breakpoint.
5229 Normally this is zero and the check never goes off. */
5230 static size_t mark_object_loop_halt;
5231
5232 static void
5233 mark_vectorlike (struct Lisp_Vector *ptr)
5234 {
5235 EMACS_INT size = ptr->header.size;
5236 EMACS_INT i;
5237
5238 eassert (!VECTOR_MARKED_P (ptr));
5239 VECTOR_MARK (ptr); /* Else mark it */
5240 if (size & PSEUDOVECTOR_FLAG)
5241 size &= PSEUDOVECTOR_SIZE_MASK;
5242
5243 /* Note that this size is not the memory-footprint size, but only
5244 the number of Lisp_Object fields that we should trace.
5245 The distinction is used e.g. by Lisp_Process which places extra
5246 non-Lisp_Object fields at the end of the structure. */
5247 for (i = 0; i < size; i++) /* and then mark its elements */
5248 mark_object (ptr->contents[i]);
5249 }
5250
5251 /* Like mark_vectorlike but optimized for char-tables (and
5252 sub-char-tables) assuming that the contents are mostly integers or
5253 symbols. */
5254
5255 static void
5256 mark_char_table (struct Lisp_Vector *ptr)
5257 {
5258 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5259 int i;
5260
5261 eassert (!VECTOR_MARKED_P (ptr));
5262 VECTOR_MARK (ptr);
5263 for (i = 0; i < size; i++)
5264 {
5265 Lisp_Object val = ptr->contents[i];
5266
5267 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5268 continue;
5269 if (SUB_CHAR_TABLE_P (val))
5270 {
5271 if (! VECTOR_MARKED_P (XVECTOR (val)))
5272 mark_char_table (XVECTOR (val));
5273 }
5274 else
5275 mark_object (val);
5276 }
5277 }
5278
5279 void
5280 mark_object (Lisp_Object arg)
5281 {
5282 register Lisp_Object obj = arg;
5283 #ifdef GC_CHECK_MARKED_OBJECTS
5284 void *po;
5285 struct mem_node *m;
5286 #endif
5287 size_t cdr_count = 0;
5288
5289 loop:
5290
5291 if (PURE_POINTER_P (XPNTR (obj)))
5292 return;
5293
5294 last_marked[last_marked_index++] = obj;
5295 if (last_marked_index == LAST_MARKED_SIZE)
5296 last_marked_index = 0;
5297
5298 /* Perform some sanity checks on the objects marked here. Abort if
5299 we encounter an object we know is bogus. This increases GC time
5300 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5301 #ifdef GC_CHECK_MARKED_OBJECTS
5302
5303 po = (void *) XPNTR (obj);
5304
5305 /* Check that the object pointed to by PO is known to be a Lisp
5306 structure allocated from the heap. */
5307 #define CHECK_ALLOCATED() \
5308 do { \
5309 m = mem_find (po); \
5310 if (m == MEM_NIL) \
5311 abort (); \
5312 } while (0)
5313
5314 /* Check that the object pointed to by PO is live, using predicate
5315 function LIVEP. */
5316 #define CHECK_LIVE(LIVEP) \
5317 do { \
5318 if (!LIVEP (m, po)) \
5319 abort (); \
5320 } while (0)
5321
5322 /* Check both of the above conditions. */
5323 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5324 do { \
5325 CHECK_ALLOCATED (); \
5326 CHECK_LIVE (LIVEP); \
5327 } while (0) \
5328
5329 #else /* not GC_CHECK_MARKED_OBJECTS */
5330
5331 #define CHECK_LIVE(LIVEP) (void) 0
5332 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5333
5334 #endif /* not GC_CHECK_MARKED_OBJECTS */
5335
5336 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5337 {
5338 case Lisp_String:
5339 {
5340 register struct Lisp_String *ptr = XSTRING (obj);
5341 if (STRING_MARKED_P (ptr))
5342 break;
5343 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5344 MARK_INTERVAL_TREE (ptr->intervals);
5345 MARK_STRING (ptr);
5346 #ifdef GC_CHECK_STRING_BYTES
5347 /* Check that the string size recorded in the string is the
5348 same as the one recorded in the sdata structure. */
5349 CHECK_STRING_BYTES (ptr);
5350 #endif /* GC_CHECK_STRING_BYTES */
5351 }
5352 break;
5353
5354 case Lisp_Vectorlike:
5355 if (VECTOR_MARKED_P (XVECTOR (obj)))
5356 break;
5357 #ifdef GC_CHECK_MARKED_OBJECTS
5358 m = mem_find (po);
5359 if (m == MEM_NIL && !SUBRP (obj)
5360 && po != &buffer_defaults
5361 && po != &buffer_local_symbols)
5362 abort ();
5363 #endif /* GC_CHECK_MARKED_OBJECTS */
5364
5365 if (BUFFERP (obj))
5366 {
5367 #ifdef GC_CHECK_MARKED_OBJECTS
5368 if (po != &buffer_defaults && po != &buffer_local_symbols)
5369 {
5370 struct buffer *b;
5371 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5372 ;
5373 if (b == NULL)
5374 abort ();
5375 }
5376 #endif /* GC_CHECK_MARKED_OBJECTS */
5377 mark_buffer (obj);
5378 }
5379 else if (SUBRP (obj))
5380 break;
5381 else if (COMPILEDP (obj))
5382 /* We could treat this just like a vector, but it is better to
5383 save the COMPILED_CONSTANTS element for last and avoid
5384 recursion there. */
5385 {
5386 register struct Lisp_Vector *ptr = XVECTOR (obj);
5387 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5388 int i;
5389
5390 CHECK_LIVE (live_vector_p);
5391 VECTOR_MARK (ptr); /* Else mark it */
5392 for (i = 0; i < size; i++) /* and then mark its elements */
5393 {
5394 if (i != COMPILED_CONSTANTS)
5395 mark_object (ptr->contents[i]);
5396 }
5397 obj = ptr->contents[COMPILED_CONSTANTS];
5398 goto loop;
5399 }
5400 else if (FRAMEP (obj))
5401 {
5402 register struct frame *ptr = XFRAME (obj);
5403 mark_vectorlike (XVECTOR (obj));
5404 mark_face_cache (ptr->face_cache);
5405 }
5406 else if (WINDOWP (obj))
5407 {
5408 register struct Lisp_Vector *ptr = XVECTOR (obj);
5409 struct window *w = XWINDOW (obj);
5410 mark_vectorlike (ptr);
5411 /* Mark glyphs for leaf windows. Marking window matrices is
5412 sufficient because frame matrices use the same glyph
5413 memory. */
5414 if (NILP (w->hchild)
5415 && NILP (w->vchild)
5416 && w->current_matrix)
5417 {
5418 mark_glyph_matrix (w->current_matrix);
5419 mark_glyph_matrix (w->desired_matrix);
5420 }
5421 }
5422 else if (HASH_TABLE_P (obj))
5423 {
5424 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5425 mark_vectorlike ((struct Lisp_Vector *)h);
5426 /* If hash table is not weak, mark all keys and values.
5427 For weak tables, mark only the vector. */
5428 if (NILP (h->weak))
5429 mark_object (h->key_and_value);
5430 else
5431 VECTOR_MARK (XVECTOR (h->key_and_value));
5432 }
5433 else if (CHAR_TABLE_P (obj))
5434 mark_char_table (XVECTOR (obj));
5435 else
5436 mark_vectorlike (XVECTOR (obj));
5437 break;
5438
5439 case Lisp_Symbol:
5440 {
5441 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5442 struct Lisp_Symbol *ptrx;
5443
5444 if (ptr->gcmarkbit)
5445 break;
5446 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5447 ptr->gcmarkbit = 1;
5448 mark_object (ptr->function);
5449 mark_object (ptr->plist);
5450 switch (ptr->redirect)
5451 {
5452 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5453 case SYMBOL_VARALIAS:
5454 {
5455 Lisp_Object tem;
5456 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5457 mark_object (tem);
5458 break;
5459 }
5460 case SYMBOL_LOCALIZED:
5461 {
5462 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5463 /* If the value is forwarded to a buffer or keyboard field,
5464 these are marked when we see the corresponding object.
5465 And if it's forwarded to a C variable, either it's not
5466 a Lisp_Object var, or it's staticpro'd already. */
5467 mark_object (blv->where);
5468 mark_object (blv->valcell);
5469 mark_object (blv->defcell);
5470 break;
5471 }
5472 case SYMBOL_FORWARDED:
5473 /* If the value is forwarded to a buffer or keyboard field,
5474 these are marked when we see the corresponding object.
5475 And if it's forwarded to a C variable, either it's not
5476 a Lisp_Object var, or it's staticpro'd already. */
5477 break;
5478 default: abort ();
5479 }
5480 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5481 MARK_STRING (XSTRING (ptr->xname));
5482 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5483
5484 ptr = ptr->next;
5485 if (ptr)
5486 {
5487 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5488 XSETSYMBOL (obj, ptrx);
5489 goto loop;
5490 }
5491 }
5492 break;
5493
5494 case Lisp_Misc:
5495 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5496 if (XMISCANY (obj)->gcmarkbit)
5497 break;
5498 XMISCANY (obj)->gcmarkbit = 1;
5499
5500 switch (XMISCTYPE (obj))
5501 {
5502
5503 case Lisp_Misc_Marker:
5504 /* DO NOT mark thru the marker's chain.
5505 The buffer's markers chain does not preserve markers from gc;
5506 instead, markers are removed from the chain when freed by gc. */
5507 break;
5508
5509 case Lisp_Misc_Save_Value:
5510 #if GC_MARK_STACK
5511 {
5512 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5513 /* If DOGC is set, POINTER is the address of a memory
5514 area containing INTEGER potential Lisp_Objects. */
5515 if (ptr->dogc)
5516 {
5517 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5518 int nelt;
5519 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5520 mark_maybe_object (*p);
5521 }
5522 }
5523 #endif
5524 break;
5525
5526 case Lisp_Misc_Overlay:
5527 {
5528 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5529 mark_object (ptr->start);
5530 mark_object (ptr->end);
5531 mark_object (ptr->plist);
5532 if (ptr->next)
5533 {
5534 XSETMISC (obj, ptr->next);
5535 goto loop;
5536 }
5537 }
5538 break;
5539
5540 default:
5541 abort ();
5542 }
5543 break;
5544
5545 case Lisp_Cons:
5546 {
5547 register struct Lisp_Cons *ptr = XCONS (obj);
5548 if (CONS_MARKED_P (ptr))
5549 break;
5550 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5551 CONS_MARK (ptr);
5552 /* If the cdr is nil, avoid recursion for the car. */
5553 if (EQ (ptr->u.cdr, Qnil))
5554 {
5555 obj = ptr->car;
5556 cdr_count = 0;
5557 goto loop;
5558 }
5559 mark_object (ptr->car);
5560 obj = ptr->u.cdr;
5561 cdr_count++;
5562 if (cdr_count == mark_object_loop_halt)
5563 abort ();
5564 goto loop;
5565 }
5566
5567 case Lisp_Float:
5568 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5569 FLOAT_MARK (XFLOAT (obj));
5570 break;
5571
5572 case_Lisp_Int:
5573 break;
5574
5575 default:
5576 abort ();
5577 }
5578
5579 #undef CHECK_LIVE
5580 #undef CHECK_ALLOCATED
5581 #undef CHECK_ALLOCATED_AND_LIVE
5582 }
5583
5584 /* Mark the pointers in a buffer structure. */
5585
5586 static void
5587 mark_buffer (Lisp_Object buf)
5588 {
5589 register struct buffer *buffer = XBUFFER (buf);
5590 register Lisp_Object *ptr, tmp;
5591 Lisp_Object base_buffer;
5592
5593 eassert (!VECTOR_MARKED_P (buffer));
5594 VECTOR_MARK (buffer);
5595
5596 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5597
5598 /* For now, we just don't mark the undo_list. It's done later in
5599 a special way just before the sweep phase, and after stripping
5600 some of its elements that are not needed any more. */
5601
5602 if (buffer->overlays_before)
5603 {
5604 XSETMISC (tmp, buffer->overlays_before);
5605 mark_object (tmp);
5606 }
5607 if (buffer->overlays_after)
5608 {
5609 XSETMISC (tmp, buffer->overlays_after);
5610 mark_object (tmp);
5611 }
5612
5613 /* buffer-local Lisp variables start at `undo_list',
5614 tho only the ones from `name' on are GC'd normally. */
5615 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5616 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5617 ptr++)
5618 mark_object (*ptr);
5619
5620 /* If this is an indirect buffer, mark its base buffer. */
5621 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5622 {
5623 XSETBUFFER (base_buffer, buffer->base_buffer);
5624 mark_buffer (base_buffer);
5625 }
5626 }
5627
5628 /* Mark the Lisp pointers in the terminal objects.
5629 Called by the Fgarbage_collector. */
5630
5631 static void
5632 mark_terminals (void)
5633 {
5634 struct terminal *t;
5635 for (t = terminal_list; t; t = t->next_terminal)
5636 {
5637 eassert (t->name != NULL);
5638 #ifdef HAVE_WINDOW_SYSTEM
5639 /* If a terminal object is reachable from a stacpro'ed object,
5640 it might have been marked already. Make sure the image cache
5641 gets marked. */
5642 mark_image_cache (t->image_cache);
5643 #endif /* HAVE_WINDOW_SYSTEM */
5644 if (!VECTOR_MARKED_P (t))
5645 mark_vectorlike ((struct Lisp_Vector *)t);
5646 }
5647 }
5648
5649
5650
5651 /* Value is non-zero if OBJ will survive the current GC because it's
5652 either marked or does not need to be marked to survive. */
5653
5654 int
5655 survives_gc_p (Lisp_Object obj)
5656 {
5657 int survives_p;
5658
5659 switch (XTYPE (obj))
5660 {
5661 case_Lisp_Int:
5662 survives_p = 1;
5663 break;
5664
5665 case Lisp_Symbol:
5666 survives_p = XSYMBOL (obj)->gcmarkbit;
5667 break;
5668
5669 case Lisp_Misc:
5670 survives_p = XMISCANY (obj)->gcmarkbit;
5671 break;
5672
5673 case Lisp_String:
5674 survives_p = STRING_MARKED_P (XSTRING (obj));
5675 break;
5676
5677 case Lisp_Vectorlike:
5678 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5679 break;
5680
5681 case Lisp_Cons:
5682 survives_p = CONS_MARKED_P (XCONS (obj));
5683 break;
5684
5685 case Lisp_Float:
5686 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5687 break;
5688
5689 default:
5690 abort ();
5691 }
5692
5693 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5694 }
5695
5696
5697 \f
5698 /* Sweep: find all structures not marked, and free them. */
5699
5700 static void
5701 gc_sweep (void)
5702 {
5703 /* Remove or mark entries in weak hash tables.
5704 This must be done before any object is unmarked. */
5705 sweep_weak_hash_tables ();
5706
5707 sweep_strings ();
5708 #ifdef GC_CHECK_STRING_BYTES
5709 if (!noninteractive)
5710 check_string_bytes (1);
5711 #endif
5712
5713 /* Put all unmarked conses on free list */
5714 {
5715 register struct cons_block *cblk;
5716 struct cons_block **cprev = &cons_block;
5717 register int lim = cons_block_index;
5718 EMACS_INT num_free = 0, num_used = 0;
5719
5720 cons_free_list = 0;
5721
5722 for (cblk = cons_block; cblk; cblk = *cprev)
5723 {
5724 register int i = 0;
5725 int this_free = 0;
5726 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5727
5728 /* Scan the mark bits an int at a time. */
5729 for (i = 0; i <= ilim; i++)
5730 {
5731 if (cblk->gcmarkbits[i] == -1)
5732 {
5733 /* Fast path - all cons cells for this int are marked. */
5734 cblk->gcmarkbits[i] = 0;
5735 num_used += BITS_PER_INT;
5736 }
5737 else
5738 {
5739 /* Some cons cells for this int are not marked.
5740 Find which ones, and free them. */
5741 int start, pos, stop;
5742
5743 start = i * BITS_PER_INT;
5744 stop = lim - start;
5745 if (stop > BITS_PER_INT)
5746 stop = BITS_PER_INT;
5747 stop += start;
5748
5749 for (pos = start; pos < stop; pos++)
5750 {
5751 if (!CONS_MARKED_P (&cblk->conses[pos]))
5752 {
5753 this_free++;
5754 cblk->conses[pos].u.chain = cons_free_list;
5755 cons_free_list = &cblk->conses[pos];
5756 #if GC_MARK_STACK
5757 cons_free_list->car = Vdead;
5758 #endif
5759 }
5760 else
5761 {
5762 num_used++;
5763 CONS_UNMARK (&cblk->conses[pos]);
5764 }
5765 }
5766 }
5767 }
5768
5769 lim = CONS_BLOCK_SIZE;
5770 /* If this block contains only free conses and we have already
5771 seen more than two blocks worth of free conses then deallocate
5772 this block. */
5773 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5774 {
5775 *cprev = cblk->next;
5776 /* Unhook from the free list. */
5777 cons_free_list = cblk->conses[0].u.chain;
5778 lisp_align_free (cblk);
5779 }
5780 else
5781 {
5782 num_free += this_free;
5783 cprev = &cblk->next;
5784 }
5785 }
5786 total_conses = num_used;
5787 total_free_conses = num_free;
5788 }
5789
5790 /* Put all unmarked floats on free list */
5791 {
5792 register struct float_block *fblk;
5793 struct float_block **fprev = &float_block;
5794 register int lim = float_block_index;
5795 EMACS_INT num_free = 0, num_used = 0;
5796
5797 float_free_list = 0;
5798
5799 for (fblk = float_block; fblk; fblk = *fprev)
5800 {
5801 register int i;
5802 int this_free = 0;
5803 for (i = 0; i < lim; i++)
5804 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5805 {
5806 this_free++;
5807 fblk->floats[i].u.chain = float_free_list;
5808 float_free_list = &fblk->floats[i];
5809 }
5810 else
5811 {
5812 num_used++;
5813 FLOAT_UNMARK (&fblk->floats[i]);
5814 }
5815 lim = FLOAT_BLOCK_SIZE;
5816 /* If this block contains only free floats and we have already
5817 seen more than two blocks worth of free floats then deallocate
5818 this block. */
5819 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5820 {
5821 *fprev = fblk->next;
5822 /* Unhook from the free list. */
5823 float_free_list = fblk->floats[0].u.chain;
5824 lisp_align_free (fblk);
5825 }
5826 else
5827 {
5828 num_free += this_free;
5829 fprev = &fblk->next;
5830 }
5831 }
5832 total_floats = num_used;
5833 total_free_floats = num_free;
5834 }
5835
5836 /* Put all unmarked intervals on free list */
5837 {
5838 register struct interval_block *iblk;
5839 struct interval_block **iprev = &interval_block;
5840 register int lim = interval_block_index;
5841 EMACS_INT num_free = 0, num_used = 0;
5842
5843 interval_free_list = 0;
5844
5845 for (iblk = interval_block; iblk; iblk = *iprev)
5846 {
5847 register int i;
5848 int this_free = 0;
5849
5850 for (i = 0; i < lim; i++)
5851 {
5852 if (!iblk->intervals[i].gcmarkbit)
5853 {
5854 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5855 interval_free_list = &iblk->intervals[i];
5856 this_free++;
5857 }
5858 else
5859 {
5860 num_used++;
5861 iblk->intervals[i].gcmarkbit = 0;
5862 }
5863 }
5864 lim = INTERVAL_BLOCK_SIZE;
5865 /* If this block contains only free intervals and we have already
5866 seen more than two blocks worth of free intervals then
5867 deallocate this block. */
5868 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5869 {
5870 *iprev = iblk->next;
5871 /* Unhook from the free list. */
5872 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5873 lisp_free (iblk);
5874 }
5875 else
5876 {
5877 num_free += this_free;
5878 iprev = &iblk->next;
5879 }
5880 }
5881 total_intervals = num_used;
5882 total_free_intervals = num_free;
5883 }
5884
5885 /* Put all unmarked symbols on free list */
5886 {
5887 register struct symbol_block *sblk;
5888 struct symbol_block **sprev = &symbol_block;
5889 register int lim = symbol_block_index;
5890 EMACS_INT num_free = 0, num_used = 0;
5891
5892 symbol_free_list = NULL;
5893
5894 for (sblk = symbol_block; sblk; sblk = *sprev)
5895 {
5896 int this_free = 0;
5897 struct Lisp_Symbol *sym = sblk->symbols;
5898 struct Lisp_Symbol *end = sym + lim;
5899
5900 for (; sym < end; ++sym)
5901 {
5902 /* Check if the symbol was created during loadup. In such a case
5903 it might be pointed to by pure bytecode which we don't trace,
5904 so we conservatively assume that it is live. */
5905 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5906
5907 if (!sym->gcmarkbit && !pure_p)
5908 {
5909 if (sym->redirect == SYMBOL_LOCALIZED)
5910 xfree (SYMBOL_BLV (sym));
5911 sym->next = symbol_free_list;
5912 symbol_free_list = sym;
5913 #if GC_MARK_STACK
5914 symbol_free_list->function = Vdead;
5915 #endif
5916 ++this_free;
5917 }
5918 else
5919 {
5920 ++num_used;
5921 if (!pure_p)
5922 UNMARK_STRING (XSTRING (sym->xname));
5923 sym->gcmarkbit = 0;
5924 }
5925 }
5926
5927 lim = SYMBOL_BLOCK_SIZE;
5928 /* If this block contains only free symbols and we have already
5929 seen more than two blocks worth of free symbols then deallocate
5930 this block. */
5931 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5932 {
5933 *sprev = sblk->next;
5934 /* Unhook from the free list. */
5935 symbol_free_list = sblk->symbols[0].next;
5936 lisp_free (sblk);
5937 }
5938 else
5939 {
5940 num_free += this_free;
5941 sprev = &sblk->next;
5942 }
5943 }
5944 total_symbols = num_used;
5945 total_free_symbols = num_free;
5946 }
5947
5948 /* Put all unmarked misc's on free list.
5949 For a marker, first unchain it from the buffer it points into. */
5950 {
5951 register struct marker_block *mblk;
5952 struct marker_block **mprev = &marker_block;
5953 register int lim = marker_block_index;
5954 EMACS_INT num_free = 0, num_used = 0;
5955
5956 marker_free_list = 0;
5957
5958 for (mblk = marker_block; mblk; mblk = *mprev)
5959 {
5960 register int i;
5961 int this_free = 0;
5962
5963 for (i = 0; i < lim; i++)
5964 {
5965 if (!mblk->markers[i].u_any.gcmarkbit)
5966 {
5967 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5968 unchain_marker (&mblk->markers[i].u_marker);
5969 /* Set the type of the freed object to Lisp_Misc_Free.
5970 We could leave the type alone, since nobody checks it,
5971 but this might catch bugs faster. */
5972 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5973 mblk->markers[i].u_free.chain = marker_free_list;
5974 marker_free_list = &mblk->markers[i];
5975 this_free++;
5976 }
5977 else
5978 {
5979 num_used++;
5980 mblk->markers[i].u_any.gcmarkbit = 0;
5981 }
5982 }
5983 lim = MARKER_BLOCK_SIZE;
5984 /* If this block contains only free markers and we have already
5985 seen more than two blocks worth of free markers then deallocate
5986 this block. */
5987 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5988 {
5989 *mprev = mblk->next;
5990 /* Unhook from the free list. */
5991 marker_free_list = mblk->markers[0].u_free.chain;
5992 lisp_free (mblk);
5993 }
5994 else
5995 {
5996 num_free += this_free;
5997 mprev = &mblk->next;
5998 }
5999 }
6000
6001 total_markers = num_used;
6002 total_free_markers = num_free;
6003 }
6004
6005 /* Free all unmarked buffers */
6006 {
6007 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6008
6009 while (buffer)
6010 if (!VECTOR_MARKED_P (buffer))
6011 {
6012 if (prev)
6013 prev->header.next = buffer->header.next;
6014 else
6015 all_buffers = buffer->header.next.buffer;
6016 next = buffer->header.next.buffer;
6017 lisp_free (buffer);
6018 buffer = next;
6019 }
6020 else
6021 {
6022 VECTOR_UNMARK (buffer);
6023 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6024 prev = buffer, buffer = buffer->header.next.buffer;
6025 }
6026 }
6027
6028 /* Free all unmarked vectors */
6029 {
6030 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6031 total_vector_size = 0;
6032
6033 while (vector)
6034 if (!VECTOR_MARKED_P (vector))
6035 {
6036 if (prev)
6037 prev->header.next = vector->header.next;
6038 else
6039 all_vectors = vector->header.next.vector;
6040 next = vector->header.next.vector;
6041 lisp_free (vector);
6042 vector = next;
6043
6044 }
6045 else
6046 {
6047 VECTOR_UNMARK (vector);
6048 if (vector->header.size & PSEUDOVECTOR_FLAG)
6049 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6050 else
6051 total_vector_size += vector->header.size;
6052 prev = vector, vector = vector->header.next.vector;
6053 }
6054 }
6055
6056 #ifdef GC_CHECK_STRING_BYTES
6057 if (!noninteractive)
6058 check_string_bytes (1);
6059 #endif
6060 }
6061
6062
6063
6064 \f
6065 /* Debugging aids. */
6066
6067 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6068 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6069 This may be helpful in debugging Emacs's memory usage.
6070 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6071 (void)
6072 {
6073 Lisp_Object end;
6074
6075 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6076
6077 return end;
6078 }
6079
6080 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6081 doc: /* Return a list of counters that measure how much consing there has been.
6082 Each of these counters increments for a certain kind of object.
6083 The counters wrap around from the largest positive integer to zero.
6084 Garbage collection does not decrease them.
6085 The elements of the value are as follows:
6086 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6087 All are in units of 1 = one object consed
6088 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6089 objects consed.
6090 MISCS include overlays, markers, and some internal types.
6091 Frames, windows, buffers, and subprocesses count as vectors
6092 (but the contents of a buffer's text do not count here). */)
6093 (void)
6094 {
6095 Lisp_Object consed[8];
6096
6097 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6098 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6099 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6100 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6101 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6102 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6103 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6104 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6105
6106 return Flist (8, consed);
6107 }
6108
6109 #ifdef ENABLE_CHECKING
6110 int suppress_checking;
6111
6112 void
6113 die (const char *msg, const char *file, int line)
6114 {
6115 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6116 file, line, msg);
6117 abort ();
6118 }
6119 #endif
6120 \f
6121 /* Initialization */
6122
6123 void
6124 init_alloc_once (void)
6125 {
6126 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6127 purebeg = PUREBEG;
6128 pure_size = PURESIZE;
6129 pure_bytes_used = 0;
6130 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6131 pure_bytes_used_before_overflow = 0;
6132
6133 /* Initialize the list of free aligned blocks. */
6134 free_ablock = NULL;
6135
6136 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6137 mem_init ();
6138 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6139 #endif
6140
6141 all_vectors = 0;
6142 ignore_warnings = 1;
6143 #ifdef DOUG_LEA_MALLOC
6144 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6145 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6147 #endif
6148 init_strings ();
6149 init_cons ();
6150 init_symbol ();
6151 init_marker ();
6152 init_float ();
6153 init_intervals ();
6154 init_weak_hash_tables ();
6155
6156 #ifdef REL_ALLOC
6157 malloc_hysteresis = 32;
6158 #else
6159 malloc_hysteresis = 0;
6160 #endif
6161
6162 refill_memory_reserve ();
6163
6164 ignore_warnings = 0;
6165 gcprolist = 0;
6166 byte_stack_list = 0;
6167 staticidx = 0;
6168 consing_since_gc = 0;
6169 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6170 gc_relative_threshold = 0;
6171 }
6172
6173 void
6174 init_alloc (void)
6175 {
6176 gcprolist = 0;
6177 byte_stack_list = 0;
6178 #if GC_MARK_STACK
6179 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6180 setjmp_tested_p = longjmps_done = 0;
6181 #endif
6182 #endif
6183 Vgc_elapsed = make_float (0.0);
6184 gcs_done = 0;
6185 }
6186
6187 void
6188 syms_of_alloc (void)
6189 {
6190 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6191 doc: /* *Number of bytes of consing between garbage collections.
6192 Garbage collection can happen automatically once this many bytes have been
6193 allocated since the last garbage collection. All data types count.
6194
6195 Garbage collection happens automatically only when `eval' is called.
6196
6197 By binding this temporarily to a large number, you can effectively
6198 prevent garbage collection during a part of the program.
6199 See also `gc-cons-percentage'. */);
6200
6201 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6202 doc: /* *Portion of the heap used for allocation.
6203 Garbage collection can happen automatically once this portion of the heap
6204 has been allocated since the last garbage collection.
6205 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6206 Vgc_cons_percentage = make_float (0.1);
6207
6208 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6209 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6210
6211 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6212 doc: /* Number of cons cells that have been consed so far. */);
6213
6214 DEFVAR_INT ("floats-consed", floats_consed,
6215 doc: /* Number of floats that have been consed so far. */);
6216
6217 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6218 doc: /* Number of vector cells that have been consed so far. */);
6219
6220 DEFVAR_INT ("symbols-consed", symbols_consed,
6221 doc: /* Number of symbols that have been consed so far. */);
6222
6223 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6224 doc: /* Number of string characters that have been consed so far. */);
6225
6226 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6227 doc: /* Number of miscellaneous objects that have been consed so far. */);
6228
6229 DEFVAR_INT ("intervals-consed", intervals_consed,
6230 doc: /* Number of intervals that have been consed so far. */);
6231
6232 DEFVAR_INT ("strings-consed", strings_consed,
6233 doc: /* Number of strings that have been consed so far. */);
6234
6235 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6236 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6237 This means that certain objects should be allocated in shared (pure) space.
6238 It can also be set to a hash-table, in which case this table is used to
6239 do hash-consing of the objects allocated to pure space. */);
6240
6241 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6242 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6243 garbage_collection_messages = 0;
6244
6245 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6246 doc: /* Hook run after garbage collection has finished. */);
6247 Vpost_gc_hook = Qnil;
6248 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6249 staticpro (&Qpost_gc_hook);
6250
6251 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6252 doc: /* Precomputed `signal' argument for memory-full error. */);
6253 /* We build this in advance because if we wait until we need it, we might
6254 not be able to allocate the memory to hold it. */
6255 Vmemory_signal_data
6256 = pure_cons (Qerror,
6257 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6258
6259 DEFVAR_LISP ("memory-full", Vmemory_full,
6260 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6261 Vmemory_full = Qnil;
6262
6263 staticpro (&Qgc_cons_threshold);
6264 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6265
6266 staticpro (&Qchar_table_extra_slots);
6267 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6268
6269 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6270 doc: /* Accumulated time elapsed in garbage collections.
6271 The time is in seconds as a floating point value. */);
6272 DEFVAR_INT ("gcs-done", gcs_done,
6273 doc: /* Accumulated number of garbage collections done. */);
6274
6275 defsubr (&Scons);
6276 defsubr (&Slist);
6277 defsubr (&Svector);
6278 defsubr (&Smake_byte_code);
6279 defsubr (&Smake_list);
6280 defsubr (&Smake_vector);
6281 defsubr (&Smake_string);
6282 defsubr (&Smake_bool_vector);
6283 defsubr (&Smake_symbol);
6284 defsubr (&Smake_marker);
6285 defsubr (&Spurecopy);
6286 defsubr (&Sgarbage_collect);
6287 defsubr (&Smemory_limit);
6288 defsubr (&Smemory_use_counts);
6289
6290 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6291 defsubr (&Sgc_status);
6292 #endif
6293 }