(Ffind_coding_systems_region_internal): If safe_codings
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*** TABLE OF CONTENTS ***
23
24 0. General comments
25 1. Preamble
26 2. Emacs' internal format (emacs-mule) handlers
27 3. ISO2022 handlers
28 4. Shift-JIS and BIG5 handlers
29 5. CCL handlers
30 6. End-of-line handlers
31 7. C library functions
32 8. Emacs Lisp library functions
33 9. Post-amble
34
35 */
36
37 /*** 0. General comments ***/
38
39
40 /*** GENERAL NOTE on CODING SYSTEMS ***
41
42 A coding system is an encoding mechanism for one or more character
43 sets. Here's a list of coding systems which Emacs can handle. When
44 we say "decode", it means converting some other coding system to
45 Emacs' internal format (emacs-mule), and when we say "encode",
46 it means converting the coding system emacs-mule to some other
47 coding system.
48
49 0. Emacs' internal format (emacs-mule)
50
51 Emacs itself holds a multi-lingual character in buffers and strings
52 in a special format. Details are described in section 2.
53
54 1. ISO2022
55
56 The most famous coding system for multiple character sets. X's
57 Compound Text, various EUCs (Extended Unix Code), and coding
58 systems used in Internet communication such as ISO-2022-JP are
59 all variants of ISO2022. Details are described in section 3.
60
61 2. SJIS (or Shift-JIS or MS-Kanji-Code)
62
63 A coding system to encode character sets: ASCII, JISX0201, and
64 JISX0208. Widely used for PC's in Japan. Details are described in
65 section 4.
66
67 3. BIG5
68
69 A coding system to encode the character sets ASCII and Big5. Widely
70 used for Chinese (mainly in Taiwan and Hong Kong). Details are
71 described in section 4. In this file, when we write "BIG5"
72 (all uppercase), we mean the coding system, and when we write
73 "Big5" (capitalized), we mean the character set.
74
75 4. Raw text
76
77 A coding system for text containing random 8-bit code. Emacs does
78 no code conversion on such text except for end-of-line format.
79
80 5. Other
81
82 If a user wants to read/write text encoded in a coding system not
83 listed above, he can supply a decoder and an encoder for it as CCL
84 (Code Conversion Language) programs. Emacs executes the CCL program
85 while reading/writing.
86
87 Emacs represents a coding system by a Lisp symbol that has a property
88 `coding-system'. But, before actually using the coding system, the
89 information about it is set in a structure of type `struct
90 coding_system' for rapid processing. See section 6 for more details.
91
92 */
93
94 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
95
96 How end-of-line of text is encoded depends on the operating system.
97 For instance, Unix's format is just one byte of `line-feed' code,
98 whereas DOS's format is two-byte sequence of `carriage-return' and
99 `line-feed' codes. MacOS's format is usually one byte of
100 `carriage-return'.
101
102 Since text character encoding and end-of-line encoding are
103 independent, any coding system described above can have any
104 end-of-line format. So Emacs has information about end-of-line
105 format in each coding-system. See section 6 for more details.
106
107 */
108
109 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
110
111 These functions check if a text between SRC and SRC_END is encoded
112 in the coding system category XXX. Each returns an integer value in
113 which appropriate flag bits for the category XXX are set. The flag
114 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
115 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
116 of the range 0x80..0x9F are in multibyte form. */
117 #if 0
118 int
119 detect_coding_emacs_mule (src, src_end, multibytep)
120 unsigned char *src, *src_end;
121 int multibytep;
122 {
123 ...
124 }
125 #endif
126
127 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
128
129 These functions decode SRC_BYTES length of unibyte text at SOURCE
130 encoded in CODING to Emacs' internal format. The resulting
131 multibyte text goes to a place pointed to by DESTINATION, the length
132 of which should not exceed DST_BYTES.
133
134 These functions set the information about original and decoded texts
135 in the members `produced', `produced_char', `consumed', and
136 `consumed_char' of the structure *CODING. They also set the member
137 `result' to one of CODING_FINISH_XXX indicating how the decoding
138 finished.
139
140 DST_BYTES zero means that the source area and destination area are
141 overlapped, which means that we can produce a decoded text until it
142 reaches the head of the not-yet-decoded source text.
143
144 Below is a template for these functions. */
145 #if 0
146 static void
147 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
148 struct coding_system *coding;
149 unsigned char *source, *destination;
150 int src_bytes, dst_bytes;
151 {
152 ...
153 }
154 #endif
155
156 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
157
158 These functions encode SRC_BYTES length text at SOURCE from Emacs'
159 internal multibyte format to CODING. The resulting unibyte text
160 goes to a place pointed to by DESTINATION, the length of which
161 should not exceed DST_BYTES.
162
163 These functions set the information about original and encoded texts
164 in the members `produced', `produced_char', `consumed', and
165 `consumed_char' of the structure *CODING. They also set the member
166 `result' to one of CODING_FINISH_XXX indicating how the encoding
167 finished.
168
169 DST_BYTES zero means that the source area and destination area are
170 overlapped, which means that we can produce encoded text until it
171 reaches at the head of the not-yet-encoded source text.
172
173 Below is a template for these functions. */
174 #if 0
175 static void
176 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
177 struct coding_system *coding;
178 unsigned char *source, *destination;
179 int src_bytes, dst_bytes;
180 {
181 ...
182 }
183 #endif
184
185 /*** COMMONLY USED MACROS ***/
186
187 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
188 get one, two, and three bytes from the source text respectively.
189 If there are not enough bytes in the source, they jump to
190 `label_end_of_loop'. The caller should set variables `coding',
191 `src' and `src_end' to appropriate pointer in advance. These
192 macros are called from decoding routines `decode_coding_XXX', thus
193 it is assumed that the source text is unibyte. */
194
195 #define ONE_MORE_BYTE(c1) \
196 do { \
197 if (src >= src_end) \
198 { \
199 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
200 goto label_end_of_loop; \
201 } \
202 c1 = *src++; \
203 } while (0)
204
205 #define TWO_MORE_BYTES(c1, c2) \
206 do { \
207 if (src + 1 >= src_end) \
208 { \
209 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
210 goto label_end_of_loop; \
211 } \
212 c1 = *src++; \
213 c2 = *src++; \
214 } while (0)
215
216
217 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
218 form if MULTIBYTEP is nonzero. */
219
220 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
221 do { \
222 if (src >= src_end) \
223 { \
224 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
225 goto label_end_of_loop; \
226 } \
227 c1 = *src++; \
228 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
229 c1 = *src++ - 0x20; \
230 } while (0)
231
232 /* Set C to the next character at the source text pointed by `src'.
233 If there are not enough characters in the source, jump to
234 `label_end_of_loop'. The caller should set variables `coding'
235 `src', `src_end', and `translation_table' to appropriate pointers
236 in advance. This macro is used in encoding routines
237 `encode_coding_XXX', thus it assumes that the source text is in
238 multibyte form except for 8-bit characters. 8-bit characters are
239 in multibyte form if coding->src_multibyte is nonzero, else they
240 are represented by a single byte. */
241
242 #define ONE_MORE_CHAR(c) \
243 do { \
244 int len = src_end - src; \
245 int bytes; \
246 if (len <= 0) \
247 { \
248 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
249 goto label_end_of_loop; \
250 } \
251 if (coding->src_multibyte \
252 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
253 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
254 else \
255 c = *src, bytes = 1; \
256 if (!NILP (translation_table)) \
257 c = translate_char (translation_table, c, -1, 0, 0); \
258 src += bytes; \
259 } while (0)
260
261
262 /* Produce a multibyte form of character C to `dst'. Jump to
263 `label_end_of_loop' if there's not enough space at `dst'.
264
265 If we are now in the middle of a composition sequence, the decoded
266 character may be ALTCHAR (for the current composition). In that
267 case, the character goes to coding->cmp_data->data instead of
268 `dst'.
269
270 This macro is used in decoding routines. */
271
272 #define EMIT_CHAR(c) \
273 do { \
274 if (! COMPOSING_P (coding) \
275 || coding->composing == COMPOSITION_RELATIVE \
276 || coding->composing == COMPOSITION_WITH_RULE) \
277 { \
278 int bytes = CHAR_BYTES (c); \
279 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
280 { \
281 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
282 goto label_end_of_loop; \
283 } \
284 dst += CHAR_STRING (c, dst); \
285 coding->produced_char++; \
286 } \
287 \
288 if (COMPOSING_P (coding) \
289 && coding->composing != COMPOSITION_RELATIVE) \
290 { \
291 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
292 coding->composition_rule_follows \
293 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
294 } \
295 } while (0)
296
297
298 #define EMIT_ONE_BYTE(c) \
299 do { \
300 if (dst >= (dst_bytes ? dst_end : src)) \
301 { \
302 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
303 goto label_end_of_loop; \
304 } \
305 *dst++ = c; \
306 } while (0)
307
308 #define EMIT_TWO_BYTES(c1, c2) \
309 do { \
310 if (dst + 2 > (dst_bytes ? dst_end : src)) \
311 { \
312 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
313 goto label_end_of_loop; \
314 } \
315 *dst++ = c1, *dst++ = c2; \
316 } while (0)
317
318 #define EMIT_BYTES(from, to) \
319 do { \
320 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
321 { \
322 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
323 goto label_end_of_loop; \
324 } \
325 while (from < to) \
326 *dst++ = *from++; \
327 } while (0)
328
329 \f
330 /*** 1. Preamble ***/
331
332 #ifdef emacs
333 #include <config.h>
334 #endif
335
336 #include <stdio.h>
337
338 #ifdef emacs
339
340 #include "lisp.h"
341 #include "buffer.h"
342 #include "charset.h"
343 #include "composite.h"
344 #include "ccl.h"
345 #include "coding.h"
346 #include "window.h"
347
348 #else /* not emacs */
349
350 #include "mulelib.h"
351
352 #endif /* not emacs */
353
354 Lisp_Object Qcoding_system, Qeol_type;
355 Lisp_Object Qbuffer_file_coding_system;
356 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
357 Lisp_Object Qno_conversion, Qundecided;
358 Lisp_Object Qcoding_system_history;
359 Lisp_Object Qsafe_chars;
360 Lisp_Object Qvalid_codes;
361
362 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
363 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
364 Lisp_Object Qstart_process, Qopen_network_stream;
365 Lisp_Object Qtarget_idx;
366
367 Lisp_Object Vselect_safe_coding_system_function;
368
369 /* Mnemonic string for each format of end-of-line. */
370 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
371 /* Mnemonic string to indicate format of end-of-line is not yet
372 decided. */
373 Lisp_Object eol_mnemonic_undecided;
374
375 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
376 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
377 int system_eol_type;
378
379 #ifdef emacs
380
381 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
382
383 Lisp_Object Qcoding_system_p, Qcoding_system_error;
384
385 /* Coding system emacs-mule and raw-text are for converting only
386 end-of-line format. */
387 Lisp_Object Qemacs_mule, Qraw_text;
388
389 /* Coding-systems are handed between Emacs Lisp programs and C internal
390 routines by the following three variables. */
391 /* Coding-system for reading files and receiving data from process. */
392 Lisp_Object Vcoding_system_for_read;
393 /* Coding-system for writing files and sending data to process. */
394 Lisp_Object Vcoding_system_for_write;
395 /* Coding-system actually used in the latest I/O. */
396 Lisp_Object Vlast_coding_system_used;
397
398 /* A vector of length 256 which contains information about special
399 Latin codes (especially for dealing with Microsoft codes). */
400 Lisp_Object Vlatin_extra_code_table;
401
402 /* Flag to inhibit code conversion of end-of-line format. */
403 int inhibit_eol_conversion;
404
405 /* Flag to inhibit ISO2022 escape sequence detection. */
406 int inhibit_iso_escape_detection;
407
408 /* Flag to make buffer-file-coding-system inherit from process-coding. */
409 int inherit_process_coding_system;
410
411 /* Coding system to be used to encode text for terminal display. */
412 struct coding_system terminal_coding;
413
414 /* Coding system to be used to encode text for terminal display when
415 terminal coding system is nil. */
416 struct coding_system safe_terminal_coding;
417
418 /* Coding system of what is sent from terminal keyboard. */
419 struct coding_system keyboard_coding;
420
421 /* Default coding system to be used to write a file. */
422 struct coding_system default_buffer_file_coding;
423
424 Lisp_Object Vfile_coding_system_alist;
425 Lisp_Object Vprocess_coding_system_alist;
426 Lisp_Object Vnetwork_coding_system_alist;
427
428 Lisp_Object Vlocale_coding_system;
429
430 #endif /* emacs */
431
432 Lisp_Object Qcoding_category, Qcoding_category_index;
433
434 /* List of symbols `coding-category-xxx' ordered by priority. */
435 Lisp_Object Vcoding_category_list;
436
437 /* Table of coding categories (Lisp symbols). */
438 Lisp_Object Vcoding_category_table;
439
440 /* Table of names of symbol for each coding-category. */
441 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
442 "coding-category-emacs-mule",
443 "coding-category-sjis",
444 "coding-category-iso-7",
445 "coding-category-iso-7-tight",
446 "coding-category-iso-8-1",
447 "coding-category-iso-8-2",
448 "coding-category-iso-7-else",
449 "coding-category-iso-8-else",
450 "coding-category-ccl",
451 "coding-category-big5",
452 "coding-category-utf-8",
453 "coding-category-utf-16-be",
454 "coding-category-utf-16-le",
455 "coding-category-raw-text",
456 "coding-category-binary"
457 };
458
459 /* Table of pointers to coding systems corresponding to each coding
460 categories. */
461 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
462
463 /* Table of coding category masks. Nth element is a mask for a coding
464 category of which priority is Nth. */
465 static
466 int coding_priorities[CODING_CATEGORY_IDX_MAX];
467
468 /* Flag to tell if we look up translation table on character code
469 conversion. */
470 Lisp_Object Venable_character_translation;
471 /* Standard translation table to look up on decoding (reading). */
472 Lisp_Object Vstandard_translation_table_for_decode;
473 /* Standard translation table to look up on encoding (writing). */
474 Lisp_Object Vstandard_translation_table_for_encode;
475
476 Lisp_Object Qtranslation_table;
477 Lisp_Object Qtranslation_table_id;
478 Lisp_Object Qtranslation_table_for_decode;
479 Lisp_Object Qtranslation_table_for_encode;
480
481 /* Alist of charsets vs revision number. */
482 Lisp_Object Vcharset_revision_alist;
483
484 /* Default coding systems used for process I/O. */
485 Lisp_Object Vdefault_process_coding_system;
486
487 /* Global flag to tell that we can't call post-read-conversion and
488 pre-write-conversion functions. Usually the value is zero, but it
489 is set to 1 temporarily while such functions are running. This is
490 to avoid infinite recursive call. */
491 static int inhibit_pre_post_conversion;
492
493 /* Char-table containing safe coding systems of each character. */
494 Lisp_Object Vchar_coding_system_table;
495 Lisp_Object Qchar_coding_system;
496
497 /* Return `safe-chars' property of coding system CODING. Don't check
498 validity of CODING. */
499
500 Lisp_Object
501 coding_safe_chars (coding)
502 struct coding_system *coding;
503 {
504 Lisp_Object coding_spec, plist, safe_chars;
505
506 coding_spec = Fget (coding->symbol, Qcoding_system);
507 plist = XVECTOR (coding_spec)->contents[3];
508 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
509 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
510 }
511
512 #define CODING_SAFE_CHAR_P(safe_chars, c) \
513 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
514
515 \f
516 /*** 2. Emacs internal format (emacs-mule) handlers ***/
517
518 /* Emacs' internal format for representation of multiple character
519 sets is a kind of multi-byte encoding, i.e. characters are
520 represented by variable-length sequences of one-byte codes.
521
522 ASCII characters and control characters (e.g. `tab', `newline') are
523 represented by one-byte sequences which are their ASCII codes, in
524 the range 0x00 through 0x7F.
525
526 8-bit characters of the range 0x80..0x9F are represented by
527 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
528 code + 0x20).
529
530 8-bit characters of the range 0xA0..0xFF are represented by
531 one-byte sequences which are their 8-bit code.
532
533 The other characters are represented by a sequence of `base
534 leading-code', optional `extended leading-code', and one or two
535 `position-code's. The length of the sequence is determined by the
536 base leading-code. Leading-code takes the range 0x81 through 0x9D,
537 whereas extended leading-code and position-code take the range 0xA0
538 through 0xFF. See `charset.h' for more details about leading-code
539 and position-code.
540
541 --- CODE RANGE of Emacs' internal format ---
542 character set range
543 ------------- -----
544 ascii 0x00..0x7F
545 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
546 eight-bit-graphic 0xA0..0xBF
547 ELSE 0x81..0x9D + [0xA0..0xFF]+
548 ---------------------------------------------
549
550 As this is the internal character representation, the format is
551 usually not used externally (i.e. in a file or in a data sent to a
552 process). But, it is possible to have a text externally in this
553 format (i.e. by encoding by the coding system `emacs-mule').
554
555 In that case, a sequence of one-byte codes has a slightly different
556 form.
557
558 Firstly, all characters in eight-bit-control are represented by
559 one-byte sequences which are their 8-bit code.
560
561 Next, character composition data are represented by the byte
562 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
563 where,
564 METHOD is 0xF0 plus one of composition method (enum
565 composition_method),
566
567 BYTES is 0xA0 plus the byte length of these composition data,
568
569 CHARS is 0xA0 plus the number of characters composed by these
570 data,
571
572 COMPONENTs are characters of multibyte form or composition
573 rules encoded by two-byte of ASCII codes.
574
575 In addition, for backward compatibility, the following formats are
576 also recognized as composition data on decoding.
577
578 0x80 MSEQ ...
579 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
580
581 Here,
582 MSEQ is a multibyte form but in these special format:
583 ASCII: 0xA0 ASCII_CODE+0x80,
584 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
585 RULE is a one byte code of the range 0xA0..0xF0 that
586 represents a composition rule.
587 */
588
589 enum emacs_code_class_type emacs_code_class[256];
590
591 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
592 Check if a text is encoded in Emacs' internal format. If it is,
593 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
594
595 static int
596 detect_coding_emacs_mule (src, src_end, multibytep)
597 unsigned char *src, *src_end;
598 int multibytep;
599 {
600 unsigned char c;
601 int composing = 0;
602 /* Dummy for ONE_MORE_BYTE. */
603 struct coding_system dummy_coding;
604 struct coding_system *coding = &dummy_coding;
605
606 while (1)
607 {
608 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
609
610 if (composing)
611 {
612 if (c < 0xA0)
613 composing = 0;
614 else if (c == 0xA0)
615 {
616 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
617 c &= 0x7F;
618 }
619 else
620 c -= 0x20;
621 }
622
623 if (c < 0x20)
624 {
625 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
626 return 0;
627 }
628 else if (c >= 0x80 && c < 0xA0)
629 {
630 if (c == 0x80)
631 /* Old leading code for a composite character. */
632 composing = 1;
633 else
634 {
635 unsigned char *src_base = src - 1;
636 int bytes;
637
638 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
639 bytes))
640 return 0;
641 src = src_base + bytes;
642 }
643 }
644 }
645 label_end_of_loop:
646 return CODING_CATEGORY_MASK_EMACS_MULE;
647 }
648
649
650 /* Record the starting position START and METHOD of one composition. */
651
652 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
653 do { \
654 struct composition_data *cmp_data = coding->cmp_data; \
655 int *data = cmp_data->data + cmp_data->used; \
656 coding->cmp_data_start = cmp_data->used; \
657 data[0] = -1; \
658 data[1] = cmp_data->char_offset + start; \
659 data[3] = (int) method; \
660 cmp_data->used += 4; \
661 } while (0)
662
663 /* Record the ending position END of the current composition. */
664
665 #define CODING_ADD_COMPOSITION_END(coding, end) \
666 do { \
667 struct composition_data *cmp_data = coding->cmp_data; \
668 int *data = cmp_data->data + coding->cmp_data_start; \
669 data[0] = cmp_data->used - coding->cmp_data_start; \
670 data[2] = cmp_data->char_offset + end; \
671 } while (0)
672
673 /* Record one COMPONENT (alternate character or composition rule). */
674
675 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
676 (coding->cmp_data->data[coding->cmp_data->used++] = component)
677
678
679 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
680 is not less than SRC_END, return -1 without incrementing Src. */
681
682 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
683
684
685 /* Decode a character represented as a component of composition
686 sequence of Emacs 20 style at SRC. Set C to that character, store
687 its multibyte form sequence at P, and set P to the end of that
688 sequence. If no valid character is found, set C to -1. */
689
690 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
691 do { \
692 int bytes; \
693 \
694 c = SAFE_ONE_MORE_BYTE (); \
695 if (c < 0) \
696 break; \
697 if (CHAR_HEAD_P (c)) \
698 c = -1; \
699 else if (c == 0xA0) \
700 { \
701 c = SAFE_ONE_MORE_BYTE (); \
702 if (c < 0xA0) \
703 c = -1; \
704 else \
705 { \
706 c -= 0xA0; \
707 *p++ = c; \
708 } \
709 } \
710 else if (BASE_LEADING_CODE_P (c - 0x20)) \
711 { \
712 unsigned char *p0 = p; \
713 \
714 c -= 0x20; \
715 *p++ = c; \
716 bytes = BYTES_BY_CHAR_HEAD (c); \
717 while (--bytes) \
718 { \
719 c = SAFE_ONE_MORE_BYTE (); \
720 if (c < 0) \
721 break; \
722 *p++ = c; \
723 } \
724 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
725 c = STRING_CHAR (p0, bytes); \
726 else \
727 c = -1; \
728 } \
729 else \
730 c = -1; \
731 } while (0)
732
733
734 /* Decode a composition rule represented as a component of composition
735 sequence of Emacs 20 style at SRC. Set C to the rule. If not
736 valid rule is found, set C to -1. */
737
738 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
739 do { \
740 c = SAFE_ONE_MORE_BYTE (); \
741 c -= 0xA0; \
742 if (c < 0 || c >= 81) \
743 c = -1; \
744 else \
745 { \
746 gref = c / 9, nref = c % 9; \
747 c = COMPOSITION_ENCODE_RULE (gref, nref); \
748 } \
749 } while (0)
750
751
752 /* Decode composition sequence encoded by `emacs-mule' at the source
753 pointed by SRC. SRC_END is the end of source. Store information
754 of the composition in CODING->cmp_data.
755
756 For backward compatibility, decode also a composition sequence of
757 Emacs 20 style. In that case, the composition sequence contains
758 characters that should be extracted into a buffer or string. Store
759 those characters at *DESTINATION in multibyte form.
760
761 If we encounter an invalid byte sequence, return 0.
762 If we encounter an insufficient source or destination, or
763 insufficient space in CODING->cmp_data, return 1.
764 Otherwise, return consumed bytes in the source.
765
766 */
767 static INLINE int
768 decode_composition_emacs_mule (coding, src, src_end,
769 destination, dst_end, dst_bytes)
770 struct coding_system *coding;
771 unsigned char *src, *src_end, **destination, *dst_end;
772 int dst_bytes;
773 {
774 unsigned char *dst = *destination;
775 int method, data_len, nchars;
776 unsigned char *src_base = src++;
777 /* Store components of composition. */
778 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
779 int ncomponent;
780 /* Store multibyte form of characters to be composed. This is for
781 Emacs 20 style composition sequence. */
782 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
783 unsigned char *bufp = buf;
784 int c, i, gref, nref;
785
786 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
787 >= COMPOSITION_DATA_SIZE)
788 {
789 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
790 return -1;
791 }
792
793 ONE_MORE_BYTE (c);
794 if (c - 0xF0 >= COMPOSITION_RELATIVE
795 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
796 {
797 int with_rule;
798
799 method = c - 0xF0;
800 with_rule = (method == COMPOSITION_WITH_RULE
801 || method == COMPOSITION_WITH_RULE_ALTCHARS);
802 ONE_MORE_BYTE (c);
803 data_len = c - 0xA0;
804 if (data_len < 4
805 || src_base + data_len > src_end)
806 return 0;
807 ONE_MORE_BYTE (c);
808 nchars = c - 0xA0;
809 if (c < 1)
810 return 0;
811 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
812 {
813 if (ncomponent % 2 && with_rule)
814 {
815 ONE_MORE_BYTE (gref);
816 gref -= 32;
817 ONE_MORE_BYTE (nref);
818 nref -= 32;
819 c = COMPOSITION_ENCODE_RULE (gref, nref);
820 }
821 else
822 {
823 int bytes;
824 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
825 c = STRING_CHAR (src, bytes);
826 else
827 c = *src, bytes = 1;
828 src += bytes;
829 }
830 component[ncomponent] = c;
831 }
832 }
833 else
834 {
835 /* This may be an old Emacs 20 style format. See the comment at
836 the section 2 of this file. */
837 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
838 if (src == src_end
839 && !(coding->mode & CODING_MODE_LAST_BLOCK))
840 goto label_end_of_loop;
841
842 src_end = src;
843 src = src_base + 1;
844 if (c < 0xC0)
845 {
846 method = COMPOSITION_RELATIVE;
847 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
848 {
849 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
850 if (c < 0)
851 break;
852 component[ncomponent++] = c;
853 }
854 if (ncomponent < 2)
855 return 0;
856 nchars = ncomponent;
857 }
858 else if (c == 0xFF)
859 {
860 method = COMPOSITION_WITH_RULE;
861 src++;
862 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
863 if (c < 0)
864 return 0;
865 component[0] = c;
866 for (ncomponent = 1;
867 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
868 {
869 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
870 if (c < 0)
871 break;
872 component[ncomponent++] = c;
873 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
874 if (c < 0)
875 break;
876 component[ncomponent++] = c;
877 }
878 if (ncomponent < 3)
879 return 0;
880 nchars = (ncomponent + 1) / 2;
881 }
882 else
883 return 0;
884 }
885
886 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
887 {
888 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
889 for (i = 0; i < ncomponent; i++)
890 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
891 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
892 if (buf < bufp)
893 {
894 unsigned char *p = buf;
895 EMIT_BYTES (p, bufp);
896 *destination += bufp - buf;
897 coding->produced_char += nchars;
898 }
899 return (src - src_base);
900 }
901 label_end_of_loop:
902 return -1;
903 }
904
905 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
906
907 static void
908 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
909 struct coding_system *coding;
910 unsigned char *source, *destination;
911 int src_bytes, dst_bytes;
912 {
913 unsigned char *src = source;
914 unsigned char *src_end = source + src_bytes;
915 unsigned char *dst = destination;
916 unsigned char *dst_end = destination + dst_bytes;
917 /* SRC_BASE remembers the start position in source in each loop.
918 The loop will be exited when there's not enough source code, or
919 when there's not enough destination area to produce a
920 character. */
921 unsigned char *src_base;
922
923 coding->produced_char = 0;
924 while ((src_base = src) < src_end)
925 {
926 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
927 int bytes;
928
929 if (*src == '\r')
930 {
931 int c = *src++;
932
933 if (coding->eol_type == CODING_EOL_CR)
934 c = '\n';
935 else if (coding->eol_type == CODING_EOL_CRLF)
936 {
937 ONE_MORE_BYTE (c);
938 if (c != '\n')
939 {
940 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
941 {
942 coding->result = CODING_FINISH_INCONSISTENT_EOL;
943 goto label_end_of_loop;
944 }
945 src--;
946 c = '\r';
947 }
948 }
949 *dst++ = c;
950 coding->produced_char++;
951 continue;
952 }
953 else if (*src == '\n')
954 {
955 if ((coding->eol_type == CODING_EOL_CR
956 || coding->eol_type == CODING_EOL_CRLF)
957 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
958 {
959 coding->result = CODING_FINISH_INCONSISTENT_EOL;
960 goto label_end_of_loop;
961 }
962 *dst++ = *src++;
963 coding->produced_char++;
964 continue;
965 }
966 else if (*src == 0x80)
967 {
968 /* Start of composition data. */
969 int consumed = decode_composition_emacs_mule (coding, src, src_end,
970 &dst, dst_end,
971 dst_bytes);
972 if (consumed < 0)
973 goto label_end_of_loop;
974 else if (consumed > 0)
975 {
976 src += consumed;
977 continue;
978 }
979 bytes = CHAR_STRING (*src, tmp);
980 p = tmp;
981 src++;
982 }
983 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
984 {
985 p = src;
986 src += bytes;
987 }
988 else
989 {
990 bytes = CHAR_STRING (*src, tmp);
991 p = tmp;
992 src++;
993 }
994 if (dst + bytes >= (dst_bytes ? dst_end : src))
995 {
996 coding->result = CODING_FINISH_INSUFFICIENT_DST;
997 break;
998 }
999 while (bytes--) *dst++ = *p++;
1000 coding->produced_char++;
1001 }
1002 label_end_of_loop:
1003 coding->consumed = coding->consumed_char = src_base - source;
1004 coding->produced = dst - destination;
1005 }
1006
1007
1008 /* Encode composition data stored at DATA into a special byte sequence
1009 starting by 0x80. Update CODING->cmp_data_start and maybe
1010 CODING->cmp_data for the next call. */
1011
1012 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1013 do { \
1014 unsigned char buf[1024], *p0 = buf, *p; \
1015 int len = data[0]; \
1016 int i; \
1017 \
1018 buf[0] = 0x80; \
1019 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1020 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1021 p = buf + 4; \
1022 if (data[3] == COMPOSITION_WITH_RULE \
1023 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1024 { \
1025 p += CHAR_STRING (data[4], p); \
1026 for (i = 5; i < len; i += 2) \
1027 { \
1028 int gref, nref; \
1029 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1030 *p++ = 0x20 + gref; \
1031 *p++ = 0x20 + nref; \
1032 p += CHAR_STRING (data[i + 1], p); \
1033 } \
1034 } \
1035 else \
1036 { \
1037 for (i = 4; i < len; i++) \
1038 p += CHAR_STRING (data[i], p); \
1039 } \
1040 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1041 \
1042 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1043 { \
1044 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1045 goto label_end_of_loop; \
1046 } \
1047 while (p0 < p) \
1048 *dst++ = *p0++; \
1049 coding->cmp_data_start += data[0]; \
1050 if (coding->cmp_data_start == coding->cmp_data->used \
1051 && coding->cmp_data->next) \
1052 { \
1053 coding->cmp_data = coding->cmp_data->next; \
1054 coding->cmp_data_start = 0; \
1055 } \
1056 } while (0)
1057
1058
1059 static void encode_eol P_ ((struct coding_system *, unsigned char *,
1060 unsigned char *, int, int));
1061
1062 static void
1063 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1064 struct coding_system *coding;
1065 unsigned char *source, *destination;
1066 int src_bytes, dst_bytes;
1067 {
1068 unsigned char *src = source;
1069 unsigned char *src_end = source + src_bytes;
1070 unsigned char *dst = destination;
1071 unsigned char *dst_end = destination + dst_bytes;
1072 unsigned char *src_base;
1073 int c;
1074 int char_offset;
1075 int *data;
1076
1077 Lisp_Object translation_table;
1078
1079 translation_table = Qnil;
1080
1081 /* Optimization for the case that there's no composition. */
1082 if (!coding->cmp_data || coding->cmp_data->used == 0)
1083 {
1084 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1085 return;
1086 }
1087
1088 char_offset = coding->cmp_data->char_offset;
1089 data = coding->cmp_data->data + coding->cmp_data_start;
1090 while (1)
1091 {
1092 src_base = src;
1093
1094 /* If SRC starts a composition, encode the information about the
1095 composition in advance. */
1096 if (coding->cmp_data_start < coding->cmp_data->used
1097 && char_offset + coding->consumed_char == data[1])
1098 {
1099 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1100 char_offset = coding->cmp_data->char_offset;
1101 data = coding->cmp_data->data + coding->cmp_data_start;
1102 }
1103
1104 ONE_MORE_CHAR (c);
1105 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1106 || coding->eol_type == CODING_EOL_CR))
1107 {
1108 if (coding->eol_type == CODING_EOL_CRLF)
1109 EMIT_TWO_BYTES ('\r', c);
1110 else
1111 EMIT_ONE_BYTE ('\r');
1112 }
1113 else if (SINGLE_BYTE_CHAR_P (c))
1114 EMIT_ONE_BYTE (c);
1115 else
1116 EMIT_BYTES (src_base, src);
1117 coding->consumed_char++;
1118 }
1119 label_end_of_loop:
1120 coding->consumed = src_base - source;
1121 coding->produced = coding->produced_char = dst - destination;
1122 return;
1123 }
1124
1125 \f
1126 /*** 3. ISO2022 handlers ***/
1127
1128 /* The following note describes the coding system ISO2022 briefly.
1129 Since the intention of this note is to help understand the
1130 functions in this file, some parts are NOT ACCURATE or are OVERLY
1131 SIMPLIFIED. For thorough understanding, please refer to the
1132 original document of ISO2022. This is equivalent to the standard
1133 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1134
1135 ISO2022 provides many mechanisms to encode several character sets
1136 in 7-bit and 8-bit environments. For 7-bit environments, all text
1137 is encoded using bytes less than 128. This may make the encoded
1138 text a little bit longer, but the text passes more easily through
1139 several types of gateway, some of which strip off the MSB (Most
1140 Significant Bit).
1141
1142 There are two kinds of character sets: control character sets and
1143 graphic character sets. The former contain control characters such
1144 as `newline' and `escape' to provide control functions (control
1145 functions are also provided by escape sequences). The latter
1146 contain graphic characters such as 'A' and '-'. Emacs recognizes
1147 two control character sets and many graphic character sets.
1148
1149 Graphic character sets are classified into one of the following
1150 four classes, according to the number of bytes (DIMENSION) and
1151 number of characters in one dimension (CHARS) of the set:
1152 - DIMENSION1_CHARS94
1153 - DIMENSION1_CHARS96
1154 - DIMENSION2_CHARS94
1155 - DIMENSION2_CHARS96
1156
1157 In addition, each character set is assigned an identification tag,
1158 unique for each set, called the "final character" (denoted as <F>
1159 hereafter). The <F> of each character set is decided by ECMA(*)
1160 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1161 (0x30..0x3F are for private use only).
1162
1163 Note (*): ECMA = European Computer Manufacturers Association
1164
1165 Here are examples of graphic character sets [NAME(<F>)]:
1166 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1167 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1168 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1169 o DIMENSION2_CHARS96 -- none for the moment
1170
1171 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1172 C0 [0x00..0x1F] -- control character plane 0
1173 GL [0x20..0x7F] -- graphic character plane 0
1174 C1 [0x80..0x9F] -- control character plane 1
1175 GR [0xA0..0xFF] -- graphic character plane 1
1176
1177 A control character set is directly designated and invoked to C0 or
1178 C1 by an escape sequence. The most common case is that:
1179 - ISO646's control character set is designated/invoked to C0, and
1180 - ISO6429's control character set is designated/invoked to C1,
1181 and usually these designations/invocations are omitted in encoded
1182 text. In a 7-bit environment, only C0 can be used, and a control
1183 character for C1 is encoded by an appropriate escape sequence to
1184 fit into the environment. All control characters for C1 are
1185 defined to have corresponding escape sequences.
1186
1187 A graphic character set is at first designated to one of four
1188 graphic registers (G0 through G3), then these graphic registers are
1189 invoked to GL or GR. These designations and invocations can be
1190 done independently. The most common case is that G0 is invoked to
1191 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1192 these invocations and designations are omitted in encoded text.
1193 In a 7-bit environment, only GL can be used.
1194
1195 When a graphic character set of CHARS94 is invoked to GL, codes
1196 0x20 and 0x7F of the GL area work as control characters SPACE and
1197 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1198 be used.
1199
1200 There are two ways of invocation: locking-shift and single-shift.
1201 With locking-shift, the invocation lasts until the next different
1202 invocation, whereas with single-shift, the invocation affects the
1203 following character only and doesn't affect the locking-shift
1204 state. Invocations are done by the following control characters or
1205 escape sequences:
1206
1207 ----------------------------------------------------------------------
1208 abbrev function cntrl escape seq description
1209 ----------------------------------------------------------------------
1210 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1211 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1212 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1213 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1214 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1215 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1216 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1217 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1218 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1219 ----------------------------------------------------------------------
1220 (*) These are not used by any known coding system.
1221
1222 Control characters for these functions are defined by macros
1223 ISO_CODE_XXX in `coding.h'.
1224
1225 Designations are done by the following escape sequences:
1226 ----------------------------------------------------------------------
1227 escape sequence description
1228 ----------------------------------------------------------------------
1229 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1230 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1231 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1232 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1233 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1234 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1235 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1236 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1237 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1238 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1239 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1240 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1241 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1242 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1243 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1244 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1245 ----------------------------------------------------------------------
1246
1247 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1248 of dimension 1, chars 94, and final character <F>, etc...
1249
1250 Note (*): Although these designations are not allowed in ISO2022,
1251 Emacs accepts them on decoding, and produces them on encoding
1252 CHARS96 character sets in a coding system which is characterized as
1253 7-bit environment, non-locking-shift, and non-single-shift.
1254
1255 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1256 '(' can be omitted. We refer to this as "short-form" hereafter.
1257
1258 Now you may notice that there are a lot of ways of encoding the
1259 same multilingual text in ISO2022. Actually, there exist many
1260 coding systems such as Compound Text (used in X11's inter client
1261 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1262 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1263 localized platforms), and all of these are variants of ISO2022.
1264
1265 In addition to the above, Emacs handles two more kinds of escape
1266 sequences: ISO6429's direction specification and Emacs' private
1267 sequence for specifying character composition.
1268
1269 ISO6429's direction specification takes the following form:
1270 o CSI ']' -- end of the current direction
1271 o CSI '0' ']' -- end of the current direction
1272 o CSI '1' ']' -- start of left-to-right text
1273 o CSI '2' ']' -- start of right-to-left text
1274 The control character CSI (0x9B: control sequence introducer) is
1275 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1276
1277 Character composition specification takes the following form:
1278 o ESC '0' -- start relative composition
1279 o ESC '1' -- end composition
1280 o ESC '2' -- start rule-base composition (*)
1281 o ESC '3' -- start relative composition with alternate chars (**)
1282 o ESC '4' -- start rule-base composition with alternate chars (**)
1283 Since these are not standard escape sequences of any ISO standard,
1284 the use of them with these meanings is restricted to Emacs only.
1285
1286 (*) This form is used only in Emacs 20.5 and older versions,
1287 but the newer versions can safely decode it.
1288 (**) This form is used only in Emacs 21.1 and newer versions,
1289 and the older versions can't decode it.
1290
1291 Here's a list of example usages of these composition escape
1292 sequences (categorized by `enum composition_method').
1293
1294 COMPOSITION_RELATIVE:
1295 ESC 0 CHAR [ CHAR ] ESC 1
1296 COMPOSITION_WITH_RULE:
1297 ESC 2 CHAR [ RULE CHAR ] ESC 1
1298 COMPOSITION_WITH_ALTCHARS:
1299 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1300 COMPOSITION_WITH_RULE_ALTCHARS:
1301 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1302
1303 enum iso_code_class_type iso_code_class[256];
1304
1305 #define CHARSET_OK(idx, charset, c) \
1306 (coding_system_table[idx] \
1307 && (charset == CHARSET_ASCII \
1308 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
1309 CODING_SAFE_CHAR_P (safe_chars, c))) \
1310 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1311 charset) \
1312 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1313
1314 #define SHIFT_OUT_OK(idx) \
1315 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1316
1317 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1318 Check if a text is encoded in ISO2022. If it is, return an
1319 integer in which appropriate flag bits any of:
1320 CODING_CATEGORY_MASK_ISO_7
1321 CODING_CATEGORY_MASK_ISO_7_TIGHT
1322 CODING_CATEGORY_MASK_ISO_8_1
1323 CODING_CATEGORY_MASK_ISO_8_2
1324 CODING_CATEGORY_MASK_ISO_7_ELSE
1325 CODING_CATEGORY_MASK_ISO_8_ELSE
1326 are set. If a code which should never appear in ISO2022 is found,
1327 returns 0. */
1328
1329 static int
1330 detect_coding_iso2022 (src, src_end, multibytep)
1331 unsigned char *src, *src_end;
1332 int multibytep;
1333 {
1334 int mask = CODING_CATEGORY_MASK_ISO;
1335 int mask_found = 0;
1336 int reg[4], shift_out = 0, single_shifting = 0;
1337 int c, c1, charset;
1338 /* Dummy for ONE_MORE_BYTE. */
1339 struct coding_system dummy_coding;
1340 struct coding_system *coding = &dummy_coding;
1341 Lisp_Object safe_chars;
1342
1343 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1344 while (mask && src < src_end)
1345 {
1346 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1347 switch (c)
1348 {
1349 case ISO_CODE_ESC:
1350 if (inhibit_iso_escape_detection)
1351 break;
1352 single_shifting = 0;
1353 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1354 if (c >= '(' && c <= '/')
1355 {
1356 /* Designation sequence for a charset of dimension 1. */
1357 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1358 if (c1 < ' ' || c1 >= 0x80
1359 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1360 /* Invalid designation sequence. Just ignore. */
1361 break;
1362 reg[(c - '(') % 4] = charset;
1363 }
1364 else if (c == '$')
1365 {
1366 /* Designation sequence for a charset of dimension 2. */
1367 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1368 if (c >= '@' && c <= 'B')
1369 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1370 reg[0] = charset = iso_charset_table[1][0][c];
1371 else if (c >= '(' && c <= '/')
1372 {
1373 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1374 if (c1 < ' ' || c1 >= 0x80
1375 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1376 /* Invalid designation sequence. Just ignore. */
1377 break;
1378 reg[(c - '(') % 4] = charset;
1379 }
1380 else
1381 /* Invalid designation sequence. Just ignore. */
1382 break;
1383 }
1384 else if (c == 'N' || c == 'O')
1385 {
1386 /* ESC <Fe> for SS2 or SS3. */
1387 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1388 break;
1389 }
1390 else if (c >= '0' && c <= '4')
1391 {
1392 /* ESC <Fp> for start/end composition. */
1393 mask_found |= CODING_CATEGORY_MASK_ISO;
1394 break;
1395 }
1396 else
1397 /* Invalid escape sequence. Just ignore. */
1398 break;
1399
1400 /* We found a valid designation sequence for CHARSET. */
1401 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1402 c = MAKE_CHAR (charset, 0, 0);
1403 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1404 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1405 else
1406 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1407 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1408 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1409 else
1410 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1411 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1412 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1413 else
1414 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1415 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1416 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1417 else
1418 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1419 break;
1420
1421 case ISO_CODE_SO:
1422 if (inhibit_iso_escape_detection)
1423 break;
1424 single_shifting = 0;
1425 if (shift_out == 0
1426 && (reg[1] >= 0
1427 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1428 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1429 {
1430 /* Locking shift out. */
1431 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1432 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1433 }
1434 break;
1435
1436 case ISO_CODE_SI:
1437 if (inhibit_iso_escape_detection)
1438 break;
1439 single_shifting = 0;
1440 if (shift_out == 1)
1441 {
1442 /* Locking shift in. */
1443 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1444 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1445 }
1446 break;
1447
1448 case ISO_CODE_CSI:
1449 single_shifting = 0;
1450 case ISO_CODE_SS2:
1451 case ISO_CODE_SS3:
1452 {
1453 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1454
1455 if (inhibit_iso_escape_detection)
1456 break;
1457 if (c != ISO_CODE_CSI)
1458 {
1459 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1460 & CODING_FLAG_ISO_SINGLE_SHIFT)
1461 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1462 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1463 & CODING_FLAG_ISO_SINGLE_SHIFT)
1464 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1465 single_shifting = 1;
1466 }
1467 if (VECTORP (Vlatin_extra_code_table)
1468 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1469 {
1470 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1471 & CODING_FLAG_ISO_LATIN_EXTRA)
1472 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1473 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1474 & CODING_FLAG_ISO_LATIN_EXTRA)
1475 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1476 }
1477 mask &= newmask;
1478 mask_found |= newmask;
1479 }
1480 break;
1481
1482 default:
1483 if (c < 0x80)
1484 {
1485 single_shifting = 0;
1486 break;
1487 }
1488 else if (c < 0xA0)
1489 {
1490 single_shifting = 0;
1491 if (VECTORP (Vlatin_extra_code_table)
1492 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1493 {
1494 int newmask = 0;
1495
1496 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1497 & CODING_FLAG_ISO_LATIN_EXTRA)
1498 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1499 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1500 & CODING_FLAG_ISO_LATIN_EXTRA)
1501 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1502 mask &= newmask;
1503 mask_found |= newmask;
1504 }
1505 else
1506 return 0;
1507 }
1508 else
1509 {
1510 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1511 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1512 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1513 /* Check the length of succeeding codes of the range
1514 0xA0..0FF. If the byte length is odd, we exclude
1515 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1516 when we are not single shifting. */
1517 if (!single_shifting
1518 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1519 {
1520 int i = 1;
1521 while (src < src_end)
1522 {
1523 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1524 if (c < 0xA0)
1525 break;
1526 i++;
1527 }
1528
1529 if (i & 1 && src < src_end)
1530 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1531 else
1532 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1533 }
1534 }
1535 break;
1536 }
1537 }
1538 label_end_of_loop:
1539 return (mask & mask_found);
1540 }
1541
1542 /* Decode a character of which charset is CHARSET, the 1st position
1543 code is C1, the 2nd position code is C2, and return the decoded
1544 character code. If the variable `translation_table' is non-nil,
1545 returned the translated code. */
1546
1547 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1548 (NILP (translation_table) \
1549 ? MAKE_CHAR (charset, c1, c2) \
1550 : translate_char (translation_table, -1, charset, c1, c2))
1551
1552 /* Set designation state into CODING. */
1553 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1554 do { \
1555 int charset, c; \
1556 \
1557 if (final_char < '0' || final_char >= 128) \
1558 goto label_invalid_code; \
1559 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1560 make_number (chars), \
1561 make_number (final_char)); \
1562 c = MAKE_CHAR (charset, 0, 0); \
1563 if (charset >= 0 \
1564 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1565 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1566 { \
1567 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1568 && reg == 0 \
1569 && charset == CHARSET_ASCII) \
1570 { \
1571 /* We should insert this designation sequence as is so \
1572 that it is surely written back to a file. */ \
1573 coding->spec.iso2022.last_invalid_designation_register = -1; \
1574 goto label_invalid_code; \
1575 } \
1576 coding->spec.iso2022.last_invalid_designation_register = -1; \
1577 if ((coding->mode & CODING_MODE_DIRECTION) \
1578 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1579 charset = CHARSET_REVERSE_CHARSET (charset); \
1580 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1581 } \
1582 else \
1583 { \
1584 coding->spec.iso2022.last_invalid_designation_register = reg; \
1585 goto label_invalid_code; \
1586 } \
1587 } while (0)
1588
1589 /* Allocate a memory block for storing information about compositions.
1590 The block is chained to the already allocated blocks. */
1591
1592 void
1593 coding_allocate_composition_data (coding, char_offset)
1594 struct coding_system *coding;
1595 int char_offset;
1596 {
1597 struct composition_data *cmp_data
1598 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1599
1600 cmp_data->char_offset = char_offset;
1601 cmp_data->used = 0;
1602 cmp_data->prev = coding->cmp_data;
1603 cmp_data->next = NULL;
1604 if (coding->cmp_data)
1605 coding->cmp_data->next = cmp_data;
1606 coding->cmp_data = cmp_data;
1607 coding->cmp_data_start = 0;
1608 }
1609
1610 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1611 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1612 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1613 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1614 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1615 */
1616
1617 #define DECODE_COMPOSITION_START(c1) \
1618 do { \
1619 if (coding->composing == COMPOSITION_DISABLED) \
1620 { \
1621 *dst++ = ISO_CODE_ESC; \
1622 *dst++ = c1 & 0x7f; \
1623 coding->produced_char += 2; \
1624 } \
1625 else if (!COMPOSING_P (coding)) \
1626 { \
1627 /* This is surely the start of a composition. We must be sure \
1628 that coding->cmp_data has enough space to store the \
1629 information about the composition. If not, terminate the \
1630 current decoding loop, allocate one more memory block for \
1631 coding->cmp_data in the caller, then start the decoding \
1632 loop again. We can't allocate memory here directly because \
1633 it may cause buffer/string relocation. */ \
1634 if (!coding->cmp_data \
1635 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1636 >= COMPOSITION_DATA_SIZE)) \
1637 { \
1638 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1639 goto label_end_of_loop; \
1640 } \
1641 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1642 : c1 == '2' ? COMPOSITION_WITH_RULE \
1643 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1644 : COMPOSITION_WITH_RULE_ALTCHARS); \
1645 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1646 coding->composing); \
1647 coding->composition_rule_follows = 0; \
1648 } \
1649 else \
1650 { \
1651 /* We are already handling a composition. If the method is \
1652 the following two, the codes following the current escape \
1653 sequence are actual characters stored in a buffer. */ \
1654 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1655 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1656 { \
1657 coding->composing = COMPOSITION_RELATIVE; \
1658 coding->composition_rule_follows = 0; \
1659 } \
1660 } \
1661 } while (0)
1662
1663 /* Handle composition end sequence ESC 1. */
1664
1665 #define DECODE_COMPOSITION_END(c1) \
1666 do { \
1667 if (coding->composing == COMPOSITION_DISABLED) \
1668 { \
1669 *dst++ = ISO_CODE_ESC; \
1670 *dst++ = c1; \
1671 coding->produced_char += 2; \
1672 } \
1673 else \
1674 { \
1675 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1676 coding->composing = COMPOSITION_NO; \
1677 } \
1678 } while (0)
1679
1680 /* Decode a composition rule from the byte C1 (and maybe one more byte
1681 from SRC) and store one encoded composition rule in
1682 coding->cmp_data. */
1683
1684 #define DECODE_COMPOSITION_RULE(c1) \
1685 do { \
1686 int rule = 0; \
1687 (c1) -= 32; \
1688 if (c1 < 81) /* old format (before ver.21) */ \
1689 { \
1690 int gref = (c1) / 9; \
1691 int nref = (c1) % 9; \
1692 if (gref == 4) gref = 10; \
1693 if (nref == 4) nref = 10; \
1694 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1695 } \
1696 else if (c1 < 93) /* new format (after ver.21) */ \
1697 { \
1698 ONE_MORE_BYTE (c2); \
1699 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1700 } \
1701 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1702 coding->composition_rule_follows = 0; \
1703 } while (0)
1704
1705
1706 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1707
1708 static void
1709 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1710 struct coding_system *coding;
1711 unsigned char *source, *destination;
1712 int src_bytes, dst_bytes;
1713 {
1714 unsigned char *src = source;
1715 unsigned char *src_end = source + src_bytes;
1716 unsigned char *dst = destination;
1717 unsigned char *dst_end = destination + dst_bytes;
1718 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1719 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1720 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1721 /* SRC_BASE remembers the start position in source in each loop.
1722 The loop will be exited when there's not enough source code
1723 (within macro ONE_MORE_BYTE), or when there's not enough
1724 destination area to produce a character (within macro
1725 EMIT_CHAR). */
1726 unsigned char *src_base;
1727 int c, charset;
1728 Lisp_Object translation_table;
1729 Lisp_Object safe_chars;
1730
1731 safe_chars = coding_safe_chars (coding);
1732
1733 if (NILP (Venable_character_translation))
1734 translation_table = Qnil;
1735 else
1736 {
1737 translation_table = coding->translation_table_for_decode;
1738 if (NILP (translation_table))
1739 translation_table = Vstandard_translation_table_for_decode;
1740 }
1741
1742 coding->result = CODING_FINISH_NORMAL;
1743
1744 while (1)
1745 {
1746 int c1, c2;
1747
1748 src_base = src;
1749 ONE_MORE_BYTE (c1);
1750
1751 /* We produce no character or one character. */
1752 switch (iso_code_class [c1])
1753 {
1754 case ISO_0x20_or_0x7F:
1755 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1756 {
1757 DECODE_COMPOSITION_RULE (c1);
1758 continue;
1759 }
1760 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1761 {
1762 /* This is SPACE or DEL. */
1763 charset = CHARSET_ASCII;
1764 break;
1765 }
1766 /* This is a graphic character, we fall down ... */
1767
1768 case ISO_graphic_plane_0:
1769 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1770 {
1771 DECODE_COMPOSITION_RULE (c1);
1772 continue;
1773 }
1774 charset = charset0;
1775 break;
1776
1777 case ISO_0xA0_or_0xFF:
1778 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1779 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1780 goto label_invalid_code;
1781 /* This is a graphic character, we fall down ... */
1782
1783 case ISO_graphic_plane_1:
1784 if (charset1 < 0)
1785 goto label_invalid_code;
1786 charset = charset1;
1787 break;
1788
1789 case ISO_control_0:
1790 if (COMPOSING_P (coding))
1791 DECODE_COMPOSITION_END ('1');
1792
1793 /* All ISO2022 control characters in this class have the
1794 same representation in Emacs internal format. */
1795 if (c1 == '\n'
1796 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1797 && (coding->eol_type == CODING_EOL_CR
1798 || coding->eol_type == CODING_EOL_CRLF))
1799 {
1800 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1801 goto label_end_of_loop;
1802 }
1803 charset = CHARSET_ASCII;
1804 break;
1805
1806 case ISO_control_1:
1807 if (COMPOSING_P (coding))
1808 DECODE_COMPOSITION_END ('1');
1809 goto label_invalid_code;
1810
1811 case ISO_carriage_return:
1812 if (COMPOSING_P (coding))
1813 DECODE_COMPOSITION_END ('1');
1814
1815 if (coding->eol_type == CODING_EOL_CR)
1816 c1 = '\n';
1817 else if (coding->eol_type == CODING_EOL_CRLF)
1818 {
1819 ONE_MORE_BYTE (c1);
1820 if (c1 != ISO_CODE_LF)
1821 {
1822 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1823 {
1824 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1825 goto label_end_of_loop;
1826 }
1827 src--;
1828 c1 = '\r';
1829 }
1830 }
1831 charset = CHARSET_ASCII;
1832 break;
1833
1834 case ISO_shift_out:
1835 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1836 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1837 goto label_invalid_code;
1838 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1839 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1840 continue;
1841
1842 case ISO_shift_in:
1843 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1844 goto label_invalid_code;
1845 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1846 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1847 continue;
1848
1849 case ISO_single_shift_2_7:
1850 case ISO_single_shift_2:
1851 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1852 goto label_invalid_code;
1853 /* SS2 is handled as an escape sequence of ESC 'N' */
1854 c1 = 'N';
1855 goto label_escape_sequence;
1856
1857 case ISO_single_shift_3:
1858 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1859 goto label_invalid_code;
1860 /* SS2 is handled as an escape sequence of ESC 'O' */
1861 c1 = 'O';
1862 goto label_escape_sequence;
1863
1864 case ISO_control_sequence_introducer:
1865 /* CSI is handled as an escape sequence of ESC '[' ... */
1866 c1 = '[';
1867 goto label_escape_sequence;
1868
1869 case ISO_escape:
1870 ONE_MORE_BYTE (c1);
1871 label_escape_sequence:
1872 /* Escape sequences handled by Emacs are invocation,
1873 designation, direction specification, and character
1874 composition specification. */
1875 switch (c1)
1876 {
1877 case '&': /* revision of following character set */
1878 ONE_MORE_BYTE (c1);
1879 if (!(c1 >= '@' && c1 <= '~'))
1880 goto label_invalid_code;
1881 ONE_MORE_BYTE (c1);
1882 if (c1 != ISO_CODE_ESC)
1883 goto label_invalid_code;
1884 ONE_MORE_BYTE (c1);
1885 goto label_escape_sequence;
1886
1887 case '$': /* designation of 2-byte character set */
1888 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1889 goto label_invalid_code;
1890 ONE_MORE_BYTE (c1);
1891 if (c1 >= '@' && c1 <= 'B')
1892 { /* designation of JISX0208.1978, GB2312.1980,
1893 or JISX0208.1980 */
1894 DECODE_DESIGNATION (0, 2, 94, c1);
1895 }
1896 else if (c1 >= 0x28 && c1 <= 0x2B)
1897 { /* designation of DIMENSION2_CHARS94 character set */
1898 ONE_MORE_BYTE (c2);
1899 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1900 }
1901 else if (c1 >= 0x2C && c1 <= 0x2F)
1902 { /* designation of DIMENSION2_CHARS96 character set */
1903 ONE_MORE_BYTE (c2);
1904 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1905 }
1906 else
1907 goto label_invalid_code;
1908 /* We must update these variables now. */
1909 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1910 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1911 continue;
1912
1913 case 'n': /* invocation of locking-shift-2 */
1914 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1915 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1916 goto label_invalid_code;
1917 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1918 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1919 continue;
1920
1921 case 'o': /* invocation of locking-shift-3 */
1922 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1923 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1924 goto label_invalid_code;
1925 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1926 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1927 continue;
1928
1929 case 'N': /* invocation of single-shift-2 */
1930 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1931 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1932 goto label_invalid_code;
1933 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1934 ONE_MORE_BYTE (c1);
1935 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1936 goto label_invalid_code;
1937 break;
1938
1939 case 'O': /* invocation of single-shift-3 */
1940 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1941 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1942 goto label_invalid_code;
1943 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1944 ONE_MORE_BYTE (c1);
1945 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1946 goto label_invalid_code;
1947 break;
1948
1949 case '0': case '2': case '3': case '4': /* start composition */
1950 DECODE_COMPOSITION_START (c1);
1951 continue;
1952
1953 case '1': /* end composition */
1954 DECODE_COMPOSITION_END (c1);
1955 continue;
1956
1957 case '[': /* specification of direction */
1958 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1959 goto label_invalid_code;
1960 /* For the moment, nested direction is not supported.
1961 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1962 left-to-right, and nonzero means right-to-left. */
1963 ONE_MORE_BYTE (c1);
1964 switch (c1)
1965 {
1966 case ']': /* end of the current direction */
1967 coding->mode &= ~CODING_MODE_DIRECTION;
1968
1969 case '0': /* end of the current direction */
1970 case '1': /* start of left-to-right direction */
1971 ONE_MORE_BYTE (c1);
1972 if (c1 == ']')
1973 coding->mode &= ~CODING_MODE_DIRECTION;
1974 else
1975 goto label_invalid_code;
1976 break;
1977
1978 case '2': /* start of right-to-left direction */
1979 ONE_MORE_BYTE (c1);
1980 if (c1 == ']')
1981 coding->mode |= CODING_MODE_DIRECTION;
1982 else
1983 goto label_invalid_code;
1984 break;
1985
1986 default:
1987 goto label_invalid_code;
1988 }
1989 continue;
1990
1991 default:
1992 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1993 goto label_invalid_code;
1994 if (c1 >= 0x28 && c1 <= 0x2B)
1995 { /* designation of DIMENSION1_CHARS94 character set */
1996 ONE_MORE_BYTE (c2);
1997 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1998 }
1999 else if (c1 >= 0x2C && c1 <= 0x2F)
2000 { /* designation of DIMENSION1_CHARS96 character set */
2001 ONE_MORE_BYTE (c2);
2002 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2003 }
2004 else
2005 goto label_invalid_code;
2006 /* We must update these variables now. */
2007 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2008 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2009 continue;
2010 }
2011 }
2012
2013 /* Now we know CHARSET and 1st position code C1 of a character.
2014 Produce a multibyte sequence for that character while getting
2015 2nd position code C2 if necessary. */
2016 if (CHARSET_DIMENSION (charset) == 2)
2017 {
2018 ONE_MORE_BYTE (c2);
2019 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2020 /* C2 is not in a valid range. */
2021 goto label_invalid_code;
2022 }
2023 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2024 EMIT_CHAR (c);
2025 continue;
2026
2027 label_invalid_code:
2028 coding->errors++;
2029 if (COMPOSING_P (coding))
2030 DECODE_COMPOSITION_END ('1');
2031 src = src_base;
2032 c = *src++;
2033 EMIT_CHAR (c);
2034 }
2035
2036 label_end_of_loop:
2037 coding->consumed = coding->consumed_char = src_base - source;
2038 coding->produced = dst - destination;
2039 return;
2040 }
2041
2042
2043 /* ISO2022 encoding stuff. */
2044
2045 /*
2046 It is not enough to say just "ISO2022" on encoding, we have to
2047 specify more details. In Emacs, each ISO2022 coding system
2048 variant has the following specifications:
2049 1. Initial designation to G0 through G3.
2050 2. Allows short-form designation?
2051 3. ASCII should be designated to G0 before control characters?
2052 4. ASCII should be designated to G0 at end of line?
2053 5. 7-bit environment or 8-bit environment?
2054 6. Use locking-shift?
2055 7. Use Single-shift?
2056 And the following two are only for Japanese:
2057 8. Use ASCII in place of JIS0201-1976-Roman?
2058 9. Use JISX0208-1983 in place of JISX0208-1978?
2059 These specifications are encoded in `coding->flags' as flag bits
2060 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2061 details.
2062 */
2063
2064 /* Produce codes (escape sequence) for designating CHARSET to graphic
2065 register REG at DST, and increment DST. If <final-char> of CHARSET is
2066 '@', 'A', or 'B' and the coding system CODING allows, produce
2067 designation sequence of short-form. */
2068
2069 #define ENCODE_DESIGNATION(charset, reg, coding) \
2070 do { \
2071 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2072 char *intermediate_char_94 = "()*+"; \
2073 char *intermediate_char_96 = ",-./"; \
2074 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2075 \
2076 if (revision < 255) \
2077 { \
2078 *dst++ = ISO_CODE_ESC; \
2079 *dst++ = '&'; \
2080 *dst++ = '@' + revision; \
2081 } \
2082 *dst++ = ISO_CODE_ESC; \
2083 if (CHARSET_DIMENSION (charset) == 1) \
2084 { \
2085 if (CHARSET_CHARS (charset) == 94) \
2086 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2087 else \
2088 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2089 } \
2090 else \
2091 { \
2092 *dst++ = '$'; \
2093 if (CHARSET_CHARS (charset) == 94) \
2094 { \
2095 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2096 || reg != 0 \
2097 || final_char < '@' || final_char > 'B') \
2098 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2099 } \
2100 else \
2101 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2102 } \
2103 *dst++ = final_char; \
2104 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2105 } while (0)
2106
2107 /* The following two macros produce codes (control character or escape
2108 sequence) for ISO2022 single-shift functions (single-shift-2 and
2109 single-shift-3). */
2110
2111 #define ENCODE_SINGLE_SHIFT_2 \
2112 do { \
2113 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2114 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2115 else \
2116 *dst++ = ISO_CODE_SS2; \
2117 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2118 } while (0)
2119
2120 #define ENCODE_SINGLE_SHIFT_3 \
2121 do { \
2122 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2123 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2124 else \
2125 *dst++ = ISO_CODE_SS3; \
2126 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2127 } while (0)
2128
2129 /* The following four macros produce codes (control character or
2130 escape sequence) for ISO2022 locking-shift functions (shift-in,
2131 shift-out, locking-shift-2, and locking-shift-3). */
2132
2133 #define ENCODE_SHIFT_IN \
2134 do { \
2135 *dst++ = ISO_CODE_SI; \
2136 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2137 } while (0)
2138
2139 #define ENCODE_SHIFT_OUT \
2140 do { \
2141 *dst++ = ISO_CODE_SO; \
2142 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2143 } while (0)
2144
2145 #define ENCODE_LOCKING_SHIFT_2 \
2146 do { \
2147 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2148 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2149 } while (0)
2150
2151 #define ENCODE_LOCKING_SHIFT_3 \
2152 do { \
2153 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2154 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2155 } while (0)
2156
2157 /* Produce codes for a DIMENSION1 character whose character set is
2158 CHARSET and whose position-code is C1. Designation and invocation
2159 sequences are also produced in advance if necessary. */
2160
2161 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2162 do { \
2163 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2164 { \
2165 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2166 *dst++ = c1 & 0x7F; \
2167 else \
2168 *dst++ = c1 | 0x80; \
2169 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2170 break; \
2171 } \
2172 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2173 { \
2174 *dst++ = c1 & 0x7F; \
2175 break; \
2176 } \
2177 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2178 { \
2179 *dst++ = c1 | 0x80; \
2180 break; \
2181 } \
2182 else \
2183 /* Since CHARSET is not yet invoked to any graphic planes, we \
2184 must invoke it, or, at first, designate it to some graphic \
2185 register. Then repeat the loop to actually produce the \
2186 character. */ \
2187 dst = encode_invocation_designation (charset, coding, dst); \
2188 } while (1)
2189
2190 /* Produce codes for a DIMENSION2 character whose character set is
2191 CHARSET and whose position-codes are C1 and C2. Designation and
2192 invocation codes are also produced in advance if necessary. */
2193
2194 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2195 do { \
2196 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2197 { \
2198 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2199 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2200 else \
2201 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2202 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2203 break; \
2204 } \
2205 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2206 { \
2207 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2208 break; \
2209 } \
2210 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2211 { \
2212 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2213 break; \
2214 } \
2215 else \
2216 /* Since CHARSET is not yet invoked to any graphic planes, we \
2217 must invoke it, or, at first, designate it to some graphic \
2218 register. Then repeat the loop to actually produce the \
2219 character. */ \
2220 dst = encode_invocation_designation (charset, coding, dst); \
2221 } while (1)
2222
2223 #define ENCODE_ISO_CHARACTER(c) \
2224 do { \
2225 int charset, c1, c2; \
2226 \
2227 SPLIT_CHAR (c, charset, c1, c2); \
2228 if (CHARSET_DEFINED_P (charset)) \
2229 { \
2230 if (CHARSET_DIMENSION (charset) == 1) \
2231 { \
2232 if (charset == CHARSET_ASCII \
2233 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2234 charset = charset_latin_jisx0201; \
2235 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2236 } \
2237 else \
2238 { \
2239 if (charset == charset_jisx0208 \
2240 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2241 charset = charset_jisx0208_1978; \
2242 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2243 } \
2244 } \
2245 else \
2246 { \
2247 *dst++ = c1; \
2248 if (c2 >= 0) \
2249 *dst++ = c2; \
2250 } \
2251 } while (0)
2252
2253
2254 /* Instead of encoding character C, produce one or two `?'s. */
2255
2256 #define ENCODE_UNSAFE_CHARACTER(c) \
2257 do { \
2258 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2259 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2260 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2261 } while (0)
2262
2263
2264 /* Produce designation and invocation codes at a place pointed by DST
2265 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2266 Return new DST. */
2267
2268 unsigned char *
2269 encode_invocation_designation (charset, coding, dst)
2270 int charset;
2271 struct coding_system *coding;
2272 unsigned char *dst;
2273 {
2274 int reg; /* graphic register number */
2275
2276 /* At first, check designations. */
2277 for (reg = 0; reg < 4; reg++)
2278 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2279 break;
2280
2281 if (reg >= 4)
2282 {
2283 /* CHARSET is not yet designated to any graphic registers. */
2284 /* At first check the requested designation. */
2285 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2286 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2287 /* Since CHARSET requests no special designation, designate it
2288 to graphic register 0. */
2289 reg = 0;
2290
2291 ENCODE_DESIGNATION (charset, reg, coding);
2292 }
2293
2294 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2295 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2296 {
2297 /* Since the graphic register REG is not invoked to any graphic
2298 planes, invoke it to graphic plane 0. */
2299 switch (reg)
2300 {
2301 case 0: /* graphic register 0 */
2302 ENCODE_SHIFT_IN;
2303 break;
2304
2305 case 1: /* graphic register 1 */
2306 ENCODE_SHIFT_OUT;
2307 break;
2308
2309 case 2: /* graphic register 2 */
2310 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2311 ENCODE_SINGLE_SHIFT_2;
2312 else
2313 ENCODE_LOCKING_SHIFT_2;
2314 break;
2315
2316 case 3: /* graphic register 3 */
2317 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2318 ENCODE_SINGLE_SHIFT_3;
2319 else
2320 ENCODE_LOCKING_SHIFT_3;
2321 break;
2322 }
2323 }
2324
2325 return dst;
2326 }
2327
2328 /* Produce 2-byte codes for encoded composition rule RULE. */
2329
2330 #define ENCODE_COMPOSITION_RULE(rule) \
2331 do { \
2332 int gref, nref; \
2333 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2334 *dst++ = 32 + 81 + gref; \
2335 *dst++ = 32 + nref; \
2336 } while (0)
2337
2338 /* Produce codes for indicating the start of a composition sequence
2339 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2340 which specify information about the composition. See the comment
2341 in coding.h for the format of DATA. */
2342
2343 #define ENCODE_COMPOSITION_START(coding, data) \
2344 do { \
2345 coding->composing = data[3]; \
2346 *dst++ = ISO_CODE_ESC; \
2347 if (coding->composing == COMPOSITION_RELATIVE) \
2348 *dst++ = '0'; \
2349 else \
2350 { \
2351 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2352 ? '3' : '4'); \
2353 coding->cmp_data_index = coding->cmp_data_start + 4; \
2354 coding->composition_rule_follows = 0; \
2355 } \
2356 } while (0)
2357
2358 /* Produce codes for indicating the end of the current composition. */
2359
2360 #define ENCODE_COMPOSITION_END(coding, data) \
2361 do { \
2362 *dst++ = ISO_CODE_ESC; \
2363 *dst++ = '1'; \
2364 coding->cmp_data_start += data[0]; \
2365 coding->composing = COMPOSITION_NO; \
2366 if (coding->cmp_data_start == coding->cmp_data->used \
2367 && coding->cmp_data->next) \
2368 { \
2369 coding->cmp_data = coding->cmp_data->next; \
2370 coding->cmp_data_start = 0; \
2371 } \
2372 } while (0)
2373
2374 /* Produce composition start sequence ESC 0. Here, this sequence
2375 doesn't mean the start of a new composition but means that we have
2376 just produced components (alternate chars and composition rules) of
2377 the composition and the actual text follows in SRC. */
2378
2379 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2380 do { \
2381 *dst++ = ISO_CODE_ESC; \
2382 *dst++ = '0'; \
2383 coding->composing = COMPOSITION_RELATIVE; \
2384 } while (0)
2385
2386 /* The following three macros produce codes for indicating direction
2387 of text. */
2388 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2389 do { \
2390 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2391 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2392 else \
2393 *dst++ = ISO_CODE_CSI; \
2394 } while (0)
2395
2396 #define ENCODE_DIRECTION_R2L \
2397 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2398
2399 #define ENCODE_DIRECTION_L2R \
2400 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2401
2402 /* Produce codes for designation and invocation to reset the graphic
2403 planes and registers to initial state. */
2404 #define ENCODE_RESET_PLANE_AND_REGISTER \
2405 do { \
2406 int reg; \
2407 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2408 ENCODE_SHIFT_IN; \
2409 for (reg = 0; reg < 4; reg++) \
2410 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2411 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2412 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2413 ENCODE_DESIGNATION \
2414 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2415 } while (0)
2416
2417 /* Produce designation sequences of charsets in the line started from
2418 SRC to a place pointed by DST, and return updated DST.
2419
2420 If the current block ends before any end-of-line, we may fail to
2421 find all the necessary designations. */
2422
2423 static unsigned char *
2424 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2425 struct coding_system *coding;
2426 Lisp_Object translation_table;
2427 unsigned char *src, *src_end, *dst;
2428 {
2429 int charset, c, found = 0, reg;
2430 /* Table of charsets to be designated to each graphic register. */
2431 int r[4];
2432
2433 for (reg = 0; reg < 4; reg++)
2434 r[reg] = -1;
2435
2436 while (found < 4)
2437 {
2438 ONE_MORE_CHAR (c);
2439 if (c == '\n')
2440 break;
2441
2442 charset = CHAR_CHARSET (c);
2443 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2444 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2445 {
2446 found++;
2447 r[reg] = charset;
2448 }
2449 }
2450
2451 label_end_of_loop:
2452 if (found)
2453 {
2454 for (reg = 0; reg < 4; reg++)
2455 if (r[reg] >= 0
2456 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2457 ENCODE_DESIGNATION (r[reg], reg, coding);
2458 }
2459
2460 return dst;
2461 }
2462
2463 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2464
2465 static void
2466 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2467 struct coding_system *coding;
2468 unsigned char *source, *destination;
2469 int src_bytes, dst_bytes;
2470 {
2471 unsigned char *src = source;
2472 unsigned char *src_end = source + src_bytes;
2473 unsigned char *dst = destination;
2474 unsigned char *dst_end = destination + dst_bytes;
2475 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2476 from DST_END to assure overflow checking is necessary only at the
2477 head of loop. */
2478 unsigned char *adjusted_dst_end = dst_end - 19;
2479 /* SRC_BASE remembers the start position in source in each loop.
2480 The loop will be exited when there's not enough source text to
2481 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2482 there's not enough destination area to produce encoded codes
2483 (within macro EMIT_BYTES). */
2484 unsigned char *src_base;
2485 int c;
2486 Lisp_Object translation_table;
2487 Lisp_Object safe_chars;
2488
2489 safe_chars = coding_safe_chars (coding);
2490
2491 if (NILP (Venable_character_translation))
2492 translation_table = Qnil;
2493 else
2494 {
2495 translation_table = coding->translation_table_for_encode;
2496 if (NILP (translation_table))
2497 translation_table = Vstandard_translation_table_for_encode;
2498 }
2499
2500 coding->consumed_char = 0;
2501 coding->errors = 0;
2502 while (1)
2503 {
2504 src_base = src;
2505
2506 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2507 {
2508 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2509 break;
2510 }
2511
2512 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2513 && CODING_SPEC_ISO_BOL (coding))
2514 {
2515 /* We have to produce designation sequences if any now. */
2516 dst = encode_designation_at_bol (coding, translation_table,
2517 src, src_end, dst);
2518 CODING_SPEC_ISO_BOL (coding) = 0;
2519 }
2520
2521 /* Check composition start and end. */
2522 if (coding->composing != COMPOSITION_DISABLED
2523 && coding->cmp_data_start < coding->cmp_data->used)
2524 {
2525 struct composition_data *cmp_data = coding->cmp_data;
2526 int *data = cmp_data->data + coding->cmp_data_start;
2527 int this_pos = cmp_data->char_offset + coding->consumed_char;
2528
2529 if (coding->composing == COMPOSITION_RELATIVE)
2530 {
2531 if (this_pos == data[2])
2532 {
2533 ENCODE_COMPOSITION_END (coding, data);
2534 cmp_data = coding->cmp_data;
2535 data = cmp_data->data + coding->cmp_data_start;
2536 }
2537 }
2538 else if (COMPOSING_P (coding))
2539 {
2540 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2541 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2542 /* We have consumed components of the composition.
2543 What follows in SRC is the composition's base
2544 text. */
2545 ENCODE_COMPOSITION_FAKE_START (coding);
2546 else
2547 {
2548 int c = cmp_data->data[coding->cmp_data_index++];
2549 if (coding->composition_rule_follows)
2550 {
2551 ENCODE_COMPOSITION_RULE (c);
2552 coding->composition_rule_follows = 0;
2553 }
2554 else
2555 {
2556 if (coding->flags & CODING_FLAG_ISO_SAFE
2557 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2558 ENCODE_UNSAFE_CHARACTER (c);
2559 else
2560 ENCODE_ISO_CHARACTER (c);
2561 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2562 coding->composition_rule_follows = 1;
2563 }
2564 continue;
2565 }
2566 }
2567 if (!COMPOSING_P (coding))
2568 {
2569 if (this_pos == data[1])
2570 {
2571 ENCODE_COMPOSITION_START (coding, data);
2572 continue;
2573 }
2574 }
2575 }
2576
2577 ONE_MORE_CHAR (c);
2578
2579 /* Now encode the character C. */
2580 if (c < 0x20 || c == 0x7F)
2581 {
2582 if (c == '\r')
2583 {
2584 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2585 {
2586 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2587 ENCODE_RESET_PLANE_AND_REGISTER;
2588 *dst++ = c;
2589 continue;
2590 }
2591 /* fall down to treat '\r' as '\n' ... */
2592 c = '\n';
2593 }
2594 if (c == '\n')
2595 {
2596 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2597 ENCODE_RESET_PLANE_AND_REGISTER;
2598 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2599 bcopy (coding->spec.iso2022.initial_designation,
2600 coding->spec.iso2022.current_designation,
2601 sizeof coding->spec.iso2022.initial_designation);
2602 if (coding->eol_type == CODING_EOL_LF
2603 || coding->eol_type == CODING_EOL_UNDECIDED)
2604 *dst++ = ISO_CODE_LF;
2605 else if (coding->eol_type == CODING_EOL_CRLF)
2606 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2607 else
2608 *dst++ = ISO_CODE_CR;
2609 CODING_SPEC_ISO_BOL (coding) = 1;
2610 }
2611 else
2612 {
2613 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2614 ENCODE_RESET_PLANE_AND_REGISTER;
2615 *dst++ = c;
2616 }
2617 }
2618 else if (ASCII_BYTE_P (c))
2619 ENCODE_ISO_CHARACTER (c);
2620 else if (SINGLE_BYTE_CHAR_P (c))
2621 {
2622 *dst++ = c;
2623 coding->errors++;
2624 }
2625 else if (coding->flags & CODING_FLAG_ISO_SAFE
2626 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2627 ENCODE_UNSAFE_CHARACTER (c);
2628 else
2629 ENCODE_ISO_CHARACTER (c);
2630
2631 coding->consumed_char++;
2632 }
2633
2634 label_end_of_loop:
2635 coding->consumed = src_base - source;
2636 coding->produced = coding->produced_char = dst - destination;
2637 }
2638
2639 \f
2640 /*** 4. SJIS and BIG5 handlers ***/
2641
2642 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2643 quite widely. So, for the moment, Emacs supports them in the bare
2644 C code. But, in the future, they may be supported only by CCL. */
2645
2646 /* SJIS is a coding system encoding three character sets: ASCII, right
2647 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2648 as is. A character of charset katakana-jisx0201 is encoded by
2649 "position-code + 0x80". A character of charset japanese-jisx0208
2650 is encoded in 2-byte but two position-codes are divided and shifted
2651 so that it fits in the range below.
2652
2653 --- CODE RANGE of SJIS ---
2654 (character set) (range)
2655 ASCII 0x00 .. 0x7F
2656 KATAKANA-JISX0201 0xA1 .. 0xDF
2657 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2658 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2659 -------------------------------
2660
2661 */
2662
2663 /* BIG5 is a coding system encoding two character sets: ASCII and
2664 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2665 character set and is encoded in two bytes.
2666
2667 --- CODE RANGE of BIG5 ---
2668 (character set) (range)
2669 ASCII 0x00 .. 0x7F
2670 Big5 (1st byte) 0xA1 .. 0xFE
2671 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2672 --------------------------
2673
2674 Since the number of characters in Big5 is larger than maximum
2675 characters in Emacs' charset (96x96), it can't be handled as one
2676 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2677 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2678 contains frequently used characters and the latter contains less
2679 frequently used characters. */
2680
2681 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2682 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2683 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2684 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2685
2686 /* Number of Big5 characters which have the same code in 1st byte. */
2687 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2688
2689 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2690 do { \
2691 unsigned int temp \
2692 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2693 if (b1 < 0xC9) \
2694 charset = charset_big5_1; \
2695 else \
2696 { \
2697 charset = charset_big5_2; \
2698 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2699 } \
2700 c1 = temp / (0xFF - 0xA1) + 0x21; \
2701 c2 = temp % (0xFF - 0xA1) + 0x21; \
2702 } while (0)
2703
2704 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2705 do { \
2706 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2707 if (charset == charset_big5_2) \
2708 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2709 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2710 b2 = temp % BIG5_SAME_ROW; \
2711 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2712 } while (0)
2713
2714 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2715 Check if a text is encoded in SJIS. If it is, return
2716 CODING_CATEGORY_MASK_SJIS, else return 0. */
2717
2718 static int
2719 detect_coding_sjis (src, src_end, multibytep)
2720 unsigned char *src, *src_end;
2721 int multibytep;
2722 {
2723 int c;
2724 /* Dummy for ONE_MORE_BYTE. */
2725 struct coding_system dummy_coding;
2726 struct coding_system *coding = &dummy_coding;
2727
2728 while (1)
2729 {
2730 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2731 if (c < 0x80)
2732 continue;
2733 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2734 return 0;
2735 if (c <= 0x9F || c >= 0xE0)
2736 {
2737 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2738 if (c < 0x40 || c == 0x7F || c > 0xFC)
2739 return 0;
2740 }
2741 }
2742 label_end_of_loop:
2743 return CODING_CATEGORY_MASK_SJIS;
2744 }
2745
2746 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2747 Check if a text is encoded in BIG5. If it is, return
2748 CODING_CATEGORY_MASK_BIG5, else return 0. */
2749
2750 static int
2751 detect_coding_big5 (src, src_end, multibytep)
2752 unsigned char *src, *src_end;
2753 int multibytep;
2754 {
2755 int c;
2756 /* Dummy for ONE_MORE_BYTE. */
2757 struct coding_system dummy_coding;
2758 struct coding_system *coding = &dummy_coding;
2759
2760 while (1)
2761 {
2762 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2763 if (c < 0x80)
2764 continue;
2765 if (c < 0xA1 || c > 0xFE)
2766 return 0;
2767 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2768 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2769 return 0;
2770 }
2771 label_end_of_loop:
2772 return CODING_CATEGORY_MASK_BIG5;
2773 }
2774
2775 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2776 Check if a text is encoded in UTF-8. If it is, return
2777 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2778
2779 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2780 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2781 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2782 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2783 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2784 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2785 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2786
2787 static int
2788 detect_coding_utf_8 (src, src_end, multibytep)
2789 unsigned char *src, *src_end;
2790 int multibytep;
2791 {
2792 unsigned char c;
2793 int seq_maybe_bytes;
2794 /* Dummy for ONE_MORE_BYTE. */
2795 struct coding_system dummy_coding;
2796 struct coding_system *coding = &dummy_coding;
2797
2798 while (1)
2799 {
2800 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2801 if (UTF_8_1_OCTET_P (c))
2802 continue;
2803 else if (UTF_8_2_OCTET_LEADING_P (c))
2804 seq_maybe_bytes = 1;
2805 else if (UTF_8_3_OCTET_LEADING_P (c))
2806 seq_maybe_bytes = 2;
2807 else if (UTF_8_4_OCTET_LEADING_P (c))
2808 seq_maybe_bytes = 3;
2809 else if (UTF_8_5_OCTET_LEADING_P (c))
2810 seq_maybe_bytes = 4;
2811 else if (UTF_8_6_OCTET_LEADING_P (c))
2812 seq_maybe_bytes = 5;
2813 else
2814 return 0;
2815
2816 do
2817 {
2818 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2819 if (!UTF_8_EXTRA_OCTET_P (c))
2820 return 0;
2821 seq_maybe_bytes--;
2822 }
2823 while (seq_maybe_bytes > 0);
2824 }
2825
2826 label_end_of_loop:
2827 return CODING_CATEGORY_MASK_UTF_8;
2828 }
2829
2830 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2831 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2832 Little Endian (otherwise). If it is, return
2833 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2834 else return 0. */
2835
2836 #define UTF_16_INVALID_P(val) \
2837 (((val) == 0xFFFE) \
2838 || ((val) == 0xFFFF))
2839
2840 #define UTF_16_HIGH_SURROGATE_P(val) \
2841 (((val) & 0xD800) == 0xD800)
2842
2843 #define UTF_16_LOW_SURROGATE_P(val) \
2844 (((val) & 0xDC00) == 0xDC00)
2845
2846 static int
2847 detect_coding_utf_16 (src, src_end, multibytep)
2848 unsigned char *src, *src_end;
2849 int multibytep;
2850 {
2851 unsigned char c1, c2;
2852 /* Dummy for TWO_MORE_BYTES. */
2853 struct coding_system dummy_coding;
2854 struct coding_system *coding = &dummy_coding;
2855
2856 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2857 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2858
2859 if ((c1 == 0xFF) && (c2 == 0xFE))
2860 return CODING_CATEGORY_MASK_UTF_16_LE;
2861 else if ((c1 == 0xFE) && (c2 == 0xFF))
2862 return CODING_CATEGORY_MASK_UTF_16_BE;
2863
2864 label_end_of_loop:
2865 return 0;
2866 }
2867
2868 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2869 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2870
2871 static void
2872 decode_coding_sjis_big5 (coding, source, destination,
2873 src_bytes, dst_bytes, sjis_p)
2874 struct coding_system *coding;
2875 unsigned char *source, *destination;
2876 int src_bytes, dst_bytes;
2877 int sjis_p;
2878 {
2879 unsigned char *src = source;
2880 unsigned char *src_end = source + src_bytes;
2881 unsigned char *dst = destination;
2882 unsigned char *dst_end = destination + dst_bytes;
2883 /* SRC_BASE remembers the start position in source in each loop.
2884 The loop will be exited when there's not enough source code
2885 (within macro ONE_MORE_BYTE), or when there's not enough
2886 destination area to produce a character (within macro
2887 EMIT_CHAR). */
2888 unsigned char *src_base;
2889 Lisp_Object translation_table;
2890
2891 if (NILP (Venable_character_translation))
2892 translation_table = Qnil;
2893 else
2894 {
2895 translation_table = coding->translation_table_for_decode;
2896 if (NILP (translation_table))
2897 translation_table = Vstandard_translation_table_for_decode;
2898 }
2899
2900 coding->produced_char = 0;
2901 while (1)
2902 {
2903 int c, charset, c1, c2;
2904
2905 src_base = src;
2906 ONE_MORE_BYTE (c1);
2907
2908 if (c1 < 0x80)
2909 {
2910 charset = CHARSET_ASCII;
2911 if (c1 < 0x20)
2912 {
2913 if (c1 == '\r')
2914 {
2915 if (coding->eol_type == CODING_EOL_CRLF)
2916 {
2917 ONE_MORE_BYTE (c2);
2918 if (c2 == '\n')
2919 c1 = c2;
2920 else if (coding->mode
2921 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2922 {
2923 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2924 goto label_end_of_loop;
2925 }
2926 else
2927 /* To process C2 again, SRC is subtracted by 1. */
2928 src--;
2929 }
2930 else if (coding->eol_type == CODING_EOL_CR)
2931 c1 = '\n';
2932 }
2933 else if (c1 == '\n'
2934 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2935 && (coding->eol_type == CODING_EOL_CR
2936 || coding->eol_type == CODING_EOL_CRLF))
2937 {
2938 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2939 goto label_end_of_loop;
2940 }
2941 }
2942 }
2943 else
2944 {
2945 if (sjis_p)
2946 {
2947 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2948 goto label_invalid_code;
2949 if (c1 <= 0x9F || c1 >= 0xE0)
2950 {
2951 /* SJIS -> JISX0208 */
2952 ONE_MORE_BYTE (c2);
2953 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2954 goto label_invalid_code;
2955 DECODE_SJIS (c1, c2, c1, c2);
2956 charset = charset_jisx0208;
2957 }
2958 else
2959 /* SJIS -> JISX0201-Kana */
2960 charset = charset_katakana_jisx0201;
2961 }
2962 else
2963 {
2964 /* BIG5 -> Big5 */
2965 if (c1 < 0xA0 || c1 > 0xFE)
2966 goto label_invalid_code;
2967 ONE_MORE_BYTE (c2);
2968 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2969 goto label_invalid_code;
2970 DECODE_BIG5 (c1, c2, charset, c1, c2);
2971 }
2972 }
2973
2974 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2975 EMIT_CHAR (c);
2976 continue;
2977
2978 label_invalid_code:
2979 coding->errors++;
2980 src = src_base;
2981 c = *src++;
2982 EMIT_CHAR (c);
2983 }
2984
2985 label_end_of_loop:
2986 coding->consumed = coding->consumed_char = src_base - source;
2987 coding->produced = dst - destination;
2988 return;
2989 }
2990
2991 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2992 This function can encode charsets `ascii', `katakana-jisx0201',
2993 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2994 are sure that all these charsets are registered as official charset
2995 (i.e. do not have extended leading-codes). Characters of other
2996 charsets are produced without any encoding. If SJIS_P is 1, encode
2997 SJIS text, else encode BIG5 text. */
2998
2999 static void
3000 encode_coding_sjis_big5 (coding, source, destination,
3001 src_bytes, dst_bytes, sjis_p)
3002 struct coding_system *coding;
3003 unsigned char *source, *destination;
3004 int src_bytes, dst_bytes;
3005 int sjis_p;
3006 {
3007 unsigned char *src = source;
3008 unsigned char *src_end = source + src_bytes;
3009 unsigned char *dst = destination;
3010 unsigned char *dst_end = destination + dst_bytes;
3011 /* SRC_BASE remembers the start position in source in each loop.
3012 The loop will be exited when there's not enough source text to
3013 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3014 there's not enough destination area to produce encoded codes
3015 (within macro EMIT_BYTES). */
3016 unsigned char *src_base;
3017 Lisp_Object translation_table;
3018
3019 if (NILP (Venable_character_translation))
3020 translation_table = Qnil;
3021 else
3022 {
3023 translation_table = coding->translation_table_for_encode;
3024 if (NILP (translation_table))
3025 translation_table = Vstandard_translation_table_for_encode;
3026 }
3027
3028 while (1)
3029 {
3030 int c, charset, c1, c2;
3031
3032 src_base = src;
3033 ONE_MORE_CHAR (c);
3034
3035 /* Now encode the character C. */
3036 if (SINGLE_BYTE_CHAR_P (c))
3037 {
3038 switch (c)
3039 {
3040 case '\r':
3041 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3042 {
3043 EMIT_ONE_BYTE (c);
3044 break;
3045 }
3046 c = '\n';
3047 case '\n':
3048 if (coding->eol_type == CODING_EOL_CRLF)
3049 {
3050 EMIT_TWO_BYTES ('\r', c);
3051 break;
3052 }
3053 else if (coding->eol_type == CODING_EOL_CR)
3054 c = '\r';
3055 default:
3056 EMIT_ONE_BYTE (c);
3057 }
3058 }
3059 else
3060 {
3061 SPLIT_CHAR (c, charset, c1, c2);
3062 if (sjis_p)
3063 {
3064 if (charset == charset_jisx0208
3065 || charset == charset_jisx0208_1978)
3066 {
3067 ENCODE_SJIS (c1, c2, c1, c2);
3068 EMIT_TWO_BYTES (c1, c2);
3069 }
3070 else if (charset == charset_katakana_jisx0201)
3071 EMIT_ONE_BYTE (c1 | 0x80);
3072 else if (charset == charset_latin_jisx0201)
3073 EMIT_ONE_BYTE (c1);
3074 else
3075 /* There's no way other than producing the internal
3076 codes as is. */
3077 EMIT_BYTES (src_base, src);
3078 }
3079 else
3080 {
3081 if (charset == charset_big5_1 || charset == charset_big5_2)
3082 {
3083 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3084 EMIT_TWO_BYTES (c1, c2);
3085 }
3086 else
3087 /* There's no way other than producing the internal
3088 codes as is. */
3089 EMIT_BYTES (src_base, src);
3090 }
3091 }
3092 coding->consumed_char++;
3093 }
3094
3095 label_end_of_loop:
3096 coding->consumed = src_base - source;
3097 coding->produced = coding->produced_char = dst - destination;
3098 }
3099
3100 \f
3101 /*** 5. CCL handlers ***/
3102
3103 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3104 Check if a text is encoded in a coding system of which
3105 encoder/decoder are written in CCL program. If it is, return
3106 CODING_CATEGORY_MASK_CCL, else return 0. */
3107
3108 static int
3109 detect_coding_ccl (src, src_end, multibytep)
3110 unsigned char *src, *src_end;
3111 int multibytep;
3112 {
3113 unsigned char *valid;
3114 int c;
3115 /* Dummy for ONE_MORE_BYTE. */
3116 struct coding_system dummy_coding;
3117 struct coding_system *coding = &dummy_coding;
3118
3119 /* No coding system is assigned to coding-category-ccl. */
3120 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3121 return 0;
3122
3123 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3124 while (1)
3125 {
3126 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3127 if (! valid[c])
3128 return 0;
3129 }
3130 label_end_of_loop:
3131 return CODING_CATEGORY_MASK_CCL;
3132 }
3133
3134 \f
3135 /*** 6. End-of-line handlers ***/
3136
3137 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3138
3139 static void
3140 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3141 struct coding_system *coding;
3142 unsigned char *source, *destination;
3143 int src_bytes, dst_bytes;
3144 {
3145 unsigned char *src = source;
3146 unsigned char *dst = destination;
3147 unsigned char *src_end = src + src_bytes;
3148 unsigned char *dst_end = dst + dst_bytes;
3149 Lisp_Object translation_table;
3150 /* SRC_BASE remembers the start position in source in each loop.
3151 The loop will be exited when there's not enough source code
3152 (within macro ONE_MORE_BYTE), or when there's not enough
3153 destination area to produce a character (within macro
3154 EMIT_CHAR). */
3155 unsigned char *src_base;
3156 int c;
3157
3158 translation_table = Qnil;
3159 switch (coding->eol_type)
3160 {
3161 case CODING_EOL_CRLF:
3162 while (1)
3163 {
3164 src_base = src;
3165 ONE_MORE_BYTE (c);
3166 if (c == '\r')
3167 {
3168 ONE_MORE_BYTE (c);
3169 if (c != '\n')
3170 {
3171 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3172 {
3173 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3174 goto label_end_of_loop;
3175 }
3176 src--;
3177 c = '\r';
3178 }
3179 }
3180 else if (c == '\n'
3181 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3182 {
3183 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3184 goto label_end_of_loop;
3185 }
3186 EMIT_CHAR (c);
3187 }
3188 break;
3189
3190 case CODING_EOL_CR:
3191 while (1)
3192 {
3193 src_base = src;
3194 ONE_MORE_BYTE (c);
3195 if (c == '\n')
3196 {
3197 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3198 {
3199 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3200 goto label_end_of_loop;
3201 }
3202 }
3203 else if (c == '\r')
3204 c = '\n';
3205 EMIT_CHAR (c);
3206 }
3207 break;
3208
3209 default: /* no need for EOL handling */
3210 while (1)
3211 {
3212 src_base = src;
3213 ONE_MORE_BYTE (c);
3214 EMIT_CHAR (c);
3215 }
3216 }
3217
3218 label_end_of_loop:
3219 coding->consumed = coding->consumed_char = src_base - source;
3220 coding->produced = dst - destination;
3221 return;
3222 }
3223
3224 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3225 format of end-of-line according to `coding->eol_type'. It also
3226 convert multibyte form 8-bit characters to unibyte if
3227 CODING->src_multibyte is nonzero. If `coding->mode &
3228 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3229 also means end-of-line. */
3230
3231 static void
3232 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3233 struct coding_system *coding;
3234 unsigned char *source, *destination;
3235 int src_bytes, dst_bytes;
3236 {
3237 unsigned char *src = source;
3238 unsigned char *dst = destination;
3239 unsigned char *src_end = src + src_bytes;
3240 unsigned char *dst_end = dst + dst_bytes;
3241 Lisp_Object translation_table;
3242 /* SRC_BASE remembers the start position in source in each loop.
3243 The loop will be exited when there's not enough source text to
3244 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3245 there's not enough destination area to produce encoded codes
3246 (within macro EMIT_BYTES). */
3247 unsigned char *src_base;
3248 int c;
3249 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3250
3251 translation_table = Qnil;
3252 if (coding->src_multibyte
3253 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3254 {
3255 src_end--;
3256 src_bytes--;
3257 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3258 }
3259
3260 if (coding->eol_type == CODING_EOL_CRLF)
3261 {
3262 while (src < src_end)
3263 {
3264 src_base = src;
3265 c = *src++;
3266 if (c >= 0x20)
3267 EMIT_ONE_BYTE (c);
3268 else if (c == '\n' || (c == '\r' && selective_display))
3269 EMIT_TWO_BYTES ('\r', '\n');
3270 else
3271 EMIT_ONE_BYTE (c);
3272 }
3273 src_base = src;
3274 label_end_of_loop:
3275 ;
3276 }
3277 else
3278 {
3279 if (!dst_bytes || src_bytes <= dst_bytes)
3280 {
3281 safe_bcopy (src, dst, src_bytes);
3282 src_base = src_end;
3283 dst += src_bytes;
3284 }
3285 else
3286 {
3287 if (coding->src_multibyte
3288 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3289 dst_bytes--;
3290 safe_bcopy (src, dst, dst_bytes);
3291 src_base = src + dst_bytes;
3292 dst = destination + dst_bytes;
3293 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3294 }
3295 if (coding->eol_type == CODING_EOL_CR)
3296 {
3297 for (src = destination; src < dst; src++)
3298 if (*src == '\n') *src = '\r';
3299 }
3300 else if (selective_display)
3301 {
3302 for (src = destination; src < dst; src++)
3303 if (*src == '\r') *src = '\n';
3304 }
3305 }
3306 if (coding->src_multibyte)
3307 dst = destination + str_as_unibyte (destination, dst - destination);
3308
3309 coding->consumed = src_base - source;
3310 coding->produced = dst - destination;
3311 coding->produced_char = coding->produced;
3312 }
3313
3314 \f
3315 /*** 7. C library functions ***/
3316
3317 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3318 has a property `coding-system'. The value of this property is a
3319 vector of length 5 (called the coding-vector). Among elements of
3320 this vector, the first (element[0]) and the fifth (element[4])
3321 carry important information for decoding/encoding. Before
3322 decoding/encoding, this information should be set in fields of a
3323 structure of type `coding_system'.
3324
3325 The value of the property `coding-system' can be a symbol of another
3326 subsidiary coding-system. In that case, Emacs gets coding-vector
3327 from that symbol.
3328
3329 `element[0]' contains information to be set in `coding->type'. The
3330 value and its meaning is as follows:
3331
3332 0 -- coding_type_emacs_mule
3333 1 -- coding_type_sjis
3334 2 -- coding_type_iso2022
3335 3 -- coding_type_big5
3336 4 -- coding_type_ccl encoder/decoder written in CCL
3337 nil -- coding_type_no_conversion
3338 t -- coding_type_undecided (automatic conversion on decoding,
3339 no-conversion on encoding)
3340
3341 `element[4]' contains information to be set in `coding->flags' and
3342 `coding->spec'. The meaning varies by `coding->type'.
3343
3344 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3345 of length 32 (of which the first 13 sub-elements are used now).
3346 Meanings of these sub-elements are:
3347
3348 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3349 If the value is an integer of valid charset, the charset is
3350 assumed to be designated to graphic register N initially.
3351
3352 If the value is minus, it is a minus value of charset which
3353 reserves graphic register N, which means that the charset is
3354 not designated initially but should be designated to graphic
3355 register N just before encoding a character in that charset.
3356
3357 If the value is nil, graphic register N is never used on
3358 encoding.
3359
3360 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3361 Each value takes t or nil. See the section ISO2022 of
3362 `coding.h' for more information.
3363
3364 If `coding->type' is `coding_type_big5', element[4] is t to denote
3365 BIG5-ETen or nil to denote BIG5-HKU.
3366
3367 If `coding->type' takes the other value, element[4] is ignored.
3368
3369 Emacs Lisp's coding systems also carry information about format of
3370 end-of-line in a value of property `eol-type'. If the value is
3371 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3372 means CODING_EOL_CR. If it is not integer, it should be a vector
3373 of subsidiary coding systems of which property `eol-type' has one
3374 of the above values.
3375
3376 */
3377
3378 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3379 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3380 is setup so that no conversion is necessary and return -1, else
3381 return 0. */
3382
3383 int
3384 setup_coding_system (coding_system, coding)
3385 Lisp_Object coding_system;
3386 struct coding_system *coding;
3387 {
3388 Lisp_Object coding_spec, coding_type, eol_type, plist;
3389 Lisp_Object val;
3390
3391 /* At first, zero clear all members. */
3392 bzero (coding, sizeof (struct coding_system));
3393
3394 /* Initialize some fields required for all kinds of coding systems. */
3395 coding->symbol = coding_system;
3396 coding->heading_ascii = -1;
3397 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3398 coding->composing = COMPOSITION_DISABLED;
3399 coding->cmp_data = NULL;
3400
3401 if (NILP (coding_system))
3402 goto label_invalid_coding_system;
3403
3404 coding_spec = Fget (coding_system, Qcoding_system);
3405
3406 if (!VECTORP (coding_spec)
3407 || XVECTOR (coding_spec)->size != 5
3408 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3409 goto label_invalid_coding_system;
3410
3411 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3412 if (VECTORP (eol_type))
3413 {
3414 coding->eol_type = CODING_EOL_UNDECIDED;
3415 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3416 }
3417 else if (XFASTINT (eol_type) == 1)
3418 {
3419 coding->eol_type = CODING_EOL_CRLF;
3420 coding->common_flags
3421 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3422 }
3423 else if (XFASTINT (eol_type) == 2)
3424 {
3425 coding->eol_type = CODING_EOL_CR;
3426 coding->common_flags
3427 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3428 }
3429 else
3430 coding->eol_type = CODING_EOL_LF;
3431
3432 coding_type = XVECTOR (coding_spec)->contents[0];
3433 /* Try short cut. */
3434 if (SYMBOLP (coding_type))
3435 {
3436 if (EQ (coding_type, Qt))
3437 {
3438 coding->type = coding_type_undecided;
3439 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3440 }
3441 else
3442 coding->type = coding_type_no_conversion;
3443 /* Initialize this member. Any thing other than
3444 CODING_CATEGORY_IDX_UTF_16_BE and
3445 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3446 special treatment in detect_eol. */
3447 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3448
3449 return 0;
3450 }
3451
3452 /* Get values of coding system properties:
3453 `post-read-conversion', `pre-write-conversion',
3454 `translation-table-for-decode', `translation-table-for-encode'. */
3455 plist = XVECTOR (coding_spec)->contents[3];
3456 /* Pre & post conversion functions should be disabled if
3457 inhibit_eol_conversion is nonzero. This is the case that a code
3458 conversion function is called while those functions are running. */
3459 if (! inhibit_pre_post_conversion)
3460 {
3461 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3462 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3463 }
3464 val = Fplist_get (plist, Qtranslation_table_for_decode);
3465 if (SYMBOLP (val))
3466 val = Fget (val, Qtranslation_table_for_decode);
3467 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3468 val = Fplist_get (plist, Qtranslation_table_for_encode);
3469 if (SYMBOLP (val))
3470 val = Fget (val, Qtranslation_table_for_encode);
3471 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3472 val = Fplist_get (plist, Qcoding_category);
3473 if (!NILP (val))
3474 {
3475 val = Fget (val, Qcoding_category_index);
3476 if (INTEGERP (val))
3477 coding->category_idx = XINT (val);
3478 else
3479 goto label_invalid_coding_system;
3480 }
3481 else
3482 goto label_invalid_coding_system;
3483
3484 /* If the coding system has non-nil `composition' property, enable
3485 composition handling. */
3486 val = Fplist_get (plist, Qcomposition);
3487 if (!NILP (val))
3488 coding->composing = COMPOSITION_NO;
3489
3490 switch (XFASTINT (coding_type))
3491 {
3492 case 0:
3493 coding->type = coding_type_emacs_mule;
3494 coding->common_flags
3495 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3496 coding->composing = COMPOSITION_NO;
3497 if (!NILP (coding->post_read_conversion))
3498 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3499 if (!NILP (coding->pre_write_conversion))
3500 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3501 break;
3502
3503 case 1:
3504 coding->type = coding_type_sjis;
3505 coding->common_flags
3506 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3507 break;
3508
3509 case 2:
3510 coding->type = coding_type_iso2022;
3511 coding->common_flags
3512 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3513 {
3514 Lisp_Object val, temp;
3515 Lisp_Object *flags;
3516 int i, charset, reg_bits = 0;
3517
3518 val = XVECTOR (coding_spec)->contents[4];
3519
3520 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3521 goto label_invalid_coding_system;
3522
3523 flags = XVECTOR (val)->contents;
3524 coding->flags
3525 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3526 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3527 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3528 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3529 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3530 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3531 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3532 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3533 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3534 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3535 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3536 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3537 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3538 );
3539
3540 /* Invoke graphic register 0 to plane 0. */
3541 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3542 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3543 CODING_SPEC_ISO_INVOCATION (coding, 1)
3544 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3545 /* Not single shifting at first. */
3546 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3547 /* Beginning of buffer should also be regarded as bol. */
3548 CODING_SPEC_ISO_BOL (coding) = 1;
3549
3550 for (charset = 0; charset <= MAX_CHARSET; charset++)
3551 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3552 val = Vcharset_revision_alist;
3553 while (CONSP (val))
3554 {
3555 charset = get_charset_id (Fcar_safe (XCAR (val)));
3556 if (charset >= 0
3557 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3558 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3559 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3560 val = XCDR (val);
3561 }
3562
3563 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3564 FLAGS[REG] can be one of below:
3565 integer CHARSET: CHARSET occupies register I,
3566 t: designate nothing to REG initially, but can be used
3567 by any charsets,
3568 list of integer, nil, or t: designate the first
3569 element (if integer) to REG initially, the remaining
3570 elements (if integer) is designated to REG on request,
3571 if an element is t, REG can be used by any charsets,
3572 nil: REG is never used. */
3573 for (charset = 0; charset <= MAX_CHARSET; charset++)
3574 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3575 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3576 for (i = 0; i < 4; i++)
3577 {
3578 if (INTEGERP (flags[i])
3579 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
3580 || (charset = get_charset_id (flags[i])) >= 0)
3581 {
3582 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3583 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3584 }
3585 else if (EQ (flags[i], Qt))
3586 {
3587 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3588 reg_bits |= 1 << i;
3589 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3590 }
3591 else if (CONSP (flags[i]))
3592 {
3593 Lisp_Object tail;
3594 tail = flags[i];
3595
3596 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3597 if (INTEGERP (XCAR (tail))
3598 && (charset = XINT (XCAR (tail)),
3599 CHARSET_VALID_P (charset))
3600 || (charset = get_charset_id (XCAR (tail))) >= 0)
3601 {
3602 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3603 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3604 }
3605 else
3606 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3607 tail = XCDR (tail);
3608 while (CONSP (tail))
3609 {
3610 if (INTEGERP (XCAR (tail))
3611 && (charset = XINT (XCAR (tail)),
3612 CHARSET_VALID_P (charset))
3613 || (charset = get_charset_id (XCAR (tail))) >= 0)
3614 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3615 = i;
3616 else if (EQ (XCAR (tail), Qt))
3617 reg_bits |= 1 << i;
3618 tail = XCDR (tail);
3619 }
3620 }
3621 else
3622 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3623
3624 CODING_SPEC_ISO_DESIGNATION (coding, i)
3625 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3626 }
3627
3628 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3629 {
3630 /* REG 1 can be used only by locking shift in 7-bit env. */
3631 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3632 reg_bits &= ~2;
3633 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3634 /* Without any shifting, only REG 0 and 1 can be used. */
3635 reg_bits &= 3;
3636 }
3637
3638 if (reg_bits)
3639 for (charset = 0; charset <= MAX_CHARSET; charset++)
3640 {
3641 if (CHARSET_VALID_P (charset)
3642 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3643 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3644 {
3645 /* There exist some default graphic registers to be
3646 used by CHARSET. */
3647
3648 /* We had better avoid designating a charset of
3649 CHARS96 to REG 0 as far as possible. */
3650 if (CHARSET_CHARS (charset) == 96)
3651 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3652 = (reg_bits & 2
3653 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3654 else
3655 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3656 = (reg_bits & 1
3657 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3658 }
3659 }
3660 }
3661 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3662 coding->spec.iso2022.last_invalid_designation_register = -1;
3663 break;
3664
3665 case 3:
3666 coding->type = coding_type_big5;
3667 coding->common_flags
3668 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3669 coding->flags
3670 = (NILP (XVECTOR (coding_spec)->contents[4])
3671 ? CODING_FLAG_BIG5_HKU
3672 : CODING_FLAG_BIG5_ETEN);
3673 break;
3674
3675 case 4:
3676 coding->type = coding_type_ccl;
3677 coding->common_flags
3678 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3679 {
3680 val = XVECTOR (coding_spec)->contents[4];
3681 if (! CONSP (val)
3682 || setup_ccl_program (&(coding->spec.ccl.decoder),
3683 XCAR (val)) < 0
3684 || setup_ccl_program (&(coding->spec.ccl.encoder),
3685 XCDR (val)) < 0)
3686 goto label_invalid_coding_system;
3687
3688 bzero (coding->spec.ccl.valid_codes, 256);
3689 val = Fplist_get (plist, Qvalid_codes);
3690 if (CONSP (val))
3691 {
3692 Lisp_Object this;
3693
3694 for (; CONSP (val); val = XCDR (val))
3695 {
3696 this = XCAR (val);
3697 if (INTEGERP (this)
3698 && XINT (this) >= 0 && XINT (this) < 256)
3699 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3700 else if (CONSP (this)
3701 && INTEGERP (XCAR (this))
3702 && INTEGERP (XCDR (this)))
3703 {
3704 int start = XINT (XCAR (this));
3705 int end = XINT (XCDR (this));
3706
3707 if (start >= 0 && start <= end && end < 256)
3708 while (start <= end)
3709 coding->spec.ccl.valid_codes[start++] = 1;
3710 }
3711 }
3712 }
3713 }
3714 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3715 coding->spec.ccl.cr_carryover = 0;
3716 coding->spec.ccl.eight_bit_carryover[0] = 0;
3717 break;
3718
3719 case 5:
3720 coding->type = coding_type_raw_text;
3721 break;
3722
3723 default:
3724 goto label_invalid_coding_system;
3725 }
3726 return 0;
3727
3728 label_invalid_coding_system:
3729 coding->type = coding_type_no_conversion;
3730 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3731 coding->common_flags = 0;
3732 coding->eol_type = CODING_EOL_LF;
3733 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3734 return -1;
3735 }
3736
3737 /* Free memory blocks allocated for storing composition information. */
3738
3739 void
3740 coding_free_composition_data (coding)
3741 struct coding_system *coding;
3742 {
3743 struct composition_data *cmp_data = coding->cmp_data, *next;
3744
3745 if (!cmp_data)
3746 return;
3747 /* Memory blocks are chained. At first, rewind to the first, then,
3748 free blocks one by one. */
3749 while (cmp_data->prev)
3750 cmp_data = cmp_data->prev;
3751 while (cmp_data)
3752 {
3753 next = cmp_data->next;
3754 xfree (cmp_data);
3755 cmp_data = next;
3756 }
3757 coding->cmp_data = NULL;
3758 }
3759
3760 /* Set `char_offset' member of all memory blocks pointed by
3761 coding->cmp_data to POS. */
3762
3763 void
3764 coding_adjust_composition_offset (coding, pos)
3765 struct coding_system *coding;
3766 int pos;
3767 {
3768 struct composition_data *cmp_data;
3769
3770 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3771 cmp_data->char_offset = pos;
3772 }
3773
3774 /* Setup raw-text or one of its subsidiaries in the structure
3775 coding_system CODING according to the already setup value eol_type
3776 in CODING. CODING should be setup for some coding system in
3777 advance. */
3778
3779 void
3780 setup_raw_text_coding_system (coding)
3781 struct coding_system *coding;
3782 {
3783 if (coding->type != coding_type_raw_text)
3784 {
3785 coding->symbol = Qraw_text;
3786 coding->type = coding_type_raw_text;
3787 if (coding->eol_type != CODING_EOL_UNDECIDED)
3788 {
3789 Lisp_Object subsidiaries;
3790 subsidiaries = Fget (Qraw_text, Qeol_type);
3791
3792 if (VECTORP (subsidiaries)
3793 && XVECTOR (subsidiaries)->size == 3)
3794 coding->symbol
3795 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3796 }
3797 setup_coding_system (coding->symbol, coding);
3798 }
3799 return;
3800 }
3801
3802 /* Emacs has a mechanism to automatically detect a coding system if it
3803 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3804 it's impossible to distinguish some coding systems accurately
3805 because they use the same range of codes. So, at first, coding
3806 systems are categorized into 7, those are:
3807
3808 o coding-category-emacs-mule
3809
3810 The category for a coding system which has the same code range
3811 as Emacs' internal format. Assigned the coding-system (Lisp
3812 symbol) `emacs-mule' by default.
3813
3814 o coding-category-sjis
3815
3816 The category for a coding system which has the same code range
3817 as SJIS. Assigned the coding-system (Lisp
3818 symbol) `japanese-shift-jis' by default.
3819
3820 o coding-category-iso-7
3821
3822 The category for a coding system which has the same code range
3823 as ISO2022 of 7-bit environment. This doesn't use any locking
3824 shift and single shift functions. This can encode/decode all
3825 charsets. Assigned the coding-system (Lisp symbol)
3826 `iso-2022-7bit' by default.
3827
3828 o coding-category-iso-7-tight
3829
3830 Same as coding-category-iso-7 except that this can
3831 encode/decode only the specified charsets.
3832
3833 o coding-category-iso-8-1
3834
3835 The category for a coding system which has the same code range
3836 as ISO2022 of 8-bit environment and graphic plane 1 used only
3837 for DIMENSION1 charset. This doesn't use any locking shift
3838 and single shift functions. Assigned the coding-system (Lisp
3839 symbol) `iso-latin-1' by default.
3840
3841 o coding-category-iso-8-2
3842
3843 The category for a coding system which has the same code range
3844 as ISO2022 of 8-bit environment and graphic plane 1 used only
3845 for DIMENSION2 charset. This doesn't use any locking shift
3846 and single shift functions. Assigned the coding-system (Lisp
3847 symbol) `japanese-iso-8bit' by default.
3848
3849 o coding-category-iso-7-else
3850
3851 The category for a coding system which has the same code range
3852 as ISO2022 of 7-bit environment but uses locking shift or
3853 single shift functions. Assigned the coding-system (Lisp
3854 symbol) `iso-2022-7bit-lock' by default.
3855
3856 o coding-category-iso-8-else
3857
3858 The category for a coding system which has the same code range
3859 as ISO2022 of 8-bit environment but uses locking shift or
3860 single shift functions. Assigned the coding-system (Lisp
3861 symbol) `iso-2022-8bit-ss2' by default.
3862
3863 o coding-category-big5
3864
3865 The category for a coding system which has the same code range
3866 as BIG5. Assigned the coding-system (Lisp symbol)
3867 `cn-big5' by default.
3868
3869 o coding-category-utf-8
3870
3871 The category for a coding system which has the same code range
3872 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3873 symbol) `utf-8' by default.
3874
3875 o coding-category-utf-16-be
3876
3877 The category for a coding system in which a text has an
3878 Unicode signature (cf. Unicode Standard) in the order of BIG
3879 endian at the head. Assigned the coding-system (Lisp symbol)
3880 `utf-16-be' by default.
3881
3882 o coding-category-utf-16-le
3883
3884 The category for a coding system in which a text has an
3885 Unicode signature (cf. Unicode Standard) in the order of
3886 LITTLE endian at the head. Assigned the coding-system (Lisp
3887 symbol) `utf-16-le' by default.
3888
3889 o coding-category-ccl
3890
3891 The category for a coding system of which encoder/decoder is
3892 written in CCL programs. The default value is nil, i.e., no
3893 coding system is assigned.
3894
3895 o coding-category-binary
3896
3897 The category for a coding system not categorized in any of the
3898 above. Assigned the coding-system (Lisp symbol)
3899 `no-conversion' by default.
3900
3901 Each of them is a Lisp symbol and the value is an actual
3902 `coding-system' (this is also a Lisp symbol) assigned by a user.
3903 What Emacs does actually is to detect a category of coding system.
3904 Then, it uses a `coding-system' assigned to it. If Emacs can't
3905 decide a single possible category, it selects a category of the
3906 highest priority. Priorities of categories are also specified by a
3907 user in a Lisp variable `coding-category-list'.
3908
3909 */
3910
3911 static
3912 int ascii_skip_code[256];
3913
3914 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3915 If it detects possible coding systems, return an integer in which
3916 appropriate flag bits are set. Flag bits are defined by macros
3917 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3918 it should point the table `coding_priorities'. In that case, only
3919 the flag bit for a coding system of the highest priority is set in
3920 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3921 range 0x80..0x9F are in multibyte form.
3922
3923 How many ASCII characters are at the head is returned as *SKIP. */
3924
3925 static int
3926 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3927 unsigned char *source;
3928 int src_bytes, *priorities, *skip;
3929 int multibytep;
3930 {
3931 register unsigned char c;
3932 unsigned char *src = source, *src_end = source + src_bytes;
3933 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3934 int i;
3935
3936 /* At first, skip all ASCII characters and control characters except
3937 for three ISO2022 specific control characters. */
3938 ascii_skip_code[ISO_CODE_SO] = 0;
3939 ascii_skip_code[ISO_CODE_SI] = 0;
3940 ascii_skip_code[ISO_CODE_ESC] = 0;
3941
3942 label_loop_detect_coding:
3943 while (src < src_end && ascii_skip_code[*src]) src++;
3944 *skip = src - source;
3945
3946 if (src >= src_end)
3947 /* We found nothing other than ASCII. There's nothing to do. */
3948 return 0;
3949
3950 c = *src;
3951 /* The text seems to be encoded in some multilingual coding system.
3952 Now, try to find in which coding system the text is encoded. */
3953 if (c < 0x80)
3954 {
3955 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3956 /* C is an ISO2022 specific control code of C0. */
3957 mask = detect_coding_iso2022 (src, src_end, multibytep);
3958 if (mask == 0)
3959 {
3960 /* No valid ISO2022 code follows C. Try again. */
3961 src++;
3962 if (c == ISO_CODE_ESC)
3963 ascii_skip_code[ISO_CODE_ESC] = 1;
3964 else
3965 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3966 goto label_loop_detect_coding;
3967 }
3968 if (priorities)
3969 {
3970 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3971 {
3972 if (mask & priorities[i])
3973 return priorities[i];
3974 }
3975 return CODING_CATEGORY_MASK_RAW_TEXT;
3976 }
3977 }
3978 else
3979 {
3980 int try;
3981
3982 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
3983 c = src[1] - 0x20;
3984
3985 if (c < 0xA0)
3986 {
3987 /* C is the first byte of SJIS character code,
3988 or a leading-code of Emacs' internal format (emacs-mule),
3989 or the first byte of UTF-16. */
3990 try = (CODING_CATEGORY_MASK_SJIS
3991 | CODING_CATEGORY_MASK_EMACS_MULE
3992 | CODING_CATEGORY_MASK_UTF_16_BE
3993 | CODING_CATEGORY_MASK_UTF_16_LE);
3994
3995 /* Or, if C is a special latin extra code,
3996 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3997 or is an ISO2022 control-sequence-introducer (CSI),
3998 we should also consider the possibility of ISO2022 codings. */
3999 if ((VECTORP (Vlatin_extra_code_table)
4000 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4001 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4002 || (c == ISO_CODE_CSI
4003 && (src < src_end
4004 && (*src == ']'
4005 || ((*src == '0' || *src == '1' || *src == '2')
4006 && src + 1 < src_end
4007 && src[1] == ']')))))
4008 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4009 | CODING_CATEGORY_MASK_ISO_8BIT);
4010 }
4011 else
4012 /* C is a character of ISO2022 in graphic plane right,
4013 or a SJIS's 1-byte character code (i.e. JISX0201),
4014 or the first byte of BIG5's 2-byte code,
4015 or the first byte of UTF-8/16. */
4016 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4017 | CODING_CATEGORY_MASK_ISO_8BIT
4018 | CODING_CATEGORY_MASK_SJIS
4019 | CODING_CATEGORY_MASK_BIG5
4020 | CODING_CATEGORY_MASK_UTF_8
4021 | CODING_CATEGORY_MASK_UTF_16_BE
4022 | CODING_CATEGORY_MASK_UTF_16_LE);
4023
4024 /* Or, we may have to consider the possibility of CCL. */
4025 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4026 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4027 ->spec.ccl.valid_codes)[c])
4028 try |= CODING_CATEGORY_MASK_CCL;
4029
4030 mask = 0;
4031 utf16_examined_p = iso2022_examined_p = 0;
4032 if (priorities)
4033 {
4034 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4035 {
4036 if (!iso2022_examined_p
4037 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4038 {
4039 mask |= detect_coding_iso2022 (src, src_end);
4040 iso2022_examined_p = 1;
4041 }
4042 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4043 mask |= detect_coding_sjis (src, src_end, multibytep);
4044 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4045 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4046 else if (!utf16_examined_p
4047 && (priorities[i] & try &
4048 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4049 {
4050 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4051 utf16_examined_p = 1;
4052 }
4053 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4054 mask |= detect_coding_big5 (src, src_end, multibytep);
4055 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4056 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4057 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4058 mask |= detect_coding_ccl (src, src_end, multibytep);
4059 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4060 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4061 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4062 mask |= CODING_CATEGORY_MASK_BINARY;
4063 if (mask & priorities[i])
4064 return priorities[i];
4065 }
4066 return CODING_CATEGORY_MASK_RAW_TEXT;
4067 }
4068 if (try & CODING_CATEGORY_MASK_ISO)
4069 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4070 if (try & CODING_CATEGORY_MASK_SJIS)
4071 mask |= detect_coding_sjis (src, src_end, multibytep);
4072 if (try & CODING_CATEGORY_MASK_BIG5)
4073 mask |= detect_coding_big5 (src, src_end, multibytep);
4074 if (try & CODING_CATEGORY_MASK_UTF_8)
4075 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4076 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4077 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4078 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4079 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4080 if (try & CODING_CATEGORY_MASK_CCL)
4081 mask |= detect_coding_ccl (src, src_end, multibytep);
4082 }
4083 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4084 }
4085
4086 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4087 The information of the detected coding system is set in CODING. */
4088
4089 void
4090 detect_coding (coding, src, src_bytes)
4091 struct coding_system *coding;
4092 unsigned char *src;
4093 int src_bytes;
4094 {
4095 unsigned int idx;
4096 int skip, mask;
4097 Lisp_Object val;
4098
4099 val = Vcoding_category_list;
4100 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4101 coding->src_multibyte);
4102 coding->heading_ascii = skip;
4103
4104 if (!mask) return;
4105
4106 /* We found a single coding system of the highest priority in MASK. */
4107 idx = 0;
4108 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4109 if (! mask)
4110 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4111
4112 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[idx])->value;
4113
4114 if (coding->eol_type != CODING_EOL_UNDECIDED)
4115 {
4116 Lisp_Object tmp;
4117
4118 tmp = Fget (val, Qeol_type);
4119 if (VECTORP (tmp))
4120 val = XVECTOR (tmp)->contents[coding->eol_type];
4121 }
4122
4123 /* Setup this new coding system while preserving some slots. */
4124 {
4125 int src_multibyte = coding->src_multibyte;
4126 int dst_multibyte = coding->dst_multibyte;
4127
4128 setup_coding_system (val, coding);
4129 coding->src_multibyte = src_multibyte;
4130 coding->dst_multibyte = dst_multibyte;
4131 coding->heading_ascii = skip;
4132 }
4133 }
4134
4135 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4136 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4137 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4138
4139 How many non-eol characters are at the head is returned as *SKIP. */
4140
4141 #define MAX_EOL_CHECK_COUNT 3
4142
4143 static int
4144 detect_eol_type (source, src_bytes, skip)
4145 unsigned char *source;
4146 int src_bytes, *skip;
4147 {
4148 unsigned char *src = source, *src_end = src + src_bytes;
4149 unsigned char c;
4150 int total = 0; /* How many end-of-lines are found so far. */
4151 int eol_type = CODING_EOL_UNDECIDED;
4152 int this_eol_type;
4153
4154 *skip = 0;
4155
4156 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4157 {
4158 c = *src++;
4159 if (c == '\n' || c == '\r')
4160 {
4161 if (*skip == 0)
4162 *skip = src - 1 - source;
4163 total++;
4164 if (c == '\n')
4165 this_eol_type = CODING_EOL_LF;
4166 else if (src >= src_end || *src != '\n')
4167 this_eol_type = CODING_EOL_CR;
4168 else
4169 this_eol_type = CODING_EOL_CRLF, src++;
4170
4171 if (eol_type == CODING_EOL_UNDECIDED)
4172 /* This is the first end-of-line. */
4173 eol_type = this_eol_type;
4174 else if (eol_type != this_eol_type)
4175 {
4176 /* The found type is different from what found before. */
4177 eol_type = CODING_EOL_INCONSISTENT;
4178 break;
4179 }
4180 }
4181 }
4182
4183 if (*skip == 0)
4184 *skip = src_end - source;
4185 return eol_type;
4186 }
4187
4188 /* Like detect_eol_type, but detect EOL type in 2-octet
4189 big-endian/little-endian format for coding systems utf-16-be and
4190 utf-16-le. */
4191
4192 static int
4193 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4194 unsigned char *source;
4195 int src_bytes, *skip, big_endian_p;
4196 {
4197 unsigned char *src = source, *src_end = src + src_bytes;
4198 unsigned int c1, c2;
4199 int total = 0; /* How many end-of-lines are found so far. */
4200 int eol_type = CODING_EOL_UNDECIDED;
4201 int this_eol_type;
4202 int msb, lsb;
4203
4204 if (big_endian_p)
4205 msb = 0, lsb = 1;
4206 else
4207 msb = 1, lsb = 0;
4208
4209 *skip = 0;
4210
4211 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4212 {
4213 c1 = (src[msb] << 8) | (src[lsb]);
4214 src += 2;
4215
4216 if (c1 == '\n' || c1 == '\r')
4217 {
4218 if (*skip == 0)
4219 *skip = src - 2 - source;
4220 total++;
4221 if (c1 == '\n')
4222 {
4223 this_eol_type = CODING_EOL_LF;
4224 }
4225 else
4226 {
4227 if ((src + 1) >= src_end)
4228 {
4229 this_eol_type = CODING_EOL_CR;
4230 }
4231 else
4232 {
4233 c2 = (src[msb] << 8) | (src[lsb]);
4234 if (c2 == '\n')
4235 this_eol_type = CODING_EOL_CRLF, src += 2;
4236 else
4237 this_eol_type = CODING_EOL_CR;
4238 }
4239 }
4240
4241 if (eol_type == CODING_EOL_UNDECIDED)
4242 /* This is the first end-of-line. */
4243 eol_type = this_eol_type;
4244 else if (eol_type != this_eol_type)
4245 {
4246 /* The found type is different from what found before. */
4247 eol_type = CODING_EOL_INCONSISTENT;
4248 break;
4249 }
4250 }
4251 }
4252
4253 if (*skip == 0)
4254 *skip = src_end - source;
4255 return eol_type;
4256 }
4257
4258 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4259 is encoded. If it detects an appropriate format of end-of-line, it
4260 sets the information in *CODING. */
4261
4262 void
4263 detect_eol (coding, src, src_bytes)
4264 struct coding_system *coding;
4265 unsigned char *src;
4266 int src_bytes;
4267 {
4268 Lisp_Object val;
4269 int skip;
4270 int eol_type;
4271
4272 switch (coding->category_idx)
4273 {
4274 case CODING_CATEGORY_IDX_UTF_16_BE:
4275 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4276 break;
4277 case CODING_CATEGORY_IDX_UTF_16_LE:
4278 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4279 break;
4280 default:
4281 eol_type = detect_eol_type (src, src_bytes, &skip);
4282 break;
4283 }
4284
4285 if (coding->heading_ascii > skip)
4286 coding->heading_ascii = skip;
4287 else
4288 skip = coding->heading_ascii;
4289
4290 if (eol_type == CODING_EOL_UNDECIDED)
4291 return;
4292 if (eol_type == CODING_EOL_INCONSISTENT)
4293 {
4294 #if 0
4295 /* This code is suppressed until we find a better way to
4296 distinguish raw text file and binary file. */
4297
4298 /* If we have already detected that the coding is raw-text, the
4299 coding should actually be no-conversion. */
4300 if (coding->type == coding_type_raw_text)
4301 {
4302 setup_coding_system (Qno_conversion, coding);
4303 return;
4304 }
4305 /* Else, let's decode only text code anyway. */
4306 #endif /* 0 */
4307 eol_type = CODING_EOL_LF;
4308 }
4309
4310 val = Fget (coding->symbol, Qeol_type);
4311 if (VECTORP (val) && XVECTOR (val)->size == 3)
4312 {
4313 int src_multibyte = coding->src_multibyte;
4314 int dst_multibyte = coding->dst_multibyte;
4315
4316 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4317 coding->src_multibyte = src_multibyte;
4318 coding->dst_multibyte = dst_multibyte;
4319 coding->heading_ascii = skip;
4320 }
4321 }
4322
4323 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4324
4325 #define DECODING_BUFFER_MAG(coding) \
4326 (coding->type == coding_type_iso2022 \
4327 ? 3 \
4328 : (coding->type == coding_type_ccl \
4329 ? coding->spec.ccl.decoder.buf_magnification \
4330 : 2))
4331
4332 /* Return maximum size (bytes) of a buffer enough for decoding
4333 SRC_BYTES of text encoded in CODING. */
4334
4335 int
4336 decoding_buffer_size (coding, src_bytes)
4337 struct coding_system *coding;
4338 int src_bytes;
4339 {
4340 return (src_bytes * DECODING_BUFFER_MAG (coding)
4341 + CONVERSION_BUFFER_EXTRA_ROOM);
4342 }
4343
4344 /* Return maximum size (bytes) of a buffer enough for encoding
4345 SRC_BYTES of text to CODING. */
4346
4347 int
4348 encoding_buffer_size (coding, src_bytes)
4349 struct coding_system *coding;
4350 int src_bytes;
4351 {
4352 int magnification;
4353
4354 if (coding->type == coding_type_ccl)
4355 magnification = coding->spec.ccl.encoder.buf_magnification;
4356 else if (CODING_REQUIRE_ENCODING (coding))
4357 magnification = 3;
4358 else
4359 magnification = 1;
4360
4361 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4362 }
4363
4364 /* Working buffer for code conversion. */
4365 struct conversion_buffer
4366 {
4367 int size; /* size of data. */
4368 int on_stack; /* 1 if allocated by alloca. */
4369 unsigned char *data;
4370 };
4371
4372 /* Don't use alloca for allocating memory space larger than this, lest
4373 we overflow their stack. */
4374 #define MAX_ALLOCA 16*1024
4375
4376 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4377 #define allocate_conversion_buffer(buf, len) \
4378 do { \
4379 if (len < MAX_ALLOCA) \
4380 { \
4381 buf.data = (unsigned char *) alloca (len); \
4382 buf.on_stack = 1; \
4383 } \
4384 else \
4385 { \
4386 buf.data = (unsigned char *) xmalloc (len); \
4387 buf.on_stack = 0; \
4388 } \
4389 buf.size = len; \
4390 } while (0)
4391
4392 /* Double the allocated memory for *BUF. */
4393 static void
4394 extend_conversion_buffer (buf)
4395 struct conversion_buffer *buf;
4396 {
4397 if (buf->on_stack)
4398 {
4399 unsigned char *save = buf->data;
4400 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4401 bcopy (save, buf->data, buf->size);
4402 buf->on_stack = 0;
4403 }
4404 else
4405 {
4406 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4407 }
4408 buf->size *= 2;
4409 }
4410
4411 /* Free the allocated memory for BUF if it is not on stack. */
4412 static void
4413 free_conversion_buffer (buf)
4414 struct conversion_buffer *buf;
4415 {
4416 if (!buf->on_stack)
4417 xfree (buf->data);
4418 }
4419
4420 int
4421 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4422 struct coding_system *coding;
4423 unsigned char *source, *destination;
4424 int src_bytes, dst_bytes, encodep;
4425 {
4426 struct ccl_program *ccl
4427 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4428 unsigned char *dst = destination;
4429
4430 ccl->suppress_error = coding->suppress_error;
4431 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4432 if (encodep)
4433 {
4434 /* On encoding, EOL format is converted within ccl_driver. For
4435 that, setup proper information in the structure CCL. */
4436 ccl->eol_type = coding->eol_type;
4437 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4438 ccl->eol_type = CODING_EOL_LF;
4439 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4440 }
4441 ccl->multibyte = coding->src_multibyte;
4442 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4443 {
4444 /* Move carryover bytes to DESTINATION. */
4445 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4446 while (*p)
4447 *dst++ = *p++;
4448 coding->spec.ccl.eight_bit_carryover[0] = 0;
4449 if (dst_bytes)
4450 dst_bytes -= dst - destination;
4451 }
4452
4453 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4454 &(coding->consumed))
4455 + dst - destination);
4456
4457 if (encodep)
4458 {
4459 coding->produced_char = coding->produced;
4460 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4461 }
4462 else if (!ccl->eight_bit_control)
4463 {
4464 /* The produced bytes forms a valid multibyte sequence. */
4465 coding->produced_char
4466 = multibyte_chars_in_text (destination, coding->produced);
4467 coding->spec.ccl.eight_bit_carryover[0] = 0;
4468 }
4469 else
4470 {
4471 /* On decoding, the destination should always multibyte. But,
4472 CCL program might have been generated an invalid multibyte
4473 sequence. Here we make such a sequence valid as
4474 multibyte. */
4475 int bytes
4476 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4477
4478 if ((coding->consumed < src_bytes
4479 || !ccl->last_block)
4480 && coding->produced >= 1
4481 && destination[coding->produced - 1] >= 0x80)
4482 {
4483 /* We should not convert the tailing 8-bit codes to
4484 multibyte form even if they doesn't form a valid
4485 multibyte sequence. They may form a valid sequence in
4486 the next call. */
4487 int carryover = 0;
4488
4489 if (destination[coding->produced - 1] < 0xA0)
4490 carryover = 1;
4491 else if (coding->produced >= 2)
4492 {
4493 if (destination[coding->produced - 2] >= 0x80)
4494 {
4495 if (destination[coding->produced - 2] < 0xA0)
4496 carryover = 2;
4497 else if (coding->produced >= 3
4498 && destination[coding->produced - 3] >= 0x80
4499 && destination[coding->produced - 3] < 0xA0)
4500 carryover = 3;
4501 }
4502 }
4503 if (carryover > 0)
4504 {
4505 BCOPY_SHORT (destination + coding->produced - carryover,
4506 coding->spec.ccl.eight_bit_carryover,
4507 carryover);
4508 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4509 coding->produced -= carryover;
4510 }
4511 }
4512 coding->produced = str_as_multibyte (destination, bytes,
4513 coding->produced,
4514 &(coding->produced_char));
4515 }
4516
4517 switch (ccl->status)
4518 {
4519 case CCL_STAT_SUSPEND_BY_SRC:
4520 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4521 break;
4522 case CCL_STAT_SUSPEND_BY_DST:
4523 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4524 break;
4525 case CCL_STAT_QUIT:
4526 case CCL_STAT_INVALID_CMD:
4527 coding->result = CODING_FINISH_INTERRUPT;
4528 break;
4529 default:
4530 coding->result = CODING_FINISH_NORMAL;
4531 break;
4532 }
4533 return coding->result;
4534 }
4535
4536 /* Decode EOL format of the text at PTR of BYTES length destructively
4537 according to CODING->eol_type. This is called after the CCL
4538 program produced a decoded text at PTR. If we do CRLF->LF
4539 conversion, update CODING->produced and CODING->produced_char. */
4540
4541 static void
4542 decode_eol_post_ccl (coding, ptr, bytes)
4543 struct coding_system *coding;
4544 unsigned char *ptr;
4545 int bytes;
4546 {
4547 Lisp_Object val, saved_coding_symbol;
4548 unsigned char *pend = ptr + bytes;
4549 int dummy;
4550
4551 /* Remember the current coding system symbol. We set it back when
4552 an inconsistent EOL is found so that `last-coding-system-used' is
4553 set to the coding system that doesn't specify EOL conversion. */
4554 saved_coding_symbol = coding->symbol;
4555
4556 coding->spec.ccl.cr_carryover = 0;
4557 if (coding->eol_type == CODING_EOL_UNDECIDED)
4558 {
4559 /* Here, to avoid the call of setup_coding_system, we directly
4560 call detect_eol_type. */
4561 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4562 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4563 coding->eol_type = CODING_EOL_LF;
4564 if (coding->eol_type != CODING_EOL_UNDECIDED)
4565 {
4566 val = Fget (coding->symbol, Qeol_type);
4567 if (VECTORP (val) && XVECTOR (val)->size == 3)
4568 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4569 }
4570 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4571 }
4572
4573 if (coding->eol_type == CODING_EOL_LF
4574 || coding->eol_type == CODING_EOL_UNDECIDED)
4575 {
4576 /* We have nothing to do. */
4577 ptr = pend;
4578 }
4579 else if (coding->eol_type == CODING_EOL_CRLF)
4580 {
4581 unsigned char *pstart = ptr, *p = ptr;
4582
4583 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4584 && *(pend - 1) == '\r')
4585 {
4586 /* If the last character is CR, we can't handle it here
4587 because LF will be in the not-yet-decoded source text.
4588 Recorded that the CR is not yet processed. */
4589 coding->spec.ccl.cr_carryover = 1;
4590 coding->produced--;
4591 coding->produced_char--;
4592 pend--;
4593 }
4594 while (ptr < pend)
4595 {
4596 if (*ptr == '\r')
4597 {
4598 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4599 {
4600 *p++ = '\n';
4601 ptr += 2;
4602 }
4603 else
4604 {
4605 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4606 goto undo_eol_conversion;
4607 *p++ = *ptr++;
4608 }
4609 }
4610 else if (*ptr == '\n'
4611 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4612 goto undo_eol_conversion;
4613 else
4614 *p++ = *ptr++;
4615 continue;
4616
4617 undo_eol_conversion:
4618 /* We have faced with inconsistent EOL format at PTR.
4619 Convert all LFs before PTR back to CRLFs. */
4620 for (p--, ptr--; p >= pstart; p--)
4621 {
4622 if (*p == '\n')
4623 *ptr-- = '\n', *ptr-- = '\r';
4624 else
4625 *ptr-- = *p;
4626 }
4627 /* If carryover is recorded, cancel it because we don't
4628 convert CRLF anymore. */
4629 if (coding->spec.ccl.cr_carryover)
4630 {
4631 coding->spec.ccl.cr_carryover = 0;
4632 coding->produced++;
4633 coding->produced_char++;
4634 pend++;
4635 }
4636 p = ptr = pend;
4637 coding->eol_type = CODING_EOL_LF;
4638 coding->symbol = saved_coding_symbol;
4639 }
4640 if (p < pend)
4641 {
4642 /* As each two-byte sequence CRLF was converted to LF, (PEND
4643 - P) is the number of deleted characters. */
4644 coding->produced -= pend - p;
4645 coding->produced_char -= pend - p;
4646 }
4647 }
4648 else /* i.e. coding->eol_type == CODING_EOL_CR */
4649 {
4650 unsigned char *p = ptr;
4651
4652 for (; ptr < pend; ptr++)
4653 {
4654 if (*ptr == '\r')
4655 *ptr = '\n';
4656 else if (*ptr == '\n'
4657 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4658 {
4659 for (; p < ptr; p++)
4660 {
4661 if (*p == '\n')
4662 *p = '\r';
4663 }
4664 ptr = pend;
4665 coding->eol_type = CODING_EOL_LF;
4666 coding->symbol = saved_coding_symbol;
4667 }
4668 }
4669 }
4670 }
4671
4672 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4673 decoding, it may detect coding system and format of end-of-line if
4674 those are not yet decided. The source should be unibyte, the
4675 result is multibyte if CODING->dst_multibyte is nonzero, else
4676 unibyte. */
4677
4678 int
4679 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4680 struct coding_system *coding;
4681 unsigned char *source, *destination;
4682 int src_bytes, dst_bytes;
4683 {
4684 if (coding->type == coding_type_undecided)
4685 detect_coding (coding, source, src_bytes);
4686
4687 if (coding->eol_type == CODING_EOL_UNDECIDED
4688 && coding->type != coding_type_ccl)
4689 {
4690 detect_eol (coding, source, src_bytes);
4691 /* We had better recover the original eol format if we
4692 encounter an inconsistent eol format while decoding. */
4693 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4694 }
4695
4696 coding->produced = coding->produced_char = 0;
4697 coding->consumed = coding->consumed_char = 0;
4698 coding->errors = 0;
4699 coding->result = CODING_FINISH_NORMAL;
4700
4701 switch (coding->type)
4702 {
4703 case coding_type_sjis:
4704 decode_coding_sjis_big5 (coding, source, destination,
4705 src_bytes, dst_bytes, 1);
4706 break;
4707
4708 case coding_type_iso2022:
4709 decode_coding_iso2022 (coding, source, destination,
4710 src_bytes, dst_bytes);
4711 break;
4712
4713 case coding_type_big5:
4714 decode_coding_sjis_big5 (coding, source, destination,
4715 src_bytes, dst_bytes, 0);
4716 break;
4717
4718 case coding_type_emacs_mule:
4719 decode_coding_emacs_mule (coding, source, destination,
4720 src_bytes, dst_bytes);
4721 break;
4722
4723 case coding_type_ccl:
4724 if (coding->spec.ccl.cr_carryover)
4725 {
4726 /* Set the CR which is not processed by the previous call of
4727 decode_eol_post_ccl in DESTINATION. */
4728 *destination = '\r';
4729 coding->produced++;
4730 coding->produced_char++;
4731 dst_bytes--;
4732 }
4733 ccl_coding_driver (coding, source,
4734 destination + coding->spec.ccl.cr_carryover,
4735 src_bytes, dst_bytes, 0);
4736 if (coding->eol_type != CODING_EOL_LF)
4737 decode_eol_post_ccl (coding, destination, coding->produced);
4738 break;
4739
4740 default:
4741 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4742 }
4743
4744 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4745 && coding->mode & CODING_MODE_LAST_BLOCK
4746 && coding->consumed == src_bytes)
4747 coding->result = CODING_FINISH_NORMAL;
4748
4749 if (coding->mode & CODING_MODE_LAST_BLOCK
4750 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4751 {
4752 unsigned char *src = source + coding->consumed;
4753 unsigned char *dst = destination + coding->produced;
4754
4755 src_bytes -= coding->consumed;
4756 coding->errors++;
4757 if (COMPOSING_P (coding))
4758 DECODE_COMPOSITION_END ('1');
4759 while (src_bytes--)
4760 {
4761 int c = *src++;
4762 dst += CHAR_STRING (c, dst);
4763 coding->produced_char++;
4764 }
4765 coding->consumed = coding->consumed_char = src - source;
4766 coding->produced = dst - destination;
4767 coding->result = CODING_FINISH_NORMAL;
4768 }
4769
4770 if (!coding->dst_multibyte)
4771 {
4772 coding->produced = str_as_unibyte (destination, coding->produced);
4773 coding->produced_char = coding->produced;
4774 }
4775
4776 return coding->result;
4777 }
4778
4779 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4780 multibyteness of the source is CODING->src_multibyte, the
4781 multibyteness of the result is always unibyte. */
4782
4783 int
4784 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4785 struct coding_system *coding;
4786 unsigned char *source, *destination;
4787 int src_bytes, dst_bytes;
4788 {
4789 coding->produced = coding->produced_char = 0;
4790 coding->consumed = coding->consumed_char = 0;
4791 coding->errors = 0;
4792 coding->result = CODING_FINISH_NORMAL;
4793
4794 switch (coding->type)
4795 {
4796 case coding_type_sjis:
4797 encode_coding_sjis_big5 (coding, source, destination,
4798 src_bytes, dst_bytes, 1);
4799 break;
4800
4801 case coding_type_iso2022:
4802 encode_coding_iso2022 (coding, source, destination,
4803 src_bytes, dst_bytes);
4804 break;
4805
4806 case coding_type_big5:
4807 encode_coding_sjis_big5 (coding, source, destination,
4808 src_bytes, dst_bytes, 0);
4809 break;
4810
4811 case coding_type_emacs_mule:
4812 encode_coding_emacs_mule (coding, source, destination,
4813 src_bytes, dst_bytes);
4814 break;
4815
4816 case coding_type_ccl:
4817 ccl_coding_driver (coding, source, destination,
4818 src_bytes, dst_bytes, 1);
4819 break;
4820
4821 default:
4822 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4823 }
4824
4825 if (coding->mode & CODING_MODE_LAST_BLOCK
4826 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4827 {
4828 unsigned char *src = source + coding->consumed;
4829 unsigned char *src_end = src + src_bytes;
4830 unsigned char *dst = destination + coding->produced;
4831
4832 if (coding->type == coding_type_iso2022)
4833 ENCODE_RESET_PLANE_AND_REGISTER;
4834 if (COMPOSING_P (coding))
4835 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4836 if (coding->consumed < src_bytes)
4837 {
4838 int len = src_bytes - coding->consumed;
4839
4840 BCOPY_SHORT (source + coding->consumed, dst, len);
4841 if (coding->src_multibyte)
4842 len = str_as_unibyte (dst, len);
4843 dst += len;
4844 coding->consumed = src_bytes;
4845 }
4846 coding->produced = coding->produced_char = dst - destination;
4847 coding->result = CODING_FINISH_NORMAL;
4848 }
4849
4850 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4851 && coding->consumed == src_bytes)
4852 coding->result = CODING_FINISH_NORMAL;
4853
4854 return coding->result;
4855 }
4856
4857 /* Scan text in the region between *BEG and *END (byte positions),
4858 skip characters which we don't have to decode by coding system
4859 CODING at the head and tail, then set *BEG and *END to the region
4860 of the text we actually have to convert. The caller should move
4861 the gap out of the region in advance if the region is from a
4862 buffer.
4863
4864 If STR is not NULL, *BEG and *END are indices into STR. */
4865
4866 static void
4867 shrink_decoding_region (beg, end, coding, str)
4868 int *beg, *end;
4869 struct coding_system *coding;
4870 unsigned char *str;
4871 {
4872 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4873 int eol_conversion;
4874 Lisp_Object translation_table;
4875
4876 if (coding->type == coding_type_ccl
4877 || coding->type == coding_type_undecided
4878 || coding->eol_type != CODING_EOL_LF
4879 || !NILP (coding->post_read_conversion)
4880 || coding->composing != COMPOSITION_DISABLED)
4881 {
4882 /* We can't skip any data. */
4883 return;
4884 }
4885 if (coding->type == coding_type_no_conversion
4886 || coding->type == coding_type_raw_text
4887 || coding->type == coding_type_emacs_mule)
4888 {
4889 /* We need no conversion, but don't have to skip any data here.
4890 Decoding routine handles them effectively anyway. */
4891 return;
4892 }
4893
4894 translation_table = coding->translation_table_for_decode;
4895 if (NILP (translation_table) && !NILP (Venable_character_translation))
4896 translation_table = Vstandard_translation_table_for_decode;
4897 if (CHAR_TABLE_P (translation_table))
4898 {
4899 int i;
4900 for (i = 0; i < 128; i++)
4901 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4902 break;
4903 if (i < 128)
4904 /* Some ASCII character should be translated. We give up
4905 shrinking. */
4906 return;
4907 }
4908
4909 if (coding->heading_ascii >= 0)
4910 /* Detection routine has already found how much we can skip at the
4911 head. */
4912 *beg += coding->heading_ascii;
4913
4914 if (str)
4915 {
4916 begp_orig = begp = str + *beg;
4917 endp_orig = endp = str + *end;
4918 }
4919 else
4920 {
4921 begp_orig = begp = BYTE_POS_ADDR (*beg);
4922 endp_orig = endp = begp + *end - *beg;
4923 }
4924
4925 eol_conversion = (coding->eol_type == CODING_EOL_CR
4926 || coding->eol_type == CODING_EOL_CRLF);
4927
4928 switch (coding->type)
4929 {
4930 case coding_type_sjis:
4931 case coding_type_big5:
4932 /* We can skip all ASCII characters at the head. */
4933 if (coding->heading_ascii < 0)
4934 {
4935 if (eol_conversion)
4936 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4937 else
4938 while (begp < endp && *begp < 0x80) begp++;
4939 }
4940 /* We can skip all ASCII characters at the tail except for the
4941 second byte of SJIS or BIG5 code. */
4942 if (eol_conversion)
4943 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4944 else
4945 while (begp < endp && endp[-1] < 0x80) endp--;
4946 /* Do not consider LF as ascii if preceded by CR, since that
4947 confuses eol decoding. */
4948 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4949 endp++;
4950 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4951 endp++;
4952 break;
4953
4954 case coding_type_iso2022:
4955 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4956 /* We can't skip any data. */
4957 break;
4958 if (coding->heading_ascii < 0)
4959 {
4960 /* We can skip all ASCII characters at the head except for a
4961 few control codes. */
4962 while (begp < endp && (c = *begp) < 0x80
4963 && c != ISO_CODE_CR && c != ISO_CODE_SO
4964 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4965 && (!eol_conversion || c != ISO_CODE_LF))
4966 begp++;
4967 }
4968 switch (coding->category_idx)
4969 {
4970 case CODING_CATEGORY_IDX_ISO_8_1:
4971 case CODING_CATEGORY_IDX_ISO_8_2:
4972 /* We can skip all ASCII characters at the tail. */
4973 if (eol_conversion)
4974 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4975 else
4976 while (begp < endp && endp[-1] < 0x80) endp--;
4977 /* Do not consider LF as ascii if preceded by CR, since that
4978 confuses eol decoding. */
4979 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4980 endp++;
4981 break;
4982
4983 case CODING_CATEGORY_IDX_ISO_7:
4984 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4985 {
4986 /* We can skip all characters at the tail except for 8-bit
4987 codes and ESC and the following 2-byte at the tail. */
4988 unsigned char *eight_bit = NULL;
4989
4990 if (eol_conversion)
4991 while (begp < endp
4992 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4993 {
4994 if (!eight_bit && c & 0x80) eight_bit = endp;
4995 endp--;
4996 }
4997 else
4998 while (begp < endp
4999 && (c = endp[-1]) != ISO_CODE_ESC)
5000 {
5001 if (!eight_bit && c & 0x80) eight_bit = endp;
5002 endp--;
5003 }
5004 /* Do not consider LF as ascii if preceded by CR, since that
5005 confuses eol decoding. */
5006 if (begp < endp && endp < endp_orig
5007 && endp[-1] == '\r' && endp[0] == '\n')
5008 endp++;
5009 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5010 {
5011 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5012 /* This is an ASCII designation sequence. We can
5013 surely skip the tail. But, if we have
5014 encountered an 8-bit code, skip only the codes
5015 after that. */
5016 endp = eight_bit ? eight_bit : endp + 2;
5017 else
5018 /* Hmmm, we can't skip the tail. */
5019 endp = endp_orig;
5020 }
5021 else if (eight_bit)
5022 endp = eight_bit;
5023 }
5024 }
5025 break;
5026
5027 default:
5028 abort ();
5029 }
5030 *beg += begp - begp_orig;
5031 *end += endp - endp_orig;
5032 return;
5033 }
5034
5035 /* Like shrink_decoding_region but for encoding. */
5036
5037 static void
5038 shrink_encoding_region (beg, end, coding, str)
5039 int *beg, *end;
5040 struct coding_system *coding;
5041 unsigned char *str;
5042 {
5043 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5044 int eol_conversion;
5045 Lisp_Object translation_table;
5046
5047 if (coding->type == coding_type_ccl
5048 || coding->eol_type == CODING_EOL_CRLF
5049 || coding->eol_type == CODING_EOL_CR
5050 || coding->cmp_data && coding->cmp_data->used > 0)
5051 {
5052 /* We can't skip any data. */
5053 return;
5054 }
5055 if (coding->type == coding_type_no_conversion
5056 || coding->type == coding_type_raw_text
5057 || coding->type == coding_type_emacs_mule
5058 || coding->type == coding_type_undecided)
5059 {
5060 /* We need no conversion, but don't have to skip any data here.
5061 Encoding routine handles them effectively anyway. */
5062 return;
5063 }
5064
5065 translation_table = coding->translation_table_for_encode;
5066 if (NILP (translation_table) && !NILP (Venable_character_translation))
5067 translation_table = Vstandard_translation_table_for_encode;
5068 if (CHAR_TABLE_P (translation_table))
5069 {
5070 int i;
5071 for (i = 0; i < 128; i++)
5072 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5073 break;
5074 if (i < 128)
5075 /* Some ASCII character should be translated. We give up
5076 shrinking. */
5077 return;
5078 }
5079
5080 if (str)
5081 {
5082 begp_orig = begp = str + *beg;
5083 endp_orig = endp = str + *end;
5084 }
5085 else
5086 {
5087 begp_orig = begp = BYTE_POS_ADDR (*beg);
5088 endp_orig = endp = begp + *end - *beg;
5089 }
5090
5091 eol_conversion = (coding->eol_type == CODING_EOL_CR
5092 || coding->eol_type == CODING_EOL_CRLF);
5093
5094 /* Here, we don't have to check coding->pre_write_conversion because
5095 the caller is expected to have handled it already. */
5096 switch (coding->type)
5097 {
5098 case coding_type_iso2022:
5099 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5100 /* We can't skip any data. */
5101 break;
5102 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5103 {
5104 unsigned char *bol = begp;
5105 while (begp < endp && *begp < 0x80)
5106 {
5107 begp++;
5108 if (begp[-1] == '\n')
5109 bol = begp;
5110 }
5111 begp = bol;
5112 goto label_skip_tail;
5113 }
5114 /* fall down ... */
5115
5116 case coding_type_sjis:
5117 case coding_type_big5:
5118 /* We can skip all ASCII characters at the head and tail. */
5119 if (eol_conversion)
5120 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5121 else
5122 while (begp < endp && *begp < 0x80) begp++;
5123 label_skip_tail:
5124 if (eol_conversion)
5125 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5126 else
5127 while (begp < endp && *(endp - 1) < 0x80) endp--;
5128 break;
5129
5130 default:
5131 abort ();
5132 }
5133
5134 *beg += begp - begp_orig;
5135 *end += endp - endp_orig;
5136 return;
5137 }
5138
5139 /* As shrinking conversion region requires some overhead, we don't try
5140 shrinking if the length of conversion region is less than this
5141 value. */
5142 static int shrink_conversion_region_threshhold = 1024;
5143
5144 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5145 do { \
5146 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5147 { \
5148 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5149 else shrink_decoding_region (beg, end, coding, str); \
5150 } \
5151 } while (0)
5152
5153 static Lisp_Object
5154 code_convert_region_unwind (dummy)
5155 Lisp_Object dummy;
5156 {
5157 inhibit_pre_post_conversion = 0;
5158 return Qnil;
5159 }
5160
5161 /* Store information about all compositions in the range FROM and TO
5162 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5163 buffer or a string, defaults to the current buffer. */
5164
5165 void
5166 coding_save_composition (coding, from, to, obj)
5167 struct coding_system *coding;
5168 int from, to;
5169 Lisp_Object obj;
5170 {
5171 Lisp_Object prop;
5172 int start, end;
5173
5174 if (coding->composing == COMPOSITION_DISABLED)
5175 return;
5176 if (!coding->cmp_data)
5177 coding_allocate_composition_data (coding, from);
5178 if (!find_composition (from, to, &start, &end, &prop, obj)
5179 || end > to)
5180 return;
5181 if (start < from
5182 && (!find_composition (end, to, &start, &end, &prop, obj)
5183 || end > to))
5184 return;
5185 coding->composing = COMPOSITION_NO;
5186 do
5187 {
5188 if (COMPOSITION_VALID_P (start, end, prop))
5189 {
5190 enum composition_method method = COMPOSITION_METHOD (prop);
5191 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5192 >= COMPOSITION_DATA_SIZE)
5193 coding_allocate_composition_data (coding, from);
5194 /* For relative composition, we remember start and end
5195 positions, for the other compositions, we also remember
5196 components. */
5197 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5198 if (method != COMPOSITION_RELATIVE)
5199 {
5200 /* We must store a*/
5201 Lisp_Object val, ch;
5202
5203 val = COMPOSITION_COMPONENTS (prop);
5204 if (CONSP (val))
5205 while (CONSP (val))
5206 {
5207 ch = XCAR (val), val = XCDR (val);
5208 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5209 }
5210 else if (VECTORP (val) || STRINGP (val))
5211 {
5212 int len = (VECTORP (val)
5213 ? XVECTOR (val)->size : XSTRING (val)->size);
5214 int i;
5215 for (i = 0; i < len; i++)
5216 {
5217 ch = (STRINGP (val)
5218 ? Faref (val, make_number (i))
5219 : XVECTOR (val)->contents[i]);
5220 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5221 }
5222 }
5223 else /* INTEGERP (val) */
5224 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5225 }
5226 CODING_ADD_COMPOSITION_END (coding, end - from);
5227 }
5228 start = end;
5229 }
5230 while (start < to
5231 && find_composition (start, to, &start, &end, &prop, obj)
5232 && end <= to);
5233
5234 /* Make coding->cmp_data point to the first memory block. */
5235 while (coding->cmp_data->prev)
5236 coding->cmp_data = coding->cmp_data->prev;
5237 coding->cmp_data_start = 0;
5238 }
5239
5240 /* Reflect the saved information about compositions to OBJ.
5241 CODING->cmp_data points to a memory block for the information. OBJ
5242 is a buffer or a string, defaults to the current buffer. */
5243
5244 void
5245 coding_restore_composition (coding, obj)
5246 struct coding_system *coding;
5247 Lisp_Object obj;
5248 {
5249 struct composition_data *cmp_data = coding->cmp_data;
5250
5251 if (!cmp_data)
5252 return;
5253
5254 while (cmp_data->prev)
5255 cmp_data = cmp_data->prev;
5256
5257 while (cmp_data)
5258 {
5259 int i;
5260
5261 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5262 i += cmp_data->data[i])
5263 {
5264 int *data = cmp_data->data + i;
5265 enum composition_method method = (enum composition_method) data[3];
5266 Lisp_Object components;
5267
5268 if (method == COMPOSITION_RELATIVE)
5269 components = Qnil;
5270 else
5271 {
5272 int len = data[0] - 4, j;
5273 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5274
5275 for (j = 0; j < len; j++)
5276 args[j] = make_number (data[4 + j]);
5277 components = (method == COMPOSITION_WITH_ALTCHARS
5278 ? Fstring (len, args) : Fvector (len, args));
5279 }
5280 compose_text (data[1], data[2], components, Qnil, obj);
5281 }
5282 cmp_data = cmp_data->next;
5283 }
5284 }
5285
5286 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5287 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5288 coding system CODING, and return the status code of code conversion
5289 (currently, this value has no meaning).
5290
5291 How many characters (and bytes) are converted to how many
5292 characters (and bytes) are recorded in members of the structure
5293 CODING.
5294
5295 If REPLACE is nonzero, we do various things as if the original text
5296 is deleted and a new text is inserted. See the comments in
5297 replace_range (insdel.c) to know what we are doing.
5298
5299 If REPLACE is zero, it is assumed that the source text is unibyte.
5300 Otherwise, it is assumed that the source text is multibyte. */
5301
5302 int
5303 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5304 int from, from_byte, to, to_byte, encodep, replace;
5305 struct coding_system *coding;
5306 {
5307 int len = to - from, len_byte = to_byte - from_byte;
5308 int require, inserted, inserted_byte;
5309 int head_skip, tail_skip, total_skip = 0;
5310 Lisp_Object saved_coding_symbol;
5311 int first = 1;
5312 unsigned char *src, *dst;
5313 Lisp_Object deletion;
5314 int orig_point = PT, orig_len = len;
5315 int prev_Z;
5316 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5317
5318 deletion = Qnil;
5319 saved_coding_symbol = coding->symbol;
5320
5321 if (from < PT && PT < to)
5322 {
5323 TEMP_SET_PT_BOTH (from, from_byte);
5324 orig_point = from;
5325 }
5326
5327 if (replace)
5328 {
5329 int saved_from = from;
5330 int saved_inhibit_modification_hooks;
5331
5332 prepare_to_modify_buffer (from, to, &from);
5333 if (saved_from != from)
5334 {
5335 to = from + len;
5336 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5337 len_byte = to_byte - from_byte;
5338 }
5339
5340 /* The code conversion routine can not preserve text properties
5341 for now. So, we must remove all text properties in the
5342 region. Here, we must suppress all modification hooks. */
5343 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5344 inhibit_modification_hooks = 1;
5345 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5346 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5347 }
5348
5349 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5350 {
5351 /* We must detect encoding of text and eol format. */
5352
5353 if (from < GPT && to > GPT)
5354 move_gap_both (from, from_byte);
5355 if (coding->type == coding_type_undecided)
5356 {
5357 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5358 if (coding->type == coding_type_undecided)
5359 {
5360 /* It seems that the text contains only ASCII, but we
5361 should not leave it undecided because the deeper
5362 decoding routine (decode_coding) tries to detect the
5363 encodings again in vain. */
5364 coding->type = coding_type_emacs_mule;
5365 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5366 /* As emacs-mule decoder will handle composition, we
5367 need this setting to allocate coding->cmp_data
5368 later. */
5369 coding->composing = COMPOSITION_NO;
5370 }
5371 }
5372 if (coding->eol_type == CODING_EOL_UNDECIDED
5373 && coding->type != coding_type_ccl)
5374 {
5375 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5376 if (coding->eol_type == CODING_EOL_UNDECIDED)
5377 coding->eol_type = CODING_EOL_LF;
5378 /* We had better recover the original eol format if we
5379 encounter an inconsistent eol format while decoding. */
5380 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5381 }
5382 }
5383
5384 /* Now we convert the text. */
5385
5386 /* For encoding, we must process pre-write-conversion in advance. */
5387 if (! inhibit_pre_post_conversion
5388 && encodep
5389 && SYMBOLP (coding->pre_write_conversion)
5390 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5391 {
5392 /* The function in pre-write-conversion may put a new text in a
5393 new buffer. */
5394 struct buffer *prev = current_buffer;
5395 Lisp_Object new;
5396 int count = specpdl_ptr - specpdl;
5397
5398 record_unwind_protect (code_convert_region_unwind, Qnil);
5399 /* We should not call any more pre-write/post-read-conversion
5400 functions while this pre-write-conversion is running. */
5401 inhibit_pre_post_conversion = 1;
5402 call2 (coding->pre_write_conversion,
5403 make_number (from), make_number (to));
5404 inhibit_pre_post_conversion = 0;
5405 /* Discard the unwind protect. */
5406 specpdl_ptr--;
5407
5408 if (current_buffer != prev)
5409 {
5410 len = ZV - BEGV;
5411 new = Fcurrent_buffer ();
5412 set_buffer_internal_1 (prev);
5413 del_range_2 (from, from_byte, to, to_byte, 0);
5414 TEMP_SET_PT_BOTH (from, from_byte);
5415 insert_from_buffer (XBUFFER (new), 1, len, 0);
5416 Fkill_buffer (new);
5417 if (orig_point >= to)
5418 orig_point += len - orig_len;
5419 else if (orig_point > from)
5420 orig_point = from;
5421 orig_len = len;
5422 to = from + len;
5423 from_byte = CHAR_TO_BYTE (from);
5424 to_byte = CHAR_TO_BYTE (to);
5425 len_byte = to_byte - from_byte;
5426 TEMP_SET_PT_BOTH (from, from_byte);
5427 }
5428 }
5429
5430 if (replace)
5431 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5432
5433 if (coding->composing != COMPOSITION_DISABLED)
5434 {
5435 if (encodep)
5436 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5437 else
5438 coding_allocate_composition_data (coding, from);
5439 }
5440
5441 /* Try to skip the heading and tailing ASCIIs. */
5442 if (coding->type != coding_type_ccl)
5443 {
5444 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5445
5446 if (from < GPT && GPT < to)
5447 move_gap_both (from, from_byte);
5448 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5449 if (from_byte == to_byte
5450 && (encodep || NILP (coding->post_read_conversion))
5451 && ! CODING_REQUIRE_FLUSHING (coding))
5452 {
5453 coding->produced = len_byte;
5454 coding->produced_char = len;
5455 if (!replace)
5456 /* We must record and adjust for this new text now. */
5457 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5458 return 0;
5459 }
5460
5461 head_skip = from_byte - from_byte_orig;
5462 tail_skip = to_byte_orig - to_byte;
5463 total_skip = head_skip + tail_skip;
5464 from += head_skip;
5465 to -= tail_skip;
5466 len -= total_skip; len_byte -= total_skip;
5467 }
5468
5469 /* For conversion, we must put the gap before the text in addition to
5470 making the gap larger for efficient decoding. The required gap
5471 size starts from 2000 which is the magic number used in make_gap.
5472 But, after one batch of conversion, it will be incremented if we
5473 find that it is not enough . */
5474 require = 2000;
5475
5476 if (GAP_SIZE < require)
5477 make_gap (require - GAP_SIZE);
5478 move_gap_both (from, from_byte);
5479
5480 inserted = inserted_byte = 0;
5481
5482 GAP_SIZE += len_byte;
5483 ZV -= len;
5484 Z -= len;
5485 ZV_BYTE -= len_byte;
5486 Z_BYTE -= len_byte;
5487
5488 if (GPT - BEG < BEG_UNCHANGED)
5489 BEG_UNCHANGED = GPT - BEG;
5490 if (Z - GPT < END_UNCHANGED)
5491 END_UNCHANGED = Z - GPT;
5492
5493 if (!encodep && coding->src_multibyte)
5494 {
5495 /* Decoding routines expects that the source text is unibyte.
5496 We must convert 8-bit characters of multibyte form to
5497 unibyte. */
5498 int len_byte_orig = len_byte;
5499 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5500 if (len_byte < len_byte_orig)
5501 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5502 len_byte);
5503 coding->src_multibyte = 0;
5504 }
5505
5506 for (;;)
5507 {
5508 int result;
5509
5510 /* The buffer memory is now:
5511 +--------+converted-text+---------+-------original-text-------+---+
5512 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5513 |<---------------------- GAP ----------------------->| */
5514 src = GAP_END_ADDR - len_byte;
5515 dst = GPT_ADDR + inserted_byte;
5516
5517 if (encodep)
5518 result = encode_coding (coding, src, dst, len_byte, 0);
5519 else
5520 result = decode_coding (coding, src, dst, len_byte, 0);
5521
5522 /* The buffer memory is now:
5523 +--------+-------converted-text----+--+------original-text----+---+
5524 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5525 |<---------------------- GAP ----------------------->| */
5526
5527 inserted += coding->produced_char;
5528 inserted_byte += coding->produced;
5529 len_byte -= coding->consumed;
5530
5531 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5532 {
5533 coding_allocate_composition_data (coding, from + inserted);
5534 continue;
5535 }
5536
5537 src += coding->consumed;
5538 dst += coding->produced;
5539
5540 if (result == CODING_FINISH_NORMAL)
5541 {
5542 src += len_byte;
5543 break;
5544 }
5545 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5546 {
5547 unsigned char *pend = dst, *p = pend - inserted_byte;
5548 Lisp_Object eol_type;
5549
5550 /* Encode LFs back to the original eol format (CR or CRLF). */
5551 if (coding->eol_type == CODING_EOL_CR)
5552 {
5553 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5554 }
5555 else
5556 {
5557 int count = 0;
5558
5559 while (p < pend) if (*p++ == '\n') count++;
5560 if (src - dst < count)
5561 {
5562 /* We don't have sufficient room for encoding LFs
5563 back to CRLF. We must record converted and
5564 not-yet-converted text back to the buffer
5565 content, enlarge the gap, then record them out of
5566 the buffer contents again. */
5567 int add = len_byte + inserted_byte;
5568
5569 GAP_SIZE -= add;
5570 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5571 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5572 make_gap (count - GAP_SIZE);
5573 GAP_SIZE += add;
5574 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5575 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5576 /* Don't forget to update SRC, DST, and PEND. */
5577 src = GAP_END_ADDR - len_byte;
5578 dst = GPT_ADDR + inserted_byte;
5579 pend = dst;
5580 }
5581 inserted += count;
5582 inserted_byte += count;
5583 coding->produced += count;
5584 p = dst = pend + count;
5585 while (count)
5586 {
5587 *--p = *--pend;
5588 if (*p == '\n') count--, *--p = '\r';
5589 }
5590 }
5591
5592 /* Suppress eol-format conversion in the further conversion. */
5593 coding->eol_type = CODING_EOL_LF;
5594
5595 /* Set the coding system symbol to that for Unix-like EOL. */
5596 eol_type = Fget (saved_coding_symbol, Qeol_type);
5597 if (VECTORP (eol_type)
5598 && XVECTOR (eol_type)->size == 3
5599 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5600 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5601 else
5602 coding->symbol = saved_coding_symbol;
5603
5604 continue;
5605 }
5606 if (len_byte <= 0)
5607 {
5608 if (coding->type != coding_type_ccl
5609 || coding->mode & CODING_MODE_LAST_BLOCK)
5610 break;
5611 coding->mode |= CODING_MODE_LAST_BLOCK;
5612 continue;
5613 }
5614 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5615 {
5616 /* The source text ends in invalid codes. Let's just
5617 make them valid buffer contents, and finish conversion. */
5618 inserted += len_byte;
5619 inserted_byte += len_byte;
5620 while (len_byte--)
5621 *dst++ = *src++;
5622 break;
5623 }
5624 if (result == CODING_FINISH_INTERRUPT)
5625 {
5626 /* The conversion procedure was interrupted by a user. */
5627 break;
5628 }
5629 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5630 if (coding->consumed < 1)
5631 {
5632 /* It's quite strange to require more memory without
5633 consuming any bytes. Perhaps CCL program bug. */
5634 break;
5635 }
5636 if (first)
5637 {
5638 /* We have just done the first batch of conversion which was
5639 stopped because of insufficient gap. Let's reconsider the
5640 required gap size (i.e. SRT - DST) now.
5641
5642 We have converted ORIG bytes (== coding->consumed) into
5643 NEW bytes (coding->produced). To convert the remaining
5644 LEN bytes, we may need REQUIRE bytes of gap, where:
5645 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5646 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5647 Here, we are sure that NEW >= ORIG. */
5648 float ratio = coding->produced - coding->consumed;
5649 ratio /= coding->consumed;
5650 require = len_byte * ratio;
5651 first = 0;
5652 }
5653 if ((src - dst) < (require + 2000))
5654 {
5655 /* See the comment above the previous call of make_gap. */
5656 int add = len_byte + inserted_byte;
5657
5658 GAP_SIZE -= add;
5659 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5660 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5661 make_gap (require + 2000);
5662 GAP_SIZE += add;
5663 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5664 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5665 }
5666 }
5667 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5668
5669 if (encodep && coding->dst_multibyte)
5670 {
5671 /* The output is unibyte. We must convert 8-bit characters to
5672 multibyte form. */
5673 if (inserted_byte * 2 > GAP_SIZE)
5674 {
5675 GAP_SIZE -= inserted_byte;
5676 ZV += inserted_byte; Z += inserted_byte;
5677 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5678 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5679 make_gap (inserted_byte - GAP_SIZE);
5680 GAP_SIZE += inserted_byte;
5681 ZV -= inserted_byte; Z -= inserted_byte;
5682 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5683 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5684 }
5685 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5686 }
5687
5688 /* If we shrank the conversion area, adjust it now. */
5689 if (total_skip > 0)
5690 {
5691 if (tail_skip > 0)
5692 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5693 inserted += total_skip; inserted_byte += total_skip;
5694 GAP_SIZE += total_skip;
5695 GPT -= head_skip; GPT_BYTE -= head_skip;
5696 ZV -= total_skip; ZV_BYTE -= total_skip;
5697 Z -= total_skip; Z_BYTE -= total_skip;
5698 from -= head_skip; from_byte -= head_skip;
5699 to += tail_skip; to_byte += tail_skip;
5700 }
5701
5702 prev_Z = Z;
5703 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5704 inserted = Z - prev_Z;
5705
5706 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5707 coding_restore_composition (coding, Fcurrent_buffer ());
5708 coding_free_composition_data (coding);
5709
5710 if (! inhibit_pre_post_conversion
5711 && ! encodep && ! NILP (coding->post_read_conversion))
5712 {
5713 Lisp_Object val;
5714 int count = specpdl_ptr - specpdl;
5715
5716 if (from != PT)
5717 TEMP_SET_PT_BOTH (from, from_byte);
5718 prev_Z = Z;
5719 record_unwind_protect (code_convert_region_unwind, Qnil);
5720 /* We should not call any more pre-write/post-read-conversion
5721 functions while this post-read-conversion is running. */
5722 inhibit_pre_post_conversion = 1;
5723 val = call1 (coding->post_read_conversion, make_number (inserted));
5724 inhibit_pre_post_conversion = 0;
5725 /* Discard the unwind protect. */
5726 specpdl_ptr--;
5727 CHECK_NUMBER (val, 0);
5728 inserted += Z - prev_Z;
5729 }
5730
5731 if (orig_point >= from)
5732 {
5733 if (orig_point >= from + orig_len)
5734 orig_point += inserted - orig_len;
5735 else
5736 orig_point = from;
5737 TEMP_SET_PT (orig_point);
5738 }
5739
5740 if (replace)
5741 {
5742 signal_after_change (from, to - from, inserted);
5743 update_compositions (from, from + inserted, CHECK_BORDER);
5744 }
5745
5746 {
5747 coding->consumed = to_byte - from_byte;
5748 coding->consumed_char = to - from;
5749 coding->produced = inserted_byte;
5750 coding->produced_char = inserted;
5751 }
5752
5753 return 0;
5754 }
5755
5756 Lisp_Object
5757 run_pre_post_conversion_on_str (str, coding, encodep)
5758 Lisp_Object str;
5759 struct coding_system *coding;
5760 int encodep;
5761 {
5762 int count = specpdl_ptr - specpdl;
5763 struct gcpro gcpro1;
5764 int multibyte = STRING_MULTIBYTE (str);
5765
5766 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5767 record_unwind_protect (code_convert_region_unwind, Qnil);
5768 GCPRO1 (str);
5769 temp_output_buffer_setup (" *code-converting-work*");
5770 set_buffer_internal (XBUFFER (Vstandard_output));
5771 /* We must insert the contents of STR as is without
5772 unibyte<->multibyte conversion. For that, we adjust the
5773 multibyteness of the working buffer to that of STR. */
5774 Ferase_buffer ();
5775 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5776 insert_from_string (str, 0, 0,
5777 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5778 UNGCPRO;
5779 inhibit_pre_post_conversion = 1;
5780 if (encodep)
5781 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5782 else
5783 {
5784 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5785 call1 (coding->post_read_conversion, make_number (Z - BEG));
5786 }
5787 inhibit_pre_post_conversion = 0;
5788 str = make_buffer_string (BEG, Z, 1);
5789 return unbind_to (count, str);
5790 }
5791
5792 Lisp_Object
5793 decode_coding_string (str, coding, nocopy)
5794 Lisp_Object str;
5795 struct coding_system *coding;
5796 int nocopy;
5797 {
5798 int len;
5799 struct conversion_buffer buf;
5800 int from, to_byte;
5801 struct gcpro gcpro1;
5802 Lisp_Object saved_coding_symbol;
5803 int result;
5804 int require_decoding;
5805 int shrinked_bytes = 0;
5806 Lisp_Object newstr;
5807 int consumed, consumed_char, produced, produced_char;
5808
5809 from = 0;
5810 to_byte = STRING_BYTES (XSTRING (str));
5811
5812 saved_coding_symbol = coding->symbol;
5813 coding->src_multibyte = STRING_MULTIBYTE (str);
5814 coding->dst_multibyte = 1;
5815 if (CODING_REQUIRE_DETECTION (coding))
5816 {
5817 /* See the comments in code_convert_region. */
5818 if (coding->type == coding_type_undecided)
5819 {
5820 detect_coding (coding, XSTRING (str)->data, to_byte);
5821 if (coding->type == coding_type_undecided)
5822 {
5823 coding->type = coding_type_emacs_mule;
5824 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5825 /* As emacs-mule decoder will handle composition, we
5826 need this setting to allocate coding->cmp_data
5827 later. */
5828 coding->composing = COMPOSITION_NO;
5829 }
5830 }
5831 if (coding->eol_type == CODING_EOL_UNDECIDED
5832 && coding->type != coding_type_ccl)
5833 {
5834 saved_coding_symbol = coding->symbol;
5835 detect_eol (coding, XSTRING (str)->data, to_byte);
5836 if (coding->eol_type == CODING_EOL_UNDECIDED)
5837 coding->eol_type = CODING_EOL_LF;
5838 /* We had better recover the original eol format if we
5839 encounter an inconsistent eol format while decoding. */
5840 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5841 }
5842 }
5843
5844 if (coding->type == coding_type_no_conversion
5845 || coding->type == coding_type_raw_text)
5846 coding->dst_multibyte = 0;
5847
5848 require_decoding = CODING_REQUIRE_DECODING (coding);
5849
5850 if (STRING_MULTIBYTE (str))
5851 {
5852 /* Decoding routines expect the source text to be unibyte. */
5853 str = Fstring_as_unibyte (str);
5854 to_byte = STRING_BYTES (XSTRING (str));
5855 nocopy = 1;
5856 coding->src_multibyte = 0;
5857 }
5858
5859 /* Try to skip the heading and tailing ASCIIs. */
5860 if (require_decoding && coding->type != coding_type_ccl)
5861 {
5862 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5863 0);
5864 if (from == to_byte)
5865 require_decoding = 0;
5866 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5867 }
5868
5869 if (!require_decoding)
5870 {
5871 coding->consumed = STRING_BYTES (XSTRING (str));
5872 coding->consumed_char = XSTRING (str)->size;
5873 if (coding->dst_multibyte)
5874 {
5875 str = Fstring_as_multibyte (str);
5876 nocopy = 1;
5877 }
5878 coding->produced = STRING_BYTES (XSTRING (str));
5879 coding->produced_char = XSTRING (str)->size;
5880 return (nocopy ? str : Fcopy_sequence (str));
5881 }
5882
5883 if (coding->composing != COMPOSITION_DISABLED)
5884 coding_allocate_composition_data (coding, from);
5885 len = decoding_buffer_size (coding, to_byte - from);
5886 allocate_conversion_buffer (buf, len);
5887
5888 consumed = consumed_char = produced = produced_char = 0;
5889 while (1)
5890 {
5891 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5892 buf.data + produced, to_byte - from - consumed,
5893 buf.size - produced);
5894 consumed += coding->consumed;
5895 consumed_char += coding->consumed_char;
5896 produced += coding->produced;
5897 produced_char += coding->produced_char;
5898 if (result == CODING_FINISH_NORMAL
5899 || (result == CODING_FINISH_INSUFFICIENT_SRC
5900 && coding->consumed == 0))
5901 break;
5902 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5903 coding_allocate_composition_data (coding, from + produced_char);
5904 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5905 extend_conversion_buffer (&buf);
5906 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5907 {
5908 Lisp_Object eol_type;
5909
5910 /* Recover the original EOL format. */
5911 if (coding->eol_type == CODING_EOL_CR)
5912 {
5913 unsigned char *p;
5914 for (p = buf.data; p < buf.data + produced; p++)
5915 if (*p == '\n') *p = '\r';
5916 }
5917 else if (coding->eol_type == CODING_EOL_CRLF)
5918 {
5919 int num_eol = 0;
5920 unsigned char *p0, *p1;
5921 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5922 if (*p0 == '\n') num_eol++;
5923 if (produced + num_eol >= buf.size)
5924 extend_conversion_buffer (&buf);
5925 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5926 {
5927 *--p1 = *--p0;
5928 if (*p0 == '\n') *--p1 = '\r';
5929 }
5930 produced += num_eol;
5931 produced_char += num_eol;
5932 }
5933 /* Suppress eol-format conversion in the further conversion. */
5934 coding->eol_type = CODING_EOL_LF;
5935
5936 /* Set the coding system symbol to that for Unix-like EOL. */
5937 eol_type = Fget (saved_coding_symbol, Qeol_type);
5938 if (VECTORP (eol_type)
5939 && XVECTOR (eol_type)->size == 3
5940 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5941 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5942 else
5943 coding->symbol = saved_coding_symbol;
5944
5945
5946 }
5947 }
5948
5949 coding->consumed = consumed;
5950 coding->consumed_char = consumed_char;
5951 coding->produced = produced;
5952 coding->produced_char = produced_char;
5953
5954 if (coding->dst_multibyte)
5955 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
5956 produced + shrinked_bytes);
5957 else
5958 newstr = make_uninit_string (produced + shrinked_bytes);
5959 if (from > 0)
5960 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5961 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5962 if (shrinked_bytes > from)
5963 bcopy (XSTRING (str)->data + to_byte,
5964 XSTRING (newstr)->data + from + produced,
5965 shrinked_bytes - from);
5966 free_conversion_buffer (&buf);
5967
5968 if (coding->cmp_data && coding->cmp_data->used)
5969 coding_restore_composition (coding, newstr);
5970 coding_free_composition_data (coding);
5971
5972 if (SYMBOLP (coding->post_read_conversion)
5973 && !NILP (Ffboundp (coding->post_read_conversion)))
5974 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
5975
5976 return newstr;
5977 }
5978
5979 Lisp_Object
5980 encode_coding_string (str, coding, nocopy)
5981 Lisp_Object str;
5982 struct coding_system *coding;
5983 int nocopy;
5984 {
5985 int len;
5986 struct conversion_buffer buf;
5987 int from, to, to_byte;
5988 int result;
5989 int shrinked_bytes = 0;
5990 Lisp_Object newstr;
5991 int consumed, consumed_char, produced, produced_char;
5992
5993 if (SYMBOLP (coding->pre_write_conversion)
5994 && !NILP (Ffboundp (coding->pre_write_conversion)))
5995 str = run_pre_post_conversion_on_str (str, coding, 1);
5996
5997 from = 0;
5998 to = XSTRING (str)->size;
5999 to_byte = STRING_BYTES (XSTRING (str));
6000
6001 /* Encoding routines determine the multibyteness of the source text
6002 by coding->src_multibyte. */
6003 coding->src_multibyte = STRING_MULTIBYTE (str);
6004 coding->dst_multibyte = 0;
6005 if (! CODING_REQUIRE_ENCODING (coding))
6006 {
6007 coding->consumed = STRING_BYTES (XSTRING (str));
6008 coding->consumed_char = XSTRING (str)->size;
6009 if (STRING_MULTIBYTE (str))
6010 {
6011 str = Fstring_as_unibyte (str);
6012 nocopy = 1;
6013 }
6014 coding->produced = STRING_BYTES (XSTRING (str));
6015 coding->produced_char = XSTRING (str)->size;
6016 return (nocopy ? str : Fcopy_sequence (str));
6017 }
6018
6019 if (coding->composing != COMPOSITION_DISABLED)
6020 coding_save_composition (coding, from, to, str);
6021
6022 /* Try to skip the heading and tailing ASCIIs. */
6023 if (coding->type != coding_type_ccl)
6024 {
6025 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
6026 1);
6027 if (from == to_byte)
6028 return (nocopy ? str : Fcopy_sequence (str));
6029 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
6030 }
6031
6032 len = encoding_buffer_size (coding, to_byte - from);
6033 allocate_conversion_buffer (buf, len);
6034
6035 consumed = consumed_char = produced = produced_char = 0;
6036 while (1)
6037 {
6038 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
6039 buf.data + produced, to_byte - from - consumed,
6040 buf.size - produced);
6041 consumed += coding->consumed;
6042 consumed_char += coding->consumed_char;
6043 produced += coding->produced;
6044 produced_char += coding->produced_char;
6045 if (result == CODING_FINISH_NORMAL
6046 || (result == CODING_FINISH_INSUFFICIENT_SRC
6047 && coding->consumed == 0))
6048 break;
6049 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6050 extend_conversion_buffer (&buf);
6051 }
6052
6053 coding->consumed = consumed;
6054 coding->consumed_char = consumed_char;
6055 coding->produced = produced;
6056 coding->produced_char = produced_char;
6057
6058 newstr = make_uninit_string (produced + shrinked_bytes);
6059 if (from > 0)
6060 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6061 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6062 if (shrinked_bytes > from)
6063 bcopy (XSTRING (str)->data + to_byte,
6064 XSTRING (newstr)->data + from + produced,
6065 shrinked_bytes - from);
6066
6067 free_conversion_buffer (&buf);
6068 coding_free_composition_data (coding);
6069
6070 return newstr;
6071 }
6072
6073 \f
6074 #ifdef emacs
6075 /*** 8. Emacs Lisp library functions ***/
6076
6077 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6078 "Return t if OBJECT is nil or a coding-system.\n\
6079 See the documentation of `make-coding-system' for information\n\
6080 about coding-system objects.")
6081 (obj)
6082 Lisp_Object obj;
6083 {
6084 if (NILP (obj))
6085 return Qt;
6086 if (!SYMBOLP (obj))
6087 return Qnil;
6088 /* Get coding-spec vector for OBJ. */
6089 obj = Fget (obj, Qcoding_system);
6090 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6091 ? Qt : Qnil);
6092 }
6093
6094 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6095 Sread_non_nil_coding_system, 1, 1, 0,
6096 "Read a coding system from the minibuffer, prompting with string PROMPT.")
6097 (prompt)
6098 Lisp_Object prompt;
6099 {
6100 Lisp_Object val;
6101 do
6102 {
6103 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6104 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6105 }
6106 while (XSTRING (val)->size == 0);
6107 return (Fintern (val, Qnil));
6108 }
6109
6110 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6111 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
6112 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
6113 (prompt, default_coding_system)
6114 Lisp_Object prompt, default_coding_system;
6115 {
6116 Lisp_Object val;
6117 if (SYMBOLP (default_coding_system))
6118 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
6119 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6120 Qt, Qnil, Qcoding_system_history,
6121 default_coding_system, Qnil);
6122 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
6123 }
6124
6125 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6126 1, 1, 0,
6127 "Check validity of CODING-SYSTEM.\n\
6128 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
6129 It is valid if it is a symbol with a non-nil `coding-system' property.\n\
6130 The value of property should be a vector of length 5.")
6131 (coding_system)
6132 Lisp_Object coding_system;
6133 {
6134 CHECK_SYMBOL (coding_system, 0);
6135 if (!NILP (Fcoding_system_p (coding_system)))
6136 return coding_system;
6137 while (1)
6138 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6139 }
6140 \f
6141 Lisp_Object
6142 detect_coding_system (src, src_bytes, highest, multibytep)
6143 unsigned char *src;
6144 int src_bytes, highest;
6145 int multibytep;
6146 {
6147 int coding_mask, eol_type;
6148 Lisp_Object val, tmp;
6149 int dummy;
6150
6151 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6152 eol_type = detect_eol_type (src, src_bytes, &dummy);
6153 if (eol_type == CODING_EOL_INCONSISTENT)
6154 eol_type = CODING_EOL_UNDECIDED;
6155
6156 if (!coding_mask)
6157 {
6158 val = Qundecided;
6159 if (eol_type != CODING_EOL_UNDECIDED)
6160 {
6161 Lisp_Object val2;
6162 val2 = Fget (Qundecided, Qeol_type);
6163 if (VECTORP (val2))
6164 val = XVECTOR (val2)->contents[eol_type];
6165 }
6166 return (highest ? val : Fcons (val, Qnil));
6167 }
6168
6169 /* At first, gather possible coding systems in VAL. */
6170 val = Qnil;
6171 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6172 {
6173 Lisp_Object category_val, category_index;
6174
6175 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6176 category_val = Fsymbol_value (XCAR (tmp));
6177 if (!NILP (category_val)
6178 && NATNUMP (category_index)
6179 && (coding_mask & (1 << XFASTINT (category_index))))
6180 {
6181 val = Fcons (category_val, val);
6182 if (highest)
6183 break;
6184 }
6185 }
6186 if (!highest)
6187 val = Fnreverse (val);
6188
6189 /* Then, replace the elements with subsidiary coding systems. */
6190 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6191 {
6192 if (eol_type != CODING_EOL_UNDECIDED
6193 && eol_type != CODING_EOL_INCONSISTENT)
6194 {
6195 Lisp_Object eol;
6196 eol = Fget (XCAR (tmp), Qeol_type);
6197 if (VECTORP (eol))
6198 XCAR (tmp) = XVECTOR (eol)->contents[eol_type];
6199 }
6200 }
6201 return (highest ? XCAR (val) : val);
6202 }
6203
6204 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6205 2, 3, 0,
6206 "Detect coding system of the text in the region between START and END.\n\
6207 Return a list of possible coding systems ordered by priority.\n\
6208 \n\
6209 If only ASCII characters are found, it returns a list of single element\n\
6210 `undecided' or its subsidiary coding system according to a detected\n\
6211 end-of-line format.\n\
6212 \n\
6213 If optional argument HIGHEST is non-nil, return the coding system of\n\
6214 highest priority.")
6215 (start, end, highest)
6216 Lisp_Object start, end, highest;
6217 {
6218 int from, to;
6219 int from_byte, to_byte;
6220 int include_anchor_byte = 0;
6221
6222 CHECK_NUMBER_COERCE_MARKER (start, 0);
6223 CHECK_NUMBER_COERCE_MARKER (end, 1);
6224
6225 validate_region (&start, &end);
6226 from = XINT (start), to = XINT (end);
6227 from_byte = CHAR_TO_BYTE (from);
6228 to_byte = CHAR_TO_BYTE (to);
6229
6230 if (from < GPT && to >= GPT)
6231 move_gap_both (to, to_byte);
6232 /* If we an anchor byte `\0' follows the region, we include it in
6233 the detecting source. Then code detectors can handle the tailing
6234 byte sequence more accurately.
6235
6236 Fix me: This is not an perfect solution. It is better that we
6237 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6238 */
6239 if (to == Z || (to == GPT && GAP_SIZE > 0))
6240 include_anchor_byte = 1;
6241 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6242 to_byte - from_byte + include_anchor_byte,
6243 !NILP (highest),
6244 !NILP (current_buffer
6245 ->enable_multibyte_characters));
6246 }
6247
6248 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6249 1, 2, 0,
6250 "Detect coding system of the text in STRING.\n\
6251 Return a list of possible coding systems ordered by priority.\n\
6252 \n\
6253 If only ASCII characters are found, it returns a list of single element\n\
6254 `undecided' or its subsidiary coding system according to a detected\n\
6255 end-of-line format.\n\
6256 \n\
6257 If optional argument HIGHEST is non-nil, return the coding system of\n\
6258 highest priority.")
6259 (string, highest)
6260 Lisp_Object string, highest;
6261 {
6262 CHECK_STRING (string, 0);
6263
6264 return detect_coding_system (XSTRING (string)->data,
6265 /* "+ 1" is to include the anchor byte
6266 `\0'. With this, code detectors can
6267 handle the tailing bytes more
6268 accurately. */
6269 STRING_BYTES (XSTRING (string)) + 1,
6270 !NILP (highest),
6271 STRING_MULTIBYTE (string));
6272 }
6273
6274 /* Return an intersection of lists L1 and L2. */
6275
6276 static Lisp_Object
6277 intersection (l1, l2)
6278 Lisp_Object l1, l2;
6279 {
6280 Lisp_Object val;
6281
6282 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
6283 {
6284 if (!NILP (Fmemq (XCAR (l1), l2)))
6285 val = Fcons (XCAR (l1), val);
6286 }
6287 return val;
6288 }
6289
6290
6291 /* Subroutine for Fsafe_coding_systems_region_internal.
6292
6293 Return a list of coding systems that safely encode the multibyte
6294 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6295 possible coding systems. If it is nil, it means that we have not
6296 yet found any coding systems.
6297
6298 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6299 element of WORK_TABLE is set to t once the element is looked up.
6300
6301 If a non-ASCII single byte char is found, set
6302 *single_byte_char_found to 1. */
6303
6304 static Lisp_Object
6305 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6306 unsigned char *p, *pend;
6307 Lisp_Object safe_codings, work_table;
6308 int *single_byte_char_found;
6309 {
6310 int c, len, idx;
6311 Lisp_Object val;
6312
6313 while (p < pend)
6314 {
6315 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6316 p += len;
6317 if (ASCII_BYTE_P (c))
6318 /* We can ignore ASCII characters here. */
6319 continue;
6320 if (SINGLE_BYTE_CHAR_P (c))
6321 *single_byte_char_found = 1;
6322 if (NILP (safe_codings))
6323 continue;
6324 /* Check the safe coding systems for C. */
6325 val = char_table_ref_and_index (work_table, c, &idx);
6326 if (EQ (val, Qt))
6327 /* This element was already checked. Ignore it. */
6328 continue;
6329 /* Remember that we checked this element. */
6330 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
6331
6332 /* If there are some safe coding systems for C and we have
6333 already found the other set of coding systems for the
6334 different characters, get the intersection of them. */
6335 if (!EQ (safe_codings, Qt) && !NILP (val))
6336 val = intersection (safe_codings, val);
6337 safe_codings = val;
6338 }
6339 return safe_codings;
6340 }
6341
6342
6343 /* Return a list of coding systems that safely encode the text between
6344 START and END. If the text contains only ASCII or is unibyte,
6345 return t. */
6346
6347 DEFUN ("find-coding-systems-region-internal",
6348 Ffind_coding_systems_region_internal,
6349 Sfind_coding_systems_region_internal, 2, 2, 0,
6350 "Internal use only.")
6351 (start, end)
6352 Lisp_Object start, end;
6353 {
6354 Lisp_Object work_table, safe_codings;
6355 int non_ascii_p = 0;
6356 int single_byte_char_found = 0;
6357 unsigned char *p1, *p1end, *p2, *p2end, *p;
6358
6359 if (STRINGP (start))
6360 {
6361 if (!STRING_MULTIBYTE (start))
6362 return Qt;
6363 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
6364 p2 = p2end = p1end;
6365 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
6366 non_ascii_p = 1;
6367 }
6368 else
6369 {
6370 int from, to, stop;
6371
6372 CHECK_NUMBER_COERCE_MARKER (start, 0);
6373 CHECK_NUMBER_COERCE_MARKER (end, 1);
6374 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6375 args_out_of_range (start, end);
6376 if (NILP (current_buffer->enable_multibyte_characters))
6377 return Qt;
6378 from = CHAR_TO_BYTE (XINT (start));
6379 to = CHAR_TO_BYTE (XINT (end));
6380 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6381 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6382 if (stop == to)
6383 p2 = p2end = p1end;
6384 else
6385 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6386 if (XINT (end) - XINT (start) != to - from)
6387 non_ascii_p = 1;
6388 }
6389
6390 if (!non_ascii_p)
6391 {
6392 /* We are sure that the text contains no multibyte character.
6393 Check if it contains eight-bit-graphic. */
6394 p = p1;
6395 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6396 if (p == p1end)
6397 {
6398 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6399 if (p == p2end)
6400 return Qt;
6401 }
6402 }
6403
6404 /* The text contains non-ASCII characters. */
6405 work_table = Fcopy_sequence (Vchar_coding_system_table);
6406 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
6407 &single_byte_char_found);
6408 if (p2 < p2end)
6409 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6410 &single_byte_char_found);
6411
6412 if (EQ (safe_codings, Qt))
6413 ; /* Nothing to be done. */
6414 else if (!single_byte_char_found)
6415 {
6416 /* Append generic coding systems. */
6417 Lisp_Object args[2];
6418 args[0] = safe_codings;
6419 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
6420 make_number (0));
6421 safe_codings = Fappend (2, args);
6422 }
6423 else
6424 safe_codings = Fcons (Qraw_text,
6425 Fcons (Qemacs_mule,
6426 Fcons (Qno_conversion, safe_codings)));
6427 return safe_codings;
6428 }
6429
6430
6431 Lisp_Object
6432 code_convert_region1 (start, end, coding_system, encodep)
6433 Lisp_Object start, end, coding_system;
6434 int encodep;
6435 {
6436 struct coding_system coding;
6437 int from, to;
6438
6439 CHECK_NUMBER_COERCE_MARKER (start, 0);
6440 CHECK_NUMBER_COERCE_MARKER (end, 1);
6441 CHECK_SYMBOL (coding_system, 2);
6442
6443 validate_region (&start, &end);
6444 from = XFASTINT (start);
6445 to = XFASTINT (end);
6446
6447 if (NILP (coding_system))
6448 return make_number (to - from);
6449
6450 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6451 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6452
6453 coding.mode |= CODING_MODE_LAST_BLOCK;
6454 coding.src_multibyte = coding.dst_multibyte
6455 = !NILP (current_buffer->enable_multibyte_characters);
6456 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6457 &coding, encodep, 1);
6458 Vlast_coding_system_used = coding.symbol;
6459 return make_number (coding.produced_char);
6460 }
6461
6462 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6463 3, 3, "r\nzCoding system: ",
6464 "Decode the current region from the specified coding system.\n\
6465 When called from a program, takes three arguments:\n\
6466 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
6467 This function sets `last-coding-system-used' to the precise coding system\n\
6468 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6469 not fully specified.)\n\
6470 It returns the length of the decoded text.")
6471 (start, end, coding_system)
6472 Lisp_Object start, end, coding_system;
6473 {
6474 return code_convert_region1 (start, end, coding_system, 0);
6475 }
6476
6477 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6478 3, 3, "r\nzCoding system: ",
6479 "Encode the current region into the specified coding system.\n\
6480 When called from a program, takes three arguments:\n\
6481 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
6482 This function sets `last-coding-system-used' to the precise coding system\n\
6483 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6484 not fully specified.)\n\
6485 It returns the length of the encoded text.")
6486 (start, end, coding_system)
6487 Lisp_Object start, end, coding_system;
6488 {
6489 return code_convert_region1 (start, end, coding_system, 1);
6490 }
6491
6492 Lisp_Object
6493 code_convert_string1 (string, coding_system, nocopy, encodep)
6494 Lisp_Object string, coding_system, nocopy;
6495 int encodep;
6496 {
6497 struct coding_system coding;
6498
6499 CHECK_STRING (string, 0);
6500 CHECK_SYMBOL (coding_system, 1);
6501
6502 if (NILP (coding_system))
6503 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6504
6505 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6506 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6507
6508 coding.mode |= CODING_MODE_LAST_BLOCK;
6509 string = (encodep
6510 ? encode_coding_string (string, &coding, !NILP (nocopy))
6511 : decode_coding_string (string, &coding, !NILP (nocopy)));
6512 Vlast_coding_system_used = coding.symbol;
6513
6514 return string;
6515 }
6516
6517 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6518 2, 3, 0,
6519 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
6520 Optional arg NOCOPY non-nil means it is OK to return STRING itself\n\
6521 if the decoding operation is trivial.\n\
6522 This function sets `last-coding-system-used' to the precise coding system\n\
6523 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6524 not fully specified.)")
6525 (string, coding_system, nocopy)
6526 Lisp_Object string, coding_system, nocopy;
6527 {
6528 return code_convert_string1 (string, coding_system, nocopy, 0);
6529 }
6530
6531 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6532 2, 3, 0,
6533 "Encode STRING to CODING-SYSTEM, and return the result.\n\
6534 Optional arg NOCOPY non-nil means it is OK to return STRING itself\n\
6535 if the encoding operation is trivial.\n\
6536 This function sets `last-coding-system-used' to the precise coding system\n\
6537 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6538 not fully specified.)")
6539 (string, coding_system, nocopy)
6540 Lisp_Object string, coding_system, nocopy;
6541 {
6542 return code_convert_string1 (string, coding_system, nocopy, 1);
6543 }
6544
6545 /* Encode or decode STRING according to CODING_SYSTEM.
6546 Do not set Vlast_coding_system_used.
6547
6548 This function is called only from macros DECODE_FILE and
6549 ENCODE_FILE, thus we ignore character composition. */
6550
6551 Lisp_Object
6552 code_convert_string_norecord (string, coding_system, encodep)
6553 Lisp_Object string, coding_system;
6554 int encodep;
6555 {
6556 struct coding_system coding;
6557
6558 CHECK_STRING (string, 0);
6559 CHECK_SYMBOL (coding_system, 1);
6560
6561 if (NILP (coding_system))
6562 return string;
6563
6564 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6565 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6566
6567 coding.composing = COMPOSITION_DISABLED;
6568 coding.mode |= CODING_MODE_LAST_BLOCK;
6569 return (encodep
6570 ? encode_coding_string (string, &coding, 1)
6571 : decode_coding_string (string, &coding, 1));
6572 }
6573 \f
6574 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6575 "Decode a Japanese character which has CODE in shift_jis encoding.\n\
6576 Return the corresponding character.")
6577 (code)
6578 Lisp_Object code;
6579 {
6580 unsigned char c1, c2, s1, s2;
6581 Lisp_Object val;
6582
6583 CHECK_NUMBER (code, 0);
6584 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6585 if (s1 == 0)
6586 {
6587 if (s2 < 0x80)
6588 XSETFASTINT (val, s2);
6589 else if (s2 >= 0xA0 || s2 <= 0xDF)
6590 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6591 else
6592 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6593 }
6594 else
6595 {
6596 if ((s1 < 0x80 || s1 > 0x9F && s1 < 0xE0 || s1 > 0xEF)
6597 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6598 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6599 DECODE_SJIS (s1, s2, c1, c2);
6600 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6601 }
6602 return val;
6603 }
6604
6605 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6606 "Encode a Japanese character CHAR to shift_jis encoding.\n\
6607 Return the corresponding code in SJIS.")
6608 (ch)
6609 Lisp_Object ch;
6610 {
6611 int charset, c1, c2, s1, s2;
6612 Lisp_Object val;
6613
6614 CHECK_NUMBER (ch, 0);
6615 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6616 if (charset == CHARSET_ASCII)
6617 {
6618 val = ch;
6619 }
6620 else if (charset == charset_jisx0208
6621 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6622 {
6623 ENCODE_SJIS (c1, c2, s1, s2);
6624 XSETFASTINT (val, (s1 << 8) | s2);
6625 }
6626 else if (charset == charset_katakana_jisx0201
6627 && c1 > 0x20 && c2 < 0xE0)
6628 {
6629 XSETFASTINT (val, c1 | 0x80);
6630 }
6631 else
6632 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6633 return val;
6634 }
6635
6636 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6637 "Decode a Big5 character which has CODE in BIG5 coding system.\n\
6638 Return the corresponding character.")
6639 (code)
6640 Lisp_Object code;
6641 {
6642 int charset;
6643 unsigned char b1, b2, c1, c2;
6644 Lisp_Object val;
6645
6646 CHECK_NUMBER (code, 0);
6647 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6648 if (b1 == 0)
6649 {
6650 if (b2 >= 0x80)
6651 error ("Invalid BIG5 code: %x", XFASTINT (code));
6652 val = code;
6653 }
6654 else
6655 {
6656 if ((b1 < 0xA1 || b1 > 0xFE)
6657 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6658 error ("Invalid BIG5 code: %x", XFASTINT (code));
6659 DECODE_BIG5 (b1, b2, charset, c1, c2);
6660 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6661 }
6662 return val;
6663 }
6664
6665 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6666 "Encode the Big5 character CHAR to BIG5 coding system.\n\
6667 Return the corresponding character code in Big5.")
6668 (ch)
6669 Lisp_Object ch;
6670 {
6671 int charset, c1, c2, b1, b2;
6672 Lisp_Object val;
6673
6674 CHECK_NUMBER (ch, 0);
6675 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6676 if (charset == CHARSET_ASCII)
6677 {
6678 val = ch;
6679 }
6680 else if ((charset == charset_big5_1
6681 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6682 || (charset == charset_big5_2
6683 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6684 {
6685 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6686 XSETFASTINT (val, (b1 << 8) | b2);
6687 }
6688 else
6689 error ("Can't encode to Big5: %d", XFASTINT (ch));
6690 return val;
6691 }
6692 \f
6693 DEFUN ("set-terminal-coding-system-internal",
6694 Fset_terminal_coding_system_internal,
6695 Sset_terminal_coding_system_internal, 1, 1, 0, "")
6696 (coding_system)
6697 Lisp_Object coding_system;
6698 {
6699 CHECK_SYMBOL (coding_system, 0);
6700 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6701 /* We had better not send unsafe characters to terminal. */
6702 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6703 /* Character composition should be disabled. */
6704 terminal_coding.composing = COMPOSITION_DISABLED;
6705 /* Error notification should be suppressed. */
6706 terminal_coding.suppress_error = 1;
6707 terminal_coding.src_multibyte = 1;
6708 terminal_coding.dst_multibyte = 0;
6709 return Qnil;
6710 }
6711
6712 DEFUN ("set-safe-terminal-coding-system-internal",
6713 Fset_safe_terminal_coding_system_internal,
6714 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
6715 (coding_system)
6716 Lisp_Object coding_system;
6717 {
6718 CHECK_SYMBOL (coding_system, 0);
6719 setup_coding_system (Fcheck_coding_system (coding_system),
6720 &safe_terminal_coding);
6721 /* Character composition should be disabled. */
6722 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6723 /* Error notification should be suppressed. */
6724 terminal_coding.suppress_error = 1;
6725 safe_terminal_coding.src_multibyte = 1;
6726 safe_terminal_coding.dst_multibyte = 0;
6727 return Qnil;
6728 }
6729
6730 DEFUN ("terminal-coding-system",
6731 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6732 "Return coding system specified for terminal output.")
6733 ()
6734 {
6735 return terminal_coding.symbol;
6736 }
6737
6738 DEFUN ("set-keyboard-coding-system-internal",
6739 Fset_keyboard_coding_system_internal,
6740 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
6741 (coding_system)
6742 Lisp_Object coding_system;
6743 {
6744 CHECK_SYMBOL (coding_system, 0);
6745 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6746 /* Character composition should be disabled. */
6747 keyboard_coding.composing = COMPOSITION_DISABLED;
6748 return Qnil;
6749 }
6750
6751 DEFUN ("keyboard-coding-system",
6752 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6753 "Return coding system specified for decoding keyboard input.")
6754 ()
6755 {
6756 return keyboard_coding.symbol;
6757 }
6758
6759 \f
6760 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6761 Sfind_operation_coding_system, 1, MANY, 0,
6762 "Choose a coding system for an operation based on the target name.\n\
6763 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).\n\
6764 DECODING-SYSTEM is the coding system to use for decoding\n\
6765 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
6766 for encoding (in case OPERATION does encoding).\n\
6767 \n\
6768 The first argument OPERATION specifies an I/O primitive:\n\
6769 For file I/O, `insert-file-contents' or `write-region'.\n\
6770 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
6771 For network I/O, `open-network-stream'.\n\
6772 \n\
6773 The remaining arguments should be the same arguments that were passed\n\
6774 to the primitive. Depending on which primitive, one of those arguments\n\
6775 is selected as the TARGET. For example, if OPERATION does file I/O,\n\
6776 whichever argument specifies the file name is TARGET.\n\
6777 \n\
6778 TARGET has a meaning which depends on OPERATION:\n\
6779 For file I/O, TARGET is a file name.\n\
6780 For process I/O, TARGET is a process name.\n\
6781 For network I/O, TARGET is a service name or a port number\n\
6782 \n\
6783 This function looks up what specified for TARGET in,\n\
6784 `file-coding-system-alist', `process-coding-system-alist',\n\
6785 or `network-coding-system-alist' depending on OPERATION.\n\
6786 They may specify a coding system, a cons of coding systems,\n\
6787 or a function symbol to call.\n\
6788 In the last case, we call the function with one argument,\n\
6789 which is a list of all the arguments given to this function.")
6790 (nargs, args)
6791 int nargs;
6792 Lisp_Object *args;
6793 {
6794 Lisp_Object operation, target_idx, target, val;
6795 register Lisp_Object chain;
6796
6797 if (nargs < 2)
6798 error ("Too few arguments");
6799 operation = args[0];
6800 if (!SYMBOLP (operation)
6801 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6802 error ("Invalid first argument");
6803 if (nargs < 1 + XINT (target_idx))
6804 error ("Too few arguments for operation: %s",
6805 XSYMBOL (operation)->name->data);
6806 target = args[XINT (target_idx) + 1];
6807 if (!(STRINGP (target)
6808 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6809 error ("Invalid argument %d", XINT (target_idx) + 1);
6810
6811 chain = ((EQ (operation, Qinsert_file_contents)
6812 || EQ (operation, Qwrite_region))
6813 ? Vfile_coding_system_alist
6814 : (EQ (operation, Qopen_network_stream)
6815 ? Vnetwork_coding_system_alist
6816 : Vprocess_coding_system_alist));
6817 if (NILP (chain))
6818 return Qnil;
6819
6820 for (; CONSP (chain); chain = XCDR (chain))
6821 {
6822 Lisp_Object elt;
6823 elt = XCAR (chain);
6824
6825 if (CONSP (elt)
6826 && ((STRINGP (target)
6827 && STRINGP (XCAR (elt))
6828 && fast_string_match (XCAR (elt), target) >= 0)
6829 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6830 {
6831 val = XCDR (elt);
6832 /* Here, if VAL is both a valid coding system and a valid
6833 function symbol, we return VAL as a coding system. */
6834 if (CONSP (val))
6835 return val;
6836 if (! SYMBOLP (val))
6837 return Qnil;
6838 if (! NILP (Fcoding_system_p (val)))
6839 return Fcons (val, val);
6840 if (! NILP (Ffboundp (val)))
6841 {
6842 val = call1 (val, Flist (nargs, args));
6843 if (CONSP (val))
6844 return val;
6845 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6846 return Fcons (val, val);
6847 }
6848 return Qnil;
6849 }
6850 }
6851 return Qnil;
6852 }
6853
6854 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6855 Supdate_coding_systems_internal, 0, 0, 0,
6856 "Update internal database for ISO2022 and CCL based coding systems.\n\
6857 When values of any coding categories are changed, you must\n\
6858 call this function")
6859 ()
6860 {
6861 int i;
6862
6863 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6864 {
6865 Lisp_Object val;
6866
6867 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[i])->value;
6868 if (!NILP (val))
6869 {
6870 if (! coding_system_table[i])
6871 coding_system_table[i] = ((struct coding_system *)
6872 xmalloc (sizeof (struct coding_system)));
6873 setup_coding_system (val, coding_system_table[i]);
6874 }
6875 else if (coding_system_table[i])
6876 {
6877 xfree (coding_system_table[i]);
6878 coding_system_table[i] = NULL;
6879 }
6880 }
6881
6882 return Qnil;
6883 }
6884
6885 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6886 Sset_coding_priority_internal, 0, 0, 0,
6887 "Update internal database for the current value of `coding-category-list'.\n\
6888 This function is internal use only.")
6889 ()
6890 {
6891 int i = 0, idx;
6892 Lisp_Object val;
6893
6894 val = Vcoding_category_list;
6895
6896 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6897 {
6898 if (! SYMBOLP (XCAR (val)))
6899 break;
6900 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6901 if (idx >= CODING_CATEGORY_IDX_MAX)
6902 break;
6903 coding_priorities[i++] = (1 << idx);
6904 val = XCDR (val);
6905 }
6906 /* If coding-category-list is valid and contains all coding
6907 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6908 the following code saves Emacs from crashing. */
6909 while (i < CODING_CATEGORY_IDX_MAX)
6910 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6911
6912 return Qnil;
6913 }
6914
6915 #endif /* emacs */
6916
6917 \f
6918 /*** 9. Post-amble ***/
6919
6920 void
6921 init_coding_once ()
6922 {
6923 int i;
6924
6925 /* Emacs' internal format specific initialize routine. */
6926 for (i = 0; i <= 0x20; i++)
6927 emacs_code_class[i] = EMACS_control_code;
6928 emacs_code_class[0x0A] = EMACS_linefeed_code;
6929 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6930 for (i = 0x21 ; i < 0x7F; i++)
6931 emacs_code_class[i] = EMACS_ascii_code;
6932 emacs_code_class[0x7F] = EMACS_control_code;
6933 for (i = 0x80; i < 0xFF; i++)
6934 emacs_code_class[i] = EMACS_invalid_code;
6935 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6936 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6937 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6938 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6939
6940 /* ISO2022 specific initialize routine. */
6941 for (i = 0; i < 0x20; i++)
6942 iso_code_class[i] = ISO_control_0;
6943 for (i = 0x21; i < 0x7F; i++)
6944 iso_code_class[i] = ISO_graphic_plane_0;
6945 for (i = 0x80; i < 0xA0; i++)
6946 iso_code_class[i] = ISO_control_1;
6947 for (i = 0xA1; i < 0xFF; i++)
6948 iso_code_class[i] = ISO_graphic_plane_1;
6949 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6950 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6951 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6952 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6953 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6954 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6955 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6956 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6957 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6958 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6959
6960 setup_coding_system (Qnil, &keyboard_coding);
6961 setup_coding_system (Qnil, &terminal_coding);
6962 setup_coding_system (Qnil, &safe_terminal_coding);
6963 setup_coding_system (Qnil, &default_buffer_file_coding);
6964
6965 bzero (coding_system_table, sizeof coding_system_table);
6966
6967 bzero (ascii_skip_code, sizeof ascii_skip_code);
6968 for (i = 0; i < 128; i++)
6969 ascii_skip_code[i] = 1;
6970
6971 #if defined (MSDOS) || defined (WINDOWSNT)
6972 system_eol_type = CODING_EOL_CRLF;
6973 #else
6974 system_eol_type = CODING_EOL_LF;
6975 #endif
6976
6977 inhibit_pre_post_conversion = 0;
6978 }
6979
6980 #ifdef emacs
6981
6982 void
6983 syms_of_coding ()
6984 {
6985 Qtarget_idx = intern ("target-idx");
6986 staticpro (&Qtarget_idx);
6987
6988 Qcoding_system_history = intern ("coding-system-history");
6989 staticpro (&Qcoding_system_history);
6990 Fset (Qcoding_system_history, Qnil);
6991
6992 /* Target FILENAME is the first argument. */
6993 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
6994 /* Target FILENAME is the third argument. */
6995 Fput (Qwrite_region, Qtarget_idx, make_number (2));
6996
6997 Qcall_process = intern ("call-process");
6998 staticpro (&Qcall_process);
6999 /* Target PROGRAM is the first argument. */
7000 Fput (Qcall_process, Qtarget_idx, make_number (0));
7001
7002 Qcall_process_region = intern ("call-process-region");
7003 staticpro (&Qcall_process_region);
7004 /* Target PROGRAM is the third argument. */
7005 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7006
7007 Qstart_process = intern ("start-process");
7008 staticpro (&Qstart_process);
7009 /* Target PROGRAM is the third argument. */
7010 Fput (Qstart_process, Qtarget_idx, make_number (2));
7011
7012 Qopen_network_stream = intern ("open-network-stream");
7013 staticpro (&Qopen_network_stream);
7014 /* Target SERVICE is the fourth argument. */
7015 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7016
7017 Qcoding_system = intern ("coding-system");
7018 staticpro (&Qcoding_system);
7019
7020 Qeol_type = intern ("eol-type");
7021 staticpro (&Qeol_type);
7022
7023 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7024 staticpro (&Qbuffer_file_coding_system);
7025
7026 Qpost_read_conversion = intern ("post-read-conversion");
7027 staticpro (&Qpost_read_conversion);
7028
7029 Qpre_write_conversion = intern ("pre-write-conversion");
7030 staticpro (&Qpre_write_conversion);
7031
7032 Qno_conversion = intern ("no-conversion");
7033 staticpro (&Qno_conversion);
7034
7035 Qundecided = intern ("undecided");
7036 staticpro (&Qundecided);
7037
7038 Qcoding_system_p = intern ("coding-system-p");
7039 staticpro (&Qcoding_system_p);
7040
7041 Qcoding_system_error = intern ("coding-system-error");
7042 staticpro (&Qcoding_system_error);
7043
7044 Fput (Qcoding_system_error, Qerror_conditions,
7045 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7046 Fput (Qcoding_system_error, Qerror_message,
7047 build_string ("Invalid coding system"));
7048
7049 Qcoding_category = intern ("coding-category");
7050 staticpro (&Qcoding_category);
7051 Qcoding_category_index = intern ("coding-category-index");
7052 staticpro (&Qcoding_category_index);
7053
7054 Vcoding_category_table
7055 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7056 staticpro (&Vcoding_category_table);
7057 {
7058 int i;
7059 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7060 {
7061 XVECTOR (Vcoding_category_table)->contents[i]
7062 = intern (coding_category_name[i]);
7063 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7064 Qcoding_category_index, make_number (i));
7065 }
7066 }
7067
7068 Qtranslation_table = intern ("translation-table");
7069 staticpro (&Qtranslation_table);
7070 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7071
7072 Qtranslation_table_id = intern ("translation-table-id");
7073 staticpro (&Qtranslation_table_id);
7074
7075 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7076 staticpro (&Qtranslation_table_for_decode);
7077
7078 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7079 staticpro (&Qtranslation_table_for_encode);
7080
7081 Qsafe_chars = intern ("safe-chars");
7082 staticpro (&Qsafe_chars);
7083
7084 Qchar_coding_system = intern ("char-coding-system");
7085 staticpro (&Qchar_coding_system);
7086
7087 /* Intern this now in case it isn't already done.
7088 Setting this variable twice is harmless.
7089 But don't staticpro it here--that is done in alloc.c. */
7090 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7091 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7092 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (1));
7093
7094 Qvalid_codes = intern ("valid-codes");
7095 staticpro (&Qvalid_codes);
7096
7097 Qemacs_mule = intern ("emacs-mule");
7098 staticpro (&Qemacs_mule);
7099
7100 Qraw_text = intern ("raw-text");
7101 staticpro (&Qraw_text);
7102
7103 defsubr (&Scoding_system_p);
7104 defsubr (&Sread_coding_system);
7105 defsubr (&Sread_non_nil_coding_system);
7106 defsubr (&Scheck_coding_system);
7107 defsubr (&Sdetect_coding_region);
7108 defsubr (&Sdetect_coding_string);
7109 defsubr (&Sfind_coding_systems_region_internal);
7110 defsubr (&Sdecode_coding_region);
7111 defsubr (&Sencode_coding_region);
7112 defsubr (&Sdecode_coding_string);
7113 defsubr (&Sencode_coding_string);
7114 defsubr (&Sdecode_sjis_char);
7115 defsubr (&Sencode_sjis_char);
7116 defsubr (&Sdecode_big5_char);
7117 defsubr (&Sencode_big5_char);
7118 defsubr (&Sset_terminal_coding_system_internal);
7119 defsubr (&Sset_safe_terminal_coding_system_internal);
7120 defsubr (&Sterminal_coding_system);
7121 defsubr (&Sset_keyboard_coding_system_internal);
7122 defsubr (&Skeyboard_coding_system);
7123 defsubr (&Sfind_operation_coding_system);
7124 defsubr (&Supdate_coding_systems_internal);
7125 defsubr (&Sset_coding_priority_internal);
7126
7127 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7128 "List of coding systems.\n\
7129 \n\
7130 Do not alter the value of this variable manually. This variable should be\n\
7131 updated by the functions `make-coding-system' and\n\
7132 `define-coding-system-alias'.");
7133 Vcoding_system_list = Qnil;
7134
7135 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7136 "Alist of coding system names.\n\
7137 Each element is one element list of coding system name.\n\
7138 This variable is given to `completing-read' as TABLE argument.\n\
7139 \n\
7140 Do not alter the value of this variable manually. This variable should be\n\
7141 updated by the functions `make-coding-system' and\n\
7142 `define-coding-system-alias'.");
7143 Vcoding_system_alist = Qnil;
7144
7145 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7146 "List of coding-categories (symbols) ordered by priority.\n\
7147 \n\
7148 On detecting a coding system, Emacs tries code detection algorithms\n\
7149 associated with each coding-category one by one in this order. When\n\
7150 one algorithm agrees with a byte sequence of source text, the coding\n\
7151 system bound to the corresponding coding-category is selected.");
7152 {
7153 int i;
7154
7155 Vcoding_category_list = Qnil;
7156 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7157 Vcoding_category_list
7158 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7159 Vcoding_category_list);
7160 }
7161
7162 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7163 "Specify the coding system for read operations.\n\
7164 It is useful to bind this variable with `let', but do not set it globally.\n\
7165 If the value is a coding system, it is used for decoding on read operation.\n\
7166 If not, an appropriate element is used from one of the coding system alists:\n\
7167 There are three such tables, `file-coding-system-alist',\n\
7168 `process-coding-system-alist', and `network-coding-system-alist'.");
7169 Vcoding_system_for_read = Qnil;
7170
7171 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7172 "Specify the coding system for write operations.\n\
7173 Programs bind this variable with `let', but you should not set it globally.\n\
7174 If the value is a coding system, it is used for encoding of output,\n\
7175 when writing it to a file and when sending it to a file or subprocess.\n\
7176 \n\
7177 If this does not specify a coding system, an appropriate element\n\
7178 is used from one of the coding system alists:\n\
7179 There are three such tables, `file-coding-system-alist',\n\
7180 `process-coding-system-alist', and `network-coding-system-alist'.\n\
7181 For output to files, if the above procedure does not specify a coding system,\n\
7182 the value of `buffer-file-coding-system' is used.");
7183 Vcoding_system_for_write = Qnil;
7184
7185 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7186 "Coding system used in the latest file or process I/O.");
7187 Vlast_coding_system_used = Qnil;
7188
7189 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7190 "*Non-nil means always inhibit code conversion of end-of-line format.\n\
7191 See info node `Coding Systems' and info node `Text and Binary' concerning\n\
7192 such conversion.");
7193 inhibit_eol_conversion = 0;
7194
7195 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7196 "Non-nil means process buffer inherits coding system of process output.\n\
7197 Bind it to t if the process output is to be treated as if it were a file\n\
7198 read from some filesystem.");
7199 inherit_process_coding_system = 0;
7200
7201 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7202 "Alist to decide a coding system to use for a file I/O operation.\n\
7203 The format is ((PATTERN . VAL) ...),\n\
7204 where PATTERN is a regular expression matching a file name,\n\
7205 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
7206 If VAL is a coding system, it is used for both decoding and encoding\n\
7207 the file contents.\n\
7208 If VAL is a cons of coding systems, the car part is used for decoding,\n\
7209 and the cdr part is used for encoding.\n\
7210 If VAL is a function symbol, the function must return a coding system\n\
7211 or a cons of coding systems which are used as above.\n\
7212 \n\
7213 See also the function `find-operation-coding-system'\n\
7214 and the variable `auto-coding-alist'.");
7215 Vfile_coding_system_alist = Qnil;
7216
7217 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7218 "Alist to decide a coding system to use for a process I/O operation.\n\
7219 The format is ((PATTERN . VAL) ...),\n\
7220 where PATTERN is a regular expression matching a program name,\n\
7221 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
7222 If VAL is a coding system, it is used for both decoding what received\n\
7223 from the program and encoding what sent to the program.\n\
7224 If VAL is a cons of coding systems, the car part is used for decoding,\n\
7225 and the cdr part is used for encoding.\n\
7226 If VAL is a function symbol, the function must return a coding system\n\
7227 or a cons of coding systems which are used as above.\n\
7228 \n\
7229 See also the function `find-operation-coding-system'.");
7230 Vprocess_coding_system_alist = Qnil;
7231
7232 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7233 "Alist to decide a coding system to use for a network I/O operation.\n\
7234 The format is ((PATTERN . VAL) ...),\n\
7235 where PATTERN is a regular expression matching a network service name\n\
7236 or is a port number to connect to,\n\
7237 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
7238 If VAL is a coding system, it is used for both decoding what received\n\
7239 from the network stream and encoding what sent to the network stream.\n\
7240 If VAL is a cons of coding systems, the car part is used for decoding,\n\
7241 and the cdr part is used for encoding.\n\
7242 If VAL is a function symbol, the function must return a coding system\n\
7243 or a cons of coding systems which are used as above.\n\
7244 \n\
7245 See also the function `find-operation-coding-system'.");
7246 Vnetwork_coding_system_alist = Qnil;
7247
7248 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7249 "Coding system to use with system messages.");
7250 Vlocale_coding_system = Qnil;
7251
7252 /* The eol mnemonics are reset in startup.el system-dependently. */
7253 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7254 "*String displayed in mode line for UNIX-like (LF) end-of-line format.");
7255 eol_mnemonic_unix = build_string (":");
7256
7257 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7258 "*String displayed in mode line for DOS-like (CRLF) end-of-line format.");
7259 eol_mnemonic_dos = build_string ("\\");
7260
7261 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7262 "*String displayed in mode line for MAC-like (CR) end-of-line format.");
7263 eol_mnemonic_mac = build_string ("/");
7264
7265 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7266 "*String displayed in mode line when end-of-line format is not yet determined.");
7267 eol_mnemonic_undecided = build_string (":");
7268
7269 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7270 "*Non-nil enables character translation while encoding and decoding.");
7271 Venable_character_translation = Qt;
7272
7273 DEFVAR_LISP ("standard-translation-table-for-decode",
7274 &Vstandard_translation_table_for_decode,
7275 "Table for translating characters while decoding.");
7276 Vstandard_translation_table_for_decode = Qnil;
7277
7278 DEFVAR_LISP ("standard-translation-table-for-encode",
7279 &Vstandard_translation_table_for_encode,
7280 "Table for translating characters while encoding.");
7281 Vstandard_translation_table_for_encode = Qnil;
7282
7283 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7284 "Alist of charsets vs revision numbers.\n\
7285 While encoding, if a charset (car part of an element) is found,\n\
7286 designate it with the escape sequence identifying revision (cdr part of the element).");
7287 Vcharset_revision_alist = Qnil;
7288
7289 DEFVAR_LISP ("default-process-coding-system",
7290 &Vdefault_process_coding_system,
7291 "Cons of coding systems used for process I/O by default.\n\
7292 The car part is used for decoding a process output,\n\
7293 the cdr part is used for encoding a text to be sent to a process.");
7294 Vdefault_process_coding_system = Qnil;
7295
7296 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7297 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
7298 This is a vector of length 256.\n\
7299 If Nth element is non-nil, the existence of code N in a file\n\
7300 \(or output of subprocess) doesn't prevent it to be detected as\n\
7301 a coding system of ISO 2022 variant which has a flag\n\
7302 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
7303 or reading output of a subprocess.\n\
7304 Only 128th through 159th elements has a meaning.");
7305 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7306
7307 DEFVAR_LISP ("select-safe-coding-system-function",
7308 &Vselect_safe_coding_system_function,
7309 "Function to call to select safe coding system for encoding a text.\n\
7310 \n\
7311 If set, this function is called to force a user to select a proper\n\
7312 coding system which can encode the text in the case that a default\n\
7313 coding system used in each operation can't encode the text.\n\
7314 \n\
7315 The default value is `select-safe-coding-system' (which see).");
7316 Vselect_safe_coding_system_function = Qnil;
7317
7318 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
7319 "Char-table containing safe coding systems of each characters.\n\
7320 Each element doesn't include such generic coding systems that can\n\
7321 encode any characters. They are in the first extra slot.");
7322 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
7323
7324 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7325 &inhibit_iso_escape_detection,
7326 "If non-nil, Emacs ignores ISO2022's escape sequence on code detection.\n\
7327 \n\
7328 By default, on reading a file, Emacs tries to detect how the text is\n\
7329 encoded. This code detection is sensitive to escape sequences. If\n\
7330 the sequence is valid as ISO2022, the code is determined as one of\n\
7331 the ISO2022 encodings, and the file is decoded by the corresponding\n\
7332 coding system (e.g. `iso-2022-7bit').\n\
7333 \n\
7334 However, there may be a case that you want to read escape sequences in\n\
7335 a file as is. In such a case, you can set this variable to non-nil.\n\
7336 Then, as the code detection ignores any escape sequences, no file is\n\
7337 detected as encoded in some ISO2022 encoding. The result is that all\n\
7338 escape sequences become visible in a buffer.\n\
7339 \n\
7340 The default value is nil, and it is strongly recommended not to change\n\
7341 it. That is because many Emacs Lisp source files that contain\n\
7342 non-ASCII characters are encoded by the coding system `iso-2022-7bit'\n\
7343 in Emacs's distribution, and they won't be decoded correctly on\n\
7344 reading if you suppress escape sequence detection.\n\
7345 \n\
7346 The other way to read escape sequences in a file without decoding is\n\
7347 to explicitly specify some coding system that doesn't use ISO2022's\n\
7348 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument].");
7349 inhibit_iso_escape_detection = 0;
7350 }
7351
7352 char *
7353 emacs_strerror (error_number)
7354 int error_number;
7355 {
7356 char *str;
7357
7358 synchronize_system_messages_locale ();
7359 str = strerror (error_number);
7360
7361 if (! NILP (Vlocale_coding_system))
7362 {
7363 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7364 Vlocale_coding_system,
7365 0);
7366 str = (char *) XSTRING (dec)->data;
7367 }
7368
7369 return str;
7370 }
7371
7372 #endif /* emacs */
7373