Make sure a 64-bit char is never passed to CHAR_STRING.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78 EMACS_UINT denominator;
79
80 if (EQ (limit, Qt))
81 seed_random (getpid () + time (NULL));
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 {
84 /* Try to take our random number from the higher bits of VAL,
85 not the lower, since (says Gentzel) the low bits of `random'
86 are less random than the higher ones. We do this by using the
87 quotient rather than the remainder. At the high end of the RNG
88 it's possible to get a quotient larger than n; discarding
89 these values eliminates the bias that would otherwise appear
90 when using a large n. */
91 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
92 do
93 val = get_random () / denominator;
94 while (val >= XFASTINT (limit));
95 }
96 else
97 val = get_random ();
98 XSETINT (lispy_val, val);
99 return lispy_val;
100 }
101 \f
102 /* Random data-structure functions */
103
104 DEFUN ("length", Flength, Slength, 1, 1, 0,
105 doc: /* Return the length of vector, list or string SEQUENCE.
106 A byte-code function object is also allowed.
107 If the string contains multibyte characters, this is not necessarily
108 the number of bytes in the string; it is the number of characters.
109 To get the number of bytes, use `string-bytes'. */)
110 (register Lisp_Object sequence)
111 {
112 register Lisp_Object val;
113 register int i;
114
115 if (STRINGP (sequence))
116 XSETFASTINT (val, SCHARS (sequence));
117 else if (VECTORP (sequence))
118 XSETFASTINT (val, ASIZE (sequence));
119 else if (CHAR_TABLE_P (sequence))
120 XSETFASTINT (val, MAX_CHAR);
121 else if (BOOL_VECTOR_P (sequence))
122 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
123 else if (COMPILEDP (sequence))
124 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
125 else if (CONSP (sequence))
126 {
127 i = 0;
128 while (CONSP (sequence))
129 {
130 sequence = XCDR (sequence);
131 ++i;
132
133 if (!CONSP (sequence))
134 break;
135
136 sequence = XCDR (sequence);
137 ++i;
138 QUIT;
139 }
140
141 CHECK_LIST_END (sequence, sequence);
142
143 val = make_number (i);
144 }
145 else if (NILP (sequence))
146 XSETFASTINT (val, 0);
147 else
148 wrong_type_argument (Qsequencep, sequence);
149
150 return val;
151 }
152
153 /* This does not check for quits. That is safe since it must terminate. */
154
155 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
156 doc: /* Return the length of a list, but avoid error or infinite loop.
157 This function never gets an error. If LIST is not really a list,
158 it returns 0. If LIST is circular, it returns a finite value
159 which is at least the number of distinct elements. */)
160 (Lisp_Object list)
161 {
162 Lisp_Object tail, halftail, length;
163 int len = 0;
164
165 /* halftail is used to detect circular lists. */
166 halftail = list;
167 for (tail = list; CONSP (tail); tail = XCDR (tail))
168 {
169 if (EQ (tail, halftail) && len != 0)
170 break;
171 len++;
172 if ((len & 1) == 0)
173 halftail = XCDR (halftail);
174 }
175
176 XSETINT (length, len);
177 return length;
178 }
179
180 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
181 doc: /* Return the number of bytes in STRING.
182 If STRING is multibyte, this may be greater than the length of STRING. */)
183 (Lisp_Object string)
184 {
185 CHECK_STRING (string);
186 return make_number (SBYTES (string));
187 }
188
189 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
190 doc: /* Return t if two strings have identical contents.
191 Case is significant, but text properties are ignored.
192 Symbols are also allowed; their print names are used instead. */)
193 (register Lisp_Object s1, Lisp_Object s2)
194 {
195 if (SYMBOLP (s1))
196 s1 = SYMBOL_NAME (s1);
197 if (SYMBOLP (s2))
198 s2 = SYMBOL_NAME (s2);
199 CHECK_STRING (s1);
200 CHECK_STRING (s2);
201
202 if (SCHARS (s1) != SCHARS (s2)
203 || SBYTES (s1) != SBYTES (s2)
204 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
205 return Qnil;
206 return Qt;
207 }
208
209 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
210 doc: /* Compare the contents of two strings, converting to multibyte if needed.
211 In string STR1, skip the first START1 characters and stop at END1.
212 In string STR2, skip the first START2 characters and stop at END2.
213 END1 and END2 default to the full lengths of the respective strings.
214
215 Case is significant in this comparison if IGNORE-CASE is nil.
216 Unibyte strings are converted to multibyte for comparison.
217
218 The value is t if the strings (or specified portions) match.
219 If string STR1 is less, the value is a negative number N;
220 - 1 - N is the number of characters that match at the beginning.
221 If string STR1 is greater, the value is a positive number N;
222 N - 1 is the number of characters that match at the beginning. */)
223 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
224 {
225 register EMACS_INT end1_char, end2_char;
226 register EMACS_INT i1, i1_byte, i2, i2_byte;
227
228 CHECK_STRING (str1);
229 CHECK_STRING (str2);
230 if (NILP (start1))
231 start1 = make_number (0);
232 if (NILP (start2))
233 start2 = make_number (0);
234 CHECK_NATNUM (start1);
235 CHECK_NATNUM (start2);
236 if (! NILP (end1))
237 CHECK_NATNUM (end1);
238 if (! NILP (end2))
239 CHECK_NATNUM (end2);
240
241 i1 = XINT (start1);
242 i2 = XINT (start2);
243
244 i1_byte = string_char_to_byte (str1, i1);
245 i2_byte = string_char_to_byte (str2, i2);
246
247 end1_char = SCHARS (str1);
248 if (! NILP (end1) && end1_char > XINT (end1))
249 end1_char = XINT (end1);
250
251 end2_char = SCHARS (str2);
252 if (! NILP (end2) && end2_char > XINT (end2))
253 end2_char = XINT (end2);
254
255 while (i1 < end1_char && i2 < end2_char)
256 {
257 /* When we find a mismatch, we must compare the
258 characters, not just the bytes. */
259 int c1, c2;
260
261 if (STRING_MULTIBYTE (str1))
262 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
263 else
264 {
265 c1 = SREF (str1, i1++);
266 MAKE_CHAR_MULTIBYTE (c1);
267 }
268
269 if (STRING_MULTIBYTE (str2))
270 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
271 else
272 {
273 c2 = SREF (str2, i2++);
274 MAKE_CHAR_MULTIBYTE (c2);
275 }
276
277 if (c1 == c2)
278 continue;
279
280 if (! NILP (ignore_case))
281 {
282 Lisp_Object tem;
283
284 tem = Fupcase (make_number (c1));
285 c1 = XINT (tem);
286 tem = Fupcase (make_number (c2));
287 c2 = XINT (tem);
288 }
289
290 if (c1 == c2)
291 continue;
292
293 /* Note that I1 has already been incremented
294 past the character that we are comparing;
295 hence we don't add or subtract 1 here. */
296 if (c1 < c2)
297 return make_number (- i1 + XINT (start1));
298 else
299 return make_number (i1 - XINT (start1));
300 }
301
302 if (i1 < end1_char)
303 return make_number (i1 - XINT (start1) + 1);
304 if (i2 < end2_char)
305 return make_number (- i1 + XINT (start1) - 1);
306
307 return Qt;
308 }
309
310 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
311 doc: /* Return t if first arg string is less than second in lexicographic order.
312 Case is significant.
313 Symbols are also allowed; their print names are used instead. */)
314 (register Lisp_Object s1, Lisp_Object s2)
315 {
316 register EMACS_INT end;
317 register EMACS_INT i1, i1_byte, i2, i2_byte;
318
319 if (SYMBOLP (s1))
320 s1 = SYMBOL_NAME (s1);
321 if (SYMBOLP (s2))
322 s2 = SYMBOL_NAME (s2);
323 CHECK_STRING (s1);
324 CHECK_STRING (s2);
325
326 i1 = i1_byte = i2 = i2_byte = 0;
327
328 end = SCHARS (s1);
329 if (end > SCHARS (s2))
330 end = SCHARS (s2);
331
332 while (i1 < end)
333 {
334 /* When we find a mismatch, we must compare the
335 characters, not just the bytes. */
336 int c1, c2;
337
338 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
339 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
340
341 if (c1 != c2)
342 return c1 < c2 ? Qt : Qnil;
343 }
344 return i1 < SCHARS (s2) ? Qt : Qnil;
345 }
346 \f
347 static Lisp_Object concat (size_t nargs, Lisp_Object *args,
348 enum Lisp_Type target_type, int last_special);
349
350 /* ARGSUSED */
351 Lisp_Object
352 concat2 (Lisp_Object s1, Lisp_Object s2)
353 {
354 Lisp_Object args[2];
355 args[0] = s1;
356 args[1] = s2;
357 return concat (2, args, Lisp_String, 0);
358 }
359
360 /* ARGSUSED */
361 Lisp_Object
362 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
363 {
364 Lisp_Object args[3];
365 args[0] = s1;
366 args[1] = s2;
367 args[2] = s3;
368 return concat (3, args, Lisp_String, 0);
369 }
370
371 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
372 doc: /* Concatenate all the arguments and make the result a list.
373 The result is a list whose elements are the elements of all the arguments.
374 Each argument may be a list, vector or string.
375 The last argument is not copied, just used as the tail of the new list.
376 usage: (append &rest SEQUENCES) */)
377 (size_t nargs, Lisp_Object *args)
378 {
379 return concat (nargs, args, Lisp_Cons, 1);
380 }
381
382 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
383 doc: /* Concatenate all the arguments and make the result a string.
384 The result is a string whose elements are the elements of all the arguments.
385 Each argument may be a string or a list or vector of characters (integers).
386 usage: (concat &rest SEQUENCES) */)
387 (size_t nargs, Lisp_Object *args)
388 {
389 return concat (nargs, args, Lisp_String, 0);
390 }
391
392 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
393 doc: /* Concatenate all the arguments and make the result a vector.
394 The result is a vector whose elements are the elements of all the arguments.
395 Each argument may be a list, vector or string.
396 usage: (vconcat &rest SEQUENCES) */)
397 (size_t nargs, Lisp_Object *args)
398 {
399 return concat (nargs, args, Lisp_Vectorlike, 0);
400 }
401
402
403 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
404 doc: /* Return a copy of a list, vector, string or char-table.
405 The elements of a list or vector are not copied; they are shared
406 with the original. */)
407 (Lisp_Object arg)
408 {
409 if (NILP (arg)) return arg;
410
411 if (CHAR_TABLE_P (arg))
412 {
413 return copy_char_table (arg);
414 }
415
416 if (BOOL_VECTOR_P (arg))
417 {
418 Lisp_Object val;
419 int size_in_chars
420 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
421 / BOOL_VECTOR_BITS_PER_CHAR);
422
423 val = Fmake_bool_vector (Flength (arg), Qnil);
424 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
425 size_in_chars);
426 return val;
427 }
428
429 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
430 wrong_type_argument (Qsequencep, arg);
431
432 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
433 }
434
435 /* This structure holds information of an argument of `concat' that is
436 a string and has text properties to be copied. */
437 struct textprop_rec
438 {
439 int argnum; /* refer to ARGS (arguments of `concat') */
440 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
441 EMACS_INT to; /* refer to VAL (the target string) */
442 };
443
444 static Lisp_Object
445 concat (size_t nargs, Lisp_Object *args,
446 enum Lisp_Type target_type, int last_special)
447 {
448 Lisp_Object val;
449 register Lisp_Object tail;
450 register Lisp_Object this;
451 EMACS_INT toindex;
452 EMACS_INT toindex_byte = 0;
453 register EMACS_INT result_len;
454 register EMACS_INT result_len_byte;
455 register size_t argnum;
456 Lisp_Object last_tail;
457 Lisp_Object prev;
458 int some_multibyte;
459 /* When we make a multibyte string, we can't copy text properties
460 while concatenating each string because the length of resulting
461 string can't be decided until we finish the whole concatenation.
462 So, we record strings that have text properties to be copied
463 here, and copy the text properties after the concatenation. */
464 struct textprop_rec *textprops = NULL;
465 /* Number of elements in textprops. */
466 int num_textprops = 0;
467 USE_SAFE_ALLOCA;
468
469 tail = Qnil;
470
471 /* In append, the last arg isn't treated like the others */
472 if (last_special && nargs > 0)
473 {
474 nargs--;
475 last_tail = args[nargs];
476 }
477 else
478 last_tail = Qnil;
479
480 /* Check each argument. */
481 for (argnum = 0; argnum < nargs; argnum++)
482 {
483 this = args[argnum];
484 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
485 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
486 wrong_type_argument (Qsequencep, this);
487 }
488
489 /* Compute total length in chars of arguments in RESULT_LEN.
490 If desired output is a string, also compute length in bytes
491 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
492 whether the result should be a multibyte string. */
493 result_len_byte = 0;
494 result_len = 0;
495 some_multibyte = 0;
496 for (argnum = 0; argnum < nargs; argnum++)
497 {
498 EMACS_INT len;
499 this = args[argnum];
500 len = XFASTINT (Flength (this));
501 if (target_type == Lisp_String)
502 {
503 /* We must count the number of bytes needed in the string
504 as well as the number of characters. */
505 EMACS_INT i;
506 Lisp_Object ch;
507 EMACS_INT this_len_byte;
508
509 if (VECTORP (this) || COMPILEDP (this))
510 for (i = 0; i < len; i++)
511 {
512 ch = AREF (this, i);
513 CHECK_CHARACTER (ch);
514 this_len_byte = CHAR_BYTES (XINT (ch));
515 result_len_byte += this_len_byte;
516 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
517 some_multibyte = 1;
518 }
519 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
520 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
521 else if (CONSP (this))
522 for (; CONSP (this); this = XCDR (this))
523 {
524 ch = XCAR (this);
525 CHECK_CHARACTER (ch);
526 this_len_byte = CHAR_BYTES (XINT (ch));
527 result_len_byte += this_len_byte;
528 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
529 some_multibyte = 1;
530 }
531 else if (STRINGP (this))
532 {
533 if (STRING_MULTIBYTE (this))
534 {
535 some_multibyte = 1;
536 result_len_byte += SBYTES (this);
537 }
538 else
539 result_len_byte += count_size_as_multibyte (SDATA (this),
540 SCHARS (this));
541 }
542 }
543
544 result_len += len;
545 if (result_len < 0)
546 error ("String overflow");
547 }
548
549 if (! some_multibyte)
550 result_len_byte = result_len;
551
552 /* Create the output object. */
553 if (target_type == Lisp_Cons)
554 val = Fmake_list (make_number (result_len), Qnil);
555 else if (target_type == Lisp_Vectorlike)
556 val = Fmake_vector (make_number (result_len), Qnil);
557 else if (some_multibyte)
558 val = make_uninit_multibyte_string (result_len, result_len_byte);
559 else
560 val = make_uninit_string (result_len);
561
562 /* In `append', if all but last arg are nil, return last arg. */
563 if (target_type == Lisp_Cons && EQ (val, Qnil))
564 return last_tail;
565
566 /* Copy the contents of the args into the result. */
567 if (CONSP (val))
568 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
569 else
570 toindex = 0, toindex_byte = 0;
571
572 prev = Qnil;
573 if (STRINGP (val))
574 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
575
576 for (argnum = 0; argnum < nargs; argnum++)
577 {
578 Lisp_Object thislen;
579 EMACS_INT thisleni = 0;
580 register EMACS_INT thisindex = 0;
581 register EMACS_INT thisindex_byte = 0;
582
583 this = args[argnum];
584 if (!CONSP (this))
585 thislen = Flength (this), thisleni = XINT (thislen);
586
587 /* Between strings of the same kind, copy fast. */
588 if (STRINGP (this) && STRINGP (val)
589 && STRING_MULTIBYTE (this) == some_multibyte)
590 {
591 EMACS_INT thislen_byte = SBYTES (this);
592
593 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
594 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
595 {
596 textprops[num_textprops].argnum = argnum;
597 textprops[num_textprops].from = 0;
598 textprops[num_textprops++].to = toindex;
599 }
600 toindex_byte += thislen_byte;
601 toindex += thisleni;
602 }
603 /* Copy a single-byte string to a multibyte string. */
604 else if (STRINGP (this) && STRINGP (val))
605 {
606 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
607 {
608 textprops[num_textprops].argnum = argnum;
609 textprops[num_textprops].from = 0;
610 textprops[num_textprops++].to = toindex;
611 }
612 toindex_byte += copy_text (SDATA (this),
613 SDATA (val) + toindex_byte,
614 SCHARS (this), 0, 1);
615 toindex += thisleni;
616 }
617 else
618 /* Copy element by element. */
619 while (1)
620 {
621 register Lisp_Object elt;
622
623 /* Fetch next element of `this' arg into `elt', or break if
624 `this' is exhausted. */
625 if (NILP (this)) break;
626 if (CONSP (this))
627 elt = XCAR (this), this = XCDR (this);
628 else if (thisindex >= thisleni)
629 break;
630 else if (STRINGP (this))
631 {
632 int c;
633 if (STRING_MULTIBYTE (this))
634 {
635 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
636 thisindex,
637 thisindex_byte);
638 XSETFASTINT (elt, c);
639 }
640 else
641 {
642 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
643 if (some_multibyte
644 && !ASCII_CHAR_P (XINT (elt))
645 && XINT (elt) < 0400)
646 {
647 c = BYTE8_TO_CHAR (XINT (elt));
648 XSETINT (elt, c);
649 }
650 }
651 }
652 else if (BOOL_VECTOR_P (this))
653 {
654 int byte;
655 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
656 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
657 elt = Qt;
658 else
659 elt = Qnil;
660 thisindex++;
661 }
662 else
663 {
664 elt = AREF (this, thisindex);
665 thisindex++;
666 }
667
668 /* Store this element into the result. */
669 if (toindex < 0)
670 {
671 XSETCAR (tail, elt);
672 prev = tail;
673 tail = XCDR (tail);
674 }
675 else if (VECTORP (val))
676 {
677 ASET (val, toindex, elt);
678 toindex++;
679 }
680 else
681 {
682 int c;
683 CHECK_CHARACTER (elt);
684 c = XFASTINT (elt);
685 if (some_multibyte)
686 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
687 else
688 SSET (val, toindex_byte++, c);
689 toindex++;
690 }
691 }
692 }
693 if (!NILP (prev))
694 XSETCDR (prev, last_tail);
695
696 if (num_textprops > 0)
697 {
698 Lisp_Object props;
699 EMACS_INT last_to_end = -1;
700
701 for (argnum = 0; argnum < num_textprops; argnum++)
702 {
703 this = args[textprops[argnum].argnum];
704 props = text_property_list (this,
705 make_number (0),
706 make_number (SCHARS (this)),
707 Qnil);
708 /* If successive arguments have properties, be sure that the
709 value of `composition' property be the copy. */
710 if (last_to_end == textprops[argnum].to)
711 make_composition_value_copy (props);
712 add_text_properties_from_list (val, props,
713 make_number (textprops[argnum].to));
714 last_to_end = textprops[argnum].to + SCHARS (this);
715 }
716 }
717
718 SAFE_FREE ();
719 return val;
720 }
721 \f
722 static Lisp_Object string_char_byte_cache_string;
723 static EMACS_INT string_char_byte_cache_charpos;
724 static EMACS_INT string_char_byte_cache_bytepos;
725
726 void
727 clear_string_char_byte_cache (void)
728 {
729 string_char_byte_cache_string = Qnil;
730 }
731
732 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
733
734 EMACS_INT
735 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
736 {
737 EMACS_INT i_byte;
738 EMACS_INT best_below, best_below_byte;
739 EMACS_INT best_above, best_above_byte;
740
741 best_below = best_below_byte = 0;
742 best_above = SCHARS (string);
743 best_above_byte = SBYTES (string);
744 if (best_above == best_above_byte)
745 return char_index;
746
747 if (EQ (string, string_char_byte_cache_string))
748 {
749 if (string_char_byte_cache_charpos < char_index)
750 {
751 best_below = string_char_byte_cache_charpos;
752 best_below_byte = string_char_byte_cache_bytepos;
753 }
754 else
755 {
756 best_above = string_char_byte_cache_charpos;
757 best_above_byte = string_char_byte_cache_bytepos;
758 }
759 }
760
761 if (char_index - best_below < best_above - char_index)
762 {
763 unsigned char *p = SDATA (string) + best_below_byte;
764
765 while (best_below < char_index)
766 {
767 p += BYTES_BY_CHAR_HEAD (*p);
768 best_below++;
769 }
770 i_byte = p - SDATA (string);
771 }
772 else
773 {
774 unsigned char *p = SDATA (string) + best_above_byte;
775
776 while (best_above > char_index)
777 {
778 p--;
779 while (!CHAR_HEAD_P (*p)) p--;
780 best_above--;
781 }
782 i_byte = p - SDATA (string);
783 }
784
785 string_char_byte_cache_bytepos = i_byte;
786 string_char_byte_cache_charpos = char_index;
787 string_char_byte_cache_string = string;
788
789 return i_byte;
790 }
791 \f
792 /* Return the character index corresponding to BYTE_INDEX in STRING. */
793
794 EMACS_INT
795 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
796 {
797 EMACS_INT i, i_byte;
798 EMACS_INT best_below, best_below_byte;
799 EMACS_INT best_above, best_above_byte;
800
801 best_below = best_below_byte = 0;
802 best_above = SCHARS (string);
803 best_above_byte = SBYTES (string);
804 if (best_above == best_above_byte)
805 return byte_index;
806
807 if (EQ (string, string_char_byte_cache_string))
808 {
809 if (string_char_byte_cache_bytepos < byte_index)
810 {
811 best_below = string_char_byte_cache_charpos;
812 best_below_byte = string_char_byte_cache_bytepos;
813 }
814 else
815 {
816 best_above = string_char_byte_cache_charpos;
817 best_above_byte = string_char_byte_cache_bytepos;
818 }
819 }
820
821 if (byte_index - best_below_byte < best_above_byte - byte_index)
822 {
823 unsigned char *p = SDATA (string) + best_below_byte;
824 unsigned char *pend = SDATA (string) + byte_index;
825
826 while (p < pend)
827 {
828 p += BYTES_BY_CHAR_HEAD (*p);
829 best_below++;
830 }
831 i = best_below;
832 i_byte = p - SDATA (string);
833 }
834 else
835 {
836 unsigned char *p = SDATA (string) + best_above_byte;
837 unsigned char *pbeg = SDATA (string) + byte_index;
838
839 while (p > pbeg)
840 {
841 p--;
842 while (!CHAR_HEAD_P (*p)) p--;
843 best_above--;
844 }
845 i = best_above;
846 i_byte = p - SDATA (string);
847 }
848
849 string_char_byte_cache_bytepos = i_byte;
850 string_char_byte_cache_charpos = i;
851 string_char_byte_cache_string = string;
852
853 return i;
854 }
855 \f
856 /* Convert STRING to a multibyte string. */
857
858 static Lisp_Object
859 string_make_multibyte (Lisp_Object string)
860 {
861 unsigned char *buf;
862 EMACS_INT nbytes;
863 Lisp_Object ret;
864 USE_SAFE_ALLOCA;
865
866 if (STRING_MULTIBYTE (string))
867 return string;
868
869 nbytes = count_size_as_multibyte (SDATA (string),
870 SCHARS (string));
871 /* If all the chars are ASCII, they won't need any more bytes
872 once converted. In that case, we can return STRING itself. */
873 if (nbytes == SBYTES (string))
874 return string;
875
876 SAFE_ALLOCA (buf, unsigned char *, nbytes);
877 copy_text (SDATA (string), buf, SBYTES (string),
878 0, 1);
879
880 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
881 SAFE_FREE ();
882
883 return ret;
884 }
885
886
887 /* Convert STRING (if unibyte) to a multibyte string without changing
888 the number of characters. Characters 0200 trough 0237 are
889 converted to eight-bit characters. */
890
891 Lisp_Object
892 string_to_multibyte (Lisp_Object string)
893 {
894 unsigned char *buf;
895 EMACS_INT nbytes;
896 Lisp_Object ret;
897 USE_SAFE_ALLOCA;
898
899 if (STRING_MULTIBYTE (string))
900 return string;
901
902 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
903 /* If all the chars are ASCII, they won't need any more bytes once
904 converted. */
905 if (nbytes == SBYTES (string))
906 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
907
908 SAFE_ALLOCA (buf, unsigned char *, nbytes);
909 memcpy (buf, SDATA (string), SBYTES (string));
910 str_to_multibyte (buf, nbytes, SBYTES (string));
911
912 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
913 SAFE_FREE ();
914
915 return ret;
916 }
917
918
919 /* Convert STRING to a single-byte string. */
920
921 Lisp_Object
922 string_make_unibyte (Lisp_Object string)
923 {
924 EMACS_INT nchars;
925 unsigned char *buf;
926 Lisp_Object ret;
927 USE_SAFE_ALLOCA;
928
929 if (! STRING_MULTIBYTE (string))
930 return string;
931
932 nchars = SCHARS (string);
933
934 SAFE_ALLOCA (buf, unsigned char *, nchars);
935 copy_text (SDATA (string), buf, SBYTES (string),
936 1, 0);
937
938 ret = make_unibyte_string ((char *) buf, nchars);
939 SAFE_FREE ();
940
941 return ret;
942 }
943
944 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
945 1, 1, 0,
946 doc: /* Return the multibyte equivalent of STRING.
947 If STRING is unibyte and contains non-ASCII characters, the function
948 `unibyte-char-to-multibyte' is used to convert each unibyte character
949 to a multibyte character. In this case, the returned string is a
950 newly created string with no text properties. If STRING is multibyte
951 or entirely ASCII, it is returned unchanged. In particular, when
952 STRING is unibyte and entirely ASCII, the returned string is unibyte.
953 \(When the characters are all ASCII, Emacs primitives will treat the
954 string the same way whether it is unibyte or multibyte.) */)
955 (Lisp_Object string)
956 {
957 CHECK_STRING (string);
958
959 return string_make_multibyte (string);
960 }
961
962 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
963 1, 1, 0,
964 doc: /* Return the unibyte equivalent of STRING.
965 Multibyte character codes are converted to unibyte according to
966 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
967 If the lookup in the translation table fails, this function takes just
968 the low 8 bits of each character. */)
969 (Lisp_Object string)
970 {
971 CHECK_STRING (string);
972
973 return string_make_unibyte (string);
974 }
975
976 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
977 1, 1, 0,
978 doc: /* Return a unibyte string with the same individual bytes as STRING.
979 If STRING is unibyte, the result is STRING itself.
980 Otherwise it is a newly created string, with no text properties.
981 If STRING is multibyte and contains a character of charset
982 `eight-bit', it is converted to the corresponding single byte. */)
983 (Lisp_Object string)
984 {
985 CHECK_STRING (string);
986
987 if (STRING_MULTIBYTE (string))
988 {
989 EMACS_INT bytes = SBYTES (string);
990 unsigned char *str = (unsigned char *) xmalloc (bytes);
991
992 memcpy (str, SDATA (string), bytes);
993 bytes = str_as_unibyte (str, bytes);
994 string = make_unibyte_string ((char *) str, bytes);
995 xfree (str);
996 }
997 return string;
998 }
999
1000 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1001 1, 1, 0,
1002 doc: /* Return a multibyte string with the same individual bytes as STRING.
1003 If STRING is multibyte, the result is STRING itself.
1004 Otherwise it is a newly created string, with no text properties.
1005
1006 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1007 part of a correct utf-8 sequence), it is converted to the corresponding
1008 multibyte character of charset `eight-bit'.
1009 See also `string-to-multibyte'.
1010
1011 Beware, this often doesn't really do what you think it does.
1012 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1013 If you're not sure, whether to use `string-as-multibyte' or
1014 `string-to-multibyte', use `string-to-multibyte'. */)
1015 (Lisp_Object string)
1016 {
1017 CHECK_STRING (string);
1018
1019 if (! STRING_MULTIBYTE (string))
1020 {
1021 Lisp_Object new_string;
1022 EMACS_INT nchars, nbytes;
1023
1024 parse_str_as_multibyte (SDATA (string),
1025 SBYTES (string),
1026 &nchars, &nbytes);
1027 new_string = make_uninit_multibyte_string (nchars, nbytes);
1028 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1029 if (nbytes != SBYTES (string))
1030 str_as_multibyte (SDATA (new_string), nbytes,
1031 SBYTES (string), NULL);
1032 string = new_string;
1033 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1034 }
1035 return string;
1036 }
1037
1038 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1039 1, 1, 0,
1040 doc: /* Return a multibyte string with the same individual chars as STRING.
1041 If STRING is multibyte, the result is STRING itself.
1042 Otherwise it is a newly created string, with no text properties.
1043
1044 If STRING is unibyte and contains an 8-bit byte, it is converted to
1045 the corresponding multibyte character of charset `eight-bit'.
1046
1047 This differs from `string-as-multibyte' by converting each byte of a correct
1048 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1049 correct sequence. */)
1050 (Lisp_Object string)
1051 {
1052 CHECK_STRING (string);
1053
1054 return string_to_multibyte (string);
1055 }
1056
1057 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1058 1, 1, 0,
1059 doc: /* Return a unibyte string with the same individual chars as STRING.
1060 If STRING is unibyte, the result is STRING itself.
1061 Otherwise it is a newly created string, with no text properties,
1062 where each `eight-bit' character is converted to the corresponding byte.
1063 If STRING contains a non-ASCII, non-`eight-bit' character,
1064 an error is signaled. */)
1065 (Lisp_Object string)
1066 {
1067 CHECK_STRING (string);
1068
1069 if (STRING_MULTIBYTE (string))
1070 {
1071 EMACS_INT chars = SCHARS (string);
1072 unsigned char *str = (unsigned char *) xmalloc (chars);
1073 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1074
1075 if (converted < chars)
1076 error ("Can't convert the %"pI"dth character to unibyte", converted);
1077 string = make_unibyte_string ((char *) str, chars);
1078 xfree (str);
1079 }
1080 return string;
1081 }
1082
1083 \f
1084 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1085 doc: /* Return a copy of ALIST.
1086 This is an alist which represents the same mapping from objects to objects,
1087 but does not share the alist structure with ALIST.
1088 The objects mapped (cars and cdrs of elements of the alist)
1089 are shared, however.
1090 Elements of ALIST that are not conses are also shared. */)
1091 (Lisp_Object alist)
1092 {
1093 register Lisp_Object tem;
1094
1095 CHECK_LIST (alist);
1096 if (NILP (alist))
1097 return alist;
1098 alist = concat (1, &alist, Lisp_Cons, 0);
1099 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1100 {
1101 register Lisp_Object car;
1102 car = XCAR (tem);
1103
1104 if (CONSP (car))
1105 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1106 }
1107 return alist;
1108 }
1109
1110 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1111 doc: /* Return a new string whose contents are a substring of STRING.
1112 The returned string consists of the characters between index FROM
1113 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1114 zero-indexed: 0 means the first character of STRING. Negative values
1115 are counted from the end of STRING. If TO is nil, the substring runs
1116 to the end of STRING.
1117
1118 The STRING argument may also be a vector. In that case, the return
1119 value is a new vector that contains the elements between index FROM
1120 \(inclusive) and index TO (exclusive) of that vector argument. */)
1121 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1122 {
1123 Lisp_Object res;
1124 EMACS_INT size;
1125 EMACS_INT size_byte = 0;
1126 EMACS_INT from_char, to_char;
1127 EMACS_INT from_byte = 0, to_byte = 0;
1128
1129 CHECK_VECTOR_OR_STRING (string);
1130 CHECK_NUMBER (from);
1131
1132 if (STRINGP (string))
1133 {
1134 size = SCHARS (string);
1135 size_byte = SBYTES (string);
1136 }
1137 else
1138 size = ASIZE (string);
1139
1140 if (NILP (to))
1141 {
1142 to_char = size;
1143 to_byte = size_byte;
1144 }
1145 else
1146 {
1147 CHECK_NUMBER (to);
1148
1149 to_char = XINT (to);
1150 if (to_char < 0)
1151 to_char += size;
1152
1153 if (STRINGP (string))
1154 to_byte = string_char_to_byte (string, to_char);
1155 }
1156
1157 from_char = XINT (from);
1158 if (from_char < 0)
1159 from_char += size;
1160 if (STRINGP (string))
1161 from_byte = string_char_to_byte (string, from_char);
1162
1163 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1164 args_out_of_range_3 (string, make_number (from_char),
1165 make_number (to_char));
1166
1167 if (STRINGP (string))
1168 {
1169 res = make_specified_string (SSDATA (string) + from_byte,
1170 to_char - from_char, to_byte - from_byte,
1171 STRING_MULTIBYTE (string));
1172 copy_text_properties (make_number (from_char), make_number (to_char),
1173 string, make_number (0), res, Qnil);
1174 }
1175 else
1176 res = Fvector (to_char - from_char, &AREF (string, from_char));
1177
1178 return res;
1179 }
1180
1181
1182 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1183 doc: /* Return a substring of STRING, without text properties.
1184 It starts at index FROM and ends before TO.
1185 TO may be nil or omitted; then the substring runs to the end of STRING.
1186 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1187 If FROM or TO is negative, it counts from the end.
1188
1189 With one argument, just copy STRING without its properties. */)
1190 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1191 {
1192 EMACS_INT size, size_byte;
1193 EMACS_INT from_char, to_char;
1194 EMACS_INT from_byte, to_byte;
1195
1196 CHECK_STRING (string);
1197
1198 size = SCHARS (string);
1199 size_byte = SBYTES (string);
1200
1201 if (NILP (from))
1202 from_char = from_byte = 0;
1203 else
1204 {
1205 CHECK_NUMBER (from);
1206 from_char = XINT (from);
1207 if (from_char < 0)
1208 from_char += size;
1209
1210 from_byte = string_char_to_byte (string, from_char);
1211 }
1212
1213 if (NILP (to))
1214 {
1215 to_char = size;
1216 to_byte = size_byte;
1217 }
1218 else
1219 {
1220 CHECK_NUMBER (to);
1221
1222 to_char = XINT (to);
1223 if (to_char < 0)
1224 to_char += size;
1225
1226 to_byte = string_char_to_byte (string, to_char);
1227 }
1228
1229 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1230 args_out_of_range_3 (string, make_number (from_char),
1231 make_number (to_char));
1232
1233 return make_specified_string (SSDATA (string) + from_byte,
1234 to_char - from_char, to_byte - from_byte,
1235 STRING_MULTIBYTE (string));
1236 }
1237
1238 /* Extract a substring of STRING, giving start and end positions
1239 both in characters and in bytes. */
1240
1241 Lisp_Object
1242 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1243 EMACS_INT to, EMACS_INT to_byte)
1244 {
1245 Lisp_Object res;
1246 EMACS_INT size;
1247
1248 CHECK_VECTOR_OR_STRING (string);
1249
1250 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1251
1252 if (!(0 <= from && from <= to && to <= size))
1253 args_out_of_range_3 (string, make_number (from), make_number (to));
1254
1255 if (STRINGP (string))
1256 {
1257 res = make_specified_string (SSDATA (string) + from_byte,
1258 to - from, to_byte - from_byte,
1259 STRING_MULTIBYTE (string));
1260 copy_text_properties (make_number (from), make_number (to),
1261 string, make_number (0), res, Qnil);
1262 }
1263 else
1264 res = Fvector (to - from, &AREF (string, from));
1265
1266 return res;
1267 }
1268 \f
1269 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1270 doc: /* Take cdr N times on LIST, return the result. */)
1271 (Lisp_Object n, Lisp_Object list)
1272 {
1273 register int i, num;
1274 CHECK_NUMBER (n);
1275 num = XINT (n);
1276 for (i = 0; i < num && !NILP (list); i++)
1277 {
1278 QUIT;
1279 CHECK_LIST_CONS (list, list);
1280 list = XCDR (list);
1281 }
1282 return list;
1283 }
1284
1285 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1286 doc: /* Return the Nth element of LIST.
1287 N counts from zero. If LIST is not that long, nil is returned. */)
1288 (Lisp_Object n, Lisp_Object list)
1289 {
1290 return Fcar (Fnthcdr (n, list));
1291 }
1292
1293 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1294 doc: /* Return element of SEQUENCE at index N. */)
1295 (register Lisp_Object sequence, Lisp_Object n)
1296 {
1297 CHECK_NUMBER (n);
1298 if (CONSP (sequence) || NILP (sequence))
1299 return Fcar (Fnthcdr (n, sequence));
1300
1301 /* Faref signals a "not array" error, so check here. */
1302 CHECK_ARRAY (sequence, Qsequencep);
1303 return Faref (sequence, n);
1304 }
1305
1306 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1307 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1308 The value is actually the tail of LIST whose car is ELT. */)
1309 (register Lisp_Object elt, Lisp_Object list)
1310 {
1311 register Lisp_Object tail;
1312 for (tail = list; CONSP (tail); tail = XCDR (tail))
1313 {
1314 register Lisp_Object tem;
1315 CHECK_LIST_CONS (tail, list);
1316 tem = XCAR (tail);
1317 if (! NILP (Fequal (elt, tem)))
1318 return tail;
1319 QUIT;
1320 }
1321 return Qnil;
1322 }
1323
1324 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1325 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1326 The value is actually the tail of LIST whose car is ELT. */)
1327 (register Lisp_Object elt, Lisp_Object list)
1328 {
1329 while (1)
1330 {
1331 if (!CONSP (list) || EQ (XCAR (list), elt))
1332 break;
1333
1334 list = XCDR (list);
1335 if (!CONSP (list) || EQ (XCAR (list), elt))
1336 break;
1337
1338 list = XCDR (list);
1339 if (!CONSP (list) || EQ (XCAR (list), elt))
1340 break;
1341
1342 list = XCDR (list);
1343 QUIT;
1344 }
1345
1346 CHECK_LIST (list);
1347 return list;
1348 }
1349
1350 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1351 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1352 The value is actually the tail of LIST whose car is ELT. */)
1353 (register Lisp_Object elt, Lisp_Object list)
1354 {
1355 register Lisp_Object tail;
1356
1357 if (!FLOATP (elt))
1358 return Fmemq (elt, list);
1359
1360 for (tail = list; CONSP (tail); tail = XCDR (tail))
1361 {
1362 register Lisp_Object tem;
1363 CHECK_LIST_CONS (tail, list);
1364 tem = XCAR (tail);
1365 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1366 return tail;
1367 QUIT;
1368 }
1369 return Qnil;
1370 }
1371
1372 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1373 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1374 The value is actually the first element of LIST whose car is KEY.
1375 Elements of LIST that are not conses are ignored. */)
1376 (Lisp_Object key, Lisp_Object list)
1377 {
1378 while (1)
1379 {
1380 if (!CONSP (list)
1381 || (CONSP (XCAR (list))
1382 && EQ (XCAR (XCAR (list)), key)))
1383 break;
1384
1385 list = XCDR (list);
1386 if (!CONSP (list)
1387 || (CONSP (XCAR (list))
1388 && EQ (XCAR (XCAR (list)), key)))
1389 break;
1390
1391 list = XCDR (list);
1392 if (!CONSP (list)
1393 || (CONSP (XCAR (list))
1394 && EQ (XCAR (XCAR (list)), key)))
1395 break;
1396
1397 list = XCDR (list);
1398 QUIT;
1399 }
1400
1401 return CAR (list);
1402 }
1403
1404 /* Like Fassq but never report an error and do not allow quits.
1405 Use only on lists known never to be circular. */
1406
1407 Lisp_Object
1408 assq_no_quit (Lisp_Object key, Lisp_Object list)
1409 {
1410 while (CONSP (list)
1411 && (!CONSP (XCAR (list))
1412 || !EQ (XCAR (XCAR (list)), key)))
1413 list = XCDR (list);
1414
1415 return CAR_SAFE (list);
1416 }
1417
1418 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1419 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1420 The value is actually the first element of LIST whose car equals KEY. */)
1421 (Lisp_Object key, Lisp_Object list)
1422 {
1423 Lisp_Object car;
1424
1425 while (1)
1426 {
1427 if (!CONSP (list)
1428 || (CONSP (XCAR (list))
1429 && (car = XCAR (XCAR (list)),
1430 EQ (car, key) || !NILP (Fequal (car, key)))))
1431 break;
1432
1433 list = XCDR (list);
1434 if (!CONSP (list)
1435 || (CONSP (XCAR (list))
1436 && (car = XCAR (XCAR (list)),
1437 EQ (car, key) || !NILP (Fequal (car, key)))))
1438 break;
1439
1440 list = XCDR (list);
1441 if (!CONSP (list)
1442 || (CONSP (XCAR (list))
1443 && (car = XCAR (XCAR (list)),
1444 EQ (car, key) || !NILP (Fequal (car, key)))))
1445 break;
1446
1447 list = XCDR (list);
1448 QUIT;
1449 }
1450
1451 return CAR (list);
1452 }
1453
1454 /* Like Fassoc but never report an error and do not allow quits.
1455 Use only on lists known never to be circular. */
1456
1457 Lisp_Object
1458 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1459 {
1460 while (CONSP (list)
1461 && (!CONSP (XCAR (list))
1462 || (!EQ (XCAR (XCAR (list)), key)
1463 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1464 list = XCDR (list);
1465
1466 return CONSP (list) ? XCAR (list) : Qnil;
1467 }
1468
1469 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1470 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1471 The value is actually the first element of LIST whose cdr is KEY. */)
1472 (register Lisp_Object key, Lisp_Object list)
1473 {
1474 while (1)
1475 {
1476 if (!CONSP (list)
1477 || (CONSP (XCAR (list))
1478 && EQ (XCDR (XCAR (list)), key)))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list)
1483 || (CONSP (XCAR (list))
1484 && EQ (XCDR (XCAR (list)), key)))
1485 break;
1486
1487 list = XCDR (list);
1488 if (!CONSP (list)
1489 || (CONSP (XCAR (list))
1490 && EQ (XCDR (XCAR (list)), key)))
1491 break;
1492
1493 list = XCDR (list);
1494 QUIT;
1495 }
1496
1497 return CAR (list);
1498 }
1499
1500 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1501 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1502 The value is actually the first element of LIST whose cdr equals KEY. */)
1503 (Lisp_Object key, Lisp_Object list)
1504 {
1505 Lisp_Object cdr;
1506
1507 while (1)
1508 {
1509 if (!CONSP (list)
1510 || (CONSP (XCAR (list))
1511 && (cdr = XCDR (XCAR (list)),
1512 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1513 break;
1514
1515 list = XCDR (list);
1516 if (!CONSP (list)
1517 || (CONSP (XCAR (list))
1518 && (cdr = XCDR (XCAR (list)),
1519 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1520 break;
1521
1522 list = XCDR (list);
1523 if (!CONSP (list)
1524 || (CONSP (XCAR (list))
1525 && (cdr = XCDR (XCAR (list)),
1526 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1527 break;
1528
1529 list = XCDR (list);
1530 QUIT;
1531 }
1532
1533 return CAR (list);
1534 }
1535 \f
1536 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1537 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1538 The modified LIST is returned. Comparison is done with `eq'.
1539 If the first member of LIST is ELT, there is no way to remove it by side effect;
1540 therefore, write `(setq foo (delq element foo))'
1541 to be sure of changing the value of `foo'. */)
1542 (register Lisp_Object elt, Lisp_Object list)
1543 {
1544 register Lisp_Object tail, prev;
1545 register Lisp_Object tem;
1546
1547 tail = list;
1548 prev = Qnil;
1549 while (!NILP (tail))
1550 {
1551 CHECK_LIST_CONS (tail, list);
1552 tem = XCAR (tail);
1553 if (EQ (elt, tem))
1554 {
1555 if (NILP (prev))
1556 list = XCDR (tail);
1557 else
1558 Fsetcdr (prev, XCDR (tail));
1559 }
1560 else
1561 prev = tail;
1562 tail = XCDR (tail);
1563 QUIT;
1564 }
1565 return list;
1566 }
1567
1568 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1569 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1570 SEQ must be a list, a vector, or a string.
1571 The modified SEQ is returned. Comparison is done with `equal'.
1572 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1573 is not a side effect; it is simply using a different sequence.
1574 Therefore, write `(setq foo (delete element foo))'
1575 to be sure of changing the value of `foo'. */)
1576 (Lisp_Object elt, Lisp_Object seq)
1577 {
1578 if (VECTORP (seq))
1579 {
1580 EMACS_INT i, n;
1581
1582 for (i = n = 0; i < ASIZE (seq); ++i)
1583 if (NILP (Fequal (AREF (seq, i), elt)))
1584 ++n;
1585
1586 if (n != ASIZE (seq))
1587 {
1588 struct Lisp_Vector *p = allocate_vector (n);
1589
1590 for (i = n = 0; i < ASIZE (seq); ++i)
1591 if (NILP (Fequal (AREF (seq, i), elt)))
1592 p->contents[n++] = AREF (seq, i);
1593
1594 XSETVECTOR (seq, p);
1595 }
1596 }
1597 else if (STRINGP (seq))
1598 {
1599 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1600 int c;
1601
1602 for (i = nchars = nbytes = ibyte = 0;
1603 i < SCHARS (seq);
1604 ++i, ibyte += cbytes)
1605 {
1606 if (STRING_MULTIBYTE (seq))
1607 {
1608 c = STRING_CHAR (SDATA (seq) + ibyte);
1609 cbytes = CHAR_BYTES (c);
1610 }
1611 else
1612 {
1613 c = SREF (seq, i);
1614 cbytes = 1;
1615 }
1616
1617 if (!INTEGERP (elt) || c != XINT (elt))
1618 {
1619 ++nchars;
1620 nbytes += cbytes;
1621 }
1622 }
1623
1624 if (nchars != SCHARS (seq))
1625 {
1626 Lisp_Object tem;
1627
1628 tem = make_uninit_multibyte_string (nchars, nbytes);
1629 if (!STRING_MULTIBYTE (seq))
1630 STRING_SET_UNIBYTE (tem);
1631
1632 for (i = nchars = nbytes = ibyte = 0;
1633 i < SCHARS (seq);
1634 ++i, ibyte += cbytes)
1635 {
1636 if (STRING_MULTIBYTE (seq))
1637 {
1638 c = STRING_CHAR (SDATA (seq) + ibyte);
1639 cbytes = CHAR_BYTES (c);
1640 }
1641 else
1642 {
1643 c = SREF (seq, i);
1644 cbytes = 1;
1645 }
1646
1647 if (!INTEGERP (elt) || c != XINT (elt))
1648 {
1649 unsigned char *from = SDATA (seq) + ibyte;
1650 unsigned char *to = SDATA (tem) + nbytes;
1651 EMACS_INT n;
1652
1653 ++nchars;
1654 nbytes += cbytes;
1655
1656 for (n = cbytes; n--; )
1657 *to++ = *from++;
1658 }
1659 }
1660
1661 seq = tem;
1662 }
1663 }
1664 else
1665 {
1666 Lisp_Object tail, prev;
1667
1668 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1669 {
1670 CHECK_LIST_CONS (tail, seq);
1671
1672 if (!NILP (Fequal (elt, XCAR (tail))))
1673 {
1674 if (NILP (prev))
1675 seq = XCDR (tail);
1676 else
1677 Fsetcdr (prev, XCDR (tail));
1678 }
1679 else
1680 prev = tail;
1681 QUIT;
1682 }
1683 }
1684
1685 return seq;
1686 }
1687
1688 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1689 doc: /* Reverse LIST by modifying cdr pointers.
1690 Return the reversed list. */)
1691 (Lisp_Object list)
1692 {
1693 register Lisp_Object prev, tail, next;
1694
1695 if (NILP (list)) return list;
1696 prev = Qnil;
1697 tail = list;
1698 while (!NILP (tail))
1699 {
1700 QUIT;
1701 CHECK_LIST_CONS (tail, list);
1702 next = XCDR (tail);
1703 Fsetcdr (tail, prev);
1704 prev = tail;
1705 tail = next;
1706 }
1707 return prev;
1708 }
1709
1710 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1711 doc: /* Reverse LIST, copying. Return the reversed list.
1712 See also the function `nreverse', which is used more often. */)
1713 (Lisp_Object list)
1714 {
1715 Lisp_Object new;
1716
1717 for (new = Qnil; CONSP (list); list = XCDR (list))
1718 {
1719 QUIT;
1720 new = Fcons (XCAR (list), new);
1721 }
1722 CHECK_LIST_END (list, list);
1723 return new;
1724 }
1725 \f
1726 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1727
1728 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1729 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1730 Returns the sorted list. LIST is modified by side effects.
1731 PREDICATE is called with two elements of LIST, and should return non-nil
1732 if the first element should sort before the second. */)
1733 (Lisp_Object list, Lisp_Object predicate)
1734 {
1735 Lisp_Object front, back;
1736 register Lisp_Object len, tem;
1737 struct gcpro gcpro1, gcpro2;
1738 register int length;
1739
1740 front = list;
1741 len = Flength (list);
1742 length = XINT (len);
1743 if (length < 2)
1744 return list;
1745
1746 XSETINT (len, (length / 2) - 1);
1747 tem = Fnthcdr (len, list);
1748 back = Fcdr (tem);
1749 Fsetcdr (tem, Qnil);
1750
1751 GCPRO2 (front, back);
1752 front = Fsort (front, predicate);
1753 back = Fsort (back, predicate);
1754 UNGCPRO;
1755 return merge (front, back, predicate);
1756 }
1757
1758 Lisp_Object
1759 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1760 {
1761 Lisp_Object value;
1762 register Lisp_Object tail;
1763 Lisp_Object tem;
1764 register Lisp_Object l1, l2;
1765 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1766
1767 l1 = org_l1;
1768 l2 = org_l2;
1769 tail = Qnil;
1770 value = Qnil;
1771
1772 /* It is sufficient to protect org_l1 and org_l2.
1773 When l1 and l2 are updated, we copy the new values
1774 back into the org_ vars. */
1775 GCPRO4 (org_l1, org_l2, pred, value);
1776
1777 while (1)
1778 {
1779 if (NILP (l1))
1780 {
1781 UNGCPRO;
1782 if (NILP (tail))
1783 return l2;
1784 Fsetcdr (tail, l2);
1785 return value;
1786 }
1787 if (NILP (l2))
1788 {
1789 UNGCPRO;
1790 if (NILP (tail))
1791 return l1;
1792 Fsetcdr (tail, l1);
1793 return value;
1794 }
1795 tem = call2 (pred, Fcar (l2), Fcar (l1));
1796 if (NILP (tem))
1797 {
1798 tem = l1;
1799 l1 = Fcdr (l1);
1800 org_l1 = l1;
1801 }
1802 else
1803 {
1804 tem = l2;
1805 l2 = Fcdr (l2);
1806 org_l2 = l2;
1807 }
1808 if (NILP (tail))
1809 value = tem;
1810 else
1811 Fsetcdr (tail, tem);
1812 tail = tem;
1813 }
1814 }
1815
1816 \f
1817 /* This does not check for quits. That is safe since it must terminate. */
1818
1819 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1820 doc: /* Extract a value from a property list.
1821 PLIST is a property list, which is a list of the form
1822 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1823 corresponding to the given PROP, or nil if PROP is not one of the
1824 properties on the list. This function never signals an error. */)
1825 (Lisp_Object plist, Lisp_Object prop)
1826 {
1827 Lisp_Object tail, halftail;
1828
1829 /* halftail is used to detect circular lists. */
1830 tail = halftail = plist;
1831 while (CONSP (tail) && CONSP (XCDR (tail)))
1832 {
1833 if (EQ (prop, XCAR (tail)))
1834 return XCAR (XCDR (tail));
1835
1836 tail = XCDR (XCDR (tail));
1837 halftail = XCDR (halftail);
1838 if (EQ (tail, halftail))
1839 break;
1840
1841 #if 0 /* Unsafe version. */
1842 /* This function can be called asynchronously
1843 (setup_coding_system). Don't QUIT in that case. */
1844 if (!interrupt_input_blocked)
1845 QUIT;
1846 #endif
1847 }
1848
1849 return Qnil;
1850 }
1851
1852 DEFUN ("get", Fget, Sget, 2, 2, 0,
1853 doc: /* Return the value of SYMBOL's PROPNAME property.
1854 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1855 (Lisp_Object symbol, Lisp_Object propname)
1856 {
1857 CHECK_SYMBOL (symbol);
1858 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1859 }
1860
1861 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1862 doc: /* Change value in PLIST of PROP to VAL.
1863 PLIST is a property list, which is a list of the form
1864 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1865 If PROP is already a property on the list, its value is set to VAL,
1866 otherwise the new PROP VAL pair is added. The new plist is returned;
1867 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1868 The PLIST is modified by side effects. */)
1869 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1870 {
1871 register Lisp_Object tail, prev;
1872 Lisp_Object newcell;
1873 prev = Qnil;
1874 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1875 tail = XCDR (XCDR (tail)))
1876 {
1877 if (EQ (prop, XCAR (tail)))
1878 {
1879 Fsetcar (XCDR (tail), val);
1880 return plist;
1881 }
1882
1883 prev = tail;
1884 QUIT;
1885 }
1886 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1887 if (NILP (prev))
1888 return newcell;
1889 else
1890 Fsetcdr (XCDR (prev), newcell);
1891 return plist;
1892 }
1893
1894 DEFUN ("put", Fput, Sput, 3, 3, 0,
1895 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1896 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1897 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1898 {
1899 CHECK_SYMBOL (symbol);
1900 XSYMBOL (symbol)->plist
1901 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1902 return value;
1903 }
1904 \f
1905 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1906 doc: /* Extract a value from a property list, comparing with `equal'.
1907 PLIST is a property list, which is a list of the form
1908 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1909 corresponding to the given PROP, or nil if PROP is not
1910 one of the properties on the list. */)
1911 (Lisp_Object plist, Lisp_Object prop)
1912 {
1913 Lisp_Object tail;
1914
1915 for (tail = plist;
1916 CONSP (tail) && CONSP (XCDR (tail));
1917 tail = XCDR (XCDR (tail)))
1918 {
1919 if (! NILP (Fequal (prop, XCAR (tail))))
1920 return XCAR (XCDR (tail));
1921
1922 QUIT;
1923 }
1924
1925 CHECK_LIST_END (tail, prop);
1926
1927 return Qnil;
1928 }
1929
1930 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1931 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1932 PLIST is a property list, which is a list of the form
1933 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1934 If PROP is already a property on the list, its value is set to VAL,
1935 otherwise the new PROP VAL pair is added. The new plist is returned;
1936 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1937 The PLIST is modified by side effects. */)
1938 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1939 {
1940 register Lisp_Object tail, prev;
1941 Lisp_Object newcell;
1942 prev = Qnil;
1943 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1944 tail = XCDR (XCDR (tail)))
1945 {
1946 if (! NILP (Fequal (prop, XCAR (tail))))
1947 {
1948 Fsetcar (XCDR (tail), val);
1949 return plist;
1950 }
1951
1952 prev = tail;
1953 QUIT;
1954 }
1955 newcell = Fcons (prop, Fcons (val, Qnil));
1956 if (NILP (prev))
1957 return newcell;
1958 else
1959 Fsetcdr (XCDR (prev), newcell);
1960 return plist;
1961 }
1962 \f
1963 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1964 doc: /* Return t if the two args are the same Lisp object.
1965 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1966 (Lisp_Object obj1, Lisp_Object obj2)
1967 {
1968 if (FLOATP (obj1))
1969 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1970 else
1971 return EQ (obj1, obj2) ? Qt : Qnil;
1972 }
1973
1974 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1975 doc: /* Return t if two Lisp objects have similar structure and contents.
1976 They must have the same data type.
1977 Conses are compared by comparing the cars and the cdrs.
1978 Vectors and strings are compared element by element.
1979 Numbers are compared by value, but integers cannot equal floats.
1980 (Use `=' if you want integers and floats to be able to be equal.)
1981 Symbols must match exactly. */)
1982 (register Lisp_Object o1, Lisp_Object o2)
1983 {
1984 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1985 }
1986
1987 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1988 doc: /* Return t if two Lisp objects have similar structure and contents.
1989 This is like `equal' except that it compares the text properties
1990 of strings. (`equal' ignores text properties.) */)
1991 (register Lisp_Object o1, Lisp_Object o2)
1992 {
1993 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1994 }
1995
1996 /* DEPTH is current depth of recursion. Signal an error if it
1997 gets too deep.
1998 PROPS, if non-nil, means compare string text properties too. */
1999
2000 static int
2001 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2002 {
2003 if (depth > 200)
2004 error ("Stack overflow in equal");
2005
2006 tail_recurse:
2007 QUIT;
2008 if (EQ (o1, o2))
2009 return 1;
2010 if (XTYPE (o1) != XTYPE (o2))
2011 return 0;
2012
2013 switch (XTYPE (o1))
2014 {
2015 case Lisp_Float:
2016 {
2017 double d1, d2;
2018
2019 d1 = extract_float (o1);
2020 d2 = extract_float (o2);
2021 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2022 though they are not =. */
2023 return d1 == d2 || (d1 != d1 && d2 != d2);
2024 }
2025
2026 case Lisp_Cons:
2027 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2028 return 0;
2029 o1 = XCDR (o1);
2030 o2 = XCDR (o2);
2031 goto tail_recurse;
2032
2033 case Lisp_Misc:
2034 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2035 return 0;
2036 if (OVERLAYP (o1))
2037 {
2038 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2039 depth + 1, props)
2040 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2041 depth + 1, props))
2042 return 0;
2043 o1 = XOVERLAY (o1)->plist;
2044 o2 = XOVERLAY (o2)->plist;
2045 goto tail_recurse;
2046 }
2047 if (MARKERP (o1))
2048 {
2049 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2050 && (XMARKER (o1)->buffer == 0
2051 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2052 }
2053 break;
2054
2055 case Lisp_Vectorlike:
2056 {
2057 register int i;
2058 EMACS_INT size = ASIZE (o1);
2059 /* Pseudovectors have the type encoded in the size field, so this test
2060 actually checks that the objects have the same type as well as the
2061 same size. */
2062 if (ASIZE (o2) != size)
2063 return 0;
2064 /* Boolvectors are compared much like strings. */
2065 if (BOOL_VECTOR_P (o1))
2066 {
2067 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2068 return 0;
2069 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2070 ((XBOOL_VECTOR (o1)->size
2071 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2072 / BOOL_VECTOR_BITS_PER_CHAR)))
2073 return 0;
2074 return 1;
2075 }
2076 if (WINDOW_CONFIGURATIONP (o1))
2077 return compare_window_configurations (o1, o2, 0);
2078
2079 /* Aside from them, only true vectors, char-tables, compiled
2080 functions, and fonts (font-spec, font-entity, font-object)
2081 are sensible to compare, so eliminate the others now. */
2082 if (size & PSEUDOVECTOR_FLAG)
2083 {
2084 if (!(size & (PVEC_COMPILED
2085 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2086 return 0;
2087 size &= PSEUDOVECTOR_SIZE_MASK;
2088 }
2089 for (i = 0; i < size; i++)
2090 {
2091 Lisp_Object v1, v2;
2092 v1 = AREF (o1, i);
2093 v2 = AREF (o2, i);
2094 if (!internal_equal (v1, v2, depth + 1, props))
2095 return 0;
2096 }
2097 return 1;
2098 }
2099 break;
2100
2101 case Lisp_String:
2102 if (SCHARS (o1) != SCHARS (o2))
2103 return 0;
2104 if (SBYTES (o1) != SBYTES (o2))
2105 return 0;
2106 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2107 return 0;
2108 if (props && !compare_string_intervals (o1, o2))
2109 return 0;
2110 return 1;
2111
2112 default:
2113 break;
2114 }
2115
2116 return 0;
2117 }
2118 \f
2119
2120 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2121 doc: /* Store each element of ARRAY with ITEM.
2122 ARRAY is a vector, string, char-table, or bool-vector. */)
2123 (Lisp_Object array, Lisp_Object item)
2124 {
2125 register EMACS_INT size, idx;
2126 int charval;
2127
2128 if (VECTORP (array))
2129 {
2130 register Lisp_Object *p = XVECTOR (array)->contents;
2131 size = ASIZE (array);
2132 for (idx = 0; idx < size; idx++)
2133 p[idx] = item;
2134 }
2135 else if (CHAR_TABLE_P (array))
2136 {
2137 int i;
2138
2139 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2140 XCHAR_TABLE (array)->contents[i] = item;
2141 XCHAR_TABLE (array)->defalt = item;
2142 }
2143 else if (STRINGP (array))
2144 {
2145 register unsigned char *p = SDATA (array);
2146 CHECK_NUMBER (item);
2147 charval = XINT (item);
2148 size = SCHARS (array);
2149 if (STRING_MULTIBYTE (array))
2150 {
2151 unsigned char str[MAX_MULTIBYTE_LENGTH];
2152 int len = CHAR_STRING (charval, str);
2153 EMACS_INT size_byte = SBYTES (array);
2154 unsigned char *p1 = p, *endp = p + size_byte;
2155 int i;
2156
2157 if (size != size_byte)
2158 while (p1 < endp)
2159 {
2160 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2161 if (len != this_len)
2162 error ("Attempt to change byte length of a string");
2163 p1 += this_len;
2164 }
2165 for (i = 0; i < size_byte; i++)
2166 *p++ = str[i % len];
2167 }
2168 else
2169 for (idx = 0; idx < size; idx++)
2170 p[idx] = charval;
2171 }
2172 else if (BOOL_VECTOR_P (array))
2173 {
2174 register unsigned char *p = XBOOL_VECTOR (array)->data;
2175 int size_in_chars
2176 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2177 / BOOL_VECTOR_BITS_PER_CHAR);
2178
2179 charval = (! NILP (item) ? -1 : 0);
2180 for (idx = 0; idx < size_in_chars - 1; idx++)
2181 p[idx] = charval;
2182 if (idx < size_in_chars)
2183 {
2184 /* Mask out bits beyond the vector size. */
2185 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2186 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2187 p[idx] = charval;
2188 }
2189 }
2190 else
2191 wrong_type_argument (Qarrayp, array);
2192 return array;
2193 }
2194
2195 DEFUN ("clear-string", Fclear_string, Sclear_string,
2196 1, 1, 0,
2197 doc: /* Clear the contents of STRING.
2198 This makes STRING unibyte and may change its length. */)
2199 (Lisp_Object string)
2200 {
2201 EMACS_INT len;
2202 CHECK_STRING (string);
2203 len = SBYTES (string);
2204 memset (SDATA (string), 0, len);
2205 STRING_SET_CHARS (string, len);
2206 STRING_SET_UNIBYTE (string);
2207 return Qnil;
2208 }
2209 \f
2210 /* ARGSUSED */
2211 Lisp_Object
2212 nconc2 (Lisp_Object s1, Lisp_Object s2)
2213 {
2214 Lisp_Object args[2];
2215 args[0] = s1;
2216 args[1] = s2;
2217 return Fnconc (2, args);
2218 }
2219
2220 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2221 doc: /* Concatenate any number of lists by altering them.
2222 Only the last argument is not altered, and need not be a list.
2223 usage: (nconc &rest LISTS) */)
2224 (size_t nargs, Lisp_Object *args)
2225 {
2226 register size_t argnum;
2227 register Lisp_Object tail, tem, val;
2228
2229 val = tail = Qnil;
2230
2231 for (argnum = 0; argnum < nargs; argnum++)
2232 {
2233 tem = args[argnum];
2234 if (NILP (tem)) continue;
2235
2236 if (NILP (val))
2237 val = tem;
2238
2239 if (argnum + 1 == nargs) break;
2240
2241 CHECK_LIST_CONS (tem, tem);
2242
2243 while (CONSP (tem))
2244 {
2245 tail = tem;
2246 tem = XCDR (tail);
2247 QUIT;
2248 }
2249
2250 tem = args[argnum + 1];
2251 Fsetcdr (tail, tem);
2252 if (NILP (tem))
2253 args[argnum + 1] = tail;
2254 }
2255
2256 return val;
2257 }
2258 \f
2259 /* This is the guts of all mapping functions.
2260 Apply FN to each element of SEQ, one by one,
2261 storing the results into elements of VALS, a C vector of Lisp_Objects.
2262 LENI is the length of VALS, which should also be the length of SEQ. */
2263
2264 static void
2265 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2266 {
2267 register Lisp_Object tail;
2268 Lisp_Object dummy;
2269 register EMACS_INT i;
2270 struct gcpro gcpro1, gcpro2, gcpro3;
2271
2272 if (vals)
2273 {
2274 /* Don't let vals contain any garbage when GC happens. */
2275 for (i = 0; i < leni; i++)
2276 vals[i] = Qnil;
2277
2278 GCPRO3 (dummy, fn, seq);
2279 gcpro1.var = vals;
2280 gcpro1.nvars = leni;
2281 }
2282 else
2283 GCPRO2 (fn, seq);
2284 /* We need not explicitly protect `tail' because it is used only on lists, and
2285 1) lists are not relocated and 2) the list is marked via `seq' so will not
2286 be freed */
2287
2288 if (VECTORP (seq) || COMPILEDP (seq))
2289 {
2290 for (i = 0; i < leni; i++)
2291 {
2292 dummy = call1 (fn, AREF (seq, i));
2293 if (vals)
2294 vals[i] = dummy;
2295 }
2296 }
2297 else if (BOOL_VECTOR_P (seq))
2298 {
2299 for (i = 0; i < leni; i++)
2300 {
2301 int byte;
2302 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2303 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2304 dummy = call1 (fn, dummy);
2305 if (vals)
2306 vals[i] = dummy;
2307 }
2308 }
2309 else if (STRINGP (seq))
2310 {
2311 EMACS_INT i_byte;
2312
2313 for (i = 0, i_byte = 0; i < leni;)
2314 {
2315 int c;
2316 EMACS_INT i_before = i;
2317
2318 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2319 XSETFASTINT (dummy, c);
2320 dummy = call1 (fn, dummy);
2321 if (vals)
2322 vals[i_before] = dummy;
2323 }
2324 }
2325 else /* Must be a list, since Flength did not get an error */
2326 {
2327 tail = seq;
2328 for (i = 0; i < leni && CONSP (tail); i++)
2329 {
2330 dummy = call1 (fn, XCAR (tail));
2331 if (vals)
2332 vals[i] = dummy;
2333 tail = XCDR (tail);
2334 }
2335 }
2336
2337 UNGCPRO;
2338 }
2339
2340 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2341 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2342 In between each pair of results, stick in SEPARATOR. Thus, " " as
2343 SEPARATOR results in spaces between the values returned by FUNCTION.
2344 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2345 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2346 {
2347 Lisp_Object len;
2348 register EMACS_INT leni;
2349 int nargs;
2350 register Lisp_Object *args;
2351 register EMACS_INT i;
2352 struct gcpro gcpro1;
2353 Lisp_Object ret;
2354 USE_SAFE_ALLOCA;
2355
2356 len = Flength (sequence);
2357 if (CHAR_TABLE_P (sequence))
2358 wrong_type_argument (Qlistp, sequence);
2359 leni = XINT (len);
2360 nargs = leni + leni - 1;
2361 if (nargs < 0) return empty_unibyte_string;
2362
2363 SAFE_ALLOCA_LISP (args, nargs);
2364
2365 GCPRO1 (separator);
2366 mapcar1 (leni, args, function, sequence);
2367 UNGCPRO;
2368
2369 for (i = leni - 1; i > 0; i--)
2370 args[i + i] = args[i];
2371
2372 for (i = 1; i < nargs; i += 2)
2373 args[i] = separator;
2374
2375 ret = Fconcat (nargs, args);
2376 SAFE_FREE ();
2377
2378 return ret;
2379 }
2380
2381 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2382 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2383 The result is a list just as long as SEQUENCE.
2384 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2385 (Lisp_Object function, Lisp_Object sequence)
2386 {
2387 register Lisp_Object len;
2388 register EMACS_INT leni;
2389 register Lisp_Object *args;
2390 Lisp_Object ret;
2391 USE_SAFE_ALLOCA;
2392
2393 len = Flength (sequence);
2394 if (CHAR_TABLE_P (sequence))
2395 wrong_type_argument (Qlistp, sequence);
2396 leni = XFASTINT (len);
2397
2398 SAFE_ALLOCA_LISP (args, leni);
2399
2400 mapcar1 (leni, args, function, sequence);
2401
2402 ret = Flist (leni, args);
2403 SAFE_FREE ();
2404
2405 return ret;
2406 }
2407
2408 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2409 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2410 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2411 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2412 (Lisp_Object function, Lisp_Object sequence)
2413 {
2414 register EMACS_INT leni;
2415
2416 leni = XFASTINT (Flength (sequence));
2417 if (CHAR_TABLE_P (sequence))
2418 wrong_type_argument (Qlistp, sequence);
2419 mapcar1 (leni, 0, function, sequence);
2420
2421 return sequence;
2422 }
2423 \f
2424 /* This is how C code calls `yes-or-no-p' and allows the user
2425 to redefined it.
2426
2427 Anything that calls this function must protect from GC! */
2428
2429 Lisp_Object
2430 do_yes_or_no_p (Lisp_Object prompt)
2431 {
2432 return call1 (intern ("yes-or-no-p"), prompt);
2433 }
2434
2435 /* Anything that calls this function must protect from GC! */
2436
2437 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2438 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2439 PROMPT is the string to display to ask the question. It should end in
2440 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2441
2442 The user must confirm the answer with RET, and can edit it until it
2443 has been confirmed.
2444
2445 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2446 is nil, and `use-dialog-box' is non-nil. */)
2447 (Lisp_Object prompt)
2448 {
2449 register Lisp_Object ans;
2450 Lisp_Object args[2];
2451 struct gcpro gcpro1;
2452
2453 CHECK_STRING (prompt);
2454
2455 #ifdef HAVE_MENUS
2456 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2457 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2458 && use_dialog_box
2459 && have_menus_p ())
2460 {
2461 Lisp_Object pane, menu, obj;
2462 redisplay_preserve_echo_area (4);
2463 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2464 Fcons (Fcons (build_string ("No"), Qnil),
2465 Qnil));
2466 GCPRO1 (pane);
2467 menu = Fcons (prompt, pane);
2468 obj = Fx_popup_dialog (Qt, menu, Qnil);
2469 UNGCPRO;
2470 return obj;
2471 }
2472 #endif /* HAVE_MENUS */
2473
2474 args[0] = prompt;
2475 args[1] = build_string ("(yes or no) ");
2476 prompt = Fconcat (2, args);
2477
2478 GCPRO1 (prompt);
2479
2480 while (1)
2481 {
2482 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2483 Qyes_or_no_p_history, Qnil,
2484 Qnil));
2485 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2486 {
2487 UNGCPRO;
2488 return Qt;
2489 }
2490 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2491 {
2492 UNGCPRO;
2493 return Qnil;
2494 }
2495
2496 Fding (Qnil);
2497 Fdiscard_input ();
2498 message ("Please answer yes or no.");
2499 Fsleep_for (make_number (2), Qnil);
2500 }
2501 }
2502 \f
2503 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2504 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2505
2506 Each of the three load averages is multiplied by 100, then converted
2507 to integer.
2508
2509 When USE-FLOATS is non-nil, floats will be used instead of integers.
2510 These floats are not multiplied by 100.
2511
2512 If the 5-minute or 15-minute load averages are not available, return a
2513 shortened list, containing only those averages which are available.
2514
2515 An error is thrown if the load average can't be obtained. In some
2516 cases making it work would require Emacs being installed setuid or
2517 setgid so that it can read kernel information, and that usually isn't
2518 advisable. */)
2519 (Lisp_Object use_floats)
2520 {
2521 double load_ave[3];
2522 int loads = getloadavg (load_ave, 3);
2523 Lisp_Object ret = Qnil;
2524
2525 if (loads < 0)
2526 error ("load-average not implemented for this operating system");
2527
2528 while (loads-- > 0)
2529 {
2530 Lisp_Object load = (NILP (use_floats) ?
2531 make_number ((int) (100.0 * load_ave[loads]))
2532 : make_float (load_ave[loads]));
2533 ret = Fcons (load, ret);
2534 }
2535
2536 return ret;
2537 }
2538 \f
2539 static Lisp_Object Qsubfeatures;
2540
2541 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2542 doc: /* Return t if FEATURE is present in this Emacs.
2543
2544 Use this to conditionalize execution of lisp code based on the
2545 presence or absence of Emacs or environment extensions.
2546 Use `provide' to declare that a feature is available. This function
2547 looks at the value of the variable `features'. The optional argument
2548 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2549 (Lisp_Object feature, Lisp_Object subfeature)
2550 {
2551 register Lisp_Object tem;
2552 CHECK_SYMBOL (feature);
2553 tem = Fmemq (feature, Vfeatures);
2554 if (!NILP (tem) && !NILP (subfeature))
2555 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2556 return (NILP (tem)) ? Qnil : Qt;
2557 }
2558
2559 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2560 doc: /* Announce that FEATURE is a feature of the current Emacs.
2561 The optional argument SUBFEATURES should be a list of symbols listing
2562 particular subfeatures supported in this version of FEATURE. */)
2563 (Lisp_Object feature, Lisp_Object subfeatures)
2564 {
2565 register Lisp_Object tem;
2566 CHECK_SYMBOL (feature);
2567 CHECK_LIST (subfeatures);
2568 if (!NILP (Vautoload_queue))
2569 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2570 Vautoload_queue);
2571 tem = Fmemq (feature, Vfeatures);
2572 if (NILP (tem))
2573 Vfeatures = Fcons (feature, Vfeatures);
2574 if (!NILP (subfeatures))
2575 Fput (feature, Qsubfeatures, subfeatures);
2576 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2577
2578 /* Run any load-hooks for this file. */
2579 tem = Fassq (feature, Vafter_load_alist);
2580 if (CONSP (tem))
2581 Fprogn (XCDR (tem));
2582
2583 return feature;
2584 }
2585 \f
2586 /* `require' and its subroutines. */
2587
2588 /* List of features currently being require'd, innermost first. */
2589
2590 static Lisp_Object require_nesting_list;
2591
2592 static Lisp_Object
2593 require_unwind (Lisp_Object old_value)
2594 {
2595 return require_nesting_list = old_value;
2596 }
2597
2598 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2599 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2600 If FEATURE is not a member of the list `features', then the feature
2601 is not loaded; so load the file FILENAME.
2602 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2603 and `load' will try to load this name appended with the suffix `.elc' or
2604 `.el', in that order. The name without appended suffix will not be used.
2605 If the optional third argument NOERROR is non-nil,
2606 then return nil if the file is not found instead of signaling an error.
2607 Normally the return value is FEATURE.
2608 The normal messages at start and end of loading FILENAME are suppressed. */)
2609 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2610 {
2611 register Lisp_Object tem;
2612 struct gcpro gcpro1, gcpro2;
2613 int from_file = load_in_progress;
2614
2615 CHECK_SYMBOL (feature);
2616
2617 /* Record the presence of `require' in this file
2618 even if the feature specified is already loaded.
2619 But not more than once in any file,
2620 and not when we aren't loading or reading from a file. */
2621 if (!from_file)
2622 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2623 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2624 from_file = 1;
2625
2626 if (from_file)
2627 {
2628 tem = Fcons (Qrequire, feature);
2629 if (NILP (Fmember (tem, Vcurrent_load_list)))
2630 LOADHIST_ATTACH (tem);
2631 }
2632 tem = Fmemq (feature, Vfeatures);
2633
2634 if (NILP (tem))
2635 {
2636 int count = SPECPDL_INDEX ();
2637 int nesting = 0;
2638
2639 /* This is to make sure that loadup.el gives a clear picture
2640 of what files are preloaded and when. */
2641 if (! NILP (Vpurify_flag))
2642 error ("(require %s) while preparing to dump",
2643 SDATA (SYMBOL_NAME (feature)));
2644
2645 /* A certain amount of recursive `require' is legitimate,
2646 but if we require the same feature recursively 3 times,
2647 signal an error. */
2648 tem = require_nesting_list;
2649 while (! NILP (tem))
2650 {
2651 if (! NILP (Fequal (feature, XCAR (tem))))
2652 nesting++;
2653 tem = XCDR (tem);
2654 }
2655 if (nesting > 3)
2656 error ("Recursive `require' for feature `%s'",
2657 SDATA (SYMBOL_NAME (feature)));
2658
2659 /* Update the list for any nested `require's that occur. */
2660 record_unwind_protect (require_unwind, require_nesting_list);
2661 require_nesting_list = Fcons (feature, require_nesting_list);
2662
2663 /* Value saved here is to be restored into Vautoload_queue */
2664 record_unwind_protect (un_autoload, Vautoload_queue);
2665 Vautoload_queue = Qt;
2666
2667 /* Load the file. */
2668 GCPRO2 (feature, filename);
2669 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2670 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2671 UNGCPRO;
2672
2673 /* If load failed entirely, return nil. */
2674 if (NILP (tem))
2675 return unbind_to (count, Qnil);
2676
2677 tem = Fmemq (feature, Vfeatures);
2678 if (NILP (tem))
2679 error ("Required feature `%s' was not provided",
2680 SDATA (SYMBOL_NAME (feature)));
2681
2682 /* Once loading finishes, don't undo it. */
2683 Vautoload_queue = Qt;
2684 feature = unbind_to (count, feature);
2685 }
2686
2687 return feature;
2688 }
2689 \f
2690 /* Primitives for work of the "widget" library.
2691 In an ideal world, this section would not have been necessary.
2692 However, lisp function calls being as slow as they are, it turns
2693 out that some functions in the widget library (wid-edit.el) are the
2694 bottleneck of Widget operation. Here is their translation to C,
2695 for the sole reason of efficiency. */
2696
2697 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2698 doc: /* Return non-nil if PLIST has the property PROP.
2699 PLIST is a property list, which is a list of the form
2700 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2701 Unlike `plist-get', this allows you to distinguish between a missing
2702 property and a property with the value nil.
2703 The value is actually the tail of PLIST whose car is PROP. */)
2704 (Lisp_Object plist, Lisp_Object prop)
2705 {
2706 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2707 {
2708 QUIT;
2709 plist = XCDR (plist);
2710 plist = CDR (plist);
2711 }
2712 return plist;
2713 }
2714
2715 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2716 doc: /* In WIDGET, set PROPERTY to VALUE.
2717 The value can later be retrieved with `widget-get'. */)
2718 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2719 {
2720 CHECK_CONS (widget);
2721 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2722 return value;
2723 }
2724
2725 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2726 doc: /* In WIDGET, get the value of PROPERTY.
2727 The value could either be specified when the widget was created, or
2728 later with `widget-put'. */)
2729 (Lisp_Object widget, Lisp_Object property)
2730 {
2731 Lisp_Object tmp;
2732
2733 while (1)
2734 {
2735 if (NILP (widget))
2736 return Qnil;
2737 CHECK_CONS (widget);
2738 tmp = Fplist_member (XCDR (widget), property);
2739 if (CONSP (tmp))
2740 {
2741 tmp = XCDR (tmp);
2742 return CAR (tmp);
2743 }
2744 tmp = XCAR (widget);
2745 if (NILP (tmp))
2746 return Qnil;
2747 widget = Fget (tmp, Qwidget_type);
2748 }
2749 }
2750
2751 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2752 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2753 ARGS are passed as extra arguments to the function.
2754 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2755 (size_t nargs, Lisp_Object *args)
2756 {
2757 /* This function can GC. */
2758 Lisp_Object newargs[3];
2759 struct gcpro gcpro1, gcpro2;
2760 Lisp_Object result;
2761
2762 newargs[0] = Fwidget_get (args[0], args[1]);
2763 newargs[1] = args[0];
2764 newargs[2] = Flist (nargs - 2, args + 2);
2765 GCPRO2 (newargs[0], newargs[2]);
2766 result = Fapply (3, newargs);
2767 UNGCPRO;
2768 return result;
2769 }
2770
2771 #ifdef HAVE_LANGINFO_CODESET
2772 #include <langinfo.h>
2773 #endif
2774
2775 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2776 doc: /* Access locale data ITEM for the current C locale, if available.
2777 ITEM should be one of the following:
2778
2779 `codeset', returning the character set as a string (locale item CODESET);
2780
2781 `days', returning a 7-element vector of day names (locale items DAY_n);
2782
2783 `months', returning a 12-element vector of month names (locale items MON_n);
2784
2785 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2786 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2787
2788 If the system can't provide such information through a call to
2789 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2790
2791 See also Info node `(libc)Locales'.
2792
2793 The data read from the system are decoded using `locale-coding-system'. */)
2794 (Lisp_Object item)
2795 {
2796 char *str = NULL;
2797 #ifdef HAVE_LANGINFO_CODESET
2798 Lisp_Object val;
2799 if (EQ (item, Qcodeset))
2800 {
2801 str = nl_langinfo (CODESET);
2802 return build_string (str);
2803 }
2804 #ifdef DAY_1
2805 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2806 {
2807 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2808 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2809 int i;
2810 struct gcpro gcpro1;
2811 GCPRO1 (v);
2812 synchronize_system_time_locale ();
2813 for (i = 0; i < 7; i++)
2814 {
2815 str = nl_langinfo (days[i]);
2816 val = make_unibyte_string (str, strlen (str));
2817 /* Fixme: Is this coding system necessarily right, even if
2818 it is consistent with CODESET? If not, what to do? */
2819 Faset (v, make_number (i),
2820 code_convert_string_norecord (val, Vlocale_coding_system,
2821 0));
2822 }
2823 UNGCPRO;
2824 return v;
2825 }
2826 #endif /* DAY_1 */
2827 #ifdef MON_1
2828 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2829 {
2830 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2831 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2832 MON_8, MON_9, MON_10, MON_11, MON_12};
2833 int i;
2834 struct gcpro gcpro1;
2835 GCPRO1 (v);
2836 synchronize_system_time_locale ();
2837 for (i = 0; i < 12; i++)
2838 {
2839 str = nl_langinfo (months[i]);
2840 val = make_unibyte_string (str, strlen (str));
2841 Faset (v, make_number (i),
2842 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2843 }
2844 UNGCPRO;
2845 return v;
2846 }
2847 #endif /* MON_1 */
2848 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2849 but is in the locale files. This could be used by ps-print. */
2850 #ifdef PAPER_WIDTH
2851 else if (EQ (item, Qpaper))
2852 {
2853 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2854 make_number (nl_langinfo (PAPER_HEIGHT)));
2855 }
2856 #endif /* PAPER_WIDTH */
2857 #endif /* HAVE_LANGINFO_CODESET*/
2858 return Qnil;
2859 }
2860 \f
2861 /* base64 encode/decode functions (RFC 2045).
2862 Based on code from GNU recode. */
2863
2864 #define MIME_LINE_LENGTH 76
2865
2866 #define IS_ASCII(Character) \
2867 ((Character) < 128)
2868 #define IS_BASE64(Character) \
2869 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2870 #define IS_BASE64_IGNORABLE(Character) \
2871 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2872 || (Character) == '\f' || (Character) == '\r')
2873
2874 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2875 character or return retval if there are no characters left to
2876 process. */
2877 #define READ_QUADRUPLET_BYTE(retval) \
2878 do \
2879 { \
2880 if (i == length) \
2881 { \
2882 if (nchars_return) \
2883 *nchars_return = nchars; \
2884 return (retval); \
2885 } \
2886 c = from[i++]; \
2887 } \
2888 while (IS_BASE64_IGNORABLE (c))
2889
2890 /* Table of characters coding the 64 values. */
2891 static const char base64_value_to_char[64] =
2892 {
2893 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2894 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2895 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2896 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2897 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2898 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2899 '8', '9', '+', '/' /* 60-63 */
2900 };
2901
2902 /* Table of base64 values for first 128 characters. */
2903 static const short base64_char_to_value[128] =
2904 {
2905 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2906 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2907 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2908 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2909 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2910 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2911 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2912 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2913 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2914 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2915 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2916 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2917 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2918 };
2919
2920 /* The following diagram shows the logical steps by which three octets
2921 get transformed into four base64 characters.
2922
2923 .--------. .--------. .--------.
2924 |aaaaaabb| |bbbbcccc| |ccdddddd|
2925 `--------' `--------' `--------'
2926 6 2 4 4 2 6
2927 .--------+--------+--------+--------.
2928 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2929 `--------+--------+--------+--------'
2930
2931 .--------+--------+--------+--------.
2932 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2933 `--------+--------+--------+--------'
2934
2935 The octets are divided into 6 bit chunks, which are then encoded into
2936 base64 characters. */
2937
2938
2939 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2940 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2941 EMACS_INT *);
2942
2943 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2944 2, 3, "r",
2945 doc: /* Base64-encode the region between BEG and END.
2946 Return the length of the encoded text.
2947 Optional third argument NO-LINE-BREAK means do not break long lines
2948 into shorter lines. */)
2949 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2950 {
2951 char *encoded;
2952 EMACS_INT allength, length;
2953 EMACS_INT ibeg, iend, encoded_length;
2954 EMACS_INT old_pos = PT;
2955 USE_SAFE_ALLOCA;
2956
2957 validate_region (&beg, &end);
2958
2959 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2960 iend = CHAR_TO_BYTE (XFASTINT (end));
2961 move_gap_both (XFASTINT (beg), ibeg);
2962
2963 /* We need to allocate enough room for encoding the text.
2964 We need 33 1/3% more space, plus a newline every 76
2965 characters, and then we round up. */
2966 length = iend - ibeg;
2967 allength = length + length/3 + 1;
2968 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2969
2970 SAFE_ALLOCA (encoded, char *, allength);
2971 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2972 encoded, length, NILP (no_line_break),
2973 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2974 if (encoded_length > allength)
2975 abort ();
2976
2977 if (encoded_length < 0)
2978 {
2979 /* The encoding wasn't possible. */
2980 SAFE_FREE ();
2981 error ("Multibyte character in data for base64 encoding");
2982 }
2983
2984 /* Now we have encoded the region, so we insert the new contents
2985 and delete the old. (Insert first in order to preserve markers.) */
2986 SET_PT_BOTH (XFASTINT (beg), ibeg);
2987 insert (encoded, encoded_length);
2988 SAFE_FREE ();
2989 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2990
2991 /* If point was outside of the region, restore it exactly; else just
2992 move to the beginning of the region. */
2993 if (old_pos >= XFASTINT (end))
2994 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2995 else if (old_pos > XFASTINT (beg))
2996 old_pos = XFASTINT (beg);
2997 SET_PT (old_pos);
2998
2999 /* We return the length of the encoded text. */
3000 return make_number (encoded_length);
3001 }
3002
3003 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3004 1, 2, 0,
3005 doc: /* Base64-encode STRING and return the result.
3006 Optional second argument NO-LINE-BREAK means do not break long lines
3007 into shorter lines. */)
3008 (Lisp_Object string, Lisp_Object no_line_break)
3009 {
3010 EMACS_INT allength, length, encoded_length;
3011 char *encoded;
3012 Lisp_Object encoded_string;
3013 USE_SAFE_ALLOCA;
3014
3015 CHECK_STRING (string);
3016
3017 /* We need to allocate enough room for encoding the text.
3018 We need 33 1/3% more space, plus a newline every 76
3019 characters, and then we round up. */
3020 length = SBYTES (string);
3021 allength = length + length/3 + 1;
3022 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3023
3024 /* We need to allocate enough room for decoding the text. */
3025 SAFE_ALLOCA (encoded, char *, allength);
3026
3027 encoded_length = base64_encode_1 (SSDATA (string),
3028 encoded, length, NILP (no_line_break),
3029 STRING_MULTIBYTE (string));
3030 if (encoded_length > allength)
3031 abort ();
3032
3033 if (encoded_length < 0)
3034 {
3035 /* The encoding wasn't possible. */
3036 SAFE_FREE ();
3037 error ("Multibyte character in data for base64 encoding");
3038 }
3039
3040 encoded_string = make_unibyte_string (encoded, encoded_length);
3041 SAFE_FREE ();
3042
3043 return encoded_string;
3044 }
3045
3046 static EMACS_INT
3047 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3048 int line_break, int multibyte)
3049 {
3050 int counter = 0;
3051 EMACS_INT i = 0;
3052 char *e = to;
3053 int c;
3054 unsigned int value;
3055 int bytes;
3056
3057 while (i < length)
3058 {
3059 if (multibyte)
3060 {
3061 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3062 if (CHAR_BYTE8_P (c))
3063 c = CHAR_TO_BYTE8 (c);
3064 else if (c >= 256)
3065 return -1;
3066 i += bytes;
3067 }
3068 else
3069 c = from[i++];
3070
3071 /* Wrap line every 76 characters. */
3072
3073 if (line_break)
3074 {
3075 if (counter < MIME_LINE_LENGTH / 4)
3076 counter++;
3077 else
3078 {
3079 *e++ = '\n';
3080 counter = 1;
3081 }
3082 }
3083
3084 /* Process first byte of a triplet. */
3085
3086 *e++ = base64_value_to_char[0x3f & c >> 2];
3087 value = (0x03 & c) << 4;
3088
3089 /* Process second byte of a triplet. */
3090
3091 if (i == length)
3092 {
3093 *e++ = base64_value_to_char[value];
3094 *e++ = '=';
3095 *e++ = '=';
3096 break;
3097 }
3098
3099 if (multibyte)
3100 {
3101 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3102 if (CHAR_BYTE8_P (c))
3103 c = CHAR_TO_BYTE8 (c);
3104 else if (c >= 256)
3105 return -1;
3106 i += bytes;
3107 }
3108 else
3109 c = from[i++];
3110
3111 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3112 value = (0x0f & c) << 2;
3113
3114 /* Process third byte of a triplet. */
3115
3116 if (i == length)
3117 {
3118 *e++ = base64_value_to_char[value];
3119 *e++ = '=';
3120 break;
3121 }
3122
3123 if (multibyte)
3124 {
3125 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3126 if (CHAR_BYTE8_P (c))
3127 c = CHAR_TO_BYTE8 (c);
3128 else if (c >= 256)
3129 return -1;
3130 i += bytes;
3131 }
3132 else
3133 c = from[i++];
3134
3135 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3136 *e++ = base64_value_to_char[0x3f & c];
3137 }
3138
3139 return e - to;
3140 }
3141
3142
3143 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3144 2, 2, "r",
3145 doc: /* Base64-decode the region between BEG and END.
3146 Return the length of the decoded text.
3147 If the region can't be decoded, signal an error and don't modify the buffer. */)
3148 (Lisp_Object beg, Lisp_Object end)
3149 {
3150 EMACS_INT ibeg, iend, length, allength;
3151 char *decoded;
3152 EMACS_INT old_pos = PT;
3153 EMACS_INT decoded_length;
3154 EMACS_INT inserted_chars;
3155 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3156 USE_SAFE_ALLOCA;
3157
3158 validate_region (&beg, &end);
3159
3160 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3161 iend = CHAR_TO_BYTE (XFASTINT (end));
3162
3163 length = iend - ibeg;
3164
3165 /* We need to allocate enough room for decoding the text. If we are
3166 working on a multibyte buffer, each decoded code may occupy at
3167 most two bytes. */
3168 allength = multibyte ? length * 2 : length;
3169 SAFE_ALLOCA (decoded, char *, allength);
3170
3171 move_gap_both (XFASTINT (beg), ibeg);
3172 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3173 decoded, length,
3174 multibyte, &inserted_chars);
3175 if (decoded_length > allength)
3176 abort ();
3177
3178 if (decoded_length < 0)
3179 {
3180 /* The decoding wasn't possible. */
3181 SAFE_FREE ();
3182 error ("Invalid base64 data");
3183 }
3184
3185 /* Now we have decoded the region, so we insert the new contents
3186 and delete the old. (Insert first in order to preserve markers.) */
3187 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3188 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3189 SAFE_FREE ();
3190
3191 /* Delete the original text. */
3192 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3193 iend + decoded_length, 1);
3194
3195 /* If point was outside of the region, restore it exactly; else just
3196 move to the beginning of the region. */
3197 if (old_pos >= XFASTINT (end))
3198 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3199 else if (old_pos > XFASTINT (beg))
3200 old_pos = XFASTINT (beg);
3201 SET_PT (old_pos > ZV ? ZV : old_pos);
3202
3203 return make_number (inserted_chars);
3204 }
3205
3206 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3207 1, 1, 0,
3208 doc: /* Base64-decode STRING and return the result. */)
3209 (Lisp_Object string)
3210 {
3211 char *decoded;
3212 EMACS_INT length, decoded_length;
3213 Lisp_Object decoded_string;
3214 USE_SAFE_ALLOCA;
3215
3216 CHECK_STRING (string);
3217
3218 length = SBYTES (string);
3219 /* We need to allocate enough room for decoding the text. */
3220 SAFE_ALLOCA (decoded, char *, length);
3221
3222 /* The decoded result should be unibyte. */
3223 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3224 0, NULL);
3225 if (decoded_length > length)
3226 abort ();
3227 else if (decoded_length >= 0)
3228 decoded_string = make_unibyte_string (decoded, decoded_length);
3229 else
3230 decoded_string = Qnil;
3231
3232 SAFE_FREE ();
3233 if (!STRINGP (decoded_string))
3234 error ("Invalid base64 data");
3235
3236 return decoded_string;
3237 }
3238
3239 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3240 MULTIBYTE is nonzero, the decoded result should be in multibyte
3241 form. If NCHARS_RETRUN is not NULL, store the number of produced
3242 characters in *NCHARS_RETURN. */
3243
3244 static EMACS_INT
3245 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3246 int multibyte, EMACS_INT *nchars_return)
3247 {
3248 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3249 char *e = to;
3250 unsigned char c;
3251 unsigned long value;
3252 EMACS_INT nchars = 0;
3253
3254 while (1)
3255 {
3256 /* Process first byte of a quadruplet. */
3257
3258 READ_QUADRUPLET_BYTE (e-to);
3259
3260 if (!IS_BASE64 (c))
3261 return -1;
3262 value = base64_char_to_value[c] << 18;
3263
3264 /* Process second byte of a quadruplet. */
3265
3266 READ_QUADRUPLET_BYTE (-1);
3267
3268 if (!IS_BASE64 (c))
3269 return -1;
3270 value |= base64_char_to_value[c] << 12;
3271
3272 c = (unsigned char) (value >> 16);
3273 if (multibyte && c >= 128)
3274 e += BYTE8_STRING (c, e);
3275 else
3276 *e++ = c;
3277 nchars++;
3278
3279 /* Process third byte of a quadruplet. */
3280
3281 READ_QUADRUPLET_BYTE (-1);
3282
3283 if (c == '=')
3284 {
3285 READ_QUADRUPLET_BYTE (-1);
3286
3287 if (c != '=')
3288 return -1;
3289 continue;
3290 }
3291
3292 if (!IS_BASE64 (c))
3293 return -1;
3294 value |= base64_char_to_value[c] << 6;
3295
3296 c = (unsigned char) (0xff & value >> 8);
3297 if (multibyte && c >= 128)
3298 e += BYTE8_STRING (c, e);
3299 else
3300 *e++ = c;
3301 nchars++;
3302
3303 /* Process fourth byte of a quadruplet. */
3304
3305 READ_QUADRUPLET_BYTE (-1);
3306
3307 if (c == '=')
3308 continue;
3309
3310 if (!IS_BASE64 (c))
3311 return -1;
3312 value |= base64_char_to_value[c];
3313
3314 c = (unsigned char) (0xff & value);
3315 if (multibyte && c >= 128)
3316 e += BYTE8_STRING (c, e);
3317 else
3318 *e++ = c;
3319 nchars++;
3320 }
3321 }
3322
3323
3324 \f
3325 /***********************************************************************
3326 ***** *****
3327 ***** Hash Tables *****
3328 ***** *****
3329 ***********************************************************************/
3330
3331 /* Implemented by gerd@gnu.org. This hash table implementation was
3332 inspired by CMUCL hash tables. */
3333
3334 /* Ideas:
3335
3336 1. For small tables, association lists are probably faster than
3337 hash tables because they have lower overhead.
3338
3339 For uses of hash tables where the O(1) behavior of table
3340 operations is not a requirement, it might therefore be a good idea
3341 not to hash. Instead, we could just do a linear search in the
3342 key_and_value vector of the hash table. This could be done
3343 if a `:linear-search t' argument is given to make-hash-table. */
3344
3345
3346 /* The list of all weak hash tables. Don't staticpro this one. */
3347
3348 static struct Lisp_Hash_Table *weak_hash_tables;
3349
3350 /* Various symbols. */
3351
3352 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3353 Lisp_Object Qeq, Qeql, Qequal;
3354 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3355 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3356
3357 /* Function prototypes. */
3358
3359 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3360 static size_t get_key_arg (Lisp_Object, size_t, Lisp_Object *, char *);
3361 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3362 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3363
3364
3365 \f
3366 /***********************************************************************
3367 Utilities
3368 ***********************************************************************/
3369
3370 /* If OBJ is a Lisp hash table, return a pointer to its struct
3371 Lisp_Hash_Table. Otherwise, signal an error. */
3372
3373 static struct Lisp_Hash_Table *
3374 check_hash_table (Lisp_Object obj)
3375 {
3376 CHECK_HASH_TABLE (obj);
3377 return XHASH_TABLE (obj);
3378 }
3379
3380
3381 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3382 number. */
3383
3384 EMACS_INT
3385 next_almost_prime (EMACS_INT n)
3386 {
3387 if (n % 2 == 0)
3388 n += 1;
3389 if (n % 3 == 0)
3390 n += 2;
3391 if (n % 7 == 0)
3392 n += 4;
3393 return n;
3394 }
3395
3396
3397 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3398 which USED[I] is non-zero. If found at index I in ARGS, set
3399 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3400 0. This function is used to extract a keyword/argument pair from
3401 a DEFUN parameter list. */
3402
3403 static size_t
3404 get_key_arg (Lisp_Object key, size_t nargs, Lisp_Object *args, char *used)
3405 {
3406 size_t i;
3407
3408 for (i = 1; i < nargs; i++)
3409 if (!used[i - 1] && EQ (args[i - 1], key))
3410 {
3411 used[i - 1] = 1;
3412 used[i] = 1;
3413 return i;
3414 }
3415
3416 return 0;
3417 }
3418
3419
3420 /* Return a Lisp vector which has the same contents as VEC but has
3421 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3422 vector that are not copied from VEC are set to INIT. */
3423
3424 Lisp_Object
3425 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3426 {
3427 struct Lisp_Vector *v;
3428 EMACS_INT i, old_size;
3429
3430 xassert (VECTORP (vec));
3431 old_size = ASIZE (vec);
3432 xassert (new_size >= old_size);
3433
3434 v = allocate_vector (new_size);
3435 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3436 for (i = old_size; i < new_size; ++i)
3437 v->contents[i] = init;
3438 XSETVECTOR (vec, v);
3439 return vec;
3440 }
3441
3442
3443 /***********************************************************************
3444 Low-level Functions
3445 ***********************************************************************/
3446
3447 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3448 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3449 KEY2 are the same. */
3450
3451 static int
3452 cmpfn_eql (struct Lisp_Hash_Table *h,
3453 Lisp_Object key1, EMACS_UINT hash1,
3454 Lisp_Object key2, EMACS_UINT hash2)
3455 {
3456 return (FLOATP (key1)
3457 && FLOATP (key2)
3458 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3459 }
3460
3461
3462 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3463 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3464 KEY2 are the same. */
3465
3466 static int
3467 cmpfn_equal (struct Lisp_Hash_Table *h,
3468 Lisp_Object key1, EMACS_UINT hash1,
3469 Lisp_Object key2, EMACS_UINT hash2)
3470 {
3471 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3472 }
3473
3474
3475 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3476 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3477 if KEY1 and KEY2 are the same. */
3478
3479 static int
3480 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3481 Lisp_Object key1, EMACS_UINT hash1,
3482 Lisp_Object key2, EMACS_UINT hash2)
3483 {
3484 if (hash1 == hash2)
3485 {
3486 Lisp_Object args[3];
3487
3488 args[0] = h->user_cmp_function;
3489 args[1] = key1;
3490 args[2] = key2;
3491 return !NILP (Ffuncall (3, args));
3492 }
3493 else
3494 return 0;
3495 }
3496
3497
3498 /* Value is a hash code for KEY for use in hash table H which uses
3499 `eq' to compare keys. The hash code returned is guaranteed to fit
3500 in a Lisp integer. */
3501
3502 static EMACS_UINT
3503 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3504 {
3505 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3506 xassert ((hash & ~INTMASK) == 0);
3507 return hash;
3508 }
3509
3510
3511 /* Value is a hash code for KEY for use in hash table H which uses
3512 `eql' to compare keys. The hash code returned is guaranteed to fit
3513 in a Lisp integer. */
3514
3515 static EMACS_UINT
3516 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3517 {
3518 EMACS_UINT hash;
3519 if (FLOATP (key))
3520 hash = sxhash (key, 0);
3521 else
3522 hash = XUINT (key) ^ XTYPE (key);
3523 xassert ((hash & ~INTMASK) == 0);
3524 return hash;
3525 }
3526
3527
3528 /* Value is a hash code for KEY for use in hash table H which uses
3529 `equal' to compare keys. The hash code returned is guaranteed to fit
3530 in a Lisp integer. */
3531
3532 static EMACS_UINT
3533 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3534 {
3535 EMACS_UINT hash = sxhash (key, 0);
3536 xassert ((hash & ~INTMASK) == 0);
3537 return hash;
3538 }
3539
3540
3541 /* Value is a hash code for KEY for use in hash table H which uses as
3542 user-defined function to compare keys. The hash code returned is
3543 guaranteed to fit in a Lisp integer. */
3544
3545 static EMACS_UINT
3546 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3547 {
3548 Lisp_Object args[2], hash;
3549
3550 args[0] = h->user_hash_function;
3551 args[1] = key;
3552 hash = Ffuncall (2, args);
3553 if (!INTEGERP (hash))
3554 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3555 return XUINT (hash);
3556 }
3557
3558
3559 /* Create and initialize a new hash table.
3560
3561 TEST specifies the test the hash table will use to compare keys.
3562 It must be either one of the predefined tests `eq', `eql' or
3563 `equal' or a symbol denoting a user-defined test named TEST with
3564 test and hash functions USER_TEST and USER_HASH.
3565
3566 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3567
3568 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3569 new size when it becomes full is computed by adding REHASH_SIZE to
3570 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3571 table's new size is computed by multiplying its old size with
3572 REHASH_SIZE.
3573
3574 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3575 be resized when the ratio of (number of entries in the table) /
3576 (table size) is >= REHASH_THRESHOLD.
3577
3578 WEAK specifies the weakness of the table. If non-nil, it must be
3579 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3580
3581 Lisp_Object
3582 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3583 Lisp_Object rehash_threshold, Lisp_Object weak,
3584 Lisp_Object user_test, Lisp_Object user_hash)
3585 {
3586 struct Lisp_Hash_Table *h;
3587 Lisp_Object table;
3588 EMACS_INT index_size, i, sz;
3589 double index_float;
3590
3591 /* Preconditions. */
3592 xassert (SYMBOLP (test));
3593 xassert (INTEGERP (size) && XINT (size) >= 0);
3594 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3595 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3596 xassert (FLOATP (rehash_threshold)
3597 && 0 < XFLOAT_DATA (rehash_threshold)
3598 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3599
3600 if (XFASTINT (size) == 0)
3601 size = make_number (1);
3602
3603 sz = XFASTINT (size);
3604 index_float = sz / XFLOAT_DATA (rehash_threshold);
3605 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3606 ? next_almost_prime (index_float)
3607 : MOST_POSITIVE_FIXNUM + 1);
3608 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3609 error ("Hash table too large");
3610
3611 /* Allocate a table and initialize it. */
3612 h = allocate_hash_table ();
3613
3614 /* Initialize hash table slots. */
3615 h->test = test;
3616 if (EQ (test, Qeql))
3617 {
3618 h->cmpfn = cmpfn_eql;
3619 h->hashfn = hashfn_eql;
3620 }
3621 else if (EQ (test, Qeq))
3622 {
3623 h->cmpfn = NULL;
3624 h->hashfn = hashfn_eq;
3625 }
3626 else if (EQ (test, Qequal))
3627 {
3628 h->cmpfn = cmpfn_equal;
3629 h->hashfn = hashfn_equal;
3630 }
3631 else
3632 {
3633 h->user_cmp_function = user_test;
3634 h->user_hash_function = user_hash;
3635 h->cmpfn = cmpfn_user_defined;
3636 h->hashfn = hashfn_user_defined;
3637 }
3638
3639 h->weak = weak;
3640 h->rehash_threshold = rehash_threshold;
3641 h->rehash_size = rehash_size;
3642 h->count = 0;
3643 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3644 h->hash = Fmake_vector (size, Qnil);
3645 h->next = Fmake_vector (size, Qnil);
3646 h->index = Fmake_vector (make_number (index_size), Qnil);
3647
3648 /* Set up the free list. */
3649 for (i = 0; i < sz - 1; ++i)
3650 HASH_NEXT (h, i) = make_number (i + 1);
3651 h->next_free = make_number (0);
3652
3653 XSET_HASH_TABLE (table, h);
3654 xassert (HASH_TABLE_P (table));
3655 xassert (XHASH_TABLE (table) == h);
3656
3657 /* Maybe add this hash table to the list of all weak hash tables. */
3658 if (NILP (h->weak))
3659 h->next_weak = NULL;
3660 else
3661 {
3662 h->next_weak = weak_hash_tables;
3663 weak_hash_tables = h;
3664 }
3665
3666 return table;
3667 }
3668
3669
3670 /* Return a copy of hash table H1. Keys and values are not copied,
3671 only the table itself is. */
3672
3673 static Lisp_Object
3674 copy_hash_table (struct Lisp_Hash_Table *h1)
3675 {
3676 Lisp_Object table;
3677 struct Lisp_Hash_Table *h2;
3678 struct Lisp_Vector *next;
3679
3680 h2 = allocate_hash_table ();
3681 next = h2->header.next.vector;
3682 memcpy (h2, h1, sizeof *h2);
3683 h2->header.next.vector = next;
3684 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3685 h2->hash = Fcopy_sequence (h1->hash);
3686 h2->next = Fcopy_sequence (h1->next);
3687 h2->index = Fcopy_sequence (h1->index);
3688 XSET_HASH_TABLE (table, h2);
3689
3690 /* Maybe add this hash table to the list of all weak hash tables. */
3691 if (!NILP (h2->weak))
3692 {
3693 h2->next_weak = weak_hash_tables;
3694 weak_hash_tables = h2;
3695 }
3696
3697 return table;
3698 }
3699
3700
3701 /* Resize hash table H if it's too full. If H cannot be resized
3702 because it's already too large, throw an error. */
3703
3704 static inline void
3705 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3706 {
3707 if (NILP (h->next_free))
3708 {
3709 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3710 EMACS_INT i, new_size, index_size;
3711 EMACS_INT nsize;
3712 double index_float;
3713
3714 if (INTEGERP (h->rehash_size))
3715 new_size = old_size + XFASTINT (h->rehash_size);
3716 else
3717 {
3718 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3719 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3720 {
3721 new_size = float_new_size;
3722 if (new_size <= old_size)
3723 new_size = old_size + 1;
3724 }
3725 else
3726 new_size = MOST_POSITIVE_FIXNUM + 1;
3727 }
3728 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3729 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3730 ? next_almost_prime (index_float)
3731 : MOST_POSITIVE_FIXNUM + 1);
3732 nsize = max (index_size, 2 * new_size);
3733 if (nsize > MOST_POSITIVE_FIXNUM)
3734 error ("Hash table too large to resize");
3735
3736 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3737 h->next = larger_vector (h->next, new_size, Qnil);
3738 h->hash = larger_vector (h->hash, new_size, Qnil);
3739 h->index = Fmake_vector (make_number (index_size), Qnil);
3740
3741 /* Update the free list. Do it so that new entries are added at
3742 the end of the free list. This makes some operations like
3743 maphash faster. */
3744 for (i = old_size; i < new_size - 1; ++i)
3745 HASH_NEXT (h, i) = make_number (i + 1);
3746
3747 if (!NILP (h->next_free))
3748 {
3749 Lisp_Object last, next;
3750
3751 last = h->next_free;
3752 while (next = HASH_NEXT (h, XFASTINT (last)),
3753 !NILP (next))
3754 last = next;
3755
3756 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3757 }
3758 else
3759 XSETFASTINT (h->next_free, old_size);
3760
3761 /* Rehash. */
3762 for (i = 0; i < old_size; ++i)
3763 if (!NILP (HASH_HASH (h, i)))
3764 {
3765 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3766 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3767 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3768 HASH_INDEX (h, start_of_bucket) = make_number (i);
3769 }
3770 }
3771 }
3772
3773
3774 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3775 the hash code of KEY. Value is the index of the entry in H
3776 matching KEY, or -1 if not found. */
3777
3778 EMACS_INT
3779 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3780 {
3781 EMACS_UINT hash_code;
3782 EMACS_INT start_of_bucket;
3783 Lisp_Object idx;
3784
3785 hash_code = h->hashfn (h, key);
3786 if (hash)
3787 *hash = hash_code;
3788
3789 start_of_bucket = hash_code % ASIZE (h->index);
3790 idx = HASH_INDEX (h, start_of_bucket);
3791
3792 /* We need not gcpro idx since it's either an integer or nil. */
3793 while (!NILP (idx))
3794 {
3795 EMACS_INT i = XFASTINT (idx);
3796 if (EQ (key, HASH_KEY (h, i))
3797 || (h->cmpfn
3798 && h->cmpfn (h, key, hash_code,
3799 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3800 break;
3801 idx = HASH_NEXT (h, i);
3802 }
3803
3804 return NILP (idx) ? -1 : XFASTINT (idx);
3805 }
3806
3807
3808 /* Put an entry into hash table H that associates KEY with VALUE.
3809 HASH is a previously computed hash code of KEY.
3810 Value is the index of the entry in H matching KEY. */
3811
3812 EMACS_INT
3813 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3814 EMACS_UINT hash)
3815 {
3816 EMACS_INT start_of_bucket, i;
3817
3818 xassert ((hash & ~INTMASK) == 0);
3819
3820 /* Increment count after resizing because resizing may fail. */
3821 maybe_resize_hash_table (h);
3822 h->count++;
3823
3824 /* Store key/value in the key_and_value vector. */
3825 i = XFASTINT (h->next_free);
3826 h->next_free = HASH_NEXT (h, i);
3827 HASH_KEY (h, i) = key;
3828 HASH_VALUE (h, i) = value;
3829
3830 /* Remember its hash code. */
3831 HASH_HASH (h, i) = make_number (hash);
3832
3833 /* Add new entry to its collision chain. */
3834 start_of_bucket = hash % ASIZE (h->index);
3835 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3836 HASH_INDEX (h, start_of_bucket) = make_number (i);
3837 return i;
3838 }
3839
3840
3841 /* Remove the entry matching KEY from hash table H, if there is one. */
3842
3843 static void
3844 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3845 {
3846 EMACS_UINT hash_code;
3847 EMACS_INT start_of_bucket;
3848 Lisp_Object idx, prev;
3849
3850 hash_code = h->hashfn (h, key);
3851 start_of_bucket = hash_code % ASIZE (h->index);
3852 idx = HASH_INDEX (h, start_of_bucket);
3853 prev = Qnil;
3854
3855 /* We need not gcpro idx, prev since they're either integers or nil. */
3856 while (!NILP (idx))
3857 {
3858 EMACS_INT i = XFASTINT (idx);
3859
3860 if (EQ (key, HASH_KEY (h, i))
3861 || (h->cmpfn
3862 && h->cmpfn (h, key, hash_code,
3863 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3864 {
3865 /* Take entry out of collision chain. */
3866 if (NILP (prev))
3867 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3868 else
3869 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3870
3871 /* Clear slots in key_and_value and add the slots to
3872 the free list. */
3873 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3874 HASH_NEXT (h, i) = h->next_free;
3875 h->next_free = make_number (i);
3876 h->count--;
3877 xassert (h->count >= 0);
3878 break;
3879 }
3880 else
3881 {
3882 prev = idx;
3883 idx = HASH_NEXT (h, i);
3884 }
3885 }
3886 }
3887
3888
3889 /* Clear hash table H. */
3890
3891 static void
3892 hash_clear (struct Lisp_Hash_Table *h)
3893 {
3894 if (h->count > 0)
3895 {
3896 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3897
3898 for (i = 0; i < size; ++i)
3899 {
3900 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3901 HASH_KEY (h, i) = Qnil;
3902 HASH_VALUE (h, i) = Qnil;
3903 HASH_HASH (h, i) = Qnil;
3904 }
3905
3906 for (i = 0; i < ASIZE (h->index); ++i)
3907 ASET (h->index, i, Qnil);
3908
3909 h->next_free = make_number (0);
3910 h->count = 0;
3911 }
3912 }
3913
3914
3915 \f
3916 /************************************************************************
3917 Weak Hash Tables
3918 ************************************************************************/
3919
3920 void
3921 init_weak_hash_tables (void)
3922 {
3923 weak_hash_tables = NULL;
3924 }
3925
3926 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3927 entries from the table that don't survive the current GC.
3928 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3929 non-zero if anything was marked. */
3930
3931 static int
3932 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3933 {
3934 EMACS_INT bucket, n;
3935 int marked;
3936
3937 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3938 marked = 0;
3939
3940 for (bucket = 0; bucket < n; ++bucket)
3941 {
3942 Lisp_Object idx, next, prev;
3943
3944 /* Follow collision chain, removing entries that
3945 don't survive this garbage collection. */
3946 prev = Qnil;
3947 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3948 {
3949 EMACS_INT i = XFASTINT (idx);
3950 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3951 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3952 int remove_p;
3953
3954 if (EQ (h->weak, Qkey))
3955 remove_p = !key_known_to_survive_p;
3956 else if (EQ (h->weak, Qvalue))
3957 remove_p = !value_known_to_survive_p;
3958 else if (EQ (h->weak, Qkey_or_value))
3959 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3960 else if (EQ (h->weak, Qkey_and_value))
3961 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3962 else
3963 abort ();
3964
3965 next = HASH_NEXT (h, i);
3966
3967 if (remove_entries_p)
3968 {
3969 if (remove_p)
3970 {
3971 /* Take out of collision chain. */
3972 if (NILP (prev))
3973 HASH_INDEX (h, bucket) = next;
3974 else
3975 HASH_NEXT (h, XFASTINT (prev)) = next;
3976
3977 /* Add to free list. */
3978 HASH_NEXT (h, i) = h->next_free;
3979 h->next_free = idx;
3980
3981 /* Clear key, value, and hash. */
3982 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3983 HASH_HASH (h, i) = Qnil;
3984
3985 h->count--;
3986 }
3987 else
3988 {
3989 prev = idx;
3990 }
3991 }
3992 else
3993 {
3994 if (!remove_p)
3995 {
3996 /* Make sure key and value survive. */
3997 if (!key_known_to_survive_p)
3998 {
3999 mark_object (HASH_KEY (h, i));
4000 marked = 1;
4001 }
4002
4003 if (!value_known_to_survive_p)
4004 {
4005 mark_object (HASH_VALUE (h, i));
4006 marked = 1;
4007 }
4008 }
4009 }
4010 }
4011 }
4012
4013 return marked;
4014 }
4015
4016 /* Remove elements from weak hash tables that don't survive the
4017 current garbage collection. Remove weak tables that don't survive
4018 from Vweak_hash_tables. Called from gc_sweep. */
4019
4020 void
4021 sweep_weak_hash_tables (void)
4022 {
4023 struct Lisp_Hash_Table *h, *used, *next;
4024 int marked;
4025
4026 /* Mark all keys and values that are in use. Keep on marking until
4027 there is no more change. This is necessary for cases like
4028 value-weak table A containing an entry X -> Y, where Y is used in a
4029 key-weak table B, Z -> Y. If B comes after A in the list of weak
4030 tables, X -> Y might be removed from A, although when looking at B
4031 one finds that it shouldn't. */
4032 do
4033 {
4034 marked = 0;
4035 for (h = weak_hash_tables; h; h = h->next_weak)
4036 {
4037 if (h->header.size & ARRAY_MARK_FLAG)
4038 marked |= sweep_weak_table (h, 0);
4039 }
4040 }
4041 while (marked);
4042
4043 /* Remove tables and entries that aren't used. */
4044 for (h = weak_hash_tables, used = NULL; h; h = next)
4045 {
4046 next = h->next_weak;
4047
4048 if (h->header.size & ARRAY_MARK_FLAG)
4049 {
4050 /* TABLE is marked as used. Sweep its contents. */
4051 if (h->count > 0)
4052 sweep_weak_table (h, 1);
4053
4054 /* Add table to the list of used weak hash tables. */
4055 h->next_weak = used;
4056 used = h;
4057 }
4058 }
4059
4060 weak_hash_tables = used;
4061 }
4062
4063
4064 \f
4065 /***********************************************************************
4066 Hash Code Computation
4067 ***********************************************************************/
4068
4069 /* Maximum depth up to which to dive into Lisp structures. */
4070
4071 #define SXHASH_MAX_DEPTH 3
4072
4073 /* Maximum length up to which to take list and vector elements into
4074 account. */
4075
4076 #define SXHASH_MAX_LEN 7
4077
4078 /* Combine two integers X and Y for hashing. The result might not fit
4079 into a Lisp integer. */
4080
4081 #define SXHASH_COMBINE(X, Y) \
4082 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4083 + (EMACS_UINT) (Y))
4084
4085 /* Hash X, returning a value that fits into a Lisp integer. */
4086 #define SXHASH_REDUCE(X) \
4087 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4088
4089 /* Return a hash for string PTR which has length LEN. The hash
4090 code returned is guaranteed to fit in a Lisp integer. */
4091
4092 static EMACS_UINT
4093 sxhash_string (unsigned char *ptr, EMACS_INT len)
4094 {
4095 unsigned char *p = ptr;
4096 unsigned char *end = p + len;
4097 unsigned char c;
4098 EMACS_UINT hash = 0;
4099
4100 while (p != end)
4101 {
4102 c = *p++;
4103 if (c >= 0140)
4104 c -= 40;
4105 hash = SXHASH_COMBINE (hash, c);
4106 }
4107
4108 return SXHASH_REDUCE (hash);
4109 }
4110
4111 /* Return a hash for the floating point value VAL. */
4112
4113 static EMACS_INT
4114 sxhash_float (double val)
4115 {
4116 EMACS_UINT hash = 0;
4117 enum {
4118 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4119 + (sizeof val % sizeof hash != 0))
4120 };
4121 union {
4122 double val;
4123 EMACS_UINT word[WORDS_PER_DOUBLE];
4124 } u;
4125 int i;
4126 u.val = val;
4127 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4128 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4129 hash = SXHASH_COMBINE (hash, u.word[i]);
4130 return SXHASH_REDUCE (hash);
4131 }
4132
4133 /* Return a hash for list LIST. DEPTH is the current depth in the
4134 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4135
4136 static EMACS_UINT
4137 sxhash_list (Lisp_Object list, int depth)
4138 {
4139 EMACS_UINT hash = 0;
4140 int i;
4141
4142 if (depth < SXHASH_MAX_DEPTH)
4143 for (i = 0;
4144 CONSP (list) && i < SXHASH_MAX_LEN;
4145 list = XCDR (list), ++i)
4146 {
4147 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4148 hash = SXHASH_COMBINE (hash, hash2);
4149 }
4150
4151 if (!NILP (list))
4152 {
4153 EMACS_UINT hash2 = sxhash (list, depth + 1);
4154 hash = SXHASH_COMBINE (hash, hash2);
4155 }
4156
4157 return SXHASH_REDUCE (hash);
4158 }
4159
4160
4161 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4162 the Lisp structure. */
4163
4164 static EMACS_UINT
4165 sxhash_vector (Lisp_Object vec, int depth)
4166 {
4167 EMACS_UINT hash = ASIZE (vec);
4168 int i, n;
4169
4170 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4171 for (i = 0; i < n; ++i)
4172 {
4173 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4174 hash = SXHASH_COMBINE (hash, hash2);
4175 }
4176
4177 return SXHASH_REDUCE (hash);
4178 }
4179
4180 /* Return a hash for bool-vector VECTOR. */
4181
4182 static EMACS_UINT
4183 sxhash_bool_vector (Lisp_Object vec)
4184 {
4185 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4186 int i, n;
4187
4188 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4189 for (i = 0; i < n; ++i)
4190 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4191
4192 return SXHASH_REDUCE (hash);
4193 }
4194
4195
4196 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4197 structure. Value is an unsigned integer clipped to INTMASK. */
4198
4199 EMACS_UINT
4200 sxhash (Lisp_Object obj, int depth)
4201 {
4202 EMACS_UINT hash;
4203
4204 if (depth > SXHASH_MAX_DEPTH)
4205 return 0;
4206
4207 switch (XTYPE (obj))
4208 {
4209 case_Lisp_Int:
4210 hash = XUINT (obj);
4211 break;
4212
4213 case Lisp_Misc:
4214 hash = XUINT (obj);
4215 break;
4216
4217 case Lisp_Symbol:
4218 obj = SYMBOL_NAME (obj);
4219 /* Fall through. */
4220
4221 case Lisp_String:
4222 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4223 break;
4224
4225 /* This can be everything from a vector to an overlay. */
4226 case Lisp_Vectorlike:
4227 if (VECTORP (obj))
4228 /* According to the CL HyperSpec, two arrays are equal only if
4229 they are `eq', except for strings and bit-vectors. In
4230 Emacs, this works differently. We have to compare element
4231 by element. */
4232 hash = sxhash_vector (obj, depth);
4233 else if (BOOL_VECTOR_P (obj))
4234 hash = sxhash_bool_vector (obj);
4235 else
4236 /* Others are `equal' if they are `eq', so let's take their
4237 address as hash. */
4238 hash = XUINT (obj);
4239 break;
4240
4241 case Lisp_Cons:
4242 hash = sxhash_list (obj, depth);
4243 break;
4244
4245 case Lisp_Float:
4246 hash = sxhash_float (XFLOAT_DATA (obj));
4247 break;
4248
4249 default:
4250 abort ();
4251 }
4252
4253 return hash;
4254 }
4255
4256
4257 \f
4258 /***********************************************************************
4259 Lisp Interface
4260 ***********************************************************************/
4261
4262
4263 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4264 doc: /* Compute a hash code for OBJ and return it as integer. */)
4265 (Lisp_Object obj)
4266 {
4267 EMACS_UINT hash = sxhash (obj, 0);
4268 return make_number (hash);
4269 }
4270
4271
4272 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4273 doc: /* Create and return a new hash table.
4274
4275 Arguments are specified as keyword/argument pairs. The following
4276 arguments are defined:
4277
4278 :test TEST -- TEST must be a symbol that specifies how to compare
4279 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4280 `equal'. User-supplied test and hash functions can be specified via
4281 `define-hash-table-test'.
4282
4283 :size SIZE -- A hint as to how many elements will be put in the table.
4284 Default is 65.
4285
4286 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4287 fills up. If REHASH-SIZE is an integer, increase the size by that
4288 amount. If it is a float, it must be > 1.0, and the new size is the
4289 old size multiplied by that factor. Default is 1.5.
4290
4291 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4292 Resize the hash table when the ratio (number of entries / table size)
4293 is greater than or equal to THRESHOLD. Default is 0.8.
4294
4295 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4296 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4297 returned is a weak table. Key/value pairs are removed from a weak
4298 hash table when there are no non-weak references pointing to their
4299 key, value, one of key or value, or both key and value, depending on
4300 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4301 is nil.
4302
4303 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4304 (size_t nargs, Lisp_Object *args)
4305 {
4306 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4307 Lisp_Object user_test, user_hash;
4308 char *used;
4309 size_t i;
4310
4311 /* The vector `used' is used to keep track of arguments that
4312 have been consumed. */
4313 used = (char *) alloca (nargs * sizeof *used);
4314 memset (used, 0, nargs * sizeof *used);
4315
4316 /* See if there's a `:test TEST' among the arguments. */
4317 i = get_key_arg (QCtest, nargs, args, used);
4318 test = i ? args[i] : Qeql;
4319 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4320 {
4321 /* See if it is a user-defined test. */
4322 Lisp_Object prop;
4323
4324 prop = Fget (test, Qhash_table_test);
4325 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4326 signal_error ("Invalid hash table test", test);
4327 user_test = XCAR (prop);
4328 user_hash = XCAR (XCDR (prop));
4329 }
4330 else
4331 user_test = user_hash = Qnil;
4332
4333 /* See if there's a `:size SIZE' argument. */
4334 i = get_key_arg (QCsize, nargs, args, used);
4335 size = i ? args[i] : Qnil;
4336 if (NILP (size))
4337 size = make_number (DEFAULT_HASH_SIZE);
4338 else if (!INTEGERP (size) || XINT (size) < 0)
4339 signal_error ("Invalid hash table size", size);
4340
4341 /* Look for `:rehash-size SIZE'. */
4342 i = get_key_arg (QCrehash_size, nargs, args, used);
4343 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4344 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4345 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4346 signal_error ("Invalid hash table rehash size", rehash_size);
4347
4348 /* Look for `:rehash-threshold THRESHOLD'. */
4349 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4350 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4351 if (! (FLOATP (rehash_threshold)
4352 && 0 < XFLOAT_DATA (rehash_threshold)
4353 && XFLOAT_DATA (rehash_threshold) <= 1))
4354 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4355
4356 /* Look for `:weakness WEAK'. */
4357 i = get_key_arg (QCweakness, nargs, args, used);
4358 weak = i ? args[i] : Qnil;
4359 if (EQ (weak, Qt))
4360 weak = Qkey_and_value;
4361 if (!NILP (weak)
4362 && !EQ (weak, Qkey)
4363 && !EQ (weak, Qvalue)
4364 && !EQ (weak, Qkey_or_value)
4365 && !EQ (weak, Qkey_and_value))
4366 signal_error ("Invalid hash table weakness", weak);
4367
4368 /* Now, all args should have been used up, or there's a problem. */
4369 for (i = 0; i < nargs; ++i)
4370 if (!used[i])
4371 signal_error ("Invalid argument list", args[i]);
4372
4373 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4374 user_test, user_hash);
4375 }
4376
4377
4378 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4379 doc: /* Return a copy of hash table TABLE. */)
4380 (Lisp_Object table)
4381 {
4382 return copy_hash_table (check_hash_table (table));
4383 }
4384
4385
4386 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4387 doc: /* Return the number of elements in TABLE. */)
4388 (Lisp_Object table)
4389 {
4390 return make_number (check_hash_table (table)->count);
4391 }
4392
4393
4394 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4395 Shash_table_rehash_size, 1, 1, 0,
4396 doc: /* Return the current rehash size of TABLE. */)
4397 (Lisp_Object table)
4398 {
4399 return check_hash_table (table)->rehash_size;
4400 }
4401
4402
4403 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4404 Shash_table_rehash_threshold, 1, 1, 0,
4405 doc: /* Return the current rehash threshold of TABLE. */)
4406 (Lisp_Object table)
4407 {
4408 return check_hash_table (table)->rehash_threshold;
4409 }
4410
4411
4412 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4413 doc: /* Return the size of TABLE.
4414 The size can be used as an argument to `make-hash-table' to create
4415 a hash table than can hold as many elements as TABLE holds
4416 without need for resizing. */)
4417 (Lisp_Object table)
4418 {
4419 struct Lisp_Hash_Table *h = check_hash_table (table);
4420 return make_number (HASH_TABLE_SIZE (h));
4421 }
4422
4423
4424 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4425 doc: /* Return the test TABLE uses. */)
4426 (Lisp_Object table)
4427 {
4428 return check_hash_table (table)->test;
4429 }
4430
4431
4432 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4433 1, 1, 0,
4434 doc: /* Return the weakness of TABLE. */)
4435 (Lisp_Object table)
4436 {
4437 return check_hash_table (table)->weak;
4438 }
4439
4440
4441 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4442 doc: /* Return t if OBJ is a Lisp hash table object. */)
4443 (Lisp_Object obj)
4444 {
4445 return HASH_TABLE_P (obj) ? Qt : Qnil;
4446 }
4447
4448
4449 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4450 doc: /* Clear hash table TABLE and return it. */)
4451 (Lisp_Object table)
4452 {
4453 hash_clear (check_hash_table (table));
4454 /* Be compatible with XEmacs. */
4455 return table;
4456 }
4457
4458
4459 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4460 doc: /* Look up KEY in TABLE and return its associated value.
4461 If KEY is not found, return DFLT which defaults to nil. */)
4462 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4463 {
4464 struct Lisp_Hash_Table *h = check_hash_table (table);
4465 EMACS_INT i = hash_lookup (h, key, NULL);
4466 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4467 }
4468
4469
4470 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4471 doc: /* Associate KEY with VALUE in hash table TABLE.
4472 If KEY is already present in table, replace its current value with
4473 VALUE. In any case, return VALUE. */)
4474 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4475 {
4476 struct Lisp_Hash_Table *h = check_hash_table (table);
4477 EMACS_INT i;
4478 EMACS_UINT hash;
4479
4480 i = hash_lookup (h, key, &hash);
4481 if (i >= 0)
4482 HASH_VALUE (h, i) = value;
4483 else
4484 hash_put (h, key, value, hash);
4485
4486 return value;
4487 }
4488
4489
4490 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4491 doc: /* Remove KEY from TABLE. */)
4492 (Lisp_Object key, Lisp_Object table)
4493 {
4494 struct Lisp_Hash_Table *h = check_hash_table (table);
4495 hash_remove_from_table (h, key);
4496 return Qnil;
4497 }
4498
4499
4500 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4501 doc: /* Call FUNCTION for all entries in hash table TABLE.
4502 FUNCTION is called with two arguments, KEY and VALUE. */)
4503 (Lisp_Object function, Lisp_Object table)
4504 {
4505 struct Lisp_Hash_Table *h = check_hash_table (table);
4506 Lisp_Object args[3];
4507 EMACS_INT i;
4508
4509 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4510 if (!NILP (HASH_HASH (h, i)))
4511 {
4512 args[0] = function;
4513 args[1] = HASH_KEY (h, i);
4514 args[2] = HASH_VALUE (h, i);
4515 Ffuncall (3, args);
4516 }
4517
4518 return Qnil;
4519 }
4520
4521
4522 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4523 Sdefine_hash_table_test, 3, 3, 0,
4524 doc: /* Define a new hash table test with name NAME, a symbol.
4525
4526 In hash tables created with NAME specified as test, use TEST to
4527 compare keys, and HASH for computing hash codes of keys.
4528
4529 TEST must be a function taking two arguments and returning non-nil if
4530 both arguments are the same. HASH must be a function taking one
4531 argument and return an integer that is the hash code of the argument.
4532 Hash code computation should use the whole value range of integers,
4533 including negative integers. */)
4534 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4535 {
4536 return Fput (name, Qhash_table_test, list2 (test, hash));
4537 }
4538
4539
4540 \f
4541 /************************************************************************
4542 MD5 and SHA1
4543 ************************************************************************/
4544
4545 #include "md5.h"
4546 #include "sha1.h"
4547
4548 /* Convert a possibly-signed character to an unsigned character. This is
4549 a bit safer than casting to unsigned char, since it catches some type
4550 errors that the cast doesn't. */
4551 static inline unsigned char to_uchar (char ch) { return ch; }
4552
4553 /* TYPE: 0 for md5, 1 for sha1. */
4554
4555 static Lisp_Object
4556 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4557 {
4558 int i;
4559 EMACS_INT size;
4560 EMACS_INT size_byte = 0;
4561 EMACS_INT start_char = 0, end_char = 0;
4562 EMACS_INT start_byte = 0, end_byte = 0;
4563 register EMACS_INT b, e;
4564 register struct buffer *bp;
4565 EMACS_INT temp;
4566 Lisp_Object res=Qnil;
4567
4568 if (STRINGP (object))
4569 {
4570 if (NILP (coding_system))
4571 {
4572 /* Decide the coding-system to encode the data with. */
4573
4574 if (STRING_MULTIBYTE (object))
4575 /* use default, we can't guess correct value */
4576 coding_system = preferred_coding_system ();
4577 else
4578 coding_system = Qraw_text;
4579 }
4580
4581 if (NILP (Fcoding_system_p (coding_system)))
4582 {
4583 /* Invalid coding system. */
4584
4585 if (!NILP (noerror))
4586 coding_system = Qraw_text;
4587 else
4588 xsignal1 (Qcoding_system_error, coding_system);
4589 }
4590
4591 if (STRING_MULTIBYTE (object))
4592 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4593
4594 size = SCHARS (object);
4595 size_byte = SBYTES (object);
4596
4597 if (!NILP (start))
4598 {
4599 CHECK_NUMBER (start);
4600
4601 start_char = XINT (start);
4602
4603 if (start_char < 0)
4604 start_char += size;
4605
4606 start_byte = string_char_to_byte (object, start_char);
4607 }
4608
4609 if (NILP (end))
4610 {
4611 end_char = size;
4612 end_byte = size_byte;
4613 }
4614 else
4615 {
4616 CHECK_NUMBER (end);
4617
4618 end_char = XINT (end);
4619
4620 if (end_char < 0)
4621 end_char += size;
4622
4623 end_byte = string_char_to_byte (object, end_char);
4624 }
4625
4626 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4627 args_out_of_range_3 (object, make_number (start_char),
4628 make_number (end_char));
4629 }
4630 else
4631 {
4632 struct buffer *prev = current_buffer;
4633
4634 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4635
4636 CHECK_BUFFER (object);
4637
4638 bp = XBUFFER (object);
4639 if (bp != current_buffer)
4640 set_buffer_internal (bp);
4641
4642 if (NILP (start))
4643 b = BEGV;
4644 else
4645 {
4646 CHECK_NUMBER_COERCE_MARKER (start);
4647 b = XINT (start);
4648 }
4649
4650 if (NILP (end))
4651 e = ZV;
4652 else
4653 {
4654 CHECK_NUMBER_COERCE_MARKER (end);
4655 e = XINT (end);
4656 }
4657
4658 if (b > e)
4659 temp = b, b = e, e = temp;
4660
4661 if (!(BEGV <= b && e <= ZV))
4662 args_out_of_range (start, end);
4663
4664 if (NILP (coding_system))
4665 {
4666 /* Decide the coding-system to encode the data with.
4667 See fileio.c:Fwrite-region */
4668
4669 if (!NILP (Vcoding_system_for_write))
4670 coding_system = Vcoding_system_for_write;
4671 else
4672 {
4673 int force_raw_text = 0;
4674
4675 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4676 if (NILP (coding_system)
4677 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4678 {
4679 coding_system = Qnil;
4680 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4681 force_raw_text = 1;
4682 }
4683
4684 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4685 {
4686 /* Check file-coding-system-alist. */
4687 Lisp_Object args[4], val;
4688
4689 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4690 args[3] = Fbuffer_file_name(object);
4691 val = Ffind_operation_coding_system (4, args);
4692 if (CONSP (val) && !NILP (XCDR (val)))
4693 coding_system = XCDR (val);
4694 }
4695
4696 if (NILP (coding_system)
4697 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4698 {
4699 /* If we still have not decided a coding system, use the
4700 default value of buffer-file-coding-system. */
4701 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4702 }
4703
4704 if (!force_raw_text
4705 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4706 /* Confirm that VAL can surely encode the current region. */
4707 coding_system = call4 (Vselect_safe_coding_system_function,
4708 make_number (b), make_number (e),
4709 coding_system, Qnil);
4710
4711 if (force_raw_text)
4712 coding_system = Qraw_text;
4713 }
4714
4715 if (NILP (Fcoding_system_p (coding_system)))
4716 {
4717 /* Invalid coding system. */
4718
4719 if (!NILP (noerror))
4720 coding_system = Qraw_text;
4721 else
4722 xsignal1 (Qcoding_system_error, coding_system);
4723 }
4724 }
4725
4726 object = make_buffer_string (b, e, 0);
4727 if (prev != current_buffer)
4728 set_buffer_internal (prev);
4729 /* Discard the unwind protect for recovering the current
4730 buffer. */
4731 specpdl_ptr--;
4732
4733 if (STRING_MULTIBYTE (object))
4734 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4735 }
4736
4737 switch (type)
4738 {
4739 case 0: /* MD5 */
4740 {
4741 char digest[16];
4742 md5_buffer (SSDATA (object) + start_byte,
4743 SBYTES (object) - (size_byte - end_byte),
4744 digest);
4745
4746 if (NILP (binary))
4747 {
4748 char value[33];
4749 for (i = 0; i < 16; i++)
4750 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4751 res = make_string (value, 32);
4752 }
4753 else
4754 res = make_string (digest, 16);
4755 break;
4756 }
4757
4758 case 1: /* SHA1 */
4759 {
4760 char digest[20];
4761 sha1_buffer (SSDATA (object) + start_byte,
4762 SBYTES (object) - (size_byte - end_byte),
4763 digest);
4764 if (NILP (binary))
4765 {
4766 char value[41];
4767 for (i = 0; i < 20; i++)
4768 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4769 res = make_string (value, 40);
4770 }
4771 else
4772 res = make_string (digest, 20);
4773 break;
4774 }
4775 }
4776
4777 return res;
4778 }
4779
4780 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4781 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4782
4783 A message digest is a cryptographic checksum of a document, and the
4784 algorithm to calculate it is defined in RFC 1321.
4785
4786 The two optional arguments START and END are character positions
4787 specifying for which part of OBJECT the message digest should be
4788 computed. If nil or omitted, the digest is computed for the whole
4789 OBJECT.
4790
4791 The MD5 message digest is computed from the result of encoding the
4792 text in a coding system, not directly from the internal Emacs form of
4793 the text. The optional fourth argument CODING-SYSTEM specifies which
4794 coding system to encode the text with. It should be the same coding
4795 system that you used or will use when actually writing the text into a
4796 file.
4797
4798 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4799 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4800 system would be chosen by default for writing this text into a file.
4801
4802 If OBJECT is a string, the most preferred coding system (see the
4803 command `prefer-coding-system') is used.
4804
4805 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4806 guesswork fails. Normally, an error is signaled in such case. */)
4807 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4808 {
4809 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4810 }
4811
4812 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4813 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4814
4815 OBJECT is either a string or a buffer. Optional arguments START and
4816 END are character positions specifying which portion of OBJECT for
4817 computing the hash. If BINARY is non-nil, return a string in binary
4818 form. */)
4819 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4820 {
4821 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4822 }
4823
4824 \f
4825 void
4826 syms_of_fns (void)
4827 {
4828 /* Hash table stuff. */
4829 Qhash_table_p = intern_c_string ("hash-table-p");
4830 staticpro (&Qhash_table_p);
4831 Qeq = intern_c_string ("eq");
4832 staticpro (&Qeq);
4833 Qeql = intern_c_string ("eql");
4834 staticpro (&Qeql);
4835 Qequal = intern_c_string ("equal");
4836 staticpro (&Qequal);
4837 QCtest = intern_c_string (":test");
4838 staticpro (&QCtest);
4839 QCsize = intern_c_string (":size");
4840 staticpro (&QCsize);
4841 QCrehash_size = intern_c_string (":rehash-size");
4842 staticpro (&QCrehash_size);
4843 QCrehash_threshold = intern_c_string (":rehash-threshold");
4844 staticpro (&QCrehash_threshold);
4845 QCweakness = intern_c_string (":weakness");
4846 staticpro (&QCweakness);
4847 Qkey = intern_c_string ("key");
4848 staticpro (&Qkey);
4849 Qvalue = intern_c_string ("value");
4850 staticpro (&Qvalue);
4851 Qhash_table_test = intern_c_string ("hash-table-test");
4852 staticpro (&Qhash_table_test);
4853 Qkey_or_value = intern_c_string ("key-or-value");
4854 staticpro (&Qkey_or_value);
4855 Qkey_and_value = intern_c_string ("key-and-value");
4856 staticpro (&Qkey_and_value);
4857
4858 defsubr (&Ssxhash);
4859 defsubr (&Smake_hash_table);
4860 defsubr (&Scopy_hash_table);
4861 defsubr (&Shash_table_count);
4862 defsubr (&Shash_table_rehash_size);
4863 defsubr (&Shash_table_rehash_threshold);
4864 defsubr (&Shash_table_size);
4865 defsubr (&Shash_table_test);
4866 defsubr (&Shash_table_weakness);
4867 defsubr (&Shash_table_p);
4868 defsubr (&Sclrhash);
4869 defsubr (&Sgethash);
4870 defsubr (&Sputhash);
4871 defsubr (&Sremhash);
4872 defsubr (&Smaphash);
4873 defsubr (&Sdefine_hash_table_test);
4874
4875 Qstring_lessp = intern_c_string ("string-lessp");
4876 staticpro (&Qstring_lessp);
4877 Qprovide = intern_c_string ("provide");
4878 staticpro (&Qprovide);
4879 Qrequire = intern_c_string ("require");
4880 staticpro (&Qrequire);
4881 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4882 staticpro (&Qyes_or_no_p_history);
4883 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4884 staticpro (&Qcursor_in_echo_area);
4885 Qwidget_type = intern_c_string ("widget-type");
4886 staticpro (&Qwidget_type);
4887
4888 staticpro (&string_char_byte_cache_string);
4889 string_char_byte_cache_string = Qnil;
4890
4891 require_nesting_list = Qnil;
4892 staticpro (&require_nesting_list);
4893
4894 Fset (Qyes_or_no_p_history, Qnil);
4895
4896 DEFVAR_LISP ("features", Vfeatures,
4897 doc: /* A list of symbols which are the features of the executing Emacs.
4898 Used by `featurep' and `require', and altered by `provide'. */);
4899 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4900 Qsubfeatures = intern_c_string ("subfeatures");
4901 staticpro (&Qsubfeatures);
4902
4903 #ifdef HAVE_LANGINFO_CODESET
4904 Qcodeset = intern_c_string ("codeset");
4905 staticpro (&Qcodeset);
4906 Qdays = intern_c_string ("days");
4907 staticpro (&Qdays);
4908 Qmonths = intern_c_string ("months");
4909 staticpro (&Qmonths);
4910 Qpaper = intern_c_string ("paper");
4911 staticpro (&Qpaper);
4912 #endif /* HAVE_LANGINFO_CODESET */
4913
4914 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4915 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4916 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4917 invoked by mouse clicks and mouse menu items.
4918
4919 On some platforms, file selection dialogs are also enabled if this is
4920 non-nil. */);
4921 use_dialog_box = 1;
4922
4923 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4924 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4925 This applies to commands from menus and tool bar buttons even when
4926 they are initiated from the keyboard. If `use-dialog-box' is nil,
4927 that disables the use of a file dialog, regardless of the value of
4928 this variable. */);
4929 use_file_dialog = 1;
4930
4931 defsubr (&Sidentity);
4932 defsubr (&Srandom);
4933 defsubr (&Slength);
4934 defsubr (&Ssafe_length);
4935 defsubr (&Sstring_bytes);
4936 defsubr (&Sstring_equal);
4937 defsubr (&Scompare_strings);
4938 defsubr (&Sstring_lessp);
4939 defsubr (&Sappend);
4940 defsubr (&Sconcat);
4941 defsubr (&Svconcat);
4942 defsubr (&Scopy_sequence);
4943 defsubr (&Sstring_make_multibyte);
4944 defsubr (&Sstring_make_unibyte);
4945 defsubr (&Sstring_as_multibyte);
4946 defsubr (&Sstring_as_unibyte);
4947 defsubr (&Sstring_to_multibyte);
4948 defsubr (&Sstring_to_unibyte);
4949 defsubr (&Scopy_alist);
4950 defsubr (&Ssubstring);
4951 defsubr (&Ssubstring_no_properties);
4952 defsubr (&Snthcdr);
4953 defsubr (&Snth);
4954 defsubr (&Selt);
4955 defsubr (&Smember);
4956 defsubr (&Smemq);
4957 defsubr (&Smemql);
4958 defsubr (&Sassq);
4959 defsubr (&Sassoc);
4960 defsubr (&Srassq);
4961 defsubr (&Srassoc);
4962 defsubr (&Sdelq);
4963 defsubr (&Sdelete);
4964 defsubr (&Snreverse);
4965 defsubr (&Sreverse);
4966 defsubr (&Ssort);
4967 defsubr (&Splist_get);
4968 defsubr (&Sget);
4969 defsubr (&Splist_put);
4970 defsubr (&Sput);
4971 defsubr (&Slax_plist_get);
4972 defsubr (&Slax_plist_put);
4973 defsubr (&Seql);
4974 defsubr (&Sequal);
4975 defsubr (&Sequal_including_properties);
4976 defsubr (&Sfillarray);
4977 defsubr (&Sclear_string);
4978 defsubr (&Snconc);
4979 defsubr (&Smapcar);
4980 defsubr (&Smapc);
4981 defsubr (&Smapconcat);
4982 defsubr (&Syes_or_no_p);
4983 defsubr (&Sload_average);
4984 defsubr (&Sfeaturep);
4985 defsubr (&Srequire);
4986 defsubr (&Sprovide);
4987 defsubr (&Splist_member);
4988 defsubr (&Swidget_put);
4989 defsubr (&Swidget_get);
4990 defsubr (&Swidget_apply);
4991 defsubr (&Sbase64_encode_region);
4992 defsubr (&Sbase64_decode_region);
4993 defsubr (&Sbase64_encode_string);
4994 defsubr (&Sbase64_decode_string);
4995 defsubr (&Smd5);
4996 defsubr (&Ssha1);
4997 defsubr (&Slocale_info);
4998 }
4999
5000
5001 void
5002 init_fns (void)
5003 {
5004 }