Trailing whitespace deleted.
[bpt/emacs.git] / src / floatfns.c
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* ANSI C requires only these float functions:
23 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
24 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
25
26 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
27 Define HAVE_CBRT if you have cbrt.
28 Define HAVE_RINT if you have a working rint.
29 If you don't define these, then the appropriate routines will be simulated.
30
31 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
32 (This should happen automatically.)
33
34 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
35 This has no effect if HAVE_MATHERR is defined.
36
37 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
38 (What systems actually do this? Please let us know.)
39
40 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
41 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
42 range checking will happen before calling the float routines. This has
43 no effect if HAVE_MATHERR is defined (since matherr will be called when
44 a domain error occurs.)
45 */
46
47 #include <config.h>
48 #include <signal.h>
49 #include "lisp.h"
50 #include "syssignal.h"
51
52 #if STDC_HEADERS
53 #include <float.h>
54 #endif
55
56 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
57 #ifndef IEEE_FLOATING_POINT
58 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
59 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
60 #define IEEE_FLOATING_POINT 1
61 #else
62 #define IEEE_FLOATING_POINT 0
63 #endif
64 #endif
65
66 /* Work around a problem that happens because math.h on hpux 7
67 defines two static variables--which, in Emacs, are not really static,
68 because `static' is defined as nothing. The problem is that they are
69 defined both here and in lread.c.
70 These macros prevent the name conflict. */
71 #if defined (HPUX) && !defined (HPUX8)
72 #define _MAXLDBL floatfns_maxldbl
73 #define _NMAXLDBL floatfns_nmaxldbl
74 #endif
75
76 #include <math.h>
77
78 /* This declaration is omitted on some systems, like Ultrix. */
79 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
80 extern double logb ();
81 #endif /* not HPUX and HAVE_LOGB and no logb macro */
82
83 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
84 /* If those are defined, then this is probably a `matherr' machine. */
85 # ifndef HAVE_MATHERR
86 # define HAVE_MATHERR
87 # endif
88 #endif
89
90 #ifdef NO_MATHERR
91 #undef HAVE_MATHERR
92 #endif
93
94 #ifdef HAVE_MATHERR
95 # ifdef FLOAT_CHECK_ERRNO
96 # undef FLOAT_CHECK_ERRNO
97 # endif
98 # ifdef FLOAT_CHECK_DOMAIN
99 # undef FLOAT_CHECK_DOMAIN
100 # endif
101 #endif
102
103 #ifndef NO_FLOAT_CHECK_ERRNO
104 #define FLOAT_CHECK_ERRNO
105 #endif
106
107 #ifdef FLOAT_CHECK_ERRNO
108 # include <errno.h>
109
110 #ifndef USE_CRT_DLL
111 extern int errno;
112 #endif
113 #endif
114
115 /* Avoid traps on VMS from sinh and cosh.
116 All the other functions set errno instead. */
117
118 #ifdef VMS
119 #undef cosh
120 #undef sinh
121 #define cosh(x) ((exp(x)+exp(-x))*0.5)
122 #define sinh(x) ((exp(x)-exp(-x))*0.5)
123 #endif /* VMS */
124
125 #ifdef FLOAT_CATCH_SIGILL
126 static SIGTYPE float_error ();
127 #endif
128
129 /* Nonzero while executing in floating point.
130 This tells float_error what to do. */
131
132 static int in_float;
133
134 /* If an argument is out of range for a mathematical function,
135 here is the actual argument value to use in the error message.
136 These variables are used only across the floating point library call
137 so there is no need to staticpro them. */
138
139 static Lisp_Object float_error_arg, float_error_arg2;
140
141 static char *float_error_fn_name;
142
143 /* Evaluate the floating point expression D, recording NUM
144 as the original argument for error messages.
145 D is normally an assignment expression.
146 Handle errors which may result in signals or may set errno.
147
148 Note that float_error may be declared to return void, so you can't
149 just cast the zero after the colon to (SIGTYPE) to make the types
150 check properly. */
151
152 #ifdef FLOAT_CHECK_ERRNO
153 #define IN_FLOAT(d, name, num) \
154 do { \
155 float_error_arg = num; \
156 float_error_fn_name = name; \
157 in_float = 1; errno = 0; (d); in_float = 0; \
158 switch (errno) { \
159 case 0: break; \
160 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
161 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
162 default: arith_error (float_error_fn_name, float_error_arg); \
163 } \
164 } while (0)
165 #define IN_FLOAT2(d, name, num, num2) \
166 do { \
167 float_error_arg = num; \
168 float_error_arg2 = num2; \
169 float_error_fn_name = name; \
170 in_float = 1; errno = 0; (d); in_float = 0; \
171 switch (errno) { \
172 case 0: break; \
173 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
174 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
175 default: arith_error (float_error_fn_name, float_error_arg); \
176 } \
177 } while (0)
178 #else
179 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
180 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
181 #endif
182
183 /* Convert float to Lisp_Int if it fits, else signal a range error
184 using the given arguments. */
185 #define FLOAT_TO_INT(x, i, name, num) \
186 do \
187 { \
188 if (FIXNUM_OVERFLOW_P (x)) \
189 range_error (name, num); \
190 XSETINT (i, (EMACS_INT)(x)); \
191 } \
192 while (0)
193 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
194 do \
195 { \
196 if (FIXNUM_OVERFLOW_P (x)) \
197 range_error2 (name, num1, num2); \
198 XSETINT (i, (EMACS_INT)(x)); \
199 } \
200 while (0)
201
202 #define arith_error(op,arg) \
203 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
204 #define range_error(op,arg) \
205 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
206 #define range_error2(op,a1,a2) \
207 Fsignal (Qrange_error, Fcons (build_string ((op)), \
208 Fcons ((a1), Fcons ((a2), Qnil))))
209 #define domain_error(op,arg) \
210 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
211 #define domain_error2(op,a1,a2) \
212 Fsignal (Qdomain_error, Fcons (build_string ((op)), \
213 Fcons ((a1), Fcons ((a2), Qnil))))
214
215 /* Extract a Lisp number as a `double', or signal an error. */
216
217 double
218 extract_float (num)
219 Lisp_Object num;
220 {
221 CHECK_NUMBER_OR_FLOAT (num);
222
223 if (FLOATP (num))
224 return XFLOAT_DATA (num);
225 return (double) XINT (num);
226 }
227 \f
228 /* Trig functions. */
229
230 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
231 doc: /* Return the inverse cosine of ARG. */)
232 (arg)
233 register Lisp_Object arg;
234 {
235 double d = extract_float (arg);
236 #ifdef FLOAT_CHECK_DOMAIN
237 if (d > 1.0 || d < -1.0)
238 domain_error ("acos", arg);
239 #endif
240 IN_FLOAT (d = acos (d), "acos", arg);
241 return make_float (d);
242 }
243
244 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
245 doc: /* Return the inverse sine of ARG. */)
246 (arg)
247 register Lisp_Object arg;
248 {
249 double d = extract_float (arg);
250 #ifdef FLOAT_CHECK_DOMAIN
251 if (d > 1.0 || d < -1.0)
252 domain_error ("asin", arg);
253 #endif
254 IN_FLOAT (d = asin (d), "asin", arg);
255 return make_float (d);
256 }
257
258 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
259 doc: /* Return the inverse tangent of the arguments.
260 If only one argument Y is given, return the inverse tangent of Y.
261 If two arguments Y and X are given, return the inverse tangent of Y
262 divided by X, i.e. the angle in radians between the vector (X, Y)
263 and the x-axis. */)
264 (y, x)
265 register Lisp_Object y, x;
266 {
267 double d = extract_float (y);
268
269 if (NILP (x))
270 IN_FLOAT (d = atan (d), "atan", y);
271 else
272 {
273 double d2 = extract_float (x);
274
275 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
276 }
277 return make_float (d);
278 }
279
280 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
281 doc: /* Return the cosine of ARG. */)
282 (arg)
283 register Lisp_Object arg;
284 {
285 double d = extract_float (arg);
286 IN_FLOAT (d = cos (d), "cos", arg);
287 return make_float (d);
288 }
289
290 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
291 doc: /* Return the sine of ARG. */)
292 (arg)
293 register Lisp_Object arg;
294 {
295 double d = extract_float (arg);
296 IN_FLOAT (d = sin (d), "sin", arg);
297 return make_float (d);
298 }
299
300 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
301 doc: /* Return the tangent of ARG. */)
302 (arg)
303 register Lisp_Object arg;
304 {
305 double d = extract_float (arg);
306 double c = cos (d);
307 #ifdef FLOAT_CHECK_DOMAIN
308 if (c == 0.0)
309 domain_error ("tan", arg);
310 #endif
311 IN_FLOAT (d = sin (d) / c, "tan", arg);
312 return make_float (d);
313 }
314 \f
315 #if 0 /* Leave these out unless we find there's a reason for them. */
316
317 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
318 doc: /* Return the bessel function j0 of ARG. */)
319 (arg)
320 register Lisp_Object arg;
321 {
322 double d = extract_float (arg);
323 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
324 return make_float (d);
325 }
326
327 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
328 doc: /* Return the bessel function j1 of ARG. */)
329 (arg)
330 register Lisp_Object arg;
331 {
332 double d = extract_float (arg);
333 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
334 return make_float (d);
335 }
336
337 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
338 doc: /* Return the order N bessel function output jn of ARG.
339 The first arg (the order) is truncated to an integer. */)
340 (n, arg)
341 register Lisp_Object n, arg;
342 {
343 int i1 = extract_float (n);
344 double f2 = extract_float (arg);
345
346 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
347 return make_float (f2);
348 }
349
350 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
351 doc: /* Return the bessel function y0 of ARG. */)
352 (arg)
353 register Lisp_Object arg;
354 {
355 double d = extract_float (arg);
356 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
357 return make_float (d);
358 }
359
360 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
361 doc: /* Return the bessel function y1 of ARG. */)
362 (arg)
363 register Lisp_Object arg;
364 {
365 double d = extract_float (arg);
366 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
367 return make_float (d);
368 }
369
370 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
371 doc: /* Return the order N bessel function output yn of ARG.
372 The first arg (the order) is truncated to an integer. */)
373 (n, arg)
374 register Lisp_Object n, arg;
375 {
376 int i1 = extract_float (n);
377 double f2 = extract_float (arg);
378
379 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
380 return make_float (f2);
381 }
382
383 #endif
384 \f
385 #if 0 /* Leave these out unless we see they are worth having. */
386
387 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
388 doc: /* Return the mathematical error function of ARG. */)
389 (arg)
390 register Lisp_Object arg;
391 {
392 double d = extract_float (arg);
393 IN_FLOAT (d = erf (d), "erf", arg);
394 return make_float (d);
395 }
396
397 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
398 doc: /* Return the complementary error function of ARG. */)
399 (arg)
400 register Lisp_Object arg;
401 {
402 double d = extract_float (arg);
403 IN_FLOAT (d = erfc (d), "erfc", arg);
404 return make_float (d);
405 }
406
407 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
408 doc: /* Return the log gamma of ARG. */)
409 (arg)
410 register Lisp_Object arg;
411 {
412 double d = extract_float (arg);
413 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
414 return make_float (d);
415 }
416
417 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
418 doc: /* Return the cube root of ARG. */)
419 (arg)
420 register Lisp_Object arg;
421 {
422 double d = extract_float (arg);
423 #ifdef HAVE_CBRT
424 IN_FLOAT (d = cbrt (d), "cube-root", arg);
425 #else
426 if (d >= 0.0)
427 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
428 else
429 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
430 #endif
431 return make_float (d);
432 }
433
434 #endif
435 \f
436 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
437 doc: /* Return the exponential base e of ARG. */)
438 (arg)
439 register Lisp_Object arg;
440 {
441 double d = extract_float (arg);
442 #ifdef FLOAT_CHECK_DOMAIN
443 if (d > 709.7827) /* Assume IEEE doubles here */
444 range_error ("exp", arg);
445 else if (d < -709.0)
446 return make_float (0.0);
447 else
448 #endif
449 IN_FLOAT (d = exp (d), "exp", arg);
450 return make_float (d);
451 }
452
453 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
454 doc: /* Return the exponential ARG1 ** ARG2. */)
455 (arg1, arg2)
456 register Lisp_Object arg1, arg2;
457 {
458 double f1, f2;
459
460 CHECK_NUMBER_OR_FLOAT (arg1);
461 CHECK_NUMBER_OR_FLOAT (arg2);
462 if (INTEGERP (arg1) /* common lisp spec */
463 && INTEGERP (arg2)) /* don't promote, if both are ints */
464 { /* this can be improved by pre-calculating */
465 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
466 Lisp_Object val;
467
468 x = XINT (arg1);
469 y = XINT (arg2);
470 acc = 1;
471
472 if (y < 0)
473 {
474 if (x == 1)
475 acc = 1;
476 else if (x == -1)
477 acc = (y & 1) ? -1 : 1;
478 else
479 acc = 0;
480 }
481 else
482 {
483 while (y > 0)
484 {
485 if (y & 1)
486 acc *= x;
487 x *= x;
488 y = (unsigned)y >> 1;
489 }
490 }
491 XSETINT (val, acc);
492 return val;
493 }
494 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
495 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
496 /* Really should check for overflow, too */
497 if (f1 == 0.0 && f2 == 0.0)
498 f1 = 1.0;
499 #ifdef FLOAT_CHECK_DOMAIN
500 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
501 domain_error2 ("expt", arg1, arg2);
502 #endif
503 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
504 return make_float (f1);
505 }
506
507 DEFUN ("log", Flog, Slog, 1, 2, 0,
508 doc: /* Return the natural logarithm of ARG.
509 If second optional argument BASE is given, return log ARG using that base. */)
510 (arg, base)
511 register Lisp_Object arg, base;
512 {
513 double d = extract_float (arg);
514
515 #ifdef FLOAT_CHECK_DOMAIN
516 if (d <= 0.0)
517 domain_error2 ("log", arg, base);
518 #endif
519 if (NILP (base))
520 IN_FLOAT (d = log (d), "log", arg);
521 else
522 {
523 double b = extract_float (base);
524
525 #ifdef FLOAT_CHECK_DOMAIN
526 if (b <= 0.0 || b == 1.0)
527 domain_error2 ("log", arg, base);
528 #endif
529 if (b == 10.0)
530 IN_FLOAT2 (d = log10 (d), "log", arg, base);
531 else
532 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
533 }
534 return make_float (d);
535 }
536
537 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
538 doc: /* Return the logarithm base 10 of ARG. */)
539 (arg)
540 register Lisp_Object arg;
541 {
542 double d = extract_float (arg);
543 #ifdef FLOAT_CHECK_DOMAIN
544 if (d <= 0.0)
545 domain_error ("log10", arg);
546 #endif
547 IN_FLOAT (d = log10 (d), "log10", arg);
548 return make_float (d);
549 }
550
551 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
552 doc: /* Return the square root of ARG. */)
553 (arg)
554 register Lisp_Object arg;
555 {
556 double d = extract_float (arg);
557 #ifdef FLOAT_CHECK_DOMAIN
558 if (d < 0.0)
559 domain_error ("sqrt", arg);
560 #endif
561 IN_FLOAT (d = sqrt (d), "sqrt", arg);
562 return make_float (d);
563 }
564 \f
565 #if 0 /* Not clearly worth adding. */
566
567 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
568 doc: /* Return the inverse hyperbolic cosine of ARG. */)
569 (arg)
570 register Lisp_Object arg;
571 {
572 double d = extract_float (arg);
573 #ifdef FLOAT_CHECK_DOMAIN
574 if (d < 1.0)
575 domain_error ("acosh", arg);
576 #endif
577 #ifdef HAVE_INVERSE_HYPERBOLIC
578 IN_FLOAT (d = acosh (d), "acosh", arg);
579 #else
580 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
581 #endif
582 return make_float (d);
583 }
584
585 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
586 doc: /* Return the inverse hyperbolic sine of ARG. */)
587 (arg)
588 register Lisp_Object arg;
589 {
590 double d = extract_float (arg);
591 #ifdef HAVE_INVERSE_HYPERBOLIC
592 IN_FLOAT (d = asinh (d), "asinh", arg);
593 #else
594 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
595 #endif
596 return make_float (d);
597 }
598
599 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
600 doc: /* Return the inverse hyperbolic tangent of ARG. */)
601 (arg)
602 register Lisp_Object arg;
603 {
604 double d = extract_float (arg);
605 #ifdef FLOAT_CHECK_DOMAIN
606 if (d >= 1.0 || d <= -1.0)
607 domain_error ("atanh", arg);
608 #endif
609 #ifdef HAVE_INVERSE_HYPERBOLIC
610 IN_FLOAT (d = atanh (d), "atanh", arg);
611 #else
612 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
613 #endif
614 return make_float (d);
615 }
616
617 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
618 doc: /* Return the hyperbolic cosine of ARG. */)
619 (arg)
620 register Lisp_Object arg;
621 {
622 double d = extract_float (arg);
623 #ifdef FLOAT_CHECK_DOMAIN
624 if (d > 710.0 || d < -710.0)
625 range_error ("cosh", arg);
626 #endif
627 IN_FLOAT (d = cosh (d), "cosh", arg);
628 return make_float (d);
629 }
630
631 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
632 doc: /* Return the hyperbolic sine of ARG. */)
633 (arg)
634 register Lisp_Object arg;
635 {
636 double d = extract_float (arg);
637 #ifdef FLOAT_CHECK_DOMAIN
638 if (d > 710.0 || d < -710.0)
639 range_error ("sinh", arg);
640 #endif
641 IN_FLOAT (d = sinh (d), "sinh", arg);
642 return make_float (d);
643 }
644
645 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
646 doc: /* Return the hyperbolic tangent of ARG. */)
647 (arg)
648 register Lisp_Object arg;
649 {
650 double d = extract_float (arg);
651 IN_FLOAT (d = tanh (d), "tanh", arg);
652 return make_float (d);
653 }
654 #endif
655 \f
656 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
657 doc: /* Return the absolute value of ARG. */)
658 (arg)
659 register Lisp_Object arg;
660 {
661 CHECK_NUMBER_OR_FLOAT (arg);
662
663 if (FLOATP (arg))
664 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
665 else if (XINT (arg) < 0)
666 XSETINT (arg, - XINT (arg));
667
668 return arg;
669 }
670
671 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
672 doc: /* Return the floating point number equal to ARG. */)
673 (arg)
674 register Lisp_Object arg;
675 {
676 CHECK_NUMBER_OR_FLOAT (arg);
677
678 if (INTEGERP (arg))
679 return make_float ((double) XINT (arg));
680 else /* give 'em the same float back */
681 return arg;
682 }
683
684 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
685 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
686 This is the same as the exponent of a float. */)
687 (arg)
688 Lisp_Object arg;
689 {
690 Lisp_Object val;
691 EMACS_INT value;
692 double f = extract_float (arg);
693
694 if (f == 0.0)
695 value = -(VALMASK >> 1);
696 else
697 {
698 #ifdef HAVE_LOGB
699 IN_FLOAT (value = logb (f), "logb", arg);
700 #else
701 #ifdef HAVE_FREXP
702 int ivalue;
703 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
704 value = ivalue - 1;
705 #else
706 int i;
707 double d;
708 if (f < 0.0)
709 f = -f;
710 value = -1;
711 while (f < 0.5)
712 {
713 for (i = 1, d = 0.5; d * d >= f; i += i)
714 d *= d;
715 f /= d;
716 value -= i;
717 }
718 while (f >= 1.0)
719 {
720 for (i = 1, d = 2.0; d * d <= f; i += i)
721 d *= d;
722 f /= d;
723 value += i;
724 }
725 #endif
726 #endif
727 }
728 XSETINT (val, value);
729 return val;
730 }
731
732
733 /* the rounding functions */
734
735 static Lisp_Object
736 rounding_driver (arg, divisor, double_round, int_round2, name)
737 register Lisp_Object arg, divisor;
738 double (*double_round) ();
739 EMACS_INT (*int_round2) ();
740 char *name;
741 {
742 CHECK_NUMBER_OR_FLOAT (arg);
743
744 if (! NILP (divisor))
745 {
746 EMACS_INT i1, i2;
747
748 CHECK_NUMBER_OR_FLOAT (divisor);
749
750 if (FLOATP (arg) || FLOATP (divisor))
751 {
752 double f1, f2;
753
754 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
755 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
756 if (! IEEE_FLOATING_POINT && f2 == 0)
757 Fsignal (Qarith_error, Qnil);
758
759 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
760 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
761 return arg;
762 }
763
764 i1 = XINT (arg);
765 i2 = XINT (divisor);
766
767 if (i2 == 0)
768 Fsignal (Qarith_error, Qnil);
769
770 XSETINT (arg, (*int_round2) (i1, i2));
771 return arg;
772 }
773
774 if (FLOATP (arg))
775 {
776 double d;
777
778 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
779 FLOAT_TO_INT (d, arg, name, arg);
780 }
781
782 return arg;
783 }
784
785 /* With C's /, the result is implementation-defined if either operand
786 is negative, so take care with negative operands in the following
787 integer functions. */
788
789 static EMACS_INT
790 ceiling2 (i1, i2)
791 EMACS_INT i1, i2;
792 {
793 return (i2 < 0
794 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
795 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
796 }
797
798 static EMACS_INT
799 floor2 (i1, i2)
800 EMACS_INT i1, i2;
801 {
802 return (i2 < 0
803 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
804 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
805 }
806
807 static EMACS_INT
808 truncate2 (i1, i2)
809 EMACS_INT i1, i2;
810 {
811 return (i2 < 0
812 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
813 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
814 }
815
816 static EMACS_INT
817 round2 (i1, i2)
818 EMACS_INT i1, i2;
819 {
820 /* The C language's division operator gives us one remainder R, but
821 we want the remainder R1 on the other side of 0 if R1 is closer
822 to 0 than R is; because we want to round to even, we also want R1
823 if R and R1 are the same distance from 0 and if C's quotient is
824 odd. */
825 EMACS_INT q = i1 / i2;
826 EMACS_INT r = i1 % i2;
827 EMACS_INT abs_r = r < 0 ? -r : r;
828 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
829 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
830 }
831
832 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
833 if `rint' exists but does not work right. */
834 #ifdef HAVE_RINT
835 #define emacs_rint rint
836 #else
837 static double
838 emacs_rint (d)
839 double d;
840 {
841 return floor (d + 0.5);
842 }
843 #endif
844
845 static double
846 double_identity (d)
847 double d;
848 {
849 return d;
850 }
851
852 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
853 doc: /* Return the smallest integer no less than ARG.
854 This rounds the value towards +inf.
855 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
856 (arg, divisor)
857 Lisp_Object arg, divisor;
858 {
859 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
860 }
861
862 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
863 doc: /* Return the largest integer no greater than ARG.
864 This rounds the value towards +inf.
865 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
866 (arg, divisor)
867 Lisp_Object arg, divisor;
868 {
869 return rounding_driver (arg, divisor, floor, floor2, "floor");
870 }
871
872 DEFUN ("round", Fround, Sround, 1, 2, 0,
873 doc: /* Return the nearest integer to ARG.
874 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
875
876 Rounding a value equidistant between two integers may choose the
877 integer closer to zero, or it may prefer an even integer, depending on
878 your machine. For example, \(round 2.5\) can return 3 on some
879 systems, but 2 on others. */)
880 (arg, divisor)
881 Lisp_Object arg, divisor;
882 {
883 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
884 }
885
886 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
887 doc: /* Truncate a floating point number to an int.
888 Rounds ARG toward zero.
889 With optional DIVISOR, truncate ARG/DIVISOR. */)
890 (arg, divisor)
891 Lisp_Object arg, divisor;
892 {
893 return rounding_driver (arg, divisor, double_identity, truncate2,
894 "truncate");
895 }
896
897
898 Lisp_Object
899 fmod_float (x, y)
900 register Lisp_Object x, y;
901 {
902 double f1, f2;
903
904 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
905 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
906
907 if (! IEEE_FLOATING_POINT && f2 == 0)
908 Fsignal (Qarith_error, Qnil);
909
910 /* If the "remainder" comes out with the wrong sign, fix it. */
911 IN_FLOAT2 ((f1 = fmod (f1, f2),
912 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
913 "mod", x, y);
914 return make_float (f1);
915 }
916 \f
917 /* It's not clear these are worth adding. */
918
919 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
920 doc: /* Return the smallest integer no less than ARG, as a float.
921 \(Round toward +inf.\) */)
922 (arg)
923 register Lisp_Object arg;
924 {
925 double d = extract_float (arg);
926 IN_FLOAT (d = ceil (d), "fceiling", arg);
927 return make_float (d);
928 }
929
930 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
931 doc: /* Return the largest integer no greater than ARG, as a float.
932 \(Round towards -inf.\) */)
933 (arg)
934 register Lisp_Object arg;
935 {
936 double d = extract_float (arg);
937 IN_FLOAT (d = floor (d), "ffloor", arg);
938 return make_float (d);
939 }
940
941 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
942 doc: /* Return the nearest integer to ARG, as a float. */)
943 (arg)
944 register Lisp_Object arg;
945 {
946 double d = extract_float (arg);
947 IN_FLOAT (d = emacs_rint (d), "fround", arg);
948 return make_float (d);
949 }
950
951 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
952 doc: /* Truncate a floating point number to an integral float value.
953 Rounds the value toward zero. */)
954 (arg)
955 register Lisp_Object arg;
956 {
957 double d = extract_float (arg);
958 if (d >= 0.0)
959 IN_FLOAT (d = floor (d), "ftruncate", arg);
960 else
961 IN_FLOAT (d = ceil (d), "ftruncate", arg);
962 return make_float (d);
963 }
964 \f
965 #ifdef FLOAT_CATCH_SIGILL
966 static SIGTYPE
967 float_error (signo)
968 int signo;
969 {
970 if (! in_float)
971 fatal_error_signal (signo);
972
973 #ifdef BSD_SYSTEM
974 #ifdef BSD4_1
975 sigrelse (SIGILL);
976 #else /* not BSD4_1 */
977 sigsetmask (SIGEMPTYMASK);
978 #endif /* not BSD4_1 */
979 #else
980 /* Must reestablish handler each time it is called. */
981 signal (SIGILL, float_error);
982 #endif /* BSD_SYSTEM */
983
984 in_float = 0;
985
986 Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
987 }
988
989 /* Another idea was to replace the library function `infnan'
990 where SIGILL is signaled. */
991
992 #endif /* FLOAT_CATCH_SIGILL */
993
994 #ifdef HAVE_MATHERR
995 int
996 matherr (x)
997 struct exception *x;
998 {
999 Lisp_Object args;
1000 if (! in_float)
1001 /* Not called from emacs-lisp float routines; do the default thing. */
1002 return 0;
1003 if (!strcmp (x->name, "pow"))
1004 x->name = "expt";
1005
1006 args
1007 = Fcons (build_string (x->name),
1008 Fcons (make_float (x->arg1),
1009 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
1010 ? Fcons (make_float (x->arg2), Qnil)
1011 : Qnil)));
1012 switch (x->type)
1013 {
1014 case DOMAIN: Fsignal (Qdomain_error, args); break;
1015 case SING: Fsignal (Qsingularity_error, args); break;
1016 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
1017 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
1018 default: Fsignal (Qarith_error, args); break;
1019 }
1020 return (1); /* don't set errno or print a message */
1021 }
1022 #endif /* HAVE_MATHERR */
1023
1024 void
1025 init_floatfns ()
1026 {
1027 #ifdef FLOAT_CATCH_SIGILL
1028 signal (SIGILL, float_error);
1029 #endif
1030 in_float = 0;
1031 }
1032
1033 void
1034 syms_of_floatfns ()
1035 {
1036 defsubr (&Sacos);
1037 defsubr (&Sasin);
1038 defsubr (&Satan);
1039 defsubr (&Scos);
1040 defsubr (&Ssin);
1041 defsubr (&Stan);
1042 #if 0
1043 defsubr (&Sacosh);
1044 defsubr (&Sasinh);
1045 defsubr (&Satanh);
1046 defsubr (&Scosh);
1047 defsubr (&Ssinh);
1048 defsubr (&Stanh);
1049 defsubr (&Sbessel_y0);
1050 defsubr (&Sbessel_y1);
1051 defsubr (&Sbessel_yn);
1052 defsubr (&Sbessel_j0);
1053 defsubr (&Sbessel_j1);
1054 defsubr (&Sbessel_jn);
1055 defsubr (&Serf);
1056 defsubr (&Serfc);
1057 defsubr (&Slog_gamma);
1058 defsubr (&Scube_root);
1059 #endif
1060 defsubr (&Sfceiling);
1061 defsubr (&Sffloor);
1062 defsubr (&Sfround);
1063 defsubr (&Sftruncate);
1064 defsubr (&Sexp);
1065 defsubr (&Sexpt);
1066 defsubr (&Slog);
1067 defsubr (&Slog10);
1068 defsubr (&Ssqrt);
1069
1070 defsubr (&Sabs);
1071 defsubr (&Sfloat);
1072 defsubr (&Slogb);
1073 defsubr (&Sceiling);
1074 defsubr (&Sfloor);
1075 defsubr (&Sround);
1076 defsubr (&Struncate);
1077 }