(silly_event_symbol_error): New subrtn, from Fdefine_key.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* Keymap mapping ASCII function key sequences onto their preferred forms.
79 Initialized by the terminal-specific lisp files. See DEFVAR for more
80 documentation. */
81 Lisp_Object Vfunction_key_map;
82
83 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
84 Lisp_Object Vkey_translation_map;
85
86 /* A list of all commands given new bindings since a certain time
87 when nil was stored here.
88 This is used to speed up recomputation of menu key equivalents
89 when Emacs starts up. t means don't record anything here. */
90 Lisp_Object Vdefine_key_rebound_commands;
91
92 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
93
94 /* Alist of elements like (DEL . "\d"). */
95 static Lisp_Object exclude_keys;
96
97 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
98 in a string key sequence is equivalent to prefixing with this
99 character. */
100 extern Lisp_Object meta_prefix_char;
101
102 extern Lisp_Object Voverriding_local_map;
103
104 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
105 static Lisp_Object where_is_cache;
106 /* Which keymaps are reverse-stored in the cache. */
107 static Lisp_Object where_is_cache_keymaps;
108
109 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
110 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
111
112 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
113 static void describe_command P_ ((Lisp_Object, Lisp_Object));
114 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
115 static void describe_map P_ ((Lisp_Object, Lisp_Object,
116 void (*) P_ ((Lisp_Object, Lisp_Object)),
117 int, Lisp_Object, Lisp_Object*, int));
118 static void silly_event_symbol_error P_ ((Lisp_Object));
119 \f
120 /* Keymap object support - constructors and predicates. */
121
122 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
123 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
124 CHARTABLE is a char-table that holds the bindings for the ASCII
125 characters. ALIST is an assoc-list which holds bindings for function keys,
126 mouse events, and any other things that appear in the input stream.
127 All entries in it are initially nil, meaning "command undefined".
128
129 The optional arg STRING supplies a menu name for the keymap
130 in case you use it as a menu with `x-popup-menu'. */)
131 (string)
132 Lisp_Object string;
133 {
134 Lisp_Object tail;
135 if (!NILP (string))
136 tail = Fcons (string, Qnil);
137 else
138 tail = Qnil;
139 return Fcons (Qkeymap,
140 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
141 }
142
143 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
144 doc: /* Construct and return a new sparse keymap.
145 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
146 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
147 which binds the function key or mouse event SYMBOL to DEFINITION.
148 Initially the alist is nil.
149
150 The optional arg STRING supplies a menu name for the keymap
151 in case you use it as a menu with `x-popup-menu'. */)
152 (string)
153 Lisp_Object string;
154 {
155 if (!NILP (string))
156 return Fcons (Qkeymap, Fcons (string, Qnil));
157 return Fcons (Qkeymap, Qnil);
158 }
159
160 /* This function is used for installing the standard key bindings
161 at initialization time.
162
163 For example:
164
165 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
166
167 void
168 initial_define_key (keymap, key, defname)
169 Lisp_Object keymap;
170 int key;
171 char *defname;
172 {
173 store_in_keymap (keymap, make_number (key), intern (defname));
174 }
175
176 void
177 initial_define_lispy_key (keymap, keyname, defname)
178 Lisp_Object keymap;
179 char *keyname;
180 char *defname;
181 {
182 store_in_keymap (keymap, intern (keyname), intern (defname));
183 }
184
185 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
186 doc: /* Return t if OBJECT is a keymap.
187
188 A keymap is a list (keymap . ALIST),
189 or a symbol whose function definition is itself a keymap.
190 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
191 a vector of densely packed bindings for small character codes
192 is also allowed as an element. */)
193 (object)
194 Lisp_Object object;
195 {
196 return (KEYMAPP (object) ? Qt : Qnil);
197 }
198
199 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
200 doc: /* Return the prompt-string of a keymap MAP.
201 If non-nil, the prompt is shown in the echo-area
202 when reading a key-sequence to be looked-up in this keymap. */)
203 (map)
204 Lisp_Object map;
205 {
206 while (CONSP (map))
207 {
208 register Lisp_Object tem;
209 tem = Fcar (map);
210 if (STRINGP (tem))
211 return tem;
212 map = Fcdr (map);
213 }
214 return Qnil;
215 }
216
217 /* Check that OBJECT is a keymap (after dereferencing through any
218 symbols). If it is, return it.
219
220 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
221 is an autoload form, do the autoload and try again.
222 If AUTOLOAD is nonzero, callers must assume GC is possible.
223
224 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
225 is zero as well), return Qt.
226
227 ERROR controls how we respond if OBJECT isn't a keymap.
228 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
229
230 Note that most of the time, we don't want to pursue autoloads.
231 Functions like Faccessible_keymaps which scan entire keymap trees
232 shouldn't load every autoloaded keymap. I'm not sure about this,
233 but it seems to me that only read_key_sequence, Flookup_key, and
234 Fdefine_key should cause keymaps to be autoloaded.
235
236 This function can GC when AUTOLOAD is non-zero, because it calls
237 do_autoload which can GC. */
238
239 Lisp_Object
240 get_keymap (object, error, autoload)
241 Lisp_Object object;
242 int error, autoload;
243 {
244 Lisp_Object tem;
245
246 autoload_retry:
247 if (NILP (object))
248 goto end;
249 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
250 return object;
251
252 tem = indirect_function (object);
253 if (CONSP (tem))
254 {
255 if (EQ (XCAR (tem), Qkeymap))
256 return tem;
257
258 /* Should we do an autoload? Autoload forms for keymaps have
259 Qkeymap as their fifth element. */
260 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
261 {
262 Lisp_Object tail;
263
264 tail = Fnth (make_number (4), tem);
265 if (EQ (tail, Qkeymap))
266 {
267 if (autoload)
268 {
269 struct gcpro gcpro1, gcpro2;
270
271 GCPRO2 (tem, object);
272 do_autoload (tem, object);
273 UNGCPRO;
274
275 goto autoload_retry;
276 }
277 else
278 return Qt;
279 }
280 }
281 }
282
283 end:
284 if (error)
285 wrong_type_argument (Qkeymapp, object);
286 return Qnil;
287 }
288 \f
289 /* Return the parent map of the keymap MAP, or nil if it has none.
290 We assume that MAP is a valid keymap. */
291
292 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
293 doc: /* Return the parent keymap of KEYMAP. */)
294 (keymap)
295 Lisp_Object keymap;
296 {
297 Lisp_Object list;
298
299 keymap = get_keymap (keymap, 1, 1);
300
301 /* Skip past the initial element `keymap'. */
302 list = XCDR (keymap);
303 for (; CONSP (list); list = XCDR (list))
304 {
305 /* See if there is another `keymap'. */
306 if (KEYMAPP (list))
307 return list;
308 }
309
310 return get_keymap (list, 0, 1);
311 }
312
313
314 /* Check whether MAP is one of MAPS parents. */
315 int
316 keymap_memberp (map, maps)
317 Lisp_Object map, maps;
318 {
319 if (NILP (map)) return 0;
320 while (KEYMAPP (maps) && !EQ (map, maps))
321 maps = Fkeymap_parent (maps);
322 return (EQ (map, maps));
323 }
324
325 /* Set the parent keymap of MAP to PARENT. */
326
327 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
328 doc: /* Modify KEYMAP to set its parent map to PARENT.
329 PARENT should be nil or another keymap. */)
330 (keymap, parent)
331 Lisp_Object keymap, parent;
332 {
333 Lisp_Object list, prev;
334 struct gcpro gcpro1;
335 int i;
336
337 /* Force a keymap flush for the next call to where-is.
338 Since this can be called from within where-is, we don't set where_is_cache
339 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
340 be changed during where-is, while where_is_cache_keymaps is only used at
341 the very beginning of where-is and can thus be changed here without any
342 adverse effect.
343 This is a very minor correctness (rather than safety) issue. */
344 where_is_cache_keymaps = Qt;
345
346 keymap = get_keymap (keymap, 1, 1);
347 GCPRO1 (keymap);
348
349 if (!NILP (parent))
350 {
351 parent = get_keymap (parent, 1, 1);
352
353 /* Check for cycles. */
354 if (keymap_memberp (keymap, parent))
355 error ("Cyclic keymap inheritance");
356 }
357
358 /* Skip past the initial element `keymap'. */
359 prev = keymap;
360 while (1)
361 {
362 list = XCDR (prev);
363 /* If there is a parent keymap here, replace it.
364 If we came to the end, add the parent in PREV. */
365 if (!CONSP (list) || KEYMAPP (list))
366 {
367 /* If we already have the right parent, return now
368 so that we avoid the loops below. */
369 if (EQ (XCDR (prev), parent))
370 RETURN_UNGCPRO (parent);
371
372 XSETCDR (prev, parent);
373 break;
374 }
375 prev = list;
376 }
377
378 /* Scan through for submaps, and set their parents too. */
379
380 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
381 {
382 /* Stop the scan when we come to the parent. */
383 if (EQ (XCAR (list), Qkeymap))
384 break;
385
386 /* If this element holds a prefix map, deal with it. */
387 if (CONSP (XCAR (list))
388 && CONSP (XCDR (XCAR (list))))
389 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
390 XCDR (XCAR (list)));
391
392 if (VECTORP (XCAR (list)))
393 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
394 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
395 fix_submap_inheritance (keymap, make_number (i),
396 XVECTOR (XCAR (list))->contents[i]);
397
398 if (CHAR_TABLE_P (XCAR (list)))
399 {
400 Lisp_Object indices[3];
401
402 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
403 keymap, 0, indices);
404 }
405 }
406
407 RETURN_UNGCPRO (parent);
408 }
409
410 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
411 if EVENT is also a prefix in MAP's parent,
412 make sure that SUBMAP inherits that definition as its own parent. */
413
414 static void
415 fix_submap_inheritance (map, event, submap)
416 Lisp_Object map, event, submap;
417 {
418 Lisp_Object map_parent, parent_entry;
419
420 /* SUBMAP is a cons that we found as a key binding.
421 Discard the other things found in a menu key binding. */
422
423 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
424
425 /* If it isn't a keymap now, there's no work to do. */
426 if (!CONSP (submap))
427 return;
428
429 map_parent = Fkeymap_parent (map);
430 if (!NILP (map_parent))
431 parent_entry =
432 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
433 else
434 parent_entry = Qnil;
435
436 /* If MAP's parent has something other than a keymap,
437 our own submap shadows it completely. */
438 if (!CONSP (parent_entry))
439 return;
440
441 if (! EQ (parent_entry, submap))
442 {
443 Lisp_Object submap_parent;
444 submap_parent = submap;
445 while (1)
446 {
447 Lisp_Object tem;
448
449 tem = Fkeymap_parent (submap_parent);
450
451 if (KEYMAPP (tem))
452 {
453 if (keymap_memberp (tem, parent_entry))
454 /* Fset_keymap_parent could create a cycle. */
455 return;
456 submap_parent = tem;
457 }
458 else
459 break;
460 }
461 Fset_keymap_parent (submap_parent, parent_entry);
462 }
463 }
464 \f
465 /* Look up IDX in MAP. IDX may be any sort of event.
466 Note that this does only one level of lookup; IDX must be a single
467 event, not a sequence.
468
469 If T_OK is non-zero, bindings for Qt are treated as default
470 bindings; any key left unmentioned by other tables and bindings is
471 given the binding of Qt.
472
473 If T_OK is zero, bindings for Qt are not treated specially.
474
475 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
476
477 Lisp_Object
478 access_keymap (map, idx, t_ok, noinherit, autoload)
479 Lisp_Object map;
480 Lisp_Object idx;
481 int t_ok;
482 int noinherit;
483 int autoload;
484 {
485 Lisp_Object val;
486
487 /* Qunbound in VAL means we have found no binding yet. */
488 val = Qunbound;
489
490 /* If idx is a list (some sort of mouse click, perhaps?),
491 the index we want to use is the car of the list, which
492 ought to be a symbol. */
493 idx = EVENT_HEAD (idx);
494
495 /* If idx is a symbol, it might have modifiers, which need to
496 be put in the canonical order. */
497 if (SYMBOLP (idx))
498 idx = reorder_modifiers (idx);
499 else if (INTEGERP (idx))
500 /* Clobber the high bits that can be present on a machine
501 with more than 24 bits of integer. */
502 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
503
504 /* Handle the special meta -> esc mapping. */
505 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
506 {
507 /* See if there is a meta-map. If there's none, there is
508 no binding for IDX, unless a default binding exists in MAP. */
509 Lisp_Object meta_map =
510 get_keymap (access_keymap (map, meta_prefix_char,
511 t_ok, noinherit, autoload),
512 0, autoload);
513 if (CONSP (meta_map))
514 {
515 map = meta_map;
516 idx = make_number (XUINT (idx) & ~meta_modifier);
517 }
518 else if (t_ok)
519 /* Set IDX to t, so that we only find a default binding. */
520 idx = Qt;
521 else
522 /* We know there is no binding. */
523 return Qnil;
524 }
525
526 {
527 Lisp_Object tail;
528
529 /* t_binding is where we put a default binding that applies,
530 to use in case we do not find a binding specifically
531 for this key sequence. */
532
533 Lisp_Object t_binding;
534 t_binding = Qnil;
535
536 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
537 If it is 1, only generic-char bindings are accepted.
538 Otherwise, neither are. */
539 t_ok = t_ok ? 2 : 0;
540
541 for (tail = XCDR (map);
542 (CONSP (tail)
543 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
544 tail = XCDR (tail))
545 {
546 Lisp_Object binding;
547
548 binding = XCAR (tail);
549 if (SYMBOLP (binding))
550 {
551 /* If NOINHERIT, stop finding prefix definitions
552 after we pass a second occurrence of the `keymap' symbol. */
553 if (noinherit && EQ (binding, Qkeymap))
554 return Qnil;
555 }
556 else if (CONSP (binding))
557 {
558 Lisp_Object key = XCAR (binding);
559
560 if (EQ (key, idx))
561 val = XCDR (binding);
562 else if (t_ok
563 && INTEGERP (idx)
564 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
565 && INTEGERP (key)
566 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
567 && !SINGLE_BYTE_CHAR_P (XINT (idx))
568 && !SINGLE_BYTE_CHAR_P (XINT (key))
569 && CHAR_VALID_P (XINT (key), 1)
570 && !CHAR_VALID_P (XINT (key), 0)
571 && (CHAR_CHARSET (XINT (key))
572 == CHAR_CHARSET (XINT (idx))))
573 {
574 /* KEY is the generic character of the charset of IDX.
575 Use KEY's binding if there isn't a binding for IDX
576 itself. */
577 t_binding = XCDR (binding);
578 t_ok = 0;
579 }
580 else if (t_ok > 1 && EQ (key, Qt))
581 {
582 t_binding = XCDR (binding);
583 t_ok = 1;
584 }
585 }
586 else if (VECTORP (binding))
587 {
588 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
589 val = AREF (binding, XFASTINT (idx));
590 }
591 else if (CHAR_TABLE_P (binding))
592 {
593 /* Character codes with modifiers
594 are not included in a char-table.
595 All character codes without modifiers are included. */
596 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
597 {
598 val = Faref (binding, idx);
599 /* `nil' has a special meaning for char-tables, so
600 we use something else to record an explicitly
601 unbound entry. */
602 if (NILP (val))
603 val = Qunbound;
604 }
605 }
606
607 /* If we found a binding, clean it up and return it. */
608 if (!EQ (val, Qunbound))
609 {
610 if (EQ (val, Qt))
611 /* A Qt binding is just like an explicit nil binding
612 (i.e. it shadows any parent binding but not bindings in
613 keymaps of lower precedence). */
614 val = Qnil;
615 val = get_keyelt (val, autoload);
616 if (KEYMAPP (val))
617 fix_submap_inheritance (map, idx, val);
618 return val;
619 }
620 QUIT;
621 }
622
623 return get_keyelt (t_binding, autoload);
624 }
625 }
626
627 /* Given OBJECT which was found in a slot in a keymap,
628 trace indirect definitions to get the actual definition of that slot.
629 An indirect definition is a list of the form
630 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
631 and INDEX is the object to look up in KEYMAP to yield the definition.
632
633 Also if OBJECT has a menu string as the first element,
634 remove that. Also remove a menu help string as second element.
635
636 If AUTOLOAD is nonzero, load autoloadable keymaps
637 that are referred to with indirection. */
638
639 Lisp_Object
640 get_keyelt (object, autoload)
641 register Lisp_Object object;
642 int autoload;
643 {
644 while (1)
645 {
646 if (!(CONSP (object)))
647 /* This is really the value. */
648 return object;
649
650 /* If the keymap contents looks like (keymap ...) or (lambda ...)
651 then use itself. */
652 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
653 return object;
654
655 /* If the keymap contents looks like (menu-item name . DEFN)
656 or (menu-item name DEFN ...) then use DEFN.
657 This is a new format menu item. */
658 else if (EQ (XCAR (object), Qmenu_item))
659 {
660 if (CONSP (XCDR (object)))
661 {
662 Lisp_Object tem;
663
664 object = XCDR (XCDR (object));
665 tem = object;
666 if (CONSP (object))
667 object = XCAR (object);
668
669 /* If there's a `:filter FILTER', apply FILTER to the
670 menu-item's definition to get the real definition to
671 use. */
672 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
673 if (EQ (XCAR (tem), QCfilter) && autoload)
674 {
675 Lisp_Object filter;
676 filter = XCAR (XCDR (tem));
677 filter = list2 (filter, list2 (Qquote, object));
678 object = menu_item_eval_property (filter);
679 break;
680 }
681 }
682 else
683 /* Invalid keymap */
684 return object;
685 }
686
687 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
688 Keymap alist elements like (CHAR MENUSTRING . DEFN)
689 will be used by HierarKey menus. */
690 else if (STRINGP (XCAR (object)))
691 {
692 object = XCDR (object);
693 /* Also remove a menu help string, if any,
694 following the menu item name. */
695 if (CONSP (object) && STRINGP (XCAR (object)))
696 object = XCDR (object);
697 /* Also remove the sublist that caches key equivalences, if any. */
698 if (CONSP (object) && CONSP (XCAR (object)))
699 {
700 Lisp_Object carcar;
701 carcar = XCAR (XCAR (object));
702 if (NILP (carcar) || VECTORP (carcar))
703 object = XCDR (object);
704 }
705 }
706
707 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
708 else
709 {
710 Lisp_Object map;
711 map = get_keymap (Fcar_safe (object), 0, autoload);
712 return (!CONSP (map) ? object /* Invalid keymap */
713 : access_keymap (map, Fcdr (object), 0, 0, autoload));
714 }
715 }
716 }
717
718 static Lisp_Object
719 store_in_keymap (keymap, idx, def)
720 Lisp_Object keymap;
721 register Lisp_Object idx;
722 register Lisp_Object def;
723 {
724 /* Flush any reverse-map cache. */
725 where_is_cache = Qnil;
726 where_is_cache_keymaps = Qt;
727
728 /* If we are preparing to dump, and DEF is a menu element
729 with a menu item indicator, copy it to ensure it is not pure. */
730 if (CONSP (def) && PURE_P (def)
731 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
732 def = Fcons (XCAR (def), XCDR (def));
733
734 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
735 error ("attempt to define a key in a non-keymap");
736
737 /* If idx is a list (some sort of mouse click, perhaps?),
738 the index we want to use is the car of the list, which
739 ought to be a symbol. */
740 idx = EVENT_HEAD (idx);
741
742 /* If idx is a symbol, it might have modifiers, which need to
743 be put in the canonical order. */
744 if (SYMBOLP (idx))
745 idx = reorder_modifiers (idx);
746 else if (INTEGERP (idx))
747 /* Clobber the high bits that can be present on a machine
748 with more than 24 bits of integer. */
749 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
750
751 /* Scan the keymap for a binding of idx. */
752 {
753 Lisp_Object tail;
754
755 /* The cons after which we should insert new bindings. If the
756 keymap has a table element, we record its position here, so new
757 bindings will go after it; this way, the table will stay
758 towards the front of the alist and character lookups in dense
759 keymaps will remain fast. Otherwise, this just points at the
760 front of the keymap. */
761 Lisp_Object insertion_point;
762
763 insertion_point = keymap;
764 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
765 {
766 Lisp_Object elt;
767
768 elt = XCAR (tail);
769 if (VECTORP (elt))
770 {
771 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
772 {
773 ASET (elt, XFASTINT (idx), def);
774 return def;
775 }
776 insertion_point = tail;
777 }
778 else if (CHAR_TABLE_P (elt))
779 {
780 /* Character codes with modifiers
781 are not included in a char-table.
782 All character codes without modifiers are included. */
783 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
784 {
785 Faset (elt, idx,
786 /* `nil' has a special meaning for char-tables, so
787 we use something else to record an explicitly
788 unbound entry. */
789 NILP (def) ? Qt : def);
790 return def;
791 }
792 insertion_point = tail;
793 }
794 else if (CONSP (elt))
795 {
796 if (EQ (idx, XCAR (elt)))
797 {
798 XSETCDR (elt, def);
799 return def;
800 }
801 }
802 else if (EQ (elt, Qkeymap))
803 /* If we find a 'keymap' symbol in the spine of KEYMAP,
804 then we must have found the start of a second keymap
805 being used as the tail of KEYMAP, and a binding for IDX
806 should be inserted before it. */
807 goto keymap_end;
808
809 QUIT;
810 }
811
812 keymap_end:
813 /* We have scanned the entire keymap, and not found a binding for
814 IDX. Let's add one. */
815 XSETCDR (insertion_point,
816 Fcons (Fcons (idx, def), XCDR (insertion_point)));
817 }
818
819 return def;
820 }
821
822 EXFUN (Fcopy_keymap, 1);
823
824 void
825 copy_keymap_1 (chartable, idx, elt)
826 Lisp_Object chartable, idx, elt;
827 {
828 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
829 Faset (chartable, idx, Fcopy_keymap (elt));
830 }
831
832 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
833 doc: /* Return a copy of the keymap KEYMAP.
834 The copy starts out with the same definitions of KEYMAP,
835 but changing either the copy or KEYMAP does not affect the other.
836 Any key definitions that are subkeymaps are recursively copied.
837 However, a key definition which is a symbol whose definition is a keymap
838 is not copied. */)
839 (keymap)
840 Lisp_Object keymap;
841 {
842 /* FIXME: This doesn't properly copy menu-items in vectors. */
843 /* FIXME: This also copies the parent keymap. */
844
845 register Lisp_Object copy, tail;
846
847 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
848
849 for (tail = copy; CONSP (tail); tail = XCDR (tail))
850 {
851 Lisp_Object elt;
852
853 elt = XCAR (tail);
854 if (CHAR_TABLE_P (elt))
855 {
856 Lisp_Object indices[3];
857
858 elt = Fcopy_sequence (elt);
859 XSETCAR (tail, elt);
860
861 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
862 }
863 else if (VECTORP (elt))
864 {
865 int i;
866
867 elt = Fcopy_sequence (elt);
868 XSETCAR (tail, elt);
869
870 for (i = 0; i < ASIZE (elt); i++)
871 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
872 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
873 }
874 else if (CONSP (elt) && CONSP (XCDR (elt)))
875 {
876 Lisp_Object tem;
877 tem = XCDR (elt);
878
879 /* Is this a new format menu item. */
880 if (EQ (XCAR (tem),Qmenu_item))
881 {
882 /* Copy cell with menu-item marker. */
883 XSETCDR (elt,
884 Fcons (XCAR (tem), XCDR (tem)));
885 elt = XCDR (elt);
886 tem = XCDR (elt);
887 if (CONSP (tem))
888 {
889 /* Copy cell with menu-item name. */
890 XSETCDR (elt,
891 Fcons (XCAR (tem), XCDR (tem)));
892 elt = XCDR (elt);
893 tem = XCDR (elt);
894 };
895 if (CONSP (tem))
896 {
897 /* Copy cell with binding and if the binding is a keymap,
898 copy that. */
899 XSETCDR (elt,
900 Fcons (XCAR (tem), XCDR (tem)));
901 elt = XCDR (elt);
902 tem = XCAR (elt);
903 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
904 XSETCAR (elt, Fcopy_keymap (tem));
905 tem = XCDR (elt);
906 if (CONSP (tem) && CONSP (XCAR (tem)))
907 /* Delete cache for key equivalences. */
908 XSETCDR (elt, XCDR (tem));
909 }
910 }
911 else
912 {
913 /* It may be an old fomat menu item.
914 Skip the optional menu string.
915 */
916 if (STRINGP (XCAR (tem)))
917 {
918 /* Copy the cell, since copy-alist didn't go this deep. */
919 XSETCDR (elt,
920 Fcons (XCAR (tem), XCDR (tem)));
921 elt = XCDR (elt);
922 tem = XCDR (elt);
923 /* Also skip the optional menu help string. */
924 if (CONSP (tem) && STRINGP (XCAR (tem)))
925 {
926 XSETCDR (elt,
927 Fcons (XCAR (tem), XCDR (tem)));
928 elt = XCDR (elt);
929 tem = XCDR (elt);
930 }
931 /* There may also be a list that caches key equivalences.
932 Just delete it for the new keymap. */
933 if (CONSP (tem)
934 && CONSP (XCAR (tem))
935 && (NILP (XCAR (XCAR (tem)))
936 || VECTORP (XCAR (XCAR (tem)))))
937 XSETCDR (elt, XCDR (tem));
938 }
939 if (CONSP (elt)
940 && CONSP (XCDR (elt))
941 && EQ (XCAR (XCDR (elt)), Qkeymap))
942 XSETCDR (elt, Fcopy_keymap (XCDR (elt)));
943 }
944
945 }
946 }
947
948 return copy;
949 }
950 \f
951 /* Simple Keymap mutators and accessors. */
952
953 /* GC is possible in this function if it autoloads a keymap. */
954
955 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
956 doc: /* Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.
957 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters
958 meaning a sequence of keystrokes and events.
959 Non-ASCII characters with codes above 127 (such as ISO Latin-1)
960 can be included if you use a vector.
961 DEF is anything that can be a key's definition:
962 nil (means key is undefined in this keymap),
963 a command (a Lisp function suitable for interactive calling)
964 a string (treated as a keyboard macro),
965 a keymap (to define a prefix key),
966 a symbol. When the key is looked up, the symbol will stand for its
967 function definition, which should at that time be one of the above,
968 or another symbol whose function definition is used, etc.
969 a cons (STRING . DEFN), meaning that DEFN is the definition
970 (DEFN should be a valid definition in its own right),
971 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
972
973 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at
974 the front of KEYMAP. */)
975 (keymap, key, def)
976 Lisp_Object keymap;
977 Lisp_Object key;
978 Lisp_Object def;
979 {
980 register int idx;
981 register Lisp_Object c;
982 register Lisp_Object cmd;
983 int metized = 0;
984 int meta_bit;
985 int length;
986 struct gcpro gcpro1, gcpro2, gcpro3;
987
988 keymap = get_keymap (keymap, 1, 1);
989
990 if (!VECTORP (key) && !STRINGP (key))
991 key = wrong_type_argument (Qarrayp, key);
992
993 length = XFASTINT (Flength (key));
994 if (length == 0)
995 return Qnil;
996
997 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
998 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
999
1000 GCPRO3 (keymap, key, def);
1001
1002 if (VECTORP (key))
1003 meta_bit = meta_modifier;
1004 else
1005 meta_bit = 0x80;
1006
1007 idx = 0;
1008 while (1)
1009 {
1010 c = Faref (key, make_number (idx));
1011
1012 if (CONSP (c) && lucid_event_type_list_p (c))
1013 c = Fevent_convert_list (c);
1014
1015 if (SYMBOLP (c))
1016 silly_event_symbol_error (c);
1017
1018 if (INTEGERP (c)
1019 && (XINT (c) & meta_bit)
1020 && !metized)
1021 {
1022 c = meta_prefix_char;
1023 metized = 1;
1024 }
1025 else
1026 {
1027 if (INTEGERP (c))
1028 XSETINT (c, XINT (c) & ~meta_bit);
1029
1030 metized = 0;
1031 idx++;
1032 }
1033
1034 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1035 error ("Key sequence contains invalid event");
1036
1037 if (idx == length)
1038 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1039
1040 cmd = access_keymap (keymap, c, 0, 1, 1);
1041
1042 /* If this key is undefined, make it a prefix. */
1043 if (NILP (cmd))
1044 cmd = define_as_prefix (keymap, c);
1045
1046 keymap = get_keymap (cmd, 0, 1);
1047 if (!CONSP (keymap))
1048 /* We must use Fkey_description rather than just passing key to
1049 error; key might be a vector, not a string. */
1050 error ("Key sequence %s uses invalid prefix characters",
1051 XSTRING (Fkey_description (key))->data);
1052 }
1053 }
1054
1055 /* Value is number if KEY is too long; nil if valid but has no definition. */
1056 /* GC is possible in this function if it autoloads a keymap. */
1057
1058 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1059 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1060 nil means undefined. See doc of `define-key' for kinds of definitions.
1061
1062 A number as value means KEY is "too long";
1063 that is, characters or symbols in it except for the last one
1064 fail to be a valid sequence of prefix characters in KEYMAP.
1065 The number is how many characters at the front of KEY
1066 it takes to reach a non-prefix command.
1067
1068 Normally, `lookup-key' ignores bindings for t, which act as default
1069 bindings, used when nothing else in the keymap applies; this makes it
1070 usable as a general function for probing keymaps. However, if the
1071 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1072 recognize the default bindings, just as `read-key-sequence' does. */)
1073 (keymap, key, accept_default)
1074 register Lisp_Object keymap;
1075 Lisp_Object key;
1076 Lisp_Object accept_default;
1077 {
1078 register int idx;
1079 register Lisp_Object cmd;
1080 register Lisp_Object c;
1081 int length;
1082 int t_ok = !NILP (accept_default);
1083 struct gcpro gcpro1;
1084
1085 keymap = get_keymap (keymap, 1, 1);
1086
1087 if (!VECTORP (key) && !STRINGP (key))
1088 key = wrong_type_argument (Qarrayp, key);
1089
1090 length = XFASTINT (Flength (key));
1091 if (length == 0)
1092 return keymap;
1093
1094 GCPRO1 (key);
1095
1096 idx = 0;
1097 while (1)
1098 {
1099 c = Faref (key, make_number (idx++));
1100
1101 if (CONSP (c) && lucid_event_type_list_p (c))
1102 c = Fevent_convert_list (c);
1103
1104 /* Turn the 8th bit of string chars into a meta modifier. */
1105 if (XINT (c) & 0x80 && STRINGP (key))
1106 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1107
1108 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1109 error ("Key sequence contains invalid event");
1110
1111 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1112 if (idx == length)
1113 RETURN_UNGCPRO (cmd);
1114
1115 keymap = get_keymap (cmd, 0, 1);
1116 if (!CONSP (keymap))
1117 RETURN_UNGCPRO (make_number (idx));
1118
1119 QUIT;
1120 }
1121 }
1122
1123 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1124 Assume that currently it does not define C at all.
1125 Return the keymap. */
1126
1127 static Lisp_Object
1128 define_as_prefix (keymap, c)
1129 Lisp_Object keymap, c;
1130 {
1131 Lisp_Object cmd;
1132
1133 cmd = Fmake_sparse_keymap (Qnil);
1134 /* If this key is defined as a prefix in an inherited keymap,
1135 make it a prefix in this map, and make its definition
1136 inherit the other prefix definition. */
1137 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1138 store_in_keymap (keymap, c, cmd);
1139
1140 return cmd;
1141 }
1142
1143 /* Append a key to the end of a key sequence. We always make a vector. */
1144
1145 Lisp_Object
1146 append_key (key_sequence, key)
1147 Lisp_Object key_sequence, key;
1148 {
1149 Lisp_Object args[2];
1150
1151 args[0] = key_sequence;
1152
1153 args[1] = Fcons (key, Qnil);
1154 return Fvconcat (2, args);
1155 }
1156
1157 /* Given a event type C which is a symbol,
1158 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1159
1160 static void
1161 silly_event_symbol_error (c)
1162 Lisp_Object c;
1163 {
1164 Lisp_Object parsed, base, name, assoc;
1165 int modifiers;
1166
1167 parsed = parse_modifiers (c);
1168 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1169 base = XCAR (parsed);
1170 name = Fsymbol_name (base);
1171 /* This alist includes elements such as ("RET" . "\\r"). */
1172 assoc = Fassoc (name, exclude_keys);
1173
1174 if (! NILP (assoc))
1175 {
1176 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1177 char *p = new_mods;
1178 Lisp_Object keystring;
1179 if (modifiers & alt_modifier)
1180 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1181 if (modifiers & ctrl_modifier)
1182 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1183 if (modifiers & hyper_modifier)
1184 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1185 if (modifiers & meta_modifier)
1186 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1187 if (modifiers & shift_modifier)
1188 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1189 if (modifiers & super_modifier)
1190 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1191 *p = 0;
1192
1193 c = reorder_modifiers (c);
1194 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1195
1196 error ((modifiers & ~meta_modifier
1197 ? "To bind the key %s, use [?%s], not [%s]"
1198 : "To bind the key %s, use \"%s\", not [%s]"),
1199 XSYMBOL (c)->name->data, XSTRING (keystring)->data,
1200 XSYMBOL (c)->name->data);
1201 }
1202 }
1203 \f
1204 /* Global, local, and minor mode keymap stuff. */
1205
1206 /* We can't put these variables inside current_minor_maps, since under
1207 some systems, static gets macro-defined to be the empty string.
1208 Ickypoo. */
1209 static Lisp_Object *cmm_modes, *cmm_maps;
1210 static int cmm_size;
1211
1212 /* Error handler used in current_minor_maps. */
1213 static Lisp_Object
1214 current_minor_maps_error ()
1215 {
1216 return Qnil;
1217 }
1218
1219 /* Store a pointer to an array of the keymaps of the currently active
1220 minor modes in *buf, and return the number of maps it contains.
1221
1222 This function always returns a pointer to the same buffer, and may
1223 free or reallocate it, so if you want to keep it for a long time or
1224 hand it out to lisp code, copy it. This procedure will be called
1225 for every key sequence read, so the nice lispy approach (return a
1226 new assoclist, list, what have you) for each invocation would
1227 result in a lot of consing over time.
1228
1229 If we used xrealloc/xmalloc and ran out of memory, they would throw
1230 back to the command loop, which would try to read a key sequence,
1231 which would call this function again, resulting in an infinite
1232 loop. Instead, we'll use realloc/malloc and silently truncate the
1233 list, let the key sequence be read, and hope some other piece of
1234 code signals the error. */
1235 int
1236 current_minor_maps (modeptr, mapptr)
1237 Lisp_Object **modeptr, **mapptr;
1238 {
1239 int i = 0;
1240 int list_number = 0;
1241 Lisp_Object alist, assoc, var, val;
1242 Lisp_Object lists[2];
1243
1244 lists[0] = Vminor_mode_overriding_map_alist;
1245 lists[1] = Vminor_mode_map_alist;
1246
1247 for (list_number = 0; list_number < 2; list_number++)
1248 for (alist = lists[list_number];
1249 CONSP (alist);
1250 alist = XCDR (alist))
1251 if ((assoc = XCAR (alist), CONSP (assoc))
1252 && (var = XCAR (assoc), SYMBOLP (var))
1253 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1254 && !NILP (val))
1255 {
1256 Lisp_Object temp;
1257
1258 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1259 and also an entry in Vminor_mode_map_alist,
1260 ignore the latter. */
1261 if (list_number == 1)
1262 {
1263 val = assq_no_quit (var, lists[0]);
1264 if (!NILP (val))
1265 continue;
1266 }
1267
1268 if (i >= cmm_size)
1269 {
1270 Lisp_Object *newmodes, *newmaps;
1271
1272 /* Use malloc/realloc here. See the comment above
1273 this function. */
1274 if (cmm_maps)
1275 {
1276 BLOCK_INPUT;
1277 cmm_size *= 2;
1278 newmodes
1279 = (Lisp_Object *) realloc (cmm_modes,
1280 cmm_size * sizeof *newmodes);
1281 newmaps
1282 = (Lisp_Object *) realloc (cmm_maps,
1283 cmm_size * sizeof *newmaps);
1284 UNBLOCK_INPUT;
1285 }
1286 else
1287 {
1288 BLOCK_INPUT;
1289 cmm_size = 30;
1290 newmodes
1291 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1292 newmaps
1293 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1294 UNBLOCK_INPUT;
1295 }
1296
1297 if (newmodes)
1298 cmm_modes = newmodes;
1299 if (newmaps)
1300 cmm_maps = newmaps;
1301
1302 if (newmodes == NULL || newmaps == NULL)
1303 break;
1304 }
1305
1306 /* Get the keymap definition--or nil if it is not defined. */
1307 temp = internal_condition_case_1 (Findirect_function,
1308 XCDR (assoc),
1309 Qerror, current_minor_maps_error);
1310 if (!NILP (temp))
1311 {
1312 cmm_modes[i] = var;
1313 cmm_maps [i] = temp;
1314 i++;
1315 }
1316 }
1317
1318 if (modeptr) *modeptr = cmm_modes;
1319 if (mapptr) *mapptr = cmm_maps;
1320 return i;
1321 }
1322
1323 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1324 0, 1, 0,
1325 doc: /* Return a list of the currently active keymaps.
1326 OLP if non-nil indicates that we should obey `overriding-local-map' and
1327 `overriding-terminal-local-map'. */)
1328 (olp)
1329 Lisp_Object olp;
1330 {
1331 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1332
1333 if (!NILP (olp))
1334 {
1335 if (!NILP (Voverriding_local_map))
1336 keymaps = Fcons (Voverriding_local_map, keymaps);
1337 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1338 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1339 }
1340 if (NILP (XCDR (keymaps)))
1341 {
1342 Lisp_Object local;
1343 Lisp_Object *maps;
1344 int nmaps, i;
1345
1346 local = get_local_map (PT, current_buffer, Qlocal_map);
1347 if (!NILP (local))
1348 keymaps = Fcons (local, keymaps);
1349
1350 local = get_local_map (PT, current_buffer, Qkeymap);
1351 if (!NILP (local))
1352 keymaps = Fcons (local, keymaps);
1353
1354 nmaps = current_minor_maps (0, &maps);
1355
1356 for (i = --nmaps; i >= 0; i--)
1357 if (!NILP (maps[i]))
1358 keymaps = Fcons (maps[i], keymaps);
1359 }
1360
1361 return keymaps;
1362 }
1363
1364 /* GC is possible in this function if it autoloads a keymap. */
1365
1366 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1367 doc: /* Return the binding for command KEY in current keymaps.
1368 KEY is a string or vector, a sequence of keystrokes.
1369 The binding is probably a symbol with a function definition.
1370
1371 Normally, `key-binding' ignores bindings for t, which act as default
1372 bindings, used when nothing else in the keymap applies; this makes it
1373 usable as a general function for probing keymaps. However, if the
1374 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1375 recognize the default bindings, just as `read-key-sequence' does. */)
1376 (key, accept_default)
1377 Lisp_Object key, accept_default;
1378 {
1379 Lisp_Object *maps, value;
1380 int nmaps, i;
1381 struct gcpro gcpro1;
1382
1383 GCPRO1 (key);
1384
1385 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1386 {
1387 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1388 key, accept_default);
1389 if (! NILP (value) && !INTEGERP (value))
1390 RETURN_UNGCPRO (value);
1391 }
1392 else if (!NILP (Voverriding_local_map))
1393 {
1394 value = Flookup_key (Voverriding_local_map, key, accept_default);
1395 if (! NILP (value) && !INTEGERP (value))
1396 RETURN_UNGCPRO (value);
1397 }
1398 else
1399 {
1400 Lisp_Object local;
1401
1402 nmaps = current_minor_maps (0, &maps);
1403 /* Note that all these maps are GCPRO'd
1404 in the places where we found them. */
1405
1406 for (i = 0; i < nmaps; i++)
1407 if (! NILP (maps[i]))
1408 {
1409 value = Flookup_key (maps[i], key, accept_default);
1410 if (! NILP (value) && !INTEGERP (value))
1411 RETURN_UNGCPRO (value);
1412 }
1413
1414 local = get_local_map (PT, current_buffer, Qkeymap);
1415 if (! NILP (local))
1416 {
1417 value = Flookup_key (local, key, accept_default);
1418 if (! NILP (value) && !INTEGERP (value))
1419 RETURN_UNGCPRO (value);
1420 }
1421
1422 local = get_local_map (PT, current_buffer, Qlocal_map);
1423
1424 if (! NILP (local))
1425 {
1426 value = Flookup_key (local, key, accept_default);
1427 if (! NILP (value) && !INTEGERP (value))
1428 RETURN_UNGCPRO (value);
1429 }
1430 }
1431
1432 value = Flookup_key (current_global_map, key, accept_default);
1433 UNGCPRO;
1434 if (! NILP (value) && !INTEGERP (value))
1435 return value;
1436
1437 return Qnil;
1438 }
1439
1440 /* GC is possible in this function if it autoloads a keymap. */
1441
1442 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1443 doc: /* Return the binding for command KEYS in current local keymap only.
1444 KEYS is a string, a sequence of keystrokes.
1445 The binding is probably a symbol with a function definition.
1446
1447 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1448 bindings; see the description of `lookup-key' for more details about this. */)
1449 (keys, accept_default)
1450 Lisp_Object keys, accept_default;
1451 {
1452 register Lisp_Object map;
1453 map = current_buffer->keymap;
1454 if (NILP (map))
1455 return Qnil;
1456 return Flookup_key (map, keys, accept_default);
1457 }
1458
1459 /* GC is possible in this function if it autoloads a keymap. */
1460
1461 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1462 doc: /* Return the binding for command KEYS in current global keymap only.
1463 KEYS is a string, a sequence of keystrokes.
1464 The binding is probably a symbol with a function definition.
1465 This function's return values are the same as those of lookup-key
1466 \(which see).
1467
1468 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1469 bindings; see the description of `lookup-key' for more details about this. */)
1470 (keys, accept_default)
1471 Lisp_Object keys, accept_default;
1472 {
1473 return Flookup_key (current_global_map, keys, accept_default);
1474 }
1475
1476 /* GC is possible in this function if it autoloads a keymap. */
1477
1478 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1479 doc: /* Find the visible minor mode bindings of KEY.
1480 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1481 the symbol which names the minor mode binding KEY, and BINDING is
1482 KEY's definition in that mode. In particular, if KEY has no
1483 minor-mode bindings, return nil. If the first binding is a
1484 non-prefix, all subsequent bindings will be omitted, since they would
1485 be ignored. Similarly, the list doesn't include non-prefix bindings
1486 that come after prefix bindings.
1487
1488 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1489 bindings; see the description of `lookup-key' for more details about this. */)
1490 (key, accept_default)
1491 Lisp_Object key, accept_default;
1492 {
1493 Lisp_Object *modes, *maps;
1494 int nmaps;
1495 Lisp_Object binding;
1496 int i, j;
1497 struct gcpro gcpro1, gcpro2;
1498
1499 nmaps = current_minor_maps (&modes, &maps);
1500 /* Note that all these maps are GCPRO'd
1501 in the places where we found them. */
1502
1503 binding = Qnil;
1504 GCPRO2 (key, binding);
1505
1506 for (i = j = 0; i < nmaps; i++)
1507 if (!NILP (maps[i])
1508 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1509 && !INTEGERP (binding))
1510 {
1511 if (KEYMAPP (binding))
1512 maps[j++] = Fcons (modes[i], binding);
1513 else if (j == 0)
1514 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1515 }
1516
1517 UNGCPRO;
1518 return Flist (j, maps);
1519 }
1520
1521 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1522 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1523 A new sparse keymap is stored as COMMAND's function definition and its value.
1524 If a second optional argument MAPVAR is given, the map is stored as
1525 its value instead of as COMMAND's value; but COMMAND is still defined
1526 as a function.
1527 The third optional argument NAME, if given, supplies a menu name
1528 string for the map. This is required to use the keymap as a menu. */)
1529 (command, mapvar, name)
1530 Lisp_Object command, mapvar, name;
1531 {
1532 Lisp_Object map;
1533 map = Fmake_sparse_keymap (name);
1534 Ffset (command, map);
1535 if (!NILP (mapvar))
1536 Fset (mapvar, map);
1537 else
1538 Fset (command, map);
1539 return command;
1540 }
1541
1542 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1543 doc: /* Select KEYMAP as the global keymap. */)
1544 (keymap)
1545 Lisp_Object keymap;
1546 {
1547 keymap = get_keymap (keymap, 1, 1);
1548 current_global_map = keymap;
1549
1550 return Qnil;
1551 }
1552
1553 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1554 doc: /* Select KEYMAP as the local keymap.
1555 If KEYMAP is nil, that means no local keymap. */)
1556 (keymap)
1557 Lisp_Object keymap;
1558 {
1559 if (!NILP (keymap))
1560 keymap = get_keymap (keymap, 1, 1);
1561
1562 current_buffer->keymap = keymap;
1563
1564 return Qnil;
1565 }
1566
1567 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1568 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1569 ()
1570 {
1571 return current_buffer->keymap;
1572 }
1573
1574 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1575 doc: /* Return the current global keymap. */)
1576 ()
1577 {
1578 return current_global_map;
1579 }
1580
1581 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1582 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1583 ()
1584 {
1585 Lisp_Object *maps;
1586 int nmaps = current_minor_maps (0, &maps);
1587
1588 return Flist (nmaps, maps);
1589 }
1590 \f
1591 /* Help functions for describing and documenting keymaps. */
1592
1593
1594 static void
1595 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1596 Lisp_Object maps, tail, thisseq, key, cmd;
1597 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1598 {
1599 Lisp_Object tem;
1600
1601 cmd = get_keyelt (cmd, 0);
1602 if (NILP (cmd))
1603 return;
1604
1605 tem = get_keymap (cmd, 0, 0);
1606 if (CONSP (tem))
1607 {
1608 cmd = tem;
1609 /* Ignore keymaps that are already added to maps. */
1610 tem = Frassq (cmd, maps);
1611 if (NILP (tem))
1612 {
1613 /* If the last key in thisseq is meta-prefix-char,
1614 turn it into a meta-ized keystroke. We know
1615 that the event we're about to append is an
1616 ascii keystroke since we're processing a
1617 keymap table. */
1618 if (is_metized)
1619 {
1620 int meta_bit = meta_modifier;
1621 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1622 tem = Fcopy_sequence (thisseq);
1623
1624 Faset (tem, last, make_number (XINT (key) | meta_bit));
1625
1626 /* This new sequence is the same length as
1627 thisseq, so stick it in the list right
1628 after this one. */
1629 XSETCDR (tail,
1630 Fcons (Fcons (tem, cmd), XCDR (tail)));
1631 }
1632 else
1633 {
1634 tem = append_key (thisseq, key);
1635 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1636 }
1637 }
1638 }
1639 }
1640
1641 static void
1642 accessible_keymaps_char_table (args, index, cmd)
1643 Lisp_Object args, index, cmd;
1644 {
1645 accessible_keymaps_1 (index, cmd,
1646 XCAR (XCAR (args)),
1647 XCAR (XCDR (args)),
1648 XCDR (XCDR (args)),
1649 XINT (XCDR (XCAR (args))));
1650 }
1651
1652 /* This function cannot GC. */
1653
1654 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1655 1, 2, 0,
1656 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1657 Returns a list of elements of the form (KEYS . MAP), where the sequence
1658 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1659 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1660 An optional argument PREFIX, if non-nil, should be a key sequence;
1661 then the value includes only maps for prefixes that start with PREFIX. */)
1662 (keymap, prefix)
1663 Lisp_Object keymap, prefix;
1664 {
1665 Lisp_Object maps, good_maps, tail;
1666 int prefixlen = 0;
1667
1668 /* no need for gcpro because we don't autoload any keymaps. */
1669
1670 if (!NILP (prefix))
1671 prefixlen = XINT (Flength (prefix));
1672
1673 if (!NILP (prefix))
1674 {
1675 /* If a prefix was specified, start with the keymap (if any) for
1676 that prefix, so we don't waste time considering other prefixes. */
1677 Lisp_Object tem;
1678 tem = Flookup_key (keymap, prefix, Qt);
1679 /* Flookup_key may give us nil, or a number,
1680 if the prefix is not defined in this particular map.
1681 It might even give us a list that isn't a keymap. */
1682 tem = get_keymap (tem, 0, 0);
1683 if (CONSP (tem))
1684 {
1685 /* Convert PREFIX to a vector now, so that later on
1686 we don't have to deal with the possibility of a string. */
1687 if (STRINGP (prefix))
1688 {
1689 int i, i_byte, c;
1690 Lisp_Object copy;
1691
1692 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1693 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1694 {
1695 int i_before = i;
1696
1697 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1698 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1699 c ^= 0200 | meta_modifier;
1700 ASET (copy, i_before, make_number (c));
1701 }
1702 prefix = copy;
1703 }
1704 maps = Fcons (Fcons (prefix, tem), Qnil);
1705 }
1706 else
1707 return Qnil;
1708 }
1709 else
1710 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1711 get_keymap (keymap, 1, 0)),
1712 Qnil);
1713
1714 /* For each map in the list maps,
1715 look at any other maps it points to,
1716 and stick them at the end if they are not already in the list.
1717
1718 This is a breadth-first traversal, where tail is the queue of
1719 nodes, and maps accumulates a list of all nodes visited. */
1720
1721 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1722 {
1723 register Lisp_Object thisseq, thismap;
1724 Lisp_Object last;
1725 /* Does the current sequence end in the meta-prefix-char? */
1726 int is_metized;
1727
1728 thisseq = Fcar (Fcar (tail));
1729 thismap = Fcdr (Fcar (tail));
1730 last = make_number (XINT (Flength (thisseq)) - 1);
1731 is_metized = (XINT (last) >= 0
1732 /* Don't metize the last char of PREFIX. */
1733 && XINT (last) >= prefixlen
1734 && EQ (Faref (thisseq, last), meta_prefix_char));
1735
1736 for (; CONSP (thismap); thismap = XCDR (thismap))
1737 {
1738 Lisp_Object elt;
1739
1740 elt = XCAR (thismap);
1741
1742 QUIT;
1743
1744 if (CHAR_TABLE_P (elt))
1745 {
1746 Lisp_Object indices[3];
1747
1748 map_char_table (accessible_keymaps_char_table, Qnil,
1749 elt, Fcons (Fcons (maps, make_number (is_metized)),
1750 Fcons (tail, thisseq)),
1751 0, indices);
1752 }
1753 else if (VECTORP (elt))
1754 {
1755 register int i;
1756
1757 /* Vector keymap. Scan all the elements. */
1758 for (i = 0; i < ASIZE (elt); i++)
1759 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1760 maps, tail, thisseq, is_metized);
1761
1762 }
1763 else if (CONSP (elt))
1764 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1765 maps, tail, thisseq,
1766 is_metized && INTEGERP (XCAR (elt)));
1767
1768 }
1769 }
1770
1771 if (NILP (prefix))
1772 return maps;
1773
1774 /* Now find just the maps whose access prefixes start with PREFIX. */
1775
1776 good_maps = Qnil;
1777 for (; CONSP (maps); maps = XCDR (maps))
1778 {
1779 Lisp_Object elt, thisseq;
1780 elt = XCAR (maps);
1781 thisseq = XCAR (elt);
1782 /* The access prefix must be at least as long as PREFIX,
1783 and the first elements must match those of PREFIX. */
1784 if (XINT (Flength (thisseq)) >= prefixlen)
1785 {
1786 int i;
1787 for (i = 0; i < prefixlen; i++)
1788 {
1789 Lisp_Object i1;
1790 XSETFASTINT (i1, i);
1791 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1792 break;
1793 }
1794 if (i == prefixlen)
1795 good_maps = Fcons (elt, good_maps);
1796 }
1797 }
1798
1799 return Fnreverse (good_maps);
1800 }
1801 \f
1802 Lisp_Object Qsingle_key_description, Qkey_description;
1803
1804 /* This function cannot GC. */
1805
1806 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1807 doc: /* Return a pretty description of key-sequence KEYS.
1808 Control characters turn into "C-foo" sequences, meta into "M-foo"
1809 spaces are put between sequence elements, etc. */)
1810 (keys)
1811 Lisp_Object keys;
1812 {
1813 int len = 0;
1814 int i, i_byte;
1815 Lisp_Object sep;
1816 Lisp_Object *args = NULL;
1817
1818 if (STRINGP (keys))
1819 {
1820 Lisp_Object vector;
1821 vector = Fmake_vector (Flength (keys), Qnil);
1822 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1823 {
1824 int c;
1825 int i_before = i;
1826
1827 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1828 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1829 c ^= 0200 | meta_modifier;
1830 XSETFASTINT (AREF (vector, i_before), c);
1831 }
1832 keys = vector;
1833 }
1834
1835 if (VECTORP (keys))
1836 {
1837 /* In effect, this computes
1838 (mapconcat 'single-key-description keys " ")
1839 but we shouldn't use mapconcat because it can do GC. */
1840
1841 len = XVECTOR (keys)->size;
1842 sep = build_string (" ");
1843 /* This has one extra element at the end that we don't pass to Fconcat. */
1844 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1845
1846 for (i = 0; i < len; i++)
1847 {
1848 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1849 args[i * 2 + 1] = sep;
1850 }
1851 }
1852 else if (CONSP (keys))
1853 {
1854 /* In effect, this computes
1855 (mapconcat 'single-key-description keys " ")
1856 but we shouldn't use mapconcat because it can do GC. */
1857
1858 len = XFASTINT (Flength (keys));
1859 sep = build_string (" ");
1860 /* This has one extra element at the end that we don't pass to Fconcat. */
1861 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1862
1863 for (i = 0; i < len; i++)
1864 {
1865 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1866 args[i * 2 + 1] = sep;
1867 keys = XCDR (keys);
1868 }
1869 }
1870 else
1871 keys = wrong_type_argument (Qarrayp, keys);
1872
1873 if (len == 0)
1874 return empty_string;
1875 return Fconcat (len * 2 - 1, args);
1876 }
1877
1878 char *
1879 push_key_description (c, p, force_multibyte)
1880 register unsigned int c;
1881 register char *p;
1882 int force_multibyte;
1883 {
1884 unsigned c2;
1885
1886 /* Clear all the meaningless bits above the meta bit. */
1887 c &= meta_modifier | ~ - meta_modifier;
1888 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1889 | meta_modifier | shift_modifier | super_modifier);
1890
1891 if (c & alt_modifier)
1892 {
1893 *p++ = 'A';
1894 *p++ = '-';
1895 c -= alt_modifier;
1896 }
1897 if ((c & ctrl_modifier) != 0
1898 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1899 {
1900 *p++ = 'C';
1901 *p++ = '-';
1902 c &= ~ctrl_modifier;
1903 }
1904 if (c & hyper_modifier)
1905 {
1906 *p++ = 'H';
1907 *p++ = '-';
1908 c -= hyper_modifier;
1909 }
1910 if (c & meta_modifier)
1911 {
1912 *p++ = 'M';
1913 *p++ = '-';
1914 c -= meta_modifier;
1915 }
1916 if (c & shift_modifier)
1917 {
1918 *p++ = 'S';
1919 *p++ = '-';
1920 c -= shift_modifier;
1921 }
1922 if (c & super_modifier)
1923 {
1924 *p++ = 's';
1925 *p++ = '-';
1926 c -= super_modifier;
1927 }
1928 if (c < 040)
1929 {
1930 if (c == 033)
1931 {
1932 *p++ = 'E';
1933 *p++ = 'S';
1934 *p++ = 'C';
1935 }
1936 else if (c == '\t')
1937 {
1938 *p++ = 'T';
1939 *p++ = 'A';
1940 *p++ = 'B';
1941 }
1942 else if (c == Ctl ('M'))
1943 {
1944 *p++ = 'R';
1945 *p++ = 'E';
1946 *p++ = 'T';
1947 }
1948 else
1949 {
1950 /* `C-' already added above. */
1951 if (c > 0 && c <= Ctl ('Z'))
1952 *p++ = c + 0140;
1953 else
1954 *p++ = c + 0100;
1955 }
1956 }
1957 else if (c == 0177)
1958 {
1959 *p++ = 'D';
1960 *p++ = 'E';
1961 *p++ = 'L';
1962 }
1963 else if (c == ' ')
1964 {
1965 *p++ = 'S';
1966 *p++ = 'P';
1967 *p++ = 'C';
1968 }
1969 else if (c < 128
1970 || (NILP (current_buffer->enable_multibyte_characters)
1971 && SINGLE_BYTE_CHAR_P (c)
1972 && !force_multibyte))
1973 {
1974 *p++ = c;
1975 }
1976 else
1977 {
1978 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
1979
1980 if (force_multibyte && valid_p)
1981 {
1982 if (SINGLE_BYTE_CHAR_P (c))
1983 c = unibyte_char_to_multibyte (c);
1984 p += CHAR_STRING (c, p);
1985 }
1986 else if (NILP (current_buffer->enable_multibyte_characters)
1987 || valid_p)
1988 {
1989 int bit_offset;
1990 *p++ = '\\';
1991 /* The biggest character code uses 19 bits. */
1992 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1993 {
1994 if (c >= (1 << bit_offset))
1995 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1996 }
1997 }
1998 else
1999 p += CHAR_STRING (c, p);
2000 }
2001
2002 return p;
2003 }
2004
2005 /* This function cannot GC. */
2006
2007 DEFUN ("single-key-description", Fsingle_key_description,
2008 Ssingle_key_description, 1, 2, 0,
2009 doc: /* Return a pretty description of command character KEY.
2010 Control characters turn into C-whatever, etc.
2011 Optional argument NO-ANGLES non-nil means don't put angle brackets
2012 around function keys and event symbols. */)
2013 (key, no_angles)
2014 Lisp_Object key, no_angles;
2015 {
2016 if (CONSP (key) && lucid_event_type_list_p (key))
2017 key = Fevent_convert_list (key);
2018
2019 key = EVENT_HEAD (key);
2020
2021 if (INTEGERP (key)) /* Normal character */
2022 {
2023 unsigned int charset, c1, c2;
2024 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2025
2026 if (SINGLE_BYTE_CHAR_P (without_bits))
2027 charset = 0;
2028 else
2029 SPLIT_CHAR (without_bits, charset, c1, c2);
2030
2031 if (charset
2032 && CHARSET_DEFINED_P (charset)
2033 && ((c1 >= 0 && c1 < 32)
2034 || (c2 >= 0 && c2 < 32)))
2035 {
2036 /* Handle a generic character. */
2037 Lisp_Object name;
2038 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2039 CHECK_STRING (name);
2040 return concat2 (build_string ("Character set "), name);
2041 }
2042 else
2043 {
2044 char tem[KEY_DESCRIPTION_SIZE], *end;
2045 int nbytes, nchars;
2046 Lisp_Object string;
2047
2048 end = push_key_description (XUINT (key), tem, 1);
2049 nbytes = end - tem;
2050 nchars = multibyte_chars_in_text (tem, nbytes);
2051 if (nchars == nbytes)
2052 {
2053 *end = '\0';
2054 string = build_string (tem);
2055 }
2056 else
2057 string = make_multibyte_string (tem, nchars, nbytes);
2058 return string;
2059 }
2060 }
2061 else if (SYMBOLP (key)) /* Function key or event-symbol */
2062 {
2063 if (NILP (no_angles))
2064 {
2065 char *buffer
2066 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
2067 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
2068 return build_string (buffer);
2069 }
2070 else
2071 return Fsymbol_name (key);
2072 }
2073 else if (STRINGP (key)) /* Buffer names in the menubar. */
2074 return Fcopy_sequence (key);
2075 else
2076 error ("KEY must be an integer, cons, symbol, or string");
2077 return Qnil;
2078 }
2079
2080 char *
2081 push_text_char_description (c, p)
2082 register unsigned int c;
2083 register char *p;
2084 {
2085 if (c >= 0200)
2086 {
2087 *p++ = 'M';
2088 *p++ = '-';
2089 c -= 0200;
2090 }
2091 if (c < 040)
2092 {
2093 *p++ = '^';
2094 *p++ = c + 64; /* 'A' - 1 */
2095 }
2096 else if (c == 0177)
2097 {
2098 *p++ = '^';
2099 *p++ = '?';
2100 }
2101 else
2102 *p++ = c;
2103 return p;
2104 }
2105
2106 /* This function cannot GC. */
2107
2108 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2109 doc: /* Return a pretty description of file-character CHARACTER.
2110 Control characters turn into "^char", etc. */)
2111 (character)
2112 Lisp_Object character;
2113 {
2114 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2115 unsigned char str[6];
2116 int c;
2117
2118 CHECK_NUMBER (character);
2119
2120 c = XINT (character);
2121 if (!SINGLE_BYTE_CHAR_P (c))
2122 {
2123 int len = CHAR_STRING (c, str);
2124
2125 return make_multibyte_string (str, 1, len);
2126 }
2127
2128 *push_text_char_description (c & 0377, str) = 0;
2129
2130 return build_string (str);
2131 }
2132
2133 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2134 a meta bit. */
2135 static int
2136 ascii_sequence_p (seq)
2137 Lisp_Object seq;
2138 {
2139 int i;
2140 int len = XINT (Flength (seq));
2141
2142 for (i = 0; i < len; i++)
2143 {
2144 Lisp_Object ii, elt;
2145
2146 XSETFASTINT (ii, i);
2147 elt = Faref (seq, ii);
2148
2149 if (!INTEGERP (elt)
2150 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2151 return 0;
2152 }
2153
2154 return 1;
2155 }
2156
2157 \f
2158 /* where-is - finding a command in a set of keymaps. */
2159
2160 static Lisp_Object where_is_internal_1 ();
2161 static void where_is_internal_2 ();
2162
2163 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2164 Returns the first non-nil binding found in any of those maps. */
2165
2166 static Lisp_Object
2167 shadow_lookup (shadow, key, flag)
2168 Lisp_Object shadow, key, flag;
2169 {
2170 Lisp_Object tail, value;
2171
2172 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2173 {
2174 value = Flookup_key (XCAR (tail), key, flag);
2175 if (!NILP (value) && !NATNUMP (value))
2176 return value;
2177 }
2178 return Qnil;
2179 }
2180
2181 /* This function can GC if Flookup_key autoloads any keymaps. */
2182
2183 static Lisp_Object
2184 where_is_internal (definition, keymaps, firstonly, noindirect)
2185 Lisp_Object definition, keymaps;
2186 Lisp_Object firstonly, noindirect;
2187 {
2188 Lisp_Object maps = Qnil;
2189 Lisp_Object found, sequences;
2190 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2191 /* 1 means ignore all menu bindings entirely. */
2192 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2193
2194 found = keymaps;
2195 while (CONSP (found))
2196 {
2197 maps =
2198 nconc2 (maps,
2199 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2200 found = XCDR (found);
2201 }
2202
2203 GCPRO5 (definition, keymaps, maps, found, sequences);
2204 found = Qnil;
2205 sequences = Qnil;
2206
2207 for (; !NILP (maps); maps = Fcdr (maps))
2208 {
2209 /* Key sequence to reach map, and the map that it reaches */
2210 register Lisp_Object this, map;
2211
2212 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2213 [M-CHAR] sequences, check if last character of the sequence
2214 is the meta-prefix char. */
2215 Lisp_Object last;
2216 int last_is_meta;
2217
2218 this = Fcar (Fcar (maps));
2219 map = Fcdr (Fcar (maps));
2220 last = make_number (XINT (Flength (this)) - 1);
2221 last_is_meta = (XINT (last) >= 0
2222 && EQ (Faref (this, last), meta_prefix_char));
2223
2224 /* if (nomenus && !ascii_sequence_p (this)) */
2225 if (nomenus && XINT (last) >= 0
2226 && !INTEGERP (Faref (this, make_number (0))))
2227 /* If no menu entries should be returned, skip over the
2228 keymaps bound to `menu-bar' and `tool-bar' and other
2229 non-ascii prefixes like `C-down-mouse-2'. */
2230 continue;
2231
2232 QUIT;
2233
2234 while (CONSP (map))
2235 {
2236 /* Because the code we want to run on each binding is rather
2237 large, we don't want to have two separate loop bodies for
2238 sparse keymap bindings and tables; we want to iterate one
2239 loop body over both keymap and vector bindings.
2240
2241 For this reason, if Fcar (map) is a vector, we don't
2242 advance map to the next element until i indicates that we
2243 have finished off the vector. */
2244 Lisp_Object elt, key, binding;
2245 elt = XCAR (map);
2246 map = XCDR (map);
2247
2248 sequences = Qnil;
2249
2250 QUIT;
2251
2252 /* Set key and binding to the current key and binding, and
2253 advance map and i to the next binding. */
2254 if (VECTORP (elt))
2255 {
2256 Lisp_Object sequence;
2257 int i;
2258 /* In a vector, look at each element. */
2259 for (i = 0; i < XVECTOR (elt)->size; i++)
2260 {
2261 binding = AREF (elt, i);
2262 XSETFASTINT (key, i);
2263 sequence = where_is_internal_1 (binding, key, definition,
2264 noindirect, this,
2265 last, nomenus, last_is_meta);
2266 if (!NILP (sequence))
2267 sequences = Fcons (sequence, sequences);
2268 }
2269 }
2270 else if (CHAR_TABLE_P (elt))
2271 {
2272 Lisp_Object indices[3];
2273 Lisp_Object args;
2274
2275 args = Fcons (Fcons (Fcons (definition, noindirect),
2276 Qnil), /* Result accumulator. */
2277 Fcons (Fcons (this, last),
2278 Fcons (make_number (nomenus),
2279 make_number (last_is_meta))));
2280 map_char_table (where_is_internal_2, Qnil, elt, args,
2281 0, indices);
2282 sequences = XCDR (XCAR (args));
2283 }
2284 else if (CONSP (elt))
2285 {
2286 Lisp_Object sequence;
2287
2288 key = XCAR (elt);
2289 binding = XCDR (elt);
2290
2291 sequence = where_is_internal_1 (binding, key, definition,
2292 noindirect, this,
2293 last, nomenus, last_is_meta);
2294 if (!NILP (sequence))
2295 sequences = Fcons (sequence, sequences);
2296 }
2297
2298
2299 for (; !NILP (sequences); sequences = XCDR (sequences))
2300 {
2301 Lisp_Object sequence;
2302
2303 sequence = XCAR (sequences);
2304
2305 /* Verify that this key binding is not shadowed by another
2306 binding for the same key, before we say it exists.
2307
2308 Mechanism: look for local definition of this key and if
2309 it is defined and does not match what we found then
2310 ignore this key.
2311
2312 Either nil or number as value from Flookup_key
2313 means undefined. */
2314 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2315 continue;
2316
2317 /* It is a true unshadowed match. Record it, unless it's already
2318 been seen (as could happen when inheriting keymaps). */
2319 if (NILP (Fmember (sequence, found)))
2320 found = Fcons (sequence, found);
2321
2322 /* If firstonly is Qnon_ascii, then we can return the first
2323 binding we find. If firstonly is not Qnon_ascii but not
2324 nil, then we should return the first ascii-only binding
2325 we find. */
2326 if (EQ (firstonly, Qnon_ascii))
2327 RETURN_UNGCPRO (sequence);
2328 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2329 RETURN_UNGCPRO (sequence);
2330 }
2331 }
2332 }
2333
2334 UNGCPRO;
2335
2336 found = Fnreverse (found);
2337
2338 /* firstonly may have been t, but we may have gone all the way through
2339 the keymaps without finding an all-ASCII key sequence. So just
2340 return the best we could find. */
2341 if (!NILP (firstonly))
2342 return Fcar (found);
2343
2344 return found;
2345 }
2346
2347 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2348 doc: /* Return list of keys that invoke DEFINITION.
2349 If KEYMAP is non-nil, search only KEYMAP and the global keymap.
2350 If KEYMAP is nil, search all the currently active keymaps.
2351 If KEYMAP is a list of keymaps, search only those keymaps.
2352
2353 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2354 rather than a list of all possible key sequences.
2355 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2356 no matter what it is.
2357 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,
2358 and entirely reject menu bindings.
2359
2360 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2361 to other keymaps or slots. This makes it possible to search for an
2362 indirect definition itself. */)
2363 (definition, keymap, firstonly, noindirect)
2364 Lisp_Object definition, keymap;
2365 Lisp_Object firstonly, noindirect;
2366 {
2367 Lisp_Object sequences, keymaps;
2368 /* 1 means ignore all menu bindings entirely. */
2369 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2370 Lisp_Object result;
2371
2372 /* Find the relevant keymaps. */
2373 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2374 keymaps = keymap;
2375 else if (!NILP (keymap))
2376 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2377 else
2378 keymaps = Fcurrent_active_maps (Qnil);
2379
2380 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2381 We don't really need to check `keymap'. */
2382 if (nomenus && NILP (noindirect) && NILP (keymap))
2383 {
2384 Lisp_Object *defns;
2385 int i, j, n;
2386 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2387
2388 /* Check heuristic-consistency of the cache. */
2389 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2390 where_is_cache = Qnil;
2391
2392 if (NILP (where_is_cache))
2393 {
2394 /* We need to create the cache. */
2395 Lisp_Object args[2];
2396 where_is_cache = Fmake_hash_table (0, args);
2397 where_is_cache_keymaps = Qt;
2398
2399 /* Fill in the cache. */
2400 GCPRO4 (definition, keymaps, firstonly, noindirect);
2401 where_is_internal (definition, keymaps, firstonly, noindirect);
2402 UNGCPRO;
2403
2404 where_is_cache_keymaps = keymaps;
2405 }
2406
2407 /* We want to process definitions from the last to the first.
2408 Instead of consing, copy definitions to a vector and step
2409 over that vector. */
2410 sequences = Fgethash (definition, where_is_cache, Qnil);
2411 n = XINT (Flength (sequences));
2412 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2413 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2414 defns[i++] = XCAR (sequences);
2415
2416 /* Verify that the key bindings are not shadowed. Note that
2417 the following can GC. */
2418 GCPRO2 (definition, keymaps);
2419 result = Qnil;
2420 j = -1;
2421 for (i = n - 1; i >= 0; --i)
2422 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2423 {
2424 if (ascii_sequence_p (defns[i]))
2425 break;
2426 else if (j < 0)
2427 j = i;
2428 }
2429
2430 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2431 UNGCPRO;
2432 }
2433 else
2434 {
2435 /* Kill the cache so that where_is_internal_1 doesn't think
2436 we're filling it up. */
2437 where_is_cache = Qnil;
2438 result = where_is_internal (definition, keymaps, firstonly, noindirect);
2439 }
2440
2441 return result;
2442 }
2443
2444 /* This is the function that Fwhere_is_internal calls using map_char_table.
2445 ARGS has the form
2446 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2447 .
2448 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2449 Since map_char_table doesn't really use the return value from this function,
2450 we the result append to RESULT, the slot in ARGS.
2451
2452 This function can GC because it calls where_is_internal_1 which can
2453 GC. */
2454
2455 static void
2456 where_is_internal_2 (args, key, binding)
2457 Lisp_Object args, key, binding;
2458 {
2459 Lisp_Object definition, noindirect, this, last;
2460 Lisp_Object result, sequence;
2461 int nomenus, last_is_meta;
2462 struct gcpro gcpro1, gcpro2, gcpro3;
2463
2464 GCPRO3 (args, key, binding);
2465 result = XCDR (XCAR (args));
2466 definition = XCAR (XCAR (XCAR (args)));
2467 noindirect = XCDR (XCAR (XCAR (args)));
2468 this = XCAR (XCAR (XCDR (args)));
2469 last = XCDR (XCAR (XCDR (args)));
2470 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2471 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2472
2473 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2474 this, last, nomenus, last_is_meta);
2475
2476 if (!NILP (sequence))
2477 XSETCDR (XCAR (args), Fcons (sequence, result));
2478
2479 UNGCPRO;
2480 }
2481
2482
2483 /* This function cannot GC. */
2484
2485 static Lisp_Object
2486 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2487 nomenus, last_is_meta)
2488 Lisp_Object binding, key, definition, noindirect, this, last;
2489 int nomenus, last_is_meta;
2490 {
2491 Lisp_Object sequence;
2492
2493 /* Search through indirections unless that's not wanted. */
2494 if (NILP (noindirect))
2495 binding = get_keyelt (binding, 0);
2496
2497 /* End this iteration if this element does not match
2498 the target. */
2499
2500 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2501 || EQ (binding, definition)
2502 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2503 /* Doesn't match. */
2504 return Qnil;
2505
2506 /* We have found a match. Construct the key sequence where we found it. */
2507 if (INTEGERP (key) && last_is_meta)
2508 {
2509 sequence = Fcopy_sequence (this);
2510 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2511 }
2512 else
2513 sequence = append_key (this, key);
2514
2515 if (!NILP (where_is_cache))
2516 {
2517 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2518 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2519 return Qnil;
2520 }
2521 else
2522 return sequence;
2523 }
2524 \f
2525 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2526
2527 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2528 doc: /* Insert the list of all defined keys and their definitions.
2529 The list is inserted in the current buffer, while the bindings are
2530 looked up in BUFFER.
2531 The optional argument PREFIX, if non-nil, should be a key sequence;
2532 then we display only bindings that start with that prefix.
2533 The optional argument MENUS, if non-nil, says to mention menu bindings.
2534 \(Ordinarily these are omitted from the output.) */)
2535 (buffer, prefix, menus)
2536 Lisp_Object buffer, prefix, menus;
2537 {
2538 Lisp_Object outbuf, shadow;
2539 int nomenu = NILP (menus);
2540 register Lisp_Object start1;
2541 struct gcpro gcpro1;
2542
2543 char *alternate_heading
2544 = "\
2545 Keyboard translations:\n\n\
2546 You type Translation\n\
2547 -------- -----------\n";
2548
2549 shadow = Qnil;
2550 GCPRO1 (shadow);
2551
2552 outbuf = Fcurrent_buffer ();
2553
2554 /* Report on alternates for keys. */
2555 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2556 {
2557 int c;
2558 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2559 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2560
2561 for (c = 0; c < translate_len; c++)
2562 if (translate[c] != c)
2563 {
2564 char buf[KEY_DESCRIPTION_SIZE];
2565 char *bufend;
2566
2567 if (alternate_heading)
2568 {
2569 insert_string (alternate_heading);
2570 alternate_heading = 0;
2571 }
2572
2573 bufend = push_key_description (translate[c], buf, 1);
2574 insert (buf, bufend - buf);
2575 Findent_to (make_number (16), make_number (1));
2576 bufend = push_key_description (c, buf, 1);
2577 insert (buf, bufend - buf);
2578
2579 insert ("\n", 1);
2580 }
2581
2582 insert ("\n", 1);
2583 }
2584
2585 if (!NILP (Vkey_translation_map))
2586 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2587 "Key translations", nomenu, 1, 0);
2588
2589
2590 /* Print the (major mode) local map. */
2591 start1 = Qnil;
2592 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2593 start1 = current_kboard->Voverriding_terminal_local_map;
2594 else if (!NILP (Voverriding_local_map))
2595 start1 = Voverriding_local_map;
2596
2597 if (!NILP (start1))
2598 {
2599 describe_map_tree (start1, 1, shadow, prefix,
2600 "\f\nOverriding Bindings", nomenu, 0, 0);
2601 shadow = Fcons (start1, shadow);
2602 }
2603 else
2604 {
2605 /* Print the minor mode and major mode keymaps. */
2606 int i, nmaps;
2607 Lisp_Object *modes, *maps;
2608
2609 /* Temporarily switch to `buffer', so that we can get that buffer's
2610 minor modes correctly. */
2611 Fset_buffer (buffer);
2612
2613 nmaps = current_minor_maps (&modes, &maps);
2614 Fset_buffer (outbuf);
2615
2616 /* Print the minor mode maps. */
2617 for (i = 0; i < nmaps; i++)
2618 {
2619 /* The title for a minor mode keymap
2620 is constructed at run time.
2621 We let describe_map_tree do the actual insertion
2622 because it takes care of other features when doing so. */
2623 char *title, *p;
2624
2625 if (!SYMBOLP (modes[i]))
2626 abort();
2627
2628 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2629 *p++ = '\f';
2630 *p++ = '\n';
2631 *p++ = '`';
2632 bcopy (XSYMBOL (modes[i])->name->data, p,
2633 XSYMBOL (modes[i])->name->size);
2634 p += XSYMBOL (modes[i])->name->size;
2635 *p++ = '\'';
2636 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2637 p += sizeof (" Minor Mode Bindings") - 1;
2638 *p = 0;
2639
2640 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2641 shadow = Fcons (maps[i], shadow);
2642 }
2643
2644 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2645 XBUFFER (buffer), Qkeymap);
2646 if (!NILP (start1))
2647 {
2648 describe_map_tree (start1, 1, shadow, prefix,
2649 "\f\nChar Property Bindings", nomenu, 0, 0);
2650 shadow = Fcons (start1, shadow);
2651 }
2652
2653 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2654 XBUFFER (buffer), Qlocal_map);
2655 if (!NILP (start1))
2656 {
2657 if (EQ (start1, XBUFFER (buffer)->keymap))
2658 describe_map_tree (start1, 1, shadow, prefix,
2659 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2660 else
2661 describe_map_tree (start1, 1, shadow, prefix,
2662 "\f\nChar Property Bindings", nomenu, 0, 0);
2663
2664 shadow = Fcons (start1, shadow);
2665 }
2666 }
2667
2668 describe_map_tree (current_global_map, 1, shadow, prefix,
2669 "\f\nGlobal Bindings", nomenu, 0, 1);
2670
2671 /* Print the function-key-map translations under this prefix. */
2672 if (!NILP (Vfunction_key_map))
2673 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2674 "\f\nFunction key map translations", nomenu, 1, 0);
2675
2676 UNGCPRO;
2677 return Qnil;
2678 }
2679
2680 /* Insert a description of the key bindings in STARTMAP,
2681 followed by those of all maps reachable through STARTMAP.
2682 If PARTIAL is nonzero, omit certain "uninteresting" commands
2683 (such as `undefined').
2684 If SHADOW is non-nil, it is a list of maps;
2685 don't mention keys which would be shadowed by any of them.
2686 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2687 TITLE, if not 0, is a string to insert at the beginning.
2688 TITLE should not end with a colon or a newline; we supply that.
2689 If NOMENU is not 0, then omit menu-bar commands.
2690
2691 If TRANSL is nonzero, the definitions are actually key translations
2692 so print strings and vectors differently.
2693
2694 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2695 to look through. */
2696
2697 void
2698 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2699 always_title)
2700 Lisp_Object startmap, shadow, prefix;
2701 int partial;
2702 char *title;
2703 int nomenu;
2704 int transl;
2705 int always_title;
2706 {
2707 Lisp_Object maps, orig_maps, seen, sub_shadows;
2708 struct gcpro gcpro1, gcpro2, gcpro3;
2709 int something = 0;
2710 char *key_heading
2711 = "\
2712 key binding\n\
2713 --- -------\n";
2714
2715 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2716 seen = Qnil;
2717 sub_shadows = Qnil;
2718 GCPRO3 (maps, seen, sub_shadows);
2719
2720 if (nomenu)
2721 {
2722 Lisp_Object list;
2723
2724 /* Delete from MAPS each element that is for the menu bar. */
2725 for (list = maps; !NILP (list); list = XCDR (list))
2726 {
2727 Lisp_Object elt, prefix, tem;
2728
2729 elt = Fcar (list);
2730 prefix = Fcar (elt);
2731 if (XVECTOR (prefix)->size >= 1)
2732 {
2733 tem = Faref (prefix, make_number (0));
2734 if (EQ (tem, Qmenu_bar))
2735 maps = Fdelq (elt, maps);
2736 }
2737 }
2738 }
2739
2740 if (!NILP (maps) || always_title)
2741 {
2742 if (title)
2743 {
2744 insert_string (title);
2745 if (!NILP (prefix))
2746 {
2747 insert_string (" Starting With ");
2748 insert1 (Fkey_description (prefix));
2749 }
2750 insert_string (":\n");
2751 }
2752 insert_string (key_heading);
2753 something = 1;
2754 }
2755
2756 for (; !NILP (maps); maps = Fcdr (maps))
2757 {
2758 register Lisp_Object elt, prefix, tail;
2759
2760 elt = Fcar (maps);
2761 prefix = Fcar (elt);
2762
2763 sub_shadows = Qnil;
2764
2765 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2766 {
2767 Lisp_Object shmap;
2768
2769 shmap = XCAR (tail);
2770
2771 /* If the sequence by which we reach this keymap is zero-length,
2772 then the shadow map for this keymap is just SHADOW. */
2773 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2774 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2775 ;
2776 /* If the sequence by which we reach this keymap actually has
2777 some elements, then the sequence's definition in SHADOW is
2778 what we should use. */
2779 else
2780 {
2781 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2782 if (INTEGERP (shmap))
2783 shmap = Qnil;
2784 }
2785
2786 /* If shmap is not nil and not a keymap,
2787 it completely shadows this map, so don't
2788 describe this map at all. */
2789 if (!NILP (shmap) && !KEYMAPP (shmap))
2790 goto skip;
2791
2792 if (!NILP (shmap))
2793 sub_shadows = Fcons (shmap, sub_shadows);
2794 }
2795
2796 /* Maps we have already listed in this loop shadow this map. */
2797 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2798 {
2799 Lisp_Object tem;
2800 tem = Fequal (Fcar (XCAR (tail)), prefix);
2801 if (!NILP (tem))
2802 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2803 }
2804
2805 describe_map (Fcdr (elt), prefix,
2806 transl ? describe_translation : describe_command,
2807 partial, sub_shadows, &seen, nomenu);
2808
2809 skip: ;
2810 }
2811
2812 if (something)
2813 insert_string ("\n");
2814
2815 UNGCPRO;
2816 }
2817
2818 static int previous_description_column;
2819
2820 static void
2821 describe_command (definition, args)
2822 Lisp_Object definition, args;
2823 {
2824 register Lisp_Object tem1;
2825 int column = current_column ();
2826 int description_column;
2827
2828 /* If column 16 is no good, go to col 32;
2829 but don't push beyond that--go to next line instead. */
2830 if (column > 30)
2831 {
2832 insert_char ('\n');
2833 description_column = 32;
2834 }
2835 else if (column > 14 || (column > 10 && previous_description_column == 32))
2836 description_column = 32;
2837 else
2838 description_column = 16;
2839
2840 Findent_to (make_number (description_column), make_number (1));
2841 previous_description_column = description_column;
2842
2843 if (SYMBOLP (definition))
2844 {
2845 XSETSTRING (tem1, XSYMBOL (definition)->name);
2846 insert1 (tem1);
2847 insert_string ("\n");
2848 }
2849 else if (STRINGP (definition) || VECTORP (definition))
2850 insert_string ("Keyboard Macro\n");
2851 else if (KEYMAPP (definition))
2852 insert_string ("Prefix Command\n");
2853 else
2854 insert_string ("??\n");
2855 }
2856
2857 static void
2858 describe_translation (definition, args)
2859 Lisp_Object definition, args;
2860 {
2861 register Lisp_Object tem1;
2862
2863 Findent_to (make_number (16), make_number (1));
2864
2865 if (SYMBOLP (definition))
2866 {
2867 XSETSTRING (tem1, XSYMBOL (definition)->name);
2868 insert1 (tem1);
2869 insert_string ("\n");
2870 }
2871 else if (STRINGP (definition) || VECTORP (definition))
2872 {
2873 insert1 (Fkey_description (definition));
2874 insert_string ("\n");
2875 }
2876 else if (KEYMAPP (definition))
2877 insert_string ("Prefix Command\n");
2878 else
2879 insert_string ("??\n");
2880 }
2881
2882 /* Describe the contents of map MAP, assuming that this map itself is
2883 reached by the sequence of prefix keys KEYS (a string or vector).
2884 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2885
2886 static void
2887 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2888 register Lisp_Object map;
2889 Lisp_Object keys;
2890 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
2891 int partial;
2892 Lisp_Object shadow;
2893 Lisp_Object *seen;
2894 int nomenu;
2895 {
2896 Lisp_Object elt_prefix;
2897 Lisp_Object tail, definition, event;
2898 Lisp_Object tem;
2899 Lisp_Object suppress;
2900 Lisp_Object kludge;
2901 int first = 1;
2902 struct gcpro gcpro1, gcpro2, gcpro3;
2903
2904 suppress = Qnil;
2905
2906 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2907 {
2908 /* Call Fkey_description first, to avoid GC bug for the other string. */
2909 tem = Fkey_description (keys);
2910 elt_prefix = concat2 (tem, build_string (" "));
2911 }
2912 else
2913 elt_prefix = Qnil;
2914
2915 if (partial)
2916 suppress = intern ("suppress-keymap");
2917
2918 /* This vector gets used to present single keys to Flookup_key. Since
2919 that is done once per keymap element, we don't want to cons up a
2920 fresh vector every time. */
2921 kludge = Fmake_vector (make_number (1), Qnil);
2922 definition = Qnil;
2923
2924 GCPRO3 (elt_prefix, definition, kludge);
2925
2926 for (tail = map; CONSP (tail); tail = XCDR (tail))
2927 {
2928 QUIT;
2929
2930 if (VECTORP (XCAR (tail))
2931 || CHAR_TABLE_P (XCAR (tail)))
2932 describe_vector (XCAR (tail),
2933 elt_prefix, Qnil, elt_describer, partial, shadow, map,
2934 (int *)0, 0);
2935 else if (CONSP (XCAR (tail)))
2936 {
2937 event = XCAR (XCAR (tail));
2938
2939 /* Ignore bindings whose "keys" are not really valid events.
2940 (We get these in the frames and buffers menu.) */
2941 if (!(SYMBOLP (event) || INTEGERP (event)))
2942 continue;
2943
2944 if (nomenu && EQ (event, Qmenu_bar))
2945 continue;
2946
2947 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2948
2949 /* Don't show undefined commands or suppressed commands. */
2950 if (NILP (definition)) continue;
2951 if (SYMBOLP (definition) && partial)
2952 {
2953 tem = Fget (definition, suppress);
2954 if (!NILP (tem))
2955 continue;
2956 }
2957
2958 /* Don't show a command that isn't really visible
2959 because a local definition of the same key shadows it. */
2960
2961 ASET (kludge, 0, event);
2962 if (!NILP (shadow))
2963 {
2964 tem = shadow_lookup (shadow, kludge, Qt);
2965 if (!NILP (tem)) continue;
2966 }
2967
2968 tem = Flookup_key (map, kludge, Qt);
2969 if (!EQ (tem, definition)) continue;
2970
2971 if (first)
2972 {
2973 previous_description_column = 0;
2974 insert ("\n", 1);
2975 first = 0;
2976 }
2977
2978 if (!NILP (elt_prefix))
2979 insert1 (elt_prefix);
2980
2981 /* THIS gets the string to describe the character EVENT. */
2982 insert1 (Fsingle_key_description (event, Qnil));
2983
2984 /* Print a description of the definition of this character.
2985 elt_describer will take care of spacing out far enough
2986 for alignment purposes. */
2987 (*elt_describer) (definition, Qnil);
2988 }
2989 else if (EQ (XCAR (tail), Qkeymap))
2990 {
2991 /* The same keymap might be in the structure twice, if we're
2992 using an inherited keymap. So skip anything we've already
2993 encountered. */
2994 tem = Fassq (tail, *seen);
2995 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2996 break;
2997 *seen = Fcons (Fcons (tail, keys), *seen);
2998 }
2999 }
3000
3001 UNGCPRO;
3002 }
3003
3004 static void
3005 describe_vector_princ (elt, fun)
3006 Lisp_Object elt, fun;
3007 {
3008 Findent_to (make_number (16), make_number (1));
3009 call1 (fun, elt);
3010 Fterpri (Qnil);
3011 }
3012
3013 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3014 doc: /* Insert a description of contents of VECTOR.
3015 This is text showing the elements of vector matched against indices. */)
3016 (vector, describer)
3017 Lisp_Object vector, describer;
3018 {
3019 int count = specpdl_ptr - specpdl;
3020 if (NILP (describer))
3021 describer = intern ("princ");
3022 specbind (Qstandard_output, Fcurrent_buffer ());
3023 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3024 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3025 Qnil, Qnil, (int *)0, 0);
3026
3027 return unbind_to (count, Qnil);
3028 }
3029
3030 /* Insert in the current buffer a description of the contents of VECTOR.
3031 We call ELT_DESCRIBER to insert the description of one value found
3032 in VECTOR.
3033
3034 ELT_PREFIX describes what "comes before" the keys or indices defined
3035 by this vector. This is a human-readable string whose size
3036 is not necessarily related to the situation.
3037
3038 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3039 leads to this keymap.
3040
3041 If the vector is a chartable, ELT_PREFIX is the vector
3042 of bytes that lead to the character set or portion of a character
3043 set described by this chartable.
3044
3045 If PARTIAL is nonzero, it means do not mention suppressed commands
3046 (that assumes the vector is in a keymap).
3047
3048 SHADOW is a list of keymaps that shadow this map.
3049 If it is non-nil, then we look up the key in those maps
3050 and we don't mention it now if it is defined by any of them.
3051
3052 ENTIRE_MAP is the keymap in which this vector appears.
3053 If the definition in effect in the whole map does not match
3054 the one in this vector, we ignore this one.
3055
3056 When describing a sub-char-table, INDICES is a list of
3057 indices at higher levels in this char-table,
3058 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3059
3060 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3061
3062 void
3063 describe_vector (vector, elt_prefix, args, elt_describer,
3064 partial, shadow, entire_map,
3065 indices, char_table_depth)
3066 register Lisp_Object vector;
3067 Lisp_Object elt_prefix, args;
3068 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3069 int partial;
3070 Lisp_Object shadow;
3071 Lisp_Object entire_map;
3072 int *indices;
3073 int char_table_depth;
3074 {
3075 Lisp_Object definition;
3076 Lisp_Object tem2;
3077 register int i;
3078 Lisp_Object suppress;
3079 Lisp_Object kludge;
3080 int first = 1;
3081 struct gcpro gcpro1, gcpro2, gcpro3;
3082 /* Range of elements to be handled. */
3083 int from, to;
3084 /* A flag to tell if a leaf in this level of char-table is not a
3085 generic character (i.e. a complete multibyte character). */
3086 int complete_char;
3087 int character;
3088 int starting_i;
3089
3090 suppress = Qnil;
3091
3092 if (indices == 0)
3093 indices = (int *) alloca (3 * sizeof (int));
3094
3095 definition = Qnil;
3096
3097 /* This vector gets used to present single keys to Flookup_key. Since
3098 that is done once per vector element, we don't want to cons up a
3099 fresh vector every time. */
3100 kludge = Fmake_vector (make_number (1), Qnil);
3101 GCPRO3 (elt_prefix, definition, kludge);
3102
3103 if (partial)
3104 suppress = intern ("suppress-keymap");
3105
3106 if (CHAR_TABLE_P (vector))
3107 {
3108 if (char_table_depth == 0)
3109 {
3110 /* VECTOR is a top level char-table. */
3111 complete_char = 1;
3112 from = 0;
3113 to = CHAR_TABLE_ORDINARY_SLOTS;
3114 }
3115 else
3116 {
3117 /* VECTOR is a sub char-table. */
3118 if (char_table_depth >= 3)
3119 /* A char-table is never that deep. */
3120 error ("Too deep char table");
3121
3122 complete_char
3123 = (CHARSET_VALID_P (indices[0])
3124 && ((CHARSET_DIMENSION (indices[0]) == 1
3125 && char_table_depth == 1)
3126 || char_table_depth == 2));
3127
3128 /* Meaningful elements are from 32th to 127th. */
3129 from = 32;
3130 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3131 }
3132 }
3133 else
3134 {
3135 /* This does the right thing for ordinary vectors. */
3136
3137 complete_char = 1;
3138 from = 0;
3139 to = XVECTOR (vector)->size;
3140 }
3141
3142 for (i = from; i < to; i++)
3143 {
3144 QUIT;
3145
3146 if (CHAR_TABLE_P (vector))
3147 {
3148 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3149 complete_char = 0;
3150
3151 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3152 && !CHARSET_DEFINED_P (i - 128))
3153 continue;
3154
3155 definition
3156 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3157 }
3158 else
3159 definition = get_keyelt (AREF (vector, i), 0);
3160
3161 if (NILP (definition)) continue;
3162
3163 /* Don't mention suppressed commands. */
3164 if (SYMBOLP (definition) && partial)
3165 {
3166 Lisp_Object tem;
3167
3168 tem = Fget (definition, suppress);
3169
3170 if (!NILP (tem)) continue;
3171 }
3172
3173 /* Set CHARACTER to the character this entry describes, if any.
3174 Also update *INDICES. */
3175 if (CHAR_TABLE_P (vector))
3176 {
3177 indices[char_table_depth] = i;
3178
3179 if (char_table_depth == 0)
3180 {
3181 character = i;
3182 indices[0] = i - 128;
3183 }
3184 else if (complete_char)
3185 {
3186 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3187 }
3188 else
3189 character = 0;
3190 }
3191 else
3192 character = i;
3193
3194 /* If this binding is shadowed by some other map, ignore it. */
3195 if (!NILP (shadow) && complete_char)
3196 {
3197 Lisp_Object tem;
3198
3199 ASET (kludge, 0, make_number (character));
3200 tem = shadow_lookup (shadow, kludge, Qt);
3201
3202 if (!NILP (tem)) continue;
3203 }
3204
3205 /* Ignore this definition if it is shadowed by an earlier
3206 one in the same keymap. */
3207 if (!NILP (entire_map) && complete_char)
3208 {
3209 Lisp_Object tem;
3210
3211 ASET (kludge, 0, make_number (character));
3212 tem = Flookup_key (entire_map, kludge, Qt);
3213
3214 if (!EQ (tem, definition))
3215 continue;
3216 }
3217
3218 if (first)
3219 {
3220 if (char_table_depth == 0)
3221 insert ("\n", 1);
3222 first = 0;
3223 }
3224
3225 /* For a sub char-table, show the depth by indentation.
3226 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3227 if (char_table_depth > 0)
3228 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3229
3230 /* Output the prefix that applies to every entry in this map. */
3231 if (!NILP (elt_prefix))
3232 insert1 (elt_prefix);
3233
3234 /* Insert or describe the character this slot is for,
3235 or a description of what it is for. */
3236 if (SUB_CHAR_TABLE_P (vector))
3237 {
3238 if (complete_char)
3239 insert_char (character);
3240 else
3241 {
3242 /* We need an octal representation for this block of
3243 characters. */
3244 char work[16];
3245 sprintf (work, "(row %d)", i);
3246 insert (work, strlen (work));
3247 }
3248 }
3249 else if (CHAR_TABLE_P (vector))
3250 {
3251 if (complete_char)
3252 insert1 (Fsingle_key_description (make_number (character), Qnil));
3253 else
3254 {
3255 /* Print the information for this character set. */
3256 insert_string ("<");
3257 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3258 if (STRINGP (tem2))
3259 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3260 STRING_BYTES (XSTRING (tem2)), 0);
3261 else
3262 insert ("?", 1);
3263 insert (">", 1);
3264 }
3265 }
3266 else
3267 {
3268 insert1 (Fsingle_key_description (make_number (character), Qnil));
3269 }
3270
3271 /* If we find a sub char-table within a char-table,
3272 scan it recursively; it defines the details for
3273 a character set or a portion of a character set. */
3274 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3275 {
3276 insert ("\n", 1);
3277 describe_vector (definition, elt_prefix, args, elt_describer,
3278 partial, shadow, entire_map,
3279 indices, char_table_depth + 1);
3280 continue;
3281 }
3282
3283 starting_i = i;
3284
3285 /* Find all consecutive characters or rows that have the same
3286 definition. But, for elements of a top level char table, if
3287 they are for charsets, we had better describe one by one even
3288 if they have the same definition. */
3289 if (CHAR_TABLE_P (vector))
3290 {
3291 int limit = to;
3292
3293 if (char_table_depth == 0)
3294 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3295
3296 while (i + 1 < limit
3297 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3298 !NILP (tem2))
3299 && !NILP (Fequal (tem2, definition)))
3300 i++;
3301 }
3302 else
3303 while (i + 1 < to
3304 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3305 !NILP (tem2))
3306 && !NILP (Fequal (tem2, definition)))
3307 i++;
3308
3309
3310 /* If we have a range of more than one character,
3311 print where the range reaches to. */
3312
3313 if (i != starting_i)
3314 {
3315 insert (" .. ", 4);
3316
3317 if (!NILP (elt_prefix))
3318 insert1 (elt_prefix);
3319
3320 if (CHAR_TABLE_P (vector))
3321 {
3322 if (char_table_depth == 0)
3323 {
3324 insert1 (Fsingle_key_description (make_number (i), Qnil));
3325 }
3326 else if (complete_char)
3327 {
3328 indices[char_table_depth] = i;
3329 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3330 insert_char (character);
3331 }
3332 else
3333 {
3334 /* We need an octal representation for this block of
3335 characters. */
3336 char work[16];
3337 sprintf (work, "(row %d)", i);
3338 insert (work, strlen (work));
3339 }
3340 }
3341 else
3342 {
3343 insert1 (Fsingle_key_description (make_number (i), Qnil));
3344 }
3345 }
3346
3347 /* Print a description of the definition of this character.
3348 elt_describer will take care of spacing out far enough
3349 for alignment purposes. */
3350 (*elt_describer) (definition, args);
3351 }
3352
3353 /* For (sub) char-table, print `defalt' slot at last. */
3354 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3355 {
3356 insert (" ", char_table_depth * 2);
3357 insert_string ("<<default>>");
3358 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3359 }
3360
3361 UNGCPRO;
3362 }
3363 \f
3364 /* Apropos - finding all symbols whose names match a regexp. */
3365 Lisp_Object apropos_predicate;
3366 Lisp_Object apropos_accumulate;
3367
3368 static void
3369 apropos_accum (symbol, string)
3370 Lisp_Object symbol, string;
3371 {
3372 register Lisp_Object tem;
3373
3374 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3375 if (!NILP (tem) && !NILP (apropos_predicate))
3376 tem = call1 (apropos_predicate, symbol);
3377 if (!NILP (tem))
3378 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3379 }
3380
3381 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3382 doc: /* Show all symbols whose names contain match for REGEXP.
3383 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3384 for each symbol and a symbol is mentioned only if that returns non-nil.
3385 Return list of symbols found. */)
3386 (regexp, predicate)
3387 Lisp_Object regexp, predicate;
3388 {
3389 struct gcpro gcpro1, gcpro2;
3390 CHECK_STRING (regexp);
3391 apropos_predicate = predicate;
3392 GCPRO2 (apropos_predicate, apropos_accumulate);
3393 apropos_accumulate = Qnil;
3394 map_obarray (Vobarray, apropos_accum, regexp);
3395 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3396 UNGCPRO;
3397 return apropos_accumulate;
3398 }
3399 \f
3400 void
3401 syms_of_keymap ()
3402 {
3403 Qkeymap = intern ("keymap");
3404 staticpro (&Qkeymap);
3405
3406 /* Now we are ready to set up this property, so we can
3407 create char tables. */
3408 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3409
3410 /* Initialize the keymaps standardly used.
3411 Each one is the value of a Lisp variable, and is also
3412 pointed to by a C variable */
3413
3414 global_map = Fmake_keymap (Qnil);
3415 Fset (intern ("global-map"), global_map);
3416
3417 current_global_map = global_map;
3418 staticpro (&global_map);
3419 staticpro (&current_global_map);
3420
3421 meta_map = Fmake_keymap (Qnil);
3422 Fset (intern ("esc-map"), meta_map);
3423 Ffset (intern ("ESC-prefix"), meta_map);
3424
3425 control_x_map = Fmake_keymap (Qnil);
3426 Fset (intern ("ctl-x-map"), control_x_map);
3427 Ffset (intern ("Control-X-prefix"), control_x_map);
3428
3429 exclude_keys
3430 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3431 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3432 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3433 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3434 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3435 Qnil)))));
3436 staticpro (&exclude_keys);
3437
3438 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3439 doc: /* List of commands given new key bindings recently.
3440 This is used for internal purposes during Emacs startup;
3441 don't alter it yourself. */);
3442 Vdefine_key_rebound_commands = Qt;
3443
3444 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3445 doc: /* Default keymap to use when reading from the minibuffer. */);
3446 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3447
3448 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3449 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3450 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3451 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3452
3453 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3454 doc: /* Local keymap for minibuffer input with completion. */);
3455 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3456 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3457
3458 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3459 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3460 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3461 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3462 Vminibuffer_local_completion_map);
3463
3464 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3465 doc: /* Alist of keymaps to use for minor modes.
3466 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3467 key sequences and look up bindings iff VARIABLE's value is non-nil.
3468 If two active keymaps bind the same key, the keymap appearing earlier
3469 in the list takes precedence. */);
3470 Vminor_mode_map_alist = Qnil;
3471
3472 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3473 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3474 This variable is a alist just like `minor-mode-map-alist', and it is
3475 used the same way (and before `minor-mode-map-alist'); however,
3476 it is provided for major modes to bind locally. */);
3477 Vminor_mode_overriding_map_alist = Qnil;
3478
3479 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3480 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3481 This allows Emacs to recognize function keys sent from ASCII
3482 terminals at any point in a key sequence.
3483
3484 The `read-key-sequence' function replaces any subsequence bound by
3485 `function-key-map' with its binding. More precisely, when the active
3486 keymaps have no binding for the current key sequence but
3487 `function-key-map' binds a suffix of the sequence to a vector or string,
3488 `read-key-sequence' replaces the matching suffix with its binding, and
3489 continues with the new sequence.
3490
3491 The events that come from bindings in `function-key-map' are not
3492 themselves looked up in `function-key-map'.
3493
3494 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3495 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3496 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3497 key, typing `ESC O P x' would return [f1 x]. */);
3498 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3499
3500 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3501 doc: /* Keymap of key translations that can override keymaps.
3502 This keymap works like `function-key-map', but comes after that,
3503 and applies even for keys that have ordinary bindings. */);
3504 Vkey_translation_map = Qnil;
3505
3506 Qsingle_key_description = intern ("single-key-description");
3507 staticpro (&Qsingle_key_description);
3508
3509 Qkey_description = intern ("key-description");
3510 staticpro (&Qkey_description);
3511
3512 Qkeymapp = intern ("keymapp");
3513 staticpro (&Qkeymapp);
3514
3515 Qnon_ascii = intern ("non-ascii");
3516 staticpro (&Qnon_ascii);
3517
3518 Qmenu_item = intern ("menu-item");
3519 staticpro (&Qmenu_item);
3520
3521 where_is_cache_keymaps = Qt;
3522 where_is_cache = Qnil;
3523 staticpro (&where_is_cache);
3524 staticpro (&where_is_cache_keymaps);
3525
3526 defsubr (&Skeymapp);
3527 defsubr (&Skeymap_parent);
3528 defsubr (&Skeymap_prompt);
3529 defsubr (&Sset_keymap_parent);
3530 defsubr (&Smake_keymap);
3531 defsubr (&Smake_sparse_keymap);
3532 defsubr (&Scopy_keymap);
3533 defsubr (&Skey_binding);
3534 defsubr (&Slocal_key_binding);
3535 defsubr (&Sglobal_key_binding);
3536 defsubr (&Sminor_mode_key_binding);
3537 defsubr (&Sdefine_key);
3538 defsubr (&Slookup_key);
3539 defsubr (&Sdefine_prefix_command);
3540 defsubr (&Suse_global_map);
3541 defsubr (&Suse_local_map);
3542 defsubr (&Scurrent_local_map);
3543 defsubr (&Scurrent_global_map);
3544 defsubr (&Scurrent_minor_mode_maps);
3545 defsubr (&Scurrent_active_maps);
3546 defsubr (&Saccessible_keymaps);
3547 defsubr (&Skey_description);
3548 defsubr (&Sdescribe_vector);
3549 defsubr (&Ssingle_key_description);
3550 defsubr (&Stext_char_description);
3551 defsubr (&Swhere_is_internal);
3552 defsubr (&Sdescribe_buffer_bindings);
3553 defsubr (&Sapropos_internal);
3554 }
3555
3556 void
3557 keys_of_keymap ()
3558 {
3559 initial_define_key (global_map, 033, "ESC-prefix");
3560 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3561 }