Fix obscure porting bug with varargs functions.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void mark_terminals (void);
213 static void gc_sweep (void);
214 static Lisp_Object make_pure_vector (ptrdiff_t);
215 static void mark_buffer (struct buffer *);
216
217 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
218 static void refill_memory_reserve (void);
219 #endif
220 static void compact_small_strings (void);
221 static void free_large_strings (void);
222 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
223
224 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
225 what memory allocated via lisp_malloc and lisp_align_malloc is intended
226 for what purpose. This enumeration specifies the type of memory. */
227
228 enum mem_type
229 {
230 MEM_TYPE_NON_LISP,
231 MEM_TYPE_BUFFER,
232 MEM_TYPE_CONS,
233 MEM_TYPE_STRING,
234 MEM_TYPE_MISC,
235 MEM_TYPE_SYMBOL,
236 MEM_TYPE_FLOAT,
237 /* Since all non-bool pseudovectors are small enough to be
238 allocated from vector blocks, this memory type denotes
239 large regular vectors and large bool pseudovectors. */
240 MEM_TYPE_VECTORLIKE,
241 /* Special type to denote vector blocks. */
242 MEM_TYPE_VECTOR_BLOCK,
243 /* Special type to denote reserved memory. */
244 MEM_TYPE_SPARE
245 };
246
247 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
248
249 /* A unique object in pure space used to make some Lisp objects
250 on free lists recognizable in O(1). */
251
252 static Lisp_Object Vdead;
253 #define DEADP(x) EQ (x, Vdead)
254
255 #ifdef GC_MALLOC_CHECK
256
257 enum mem_type allocated_mem_type;
258
259 #endif /* GC_MALLOC_CHECK */
260
261 /* A node in the red-black tree describing allocated memory containing
262 Lisp data. Each such block is recorded with its start and end
263 address when it is allocated, and removed from the tree when it
264 is freed.
265
266 A red-black tree is a balanced binary tree with the following
267 properties:
268
269 1. Every node is either red or black.
270 2. Every leaf is black.
271 3. If a node is red, then both of its children are black.
272 4. Every simple path from a node to a descendant leaf contains
273 the same number of black nodes.
274 5. The root is always black.
275
276 When nodes are inserted into the tree, or deleted from the tree,
277 the tree is "fixed" so that these properties are always true.
278
279 A red-black tree with N internal nodes has height at most 2
280 log(N+1). Searches, insertions and deletions are done in O(log N).
281 Please see a text book about data structures for a detailed
282 description of red-black trees. Any book worth its salt should
283 describe them. */
284
285 struct mem_node
286 {
287 /* Children of this node. These pointers are never NULL. When there
288 is no child, the value is MEM_NIL, which points to a dummy node. */
289 struct mem_node *left, *right;
290
291 /* The parent of this node. In the root node, this is NULL. */
292 struct mem_node *parent;
293
294 /* Start and end of allocated region. */
295 void *start, *end;
296
297 /* Node color. */
298 enum {MEM_BLACK, MEM_RED} color;
299
300 /* Memory type. */
301 enum mem_type type;
302 };
303
304 /* Base address of stack. Set in main. */
305
306 Lisp_Object *stack_base;
307
308 /* Root of the tree describing allocated Lisp memory. */
309
310 static struct mem_node *mem_root;
311
312 /* Lowest and highest known address in the heap. */
313
314 static void *min_heap_address, *max_heap_address;
315
316 /* Sentinel node of the tree. */
317
318 static struct mem_node mem_z;
319 #define MEM_NIL &mem_z
320
321 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
322 static struct mem_node *mem_insert (void *, void *, enum mem_type);
323 static void mem_insert_fixup (struct mem_node *);
324 static void mem_rotate_left (struct mem_node *);
325 static void mem_rotate_right (struct mem_node *);
326 static void mem_delete (struct mem_node *);
327 static void mem_delete_fixup (struct mem_node *);
328 static struct mem_node *mem_find (void *);
329 #endif
330
331 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
332
333 #ifndef DEADP
334 # define DEADP(x) 0
335 #endif
336
337 /* Recording what needs to be marked for gc. */
338
339 struct gcpro *gcprolist;
340
341 /* Addresses of staticpro'd variables. Initialize it to a nonzero
342 value; otherwise some compilers put it into BSS. */
343
344 #define NSTATICS 0x800
345 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
346
347 /* Index of next unused slot in staticvec. */
348
349 static int staticidx;
350
351 static void *pure_alloc (size_t, int);
352
353
354 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
355 ALIGNMENT must be a power of 2. */
356
357 #define ALIGN(ptr, ALIGNMENT) \
358 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
359 & ~ ((ALIGNMENT) - 1)))
360
361 static void
362 XFLOAT_INIT (Lisp_Object f, double n)
363 {
364 XFLOAT (f)->u.data = n;
365 }
366
367 \f
368 /************************************************************************
369 Malloc
370 ************************************************************************/
371
372 /* Function malloc calls this if it finds we are near exhausting storage. */
373
374 void
375 malloc_warning (const char *str)
376 {
377 pending_malloc_warning = str;
378 }
379
380
381 /* Display an already-pending malloc warning. */
382
383 void
384 display_malloc_warning (void)
385 {
386 call3 (intern ("display-warning"),
387 intern ("alloc"),
388 build_string (pending_malloc_warning),
389 intern ("emergency"));
390 pending_malloc_warning = 0;
391 }
392 \f
393 /* Called if we can't allocate relocatable space for a buffer. */
394
395 void
396 buffer_memory_full (ptrdiff_t nbytes)
397 {
398 /* If buffers use the relocating allocator, no need to free
399 spare_memory, because we may have plenty of malloc space left
400 that we could get, and if we don't, the malloc that fails will
401 itself cause spare_memory to be freed. If buffers don't use the
402 relocating allocator, treat this like any other failing
403 malloc. */
404
405 #ifndef REL_ALLOC
406 memory_full (nbytes);
407 #else
408 /* This used to call error, but if we've run out of memory, we could
409 get infinite recursion trying to build the string. */
410 xsignal (Qnil, Vmemory_signal_data);
411 #endif
412 }
413
414 /* A common multiple of the positive integers A and B. Ideally this
415 would be the least common multiple, but there's no way to do that
416 as a constant expression in C, so do the best that we can easily do. */
417 #define COMMON_MULTIPLE(a, b) \
418 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
419
420 #ifndef XMALLOC_OVERRUN_CHECK
421 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
422 #else
423
424 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
425 around each block.
426
427 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
428 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
429 block size in little-endian order. The trailer consists of
430 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
431
432 The header is used to detect whether this block has been allocated
433 through these functions, as some low-level libc functions may
434 bypass the malloc hooks. */
435
436 #define XMALLOC_OVERRUN_CHECK_SIZE 16
437 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
438 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
439
440 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
441 hold a size_t value and (2) the header size is a multiple of the
442 alignment that Emacs needs for C types and for USE_LSB_TAG. */
443 #define XMALLOC_BASE_ALIGNMENT \
444 alignof (union { long double d; intmax_t i; void *p; })
445
446 #if USE_LSB_TAG
447 # define XMALLOC_HEADER_ALIGNMENT \
448 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
449 #else
450 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
451 #endif
452 #define XMALLOC_OVERRUN_SIZE_SIZE \
453 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
454 + XMALLOC_HEADER_ALIGNMENT - 1) \
455 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
456 - XMALLOC_OVERRUN_CHECK_SIZE)
457
458 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
459 { '\x9a', '\x9b', '\xae', '\xaf',
460 '\xbf', '\xbe', '\xce', '\xcf',
461 '\xea', '\xeb', '\xec', '\xed',
462 '\xdf', '\xde', '\x9c', '\x9d' };
463
464 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
465 { '\xaa', '\xab', '\xac', '\xad',
466 '\xba', '\xbb', '\xbc', '\xbd',
467 '\xca', '\xcb', '\xcc', '\xcd',
468 '\xda', '\xdb', '\xdc', '\xdd' };
469
470 /* Insert and extract the block size in the header. */
471
472 static void
473 xmalloc_put_size (unsigned char *ptr, size_t size)
474 {
475 int i;
476 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
477 {
478 *--ptr = size & ((1 << CHAR_BIT) - 1);
479 size >>= CHAR_BIT;
480 }
481 }
482
483 static size_t
484 xmalloc_get_size (unsigned char *ptr)
485 {
486 size_t size = 0;
487 int i;
488 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
489 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
490 {
491 size <<= CHAR_BIT;
492 size += *ptr++;
493 }
494 return size;
495 }
496
497
498 /* Like malloc, but wraps allocated block with header and trailer. */
499
500 static void *
501 overrun_check_malloc (size_t size)
502 {
503 register unsigned char *val;
504 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
505 emacs_abort ();
506
507 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
508 if (val)
509 {
510 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
511 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
512 xmalloc_put_size (val, size);
513 memcpy (val + size, xmalloc_overrun_check_trailer,
514 XMALLOC_OVERRUN_CHECK_SIZE);
515 }
516 return val;
517 }
518
519
520 /* Like realloc, but checks old block for overrun, and wraps new block
521 with header and trailer. */
522
523 static void *
524 overrun_check_realloc (void *block, size_t size)
525 {
526 register unsigned char *val = (unsigned char *) block;
527 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
528 emacs_abort ();
529
530 if (val
531 && memcmp (xmalloc_overrun_check_header,
532 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
533 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
534 {
535 size_t osize = xmalloc_get_size (val);
536 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
537 XMALLOC_OVERRUN_CHECK_SIZE))
538 emacs_abort ();
539 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
540 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
541 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
542 }
543
544 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
545
546 if (val)
547 {
548 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
549 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
550 xmalloc_put_size (val, size);
551 memcpy (val + size, xmalloc_overrun_check_trailer,
552 XMALLOC_OVERRUN_CHECK_SIZE);
553 }
554 return val;
555 }
556
557 /* Like free, but checks block for overrun. */
558
559 static void
560 overrun_check_free (void *block)
561 {
562 unsigned char *val = (unsigned char *) block;
563
564 if (val
565 && memcmp (xmalloc_overrun_check_header,
566 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
567 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
568 {
569 size_t osize = xmalloc_get_size (val);
570 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
571 XMALLOC_OVERRUN_CHECK_SIZE))
572 emacs_abort ();
573 #ifdef XMALLOC_CLEAR_FREE_MEMORY
574 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
575 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
576 #else
577 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
578 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
579 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
580 #endif
581 }
582
583 free (val);
584 }
585
586 #undef malloc
587 #undef realloc
588 #undef free
589 #define malloc overrun_check_malloc
590 #define realloc overrun_check_realloc
591 #define free overrun_check_free
592 #endif
593
594 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
595 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
596 If that variable is set, block input while in one of Emacs's memory
597 allocation functions. There should be no need for this debugging
598 option, since signal handlers do not allocate memory, but Emacs
599 formerly allocated memory in signal handlers and this compile-time
600 option remains as a way to help debug the issue should it rear its
601 ugly head again. */
602 #ifdef XMALLOC_BLOCK_INPUT_CHECK
603 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
604 static void
605 malloc_block_input (void)
606 {
607 if (block_input_in_memory_allocators)
608 block_input ();
609 }
610 static void
611 malloc_unblock_input (void)
612 {
613 if (block_input_in_memory_allocators)
614 unblock_input ();
615 }
616 # define MALLOC_BLOCK_INPUT malloc_block_input ()
617 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
618 #else
619 # define MALLOC_BLOCK_INPUT ((void) 0)
620 # define MALLOC_UNBLOCK_INPUT ((void) 0)
621 #endif
622
623 #define MALLOC_PROBE(size) \
624 do { \
625 if (profiler_memory_running) \
626 malloc_probe (size); \
627 } while (0)
628
629
630 /* Like malloc but check for no memory and block interrupt input.. */
631
632 void *
633 xmalloc (size_t size)
634 {
635 void *val;
636
637 MALLOC_BLOCK_INPUT;
638 val = malloc (size);
639 MALLOC_UNBLOCK_INPUT;
640
641 if (!val && size)
642 memory_full (size);
643 MALLOC_PROBE (size);
644 return val;
645 }
646
647 /* Like the above, but zeroes out the memory just allocated. */
648
649 void *
650 xzalloc (size_t size)
651 {
652 void *val;
653
654 MALLOC_BLOCK_INPUT;
655 val = malloc (size);
656 MALLOC_UNBLOCK_INPUT;
657
658 if (!val && size)
659 memory_full (size);
660 memset (val, 0, size);
661 MALLOC_PROBE (size);
662 return val;
663 }
664
665 /* Like realloc but check for no memory and block interrupt input.. */
666
667 void *
668 xrealloc (void *block, size_t size)
669 {
670 void *val;
671
672 MALLOC_BLOCK_INPUT;
673 /* We must call malloc explicitly when BLOCK is 0, since some
674 reallocs don't do this. */
675 if (! block)
676 val = malloc (size);
677 else
678 val = realloc (block, size);
679 MALLOC_UNBLOCK_INPUT;
680
681 if (!val && size)
682 memory_full (size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687
688 /* Like free but block interrupt input. */
689
690 void
691 xfree (void *block)
692 {
693 if (!block)
694 return;
695 MALLOC_BLOCK_INPUT;
696 free (block);
697 MALLOC_UNBLOCK_INPUT;
698 /* We don't call refill_memory_reserve here
699 because in practice the call in r_alloc_free seems to suffice. */
700 }
701
702
703 /* Other parts of Emacs pass large int values to allocator functions
704 expecting ptrdiff_t. This is portable in practice, but check it to
705 be safe. */
706 verify (INT_MAX <= PTRDIFF_MAX);
707
708
709 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
710 Signal an error on memory exhaustion, and block interrupt input. */
711
712 void *
713 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
714 {
715 eassert (0 <= nitems && 0 < item_size);
716 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
717 memory_full (SIZE_MAX);
718 return xmalloc (nitems * item_size);
719 }
720
721
722 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
723 Signal an error on memory exhaustion, and block interrupt input. */
724
725 void *
726 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
727 {
728 eassert (0 <= nitems && 0 < item_size);
729 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
730 memory_full (SIZE_MAX);
731 return xrealloc (pa, nitems * item_size);
732 }
733
734
735 /* Grow PA, which points to an array of *NITEMS items, and return the
736 location of the reallocated array, updating *NITEMS to reflect its
737 new size. The new array will contain at least NITEMS_INCR_MIN more
738 items, but will not contain more than NITEMS_MAX items total.
739 ITEM_SIZE is the size of each item, in bytes.
740
741 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
742 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
743 infinity.
744
745 If PA is null, then allocate a new array instead of reallocating
746 the old one.
747
748 Block interrupt input as needed. If memory exhaustion occurs, set
749 *NITEMS to zero if PA is null, and signal an error (i.e., do not
750 return).
751
752 Thus, to grow an array A without saving its old contents, do
753 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
754 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
755 and signals an error, and later this code is reexecuted and
756 attempts to free A. */
757
758 void *
759 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
760 ptrdiff_t nitems_max, ptrdiff_t item_size)
761 {
762 /* The approximate size to use for initial small allocation
763 requests. This is the largest "small" request for the GNU C
764 library malloc. */
765 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
766
767 /* If the array is tiny, grow it to about (but no greater than)
768 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
769 ptrdiff_t n = *nitems;
770 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
771 ptrdiff_t half_again = n >> 1;
772 ptrdiff_t incr_estimate = max (tiny_max, half_again);
773
774 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
775 NITEMS_MAX, and what the C language can represent safely. */
776 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
777 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
778 ? nitems_max : C_language_max);
779 ptrdiff_t nitems_incr_max = n_max - n;
780 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
781
782 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
783 if (! pa)
784 *nitems = 0;
785 if (nitems_incr_max < incr)
786 memory_full (SIZE_MAX);
787 n += incr;
788 pa = xrealloc (pa, n * item_size);
789 *nitems = n;
790 return pa;
791 }
792
793
794 /* Like strdup, but uses xmalloc. */
795
796 char *
797 xstrdup (const char *s)
798 {
799 size_t len = strlen (s) + 1;
800 char *p = xmalloc (len);
801 memcpy (p, s, len);
802 return p;
803 }
804
805 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
806 argument is a const pointer. */
807
808 void
809 xputenv (char const *string)
810 {
811 if (putenv ((char *) string) != 0)
812 memory_full (0);
813 }
814
815 /* Return a newly allocated memory block of SIZE bytes, remembering
816 to free it when unwinding. */
817 void *
818 record_xmalloc (size_t size)
819 {
820 void *p = xmalloc (size);
821 record_unwind_protect_ptr (xfree, p);
822 return p;
823 }
824
825
826 /* Like malloc but used for allocating Lisp data. NBYTES is the
827 number of bytes to allocate, TYPE describes the intended use of the
828 allocated memory block (for strings, for conses, ...). */
829
830 #if ! USE_LSB_TAG
831 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
832 #endif
833
834 static void *
835 lisp_malloc (size_t nbytes, enum mem_type type)
836 {
837 register void *val;
838
839 MALLOC_BLOCK_INPUT;
840
841 #ifdef GC_MALLOC_CHECK
842 allocated_mem_type = type;
843 #endif
844
845 val = malloc (nbytes);
846
847 #if ! USE_LSB_TAG
848 /* If the memory just allocated cannot be addressed thru a Lisp
849 object's pointer, and it needs to be,
850 that's equivalent to running out of memory. */
851 if (val && type != MEM_TYPE_NON_LISP)
852 {
853 Lisp_Object tem;
854 XSETCONS (tem, (char *) val + nbytes - 1);
855 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
856 {
857 lisp_malloc_loser = val;
858 free (val);
859 val = 0;
860 }
861 }
862 #endif
863
864 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
865 if (val && type != MEM_TYPE_NON_LISP)
866 mem_insert (val, (char *) val + nbytes, type);
867 #endif
868
869 MALLOC_UNBLOCK_INPUT;
870 if (!val && nbytes)
871 memory_full (nbytes);
872 MALLOC_PROBE (nbytes);
873 return val;
874 }
875
876 /* Free BLOCK. This must be called to free memory allocated with a
877 call to lisp_malloc. */
878
879 static void
880 lisp_free (void *block)
881 {
882 MALLOC_BLOCK_INPUT;
883 free (block);
884 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
885 mem_delete (mem_find (block));
886 #endif
887 MALLOC_UNBLOCK_INPUT;
888 }
889
890 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
891
892 /* The entry point is lisp_align_malloc which returns blocks of at most
893 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
894
895 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
896 #define USE_POSIX_MEMALIGN 1
897 #endif
898
899 /* BLOCK_ALIGN has to be a power of 2. */
900 #define BLOCK_ALIGN (1 << 10)
901
902 /* Padding to leave at the end of a malloc'd block. This is to give
903 malloc a chance to minimize the amount of memory wasted to alignment.
904 It should be tuned to the particular malloc library used.
905 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
906 posix_memalign on the other hand would ideally prefer a value of 4
907 because otherwise, there's 1020 bytes wasted between each ablocks.
908 In Emacs, testing shows that those 1020 can most of the time be
909 efficiently used by malloc to place other objects, so a value of 0 can
910 still preferable unless you have a lot of aligned blocks and virtually
911 nothing else. */
912 #define BLOCK_PADDING 0
913 #define BLOCK_BYTES \
914 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
915
916 /* Internal data structures and constants. */
917
918 #define ABLOCKS_SIZE 16
919
920 /* An aligned block of memory. */
921 struct ablock
922 {
923 union
924 {
925 char payload[BLOCK_BYTES];
926 struct ablock *next_free;
927 } x;
928 /* `abase' is the aligned base of the ablocks. */
929 /* It is overloaded to hold the virtual `busy' field that counts
930 the number of used ablock in the parent ablocks.
931 The first ablock has the `busy' field, the others have the `abase'
932 field. To tell the difference, we assume that pointers will have
933 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
934 is used to tell whether the real base of the parent ablocks is `abase'
935 (if not, the word before the first ablock holds a pointer to the
936 real base). */
937 struct ablocks *abase;
938 /* The padding of all but the last ablock is unused. The padding of
939 the last ablock in an ablocks is not allocated. */
940 #if BLOCK_PADDING
941 char padding[BLOCK_PADDING];
942 #endif
943 };
944
945 /* A bunch of consecutive aligned blocks. */
946 struct ablocks
947 {
948 struct ablock blocks[ABLOCKS_SIZE];
949 };
950
951 /* Size of the block requested from malloc or posix_memalign. */
952 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
953
954 #define ABLOCK_ABASE(block) \
955 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
956 ? (struct ablocks *)(block) \
957 : (block)->abase)
958
959 /* Virtual `busy' field. */
960 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
961
962 /* Pointer to the (not necessarily aligned) malloc block. */
963 #ifdef USE_POSIX_MEMALIGN
964 #define ABLOCKS_BASE(abase) (abase)
965 #else
966 #define ABLOCKS_BASE(abase) \
967 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
968 #endif
969
970 /* The list of free ablock. */
971 static struct ablock *free_ablock;
972
973 /* Allocate an aligned block of nbytes.
974 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
975 smaller or equal to BLOCK_BYTES. */
976 static void *
977 lisp_align_malloc (size_t nbytes, enum mem_type type)
978 {
979 void *base, *val;
980 struct ablocks *abase;
981
982 eassert (nbytes <= BLOCK_BYTES);
983
984 MALLOC_BLOCK_INPUT;
985
986 #ifdef GC_MALLOC_CHECK
987 allocated_mem_type = type;
988 #endif
989
990 if (!free_ablock)
991 {
992 int i;
993 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
994
995 #ifdef DOUG_LEA_MALLOC
996 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
997 because mapped region contents are not preserved in
998 a dumped Emacs. */
999 mallopt (M_MMAP_MAX, 0);
1000 #endif
1001
1002 #ifdef USE_POSIX_MEMALIGN
1003 {
1004 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1005 if (err)
1006 base = NULL;
1007 abase = base;
1008 }
1009 #else
1010 base = malloc (ABLOCKS_BYTES);
1011 abase = ALIGN (base, BLOCK_ALIGN);
1012 #endif
1013
1014 if (base == 0)
1015 {
1016 MALLOC_UNBLOCK_INPUT;
1017 memory_full (ABLOCKS_BYTES);
1018 }
1019
1020 aligned = (base == abase);
1021 if (!aligned)
1022 ((void**)abase)[-1] = base;
1023
1024 #ifdef DOUG_LEA_MALLOC
1025 /* Back to a reasonable maximum of mmap'ed areas. */
1026 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1027 #endif
1028
1029 #if ! USE_LSB_TAG
1030 /* If the memory just allocated cannot be addressed thru a Lisp
1031 object's pointer, and it needs to be, that's equivalent to
1032 running out of memory. */
1033 if (type != MEM_TYPE_NON_LISP)
1034 {
1035 Lisp_Object tem;
1036 char *end = (char *) base + ABLOCKS_BYTES - 1;
1037 XSETCONS (tem, end);
1038 if ((char *) XCONS (tem) != end)
1039 {
1040 lisp_malloc_loser = base;
1041 free (base);
1042 MALLOC_UNBLOCK_INPUT;
1043 memory_full (SIZE_MAX);
1044 }
1045 }
1046 #endif
1047
1048 /* Initialize the blocks and put them on the free list.
1049 If `base' was not properly aligned, we can't use the last block. */
1050 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1051 {
1052 abase->blocks[i].abase = abase;
1053 abase->blocks[i].x.next_free = free_ablock;
1054 free_ablock = &abase->blocks[i];
1055 }
1056 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1057
1058 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1059 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1060 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1061 eassert (ABLOCKS_BASE (abase) == base);
1062 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1063 }
1064
1065 abase = ABLOCK_ABASE (free_ablock);
1066 ABLOCKS_BUSY (abase) =
1067 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1068 val = free_ablock;
1069 free_ablock = free_ablock->x.next_free;
1070
1071 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1072 if (type != MEM_TYPE_NON_LISP)
1073 mem_insert (val, (char *) val + nbytes, type);
1074 #endif
1075
1076 MALLOC_UNBLOCK_INPUT;
1077
1078 MALLOC_PROBE (nbytes);
1079
1080 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1081 return val;
1082 }
1083
1084 static void
1085 lisp_align_free (void *block)
1086 {
1087 struct ablock *ablock = block;
1088 struct ablocks *abase = ABLOCK_ABASE (ablock);
1089
1090 MALLOC_BLOCK_INPUT;
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 mem_delete (mem_find (block));
1093 #endif
1094 /* Put on free list. */
1095 ablock->x.next_free = free_ablock;
1096 free_ablock = ablock;
1097 /* Update busy count. */
1098 ABLOCKS_BUSY (abase)
1099 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1100
1101 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1102 { /* All the blocks are free. */
1103 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1104 struct ablock **tem = &free_ablock;
1105 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1106
1107 while (*tem)
1108 {
1109 if (*tem >= (struct ablock *) abase && *tem < atop)
1110 {
1111 i++;
1112 *tem = (*tem)->x.next_free;
1113 }
1114 else
1115 tem = &(*tem)->x.next_free;
1116 }
1117 eassert ((aligned & 1) == aligned);
1118 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1119 #ifdef USE_POSIX_MEMALIGN
1120 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1121 #endif
1122 free (ABLOCKS_BASE (abase));
1123 }
1124 MALLOC_UNBLOCK_INPUT;
1125 }
1126
1127 \f
1128 /***********************************************************************
1129 Interval Allocation
1130 ***********************************************************************/
1131
1132 /* Number of intervals allocated in an interval_block structure.
1133 The 1020 is 1024 minus malloc overhead. */
1134
1135 #define INTERVAL_BLOCK_SIZE \
1136 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1137
1138 /* Intervals are allocated in chunks in the form of an interval_block
1139 structure. */
1140
1141 struct interval_block
1142 {
1143 /* Place `intervals' first, to preserve alignment. */
1144 struct interval intervals[INTERVAL_BLOCK_SIZE];
1145 struct interval_block *next;
1146 };
1147
1148 /* Current interval block. Its `next' pointer points to older
1149 blocks. */
1150
1151 static struct interval_block *interval_block;
1152
1153 /* Index in interval_block above of the next unused interval
1154 structure. */
1155
1156 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1157
1158 /* Number of free and live intervals. */
1159
1160 static EMACS_INT total_free_intervals, total_intervals;
1161
1162 /* List of free intervals. */
1163
1164 static INTERVAL interval_free_list;
1165
1166 /* Return a new interval. */
1167
1168 INTERVAL
1169 make_interval (void)
1170 {
1171 INTERVAL val;
1172
1173 MALLOC_BLOCK_INPUT;
1174
1175 if (interval_free_list)
1176 {
1177 val = interval_free_list;
1178 interval_free_list = INTERVAL_PARENT (interval_free_list);
1179 }
1180 else
1181 {
1182 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1183 {
1184 struct interval_block *newi
1185 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1186
1187 newi->next = interval_block;
1188 interval_block = newi;
1189 interval_block_index = 0;
1190 total_free_intervals += INTERVAL_BLOCK_SIZE;
1191 }
1192 val = &interval_block->intervals[interval_block_index++];
1193 }
1194
1195 MALLOC_UNBLOCK_INPUT;
1196
1197 consing_since_gc += sizeof (struct interval);
1198 intervals_consed++;
1199 total_free_intervals--;
1200 RESET_INTERVAL (val);
1201 val->gcmarkbit = 0;
1202 return val;
1203 }
1204
1205
1206 /* Mark Lisp objects in interval I. */
1207
1208 static void
1209 mark_interval (register INTERVAL i, Lisp_Object dummy)
1210 {
1211 /* Intervals should never be shared. So, if extra internal checking is
1212 enabled, GC aborts if it seems to have visited an interval twice. */
1213 eassert (!i->gcmarkbit);
1214 i->gcmarkbit = 1;
1215 mark_object (i->plist);
1216 }
1217
1218 /* Mark the interval tree rooted in I. */
1219
1220 #define MARK_INTERVAL_TREE(i) \
1221 do { \
1222 if (i && !i->gcmarkbit) \
1223 traverse_intervals_noorder (i, mark_interval, Qnil); \
1224 } while (0)
1225
1226 /***********************************************************************
1227 String Allocation
1228 ***********************************************************************/
1229
1230 /* Lisp_Strings are allocated in string_block structures. When a new
1231 string_block is allocated, all the Lisp_Strings it contains are
1232 added to a free-list string_free_list. When a new Lisp_String is
1233 needed, it is taken from that list. During the sweep phase of GC,
1234 string_blocks that are entirely free are freed, except two which
1235 we keep.
1236
1237 String data is allocated from sblock structures. Strings larger
1238 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1239 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1240
1241 Sblocks consist internally of sdata structures, one for each
1242 Lisp_String. The sdata structure points to the Lisp_String it
1243 belongs to. The Lisp_String points back to the `u.data' member of
1244 its sdata structure.
1245
1246 When a Lisp_String is freed during GC, it is put back on
1247 string_free_list, and its `data' member and its sdata's `string'
1248 pointer is set to null. The size of the string is recorded in the
1249 `n.nbytes' member of the sdata. So, sdata structures that are no
1250 longer used, can be easily recognized, and it's easy to compact the
1251 sblocks of small strings which we do in compact_small_strings. */
1252
1253 /* Size in bytes of an sblock structure used for small strings. This
1254 is 8192 minus malloc overhead. */
1255
1256 #define SBLOCK_SIZE 8188
1257
1258 /* Strings larger than this are considered large strings. String data
1259 for large strings is allocated from individual sblocks. */
1260
1261 #define LARGE_STRING_BYTES 1024
1262
1263 /* Struct or union describing string memory sub-allocated from an sblock.
1264 This is where the contents of Lisp strings are stored. */
1265
1266 #ifdef GC_CHECK_STRING_BYTES
1267
1268 typedef struct
1269 {
1270 /* Back-pointer to the string this sdata belongs to. If null, this
1271 structure is free, and the NBYTES member of the union below
1272 contains the string's byte size (the same value that STRING_BYTES
1273 would return if STRING were non-null). If non-null, STRING_BYTES
1274 (STRING) is the size of the data, and DATA contains the string's
1275 contents. */
1276 struct Lisp_String *string;
1277
1278 ptrdiff_t nbytes;
1279 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1280 } sdata;
1281
1282 #define SDATA_NBYTES(S) (S)->nbytes
1283 #define SDATA_DATA(S) (S)->data
1284 #define SDATA_SELECTOR(member) member
1285
1286 #else
1287
1288 typedef union
1289 {
1290 struct Lisp_String *string;
1291
1292 /* When STRING is non-null. */
1293 struct
1294 {
1295 struct Lisp_String *string;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } u;
1298
1299 /* When STRING is null. */
1300 struct
1301 {
1302 struct Lisp_String *string;
1303 ptrdiff_t nbytes;
1304 } n;
1305 } sdata;
1306
1307 #define SDATA_NBYTES(S) (S)->n.nbytes
1308 #define SDATA_DATA(S) (S)->u.data
1309 #define SDATA_SELECTOR(member) u.member
1310
1311 #endif /* not GC_CHECK_STRING_BYTES */
1312
1313 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1314
1315
1316 /* Structure describing a block of memory which is sub-allocated to
1317 obtain string data memory for strings. Blocks for small strings
1318 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1319 as large as needed. */
1320
1321 struct sblock
1322 {
1323 /* Next in list. */
1324 struct sblock *next;
1325
1326 /* Pointer to the next free sdata block. This points past the end
1327 of the sblock if there isn't any space left in this block. */
1328 sdata *next_free;
1329
1330 /* Start of data. */
1331 sdata first_data;
1332 };
1333
1334 /* Number of Lisp strings in a string_block structure. The 1020 is
1335 1024 minus malloc overhead. */
1336
1337 #define STRING_BLOCK_SIZE \
1338 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1339
1340 /* Structure describing a block from which Lisp_String structures
1341 are allocated. */
1342
1343 struct string_block
1344 {
1345 /* Place `strings' first, to preserve alignment. */
1346 struct Lisp_String strings[STRING_BLOCK_SIZE];
1347 struct string_block *next;
1348 };
1349
1350 /* Head and tail of the list of sblock structures holding Lisp string
1351 data. We always allocate from current_sblock. The NEXT pointers
1352 in the sblock structures go from oldest_sblock to current_sblock. */
1353
1354 static struct sblock *oldest_sblock, *current_sblock;
1355
1356 /* List of sblocks for large strings. */
1357
1358 static struct sblock *large_sblocks;
1359
1360 /* List of string_block structures. */
1361
1362 static struct string_block *string_blocks;
1363
1364 /* Free-list of Lisp_Strings. */
1365
1366 static struct Lisp_String *string_free_list;
1367
1368 /* Number of live and free Lisp_Strings. */
1369
1370 static EMACS_INT total_strings, total_free_strings;
1371
1372 /* Number of bytes used by live strings. */
1373
1374 static EMACS_INT total_string_bytes;
1375
1376 /* Given a pointer to a Lisp_String S which is on the free-list
1377 string_free_list, return a pointer to its successor in the
1378 free-list. */
1379
1380 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1381
1382 /* Return a pointer to the sdata structure belonging to Lisp string S.
1383 S must be live, i.e. S->data must not be null. S->data is actually
1384 a pointer to the `u.data' member of its sdata structure; the
1385 structure starts at a constant offset in front of that. */
1386
1387 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1388
1389
1390 #ifdef GC_CHECK_STRING_OVERRUN
1391
1392 /* We check for overrun in string data blocks by appending a small
1393 "cookie" after each allocated string data block, and check for the
1394 presence of this cookie during GC. */
1395
1396 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1397 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1398 { '\xde', '\xad', '\xbe', '\xef' };
1399
1400 #else
1401 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1402 #endif
1403
1404 /* Value is the size of an sdata structure large enough to hold NBYTES
1405 bytes of string data. The value returned includes a terminating
1406 NUL byte, the size of the sdata structure, and padding. */
1407
1408 #ifdef GC_CHECK_STRING_BYTES
1409
1410 #define SDATA_SIZE(NBYTES) \
1411 ((SDATA_DATA_OFFSET \
1412 + (NBYTES) + 1 \
1413 + sizeof (ptrdiff_t) - 1) \
1414 & ~(sizeof (ptrdiff_t) - 1))
1415
1416 #else /* not GC_CHECK_STRING_BYTES */
1417
1418 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1419 less than the size of that member. The 'max' is not needed when
1420 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1421 alignment code reserves enough space. */
1422
1423 #define SDATA_SIZE(NBYTES) \
1424 ((SDATA_DATA_OFFSET \
1425 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1426 ? NBYTES \
1427 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1428 + 1 \
1429 + sizeof (ptrdiff_t) - 1) \
1430 & ~(sizeof (ptrdiff_t) - 1))
1431
1432 #endif /* not GC_CHECK_STRING_BYTES */
1433
1434 /* Extra bytes to allocate for each string. */
1435
1436 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1437
1438 /* Exact bound on the number of bytes in a string, not counting the
1439 terminating null. A string cannot contain more bytes than
1440 STRING_BYTES_BOUND, nor can it be so long that the size_t
1441 arithmetic in allocate_string_data would overflow while it is
1442 calculating a value to be passed to malloc. */
1443 static ptrdiff_t const STRING_BYTES_MAX =
1444 min (STRING_BYTES_BOUND,
1445 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1446 - GC_STRING_EXTRA
1447 - offsetof (struct sblock, first_data)
1448 - SDATA_DATA_OFFSET)
1449 & ~(sizeof (EMACS_INT) - 1)));
1450
1451 /* Initialize string allocation. Called from init_alloc_once. */
1452
1453 static void
1454 init_strings (void)
1455 {
1456 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1457 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1458 }
1459
1460
1461 #ifdef GC_CHECK_STRING_BYTES
1462
1463 static int check_string_bytes_count;
1464
1465 /* Like STRING_BYTES, but with debugging check. Can be
1466 called during GC, so pay attention to the mark bit. */
1467
1468 ptrdiff_t
1469 string_bytes (struct Lisp_String *s)
1470 {
1471 ptrdiff_t nbytes =
1472 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1473
1474 if (!PURE_POINTER_P (s)
1475 && s->data
1476 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1477 emacs_abort ();
1478 return nbytes;
1479 }
1480
1481 /* Check validity of Lisp strings' string_bytes member in B. */
1482
1483 static void
1484 check_sblock (struct sblock *b)
1485 {
1486 sdata *from, *end, *from_end;
1487
1488 end = b->next_free;
1489
1490 for (from = &b->first_data; from < end; from = from_end)
1491 {
1492 /* Compute the next FROM here because copying below may
1493 overwrite data we need to compute it. */
1494 ptrdiff_t nbytes;
1495
1496 /* Check that the string size recorded in the string is the
1497 same as the one recorded in the sdata structure. */
1498 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1499 : SDATA_NBYTES (from));
1500 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1501 }
1502 }
1503
1504
1505 /* Check validity of Lisp strings' string_bytes member. ALL_P
1506 means check all strings, otherwise check only most
1507 recently allocated strings. Used for hunting a bug. */
1508
1509 static void
1510 check_string_bytes (bool all_p)
1511 {
1512 if (all_p)
1513 {
1514 struct sblock *b;
1515
1516 for (b = large_sblocks; b; b = b->next)
1517 {
1518 struct Lisp_String *s = b->first_data.string;
1519 if (s)
1520 string_bytes (s);
1521 }
1522
1523 for (b = oldest_sblock; b; b = b->next)
1524 check_sblock (b);
1525 }
1526 else if (current_sblock)
1527 check_sblock (current_sblock);
1528 }
1529
1530 #else /* not GC_CHECK_STRING_BYTES */
1531
1532 #define check_string_bytes(all) ((void) 0)
1533
1534 #endif /* GC_CHECK_STRING_BYTES */
1535
1536 #ifdef GC_CHECK_STRING_FREE_LIST
1537
1538 /* Walk through the string free list looking for bogus next pointers.
1539 This may catch buffer overrun from a previous string. */
1540
1541 static void
1542 check_string_free_list (void)
1543 {
1544 struct Lisp_String *s;
1545
1546 /* Pop a Lisp_String off the free-list. */
1547 s = string_free_list;
1548 while (s != NULL)
1549 {
1550 if ((uintptr_t) s < 1024)
1551 emacs_abort ();
1552 s = NEXT_FREE_LISP_STRING (s);
1553 }
1554 }
1555 #else
1556 #define check_string_free_list()
1557 #endif
1558
1559 /* Return a new Lisp_String. */
1560
1561 static struct Lisp_String *
1562 allocate_string (void)
1563 {
1564 struct Lisp_String *s;
1565
1566 MALLOC_BLOCK_INPUT;
1567
1568 /* If the free-list is empty, allocate a new string_block, and
1569 add all the Lisp_Strings in it to the free-list. */
1570 if (string_free_list == NULL)
1571 {
1572 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1573 int i;
1574
1575 b->next = string_blocks;
1576 string_blocks = b;
1577
1578 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1579 {
1580 s = b->strings + i;
1581 /* Every string on a free list should have NULL data pointer. */
1582 s->data = NULL;
1583 NEXT_FREE_LISP_STRING (s) = string_free_list;
1584 string_free_list = s;
1585 }
1586
1587 total_free_strings += STRING_BLOCK_SIZE;
1588 }
1589
1590 check_string_free_list ();
1591
1592 /* Pop a Lisp_String off the free-list. */
1593 s = string_free_list;
1594 string_free_list = NEXT_FREE_LISP_STRING (s);
1595
1596 MALLOC_UNBLOCK_INPUT;
1597
1598 --total_free_strings;
1599 ++total_strings;
1600 ++strings_consed;
1601 consing_since_gc += sizeof *s;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604 if (!noninteractive)
1605 {
1606 if (++check_string_bytes_count == 200)
1607 {
1608 check_string_bytes_count = 0;
1609 check_string_bytes (1);
1610 }
1611 else
1612 check_string_bytes (0);
1613 }
1614 #endif /* GC_CHECK_STRING_BYTES */
1615
1616 return s;
1617 }
1618
1619
1620 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1621 plus a NUL byte at the end. Allocate an sdata structure for S, and
1622 set S->data to its `u.data' member. Store a NUL byte at the end of
1623 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1624 S->data if it was initially non-null. */
1625
1626 void
1627 allocate_string_data (struct Lisp_String *s,
1628 EMACS_INT nchars, EMACS_INT nbytes)
1629 {
1630 sdata *data, *old_data;
1631 struct sblock *b;
1632 ptrdiff_t needed, old_nbytes;
1633
1634 if (STRING_BYTES_MAX < nbytes)
1635 string_overflow ();
1636
1637 /* Determine the number of bytes needed to store NBYTES bytes
1638 of string data. */
1639 needed = SDATA_SIZE (nbytes);
1640 if (s->data)
1641 {
1642 old_data = SDATA_OF_STRING (s);
1643 old_nbytes = STRING_BYTES (s);
1644 }
1645 else
1646 old_data = NULL;
1647
1648 MALLOC_BLOCK_INPUT;
1649
1650 if (nbytes > LARGE_STRING_BYTES)
1651 {
1652 size_t size = offsetof (struct sblock, first_data) + needed;
1653
1654 #ifdef DOUG_LEA_MALLOC
1655 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1656 because mapped region contents are not preserved in
1657 a dumped Emacs.
1658
1659 In case you think of allowing it in a dumped Emacs at the
1660 cost of not being able to re-dump, there's another reason:
1661 mmap'ed data typically have an address towards the top of the
1662 address space, which won't fit into an EMACS_INT (at least on
1663 32-bit systems with the current tagging scheme). --fx */
1664 mallopt (M_MMAP_MAX, 0);
1665 #endif
1666
1667 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1668
1669 #ifdef DOUG_LEA_MALLOC
1670 /* Back to a reasonable maximum of mmap'ed areas. */
1671 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1672 #endif
1673
1674 b->next_free = &b->first_data;
1675 b->first_data.string = NULL;
1676 b->next = large_sblocks;
1677 large_sblocks = b;
1678 }
1679 else if (current_sblock == NULL
1680 || (((char *) current_sblock + SBLOCK_SIZE
1681 - (char *) current_sblock->next_free)
1682 < (needed + GC_STRING_EXTRA)))
1683 {
1684 /* Not enough room in the current sblock. */
1685 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1686 b->next_free = &b->first_data;
1687 b->first_data.string = NULL;
1688 b->next = NULL;
1689
1690 if (current_sblock)
1691 current_sblock->next = b;
1692 else
1693 oldest_sblock = b;
1694 current_sblock = b;
1695 }
1696 else
1697 b = current_sblock;
1698
1699 data = b->next_free;
1700 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1701
1702 MALLOC_UNBLOCK_INPUT;
1703
1704 data->string = s;
1705 s->data = SDATA_DATA (data);
1706 #ifdef GC_CHECK_STRING_BYTES
1707 SDATA_NBYTES (data) = nbytes;
1708 #endif
1709 s->size = nchars;
1710 s->size_byte = nbytes;
1711 s->data[nbytes] = '\0';
1712 #ifdef GC_CHECK_STRING_OVERRUN
1713 memcpy ((char *) data + needed, string_overrun_cookie,
1714 GC_STRING_OVERRUN_COOKIE_SIZE);
1715 #endif
1716
1717 /* Note that Faset may call to this function when S has already data
1718 assigned. In this case, mark data as free by setting it's string
1719 back-pointer to null, and record the size of the data in it. */
1720 if (old_data)
1721 {
1722 SDATA_NBYTES (old_data) = old_nbytes;
1723 old_data->string = NULL;
1724 }
1725
1726 consing_since_gc += needed;
1727 }
1728
1729
1730 /* Sweep and compact strings. */
1731
1732 static void
1733 sweep_strings (void)
1734 {
1735 struct string_block *b, *next;
1736 struct string_block *live_blocks = NULL;
1737
1738 string_free_list = NULL;
1739 total_strings = total_free_strings = 0;
1740 total_string_bytes = 0;
1741
1742 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1743 for (b = string_blocks; b; b = next)
1744 {
1745 int i, nfree = 0;
1746 struct Lisp_String *free_list_before = string_free_list;
1747
1748 next = b->next;
1749
1750 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1751 {
1752 struct Lisp_String *s = b->strings + i;
1753
1754 if (s->data)
1755 {
1756 /* String was not on free-list before. */
1757 if (STRING_MARKED_P (s))
1758 {
1759 /* String is live; unmark it and its intervals. */
1760 UNMARK_STRING (s);
1761
1762 /* Do not use string_(set|get)_intervals here. */
1763 s->intervals = balance_intervals (s->intervals);
1764
1765 ++total_strings;
1766 total_string_bytes += STRING_BYTES (s);
1767 }
1768 else
1769 {
1770 /* String is dead. Put it on the free-list. */
1771 sdata *data = SDATA_OF_STRING (s);
1772
1773 /* Save the size of S in its sdata so that we know
1774 how large that is. Reset the sdata's string
1775 back-pointer so that we know it's free. */
1776 #ifdef GC_CHECK_STRING_BYTES
1777 if (string_bytes (s) != SDATA_NBYTES (data))
1778 emacs_abort ();
1779 #else
1780 data->n.nbytes = STRING_BYTES (s);
1781 #endif
1782 data->string = NULL;
1783
1784 /* Reset the strings's `data' member so that we
1785 know it's free. */
1786 s->data = NULL;
1787
1788 /* Put the string on the free-list. */
1789 NEXT_FREE_LISP_STRING (s) = string_free_list;
1790 string_free_list = s;
1791 ++nfree;
1792 }
1793 }
1794 else
1795 {
1796 /* S was on the free-list before. Put it there again. */
1797 NEXT_FREE_LISP_STRING (s) = string_free_list;
1798 string_free_list = s;
1799 ++nfree;
1800 }
1801 }
1802
1803 /* Free blocks that contain free Lisp_Strings only, except
1804 the first two of them. */
1805 if (nfree == STRING_BLOCK_SIZE
1806 && total_free_strings > STRING_BLOCK_SIZE)
1807 {
1808 lisp_free (b);
1809 string_free_list = free_list_before;
1810 }
1811 else
1812 {
1813 total_free_strings += nfree;
1814 b->next = live_blocks;
1815 live_blocks = b;
1816 }
1817 }
1818
1819 check_string_free_list ();
1820
1821 string_blocks = live_blocks;
1822 free_large_strings ();
1823 compact_small_strings ();
1824
1825 check_string_free_list ();
1826 }
1827
1828
1829 /* Free dead large strings. */
1830
1831 static void
1832 free_large_strings (void)
1833 {
1834 struct sblock *b, *next;
1835 struct sblock *live_blocks = NULL;
1836
1837 for (b = large_sblocks; b; b = next)
1838 {
1839 next = b->next;
1840
1841 if (b->first_data.string == NULL)
1842 lisp_free (b);
1843 else
1844 {
1845 b->next = live_blocks;
1846 live_blocks = b;
1847 }
1848 }
1849
1850 large_sblocks = live_blocks;
1851 }
1852
1853
1854 /* Compact data of small strings. Free sblocks that don't contain
1855 data of live strings after compaction. */
1856
1857 static void
1858 compact_small_strings (void)
1859 {
1860 struct sblock *b, *tb, *next;
1861 sdata *from, *to, *end, *tb_end;
1862 sdata *to_end, *from_end;
1863
1864 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1865 to, and TB_END is the end of TB. */
1866 tb = oldest_sblock;
1867 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1868 to = &tb->first_data;
1869
1870 /* Step through the blocks from the oldest to the youngest. We
1871 expect that old blocks will stabilize over time, so that less
1872 copying will happen this way. */
1873 for (b = oldest_sblock; b; b = b->next)
1874 {
1875 end = b->next_free;
1876 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1877
1878 for (from = &b->first_data; from < end; from = from_end)
1879 {
1880 /* Compute the next FROM here because copying below may
1881 overwrite data we need to compute it. */
1882 ptrdiff_t nbytes;
1883 struct Lisp_String *s = from->string;
1884
1885 #ifdef GC_CHECK_STRING_BYTES
1886 /* Check that the string size recorded in the string is the
1887 same as the one recorded in the sdata structure. */
1888 if (s && string_bytes (s) != SDATA_NBYTES (from))
1889 emacs_abort ();
1890 #endif /* GC_CHECK_STRING_BYTES */
1891
1892 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1893 eassert (nbytes <= LARGE_STRING_BYTES);
1894
1895 nbytes = SDATA_SIZE (nbytes);
1896 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1897
1898 #ifdef GC_CHECK_STRING_OVERRUN
1899 if (memcmp (string_overrun_cookie,
1900 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1901 GC_STRING_OVERRUN_COOKIE_SIZE))
1902 emacs_abort ();
1903 #endif
1904
1905 /* Non-NULL S means it's alive. Copy its data. */
1906 if (s)
1907 {
1908 /* If TB is full, proceed with the next sblock. */
1909 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1910 if (to_end > tb_end)
1911 {
1912 tb->next_free = to;
1913 tb = tb->next;
1914 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1915 to = &tb->first_data;
1916 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1917 }
1918
1919 /* Copy, and update the string's `data' pointer. */
1920 if (from != to)
1921 {
1922 eassert (tb != b || to < from);
1923 memmove (to, from, nbytes + GC_STRING_EXTRA);
1924 to->string->data = SDATA_DATA (to);
1925 }
1926
1927 /* Advance past the sdata we copied to. */
1928 to = to_end;
1929 }
1930 }
1931 }
1932
1933 /* The rest of the sblocks following TB don't contain live data, so
1934 we can free them. */
1935 for (b = tb->next; b; b = next)
1936 {
1937 next = b->next;
1938 lisp_free (b);
1939 }
1940
1941 tb->next_free = to;
1942 tb->next = NULL;
1943 current_sblock = tb;
1944 }
1945
1946 void
1947 string_overflow (void)
1948 {
1949 error ("Maximum string size exceeded");
1950 }
1951
1952 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1953 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1954 LENGTH must be an integer.
1955 INIT must be an integer that represents a character. */)
1956 (Lisp_Object length, Lisp_Object init)
1957 {
1958 register Lisp_Object val;
1959 register unsigned char *p, *end;
1960 int c;
1961 EMACS_INT nbytes;
1962
1963 CHECK_NATNUM (length);
1964 CHECK_CHARACTER (init);
1965
1966 c = XFASTINT (init);
1967 if (ASCII_CHAR_P (c))
1968 {
1969 nbytes = XINT (length);
1970 val = make_uninit_string (nbytes);
1971 p = SDATA (val);
1972 end = p + SCHARS (val);
1973 while (p != end)
1974 *p++ = c;
1975 }
1976 else
1977 {
1978 unsigned char str[MAX_MULTIBYTE_LENGTH];
1979 int len = CHAR_STRING (c, str);
1980 EMACS_INT string_len = XINT (length);
1981
1982 if (string_len > STRING_BYTES_MAX / len)
1983 string_overflow ();
1984 nbytes = len * string_len;
1985 val = make_uninit_multibyte_string (string_len, nbytes);
1986 p = SDATA (val);
1987 end = p + nbytes;
1988 while (p != end)
1989 {
1990 memcpy (p, str, len);
1991 p += len;
1992 }
1993 }
1994
1995 *p = 0;
1996 return val;
1997 }
1998
1999
2000 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2001 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2002 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2003 (Lisp_Object length, Lisp_Object init)
2004 {
2005 register Lisp_Object val;
2006 struct Lisp_Bool_Vector *p;
2007 ptrdiff_t length_in_chars;
2008 EMACS_INT length_in_elts;
2009 int bits_per_value;
2010 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2011 / word_size);
2012
2013 CHECK_NATNUM (length);
2014
2015 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2016
2017 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2018
2019 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2020
2021 /* No Lisp_Object to trace in there. */
2022 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2023
2024 p = XBOOL_VECTOR (val);
2025 p->size = XFASTINT (length);
2026
2027 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2028 / BOOL_VECTOR_BITS_PER_CHAR);
2029 if (length_in_chars)
2030 {
2031 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2032
2033 /* Clear any extraneous bits in the last byte. */
2034 p->data[length_in_chars - 1]
2035 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2036 }
2037
2038 return val;
2039 }
2040
2041
2042 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2043 of characters from the contents. This string may be unibyte or
2044 multibyte, depending on the contents. */
2045
2046 Lisp_Object
2047 make_string (const char *contents, ptrdiff_t nbytes)
2048 {
2049 register Lisp_Object val;
2050 ptrdiff_t nchars, multibyte_nbytes;
2051
2052 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2053 &nchars, &multibyte_nbytes);
2054 if (nbytes == nchars || nbytes != multibyte_nbytes)
2055 /* CONTENTS contains no multibyte sequences or contains an invalid
2056 multibyte sequence. We must make unibyte string. */
2057 val = make_unibyte_string (contents, nbytes);
2058 else
2059 val = make_multibyte_string (contents, nchars, nbytes);
2060 return val;
2061 }
2062
2063
2064 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2065
2066 Lisp_Object
2067 make_unibyte_string (const char *contents, ptrdiff_t length)
2068 {
2069 register Lisp_Object val;
2070 val = make_uninit_string (length);
2071 memcpy (SDATA (val), contents, length);
2072 return val;
2073 }
2074
2075
2076 /* Make a multibyte string from NCHARS characters occupying NBYTES
2077 bytes at CONTENTS. */
2078
2079 Lisp_Object
2080 make_multibyte_string (const char *contents,
2081 ptrdiff_t nchars, ptrdiff_t nbytes)
2082 {
2083 register Lisp_Object val;
2084 val = make_uninit_multibyte_string (nchars, nbytes);
2085 memcpy (SDATA (val), contents, nbytes);
2086 return val;
2087 }
2088
2089
2090 /* Make a string from NCHARS characters occupying NBYTES bytes at
2091 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2092
2093 Lisp_Object
2094 make_string_from_bytes (const char *contents,
2095 ptrdiff_t nchars, ptrdiff_t nbytes)
2096 {
2097 register Lisp_Object val;
2098 val = make_uninit_multibyte_string (nchars, nbytes);
2099 memcpy (SDATA (val), contents, nbytes);
2100 if (SBYTES (val) == SCHARS (val))
2101 STRING_SET_UNIBYTE (val);
2102 return val;
2103 }
2104
2105
2106 /* Make a string from NCHARS characters occupying NBYTES bytes at
2107 CONTENTS. The argument MULTIBYTE controls whether to label the
2108 string as multibyte. If NCHARS is negative, it counts the number of
2109 characters by itself. */
2110
2111 Lisp_Object
2112 make_specified_string (const char *contents,
2113 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2114 {
2115 Lisp_Object val;
2116
2117 if (nchars < 0)
2118 {
2119 if (multibyte)
2120 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2121 nbytes);
2122 else
2123 nchars = nbytes;
2124 }
2125 val = make_uninit_multibyte_string (nchars, nbytes);
2126 memcpy (SDATA (val), contents, nbytes);
2127 if (!multibyte)
2128 STRING_SET_UNIBYTE (val);
2129 return val;
2130 }
2131
2132
2133 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2134 occupying LENGTH bytes. */
2135
2136 Lisp_Object
2137 make_uninit_string (EMACS_INT length)
2138 {
2139 Lisp_Object val;
2140
2141 if (!length)
2142 return empty_unibyte_string;
2143 val = make_uninit_multibyte_string (length, length);
2144 STRING_SET_UNIBYTE (val);
2145 return val;
2146 }
2147
2148
2149 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2150 which occupy NBYTES bytes. */
2151
2152 Lisp_Object
2153 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2154 {
2155 Lisp_Object string;
2156 struct Lisp_String *s;
2157
2158 if (nchars < 0)
2159 emacs_abort ();
2160 if (!nbytes)
2161 return empty_multibyte_string;
2162
2163 s = allocate_string ();
2164 s->intervals = NULL;
2165 allocate_string_data (s, nchars, nbytes);
2166 XSETSTRING (string, s);
2167 string_chars_consed += nbytes;
2168 return string;
2169 }
2170
2171 /* Print arguments to BUF according to a FORMAT, then return
2172 a Lisp_String initialized with the data from BUF. */
2173
2174 Lisp_Object
2175 make_formatted_string (char *buf, const char *format, ...)
2176 {
2177 va_list ap;
2178 int length;
2179
2180 va_start (ap, format);
2181 length = vsprintf (buf, format, ap);
2182 va_end (ap);
2183 return make_string (buf, length);
2184 }
2185
2186 \f
2187 /***********************************************************************
2188 Float Allocation
2189 ***********************************************************************/
2190
2191 /* We store float cells inside of float_blocks, allocating a new
2192 float_block with malloc whenever necessary. Float cells reclaimed
2193 by GC are put on a free list to be reallocated before allocating
2194 any new float cells from the latest float_block. */
2195
2196 #define FLOAT_BLOCK_SIZE \
2197 (((BLOCK_BYTES - sizeof (struct float_block *) \
2198 /* The compiler might add padding at the end. */ \
2199 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2200 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2201
2202 #define GETMARKBIT(block,n) \
2203 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2204 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2205 & 1)
2206
2207 #define SETMARKBIT(block,n) \
2208 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2209 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2210
2211 #define UNSETMARKBIT(block,n) \
2212 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2213 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2214
2215 #define FLOAT_BLOCK(fptr) \
2216 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2217
2218 #define FLOAT_INDEX(fptr) \
2219 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2220
2221 struct float_block
2222 {
2223 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2224 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2225 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2226 struct float_block *next;
2227 };
2228
2229 #define FLOAT_MARKED_P(fptr) \
2230 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2231
2232 #define FLOAT_MARK(fptr) \
2233 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2234
2235 #define FLOAT_UNMARK(fptr) \
2236 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2237
2238 /* Current float_block. */
2239
2240 static struct float_block *float_block;
2241
2242 /* Index of first unused Lisp_Float in the current float_block. */
2243
2244 static int float_block_index = FLOAT_BLOCK_SIZE;
2245
2246 /* Free-list of Lisp_Floats. */
2247
2248 static struct Lisp_Float *float_free_list;
2249
2250 /* Return a new float object with value FLOAT_VALUE. */
2251
2252 Lisp_Object
2253 make_float (double float_value)
2254 {
2255 register Lisp_Object val;
2256
2257 MALLOC_BLOCK_INPUT;
2258
2259 if (float_free_list)
2260 {
2261 /* We use the data field for chaining the free list
2262 so that we won't use the same field that has the mark bit. */
2263 XSETFLOAT (val, float_free_list);
2264 float_free_list = float_free_list->u.chain;
2265 }
2266 else
2267 {
2268 if (float_block_index == FLOAT_BLOCK_SIZE)
2269 {
2270 struct float_block *new
2271 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2272 new->next = float_block;
2273 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2274 float_block = new;
2275 float_block_index = 0;
2276 total_free_floats += FLOAT_BLOCK_SIZE;
2277 }
2278 XSETFLOAT (val, &float_block->floats[float_block_index]);
2279 float_block_index++;
2280 }
2281
2282 MALLOC_UNBLOCK_INPUT;
2283
2284 XFLOAT_INIT (val, float_value);
2285 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2286 consing_since_gc += sizeof (struct Lisp_Float);
2287 floats_consed++;
2288 total_free_floats--;
2289 return val;
2290 }
2291
2292
2293 \f
2294 /***********************************************************************
2295 Cons Allocation
2296 ***********************************************************************/
2297
2298 /* We store cons cells inside of cons_blocks, allocating a new
2299 cons_block with malloc whenever necessary. Cons cells reclaimed by
2300 GC are put on a free list to be reallocated before allocating
2301 any new cons cells from the latest cons_block. */
2302
2303 #define CONS_BLOCK_SIZE \
2304 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2305 /* The compiler might add padding at the end. */ \
2306 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2307 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2308
2309 #define CONS_BLOCK(fptr) \
2310 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2311
2312 #define CONS_INDEX(fptr) \
2313 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2314
2315 struct cons_block
2316 {
2317 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2318 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2319 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2320 struct cons_block *next;
2321 };
2322
2323 #define CONS_MARKED_P(fptr) \
2324 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2325
2326 #define CONS_MARK(fptr) \
2327 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2328
2329 #define CONS_UNMARK(fptr) \
2330 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2331
2332 /* Current cons_block. */
2333
2334 static struct cons_block *cons_block;
2335
2336 /* Index of first unused Lisp_Cons in the current block. */
2337
2338 static int cons_block_index = CONS_BLOCK_SIZE;
2339
2340 /* Free-list of Lisp_Cons structures. */
2341
2342 static struct Lisp_Cons *cons_free_list;
2343
2344 /* Explicitly free a cons cell by putting it on the free-list. */
2345
2346 void
2347 free_cons (struct Lisp_Cons *ptr)
2348 {
2349 ptr->u.chain = cons_free_list;
2350 #if GC_MARK_STACK
2351 ptr->car = Vdead;
2352 #endif
2353 cons_free_list = ptr;
2354 consing_since_gc -= sizeof *ptr;
2355 total_free_conses++;
2356 }
2357
2358 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2359 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2360 (Lisp_Object car, Lisp_Object cdr)
2361 {
2362 register Lisp_Object val;
2363
2364 MALLOC_BLOCK_INPUT;
2365
2366 if (cons_free_list)
2367 {
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = cons_free_list->u.chain;
2372 }
2373 else
2374 {
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2376 {
2377 struct cons_block *new
2378 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2379 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2380 new->next = cons_block;
2381 cons_block = new;
2382 cons_block_index = 0;
2383 total_free_conses += CONS_BLOCK_SIZE;
2384 }
2385 XSETCONS (val, &cons_block->conses[cons_block_index]);
2386 cons_block_index++;
2387 }
2388
2389 MALLOC_UNBLOCK_INPUT;
2390
2391 XSETCAR (val, car);
2392 XSETCDR (val, cdr);
2393 eassert (!CONS_MARKED_P (XCONS (val)));
2394 consing_since_gc += sizeof (struct Lisp_Cons);
2395 total_free_conses--;
2396 cons_cells_consed++;
2397 return val;
2398 }
2399
2400 #ifdef GC_CHECK_CONS_LIST
2401 /* Get an error now if there's any junk in the cons free list. */
2402 void
2403 check_cons_list (void)
2404 {
2405 struct Lisp_Cons *tail = cons_free_list;
2406
2407 while (tail)
2408 tail = tail->u.chain;
2409 }
2410 #endif
2411
2412 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2413
2414 Lisp_Object
2415 list1 (Lisp_Object arg1)
2416 {
2417 return Fcons (arg1, Qnil);
2418 }
2419
2420 Lisp_Object
2421 list2 (Lisp_Object arg1, Lisp_Object arg2)
2422 {
2423 return Fcons (arg1, Fcons (arg2, Qnil));
2424 }
2425
2426
2427 Lisp_Object
2428 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2429 {
2430 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2431 }
2432
2433
2434 Lisp_Object
2435 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2436 {
2437 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2438 }
2439
2440
2441 Lisp_Object
2442 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2443 {
2444 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2445 Fcons (arg5, Qnil)))));
2446 }
2447
2448 /* Make a list of COUNT Lisp_Objects, where ARG is the
2449 first one. Allocate conses from pure space if TYPE
2450 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2451
2452 Lisp_Object
2453 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2454 {
2455 va_list ap;
2456 ptrdiff_t i;
2457 Lisp_Object val, *objp;
2458
2459 /* Change to SAFE_ALLOCA if you hit this eassert. */
2460 eassert (count <= MAX_ALLOCA / word_size);
2461
2462 objp = alloca (count * word_size);
2463 objp[0] = arg;
2464 va_start (ap, arg);
2465 for (i = 1; i < count; i++)
2466 objp[i] = va_arg (ap, Lisp_Object);
2467 va_end (ap);
2468
2469 for (val = Qnil, i = count - 1; i >= 0; i--)
2470 {
2471 if (type == CONSTYPE_PURE)
2472 val = pure_cons (objp[i], val);
2473 else if (type == CONSTYPE_HEAP)
2474 val = Fcons (objp[i], val);
2475 else
2476 emacs_abort ();
2477 }
2478 return val;
2479 }
2480
2481 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2482 doc: /* Return a newly created list with specified arguments as elements.
2483 Any number of arguments, even zero arguments, are allowed.
2484 usage: (list &rest OBJECTS) */)
2485 (ptrdiff_t nargs, Lisp_Object *args)
2486 {
2487 register Lisp_Object val;
2488 val = Qnil;
2489
2490 while (nargs > 0)
2491 {
2492 nargs--;
2493 val = Fcons (args[nargs], val);
2494 }
2495 return val;
2496 }
2497
2498
2499 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2500 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2501 (register Lisp_Object length, Lisp_Object init)
2502 {
2503 register Lisp_Object val;
2504 register EMACS_INT size;
2505
2506 CHECK_NATNUM (length);
2507 size = XFASTINT (length);
2508
2509 val = Qnil;
2510 while (size > 0)
2511 {
2512 val = Fcons (init, val);
2513 --size;
2514
2515 if (size > 0)
2516 {
2517 val = Fcons (init, val);
2518 --size;
2519
2520 if (size > 0)
2521 {
2522 val = Fcons (init, val);
2523 --size;
2524
2525 if (size > 0)
2526 {
2527 val = Fcons (init, val);
2528 --size;
2529
2530 if (size > 0)
2531 {
2532 val = Fcons (init, val);
2533 --size;
2534 }
2535 }
2536 }
2537 }
2538
2539 QUIT;
2540 }
2541
2542 return val;
2543 }
2544
2545
2546 \f
2547 /***********************************************************************
2548 Vector Allocation
2549 ***********************************************************************/
2550
2551 /* This value is balanced well enough to avoid too much internal overhead
2552 for the most common cases; it's not required to be a power of two, but
2553 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2554
2555 #define VECTOR_BLOCK_SIZE 4096
2556
2557 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2558 enum
2559 {
2560 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2561 };
2562
2563 /* ROUNDUP_SIZE must be a power of 2. */
2564 verify ((roundup_size & (roundup_size - 1)) == 0);
2565
2566 /* Verify assumptions described above. */
2567 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2568 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2569
2570 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2571
2572 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2573
2574 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2575
2576 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2577
2578 /* Size of the minimal vector allocated from block. */
2579
2580 #define VBLOCK_BYTES_MIN vroundup (header_size + sizeof (Lisp_Object))
2581
2582 /* Size of the largest vector allocated from block. */
2583
2584 #define VBLOCK_BYTES_MAX \
2585 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2586
2587 /* We maintain one free list for each possible block-allocated
2588 vector size, and this is the number of free lists we have. */
2589
2590 #define VECTOR_MAX_FREE_LIST_INDEX \
2591 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2592
2593 /* Common shortcut to advance vector pointer over a block data. */
2594
2595 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2596
2597 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2598
2599 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2600
2601 /* Get and set the next field in block-allocated vectorlike objects on
2602 the free list. Doing it this way respects C's aliasing rules.
2603 We could instead make 'contents' a union, but that would mean
2604 changes everywhere that the code uses 'contents'. */
2605 static struct Lisp_Vector *
2606 next_in_free_list (struct Lisp_Vector *v)
2607 {
2608 intptr_t i = XLI (v->contents[0]);
2609 return (struct Lisp_Vector *) i;
2610 }
2611 static void
2612 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2613 {
2614 v->contents[0] = XIL ((intptr_t) next);
2615 }
2616
2617 /* Common shortcut to setup vector on a free list. */
2618
2619 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2620 do { \
2621 (tmp) = ((nbytes - header_size) / word_size); \
2622 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2623 eassert ((nbytes) % roundup_size == 0); \
2624 (tmp) = VINDEX (nbytes); \
2625 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2626 set_next_in_free_list (v, vector_free_lists[tmp]); \
2627 vector_free_lists[tmp] = (v); \
2628 total_free_vector_slots += (nbytes) / word_size; \
2629 } while (0)
2630
2631 /* This internal type is used to maintain the list of large vectors
2632 which are allocated at their own, e.g. outside of vector blocks. */
2633
2634 struct large_vector
2635 {
2636 union {
2637 struct large_vector *vector;
2638 #if USE_LSB_TAG
2639 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2640 unsigned char c[vroundup (sizeof (struct large_vector *))];
2641 #endif
2642 } next;
2643 struct Lisp_Vector v;
2644 };
2645
2646 /* This internal type is used to maintain an underlying storage
2647 for small vectors. */
2648
2649 struct vector_block
2650 {
2651 char data[VECTOR_BLOCK_BYTES];
2652 struct vector_block *next;
2653 };
2654
2655 /* Chain of vector blocks. */
2656
2657 static struct vector_block *vector_blocks;
2658
2659 /* Vector free lists, where NTH item points to a chain of free
2660 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2661
2662 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2663
2664 /* Singly-linked list of large vectors. */
2665
2666 static struct large_vector *large_vectors;
2667
2668 /* The only vector with 0 slots, allocated from pure space. */
2669
2670 Lisp_Object zero_vector;
2671
2672 /* Number of live vectors. */
2673
2674 static EMACS_INT total_vectors;
2675
2676 /* Total size of live and free vectors, in Lisp_Object units. */
2677
2678 static EMACS_INT total_vector_slots, total_free_vector_slots;
2679
2680 /* Get a new vector block. */
2681
2682 static struct vector_block *
2683 allocate_vector_block (void)
2684 {
2685 struct vector_block *block = xmalloc (sizeof *block);
2686
2687 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2688 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2689 MEM_TYPE_VECTOR_BLOCK);
2690 #endif
2691
2692 block->next = vector_blocks;
2693 vector_blocks = block;
2694 return block;
2695 }
2696
2697 /* Called once to initialize vector allocation. */
2698
2699 static void
2700 init_vectors (void)
2701 {
2702 zero_vector = make_pure_vector (0);
2703 }
2704
2705 /* Allocate vector from a vector block. */
2706
2707 static struct Lisp_Vector *
2708 allocate_vector_from_block (size_t nbytes)
2709 {
2710 struct Lisp_Vector *vector;
2711 struct vector_block *block;
2712 size_t index, restbytes;
2713
2714 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2715 eassert (nbytes % roundup_size == 0);
2716
2717 /* First, try to allocate from a free list
2718 containing vectors of the requested size. */
2719 index = VINDEX (nbytes);
2720 if (vector_free_lists[index])
2721 {
2722 vector = vector_free_lists[index];
2723 vector_free_lists[index] = next_in_free_list (vector);
2724 total_free_vector_slots -= nbytes / word_size;
2725 return vector;
2726 }
2727
2728 /* Next, check free lists containing larger vectors. Since
2729 we will split the result, we should have remaining space
2730 large enough to use for one-slot vector at least. */
2731 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2732 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2733 if (vector_free_lists[index])
2734 {
2735 /* This vector is larger than requested. */
2736 vector = vector_free_lists[index];
2737 vector_free_lists[index] = next_in_free_list (vector);
2738 total_free_vector_slots -= nbytes / word_size;
2739
2740 /* Excess bytes are used for the smaller vector,
2741 which should be set on an appropriate free list. */
2742 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2743 eassert (restbytes % roundup_size == 0);
2744 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2745 return vector;
2746 }
2747
2748 /* Finally, need a new vector block. */
2749 block = allocate_vector_block ();
2750
2751 /* New vector will be at the beginning of this block. */
2752 vector = (struct Lisp_Vector *) block->data;
2753
2754 /* If the rest of space from this block is large enough
2755 for one-slot vector at least, set up it on a free list. */
2756 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2757 if (restbytes >= VBLOCK_BYTES_MIN)
2758 {
2759 eassert (restbytes % roundup_size == 0);
2760 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2761 }
2762 return vector;
2763 }
2764
2765 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2766
2767 #define VECTOR_IN_BLOCK(vector, block) \
2768 ((char *) (vector) <= (block)->data \
2769 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2770
2771 /* Return the memory footprint of V in bytes. */
2772
2773 static ptrdiff_t
2774 vector_nbytes (struct Lisp_Vector *v)
2775 {
2776 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2777
2778 if (size & PSEUDOVECTOR_FLAG)
2779 {
2780 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2781 size = (bool_header_size
2782 + (((struct Lisp_Bool_Vector *) v)->size
2783 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2784 / BOOL_VECTOR_BITS_PER_CHAR);
2785 else
2786 size = (header_size
2787 + ((size & PSEUDOVECTOR_SIZE_MASK)
2788 + ((size & PSEUDOVECTOR_REST_MASK)
2789 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2790 }
2791 else
2792 size = header_size + size * word_size;
2793 return vroundup (size);
2794 }
2795
2796 /* Reclaim space used by unmarked vectors. */
2797
2798 static void
2799 sweep_vectors (void)
2800 {
2801 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2802 struct large_vector *lv, **lvprev = &large_vectors;
2803 struct Lisp_Vector *vector, *next;
2804
2805 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2806 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2807
2808 /* Looking through vector blocks. */
2809
2810 for (block = vector_blocks; block; block = *bprev)
2811 {
2812 bool free_this_block = 0;
2813 ptrdiff_t nbytes;
2814
2815 for (vector = (struct Lisp_Vector *) block->data;
2816 VECTOR_IN_BLOCK (vector, block); vector = next)
2817 {
2818 if (VECTOR_MARKED_P (vector))
2819 {
2820 VECTOR_UNMARK (vector);
2821 total_vectors++;
2822 nbytes = vector_nbytes (vector);
2823 total_vector_slots += nbytes / word_size;
2824 next = ADVANCE (vector, nbytes);
2825 }
2826 else
2827 {
2828 ptrdiff_t total_bytes;
2829
2830 nbytes = vector_nbytes (vector);
2831 total_bytes = nbytes;
2832 next = ADVANCE (vector, nbytes);
2833
2834 /* While NEXT is not marked, try to coalesce with VECTOR,
2835 thus making VECTOR of the largest possible size. */
2836
2837 while (VECTOR_IN_BLOCK (next, block))
2838 {
2839 if (VECTOR_MARKED_P (next))
2840 break;
2841 nbytes = vector_nbytes (next);
2842 total_bytes += nbytes;
2843 next = ADVANCE (next, nbytes);
2844 }
2845
2846 eassert (total_bytes % roundup_size == 0);
2847
2848 if (vector == (struct Lisp_Vector *) block->data
2849 && !VECTOR_IN_BLOCK (next, block))
2850 /* This block should be freed because all of it's
2851 space was coalesced into the only free vector. */
2852 free_this_block = 1;
2853 else
2854 {
2855 int tmp;
2856 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2857 }
2858 }
2859 }
2860
2861 if (free_this_block)
2862 {
2863 *bprev = block->next;
2864 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2865 mem_delete (mem_find (block->data));
2866 #endif
2867 xfree (block);
2868 }
2869 else
2870 bprev = &block->next;
2871 }
2872
2873 /* Sweep large vectors. */
2874
2875 for (lv = large_vectors; lv; lv = *lvprev)
2876 {
2877 vector = &lv->v;
2878 if (VECTOR_MARKED_P (vector))
2879 {
2880 VECTOR_UNMARK (vector);
2881 total_vectors++;
2882 if (vector->header.size & PSEUDOVECTOR_FLAG)
2883 {
2884 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2885
2886 /* All non-bool pseudovectors are small enough to be allocated
2887 from vector blocks. This code should be redesigned if some
2888 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2889 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2890
2891 total_vector_slots
2892 += (bool_header_size
2893 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2894 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2895 }
2896 else
2897 total_vector_slots
2898 += header_size / word_size + vector->header.size;
2899 lvprev = &lv->next.vector;
2900 }
2901 else
2902 {
2903 *lvprev = lv->next.vector;
2904 lisp_free (lv);
2905 }
2906 }
2907 }
2908
2909 /* Value is a pointer to a newly allocated Lisp_Vector structure
2910 with room for LEN Lisp_Objects. */
2911
2912 static struct Lisp_Vector *
2913 allocate_vectorlike (ptrdiff_t len)
2914 {
2915 struct Lisp_Vector *p;
2916
2917 MALLOC_BLOCK_INPUT;
2918
2919 if (len == 0)
2920 p = XVECTOR (zero_vector);
2921 else
2922 {
2923 size_t nbytes = header_size + len * word_size;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 if (nbytes <= VBLOCK_BYTES_MAX)
2933 p = allocate_vector_from_block (vroundup (nbytes));
2934 else
2935 {
2936 struct large_vector *lv
2937 = lisp_malloc ((offsetof (struct large_vector, v.contents)
2938 + len * word_size),
2939 MEM_TYPE_VECTORLIKE);
2940 lv->next.vector = large_vectors;
2941 large_vectors = lv;
2942 p = &lv->v;
2943 }
2944
2945 #ifdef DOUG_LEA_MALLOC
2946 /* Back to a reasonable maximum of mmap'ed areas. */
2947 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2948 #endif
2949
2950 consing_since_gc += nbytes;
2951 vector_cells_consed += len;
2952 }
2953
2954 MALLOC_UNBLOCK_INPUT;
2955
2956 return p;
2957 }
2958
2959
2960 /* Allocate a vector with LEN slots. */
2961
2962 struct Lisp_Vector *
2963 allocate_vector (EMACS_INT len)
2964 {
2965 struct Lisp_Vector *v;
2966 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2967
2968 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2969 memory_full (SIZE_MAX);
2970 v = allocate_vectorlike (len);
2971 v->header.size = len;
2972 return v;
2973 }
2974
2975
2976 /* Allocate other vector-like structures. */
2977
2978 struct Lisp_Vector *
2979 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2980 {
2981 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2982 int i;
2983
2984 /* Catch bogus values. */
2985 eassert (tag <= PVEC_FONT);
2986 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2987 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2988
2989 /* Only the first lisplen slots will be traced normally by the GC. */
2990 for (i = 0; i < lisplen; ++i)
2991 v->contents[i] = Qnil;
2992
2993 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2994 return v;
2995 }
2996
2997 struct buffer *
2998 allocate_buffer (void)
2999 {
3000 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3001
3002 BUFFER_PVEC_INIT (b);
3003 /* Put B on the chain of all buffers including killed ones. */
3004 b->next = all_buffers;
3005 all_buffers = b;
3006 /* Note that the rest fields of B are not initialized. */
3007 return b;
3008 }
3009
3010 struct Lisp_Hash_Table *
3011 allocate_hash_table (void)
3012 {
3013 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3014 }
3015
3016 struct window *
3017 allocate_window (void)
3018 {
3019 struct window *w;
3020
3021 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3022 /* Users assumes that non-Lisp data is zeroed. */
3023 memset (&w->current_matrix, 0,
3024 sizeof (*w) - offsetof (struct window, current_matrix));
3025 return w;
3026 }
3027
3028 struct terminal *
3029 allocate_terminal (void)
3030 {
3031 struct terminal *t;
3032
3033 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3034 /* Users assumes that non-Lisp data is zeroed. */
3035 memset (&t->next_terminal, 0,
3036 sizeof (*t) - offsetof (struct terminal, next_terminal));
3037 return t;
3038 }
3039
3040 struct frame *
3041 allocate_frame (void)
3042 {
3043 struct frame *f;
3044
3045 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3046 /* Users assumes that non-Lisp data is zeroed. */
3047 memset (&f->face_cache, 0,
3048 sizeof (*f) - offsetof (struct frame, face_cache));
3049 return f;
3050 }
3051
3052 struct Lisp_Process *
3053 allocate_process (void)
3054 {
3055 struct Lisp_Process *p;
3056
3057 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3058 /* Users assumes that non-Lisp data is zeroed. */
3059 memset (&p->pid, 0,
3060 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3061 return p;
3062 }
3063
3064 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3065 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3066 See also the function `vector'. */)
3067 (register Lisp_Object length, Lisp_Object init)
3068 {
3069 Lisp_Object vector;
3070 register ptrdiff_t sizei;
3071 register ptrdiff_t i;
3072 register struct Lisp_Vector *p;
3073
3074 CHECK_NATNUM (length);
3075
3076 p = allocate_vector (XFASTINT (length));
3077 sizei = XFASTINT (length);
3078 for (i = 0; i < sizei; i++)
3079 p->contents[i] = init;
3080
3081 XSETVECTOR (vector, p);
3082 return vector;
3083 }
3084
3085
3086 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3087 doc: /* Return a newly created vector with specified arguments as elements.
3088 Any number of arguments, even zero arguments, are allowed.
3089 usage: (vector &rest OBJECTS) */)
3090 (ptrdiff_t nargs, Lisp_Object *args)
3091 {
3092 ptrdiff_t i;
3093 register Lisp_Object val = make_uninit_vector (nargs);
3094 register struct Lisp_Vector *p = XVECTOR (val);
3095
3096 for (i = 0; i < nargs; i++)
3097 p->contents[i] = args[i];
3098 return val;
3099 }
3100
3101 void
3102 make_byte_code (struct Lisp_Vector *v)
3103 {
3104 if (v->header.size > 1 && STRINGP (v->contents[1])
3105 && STRING_MULTIBYTE (v->contents[1]))
3106 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3107 earlier because they produced a raw 8-bit string for byte-code
3108 and now such a byte-code string is loaded as multibyte while
3109 raw 8-bit characters converted to multibyte form. Thus, now we
3110 must convert them back to the original unibyte form. */
3111 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3112 XSETPVECTYPE (v, PVEC_COMPILED);
3113 }
3114
3115 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3116 doc: /* Create a byte-code object with specified arguments as elements.
3117 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3118 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3119 and (optional) INTERACTIVE-SPEC.
3120 The first four arguments are required; at most six have any
3121 significance.
3122 The ARGLIST can be either like the one of `lambda', in which case the arguments
3123 will be dynamically bound before executing the byte code, or it can be an
3124 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3125 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3126 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3127 argument to catch the left-over arguments. If such an integer is used, the
3128 arguments will not be dynamically bound but will be instead pushed on the
3129 stack before executing the byte-code.
3130 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3131 (ptrdiff_t nargs, Lisp_Object *args)
3132 {
3133 ptrdiff_t i;
3134 register Lisp_Object val = make_uninit_vector (nargs);
3135 register struct Lisp_Vector *p = XVECTOR (val);
3136
3137 /* We used to purecopy everything here, if purify-flag was set. This worked
3138 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3139 dangerous, since make-byte-code is used during execution to build
3140 closures, so any closure built during the preload phase would end up
3141 copied into pure space, including its free variables, which is sometimes
3142 just wasteful and other times plainly wrong (e.g. those free vars may want
3143 to be setcar'd). */
3144
3145 for (i = 0; i < nargs; i++)
3146 p->contents[i] = args[i];
3147 make_byte_code (p);
3148 XSETCOMPILED (val, p);
3149 return val;
3150 }
3151
3152
3153 \f
3154 /***********************************************************************
3155 Symbol Allocation
3156 ***********************************************************************/
3157
3158 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3159 of the required alignment if LSB tags are used. */
3160
3161 union aligned_Lisp_Symbol
3162 {
3163 struct Lisp_Symbol s;
3164 #if USE_LSB_TAG
3165 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3166 & -GCALIGNMENT];
3167 #endif
3168 };
3169
3170 /* Each symbol_block is just under 1020 bytes long, since malloc
3171 really allocates in units of powers of two and uses 4 bytes for its
3172 own overhead. */
3173
3174 #define SYMBOL_BLOCK_SIZE \
3175 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3176
3177 struct symbol_block
3178 {
3179 /* Place `symbols' first, to preserve alignment. */
3180 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3181 struct symbol_block *next;
3182 };
3183
3184 /* Current symbol block and index of first unused Lisp_Symbol
3185 structure in it. */
3186
3187 static struct symbol_block *symbol_block;
3188 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3189
3190 /* List of free symbols. */
3191
3192 static struct Lisp_Symbol *symbol_free_list;
3193
3194 static void
3195 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3196 {
3197 XSYMBOL (sym)->name = name;
3198 }
3199
3200 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3201 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3202 Its value is void, and its function definition and property list are nil. */)
3203 (Lisp_Object name)
3204 {
3205 register Lisp_Object val;
3206 register struct Lisp_Symbol *p;
3207
3208 CHECK_STRING (name);
3209
3210 MALLOC_BLOCK_INPUT;
3211
3212 if (symbol_free_list)
3213 {
3214 XSETSYMBOL (val, symbol_free_list);
3215 symbol_free_list = symbol_free_list->next;
3216 }
3217 else
3218 {
3219 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3220 {
3221 struct symbol_block *new
3222 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3223 new->next = symbol_block;
3224 symbol_block = new;
3225 symbol_block_index = 0;
3226 total_free_symbols += SYMBOL_BLOCK_SIZE;
3227 }
3228 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3229 symbol_block_index++;
3230 }
3231
3232 MALLOC_UNBLOCK_INPUT;
3233
3234 p = XSYMBOL (val);
3235 set_symbol_name (val, name);
3236 set_symbol_plist (val, Qnil);
3237 p->redirect = SYMBOL_PLAINVAL;
3238 SET_SYMBOL_VAL (p, Qunbound);
3239 set_symbol_function (val, Qnil);
3240 set_symbol_next (val, NULL);
3241 p->gcmarkbit = 0;
3242 p->interned = SYMBOL_UNINTERNED;
3243 p->constant = 0;
3244 p->declared_special = 0;
3245 consing_since_gc += sizeof (struct Lisp_Symbol);
3246 symbols_consed++;
3247 total_free_symbols--;
3248 return val;
3249 }
3250
3251
3252 \f
3253 /***********************************************************************
3254 Marker (Misc) Allocation
3255 ***********************************************************************/
3256
3257 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3258 the required alignment when LSB tags are used. */
3259
3260 union aligned_Lisp_Misc
3261 {
3262 union Lisp_Misc m;
3263 #if USE_LSB_TAG
3264 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3265 & -GCALIGNMENT];
3266 #endif
3267 };
3268
3269 /* Allocation of markers and other objects that share that structure.
3270 Works like allocation of conses. */
3271
3272 #define MARKER_BLOCK_SIZE \
3273 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3274
3275 struct marker_block
3276 {
3277 /* Place `markers' first, to preserve alignment. */
3278 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3279 struct marker_block *next;
3280 };
3281
3282 static struct marker_block *marker_block;
3283 static int marker_block_index = MARKER_BLOCK_SIZE;
3284
3285 static union Lisp_Misc *marker_free_list;
3286
3287 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3288
3289 static Lisp_Object
3290 allocate_misc (enum Lisp_Misc_Type type)
3291 {
3292 Lisp_Object val;
3293
3294 MALLOC_BLOCK_INPUT;
3295
3296 if (marker_free_list)
3297 {
3298 XSETMISC (val, marker_free_list);
3299 marker_free_list = marker_free_list->u_free.chain;
3300 }
3301 else
3302 {
3303 if (marker_block_index == MARKER_BLOCK_SIZE)
3304 {
3305 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3306 new->next = marker_block;
3307 marker_block = new;
3308 marker_block_index = 0;
3309 total_free_markers += MARKER_BLOCK_SIZE;
3310 }
3311 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3312 marker_block_index++;
3313 }
3314
3315 MALLOC_UNBLOCK_INPUT;
3316
3317 --total_free_markers;
3318 consing_since_gc += sizeof (union Lisp_Misc);
3319 misc_objects_consed++;
3320 XMISCANY (val)->type = type;
3321 XMISCANY (val)->gcmarkbit = 0;
3322 return val;
3323 }
3324
3325 /* Free a Lisp_Misc object. */
3326
3327 void
3328 free_misc (Lisp_Object misc)
3329 {
3330 XMISCANY (misc)->type = Lisp_Misc_Free;
3331 XMISC (misc)->u_free.chain = marker_free_list;
3332 marker_free_list = XMISC (misc);
3333 consing_since_gc -= sizeof (union Lisp_Misc);
3334 total_free_markers++;
3335 }
3336
3337 /* Verify properties of Lisp_Save_Value's representation
3338 that are assumed here and elsewhere. */
3339
3340 verify (SAVE_UNUSED == 0);
3341 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3342 >> SAVE_SLOT_BITS)
3343 == 0);
3344
3345 /* Return Lisp_Save_Value objects for the various combinations
3346 that callers need. */
3347
3348 Lisp_Object
3349 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3350 {
3351 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3352 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3353 p->save_type = SAVE_TYPE_INT_INT_INT;
3354 p->data[0].integer = a;
3355 p->data[1].integer = b;
3356 p->data[2].integer = c;
3357 return val;
3358 }
3359
3360 Lisp_Object
3361 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3362 Lisp_Object d)
3363 {
3364 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3365 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3366 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3367 p->data[0].object = a;
3368 p->data[1].object = b;
3369 p->data[2].object = c;
3370 p->data[3].object = d;
3371 return val;
3372 }
3373
3374 #if defined HAVE_NS || defined DOS_NT
3375 Lisp_Object
3376 make_save_ptr (void *a)
3377 {
3378 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3379 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3380 p->save_type = SAVE_POINTER;
3381 p->data[0].pointer = a;
3382 return val;
3383 }
3384 #endif
3385
3386 Lisp_Object
3387 make_save_ptr_int (void *a, ptrdiff_t b)
3388 {
3389 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3390 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3391 p->save_type = SAVE_TYPE_PTR_INT;
3392 p->data[0].pointer = a;
3393 p->data[1].integer = b;
3394 return val;
3395 }
3396
3397 Lisp_Object
3398 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3399 {
3400 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3401 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3402 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3403 p->data[0].funcpointer = a;
3404 p->data[1].pointer = b;
3405 p->data[2].object = c;
3406 return val;
3407 }
3408
3409 /* Return a Lisp_Save_Value object that represents an array A
3410 of N Lisp objects. */
3411
3412 Lisp_Object
3413 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3414 {
3415 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3416 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3417 p->save_type = SAVE_TYPE_MEMORY;
3418 p->data[0].pointer = a;
3419 p->data[1].integer = n;
3420 return val;
3421 }
3422
3423 /* Free a Lisp_Save_Value object. Do not use this function
3424 if SAVE contains pointer other than returned by xmalloc. */
3425
3426 void
3427 free_save_value (Lisp_Object save)
3428 {
3429 xfree (XSAVE_POINTER (save, 0));
3430 free_misc (save);
3431 }
3432
3433 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3434
3435 Lisp_Object
3436 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3437 {
3438 register Lisp_Object overlay;
3439
3440 overlay = allocate_misc (Lisp_Misc_Overlay);
3441 OVERLAY_START (overlay) = start;
3442 OVERLAY_END (overlay) = end;
3443 set_overlay_plist (overlay, plist);
3444 XOVERLAY (overlay)->next = NULL;
3445 return overlay;
3446 }
3447
3448 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3449 doc: /* Return a newly allocated marker which does not point at any place. */)
3450 (void)
3451 {
3452 register Lisp_Object val;
3453 register struct Lisp_Marker *p;
3454
3455 val = allocate_misc (Lisp_Misc_Marker);
3456 p = XMARKER (val);
3457 p->buffer = 0;
3458 p->bytepos = 0;
3459 p->charpos = 0;
3460 p->next = NULL;
3461 p->insertion_type = 0;
3462 return val;
3463 }
3464
3465 /* Return a newly allocated marker which points into BUF
3466 at character position CHARPOS and byte position BYTEPOS. */
3467
3468 Lisp_Object
3469 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3470 {
3471 Lisp_Object obj;
3472 struct Lisp_Marker *m;
3473
3474 /* No dead buffers here. */
3475 eassert (BUFFER_LIVE_P (buf));
3476
3477 /* Every character is at least one byte. */
3478 eassert (charpos <= bytepos);
3479
3480 obj = allocate_misc (Lisp_Misc_Marker);
3481 m = XMARKER (obj);
3482 m->buffer = buf;
3483 m->charpos = charpos;
3484 m->bytepos = bytepos;
3485 m->insertion_type = 0;
3486 m->next = BUF_MARKERS (buf);
3487 BUF_MARKERS (buf) = m;
3488 return obj;
3489 }
3490
3491 /* Put MARKER back on the free list after using it temporarily. */
3492
3493 void
3494 free_marker (Lisp_Object marker)
3495 {
3496 unchain_marker (XMARKER (marker));
3497 free_misc (marker);
3498 }
3499
3500 \f
3501 /* Return a newly created vector or string with specified arguments as
3502 elements. If all the arguments are characters that can fit
3503 in a string of events, make a string; otherwise, make a vector.
3504
3505 Any number of arguments, even zero arguments, are allowed. */
3506
3507 Lisp_Object
3508 make_event_array (register int nargs, Lisp_Object *args)
3509 {
3510 int i;
3511
3512 for (i = 0; i < nargs; i++)
3513 /* The things that fit in a string
3514 are characters that are in 0...127,
3515 after discarding the meta bit and all the bits above it. */
3516 if (!INTEGERP (args[i])
3517 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3518 return Fvector (nargs, args);
3519
3520 /* Since the loop exited, we know that all the things in it are
3521 characters, so we can make a string. */
3522 {
3523 Lisp_Object result;
3524
3525 result = Fmake_string (make_number (nargs), make_number (0));
3526 for (i = 0; i < nargs; i++)
3527 {
3528 SSET (result, i, XINT (args[i]));
3529 /* Move the meta bit to the right place for a string char. */
3530 if (XINT (args[i]) & CHAR_META)
3531 SSET (result, i, SREF (result, i) | 0x80);
3532 }
3533
3534 return result;
3535 }
3536 }
3537
3538
3539 \f
3540 /************************************************************************
3541 Memory Full Handling
3542 ************************************************************************/
3543
3544
3545 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3546 there may have been size_t overflow so that malloc was never
3547 called, or perhaps malloc was invoked successfully but the
3548 resulting pointer had problems fitting into a tagged EMACS_INT. In
3549 either case this counts as memory being full even though malloc did
3550 not fail. */
3551
3552 void
3553 memory_full (size_t nbytes)
3554 {
3555 /* Do not go into hysterics merely because a large request failed. */
3556 bool enough_free_memory = 0;
3557 if (SPARE_MEMORY < nbytes)
3558 {
3559 void *p;
3560
3561 MALLOC_BLOCK_INPUT;
3562 p = malloc (SPARE_MEMORY);
3563 if (p)
3564 {
3565 free (p);
3566 enough_free_memory = 1;
3567 }
3568 MALLOC_UNBLOCK_INPUT;
3569 }
3570
3571 if (! enough_free_memory)
3572 {
3573 int i;
3574
3575 Vmemory_full = Qt;
3576
3577 memory_full_cons_threshold = sizeof (struct cons_block);
3578
3579 /* The first time we get here, free the spare memory. */
3580 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3581 if (spare_memory[i])
3582 {
3583 if (i == 0)
3584 free (spare_memory[i]);
3585 else if (i >= 1 && i <= 4)
3586 lisp_align_free (spare_memory[i]);
3587 else
3588 lisp_free (spare_memory[i]);
3589 spare_memory[i] = 0;
3590 }
3591 }
3592
3593 /* This used to call error, but if we've run out of memory, we could
3594 get infinite recursion trying to build the string. */
3595 xsignal (Qnil, Vmemory_signal_data);
3596 }
3597
3598 /* If we released our reserve (due to running out of memory),
3599 and we have a fair amount free once again,
3600 try to set aside another reserve in case we run out once more.
3601
3602 This is called when a relocatable block is freed in ralloc.c,
3603 and also directly from this file, in case we're not using ralloc.c. */
3604
3605 void
3606 refill_memory_reserve (void)
3607 {
3608 #ifndef SYSTEM_MALLOC
3609 if (spare_memory[0] == 0)
3610 spare_memory[0] = malloc (SPARE_MEMORY);
3611 if (spare_memory[1] == 0)
3612 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3613 MEM_TYPE_SPARE);
3614 if (spare_memory[2] == 0)
3615 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3616 MEM_TYPE_SPARE);
3617 if (spare_memory[3] == 0)
3618 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3619 MEM_TYPE_SPARE);
3620 if (spare_memory[4] == 0)
3621 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3622 MEM_TYPE_SPARE);
3623 if (spare_memory[5] == 0)
3624 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3625 MEM_TYPE_SPARE);
3626 if (spare_memory[6] == 0)
3627 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3628 MEM_TYPE_SPARE);
3629 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3630 Vmemory_full = Qnil;
3631 #endif
3632 }
3633 \f
3634 /************************************************************************
3635 C Stack Marking
3636 ************************************************************************/
3637
3638 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3639
3640 /* Conservative C stack marking requires a method to identify possibly
3641 live Lisp objects given a pointer value. We do this by keeping
3642 track of blocks of Lisp data that are allocated in a red-black tree
3643 (see also the comment of mem_node which is the type of nodes in
3644 that tree). Function lisp_malloc adds information for an allocated
3645 block to the red-black tree with calls to mem_insert, and function
3646 lisp_free removes it with mem_delete. Functions live_string_p etc
3647 call mem_find to lookup information about a given pointer in the
3648 tree, and use that to determine if the pointer points to a Lisp
3649 object or not. */
3650
3651 /* Initialize this part of alloc.c. */
3652
3653 static void
3654 mem_init (void)
3655 {
3656 mem_z.left = mem_z.right = MEM_NIL;
3657 mem_z.parent = NULL;
3658 mem_z.color = MEM_BLACK;
3659 mem_z.start = mem_z.end = NULL;
3660 mem_root = MEM_NIL;
3661 }
3662
3663
3664 /* Value is a pointer to the mem_node containing START. Value is
3665 MEM_NIL if there is no node in the tree containing START. */
3666
3667 static struct mem_node *
3668 mem_find (void *start)
3669 {
3670 struct mem_node *p;
3671
3672 if (start < min_heap_address || start > max_heap_address)
3673 return MEM_NIL;
3674
3675 /* Make the search always successful to speed up the loop below. */
3676 mem_z.start = start;
3677 mem_z.end = (char *) start + 1;
3678
3679 p = mem_root;
3680 while (start < p->start || start >= p->end)
3681 p = start < p->start ? p->left : p->right;
3682 return p;
3683 }
3684
3685
3686 /* Insert a new node into the tree for a block of memory with start
3687 address START, end address END, and type TYPE. Value is a
3688 pointer to the node that was inserted. */
3689
3690 static struct mem_node *
3691 mem_insert (void *start, void *end, enum mem_type type)
3692 {
3693 struct mem_node *c, *parent, *x;
3694
3695 if (min_heap_address == NULL || start < min_heap_address)
3696 min_heap_address = start;
3697 if (max_heap_address == NULL || end > max_heap_address)
3698 max_heap_address = end;
3699
3700 /* See where in the tree a node for START belongs. In this
3701 particular application, it shouldn't happen that a node is already
3702 present. For debugging purposes, let's check that. */
3703 c = mem_root;
3704 parent = NULL;
3705
3706 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3707
3708 while (c != MEM_NIL)
3709 {
3710 if (start >= c->start && start < c->end)
3711 emacs_abort ();
3712 parent = c;
3713 c = start < c->start ? c->left : c->right;
3714 }
3715
3716 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3717
3718 while (c != MEM_NIL)
3719 {
3720 parent = c;
3721 c = start < c->start ? c->left : c->right;
3722 }
3723
3724 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3725
3726 /* Create a new node. */
3727 #ifdef GC_MALLOC_CHECK
3728 x = malloc (sizeof *x);
3729 if (x == NULL)
3730 emacs_abort ();
3731 #else
3732 x = xmalloc (sizeof *x);
3733 #endif
3734 x->start = start;
3735 x->end = end;
3736 x->type = type;
3737 x->parent = parent;
3738 x->left = x->right = MEM_NIL;
3739 x->color = MEM_RED;
3740
3741 /* Insert it as child of PARENT or install it as root. */
3742 if (parent)
3743 {
3744 if (start < parent->start)
3745 parent->left = x;
3746 else
3747 parent->right = x;
3748 }
3749 else
3750 mem_root = x;
3751
3752 /* Re-establish red-black tree properties. */
3753 mem_insert_fixup (x);
3754
3755 return x;
3756 }
3757
3758
3759 /* Re-establish the red-black properties of the tree, and thereby
3760 balance the tree, after node X has been inserted; X is always red. */
3761
3762 static void
3763 mem_insert_fixup (struct mem_node *x)
3764 {
3765 while (x != mem_root && x->parent->color == MEM_RED)
3766 {
3767 /* X is red and its parent is red. This is a violation of
3768 red-black tree property #3. */
3769
3770 if (x->parent == x->parent->parent->left)
3771 {
3772 /* We're on the left side of our grandparent, and Y is our
3773 "uncle". */
3774 struct mem_node *y = x->parent->parent->right;
3775
3776 if (y->color == MEM_RED)
3777 {
3778 /* Uncle and parent are red but should be black because
3779 X is red. Change the colors accordingly and proceed
3780 with the grandparent. */
3781 x->parent->color = MEM_BLACK;
3782 y->color = MEM_BLACK;
3783 x->parent->parent->color = MEM_RED;
3784 x = x->parent->parent;
3785 }
3786 else
3787 {
3788 /* Parent and uncle have different colors; parent is
3789 red, uncle is black. */
3790 if (x == x->parent->right)
3791 {
3792 x = x->parent;
3793 mem_rotate_left (x);
3794 }
3795
3796 x->parent->color = MEM_BLACK;
3797 x->parent->parent->color = MEM_RED;
3798 mem_rotate_right (x->parent->parent);
3799 }
3800 }
3801 else
3802 {
3803 /* This is the symmetrical case of above. */
3804 struct mem_node *y = x->parent->parent->left;
3805
3806 if (y->color == MEM_RED)
3807 {
3808 x->parent->color = MEM_BLACK;
3809 y->color = MEM_BLACK;
3810 x->parent->parent->color = MEM_RED;
3811 x = x->parent->parent;
3812 }
3813 else
3814 {
3815 if (x == x->parent->left)
3816 {
3817 x = x->parent;
3818 mem_rotate_right (x);
3819 }
3820
3821 x->parent->color = MEM_BLACK;
3822 x->parent->parent->color = MEM_RED;
3823 mem_rotate_left (x->parent->parent);
3824 }
3825 }
3826 }
3827
3828 /* The root may have been changed to red due to the algorithm. Set
3829 it to black so that property #5 is satisfied. */
3830 mem_root->color = MEM_BLACK;
3831 }
3832
3833
3834 /* (x) (y)
3835 / \ / \
3836 a (y) ===> (x) c
3837 / \ / \
3838 b c a b */
3839
3840 static void
3841 mem_rotate_left (struct mem_node *x)
3842 {
3843 struct mem_node *y;
3844
3845 /* Turn y's left sub-tree into x's right sub-tree. */
3846 y = x->right;
3847 x->right = y->left;
3848 if (y->left != MEM_NIL)
3849 y->left->parent = x;
3850
3851 /* Y's parent was x's parent. */
3852 if (y != MEM_NIL)
3853 y->parent = x->parent;
3854
3855 /* Get the parent to point to y instead of x. */
3856 if (x->parent)
3857 {
3858 if (x == x->parent->left)
3859 x->parent->left = y;
3860 else
3861 x->parent->right = y;
3862 }
3863 else
3864 mem_root = y;
3865
3866 /* Put x on y's left. */
3867 y->left = x;
3868 if (x != MEM_NIL)
3869 x->parent = y;
3870 }
3871
3872
3873 /* (x) (Y)
3874 / \ / \
3875 (y) c ===> a (x)
3876 / \ / \
3877 a b b c */
3878
3879 static void
3880 mem_rotate_right (struct mem_node *x)
3881 {
3882 struct mem_node *y = x->left;
3883
3884 x->left = y->right;
3885 if (y->right != MEM_NIL)
3886 y->right->parent = x;
3887
3888 if (y != MEM_NIL)
3889 y->parent = x->parent;
3890 if (x->parent)
3891 {
3892 if (x == x->parent->right)
3893 x->parent->right = y;
3894 else
3895 x->parent->left = y;
3896 }
3897 else
3898 mem_root = y;
3899
3900 y->right = x;
3901 if (x != MEM_NIL)
3902 x->parent = y;
3903 }
3904
3905
3906 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3907
3908 static void
3909 mem_delete (struct mem_node *z)
3910 {
3911 struct mem_node *x, *y;
3912
3913 if (!z || z == MEM_NIL)
3914 return;
3915
3916 if (z->left == MEM_NIL || z->right == MEM_NIL)
3917 y = z;
3918 else
3919 {
3920 y = z->right;
3921 while (y->left != MEM_NIL)
3922 y = y->left;
3923 }
3924
3925 if (y->left != MEM_NIL)
3926 x = y->left;
3927 else
3928 x = y->right;
3929
3930 x->parent = y->parent;
3931 if (y->parent)
3932 {
3933 if (y == y->parent->left)
3934 y->parent->left = x;
3935 else
3936 y->parent->right = x;
3937 }
3938 else
3939 mem_root = x;
3940
3941 if (y != z)
3942 {
3943 z->start = y->start;
3944 z->end = y->end;
3945 z->type = y->type;
3946 }
3947
3948 if (y->color == MEM_BLACK)
3949 mem_delete_fixup (x);
3950
3951 #ifdef GC_MALLOC_CHECK
3952 free (y);
3953 #else
3954 xfree (y);
3955 #endif
3956 }
3957
3958
3959 /* Re-establish the red-black properties of the tree, after a
3960 deletion. */
3961
3962 static void
3963 mem_delete_fixup (struct mem_node *x)
3964 {
3965 while (x != mem_root && x->color == MEM_BLACK)
3966 {
3967 if (x == x->parent->left)
3968 {
3969 struct mem_node *w = x->parent->right;
3970
3971 if (w->color == MEM_RED)
3972 {
3973 w->color = MEM_BLACK;
3974 x->parent->color = MEM_RED;
3975 mem_rotate_left (x->parent);
3976 w = x->parent->right;
3977 }
3978
3979 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3980 {
3981 w->color = MEM_RED;
3982 x = x->parent;
3983 }
3984 else
3985 {
3986 if (w->right->color == MEM_BLACK)
3987 {
3988 w->left->color = MEM_BLACK;
3989 w->color = MEM_RED;
3990 mem_rotate_right (w);
3991 w = x->parent->right;
3992 }
3993 w->color = x->parent->color;
3994 x->parent->color = MEM_BLACK;
3995 w->right->color = MEM_BLACK;
3996 mem_rotate_left (x->parent);
3997 x = mem_root;
3998 }
3999 }
4000 else
4001 {
4002 struct mem_node *w = x->parent->left;
4003
4004 if (w->color == MEM_RED)
4005 {
4006 w->color = MEM_BLACK;
4007 x->parent->color = MEM_RED;
4008 mem_rotate_right (x->parent);
4009 w = x->parent->left;
4010 }
4011
4012 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4013 {
4014 w->color = MEM_RED;
4015 x = x->parent;
4016 }
4017 else
4018 {
4019 if (w->left->color == MEM_BLACK)
4020 {
4021 w->right->color = MEM_BLACK;
4022 w->color = MEM_RED;
4023 mem_rotate_left (w);
4024 w = x->parent->left;
4025 }
4026
4027 w->color = x->parent->color;
4028 x->parent->color = MEM_BLACK;
4029 w->left->color = MEM_BLACK;
4030 mem_rotate_right (x->parent);
4031 x = mem_root;
4032 }
4033 }
4034 }
4035
4036 x->color = MEM_BLACK;
4037 }
4038
4039
4040 /* Value is non-zero if P is a pointer to a live Lisp string on
4041 the heap. M is a pointer to the mem_block for P. */
4042
4043 static bool
4044 live_string_p (struct mem_node *m, void *p)
4045 {
4046 if (m->type == MEM_TYPE_STRING)
4047 {
4048 struct string_block *b = (struct string_block *) m->start;
4049 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4050
4051 /* P must point to the start of a Lisp_String structure, and it
4052 must not be on the free-list. */
4053 return (offset >= 0
4054 && offset % sizeof b->strings[0] == 0
4055 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4056 && ((struct Lisp_String *) p)->data != NULL);
4057 }
4058 else
4059 return 0;
4060 }
4061
4062
4063 /* Value is non-zero if P is a pointer to a live Lisp cons on
4064 the heap. M is a pointer to the mem_block for P. */
4065
4066 static bool
4067 live_cons_p (struct mem_node *m, void *p)
4068 {
4069 if (m->type == MEM_TYPE_CONS)
4070 {
4071 struct cons_block *b = (struct cons_block *) m->start;
4072 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4073
4074 /* P must point to the start of a Lisp_Cons, not be
4075 one of the unused cells in the current cons block,
4076 and not be on the free-list. */
4077 return (offset >= 0
4078 && offset % sizeof b->conses[0] == 0
4079 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4080 && (b != cons_block
4081 || offset / sizeof b->conses[0] < cons_block_index)
4082 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4083 }
4084 else
4085 return 0;
4086 }
4087
4088
4089 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4090 the heap. M is a pointer to the mem_block for P. */
4091
4092 static bool
4093 live_symbol_p (struct mem_node *m, void *p)
4094 {
4095 if (m->type == MEM_TYPE_SYMBOL)
4096 {
4097 struct symbol_block *b = (struct symbol_block *) m->start;
4098 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4099
4100 /* P must point to the start of a Lisp_Symbol, not be
4101 one of the unused cells in the current symbol block,
4102 and not be on the free-list. */
4103 return (offset >= 0
4104 && offset % sizeof b->symbols[0] == 0
4105 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4106 && (b != symbol_block
4107 || offset / sizeof b->symbols[0] < symbol_block_index)
4108 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4109 }
4110 else
4111 return 0;
4112 }
4113
4114
4115 /* Value is non-zero if P is a pointer to a live Lisp float on
4116 the heap. M is a pointer to the mem_block for P. */
4117
4118 static bool
4119 live_float_p (struct mem_node *m, void *p)
4120 {
4121 if (m->type == MEM_TYPE_FLOAT)
4122 {
4123 struct float_block *b = (struct float_block *) m->start;
4124 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4125
4126 /* P must point to the start of a Lisp_Float and not be
4127 one of the unused cells in the current float block. */
4128 return (offset >= 0
4129 && offset % sizeof b->floats[0] == 0
4130 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4131 && (b != float_block
4132 || offset / sizeof b->floats[0] < float_block_index));
4133 }
4134 else
4135 return 0;
4136 }
4137
4138
4139 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4140 the heap. M is a pointer to the mem_block for P. */
4141
4142 static bool
4143 live_misc_p (struct mem_node *m, void *p)
4144 {
4145 if (m->type == MEM_TYPE_MISC)
4146 {
4147 struct marker_block *b = (struct marker_block *) m->start;
4148 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4149
4150 /* P must point to the start of a Lisp_Misc, not be
4151 one of the unused cells in the current misc block,
4152 and not be on the free-list. */
4153 return (offset >= 0
4154 && offset % sizeof b->markers[0] == 0
4155 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4156 && (b != marker_block
4157 || offset / sizeof b->markers[0] < marker_block_index)
4158 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4159 }
4160 else
4161 return 0;
4162 }
4163
4164
4165 /* Value is non-zero if P is a pointer to a live vector-like object.
4166 M is a pointer to the mem_block for P. */
4167
4168 static bool
4169 live_vector_p (struct mem_node *m, void *p)
4170 {
4171 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4172 {
4173 /* This memory node corresponds to a vector block. */
4174 struct vector_block *block = (struct vector_block *) m->start;
4175 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4176
4177 /* P is in the block's allocation range. Scan the block
4178 up to P and see whether P points to the start of some
4179 vector which is not on a free list. FIXME: check whether
4180 some allocation patterns (probably a lot of short vectors)
4181 may cause a substantial overhead of this loop. */
4182 while (VECTOR_IN_BLOCK (vector, block)
4183 && vector <= (struct Lisp_Vector *) p)
4184 {
4185 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4186 return 1;
4187 else
4188 vector = ADVANCE (vector, vector_nbytes (vector));
4189 }
4190 }
4191 else if (m->type == MEM_TYPE_VECTORLIKE
4192 && (char *) p == ((char *) m->start
4193 + offsetof (struct large_vector, v)))
4194 /* This memory node corresponds to a large vector. */
4195 return 1;
4196 return 0;
4197 }
4198
4199
4200 /* Value is non-zero if P is a pointer to a live buffer. M is a
4201 pointer to the mem_block for P. */
4202
4203 static bool
4204 live_buffer_p (struct mem_node *m, void *p)
4205 {
4206 /* P must point to the start of the block, and the buffer
4207 must not have been killed. */
4208 return (m->type == MEM_TYPE_BUFFER
4209 && p == m->start
4210 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4211 }
4212
4213 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4214
4215 #if GC_MARK_STACK
4216
4217 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4218
4219 /* Array of objects that are kept alive because the C stack contains
4220 a pattern that looks like a reference to them . */
4221
4222 #define MAX_ZOMBIES 10
4223 static Lisp_Object zombies[MAX_ZOMBIES];
4224
4225 /* Number of zombie objects. */
4226
4227 static EMACS_INT nzombies;
4228
4229 /* Number of garbage collections. */
4230
4231 static EMACS_INT ngcs;
4232
4233 /* Average percentage of zombies per collection. */
4234
4235 static double avg_zombies;
4236
4237 /* Max. number of live and zombie objects. */
4238
4239 static EMACS_INT max_live, max_zombies;
4240
4241 /* Average number of live objects per GC. */
4242
4243 static double avg_live;
4244
4245 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4246 doc: /* Show information about live and zombie objects. */)
4247 (void)
4248 {
4249 Lisp_Object args[8], zombie_list = Qnil;
4250 EMACS_INT i;
4251 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4252 zombie_list = Fcons (zombies[i], zombie_list);
4253 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4254 args[1] = make_number (ngcs);
4255 args[2] = make_float (avg_live);
4256 args[3] = make_float (avg_zombies);
4257 args[4] = make_float (avg_zombies / avg_live / 100);
4258 args[5] = make_number (max_live);
4259 args[6] = make_number (max_zombies);
4260 args[7] = zombie_list;
4261 return Fmessage (8, args);
4262 }
4263
4264 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4265
4266
4267 /* Mark OBJ if we can prove it's a Lisp_Object. */
4268
4269 static void
4270 mark_maybe_object (Lisp_Object obj)
4271 {
4272 void *po;
4273 struct mem_node *m;
4274
4275 if (INTEGERP (obj))
4276 return;
4277
4278 po = (void *) XPNTR (obj);
4279 m = mem_find (po);
4280
4281 if (m != MEM_NIL)
4282 {
4283 bool mark_p = 0;
4284
4285 switch (XTYPE (obj))
4286 {
4287 case Lisp_String:
4288 mark_p = (live_string_p (m, po)
4289 && !STRING_MARKED_P ((struct Lisp_String *) po));
4290 break;
4291
4292 case Lisp_Cons:
4293 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4294 break;
4295
4296 case Lisp_Symbol:
4297 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4298 break;
4299
4300 case Lisp_Float:
4301 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4302 break;
4303
4304 case Lisp_Vectorlike:
4305 /* Note: can't check BUFFERP before we know it's a
4306 buffer because checking that dereferences the pointer
4307 PO which might point anywhere. */
4308 if (live_vector_p (m, po))
4309 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4310 else if (live_buffer_p (m, po))
4311 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4312 break;
4313
4314 case Lisp_Misc:
4315 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4316 break;
4317
4318 default:
4319 break;
4320 }
4321
4322 if (mark_p)
4323 {
4324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4325 if (nzombies < MAX_ZOMBIES)
4326 zombies[nzombies] = obj;
4327 ++nzombies;
4328 #endif
4329 mark_object (obj);
4330 }
4331 }
4332 }
4333
4334
4335 /* If P points to Lisp data, mark that as live if it isn't already
4336 marked. */
4337
4338 static void
4339 mark_maybe_pointer (void *p)
4340 {
4341 struct mem_node *m;
4342
4343 /* Quickly rule out some values which can't point to Lisp data.
4344 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4345 Otherwise, assume that Lisp data is aligned on even addresses. */
4346 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4347 return;
4348
4349 m = mem_find (p);
4350 if (m != MEM_NIL)
4351 {
4352 Lisp_Object obj = Qnil;
4353
4354 switch (m->type)
4355 {
4356 case MEM_TYPE_NON_LISP:
4357 case MEM_TYPE_SPARE:
4358 /* Nothing to do; not a pointer to Lisp memory. */
4359 break;
4360
4361 case MEM_TYPE_BUFFER:
4362 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4363 XSETVECTOR (obj, p);
4364 break;
4365
4366 case MEM_TYPE_CONS:
4367 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4368 XSETCONS (obj, p);
4369 break;
4370
4371 case MEM_TYPE_STRING:
4372 if (live_string_p (m, p)
4373 && !STRING_MARKED_P ((struct Lisp_String *) p))
4374 XSETSTRING (obj, p);
4375 break;
4376
4377 case MEM_TYPE_MISC:
4378 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4379 XSETMISC (obj, p);
4380 break;
4381
4382 case MEM_TYPE_SYMBOL:
4383 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4384 XSETSYMBOL (obj, p);
4385 break;
4386
4387 case MEM_TYPE_FLOAT:
4388 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4389 XSETFLOAT (obj, p);
4390 break;
4391
4392 case MEM_TYPE_VECTORLIKE:
4393 case MEM_TYPE_VECTOR_BLOCK:
4394 if (live_vector_p (m, p))
4395 {
4396 Lisp_Object tem;
4397 XSETVECTOR (tem, p);
4398 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4399 obj = tem;
4400 }
4401 break;
4402
4403 default:
4404 emacs_abort ();
4405 }
4406
4407 if (!NILP (obj))
4408 mark_object (obj);
4409 }
4410 }
4411
4412
4413 /* Alignment of pointer values. Use alignof, as it sometimes returns
4414 a smaller alignment than GCC's __alignof__ and mark_memory might
4415 miss objects if __alignof__ were used. */
4416 #define GC_POINTER_ALIGNMENT alignof (void *)
4417
4418 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4419 not suffice, which is the typical case. A host where a Lisp_Object is
4420 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4421 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4422 suffice to widen it to to a Lisp_Object and check it that way. */
4423 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4424 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4425 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4426 nor mark_maybe_object can follow the pointers. This should not occur on
4427 any practical porting target. */
4428 # error "MSB type bits straddle pointer-word boundaries"
4429 # endif
4430 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4431 pointer words that hold pointers ORed with type bits. */
4432 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4433 #else
4434 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4435 words that hold unmodified pointers. */
4436 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4437 #endif
4438
4439 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4440 or END+OFFSET..START. */
4441
4442 static void
4443 mark_memory (void *start, void *end)
4444 #if defined (__clang__) && defined (__has_feature)
4445 #if __has_feature(address_sanitizer)
4446 /* Do not allow -faddress-sanitizer to check this function, since it
4447 crosses the function stack boundary, and thus would yield many
4448 false positives. */
4449 __attribute__((no_address_safety_analysis))
4450 #endif
4451 #endif
4452 {
4453 void **pp;
4454 int i;
4455
4456 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4457 nzombies = 0;
4458 #endif
4459
4460 /* Make START the pointer to the start of the memory region,
4461 if it isn't already. */
4462 if (end < start)
4463 {
4464 void *tem = start;
4465 start = end;
4466 end = tem;
4467 }
4468
4469 /* Mark Lisp data pointed to. This is necessary because, in some
4470 situations, the C compiler optimizes Lisp objects away, so that
4471 only a pointer to them remains. Example:
4472
4473 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4474 ()
4475 {
4476 Lisp_Object obj = build_string ("test");
4477 struct Lisp_String *s = XSTRING (obj);
4478 Fgarbage_collect ();
4479 fprintf (stderr, "test `%s'\n", s->data);
4480 return Qnil;
4481 }
4482
4483 Here, `obj' isn't really used, and the compiler optimizes it
4484 away. The only reference to the life string is through the
4485 pointer `s'. */
4486
4487 for (pp = start; (void *) pp < end; pp++)
4488 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4489 {
4490 void *p = *(void **) ((char *) pp + i);
4491 mark_maybe_pointer (p);
4492 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4493 mark_maybe_object (XIL ((intptr_t) p));
4494 }
4495 }
4496
4497 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4498
4499 static bool setjmp_tested_p;
4500 static int longjmps_done;
4501
4502 #define SETJMP_WILL_LIKELY_WORK "\
4503 \n\
4504 Emacs garbage collector has been changed to use conservative stack\n\
4505 marking. Emacs has determined that the method it uses to do the\n\
4506 marking will likely work on your system, but this isn't sure.\n\
4507 \n\
4508 If you are a system-programmer, or can get the help of a local wizard\n\
4509 who is, please take a look at the function mark_stack in alloc.c, and\n\
4510 verify that the methods used are appropriate for your system.\n\
4511 \n\
4512 Please mail the result to <emacs-devel@gnu.org>.\n\
4513 "
4514
4515 #define SETJMP_WILL_NOT_WORK "\
4516 \n\
4517 Emacs garbage collector has been changed to use conservative stack\n\
4518 marking. Emacs has determined that the default method it uses to do the\n\
4519 marking will not work on your system. We will need a system-dependent\n\
4520 solution for your system.\n\
4521 \n\
4522 Please take a look at the function mark_stack in alloc.c, and\n\
4523 try to find a way to make it work on your system.\n\
4524 \n\
4525 Note that you may get false negatives, depending on the compiler.\n\
4526 In particular, you need to use -O with GCC for this test.\n\
4527 \n\
4528 Please mail the result to <emacs-devel@gnu.org>.\n\
4529 "
4530
4531
4532 /* Perform a quick check if it looks like setjmp saves registers in a
4533 jmp_buf. Print a message to stderr saying so. When this test
4534 succeeds, this is _not_ a proof that setjmp is sufficient for
4535 conservative stack marking. Only the sources or a disassembly
4536 can prove that. */
4537
4538 static void
4539 test_setjmp (void)
4540 {
4541 char buf[10];
4542 register int x;
4543 sys_jmp_buf jbuf;
4544
4545 /* Arrange for X to be put in a register. */
4546 sprintf (buf, "1");
4547 x = strlen (buf);
4548 x = 2 * x - 1;
4549
4550 sys_setjmp (jbuf);
4551 if (longjmps_done == 1)
4552 {
4553 /* Came here after the longjmp at the end of the function.
4554
4555 If x == 1, the longjmp has restored the register to its
4556 value before the setjmp, and we can hope that setjmp
4557 saves all such registers in the jmp_buf, although that
4558 isn't sure.
4559
4560 For other values of X, either something really strange is
4561 taking place, or the setjmp just didn't save the register. */
4562
4563 if (x == 1)
4564 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4565 else
4566 {
4567 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4568 exit (1);
4569 }
4570 }
4571
4572 ++longjmps_done;
4573 x = 2;
4574 if (longjmps_done == 1)
4575 sys_longjmp (jbuf, 1);
4576 }
4577
4578 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4579
4580
4581 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4582
4583 /* Abort if anything GCPRO'd doesn't survive the GC. */
4584
4585 static void
4586 check_gcpros (void)
4587 {
4588 struct gcpro *p;
4589 ptrdiff_t i;
4590
4591 for (p = gcprolist; p; p = p->next)
4592 for (i = 0; i < p->nvars; ++i)
4593 if (!survives_gc_p (p->var[i]))
4594 /* FIXME: It's not necessarily a bug. It might just be that the
4595 GCPRO is unnecessary or should release the object sooner. */
4596 emacs_abort ();
4597 }
4598
4599 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4600
4601 static void
4602 dump_zombies (void)
4603 {
4604 int i;
4605
4606 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4607 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4608 {
4609 fprintf (stderr, " %d = ", i);
4610 debug_print (zombies[i]);
4611 }
4612 }
4613
4614 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4615
4616
4617 /* Mark live Lisp objects on the C stack.
4618
4619 There are several system-dependent problems to consider when
4620 porting this to new architectures:
4621
4622 Processor Registers
4623
4624 We have to mark Lisp objects in CPU registers that can hold local
4625 variables or are used to pass parameters.
4626
4627 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4628 something that either saves relevant registers on the stack, or
4629 calls mark_maybe_object passing it each register's contents.
4630
4631 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4632 implementation assumes that calling setjmp saves registers we need
4633 to see in a jmp_buf which itself lies on the stack. This doesn't
4634 have to be true! It must be verified for each system, possibly
4635 by taking a look at the source code of setjmp.
4636
4637 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4638 can use it as a machine independent method to store all registers
4639 to the stack. In this case the macros described in the previous
4640 two paragraphs are not used.
4641
4642 Stack Layout
4643
4644 Architectures differ in the way their processor stack is organized.
4645 For example, the stack might look like this
4646
4647 +----------------+
4648 | Lisp_Object | size = 4
4649 +----------------+
4650 | something else | size = 2
4651 +----------------+
4652 | Lisp_Object | size = 4
4653 +----------------+
4654 | ... |
4655
4656 In such a case, not every Lisp_Object will be aligned equally. To
4657 find all Lisp_Object on the stack it won't be sufficient to walk
4658 the stack in steps of 4 bytes. Instead, two passes will be
4659 necessary, one starting at the start of the stack, and a second
4660 pass starting at the start of the stack + 2. Likewise, if the
4661 minimal alignment of Lisp_Objects on the stack is 1, four passes
4662 would be necessary, each one starting with one byte more offset
4663 from the stack start. */
4664
4665 static void
4666 mark_stack (void)
4667 {
4668 void *end;
4669
4670 #ifdef HAVE___BUILTIN_UNWIND_INIT
4671 /* Force callee-saved registers and register windows onto the stack.
4672 This is the preferred method if available, obviating the need for
4673 machine dependent methods. */
4674 __builtin_unwind_init ();
4675 end = &end;
4676 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4677 #ifndef GC_SAVE_REGISTERS_ON_STACK
4678 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4679 union aligned_jmpbuf {
4680 Lisp_Object o;
4681 sys_jmp_buf j;
4682 } j;
4683 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4684 #endif
4685 /* This trick flushes the register windows so that all the state of
4686 the process is contained in the stack. */
4687 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4688 needed on ia64 too. See mach_dep.c, where it also says inline
4689 assembler doesn't work with relevant proprietary compilers. */
4690 #ifdef __sparc__
4691 #if defined (__sparc64__) && defined (__FreeBSD__)
4692 /* FreeBSD does not have a ta 3 handler. */
4693 asm ("flushw");
4694 #else
4695 asm ("ta 3");
4696 #endif
4697 #endif
4698
4699 /* Save registers that we need to see on the stack. We need to see
4700 registers used to hold register variables and registers used to
4701 pass parameters. */
4702 #ifdef GC_SAVE_REGISTERS_ON_STACK
4703 GC_SAVE_REGISTERS_ON_STACK (end);
4704 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4705
4706 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4707 setjmp will definitely work, test it
4708 and print a message with the result
4709 of the test. */
4710 if (!setjmp_tested_p)
4711 {
4712 setjmp_tested_p = 1;
4713 test_setjmp ();
4714 }
4715 #endif /* GC_SETJMP_WORKS */
4716
4717 sys_setjmp (j.j);
4718 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4719 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4720 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4721
4722 /* This assumes that the stack is a contiguous region in memory. If
4723 that's not the case, something has to be done here to iterate
4724 over the stack segments. */
4725 mark_memory (stack_base, end);
4726
4727 /* Allow for marking a secondary stack, like the register stack on the
4728 ia64. */
4729 #ifdef GC_MARK_SECONDARY_STACK
4730 GC_MARK_SECONDARY_STACK ();
4731 #endif
4732
4733 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4734 check_gcpros ();
4735 #endif
4736 }
4737
4738 #endif /* GC_MARK_STACK != 0 */
4739
4740
4741 /* Determine whether it is safe to access memory at address P. */
4742 static int
4743 valid_pointer_p (void *p)
4744 {
4745 #ifdef WINDOWSNT
4746 return w32_valid_pointer_p (p, 16);
4747 #else
4748 int fd[2];
4749
4750 /* Obviously, we cannot just access it (we would SEGV trying), so we
4751 trick the o/s to tell us whether p is a valid pointer.
4752 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4753 not validate p in that case. */
4754
4755 if (emacs_pipe (fd) == 0)
4756 {
4757 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4758 emacs_close (fd[1]);
4759 emacs_close (fd[0]);
4760 return valid;
4761 }
4762
4763 return -1;
4764 #endif
4765 }
4766
4767 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4768 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4769 cannot validate OBJ. This function can be quite slow, so its primary
4770 use is the manual debugging. The only exception is print_object, where
4771 we use it to check whether the memory referenced by the pointer of
4772 Lisp_Save_Value object contains valid objects. */
4773
4774 int
4775 valid_lisp_object_p (Lisp_Object obj)
4776 {
4777 void *p;
4778 #if GC_MARK_STACK
4779 struct mem_node *m;
4780 #endif
4781
4782 if (INTEGERP (obj))
4783 return 1;
4784
4785 p = (void *) XPNTR (obj);
4786 if (PURE_POINTER_P (p))
4787 return 1;
4788
4789 if (p == &buffer_defaults || p == &buffer_local_symbols)
4790 return 2;
4791
4792 #if !GC_MARK_STACK
4793 return valid_pointer_p (p);
4794 #else
4795
4796 m = mem_find (p);
4797
4798 if (m == MEM_NIL)
4799 {
4800 int valid = valid_pointer_p (p);
4801 if (valid <= 0)
4802 return valid;
4803
4804 if (SUBRP (obj))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 switch (m->type)
4811 {
4812 case MEM_TYPE_NON_LISP:
4813 case MEM_TYPE_SPARE:
4814 return 0;
4815
4816 case MEM_TYPE_BUFFER:
4817 return live_buffer_p (m, p) ? 1 : 2;
4818
4819 case MEM_TYPE_CONS:
4820 return live_cons_p (m, p);
4821
4822 case MEM_TYPE_STRING:
4823 return live_string_p (m, p);
4824
4825 case MEM_TYPE_MISC:
4826 return live_misc_p (m, p);
4827
4828 case MEM_TYPE_SYMBOL:
4829 return live_symbol_p (m, p);
4830
4831 case MEM_TYPE_FLOAT:
4832 return live_float_p (m, p);
4833
4834 case MEM_TYPE_VECTORLIKE:
4835 case MEM_TYPE_VECTOR_BLOCK:
4836 return live_vector_p (m, p);
4837
4838 default:
4839 break;
4840 }
4841
4842 return 0;
4843 #endif
4844 }
4845
4846
4847
4848 \f
4849 /***********************************************************************
4850 Pure Storage Management
4851 ***********************************************************************/
4852
4853 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4854 pointer to it. TYPE is the Lisp type for which the memory is
4855 allocated. TYPE < 0 means it's not used for a Lisp object. */
4856
4857 static void *
4858 pure_alloc (size_t size, int type)
4859 {
4860 void *result;
4861 #if USE_LSB_TAG
4862 size_t alignment = GCALIGNMENT;
4863 #else
4864 size_t alignment = alignof (EMACS_INT);
4865
4866 /* Give Lisp_Floats an extra alignment. */
4867 if (type == Lisp_Float)
4868 alignment = alignof (struct Lisp_Float);
4869 #endif
4870
4871 again:
4872 if (type >= 0)
4873 {
4874 /* Allocate space for a Lisp object from the beginning of the free
4875 space with taking account of alignment. */
4876 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4877 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4878 }
4879 else
4880 {
4881 /* Allocate space for a non-Lisp object from the end of the free
4882 space. */
4883 pure_bytes_used_non_lisp += size;
4884 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4885 }
4886 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4887
4888 if (pure_bytes_used <= pure_size)
4889 return result;
4890
4891 /* Don't allocate a large amount here,
4892 because it might get mmap'd and then its address
4893 might not be usable. */
4894 purebeg = xmalloc (10000);
4895 pure_size = 10000;
4896 pure_bytes_used_before_overflow += pure_bytes_used - size;
4897 pure_bytes_used = 0;
4898 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4899 goto again;
4900 }
4901
4902
4903 /* Print a warning if PURESIZE is too small. */
4904
4905 void
4906 check_pure_size (void)
4907 {
4908 if (pure_bytes_used_before_overflow)
4909 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4910 " bytes needed)"),
4911 pure_bytes_used + pure_bytes_used_before_overflow);
4912 }
4913
4914
4915 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4916 the non-Lisp data pool of the pure storage, and return its start
4917 address. Return NULL if not found. */
4918
4919 static char *
4920 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4921 {
4922 int i;
4923 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4924 const unsigned char *p;
4925 char *non_lisp_beg;
4926
4927 if (pure_bytes_used_non_lisp <= nbytes)
4928 return NULL;
4929
4930 /* Set up the Boyer-Moore table. */
4931 skip = nbytes + 1;
4932 for (i = 0; i < 256; i++)
4933 bm_skip[i] = skip;
4934
4935 p = (const unsigned char *) data;
4936 while (--skip > 0)
4937 bm_skip[*p++] = skip;
4938
4939 last_char_skip = bm_skip['\0'];
4940
4941 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4942 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4943
4944 /* See the comments in the function `boyer_moore' (search.c) for the
4945 use of `infinity'. */
4946 infinity = pure_bytes_used_non_lisp + 1;
4947 bm_skip['\0'] = infinity;
4948
4949 p = (const unsigned char *) non_lisp_beg + nbytes;
4950 start = 0;
4951 do
4952 {
4953 /* Check the last character (== '\0'). */
4954 do
4955 {
4956 start += bm_skip[*(p + start)];
4957 }
4958 while (start <= start_max);
4959
4960 if (start < infinity)
4961 /* Couldn't find the last character. */
4962 return NULL;
4963
4964 /* No less than `infinity' means we could find the last
4965 character at `p[start - infinity]'. */
4966 start -= infinity;
4967
4968 /* Check the remaining characters. */
4969 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4970 /* Found. */
4971 return non_lisp_beg + start;
4972
4973 start += last_char_skip;
4974 }
4975 while (start <= start_max);
4976
4977 return NULL;
4978 }
4979
4980
4981 /* Return a string allocated in pure space. DATA is a buffer holding
4982 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4983 means make the result string multibyte.
4984
4985 Must get an error if pure storage is full, since if it cannot hold
4986 a large string it may be able to hold conses that point to that
4987 string; then the string is not protected from gc. */
4988
4989 Lisp_Object
4990 make_pure_string (const char *data,
4991 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4992 {
4993 Lisp_Object string;
4994 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4995 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4996 if (s->data == NULL)
4997 {
4998 s->data = pure_alloc (nbytes + 1, -1);
4999 memcpy (s->data, data, nbytes);
5000 s->data[nbytes] = '\0';
5001 }
5002 s->size = nchars;
5003 s->size_byte = multibyte ? nbytes : -1;
5004 s->intervals = NULL;
5005 XSETSTRING (string, s);
5006 return string;
5007 }
5008
5009 /* Return a string allocated in pure space. Do not
5010 allocate the string data, just point to DATA. */
5011
5012 Lisp_Object
5013 make_pure_c_string (const char *data, ptrdiff_t nchars)
5014 {
5015 Lisp_Object string;
5016 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5017 s->size = nchars;
5018 s->size_byte = -1;
5019 s->data = (unsigned char *) data;
5020 s->intervals = NULL;
5021 XSETSTRING (string, s);
5022 return string;
5023 }
5024
5025 /* Return a cons allocated from pure space. Give it pure copies
5026 of CAR as car and CDR as cdr. */
5027
5028 Lisp_Object
5029 pure_cons (Lisp_Object car, Lisp_Object cdr)
5030 {
5031 Lisp_Object new;
5032 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5033 XSETCONS (new, p);
5034 XSETCAR (new, Fpurecopy (car));
5035 XSETCDR (new, Fpurecopy (cdr));
5036 return new;
5037 }
5038
5039
5040 /* Value is a float object with value NUM allocated from pure space. */
5041
5042 static Lisp_Object
5043 make_pure_float (double num)
5044 {
5045 Lisp_Object new;
5046 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5047 XSETFLOAT (new, p);
5048 XFLOAT_INIT (new, num);
5049 return new;
5050 }
5051
5052
5053 /* Return a vector with room for LEN Lisp_Objects allocated from
5054 pure space. */
5055
5056 static Lisp_Object
5057 make_pure_vector (ptrdiff_t len)
5058 {
5059 Lisp_Object new;
5060 size_t size = header_size + len * word_size;
5061 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5062 XSETVECTOR (new, p);
5063 XVECTOR (new)->header.size = len;
5064 return new;
5065 }
5066
5067
5068 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5069 doc: /* Make a copy of object OBJ in pure storage.
5070 Recursively copies contents of vectors and cons cells.
5071 Does not copy symbols. Copies strings without text properties. */)
5072 (register Lisp_Object obj)
5073 {
5074 if (NILP (Vpurify_flag))
5075 return obj;
5076
5077 if (PURE_POINTER_P (XPNTR (obj)))
5078 return obj;
5079
5080 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5081 {
5082 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5083 if (!NILP (tmp))
5084 return tmp;
5085 }
5086
5087 if (CONSP (obj))
5088 obj = pure_cons (XCAR (obj), XCDR (obj));
5089 else if (FLOATP (obj))
5090 obj = make_pure_float (XFLOAT_DATA (obj));
5091 else if (STRINGP (obj))
5092 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5093 SBYTES (obj),
5094 STRING_MULTIBYTE (obj));
5095 else if (COMPILEDP (obj) || VECTORP (obj))
5096 {
5097 register struct Lisp_Vector *vec;
5098 register ptrdiff_t i;
5099 ptrdiff_t size;
5100
5101 size = ASIZE (obj);
5102 if (size & PSEUDOVECTOR_FLAG)
5103 size &= PSEUDOVECTOR_SIZE_MASK;
5104 vec = XVECTOR (make_pure_vector (size));
5105 for (i = 0; i < size; i++)
5106 vec->contents[i] = Fpurecopy (AREF (obj, i));
5107 if (COMPILEDP (obj))
5108 {
5109 XSETPVECTYPE (vec, PVEC_COMPILED);
5110 XSETCOMPILED (obj, vec);
5111 }
5112 else
5113 XSETVECTOR (obj, vec);
5114 }
5115 else if (MARKERP (obj))
5116 error ("Attempt to copy a marker to pure storage");
5117 else
5118 /* Not purified, don't hash-cons. */
5119 return obj;
5120
5121 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5122 Fputhash (obj, obj, Vpurify_flag);
5123
5124 return obj;
5125 }
5126
5127
5128 \f
5129 /***********************************************************************
5130 Protection from GC
5131 ***********************************************************************/
5132
5133 /* Put an entry in staticvec, pointing at the variable with address
5134 VARADDRESS. */
5135
5136 void
5137 staticpro (Lisp_Object *varaddress)
5138 {
5139 staticvec[staticidx++] = varaddress;
5140 if (staticidx >= NSTATICS)
5141 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5142 }
5143
5144 \f
5145 /***********************************************************************
5146 Protection from GC
5147 ***********************************************************************/
5148
5149 /* Temporarily prevent garbage collection. */
5150
5151 ptrdiff_t
5152 inhibit_garbage_collection (void)
5153 {
5154 ptrdiff_t count = SPECPDL_INDEX ();
5155
5156 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5157 return count;
5158 }
5159
5160 /* Used to avoid possible overflows when
5161 converting from C to Lisp integers. */
5162
5163 static Lisp_Object
5164 bounded_number (EMACS_INT number)
5165 {
5166 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5167 }
5168
5169 /* Calculate total bytes of live objects. */
5170
5171 static size_t
5172 total_bytes_of_live_objects (void)
5173 {
5174 size_t tot = 0;
5175 tot += total_conses * sizeof (struct Lisp_Cons);
5176 tot += total_symbols * sizeof (struct Lisp_Symbol);
5177 tot += total_markers * sizeof (union Lisp_Misc);
5178 tot += total_string_bytes;
5179 tot += total_vector_slots * word_size;
5180 tot += total_floats * sizeof (struct Lisp_Float);
5181 tot += total_intervals * sizeof (struct interval);
5182 tot += total_strings * sizeof (struct Lisp_String);
5183 return tot;
5184 }
5185
5186 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5187 doc: /* Reclaim storage for Lisp objects no longer needed.
5188 Garbage collection happens automatically if you cons more than
5189 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5190 `garbage-collect' normally returns a list with info on amount of space in use,
5191 where each entry has the form (NAME SIZE USED FREE), where:
5192 - NAME is a symbol describing the kind of objects this entry represents,
5193 - SIZE is the number of bytes used by each one,
5194 - USED is the number of those objects that were found live in the heap,
5195 - FREE is the number of those objects that are not live but that Emacs
5196 keeps around for future allocations (maybe because it does not know how
5197 to return them to the OS).
5198 However, if there was overflow in pure space, `garbage-collect'
5199 returns nil, because real GC can't be done.
5200 See Info node `(elisp)Garbage Collection'. */)
5201 (void)
5202 {
5203 struct buffer *nextb;
5204 char stack_top_variable;
5205 ptrdiff_t i;
5206 bool message_p;
5207 ptrdiff_t count = SPECPDL_INDEX ();
5208 EMACS_TIME start;
5209 Lisp_Object retval = Qnil;
5210 size_t tot_before = 0;
5211
5212 if (abort_on_gc)
5213 emacs_abort ();
5214
5215 /* Can't GC if pure storage overflowed because we can't determine
5216 if something is a pure object or not. */
5217 if (pure_bytes_used_before_overflow)
5218 return Qnil;
5219
5220 /* Record this function, so it appears on the profiler's backtraces. */
5221 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5222
5223 check_cons_list ();
5224
5225 /* Don't keep undo information around forever.
5226 Do this early on, so it is no problem if the user quits. */
5227 FOR_EACH_BUFFER (nextb)
5228 compact_buffer (nextb);
5229
5230 if (profiler_memory_running)
5231 tot_before = total_bytes_of_live_objects ();
5232
5233 start = current_emacs_time ();
5234
5235 /* In case user calls debug_print during GC,
5236 don't let that cause a recursive GC. */
5237 consing_since_gc = 0;
5238
5239 /* Save what's currently displayed in the echo area. */
5240 message_p = push_message ();
5241 record_unwind_protect_void (pop_message_unwind);
5242
5243 /* Save a copy of the contents of the stack, for debugging. */
5244 #if MAX_SAVE_STACK > 0
5245 if (NILP (Vpurify_flag))
5246 {
5247 char *stack;
5248 ptrdiff_t stack_size;
5249 if (&stack_top_variable < stack_bottom)
5250 {
5251 stack = &stack_top_variable;
5252 stack_size = stack_bottom - &stack_top_variable;
5253 }
5254 else
5255 {
5256 stack = stack_bottom;
5257 stack_size = &stack_top_variable - stack_bottom;
5258 }
5259 if (stack_size <= MAX_SAVE_STACK)
5260 {
5261 if (stack_copy_size < stack_size)
5262 {
5263 stack_copy = xrealloc (stack_copy, stack_size);
5264 stack_copy_size = stack_size;
5265 }
5266 memcpy (stack_copy, stack, stack_size);
5267 }
5268 }
5269 #endif /* MAX_SAVE_STACK > 0 */
5270
5271 if (garbage_collection_messages)
5272 message1_nolog ("Garbage collecting...");
5273
5274 block_input ();
5275
5276 shrink_regexp_cache ();
5277
5278 gc_in_progress = 1;
5279
5280 /* Mark all the special slots that serve as the roots of accessibility. */
5281
5282 mark_buffer (&buffer_defaults);
5283 mark_buffer (&buffer_local_symbols);
5284
5285 for (i = 0; i < staticidx; i++)
5286 mark_object (*staticvec[i]);
5287
5288 mark_specpdl ();
5289 mark_terminals ();
5290 mark_kboards ();
5291
5292 #ifdef USE_GTK
5293 xg_mark_data ();
5294 #endif
5295
5296 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5297 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5298 mark_stack ();
5299 #else
5300 {
5301 register struct gcpro *tail;
5302 for (tail = gcprolist; tail; tail = tail->next)
5303 for (i = 0; i < tail->nvars; i++)
5304 mark_object (tail->var[i]);
5305 }
5306 mark_byte_stack ();
5307 {
5308 struct catchtag *catch;
5309 struct handler *handler;
5310
5311 for (catch = catchlist; catch; catch = catch->next)
5312 {
5313 mark_object (catch->tag);
5314 mark_object (catch->val);
5315 }
5316 for (handler = handlerlist; handler; handler = handler->next)
5317 {
5318 mark_object (handler->handler);
5319 mark_object (handler->var);
5320 }
5321 }
5322 #endif
5323
5324 #ifdef HAVE_WINDOW_SYSTEM
5325 mark_fringe_data ();
5326 #endif
5327
5328 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5329 mark_stack ();
5330 #endif
5331
5332 /* Everything is now marked, except for the things that require special
5333 finalization, i.e. the undo_list.
5334 Look thru every buffer's undo list
5335 for elements that update markers that were not marked,
5336 and delete them. */
5337 FOR_EACH_BUFFER (nextb)
5338 {
5339 /* If a buffer's undo list is Qt, that means that undo is
5340 turned off in that buffer. Calling truncate_undo_list on
5341 Qt tends to return NULL, which effectively turns undo back on.
5342 So don't call truncate_undo_list if undo_list is Qt. */
5343 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5344 {
5345 Lisp_Object tail, prev;
5346 tail = nextb->INTERNAL_FIELD (undo_list);
5347 prev = Qnil;
5348 while (CONSP (tail))
5349 {
5350 if (CONSP (XCAR (tail))
5351 && MARKERP (XCAR (XCAR (tail)))
5352 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5353 {
5354 if (NILP (prev))
5355 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5356 else
5357 {
5358 tail = XCDR (tail);
5359 XSETCDR (prev, tail);
5360 }
5361 }
5362 else
5363 {
5364 prev = tail;
5365 tail = XCDR (tail);
5366 }
5367 }
5368 }
5369 /* Now that we have stripped the elements that need not be in the
5370 undo_list any more, we can finally mark the list. */
5371 mark_object (nextb->INTERNAL_FIELD (undo_list));
5372 }
5373
5374 gc_sweep ();
5375
5376 /* Clear the mark bits that we set in certain root slots. */
5377
5378 unmark_byte_stack ();
5379 VECTOR_UNMARK (&buffer_defaults);
5380 VECTOR_UNMARK (&buffer_local_symbols);
5381
5382 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5383 dump_zombies ();
5384 #endif
5385
5386 check_cons_list ();
5387
5388 gc_in_progress = 0;
5389
5390 unblock_input ();
5391
5392 consing_since_gc = 0;
5393 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5394 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5395
5396 gc_relative_threshold = 0;
5397 if (FLOATP (Vgc_cons_percentage))
5398 { /* Set gc_cons_combined_threshold. */
5399 double tot = total_bytes_of_live_objects ();
5400
5401 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5402 if (0 < tot)
5403 {
5404 if (tot < TYPE_MAXIMUM (EMACS_INT))
5405 gc_relative_threshold = tot;
5406 else
5407 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5408 }
5409 }
5410
5411 if (garbage_collection_messages)
5412 {
5413 if (message_p || minibuf_level > 0)
5414 restore_message ();
5415 else
5416 message1_nolog ("Garbage collecting...done");
5417 }
5418
5419 unbind_to (count, Qnil);
5420 {
5421 Lisp_Object total[11];
5422 int total_size = 10;
5423
5424 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5425 bounded_number (total_conses),
5426 bounded_number (total_free_conses));
5427
5428 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5429 bounded_number (total_symbols),
5430 bounded_number (total_free_symbols));
5431
5432 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5433 bounded_number (total_markers),
5434 bounded_number (total_free_markers));
5435
5436 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5437 bounded_number (total_strings),
5438 bounded_number (total_free_strings));
5439
5440 total[4] = list3 (Qstring_bytes, make_number (1),
5441 bounded_number (total_string_bytes));
5442
5443 total[5] = list3 (Qvectors,
5444 make_number (header_size + sizeof (Lisp_Object)),
5445 bounded_number (total_vectors));
5446
5447 total[6] = list4 (Qvector_slots, make_number (word_size),
5448 bounded_number (total_vector_slots),
5449 bounded_number (total_free_vector_slots));
5450
5451 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5452 bounded_number (total_floats),
5453 bounded_number (total_free_floats));
5454
5455 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5456 bounded_number (total_intervals),
5457 bounded_number (total_free_intervals));
5458
5459 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5460 bounded_number (total_buffers));
5461
5462 #ifdef DOUG_LEA_MALLOC
5463 total_size++;
5464 total[10] = list4 (Qheap, make_number (1024),
5465 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5466 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5467 #endif
5468 retval = Flist (total_size, total);
5469 }
5470
5471 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5472 {
5473 /* Compute average percentage of zombies. */
5474 double nlive
5475 = (total_conses + total_symbols + total_markers + total_strings
5476 + total_vectors + total_floats + total_intervals + total_buffers);
5477
5478 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5479 max_live = max (nlive, max_live);
5480 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5481 max_zombies = max (nzombies, max_zombies);
5482 ++ngcs;
5483 }
5484 #endif
5485
5486 if (!NILP (Vpost_gc_hook))
5487 {
5488 ptrdiff_t gc_count = inhibit_garbage_collection ();
5489 safe_run_hooks (Qpost_gc_hook);
5490 unbind_to (gc_count, Qnil);
5491 }
5492
5493 /* Accumulate statistics. */
5494 if (FLOATP (Vgc_elapsed))
5495 {
5496 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5497 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5498 + EMACS_TIME_TO_DOUBLE (since_start));
5499 }
5500
5501 gcs_done++;
5502
5503 /* Collect profiling data. */
5504 if (profiler_memory_running)
5505 {
5506 size_t swept = 0;
5507 size_t tot_after = total_bytes_of_live_objects ();
5508 if (tot_before > tot_after)
5509 swept = tot_before - tot_after;
5510 malloc_probe (swept);
5511 }
5512
5513 return retval;
5514 }
5515
5516
5517 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5518 only interesting objects referenced from glyphs are strings. */
5519
5520 static void
5521 mark_glyph_matrix (struct glyph_matrix *matrix)
5522 {
5523 struct glyph_row *row = matrix->rows;
5524 struct glyph_row *end = row + matrix->nrows;
5525
5526 for (; row < end; ++row)
5527 if (row->enabled_p)
5528 {
5529 int area;
5530 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5531 {
5532 struct glyph *glyph = row->glyphs[area];
5533 struct glyph *end_glyph = glyph + row->used[area];
5534
5535 for (; glyph < end_glyph; ++glyph)
5536 if (STRINGP (glyph->object)
5537 && !STRING_MARKED_P (XSTRING (glyph->object)))
5538 mark_object (glyph->object);
5539 }
5540 }
5541 }
5542
5543
5544 /* Mark Lisp faces in the face cache C. */
5545
5546 static void
5547 mark_face_cache (struct face_cache *c)
5548 {
5549 if (c)
5550 {
5551 int i, j;
5552 for (i = 0; i < c->used; ++i)
5553 {
5554 struct face *face = FACE_FROM_ID (c->f, i);
5555
5556 if (face)
5557 {
5558 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5559 mark_object (face->lface[j]);
5560 }
5561 }
5562 }
5563 }
5564
5565
5566 \f
5567 /* Mark reference to a Lisp_Object.
5568 If the object referred to has not been seen yet, recursively mark
5569 all the references contained in it. */
5570
5571 #define LAST_MARKED_SIZE 500
5572 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5573 static int last_marked_index;
5574
5575 /* For debugging--call abort when we cdr down this many
5576 links of a list, in mark_object. In debugging,
5577 the call to abort will hit a breakpoint.
5578 Normally this is zero and the check never goes off. */
5579 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5580
5581 static void
5582 mark_vectorlike (struct Lisp_Vector *ptr)
5583 {
5584 ptrdiff_t size = ptr->header.size;
5585 ptrdiff_t i;
5586
5587 eassert (!VECTOR_MARKED_P (ptr));
5588 VECTOR_MARK (ptr); /* Else mark it. */
5589 if (size & PSEUDOVECTOR_FLAG)
5590 size &= PSEUDOVECTOR_SIZE_MASK;
5591
5592 /* Note that this size is not the memory-footprint size, but only
5593 the number of Lisp_Object fields that we should trace.
5594 The distinction is used e.g. by Lisp_Process which places extra
5595 non-Lisp_Object fields at the end of the structure... */
5596 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5597 mark_object (ptr->contents[i]);
5598 }
5599
5600 /* Like mark_vectorlike but optimized for char-tables (and
5601 sub-char-tables) assuming that the contents are mostly integers or
5602 symbols. */
5603
5604 static void
5605 mark_char_table (struct Lisp_Vector *ptr)
5606 {
5607 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5608 int i;
5609
5610 eassert (!VECTOR_MARKED_P (ptr));
5611 VECTOR_MARK (ptr);
5612 for (i = 0; i < size; i++)
5613 {
5614 Lisp_Object val = ptr->contents[i];
5615
5616 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5617 continue;
5618 if (SUB_CHAR_TABLE_P (val))
5619 {
5620 if (! VECTOR_MARKED_P (XVECTOR (val)))
5621 mark_char_table (XVECTOR (val));
5622 }
5623 else
5624 mark_object (val);
5625 }
5626 }
5627
5628 /* Mark the chain of overlays starting at PTR. */
5629
5630 static void
5631 mark_overlay (struct Lisp_Overlay *ptr)
5632 {
5633 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5634 {
5635 ptr->gcmarkbit = 1;
5636 mark_object (ptr->start);
5637 mark_object (ptr->end);
5638 mark_object (ptr->plist);
5639 }
5640 }
5641
5642 /* Mark Lisp_Objects and special pointers in BUFFER. */
5643
5644 static void
5645 mark_buffer (struct buffer *buffer)
5646 {
5647 /* This is handled much like other pseudovectors... */
5648 mark_vectorlike ((struct Lisp_Vector *) buffer);
5649
5650 /* ...but there are some buffer-specific things. */
5651
5652 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5653
5654 /* For now, we just don't mark the undo_list. It's done later in
5655 a special way just before the sweep phase, and after stripping
5656 some of its elements that are not needed any more. */
5657
5658 mark_overlay (buffer->overlays_before);
5659 mark_overlay (buffer->overlays_after);
5660
5661 /* If this is an indirect buffer, mark its base buffer. */
5662 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5663 mark_buffer (buffer->base_buffer);
5664 }
5665
5666 /* Remove killed buffers or items whose car is a killed buffer from
5667 LIST, and mark other items. Return changed LIST, which is marked. */
5668
5669 static Lisp_Object
5670 mark_discard_killed_buffers (Lisp_Object list)
5671 {
5672 Lisp_Object tail, *prev = &list;
5673
5674 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5675 tail = XCDR (tail))
5676 {
5677 Lisp_Object tem = XCAR (tail);
5678 if (CONSP (tem))
5679 tem = XCAR (tem);
5680 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5681 *prev = XCDR (tail);
5682 else
5683 {
5684 CONS_MARK (XCONS (tail));
5685 mark_object (XCAR (tail));
5686 prev = xcdr_addr (tail);
5687 }
5688 }
5689 mark_object (tail);
5690 return list;
5691 }
5692
5693 /* Determine type of generic Lisp_Object and mark it accordingly. */
5694
5695 void
5696 mark_object (Lisp_Object arg)
5697 {
5698 register Lisp_Object obj = arg;
5699 #ifdef GC_CHECK_MARKED_OBJECTS
5700 void *po;
5701 struct mem_node *m;
5702 #endif
5703 ptrdiff_t cdr_count = 0;
5704
5705 loop:
5706
5707 if (PURE_POINTER_P (XPNTR (obj)))
5708 return;
5709
5710 last_marked[last_marked_index++] = obj;
5711 if (last_marked_index == LAST_MARKED_SIZE)
5712 last_marked_index = 0;
5713
5714 /* Perform some sanity checks on the objects marked here. Abort if
5715 we encounter an object we know is bogus. This increases GC time
5716 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5717 #ifdef GC_CHECK_MARKED_OBJECTS
5718
5719 po = (void *) XPNTR (obj);
5720
5721 /* Check that the object pointed to by PO is known to be a Lisp
5722 structure allocated from the heap. */
5723 #define CHECK_ALLOCATED() \
5724 do { \
5725 m = mem_find (po); \
5726 if (m == MEM_NIL) \
5727 emacs_abort (); \
5728 } while (0)
5729
5730 /* Check that the object pointed to by PO is live, using predicate
5731 function LIVEP. */
5732 #define CHECK_LIVE(LIVEP) \
5733 do { \
5734 if (!LIVEP (m, po)) \
5735 emacs_abort (); \
5736 } while (0)
5737
5738 /* Check both of the above conditions. */
5739 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5740 do { \
5741 CHECK_ALLOCATED (); \
5742 CHECK_LIVE (LIVEP); \
5743 } while (0) \
5744
5745 #else /* not GC_CHECK_MARKED_OBJECTS */
5746
5747 #define CHECK_LIVE(LIVEP) (void) 0
5748 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5749
5750 #endif /* not GC_CHECK_MARKED_OBJECTS */
5751
5752 switch (XTYPE (obj))
5753 {
5754 case Lisp_String:
5755 {
5756 register struct Lisp_String *ptr = XSTRING (obj);
5757 if (STRING_MARKED_P (ptr))
5758 break;
5759 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5760 MARK_STRING (ptr);
5761 MARK_INTERVAL_TREE (ptr->intervals);
5762 #ifdef GC_CHECK_STRING_BYTES
5763 /* Check that the string size recorded in the string is the
5764 same as the one recorded in the sdata structure. */
5765 string_bytes (ptr);
5766 #endif /* GC_CHECK_STRING_BYTES */
5767 }
5768 break;
5769
5770 case Lisp_Vectorlike:
5771 {
5772 register struct Lisp_Vector *ptr = XVECTOR (obj);
5773 register ptrdiff_t pvectype;
5774
5775 if (VECTOR_MARKED_P (ptr))
5776 break;
5777
5778 #ifdef GC_CHECK_MARKED_OBJECTS
5779 m = mem_find (po);
5780 if (m == MEM_NIL && !SUBRP (obj))
5781 emacs_abort ();
5782 #endif /* GC_CHECK_MARKED_OBJECTS */
5783
5784 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5785 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5786 >> PSEUDOVECTOR_AREA_BITS);
5787 else
5788 pvectype = PVEC_NORMAL_VECTOR;
5789
5790 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5791 CHECK_LIVE (live_vector_p);
5792
5793 switch (pvectype)
5794 {
5795 case PVEC_BUFFER:
5796 #ifdef GC_CHECK_MARKED_OBJECTS
5797 {
5798 struct buffer *b;
5799 FOR_EACH_BUFFER (b)
5800 if (b == po)
5801 break;
5802 if (b == NULL)
5803 emacs_abort ();
5804 }
5805 #endif /* GC_CHECK_MARKED_OBJECTS */
5806 mark_buffer ((struct buffer *) ptr);
5807 break;
5808
5809 case PVEC_COMPILED:
5810 { /* We could treat this just like a vector, but it is better
5811 to save the COMPILED_CONSTANTS element for last and avoid
5812 recursion there. */
5813 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5814 int i;
5815
5816 VECTOR_MARK (ptr);
5817 for (i = 0; i < size; i++)
5818 if (i != COMPILED_CONSTANTS)
5819 mark_object (ptr->contents[i]);
5820 if (size > COMPILED_CONSTANTS)
5821 {
5822 obj = ptr->contents[COMPILED_CONSTANTS];
5823 goto loop;
5824 }
5825 }
5826 break;
5827
5828 case PVEC_FRAME:
5829 mark_vectorlike (ptr);
5830 mark_face_cache (((struct frame *) ptr)->face_cache);
5831 break;
5832
5833 case PVEC_WINDOW:
5834 {
5835 struct window *w = (struct window *) ptr;
5836
5837 mark_vectorlike (ptr);
5838
5839 /* Mark glyph matrices, if any. Marking window
5840 matrices is sufficient because frame matrices
5841 use the same glyph memory. */
5842 if (w->current_matrix)
5843 {
5844 mark_glyph_matrix (w->current_matrix);
5845 mark_glyph_matrix (w->desired_matrix);
5846 }
5847
5848 /* Filter out killed buffers from both buffer lists
5849 in attempt to help GC to reclaim killed buffers faster.
5850 We can do it elsewhere for live windows, but this is the
5851 best place to do it for dead windows. */
5852 wset_prev_buffers
5853 (w, mark_discard_killed_buffers (w->prev_buffers));
5854 wset_next_buffers
5855 (w, mark_discard_killed_buffers (w->next_buffers));
5856 }
5857 break;
5858
5859 case PVEC_HASH_TABLE:
5860 {
5861 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5862
5863 mark_vectorlike (ptr);
5864 mark_object (h->test.name);
5865 mark_object (h->test.user_hash_function);
5866 mark_object (h->test.user_cmp_function);
5867 /* If hash table is not weak, mark all keys and values.
5868 For weak tables, mark only the vector. */
5869 if (NILP (h->weak))
5870 mark_object (h->key_and_value);
5871 else
5872 VECTOR_MARK (XVECTOR (h->key_and_value));
5873 }
5874 break;
5875
5876 case PVEC_CHAR_TABLE:
5877 mark_char_table (ptr);
5878 break;
5879
5880 case PVEC_BOOL_VECTOR:
5881 /* No Lisp_Objects to mark in a bool vector. */
5882 VECTOR_MARK (ptr);
5883 break;
5884
5885 case PVEC_SUBR:
5886 break;
5887
5888 case PVEC_FREE:
5889 emacs_abort ();
5890
5891 default:
5892 mark_vectorlike (ptr);
5893 }
5894 }
5895 break;
5896
5897 case Lisp_Symbol:
5898 {
5899 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5900 struct Lisp_Symbol *ptrx;
5901
5902 if (ptr->gcmarkbit)
5903 break;
5904 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5905 ptr->gcmarkbit = 1;
5906 mark_object (ptr->function);
5907 mark_object (ptr->plist);
5908 switch (ptr->redirect)
5909 {
5910 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5911 case SYMBOL_VARALIAS:
5912 {
5913 Lisp_Object tem;
5914 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5915 mark_object (tem);
5916 break;
5917 }
5918 case SYMBOL_LOCALIZED:
5919 {
5920 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5921 Lisp_Object where = blv->where;
5922 /* If the value is set up for a killed buffer or deleted
5923 frame, restore it's global binding. If the value is
5924 forwarded to a C variable, either it's not a Lisp_Object
5925 var, or it's staticpro'd already. */
5926 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5927 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5928 swap_in_global_binding (ptr);
5929 mark_object (blv->where);
5930 mark_object (blv->valcell);
5931 mark_object (blv->defcell);
5932 break;
5933 }
5934 case SYMBOL_FORWARDED:
5935 /* If the value is forwarded to a buffer or keyboard field,
5936 these are marked when we see the corresponding object.
5937 And if it's forwarded to a C variable, either it's not
5938 a Lisp_Object var, or it's staticpro'd already. */
5939 break;
5940 default: emacs_abort ();
5941 }
5942 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5943 MARK_STRING (XSTRING (ptr->name));
5944 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5945
5946 ptr = ptr->next;
5947 if (ptr)
5948 {
5949 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5950 XSETSYMBOL (obj, ptrx);
5951 goto loop;
5952 }
5953 }
5954 break;
5955
5956 case Lisp_Misc:
5957 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5958
5959 if (XMISCANY (obj)->gcmarkbit)
5960 break;
5961
5962 switch (XMISCTYPE (obj))
5963 {
5964 case Lisp_Misc_Marker:
5965 /* DO NOT mark thru the marker's chain.
5966 The buffer's markers chain does not preserve markers from gc;
5967 instead, markers are removed from the chain when freed by gc. */
5968 XMISCANY (obj)->gcmarkbit = 1;
5969 break;
5970
5971 case Lisp_Misc_Save_Value:
5972 XMISCANY (obj)->gcmarkbit = 1;
5973 {
5974 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5975 /* If `save_type' is zero, `data[0].pointer' is the address
5976 of a memory area containing `data[1].integer' potential
5977 Lisp_Objects. */
5978 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5979 {
5980 Lisp_Object *p = ptr->data[0].pointer;
5981 ptrdiff_t nelt;
5982 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5983 mark_maybe_object (*p);
5984 }
5985 else
5986 {
5987 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5988 int i;
5989 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5990 if (save_type (ptr, i) == SAVE_OBJECT)
5991 mark_object (ptr->data[i].object);
5992 }
5993 }
5994 break;
5995
5996 case Lisp_Misc_Overlay:
5997 mark_overlay (XOVERLAY (obj));
5998 break;
5999
6000 default:
6001 emacs_abort ();
6002 }
6003 break;
6004
6005 case Lisp_Cons:
6006 {
6007 register struct Lisp_Cons *ptr = XCONS (obj);
6008 if (CONS_MARKED_P (ptr))
6009 break;
6010 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6011 CONS_MARK (ptr);
6012 /* If the cdr is nil, avoid recursion for the car. */
6013 if (EQ (ptr->u.cdr, Qnil))
6014 {
6015 obj = ptr->car;
6016 cdr_count = 0;
6017 goto loop;
6018 }
6019 mark_object (ptr->car);
6020 obj = ptr->u.cdr;
6021 cdr_count++;
6022 if (cdr_count == mark_object_loop_halt)
6023 emacs_abort ();
6024 goto loop;
6025 }
6026
6027 case Lisp_Float:
6028 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6029 FLOAT_MARK (XFLOAT (obj));
6030 break;
6031
6032 case_Lisp_Int:
6033 break;
6034
6035 default:
6036 emacs_abort ();
6037 }
6038
6039 #undef CHECK_LIVE
6040 #undef CHECK_ALLOCATED
6041 #undef CHECK_ALLOCATED_AND_LIVE
6042 }
6043 /* Mark the Lisp pointers in the terminal objects.
6044 Called by Fgarbage_collect. */
6045
6046 static void
6047 mark_terminals (void)
6048 {
6049 struct terminal *t;
6050 for (t = terminal_list; t; t = t->next_terminal)
6051 {
6052 eassert (t->name != NULL);
6053 #ifdef HAVE_WINDOW_SYSTEM
6054 /* If a terminal object is reachable from a stacpro'ed object,
6055 it might have been marked already. Make sure the image cache
6056 gets marked. */
6057 mark_image_cache (t->image_cache);
6058 #endif /* HAVE_WINDOW_SYSTEM */
6059 if (!VECTOR_MARKED_P (t))
6060 mark_vectorlike ((struct Lisp_Vector *)t);
6061 }
6062 }
6063
6064
6065
6066 /* Value is non-zero if OBJ will survive the current GC because it's
6067 either marked or does not need to be marked to survive. */
6068
6069 bool
6070 survives_gc_p (Lisp_Object obj)
6071 {
6072 bool survives_p;
6073
6074 switch (XTYPE (obj))
6075 {
6076 case_Lisp_Int:
6077 survives_p = 1;
6078 break;
6079
6080 case Lisp_Symbol:
6081 survives_p = XSYMBOL (obj)->gcmarkbit;
6082 break;
6083
6084 case Lisp_Misc:
6085 survives_p = XMISCANY (obj)->gcmarkbit;
6086 break;
6087
6088 case Lisp_String:
6089 survives_p = STRING_MARKED_P (XSTRING (obj));
6090 break;
6091
6092 case Lisp_Vectorlike:
6093 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6094 break;
6095
6096 case Lisp_Cons:
6097 survives_p = CONS_MARKED_P (XCONS (obj));
6098 break;
6099
6100 case Lisp_Float:
6101 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6102 break;
6103
6104 default:
6105 emacs_abort ();
6106 }
6107
6108 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6109 }
6110
6111
6112 \f
6113 /* Sweep: find all structures not marked, and free them. */
6114
6115 static void
6116 gc_sweep (void)
6117 {
6118 /* Remove or mark entries in weak hash tables.
6119 This must be done before any object is unmarked. */
6120 sweep_weak_hash_tables ();
6121
6122 sweep_strings ();
6123 check_string_bytes (!noninteractive);
6124
6125 /* Put all unmarked conses on free list */
6126 {
6127 register struct cons_block *cblk;
6128 struct cons_block **cprev = &cons_block;
6129 register int lim = cons_block_index;
6130 EMACS_INT num_free = 0, num_used = 0;
6131
6132 cons_free_list = 0;
6133
6134 for (cblk = cons_block; cblk; cblk = *cprev)
6135 {
6136 register int i = 0;
6137 int this_free = 0;
6138 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6139
6140 /* Scan the mark bits an int at a time. */
6141 for (i = 0; i < ilim; i++)
6142 {
6143 if (cblk->gcmarkbits[i] == -1)
6144 {
6145 /* Fast path - all cons cells for this int are marked. */
6146 cblk->gcmarkbits[i] = 0;
6147 num_used += BITS_PER_INT;
6148 }
6149 else
6150 {
6151 /* Some cons cells for this int are not marked.
6152 Find which ones, and free them. */
6153 int start, pos, stop;
6154
6155 start = i * BITS_PER_INT;
6156 stop = lim - start;
6157 if (stop > BITS_PER_INT)
6158 stop = BITS_PER_INT;
6159 stop += start;
6160
6161 for (pos = start; pos < stop; pos++)
6162 {
6163 if (!CONS_MARKED_P (&cblk->conses[pos]))
6164 {
6165 this_free++;
6166 cblk->conses[pos].u.chain = cons_free_list;
6167 cons_free_list = &cblk->conses[pos];
6168 #if GC_MARK_STACK
6169 cons_free_list->car = Vdead;
6170 #endif
6171 }
6172 else
6173 {
6174 num_used++;
6175 CONS_UNMARK (&cblk->conses[pos]);
6176 }
6177 }
6178 }
6179 }
6180
6181 lim = CONS_BLOCK_SIZE;
6182 /* If this block contains only free conses and we have already
6183 seen more than two blocks worth of free conses then deallocate
6184 this block. */
6185 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6186 {
6187 *cprev = cblk->next;
6188 /* Unhook from the free list. */
6189 cons_free_list = cblk->conses[0].u.chain;
6190 lisp_align_free (cblk);
6191 }
6192 else
6193 {
6194 num_free += this_free;
6195 cprev = &cblk->next;
6196 }
6197 }
6198 total_conses = num_used;
6199 total_free_conses = num_free;
6200 }
6201
6202 /* Put all unmarked floats on free list */
6203 {
6204 register struct float_block *fblk;
6205 struct float_block **fprev = &float_block;
6206 register int lim = float_block_index;
6207 EMACS_INT num_free = 0, num_used = 0;
6208
6209 float_free_list = 0;
6210
6211 for (fblk = float_block; fblk; fblk = *fprev)
6212 {
6213 register int i;
6214 int this_free = 0;
6215 for (i = 0; i < lim; i++)
6216 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6217 {
6218 this_free++;
6219 fblk->floats[i].u.chain = float_free_list;
6220 float_free_list = &fblk->floats[i];
6221 }
6222 else
6223 {
6224 num_used++;
6225 FLOAT_UNMARK (&fblk->floats[i]);
6226 }
6227 lim = FLOAT_BLOCK_SIZE;
6228 /* If this block contains only free floats and we have already
6229 seen more than two blocks worth of free floats then deallocate
6230 this block. */
6231 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6232 {
6233 *fprev = fblk->next;
6234 /* Unhook from the free list. */
6235 float_free_list = fblk->floats[0].u.chain;
6236 lisp_align_free (fblk);
6237 }
6238 else
6239 {
6240 num_free += this_free;
6241 fprev = &fblk->next;
6242 }
6243 }
6244 total_floats = num_used;
6245 total_free_floats = num_free;
6246 }
6247
6248 /* Put all unmarked intervals on free list */
6249 {
6250 register struct interval_block *iblk;
6251 struct interval_block **iprev = &interval_block;
6252 register int lim = interval_block_index;
6253 EMACS_INT num_free = 0, num_used = 0;
6254
6255 interval_free_list = 0;
6256
6257 for (iblk = interval_block; iblk; iblk = *iprev)
6258 {
6259 register int i;
6260 int this_free = 0;
6261
6262 for (i = 0; i < lim; i++)
6263 {
6264 if (!iblk->intervals[i].gcmarkbit)
6265 {
6266 set_interval_parent (&iblk->intervals[i], interval_free_list);
6267 interval_free_list = &iblk->intervals[i];
6268 this_free++;
6269 }
6270 else
6271 {
6272 num_used++;
6273 iblk->intervals[i].gcmarkbit = 0;
6274 }
6275 }
6276 lim = INTERVAL_BLOCK_SIZE;
6277 /* If this block contains only free intervals and we have already
6278 seen more than two blocks worth of free intervals then
6279 deallocate this block. */
6280 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6281 {
6282 *iprev = iblk->next;
6283 /* Unhook from the free list. */
6284 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6285 lisp_free (iblk);
6286 }
6287 else
6288 {
6289 num_free += this_free;
6290 iprev = &iblk->next;
6291 }
6292 }
6293 total_intervals = num_used;
6294 total_free_intervals = num_free;
6295 }
6296
6297 /* Put all unmarked symbols on free list */
6298 {
6299 register struct symbol_block *sblk;
6300 struct symbol_block **sprev = &symbol_block;
6301 register int lim = symbol_block_index;
6302 EMACS_INT num_free = 0, num_used = 0;
6303
6304 symbol_free_list = NULL;
6305
6306 for (sblk = symbol_block; sblk; sblk = *sprev)
6307 {
6308 int this_free = 0;
6309 union aligned_Lisp_Symbol *sym = sblk->symbols;
6310 union aligned_Lisp_Symbol *end = sym + lim;
6311
6312 for (; sym < end; ++sym)
6313 {
6314 /* Check if the symbol was created during loadup. In such a case
6315 it might be pointed to by pure bytecode which we don't trace,
6316 so we conservatively assume that it is live. */
6317 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6318
6319 if (!sym->s.gcmarkbit && !pure_p)
6320 {
6321 if (sym->s.redirect == SYMBOL_LOCALIZED)
6322 xfree (SYMBOL_BLV (&sym->s));
6323 sym->s.next = symbol_free_list;
6324 symbol_free_list = &sym->s;
6325 #if GC_MARK_STACK
6326 symbol_free_list->function = Vdead;
6327 #endif
6328 ++this_free;
6329 }
6330 else
6331 {
6332 ++num_used;
6333 if (!pure_p)
6334 UNMARK_STRING (XSTRING (sym->s.name));
6335 sym->s.gcmarkbit = 0;
6336 }
6337 }
6338
6339 lim = SYMBOL_BLOCK_SIZE;
6340 /* If this block contains only free symbols and we have already
6341 seen more than two blocks worth of free symbols then deallocate
6342 this block. */
6343 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6344 {
6345 *sprev = sblk->next;
6346 /* Unhook from the free list. */
6347 symbol_free_list = sblk->symbols[0].s.next;
6348 lisp_free (sblk);
6349 }
6350 else
6351 {
6352 num_free += this_free;
6353 sprev = &sblk->next;
6354 }
6355 }
6356 total_symbols = num_used;
6357 total_free_symbols = num_free;
6358 }
6359
6360 /* Put all unmarked misc's on free list.
6361 For a marker, first unchain it from the buffer it points into. */
6362 {
6363 register struct marker_block *mblk;
6364 struct marker_block **mprev = &marker_block;
6365 register int lim = marker_block_index;
6366 EMACS_INT num_free = 0, num_used = 0;
6367
6368 marker_free_list = 0;
6369
6370 for (mblk = marker_block; mblk; mblk = *mprev)
6371 {
6372 register int i;
6373 int this_free = 0;
6374
6375 for (i = 0; i < lim; i++)
6376 {
6377 if (!mblk->markers[i].m.u_any.gcmarkbit)
6378 {
6379 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6380 unchain_marker (&mblk->markers[i].m.u_marker);
6381 /* Set the type of the freed object to Lisp_Misc_Free.
6382 We could leave the type alone, since nobody checks it,
6383 but this might catch bugs faster. */
6384 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6385 mblk->markers[i].m.u_free.chain = marker_free_list;
6386 marker_free_list = &mblk->markers[i].m;
6387 this_free++;
6388 }
6389 else
6390 {
6391 num_used++;
6392 mblk->markers[i].m.u_any.gcmarkbit = 0;
6393 }
6394 }
6395 lim = MARKER_BLOCK_SIZE;
6396 /* If this block contains only free markers and we have already
6397 seen more than two blocks worth of free markers then deallocate
6398 this block. */
6399 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6400 {
6401 *mprev = mblk->next;
6402 /* Unhook from the free list. */
6403 marker_free_list = mblk->markers[0].m.u_free.chain;
6404 lisp_free (mblk);
6405 }
6406 else
6407 {
6408 num_free += this_free;
6409 mprev = &mblk->next;
6410 }
6411 }
6412
6413 total_markers = num_used;
6414 total_free_markers = num_free;
6415 }
6416
6417 /* Free all unmarked buffers */
6418 {
6419 register struct buffer *buffer, **bprev = &all_buffers;
6420
6421 total_buffers = 0;
6422 for (buffer = all_buffers; buffer; buffer = *bprev)
6423 if (!VECTOR_MARKED_P (buffer))
6424 {
6425 *bprev = buffer->next;
6426 lisp_free (buffer);
6427 }
6428 else
6429 {
6430 VECTOR_UNMARK (buffer);
6431 /* Do not use buffer_(set|get)_intervals here. */
6432 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6433 total_buffers++;
6434 bprev = &buffer->next;
6435 }
6436 }
6437
6438 sweep_vectors ();
6439 check_string_bytes (!noninteractive);
6440 }
6441
6442
6443
6444 \f
6445 /* Debugging aids. */
6446
6447 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6448 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6449 This may be helpful in debugging Emacs's memory usage.
6450 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6451 (void)
6452 {
6453 Lisp_Object end;
6454
6455 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6456
6457 return end;
6458 }
6459
6460 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6461 doc: /* Return a list of counters that measure how much consing there has been.
6462 Each of these counters increments for a certain kind of object.
6463 The counters wrap around from the largest positive integer to zero.
6464 Garbage collection does not decrease them.
6465 The elements of the value are as follows:
6466 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6467 All are in units of 1 = one object consed
6468 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6469 objects consed.
6470 MISCS include overlays, markers, and some internal types.
6471 Frames, windows, buffers, and subprocesses count as vectors
6472 (but the contents of a buffer's text do not count here). */)
6473 (void)
6474 {
6475 return listn (CONSTYPE_HEAP, 8,
6476 bounded_number (cons_cells_consed),
6477 bounded_number (floats_consed),
6478 bounded_number (vector_cells_consed),
6479 bounded_number (symbols_consed),
6480 bounded_number (string_chars_consed),
6481 bounded_number (misc_objects_consed),
6482 bounded_number (intervals_consed),
6483 bounded_number (strings_consed));
6484 }
6485
6486 /* Find at most FIND_MAX symbols which have OBJ as their value or
6487 function. This is used in gdbinit's `xwhichsymbols' command. */
6488
6489 Lisp_Object
6490 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6491 {
6492 struct symbol_block *sblk;
6493 ptrdiff_t gc_count = inhibit_garbage_collection ();
6494 Lisp_Object found = Qnil;
6495
6496 if (! DEADP (obj))
6497 {
6498 for (sblk = symbol_block; sblk; sblk = sblk->next)
6499 {
6500 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6501 int bn;
6502
6503 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6504 {
6505 struct Lisp_Symbol *sym = &aligned_sym->s;
6506 Lisp_Object val;
6507 Lisp_Object tem;
6508
6509 if (sblk == symbol_block && bn >= symbol_block_index)
6510 break;
6511
6512 XSETSYMBOL (tem, sym);
6513 val = find_symbol_value (tem);
6514 if (EQ (val, obj)
6515 || EQ (sym->function, obj)
6516 || (!NILP (sym->function)
6517 && COMPILEDP (sym->function)
6518 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6519 || (!NILP (val)
6520 && COMPILEDP (val)
6521 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6522 {
6523 found = Fcons (tem, found);
6524 if (--find_max == 0)
6525 goto out;
6526 }
6527 }
6528 }
6529 }
6530
6531 out:
6532 unbind_to (gc_count, Qnil);
6533 return found;
6534 }
6535
6536 #ifdef ENABLE_CHECKING
6537
6538 bool suppress_checking;
6539
6540 void
6541 die (const char *msg, const char *file, int line)
6542 {
6543 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6544 file, line, msg);
6545 terminate_due_to_signal (SIGABRT, INT_MAX);
6546 }
6547 #endif
6548 \f
6549 /* Initialization. */
6550
6551 void
6552 init_alloc_once (void)
6553 {
6554 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6555 purebeg = PUREBEG;
6556 pure_size = PURESIZE;
6557
6558 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6559 mem_init ();
6560 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6561 #endif
6562
6563 #ifdef DOUG_LEA_MALLOC
6564 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6565 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6566 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6567 #endif
6568 init_strings ();
6569 init_vectors ();
6570
6571 refill_memory_reserve ();
6572 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6573 }
6574
6575 void
6576 init_alloc (void)
6577 {
6578 gcprolist = 0;
6579 byte_stack_list = 0;
6580 #if GC_MARK_STACK
6581 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6582 setjmp_tested_p = longjmps_done = 0;
6583 #endif
6584 #endif
6585 Vgc_elapsed = make_float (0.0);
6586 gcs_done = 0;
6587 }
6588
6589 void
6590 syms_of_alloc (void)
6591 {
6592 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6593 doc: /* Number of bytes of consing between garbage collections.
6594 Garbage collection can happen automatically once this many bytes have been
6595 allocated since the last garbage collection. All data types count.
6596
6597 Garbage collection happens automatically only when `eval' is called.
6598
6599 By binding this temporarily to a large number, you can effectively
6600 prevent garbage collection during a part of the program.
6601 See also `gc-cons-percentage'. */);
6602
6603 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6604 doc: /* Portion of the heap used for allocation.
6605 Garbage collection can happen automatically once this portion of the heap
6606 has been allocated since the last garbage collection.
6607 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6608 Vgc_cons_percentage = make_float (0.1);
6609
6610 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6611 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6612
6613 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6614 doc: /* Number of cons cells that have been consed so far. */);
6615
6616 DEFVAR_INT ("floats-consed", floats_consed,
6617 doc: /* Number of floats that have been consed so far. */);
6618
6619 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6620 doc: /* Number of vector cells that have been consed so far. */);
6621
6622 DEFVAR_INT ("symbols-consed", symbols_consed,
6623 doc: /* Number of symbols that have been consed so far. */);
6624
6625 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6626 doc: /* Number of string characters that have been consed so far. */);
6627
6628 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6629 doc: /* Number of miscellaneous objects that have been consed so far.
6630 These include markers and overlays, plus certain objects not visible
6631 to users. */);
6632
6633 DEFVAR_INT ("intervals-consed", intervals_consed,
6634 doc: /* Number of intervals that have been consed so far. */);
6635
6636 DEFVAR_INT ("strings-consed", strings_consed,
6637 doc: /* Number of strings that have been consed so far. */);
6638
6639 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6640 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6641 This means that certain objects should be allocated in shared (pure) space.
6642 It can also be set to a hash-table, in which case this table is used to
6643 do hash-consing of the objects allocated to pure space. */);
6644
6645 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6646 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6647 garbage_collection_messages = 0;
6648
6649 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6650 doc: /* Hook run after garbage collection has finished. */);
6651 Vpost_gc_hook = Qnil;
6652 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6653
6654 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6655 doc: /* Precomputed `signal' argument for memory-full error. */);
6656 /* We build this in advance because if we wait until we need it, we might
6657 not be able to allocate the memory to hold it. */
6658 Vmemory_signal_data
6659 = listn (CONSTYPE_PURE, 2, Qerror,
6660 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6661
6662 DEFVAR_LISP ("memory-full", Vmemory_full,
6663 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6664 Vmemory_full = Qnil;
6665
6666 DEFSYM (Qconses, "conses");
6667 DEFSYM (Qsymbols, "symbols");
6668 DEFSYM (Qmiscs, "miscs");
6669 DEFSYM (Qstrings, "strings");
6670 DEFSYM (Qvectors, "vectors");
6671 DEFSYM (Qfloats, "floats");
6672 DEFSYM (Qintervals, "intervals");
6673 DEFSYM (Qbuffers, "buffers");
6674 DEFSYM (Qstring_bytes, "string-bytes");
6675 DEFSYM (Qvector_slots, "vector-slots");
6676 DEFSYM (Qheap, "heap");
6677 DEFSYM (Qautomatic_gc, "Automatic GC");
6678
6679 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6680 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6681
6682 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6683 doc: /* Accumulated time elapsed in garbage collections.
6684 The time is in seconds as a floating point value. */);
6685 DEFVAR_INT ("gcs-done", gcs_done,
6686 doc: /* Accumulated number of garbage collections done. */);
6687
6688 defsubr (&Scons);
6689 defsubr (&Slist);
6690 defsubr (&Svector);
6691 defsubr (&Smake_byte_code);
6692 defsubr (&Smake_list);
6693 defsubr (&Smake_vector);
6694 defsubr (&Smake_string);
6695 defsubr (&Smake_bool_vector);
6696 defsubr (&Smake_symbol);
6697 defsubr (&Smake_marker);
6698 defsubr (&Spurecopy);
6699 defsubr (&Sgarbage_collect);
6700 defsubr (&Smemory_limit);
6701 defsubr (&Smemory_use_counts);
6702
6703 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6704 defsubr (&Sgc_status);
6705 #endif
6706 }
6707
6708 /* When compiled with GCC, GDB might say "No enum type named
6709 pvec_type" if we don't have at least one symbol with that type, and
6710 then xbacktrace could fail. Similarly for the other enums and
6711 their values. Some non-GCC compilers don't like these constructs. */
6712 #ifdef __GNUC__
6713 union
6714 {
6715 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6716 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6717 enum char_bits char_bits;
6718 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6719 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6720 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6721 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6722 enum Lisp_Bits Lisp_Bits;
6723 enum Lisp_Compiled Lisp_Compiled;
6724 enum maxargs maxargs;
6725 enum MAX_ALLOCA MAX_ALLOCA;
6726 enum More_Lisp_Bits More_Lisp_Bits;
6727 enum pvec_type pvec_type;
6728 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6729 #endif /* __GNUC__ */