* alloc.c (make_event_array): First arg is now ptrdiff_t, not int.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void mark_terminals (void);
213 static void gc_sweep (void);
214 static Lisp_Object make_pure_vector (ptrdiff_t);
215 static void mark_buffer (struct buffer *);
216
217 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
218 static void refill_memory_reserve (void);
219 #endif
220 static void compact_small_strings (void);
221 static void free_large_strings (void);
222 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
223
224 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
225 what memory allocated via lisp_malloc and lisp_align_malloc is intended
226 for what purpose. This enumeration specifies the type of memory. */
227
228 enum mem_type
229 {
230 MEM_TYPE_NON_LISP,
231 MEM_TYPE_BUFFER,
232 MEM_TYPE_CONS,
233 MEM_TYPE_STRING,
234 MEM_TYPE_MISC,
235 MEM_TYPE_SYMBOL,
236 MEM_TYPE_FLOAT,
237 /* Since all non-bool pseudovectors are small enough to be
238 allocated from vector blocks, this memory type denotes
239 large regular vectors and large bool pseudovectors. */
240 MEM_TYPE_VECTORLIKE,
241 /* Special type to denote vector blocks. */
242 MEM_TYPE_VECTOR_BLOCK,
243 /* Special type to denote reserved memory. */
244 MEM_TYPE_SPARE
245 };
246
247 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
248
249 /* A unique object in pure space used to make some Lisp objects
250 on free lists recognizable in O(1). */
251
252 static Lisp_Object Vdead;
253 #define DEADP(x) EQ (x, Vdead)
254
255 #ifdef GC_MALLOC_CHECK
256
257 enum mem_type allocated_mem_type;
258
259 #endif /* GC_MALLOC_CHECK */
260
261 /* A node in the red-black tree describing allocated memory containing
262 Lisp data. Each such block is recorded with its start and end
263 address when it is allocated, and removed from the tree when it
264 is freed.
265
266 A red-black tree is a balanced binary tree with the following
267 properties:
268
269 1. Every node is either red or black.
270 2. Every leaf is black.
271 3. If a node is red, then both of its children are black.
272 4. Every simple path from a node to a descendant leaf contains
273 the same number of black nodes.
274 5. The root is always black.
275
276 When nodes are inserted into the tree, or deleted from the tree,
277 the tree is "fixed" so that these properties are always true.
278
279 A red-black tree with N internal nodes has height at most 2
280 log(N+1). Searches, insertions and deletions are done in O(log N).
281 Please see a text book about data structures for a detailed
282 description of red-black trees. Any book worth its salt should
283 describe them. */
284
285 struct mem_node
286 {
287 /* Children of this node. These pointers are never NULL. When there
288 is no child, the value is MEM_NIL, which points to a dummy node. */
289 struct mem_node *left, *right;
290
291 /* The parent of this node. In the root node, this is NULL. */
292 struct mem_node *parent;
293
294 /* Start and end of allocated region. */
295 void *start, *end;
296
297 /* Node color. */
298 enum {MEM_BLACK, MEM_RED} color;
299
300 /* Memory type. */
301 enum mem_type type;
302 };
303
304 /* Base address of stack. Set in main. */
305
306 Lisp_Object *stack_base;
307
308 /* Root of the tree describing allocated Lisp memory. */
309
310 static struct mem_node *mem_root;
311
312 /* Lowest and highest known address in the heap. */
313
314 static void *min_heap_address, *max_heap_address;
315
316 /* Sentinel node of the tree. */
317
318 static struct mem_node mem_z;
319 #define MEM_NIL &mem_z
320
321 static struct mem_node *mem_insert (void *, void *, enum mem_type);
322 static void mem_insert_fixup (struct mem_node *);
323 static void mem_rotate_left (struct mem_node *);
324 static void mem_rotate_right (struct mem_node *);
325 static void mem_delete (struct mem_node *);
326 static void mem_delete_fixup (struct mem_node *);
327 static struct mem_node *mem_find (void *);
328
329 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
330
331 #ifndef DEADP
332 # define DEADP(x) 0
333 #endif
334
335 /* Recording what needs to be marked for gc. */
336
337 struct gcpro *gcprolist;
338
339 /* Addresses of staticpro'd variables. Initialize it to a nonzero
340 value; otherwise some compilers put it into BSS. */
341
342 enum { NSTATICS = 2048 };
343 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
344
345 /* Index of next unused slot in staticvec. */
346
347 static int staticidx;
348
349 static void *pure_alloc (size_t, int);
350
351
352 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
353 ALIGNMENT must be a power of 2. */
354
355 #define ALIGN(ptr, ALIGNMENT) \
356 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
357 & ~ ((ALIGNMENT) - 1)))
358
359 static void
360 XFLOAT_INIT (Lisp_Object f, double n)
361 {
362 XFLOAT (f)->u.data = n;
363 }
364
365 \f
366 /************************************************************************
367 Malloc
368 ************************************************************************/
369
370 /* Function malloc calls this if it finds we are near exhausting storage. */
371
372 void
373 malloc_warning (const char *str)
374 {
375 pending_malloc_warning = str;
376 }
377
378
379 /* Display an already-pending malloc warning. */
380
381 void
382 display_malloc_warning (void)
383 {
384 call3 (intern ("display-warning"),
385 intern ("alloc"),
386 build_string (pending_malloc_warning),
387 intern ("emergency"));
388 pending_malloc_warning = 0;
389 }
390 \f
391 /* Called if we can't allocate relocatable space for a buffer. */
392
393 void
394 buffer_memory_full (ptrdiff_t nbytes)
395 {
396 /* If buffers use the relocating allocator, no need to free
397 spare_memory, because we may have plenty of malloc space left
398 that we could get, and if we don't, the malloc that fails will
399 itself cause spare_memory to be freed. If buffers don't use the
400 relocating allocator, treat this like any other failing
401 malloc. */
402
403 #ifndef REL_ALLOC
404 memory_full (nbytes);
405 #else
406 /* This used to call error, but if we've run out of memory, we could
407 get infinite recursion trying to build the string. */
408 xsignal (Qnil, Vmemory_signal_data);
409 #endif
410 }
411
412 /* A common multiple of the positive integers A and B. Ideally this
413 would be the least common multiple, but there's no way to do that
414 as a constant expression in C, so do the best that we can easily do. */
415 #define COMMON_MULTIPLE(a, b) \
416 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
417
418 #ifndef XMALLOC_OVERRUN_CHECK
419 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
420 #else
421
422 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
423 around each block.
424
425 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
426 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
427 block size in little-endian order. The trailer consists of
428 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
429
430 The header is used to detect whether this block has been allocated
431 through these functions, as some low-level libc functions may
432 bypass the malloc hooks. */
433
434 #define XMALLOC_OVERRUN_CHECK_SIZE 16
435 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
436 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
437
438 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
439 hold a size_t value and (2) the header size is a multiple of the
440 alignment that Emacs needs for C types and for USE_LSB_TAG. */
441 #define XMALLOC_BASE_ALIGNMENT \
442 alignof (union { long double d; intmax_t i; void *p; })
443
444 #if USE_LSB_TAG
445 # define XMALLOC_HEADER_ALIGNMENT \
446 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
447 #else
448 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
449 #endif
450 #define XMALLOC_OVERRUN_SIZE_SIZE \
451 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
452 + XMALLOC_HEADER_ALIGNMENT - 1) \
453 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
454 - XMALLOC_OVERRUN_CHECK_SIZE)
455
456 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
457 { '\x9a', '\x9b', '\xae', '\xaf',
458 '\xbf', '\xbe', '\xce', '\xcf',
459 '\xea', '\xeb', '\xec', '\xed',
460 '\xdf', '\xde', '\x9c', '\x9d' };
461
462 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
463 { '\xaa', '\xab', '\xac', '\xad',
464 '\xba', '\xbb', '\xbc', '\xbd',
465 '\xca', '\xcb', '\xcc', '\xcd',
466 '\xda', '\xdb', '\xdc', '\xdd' };
467
468 /* Insert and extract the block size in the header. */
469
470 static void
471 xmalloc_put_size (unsigned char *ptr, size_t size)
472 {
473 int i;
474 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
475 {
476 *--ptr = size & ((1 << CHAR_BIT) - 1);
477 size >>= CHAR_BIT;
478 }
479 }
480
481 static size_t
482 xmalloc_get_size (unsigned char *ptr)
483 {
484 size_t size = 0;
485 int i;
486 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
487 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
488 {
489 size <<= CHAR_BIT;
490 size += *ptr++;
491 }
492 return size;
493 }
494
495
496 /* Like malloc, but wraps allocated block with header and trailer. */
497
498 static void *
499 overrun_check_malloc (size_t size)
500 {
501 register unsigned char *val;
502 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
503 emacs_abort ();
504
505 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
506 if (val)
507 {
508 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
509 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
510 xmalloc_put_size (val, size);
511 memcpy (val + size, xmalloc_overrun_check_trailer,
512 XMALLOC_OVERRUN_CHECK_SIZE);
513 }
514 return val;
515 }
516
517
518 /* Like realloc, but checks old block for overrun, and wraps new block
519 with header and trailer. */
520
521 static void *
522 overrun_check_realloc (void *block, size_t size)
523 {
524 register unsigned char *val = (unsigned char *) block;
525 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
526 emacs_abort ();
527
528 if (val
529 && memcmp (xmalloc_overrun_check_header,
530 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
531 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
532 {
533 size_t osize = xmalloc_get_size (val);
534 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
535 XMALLOC_OVERRUN_CHECK_SIZE))
536 emacs_abort ();
537 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
538 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
539 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
540 }
541
542 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
543
544 if (val)
545 {
546 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
547 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
548 xmalloc_put_size (val, size);
549 memcpy (val + size, xmalloc_overrun_check_trailer,
550 XMALLOC_OVERRUN_CHECK_SIZE);
551 }
552 return val;
553 }
554
555 /* Like free, but checks block for overrun. */
556
557 static void
558 overrun_check_free (void *block)
559 {
560 unsigned char *val = (unsigned char *) block;
561
562 if (val
563 && memcmp (xmalloc_overrun_check_header,
564 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
565 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
566 {
567 size_t osize = xmalloc_get_size (val);
568 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
569 XMALLOC_OVERRUN_CHECK_SIZE))
570 emacs_abort ();
571 #ifdef XMALLOC_CLEAR_FREE_MEMORY
572 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
573 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
574 #else
575 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
576 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
577 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
578 #endif
579 }
580
581 free (val);
582 }
583
584 #undef malloc
585 #undef realloc
586 #undef free
587 #define malloc overrun_check_malloc
588 #define realloc overrun_check_realloc
589 #define free overrun_check_free
590 #endif
591
592 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
593 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
594 If that variable is set, block input while in one of Emacs's memory
595 allocation functions. There should be no need for this debugging
596 option, since signal handlers do not allocate memory, but Emacs
597 formerly allocated memory in signal handlers and this compile-time
598 option remains as a way to help debug the issue should it rear its
599 ugly head again. */
600 #ifdef XMALLOC_BLOCK_INPUT_CHECK
601 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
602 static void
603 malloc_block_input (void)
604 {
605 if (block_input_in_memory_allocators)
606 block_input ();
607 }
608 static void
609 malloc_unblock_input (void)
610 {
611 if (block_input_in_memory_allocators)
612 unblock_input ();
613 }
614 # define MALLOC_BLOCK_INPUT malloc_block_input ()
615 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
616 #else
617 # define MALLOC_BLOCK_INPUT ((void) 0)
618 # define MALLOC_UNBLOCK_INPUT ((void) 0)
619 #endif
620
621 #define MALLOC_PROBE(size) \
622 do { \
623 if (profiler_memory_running) \
624 malloc_probe (size); \
625 } while (0)
626
627
628 /* Like malloc but check for no memory and block interrupt input.. */
629
630 void *
631 xmalloc (size_t size)
632 {
633 void *val;
634
635 MALLOC_BLOCK_INPUT;
636 val = malloc (size);
637 MALLOC_UNBLOCK_INPUT;
638
639 if (!val && size)
640 memory_full (size);
641 MALLOC_PROBE (size);
642 return val;
643 }
644
645 /* Like the above, but zeroes out the memory just allocated. */
646
647 void *
648 xzalloc (size_t size)
649 {
650 void *val;
651
652 MALLOC_BLOCK_INPUT;
653 val = malloc (size);
654 MALLOC_UNBLOCK_INPUT;
655
656 if (!val && size)
657 memory_full (size);
658 memset (val, 0, size);
659 MALLOC_PROBE (size);
660 return val;
661 }
662
663 /* Like realloc but check for no memory and block interrupt input.. */
664
665 void *
666 xrealloc (void *block, size_t size)
667 {
668 void *val;
669
670 MALLOC_BLOCK_INPUT;
671 /* We must call malloc explicitly when BLOCK is 0, since some
672 reallocs don't do this. */
673 if (! block)
674 val = malloc (size);
675 else
676 val = realloc (block, size);
677 MALLOC_UNBLOCK_INPUT;
678
679 if (!val && size)
680 memory_full (size);
681 MALLOC_PROBE (size);
682 return val;
683 }
684
685
686 /* Like free but block interrupt input. */
687
688 void
689 xfree (void *block)
690 {
691 if (!block)
692 return;
693 MALLOC_BLOCK_INPUT;
694 free (block);
695 MALLOC_UNBLOCK_INPUT;
696 /* We don't call refill_memory_reserve here
697 because in practice the call in r_alloc_free seems to suffice. */
698 }
699
700
701 /* Other parts of Emacs pass large int values to allocator functions
702 expecting ptrdiff_t. This is portable in practice, but check it to
703 be safe. */
704 verify (INT_MAX <= PTRDIFF_MAX);
705
706
707 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
708 Signal an error on memory exhaustion, and block interrupt input. */
709
710 void *
711 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
712 {
713 eassert (0 <= nitems && 0 < item_size);
714 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
715 memory_full (SIZE_MAX);
716 return xmalloc (nitems * item_size);
717 }
718
719
720 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
721 Signal an error on memory exhaustion, and block interrupt input. */
722
723 void *
724 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
725 {
726 eassert (0 <= nitems && 0 < item_size);
727 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
728 memory_full (SIZE_MAX);
729 return xrealloc (pa, nitems * item_size);
730 }
731
732
733 /* Grow PA, which points to an array of *NITEMS items, and return the
734 location of the reallocated array, updating *NITEMS to reflect its
735 new size. The new array will contain at least NITEMS_INCR_MIN more
736 items, but will not contain more than NITEMS_MAX items total.
737 ITEM_SIZE is the size of each item, in bytes.
738
739 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
740 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
741 infinity.
742
743 If PA is null, then allocate a new array instead of reallocating
744 the old one.
745
746 Block interrupt input as needed. If memory exhaustion occurs, set
747 *NITEMS to zero if PA is null, and signal an error (i.e., do not
748 return).
749
750 Thus, to grow an array A without saving its old contents, do
751 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
752 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
753 and signals an error, and later this code is reexecuted and
754 attempts to free A. */
755
756 void *
757 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
758 ptrdiff_t nitems_max, ptrdiff_t item_size)
759 {
760 /* The approximate size to use for initial small allocation
761 requests. This is the largest "small" request for the GNU C
762 library malloc. */
763 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
764
765 /* If the array is tiny, grow it to about (but no greater than)
766 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
767 ptrdiff_t n = *nitems;
768 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
769 ptrdiff_t half_again = n >> 1;
770 ptrdiff_t incr_estimate = max (tiny_max, half_again);
771
772 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
773 NITEMS_MAX, and what the C language can represent safely. */
774 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
775 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
776 ? nitems_max : C_language_max);
777 ptrdiff_t nitems_incr_max = n_max - n;
778 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
779
780 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
781 if (! pa)
782 *nitems = 0;
783 if (nitems_incr_max < incr)
784 memory_full (SIZE_MAX);
785 n += incr;
786 pa = xrealloc (pa, n * item_size);
787 *nitems = n;
788 return pa;
789 }
790
791
792 /* Like strdup, but uses xmalloc. */
793
794 char *
795 xstrdup (const char *s)
796 {
797 ptrdiff_t size;
798 eassert (s);
799 size = strlen (s) + 1;
800 return memcpy (xmalloc (size), s, size);
801 }
802
803 /* Like above, but duplicates Lisp string to C string. */
804
805 char *
806 xlispstrdup (Lisp_Object string)
807 {
808 ptrdiff_t size = SBYTES (string) + 1;
809 return memcpy (xmalloc (size), SSDATA (string), size);
810 }
811
812 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
813 argument is a const pointer. */
814
815 void
816 xputenv (char const *string)
817 {
818 if (putenv ((char *) string) != 0)
819 memory_full (0);
820 }
821
822 /* Return a newly allocated memory block of SIZE bytes, remembering
823 to free it when unwinding. */
824 void *
825 record_xmalloc (size_t size)
826 {
827 void *p = xmalloc (size);
828 record_unwind_protect_ptr (xfree, p);
829 return p;
830 }
831
832
833 /* Like malloc but used for allocating Lisp data. NBYTES is the
834 number of bytes to allocate, TYPE describes the intended use of the
835 allocated memory block (for strings, for conses, ...). */
836
837 #if ! USE_LSB_TAG
838 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
839 #endif
840
841 static void *
842 lisp_malloc (size_t nbytes, enum mem_type type)
843 {
844 register void *val;
845
846 MALLOC_BLOCK_INPUT;
847
848 #ifdef GC_MALLOC_CHECK
849 allocated_mem_type = type;
850 #endif
851
852 val = malloc (nbytes);
853
854 #if ! USE_LSB_TAG
855 /* If the memory just allocated cannot be addressed thru a Lisp
856 object's pointer, and it needs to be,
857 that's equivalent to running out of memory. */
858 if (val && type != MEM_TYPE_NON_LISP)
859 {
860 Lisp_Object tem;
861 XSETCONS (tem, (char *) val + nbytes - 1);
862 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
863 {
864 lisp_malloc_loser = val;
865 free (val);
866 val = 0;
867 }
868 }
869 #endif
870
871 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
872 if (val && type != MEM_TYPE_NON_LISP)
873 mem_insert (val, (char *) val + nbytes, type);
874 #endif
875
876 MALLOC_UNBLOCK_INPUT;
877 if (!val && nbytes)
878 memory_full (nbytes);
879 MALLOC_PROBE (nbytes);
880 return val;
881 }
882
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
885
886 static void
887 lisp_free (void *block)
888 {
889 MALLOC_BLOCK_INPUT;
890 free (block);
891 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
892 mem_delete (mem_find (block));
893 #endif
894 MALLOC_UNBLOCK_INPUT;
895 }
896
897 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
898
899 /* The entry point is lisp_align_malloc which returns blocks of at most
900 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
901
902 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
903 #define USE_POSIX_MEMALIGN 1
904 #endif
905
906 /* BLOCK_ALIGN has to be a power of 2. */
907 #define BLOCK_ALIGN (1 << 10)
908
909 /* Padding to leave at the end of a malloc'd block. This is to give
910 malloc a chance to minimize the amount of memory wasted to alignment.
911 It should be tuned to the particular malloc library used.
912 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
913 posix_memalign on the other hand would ideally prefer a value of 4
914 because otherwise, there's 1020 bytes wasted between each ablocks.
915 In Emacs, testing shows that those 1020 can most of the time be
916 efficiently used by malloc to place other objects, so a value of 0 can
917 still preferable unless you have a lot of aligned blocks and virtually
918 nothing else. */
919 #define BLOCK_PADDING 0
920 #define BLOCK_BYTES \
921 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
922
923 /* Internal data structures and constants. */
924
925 #define ABLOCKS_SIZE 16
926
927 /* An aligned block of memory. */
928 struct ablock
929 {
930 union
931 {
932 char payload[BLOCK_BYTES];
933 struct ablock *next_free;
934 } x;
935 /* `abase' is the aligned base of the ablocks. */
936 /* It is overloaded to hold the virtual `busy' field that counts
937 the number of used ablock in the parent ablocks.
938 The first ablock has the `busy' field, the others have the `abase'
939 field. To tell the difference, we assume that pointers will have
940 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
941 is used to tell whether the real base of the parent ablocks is `abase'
942 (if not, the word before the first ablock holds a pointer to the
943 real base). */
944 struct ablocks *abase;
945 /* The padding of all but the last ablock is unused. The padding of
946 the last ablock in an ablocks is not allocated. */
947 #if BLOCK_PADDING
948 char padding[BLOCK_PADDING];
949 #endif
950 };
951
952 /* A bunch of consecutive aligned blocks. */
953 struct ablocks
954 {
955 struct ablock blocks[ABLOCKS_SIZE];
956 };
957
958 /* Size of the block requested from malloc or posix_memalign. */
959 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
960
961 #define ABLOCK_ABASE(block) \
962 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
963 ? (struct ablocks *)(block) \
964 : (block)->abase)
965
966 /* Virtual `busy' field. */
967 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
968
969 /* Pointer to the (not necessarily aligned) malloc block. */
970 #ifdef USE_POSIX_MEMALIGN
971 #define ABLOCKS_BASE(abase) (abase)
972 #else
973 #define ABLOCKS_BASE(abase) \
974 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
975 #endif
976
977 /* The list of free ablock. */
978 static struct ablock *free_ablock;
979
980 /* Allocate an aligned block of nbytes.
981 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
982 smaller or equal to BLOCK_BYTES. */
983 static void *
984 lisp_align_malloc (size_t nbytes, enum mem_type type)
985 {
986 void *base, *val;
987 struct ablocks *abase;
988
989 eassert (nbytes <= BLOCK_BYTES);
990
991 MALLOC_BLOCK_INPUT;
992
993 #ifdef GC_MALLOC_CHECK
994 allocated_mem_type = type;
995 #endif
996
997 if (!free_ablock)
998 {
999 int i;
1000 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1001
1002 #ifdef DOUG_LEA_MALLOC
1003 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1004 because mapped region contents are not preserved in
1005 a dumped Emacs. */
1006 mallopt (M_MMAP_MAX, 0);
1007 #endif
1008
1009 #ifdef USE_POSIX_MEMALIGN
1010 {
1011 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1012 if (err)
1013 base = NULL;
1014 abase = base;
1015 }
1016 #else
1017 base = malloc (ABLOCKS_BYTES);
1018 abase = ALIGN (base, BLOCK_ALIGN);
1019 #endif
1020
1021 if (base == 0)
1022 {
1023 MALLOC_UNBLOCK_INPUT;
1024 memory_full (ABLOCKS_BYTES);
1025 }
1026
1027 aligned = (base == abase);
1028 if (!aligned)
1029 ((void**)abase)[-1] = base;
1030
1031 #ifdef DOUG_LEA_MALLOC
1032 /* Back to a reasonable maximum of mmap'ed areas. */
1033 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1034 #endif
1035
1036 #if ! USE_LSB_TAG
1037 /* If the memory just allocated cannot be addressed thru a Lisp
1038 object's pointer, and it needs to be, that's equivalent to
1039 running out of memory. */
1040 if (type != MEM_TYPE_NON_LISP)
1041 {
1042 Lisp_Object tem;
1043 char *end = (char *) base + ABLOCKS_BYTES - 1;
1044 XSETCONS (tem, end);
1045 if ((char *) XCONS (tem) != end)
1046 {
1047 lisp_malloc_loser = base;
1048 free (base);
1049 MALLOC_UNBLOCK_INPUT;
1050 memory_full (SIZE_MAX);
1051 }
1052 }
1053 #endif
1054
1055 /* Initialize the blocks and put them on the free list.
1056 If `base' was not properly aligned, we can't use the last block. */
1057 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1058 {
1059 abase->blocks[i].abase = abase;
1060 abase->blocks[i].x.next_free = free_ablock;
1061 free_ablock = &abase->blocks[i];
1062 }
1063 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1064
1065 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1066 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1067 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1068 eassert (ABLOCKS_BASE (abase) == base);
1069 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1070 }
1071
1072 abase = ABLOCK_ABASE (free_ablock);
1073 ABLOCKS_BUSY (abase) =
1074 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1075 val = free_ablock;
1076 free_ablock = free_ablock->x.next_free;
1077
1078 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1079 if (type != MEM_TYPE_NON_LISP)
1080 mem_insert (val, (char *) val + nbytes, type);
1081 #endif
1082
1083 MALLOC_UNBLOCK_INPUT;
1084
1085 MALLOC_PROBE (nbytes);
1086
1087 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1088 return val;
1089 }
1090
1091 static void
1092 lisp_align_free (void *block)
1093 {
1094 struct ablock *ablock = block;
1095 struct ablocks *abase = ABLOCK_ABASE (ablock);
1096
1097 MALLOC_BLOCK_INPUT;
1098 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1099 mem_delete (mem_find (block));
1100 #endif
1101 /* Put on free list. */
1102 ablock->x.next_free = free_ablock;
1103 free_ablock = ablock;
1104 /* Update busy count. */
1105 ABLOCKS_BUSY (abase)
1106 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1107
1108 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1109 { /* All the blocks are free. */
1110 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1111 struct ablock **tem = &free_ablock;
1112 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1113
1114 while (*tem)
1115 {
1116 if (*tem >= (struct ablock *) abase && *tem < atop)
1117 {
1118 i++;
1119 *tem = (*tem)->x.next_free;
1120 }
1121 else
1122 tem = &(*tem)->x.next_free;
1123 }
1124 eassert ((aligned & 1) == aligned);
1125 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1126 #ifdef USE_POSIX_MEMALIGN
1127 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1128 #endif
1129 free (ABLOCKS_BASE (abase));
1130 }
1131 MALLOC_UNBLOCK_INPUT;
1132 }
1133
1134 \f
1135 /***********************************************************************
1136 Interval Allocation
1137 ***********************************************************************/
1138
1139 /* Number of intervals allocated in an interval_block structure.
1140 The 1020 is 1024 minus malloc overhead. */
1141
1142 #define INTERVAL_BLOCK_SIZE \
1143 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1144
1145 /* Intervals are allocated in chunks in the form of an interval_block
1146 structure. */
1147
1148 struct interval_block
1149 {
1150 /* Place `intervals' first, to preserve alignment. */
1151 struct interval intervals[INTERVAL_BLOCK_SIZE];
1152 struct interval_block *next;
1153 };
1154
1155 /* Current interval block. Its `next' pointer points to older
1156 blocks. */
1157
1158 static struct interval_block *interval_block;
1159
1160 /* Index in interval_block above of the next unused interval
1161 structure. */
1162
1163 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1164
1165 /* Number of free and live intervals. */
1166
1167 static EMACS_INT total_free_intervals, total_intervals;
1168
1169 /* List of free intervals. */
1170
1171 static INTERVAL interval_free_list;
1172
1173 /* Return a new interval. */
1174
1175 INTERVAL
1176 make_interval (void)
1177 {
1178 INTERVAL val;
1179
1180 MALLOC_BLOCK_INPUT;
1181
1182 if (interval_free_list)
1183 {
1184 val = interval_free_list;
1185 interval_free_list = INTERVAL_PARENT (interval_free_list);
1186 }
1187 else
1188 {
1189 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1190 {
1191 struct interval_block *newi
1192 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1193
1194 newi->next = interval_block;
1195 interval_block = newi;
1196 interval_block_index = 0;
1197 total_free_intervals += INTERVAL_BLOCK_SIZE;
1198 }
1199 val = &interval_block->intervals[interval_block_index++];
1200 }
1201
1202 MALLOC_UNBLOCK_INPUT;
1203
1204 consing_since_gc += sizeof (struct interval);
1205 intervals_consed++;
1206 total_free_intervals--;
1207 RESET_INTERVAL (val);
1208 val->gcmarkbit = 0;
1209 return val;
1210 }
1211
1212
1213 /* Mark Lisp objects in interval I. */
1214
1215 static void
1216 mark_interval (register INTERVAL i, Lisp_Object dummy)
1217 {
1218 /* Intervals should never be shared. So, if extra internal checking is
1219 enabled, GC aborts if it seems to have visited an interval twice. */
1220 eassert (!i->gcmarkbit);
1221 i->gcmarkbit = 1;
1222 mark_object (i->plist);
1223 }
1224
1225 /* Mark the interval tree rooted in I. */
1226
1227 #define MARK_INTERVAL_TREE(i) \
1228 do { \
1229 if (i && !i->gcmarkbit) \
1230 traverse_intervals_noorder (i, mark_interval, Qnil); \
1231 } while (0)
1232
1233 /***********************************************************************
1234 String Allocation
1235 ***********************************************************************/
1236
1237 /* Lisp_Strings are allocated in string_block structures. When a new
1238 string_block is allocated, all the Lisp_Strings it contains are
1239 added to a free-list string_free_list. When a new Lisp_String is
1240 needed, it is taken from that list. During the sweep phase of GC,
1241 string_blocks that are entirely free are freed, except two which
1242 we keep.
1243
1244 String data is allocated from sblock structures. Strings larger
1245 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1246 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1247
1248 Sblocks consist internally of sdata structures, one for each
1249 Lisp_String. The sdata structure points to the Lisp_String it
1250 belongs to. The Lisp_String points back to the `u.data' member of
1251 its sdata structure.
1252
1253 When a Lisp_String is freed during GC, it is put back on
1254 string_free_list, and its `data' member and its sdata's `string'
1255 pointer is set to null. The size of the string is recorded in the
1256 `n.nbytes' member of the sdata. So, sdata structures that are no
1257 longer used, can be easily recognized, and it's easy to compact the
1258 sblocks of small strings which we do in compact_small_strings. */
1259
1260 /* Size in bytes of an sblock structure used for small strings. This
1261 is 8192 minus malloc overhead. */
1262
1263 #define SBLOCK_SIZE 8188
1264
1265 /* Strings larger than this are considered large strings. String data
1266 for large strings is allocated from individual sblocks. */
1267
1268 #define LARGE_STRING_BYTES 1024
1269
1270 /* Struct or union describing string memory sub-allocated from an sblock.
1271 This is where the contents of Lisp strings are stored. */
1272
1273 #ifdef GC_CHECK_STRING_BYTES
1274
1275 typedef struct
1276 {
1277 /* Back-pointer to the string this sdata belongs to. If null, this
1278 structure is free, and the NBYTES member of the union below
1279 contains the string's byte size (the same value that STRING_BYTES
1280 would return if STRING were non-null). If non-null, STRING_BYTES
1281 (STRING) is the size of the data, and DATA contains the string's
1282 contents. */
1283 struct Lisp_String *string;
1284
1285 ptrdiff_t nbytes;
1286 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1287 } sdata;
1288
1289 #define SDATA_NBYTES(S) (S)->nbytes
1290 #define SDATA_DATA(S) (S)->data
1291 #define SDATA_SELECTOR(member) member
1292
1293 #else
1294
1295 typedef union
1296 {
1297 struct Lisp_String *string;
1298
1299 /* When STRING is non-null. */
1300 struct
1301 {
1302 struct Lisp_String *string;
1303 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1304 } u;
1305
1306 /* When STRING is null. */
1307 struct
1308 {
1309 struct Lisp_String *string;
1310 ptrdiff_t nbytes;
1311 } n;
1312 } sdata;
1313
1314 #define SDATA_NBYTES(S) (S)->n.nbytes
1315 #define SDATA_DATA(S) (S)->u.data
1316 #define SDATA_SELECTOR(member) u.member
1317
1318 #endif /* not GC_CHECK_STRING_BYTES */
1319
1320 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1321
1322
1323 /* Structure describing a block of memory which is sub-allocated to
1324 obtain string data memory for strings. Blocks for small strings
1325 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1326 as large as needed. */
1327
1328 struct sblock
1329 {
1330 /* Next in list. */
1331 struct sblock *next;
1332
1333 /* Pointer to the next free sdata block. This points past the end
1334 of the sblock if there isn't any space left in this block. */
1335 sdata *next_free;
1336
1337 /* Start of data. */
1338 sdata first_data;
1339 };
1340
1341 /* Number of Lisp strings in a string_block structure. The 1020 is
1342 1024 minus malloc overhead. */
1343
1344 #define STRING_BLOCK_SIZE \
1345 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1346
1347 /* Structure describing a block from which Lisp_String structures
1348 are allocated. */
1349
1350 struct string_block
1351 {
1352 /* Place `strings' first, to preserve alignment. */
1353 struct Lisp_String strings[STRING_BLOCK_SIZE];
1354 struct string_block *next;
1355 };
1356
1357 /* Head and tail of the list of sblock structures holding Lisp string
1358 data. We always allocate from current_sblock. The NEXT pointers
1359 in the sblock structures go from oldest_sblock to current_sblock. */
1360
1361 static struct sblock *oldest_sblock, *current_sblock;
1362
1363 /* List of sblocks for large strings. */
1364
1365 static struct sblock *large_sblocks;
1366
1367 /* List of string_block structures. */
1368
1369 static struct string_block *string_blocks;
1370
1371 /* Free-list of Lisp_Strings. */
1372
1373 static struct Lisp_String *string_free_list;
1374
1375 /* Number of live and free Lisp_Strings. */
1376
1377 static EMACS_INT total_strings, total_free_strings;
1378
1379 /* Number of bytes used by live strings. */
1380
1381 static EMACS_INT total_string_bytes;
1382
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1393
1394 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1395
1396
1397 #ifdef GC_CHECK_STRING_OVERRUN
1398
1399 /* We check for overrun in string data blocks by appending a small
1400 "cookie" after each allocated string data block, and check for the
1401 presence of this cookie during GC. */
1402
1403 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1404 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1405 { '\xde', '\xad', '\xbe', '\xef' };
1406
1407 #else
1408 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1409 #endif
1410
1411 /* Value is the size of an sdata structure large enough to hold NBYTES
1412 bytes of string data. The value returned includes a terminating
1413 NUL byte, the size of the sdata structure, and padding. */
1414
1415 #ifdef GC_CHECK_STRING_BYTES
1416
1417 #define SDATA_SIZE(NBYTES) \
1418 ((SDATA_DATA_OFFSET \
1419 + (NBYTES) + 1 \
1420 + sizeof (ptrdiff_t) - 1) \
1421 & ~(sizeof (ptrdiff_t) - 1))
1422
1423 #else /* not GC_CHECK_STRING_BYTES */
1424
1425 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1426 less than the size of that member. The 'max' is not needed when
1427 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1428 alignment code reserves enough space. */
1429
1430 #define SDATA_SIZE(NBYTES) \
1431 ((SDATA_DATA_OFFSET \
1432 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1433 ? NBYTES \
1434 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1435 + 1 \
1436 + sizeof (ptrdiff_t) - 1) \
1437 & ~(sizeof (ptrdiff_t) - 1))
1438
1439 #endif /* not GC_CHECK_STRING_BYTES */
1440
1441 /* Extra bytes to allocate for each string. */
1442
1443 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1444
1445 /* Exact bound on the number of bytes in a string, not counting the
1446 terminating null. A string cannot contain more bytes than
1447 STRING_BYTES_BOUND, nor can it be so long that the size_t
1448 arithmetic in allocate_string_data would overflow while it is
1449 calculating a value to be passed to malloc. */
1450 static ptrdiff_t const STRING_BYTES_MAX =
1451 min (STRING_BYTES_BOUND,
1452 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1453 - GC_STRING_EXTRA
1454 - offsetof (struct sblock, first_data)
1455 - SDATA_DATA_OFFSET)
1456 & ~(sizeof (EMACS_INT) - 1)));
1457
1458 /* Initialize string allocation. Called from init_alloc_once. */
1459
1460 static void
1461 init_strings (void)
1462 {
1463 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1464 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1465 }
1466
1467
1468 #ifdef GC_CHECK_STRING_BYTES
1469
1470 static int check_string_bytes_count;
1471
1472 /* Like STRING_BYTES, but with debugging check. Can be
1473 called during GC, so pay attention to the mark bit. */
1474
1475 ptrdiff_t
1476 string_bytes (struct Lisp_String *s)
1477 {
1478 ptrdiff_t nbytes =
1479 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1480
1481 if (!PURE_POINTER_P (s)
1482 && s->data
1483 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1484 emacs_abort ();
1485 return nbytes;
1486 }
1487
1488 /* Check validity of Lisp strings' string_bytes member in B. */
1489
1490 static void
1491 check_sblock (struct sblock *b)
1492 {
1493 sdata *from, *end, *from_end;
1494
1495 end = b->next_free;
1496
1497 for (from = &b->first_data; from < end; from = from_end)
1498 {
1499 /* Compute the next FROM here because copying below may
1500 overwrite data we need to compute it. */
1501 ptrdiff_t nbytes;
1502
1503 /* Check that the string size recorded in the string is the
1504 same as the one recorded in the sdata structure. */
1505 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1506 : SDATA_NBYTES (from));
1507 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1508 }
1509 }
1510
1511
1512 /* Check validity of Lisp strings' string_bytes member. ALL_P
1513 means check all strings, otherwise check only most
1514 recently allocated strings. Used for hunting a bug. */
1515
1516 static void
1517 check_string_bytes (bool all_p)
1518 {
1519 if (all_p)
1520 {
1521 struct sblock *b;
1522
1523 for (b = large_sblocks; b; b = b->next)
1524 {
1525 struct Lisp_String *s = b->first_data.string;
1526 if (s)
1527 string_bytes (s);
1528 }
1529
1530 for (b = oldest_sblock; b; b = b->next)
1531 check_sblock (b);
1532 }
1533 else if (current_sblock)
1534 check_sblock (current_sblock);
1535 }
1536
1537 #else /* not GC_CHECK_STRING_BYTES */
1538
1539 #define check_string_bytes(all) ((void) 0)
1540
1541 #endif /* GC_CHECK_STRING_BYTES */
1542
1543 #ifdef GC_CHECK_STRING_FREE_LIST
1544
1545 /* Walk through the string free list looking for bogus next pointers.
1546 This may catch buffer overrun from a previous string. */
1547
1548 static void
1549 check_string_free_list (void)
1550 {
1551 struct Lisp_String *s;
1552
1553 /* Pop a Lisp_String off the free-list. */
1554 s = string_free_list;
1555 while (s != NULL)
1556 {
1557 if ((uintptr_t) s < 1024)
1558 emacs_abort ();
1559 s = NEXT_FREE_LISP_STRING (s);
1560 }
1561 }
1562 #else
1563 #define check_string_free_list()
1564 #endif
1565
1566 /* Return a new Lisp_String. */
1567
1568 static struct Lisp_String *
1569 allocate_string (void)
1570 {
1571 struct Lisp_String *s;
1572
1573 MALLOC_BLOCK_INPUT;
1574
1575 /* If the free-list is empty, allocate a new string_block, and
1576 add all the Lisp_Strings in it to the free-list. */
1577 if (string_free_list == NULL)
1578 {
1579 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1580 int i;
1581
1582 b->next = string_blocks;
1583 string_blocks = b;
1584
1585 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1586 {
1587 s = b->strings + i;
1588 /* Every string on a free list should have NULL data pointer. */
1589 s->data = NULL;
1590 NEXT_FREE_LISP_STRING (s) = string_free_list;
1591 string_free_list = s;
1592 }
1593
1594 total_free_strings += STRING_BLOCK_SIZE;
1595 }
1596
1597 check_string_free_list ();
1598
1599 /* Pop a Lisp_String off the free-list. */
1600 s = string_free_list;
1601 string_free_list = NEXT_FREE_LISP_STRING (s);
1602
1603 MALLOC_UNBLOCK_INPUT;
1604
1605 --total_free_strings;
1606 ++total_strings;
1607 ++strings_consed;
1608 consing_since_gc += sizeof *s;
1609
1610 #ifdef GC_CHECK_STRING_BYTES
1611 if (!noninteractive)
1612 {
1613 if (++check_string_bytes_count == 200)
1614 {
1615 check_string_bytes_count = 0;
1616 check_string_bytes (1);
1617 }
1618 else
1619 check_string_bytes (0);
1620 }
1621 #endif /* GC_CHECK_STRING_BYTES */
1622
1623 return s;
1624 }
1625
1626
1627 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1628 plus a NUL byte at the end. Allocate an sdata structure for S, and
1629 set S->data to its `u.data' member. Store a NUL byte at the end of
1630 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1631 S->data if it was initially non-null. */
1632
1633 void
1634 allocate_string_data (struct Lisp_String *s,
1635 EMACS_INT nchars, EMACS_INT nbytes)
1636 {
1637 sdata *data, *old_data;
1638 struct sblock *b;
1639 ptrdiff_t needed, old_nbytes;
1640
1641 if (STRING_BYTES_MAX < nbytes)
1642 string_overflow ();
1643
1644 /* Determine the number of bytes needed to store NBYTES bytes
1645 of string data. */
1646 needed = SDATA_SIZE (nbytes);
1647 if (s->data)
1648 {
1649 old_data = SDATA_OF_STRING (s);
1650 old_nbytes = STRING_BYTES (s);
1651 }
1652 else
1653 old_data = NULL;
1654
1655 MALLOC_BLOCK_INPUT;
1656
1657 if (nbytes > LARGE_STRING_BYTES)
1658 {
1659 size_t size = offsetof (struct sblock, first_data) + needed;
1660
1661 #ifdef DOUG_LEA_MALLOC
1662 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1663 because mapped region contents are not preserved in
1664 a dumped Emacs.
1665
1666 In case you think of allowing it in a dumped Emacs at the
1667 cost of not being able to re-dump, there's another reason:
1668 mmap'ed data typically have an address towards the top of the
1669 address space, which won't fit into an EMACS_INT (at least on
1670 32-bit systems with the current tagging scheme). --fx */
1671 mallopt (M_MMAP_MAX, 0);
1672 #endif
1673
1674 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1675
1676 #ifdef DOUG_LEA_MALLOC
1677 /* Back to a reasonable maximum of mmap'ed areas. */
1678 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1679 #endif
1680
1681 b->next_free = &b->first_data;
1682 b->first_data.string = NULL;
1683 b->next = large_sblocks;
1684 large_sblocks = b;
1685 }
1686 else if (current_sblock == NULL
1687 || (((char *) current_sblock + SBLOCK_SIZE
1688 - (char *) current_sblock->next_free)
1689 < (needed + GC_STRING_EXTRA)))
1690 {
1691 /* Not enough room in the current sblock. */
1692 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1693 b->next_free = &b->first_data;
1694 b->first_data.string = NULL;
1695 b->next = NULL;
1696
1697 if (current_sblock)
1698 current_sblock->next = b;
1699 else
1700 oldest_sblock = b;
1701 current_sblock = b;
1702 }
1703 else
1704 b = current_sblock;
1705
1706 data = b->next_free;
1707 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1708
1709 MALLOC_UNBLOCK_INPUT;
1710
1711 data->string = s;
1712 s->data = SDATA_DATA (data);
1713 #ifdef GC_CHECK_STRING_BYTES
1714 SDATA_NBYTES (data) = nbytes;
1715 #endif
1716 s->size = nchars;
1717 s->size_byte = nbytes;
1718 s->data[nbytes] = '\0';
1719 #ifdef GC_CHECK_STRING_OVERRUN
1720 memcpy ((char *) data + needed, string_overrun_cookie,
1721 GC_STRING_OVERRUN_COOKIE_SIZE);
1722 #endif
1723
1724 /* Note that Faset may call to this function when S has already data
1725 assigned. In this case, mark data as free by setting it's string
1726 back-pointer to null, and record the size of the data in it. */
1727 if (old_data)
1728 {
1729 SDATA_NBYTES (old_data) = old_nbytes;
1730 old_data->string = NULL;
1731 }
1732
1733 consing_since_gc += needed;
1734 }
1735
1736
1737 /* Sweep and compact strings. */
1738
1739 static void
1740 sweep_strings (void)
1741 {
1742 struct string_block *b, *next;
1743 struct string_block *live_blocks = NULL;
1744
1745 string_free_list = NULL;
1746 total_strings = total_free_strings = 0;
1747 total_string_bytes = 0;
1748
1749 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1750 for (b = string_blocks; b; b = next)
1751 {
1752 int i, nfree = 0;
1753 struct Lisp_String *free_list_before = string_free_list;
1754
1755 next = b->next;
1756
1757 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1758 {
1759 struct Lisp_String *s = b->strings + i;
1760
1761 if (s->data)
1762 {
1763 /* String was not on free-list before. */
1764 if (STRING_MARKED_P (s))
1765 {
1766 /* String is live; unmark it and its intervals. */
1767 UNMARK_STRING (s);
1768
1769 /* Do not use string_(set|get)_intervals here. */
1770 s->intervals = balance_intervals (s->intervals);
1771
1772 ++total_strings;
1773 total_string_bytes += STRING_BYTES (s);
1774 }
1775 else
1776 {
1777 /* String is dead. Put it on the free-list. */
1778 sdata *data = SDATA_OF_STRING (s);
1779
1780 /* Save the size of S in its sdata so that we know
1781 how large that is. Reset the sdata's string
1782 back-pointer so that we know it's free. */
1783 #ifdef GC_CHECK_STRING_BYTES
1784 if (string_bytes (s) != SDATA_NBYTES (data))
1785 emacs_abort ();
1786 #else
1787 data->n.nbytes = STRING_BYTES (s);
1788 #endif
1789 data->string = NULL;
1790
1791 /* Reset the strings's `data' member so that we
1792 know it's free. */
1793 s->data = NULL;
1794
1795 /* Put the string on the free-list. */
1796 NEXT_FREE_LISP_STRING (s) = string_free_list;
1797 string_free_list = s;
1798 ++nfree;
1799 }
1800 }
1801 else
1802 {
1803 /* S was on the free-list before. Put it there again. */
1804 NEXT_FREE_LISP_STRING (s) = string_free_list;
1805 string_free_list = s;
1806 ++nfree;
1807 }
1808 }
1809
1810 /* Free blocks that contain free Lisp_Strings only, except
1811 the first two of them. */
1812 if (nfree == STRING_BLOCK_SIZE
1813 && total_free_strings > STRING_BLOCK_SIZE)
1814 {
1815 lisp_free (b);
1816 string_free_list = free_list_before;
1817 }
1818 else
1819 {
1820 total_free_strings += nfree;
1821 b->next = live_blocks;
1822 live_blocks = b;
1823 }
1824 }
1825
1826 check_string_free_list ();
1827
1828 string_blocks = live_blocks;
1829 free_large_strings ();
1830 compact_small_strings ();
1831
1832 check_string_free_list ();
1833 }
1834
1835
1836 /* Free dead large strings. */
1837
1838 static void
1839 free_large_strings (void)
1840 {
1841 struct sblock *b, *next;
1842 struct sblock *live_blocks = NULL;
1843
1844 for (b = large_sblocks; b; b = next)
1845 {
1846 next = b->next;
1847
1848 if (b->first_data.string == NULL)
1849 lisp_free (b);
1850 else
1851 {
1852 b->next = live_blocks;
1853 live_blocks = b;
1854 }
1855 }
1856
1857 large_sblocks = live_blocks;
1858 }
1859
1860
1861 /* Compact data of small strings. Free sblocks that don't contain
1862 data of live strings after compaction. */
1863
1864 static void
1865 compact_small_strings (void)
1866 {
1867 struct sblock *b, *tb, *next;
1868 sdata *from, *to, *end, *tb_end;
1869 sdata *to_end, *from_end;
1870
1871 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1872 to, and TB_END is the end of TB. */
1873 tb = oldest_sblock;
1874 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1875 to = &tb->first_data;
1876
1877 /* Step through the blocks from the oldest to the youngest. We
1878 expect that old blocks will stabilize over time, so that less
1879 copying will happen this way. */
1880 for (b = oldest_sblock; b; b = b->next)
1881 {
1882 end = b->next_free;
1883 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1884
1885 for (from = &b->first_data; from < end; from = from_end)
1886 {
1887 /* Compute the next FROM here because copying below may
1888 overwrite data we need to compute it. */
1889 ptrdiff_t nbytes;
1890 struct Lisp_String *s = from->string;
1891
1892 #ifdef GC_CHECK_STRING_BYTES
1893 /* Check that the string size recorded in the string is the
1894 same as the one recorded in the sdata structure. */
1895 if (s && string_bytes (s) != SDATA_NBYTES (from))
1896 emacs_abort ();
1897 #endif /* GC_CHECK_STRING_BYTES */
1898
1899 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1900 eassert (nbytes <= LARGE_STRING_BYTES);
1901
1902 nbytes = SDATA_SIZE (nbytes);
1903 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1904
1905 #ifdef GC_CHECK_STRING_OVERRUN
1906 if (memcmp (string_overrun_cookie,
1907 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1908 GC_STRING_OVERRUN_COOKIE_SIZE))
1909 emacs_abort ();
1910 #endif
1911
1912 /* Non-NULL S means it's alive. Copy its data. */
1913 if (s)
1914 {
1915 /* If TB is full, proceed with the next sblock. */
1916 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1917 if (to_end > tb_end)
1918 {
1919 tb->next_free = to;
1920 tb = tb->next;
1921 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1922 to = &tb->first_data;
1923 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1924 }
1925
1926 /* Copy, and update the string's `data' pointer. */
1927 if (from != to)
1928 {
1929 eassert (tb != b || to < from);
1930 memmove (to, from, nbytes + GC_STRING_EXTRA);
1931 to->string->data = SDATA_DATA (to);
1932 }
1933
1934 /* Advance past the sdata we copied to. */
1935 to = to_end;
1936 }
1937 }
1938 }
1939
1940 /* The rest of the sblocks following TB don't contain live data, so
1941 we can free them. */
1942 for (b = tb->next; b; b = next)
1943 {
1944 next = b->next;
1945 lisp_free (b);
1946 }
1947
1948 tb->next_free = to;
1949 tb->next = NULL;
1950 current_sblock = tb;
1951 }
1952
1953 void
1954 string_overflow (void)
1955 {
1956 error ("Maximum string size exceeded");
1957 }
1958
1959 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1960 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1961 LENGTH must be an integer.
1962 INIT must be an integer that represents a character. */)
1963 (Lisp_Object length, Lisp_Object init)
1964 {
1965 register Lisp_Object val;
1966 register unsigned char *p, *end;
1967 int c;
1968 EMACS_INT nbytes;
1969
1970 CHECK_NATNUM (length);
1971 CHECK_CHARACTER (init);
1972
1973 c = XFASTINT (init);
1974 if (ASCII_CHAR_P (c))
1975 {
1976 nbytes = XINT (length);
1977 val = make_uninit_string (nbytes);
1978 p = SDATA (val);
1979 end = p + SCHARS (val);
1980 while (p != end)
1981 *p++ = c;
1982 }
1983 else
1984 {
1985 unsigned char str[MAX_MULTIBYTE_LENGTH];
1986 int len = CHAR_STRING (c, str);
1987 EMACS_INT string_len = XINT (length);
1988
1989 if (string_len > STRING_BYTES_MAX / len)
1990 string_overflow ();
1991 nbytes = len * string_len;
1992 val = make_uninit_multibyte_string (string_len, nbytes);
1993 p = SDATA (val);
1994 end = p + nbytes;
1995 while (p != end)
1996 {
1997 memcpy (p, str, len);
1998 p += len;
1999 }
2000 }
2001
2002 *p = 0;
2003 return val;
2004 }
2005
2006
2007 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2008 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2009 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2010 (Lisp_Object length, Lisp_Object init)
2011 {
2012 register Lisp_Object val;
2013 struct Lisp_Bool_Vector *p;
2014 ptrdiff_t length_in_chars;
2015 EMACS_INT length_in_elts;
2016 int bits_per_value;
2017 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2018 / word_size);
2019
2020 CHECK_NATNUM (length);
2021
2022 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2023
2024 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2025
2026 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2027
2028 /* No Lisp_Object to trace in there. */
2029 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2030
2031 p = XBOOL_VECTOR (val);
2032 p->size = XFASTINT (length);
2033
2034 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2035 / BOOL_VECTOR_BITS_PER_CHAR);
2036 if (length_in_chars)
2037 {
2038 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2039
2040 /* Clear any extraneous bits in the last byte. */
2041 p->data[length_in_chars - 1]
2042 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2043 }
2044
2045 return val;
2046 }
2047
2048
2049 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2050 of characters from the contents. This string may be unibyte or
2051 multibyte, depending on the contents. */
2052
2053 Lisp_Object
2054 make_string (const char *contents, ptrdiff_t nbytes)
2055 {
2056 register Lisp_Object val;
2057 ptrdiff_t nchars, multibyte_nbytes;
2058
2059 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2060 &nchars, &multibyte_nbytes);
2061 if (nbytes == nchars || nbytes != multibyte_nbytes)
2062 /* CONTENTS contains no multibyte sequences or contains an invalid
2063 multibyte sequence. We must make unibyte string. */
2064 val = make_unibyte_string (contents, nbytes);
2065 else
2066 val = make_multibyte_string (contents, nchars, nbytes);
2067 return val;
2068 }
2069
2070
2071 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2072
2073 Lisp_Object
2074 make_unibyte_string (const char *contents, ptrdiff_t length)
2075 {
2076 register Lisp_Object val;
2077 val = make_uninit_string (length);
2078 memcpy (SDATA (val), contents, length);
2079 return val;
2080 }
2081
2082
2083 /* Make a multibyte string from NCHARS characters occupying NBYTES
2084 bytes at CONTENTS. */
2085
2086 Lisp_Object
2087 make_multibyte_string (const char *contents,
2088 ptrdiff_t nchars, ptrdiff_t nbytes)
2089 {
2090 register Lisp_Object val;
2091 val = make_uninit_multibyte_string (nchars, nbytes);
2092 memcpy (SDATA (val), contents, nbytes);
2093 return val;
2094 }
2095
2096
2097 /* Make a string from NCHARS characters occupying NBYTES bytes at
2098 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2099
2100 Lisp_Object
2101 make_string_from_bytes (const char *contents,
2102 ptrdiff_t nchars, ptrdiff_t nbytes)
2103 {
2104 register Lisp_Object val;
2105 val = make_uninit_multibyte_string (nchars, nbytes);
2106 memcpy (SDATA (val), contents, nbytes);
2107 if (SBYTES (val) == SCHARS (val))
2108 STRING_SET_UNIBYTE (val);
2109 return val;
2110 }
2111
2112
2113 /* Make a string from NCHARS characters occupying NBYTES bytes at
2114 CONTENTS. The argument MULTIBYTE controls whether to label the
2115 string as multibyte. If NCHARS is negative, it counts the number of
2116 characters by itself. */
2117
2118 Lisp_Object
2119 make_specified_string (const char *contents,
2120 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2121 {
2122 Lisp_Object val;
2123
2124 if (nchars < 0)
2125 {
2126 if (multibyte)
2127 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2128 nbytes);
2129 else
2130 nchars = nbytes;
2131 }
2132 val = make_uninit_multibyte_string (nchars, nbytes);
2133 memcpy (SDATA (val), contents, nbytes);
2134 if (!multibyte)
2135 STRING_SET_UNIBYTE (val);
2136 return val;
2137 }
2138
2139
2140 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2141 occupying LENGTH bytes. */
2142
2143 Lisp_Object
2144 make_uninit_string (EMACS_INT length)
2145 {
2146 Lisp_Object val;
2147
2148 if (!length)
2149 return empty_unibyte_string;
2150 val = make_uninit_multibyte_string (length, length);
2151 STRING_SET_UNIBYTE (val);
2152 return val;
2153 }
2154
2155
2156 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2157 which occupy NBYTES bytes. */
2158
2159 Lisp_Object
2160 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2161 {
2162 Lisp_Object string;
2163 struct Lisp_String *s;
2164
2165 if (nchars < 0)
2166 emacs_abort ();
2167 if (!nbytes)
2168 return empty_multibyte_string;
2169
2170 s = allocate_string ();
2171 s->intervals = NULL;
2172 allocate_string_data (s, nchars, nbytes);
2173 XSETSTRING (string, s);
2174 string_chars_consed += nbytes;
2175 return string;
2176 }
2177
2178 /* Print arguments to BUF according to a FORMAT, then return
2179 a Lisp_String initialized with the data from BUF. */
2180
2181 Lisp_Object
2182 make_formatted_string (char *buf, const char *format, ...)
2183 {
2184 va_list ap;
2185 int length;
2186
2187 va_start (ap, format);
2188 length = vsprintf (buf, format, ap);
2189 va_end (ap);
2190 return make_string (buf, length);
2191 }
2192
2193 \f
2194 /***********************************************************************
2195 Float Allocation
2196 ***********************************************************************/
2197
2198 /* We store float cells inside of float_blocks, allocating a new
2199 float_block with malloc whenever necessary. Float cells reclaimed
2200 by GC are put on a free list to be reallocated before allocating
2201 any new float cells from the latest float_block. */
2202
2203 #define FLOAT_BLOCK_SIZE \
2204 (((BLOCK_BYTES - sizeof (struct float_block *) \
2205 /* The compiler might add padding at the end. */ \
2206 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2207 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2208
2209 #define GETMARKBIT(block,n) \
2210 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2211 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2212 & 1)
2213
2214 #define SETMARKBIT(block,n) \
2215 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2216 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2217
2218 #define UNSETMARKBIT(block,n) \
2219 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2220 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2221
2222 #define FLOAT_BLOCK(fptr) \
2223 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2224
2225 #define FLOAT_INDEX(fptr) \
2226 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2227
2228 struct float_block
2229 {
2230 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2231 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2232 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2233 struct float_block *next;
2234 };
2235
2236 #define FLOAT_MARKED_P(fptr) \
2237 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2238
2239 #define FLOAT_MARK(fptr) \
2240 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2241
2242 #define FLOAT_UNMARK(fptr) \
2243 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2244
2245 /* Current float_block. */
2246
2247 static struct float_block *float_block;
2248
2249 /* Index of first unused Lisp_Float in the current float_block. */
2250
2251 static int float_block_index = FLOAT_BLOCK_SIZE;
2252
2253 /* Free-list of Lisp_Floats. */
2254
2255 static struct Lisp_Float *float_free_list;
2256
2257 /* Return a new float object with value FLOAT_VALUE. */
2258
2259 Lisp_Object
2260 make_float (double float_value)
2261 {
2262 register Lisp_Object val;
2263
2264 MALLOC_BLOCK_INPUT;
2265
2266 if (float_free_list)
2267 {
2268 /* We use the data field for chaining the free list
2269 so that we won't use the same field that has the mark bit. */
2270 XSETFLOAT (val, float_free_list);
2271 float_free_list = float_free_list->u.chain;
2272 }
2273 else
2274 {
2275 if (float_block_index == FLOAT_BLOCK_SIZE)
2276 {
2277 struct float_block *new
2278 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2279 new->next = float_block;
2280 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2281 float_block = new;
2282 float_block_index = 0;
2283 total_free_floats += FLOAT_BLOCK_SIZE;
2284 }
2285 XSETFLOAT (val, &float_block->floats[float_block_index]);
2286 float_block_index++;
2287 }
2288
2289 MALLOC_UNBLOCK_INPUT;
2290
2291 XFLOAT_INIT (val, float_value);
2292 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2293 consing_since_gc += sizeof (struct Lisp_Float);
2294 floats_consed++;
2295 total_free_floats--;
2296 return val;
2297 }
2298
2299
2300 \f
2301 /***********************************************************************
2302 Cons Allocation
2303 ***********************************************************************/
2304
2305 /* We store cons cells inside of cons_blocks, allocating a new
2306 cons_block with malloc whenever necessary. Cons cells reclaimed by
2307 GC are put on a free list to be reallocated before allocating
2308 any new cons cells from the latest cons_block. */
2309
2310 #define CONS_BLOCK_SIZE \
2311 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2312 /* The compiler might add padding at the end. */ \
2313 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2314 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2315
2316 #define CONS_BLOCK(fptr) \
2317 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2318
2319 #define CONS_INDEX(fptr) \
2320 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2321
2322 struct cons_block
2323 {
2324 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2325 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2326 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2327 struct cons_block *next;
2328 };
2329
2330 #define CONS_MARKED_P(fptr) \
2331 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2332
2333 #define CONS_MARK(fptr) \
2334 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2335
2336 #define CONS_UNMARK(fptr) \
2337 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2338
2339 /* Current cons_block. */
2340
2341 static struct cons_block *cons_block;
2342
2343 /* Index of first unused Lisp_Cons in the current block. */
2344
2345 static int cons_block_index = CONS_BLOCK_SIZE;
2346
2347 /* Free-list of Lisp_Cons structures. */
2348
2349 static struct Lisp_Cons *cons_free_list;
2350
2351 /* Explicitly free a cons cell by putting it on the free-list. */
2352
2353 void
2354 free_cons (struct Lisp_Cons *ptr)
2355 {
2356 ptr->u.chain = cons_free_list;
2357 #if GC_MARK_STACK
2358 ptr->car = Vdead;
2359 #endif
2360 cons_free_list = ptr;
2361 consing_since_gc -= sizeof *ptr;
2362 total_free_conses++;
2363 }
2364
2365 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2366 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2367 (Lisp_Object car, Lisp_Object cdr)
2368 {
2369 register Lisp_Object val;
2370
2371 MALLOC_BLOCK_INPUT;
2372
2373 if (cons_free_list)
2374 {
2375 /* We use the cdr for chaining the free list
2376 so that we won't use the same field that has the mark bit. */
2377 XSETCONS (val, cons_free_list);
2378 cons_free_list = cons_free_list->u.chain;
2379 }
2380 else
2381 {
2382 if (cons_block_index == CONS_BLOCK_SIZE)
2383 {
2384 struct cons_block *new
2385 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2386 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2387 new->next = cons_block;
2388 cons_block = new;
2389 cons_block_index = 0;
2390 total_free_conses += CONS_BLOCK_SIZE;
2391 }
2392 XSETCONS (val, &cons_block->conses[cons_block_index]);
2393 cons_block_index++;
2394 }
2395
2396 MALLOC_UNBLOCK_INPUT;
2397
2398 XSETCAR (val, car);
2399 XSETCDR (val, cdr);
2400 eassert (!CONS_MARKED_P (XCONS (val)));
2401 consing_since_gc += sizeof (struct Lisp_Cons);
2402 total_free_conses--;
2403 cons_cells_consed++;
2404 return val;
2405 }
2406
2407 #ifdef GC_CHECK_CONS_LIST
2408 /* Get an error now if there's any junk in the cons free list. */
2409 void
2410 check_cons_list (void)
2411 {
2412 struct Lisp_Cons *tail = cons_free_list;
2413
2414 while (tail)
2415 tail = tail->u.chain;
2416 }
2417 #endif
2418
2419 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2420
2421 Lisp_Object
2422 list1 (Lisp_Object arg1)
2423 {
2424 return Fcons (arg1, Qnil);
2425 }
2426
2427 Lisp_Object
2428 list2 (Lisp_Object arg1, Lisp_Object arg2)
2429 {
2430 return Fcons (arg1, Fcons (arg2, Qnil));
2431 }
2432
2433
2434 Lisp_Object
2435 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2436 {
2437 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2438 }
2439
2440
2441 Lisp_Object
2442 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2443 {
2444 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2445 }
2446
2447
2448 Lisp_Object
2449 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2450 {
2451 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2452 Fcons (arg5, Qnil)))));
2453 }
2454
2455 /* Make a list of COUNT Lisp_Objects, where ARG is the
2456 first one. Allocate conses from pure space if TYPE
2457 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2458
2459 Lisp_Object
2460 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2461 {
2462 va_list ap;
2463 ptrdiff_t i;
2464 Lisp_Object val, *objp;
2465
2466 /* Change to SAFE_ALLOCA if you hit this eassert. */
2467 eassert (count <= MAX_ALLOCA / word_size);
2468
2469 objp = alloca (count * word_size);
2470 objp[0] = arg;
2471 va_start (ap, arg);
2472 for (i = 1; i < count; i++)
2473 objp[i] = va_arg (ap, Lisp_Object);
2474 va_end (ap);
2475
2476 for (val = Qnil, i = count - 1; i >= 0; i--)
2477 {
2478 if (type == CONSTYPE_PURE)
2479 val = pure_cons (objp[i], val);
2480 else if (type == CONSTYPE_HEAP)
2481 val = Fcons (objp[i], val);
2482 else
2483 emacs_abort ();
2484 }
2485 return val;
2486 }
2487
2488 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2489 doc: /* Return a newly created list with specified arguments as elements.
2490 Any number of arguments, even zero arguments, are allowed.
2491 usage: (list &rest OBJECTS) */)
2492 (ptrdiff_t nargs, Lisp_Object *args)
2493 {
2494 register Lisp_Object val;
2495 val = Qnil;
2496
2497 while (nargs > 0)
2498 {
2499 nargs--;
2500 val = Fcons (args[nargs], val);
2501 }
2502 return val;
2503 }
2504
2505
2506 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2507 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2508 (register Lisp_Object length, Lisp_Object init)
2509 {
2510 register Lisp_Object val;
2511 register EMACS_INT size;
2512
2513 CHECK_NATNUM (length);
2514 size = XFASTINT (length);
2515
2516 val = Qnil;
2517 while (size > 0)
2518 {
2519 val = Fcons (init, val);
2520 --size;
2521
2522 if (size > 0)
2523 {
2524 val = Fcons (init, val);
2525 --size;
2526
2527 if (size > 0)
2528 {
2529 val = Fcons (init, val);
2530 --size;
2531
2532 if (size > 0)
2533 {
2534 val = Fcons (init, val);
2535 --size;
2536
2537 if (size > 0)
2538 {
2539 val = Fcons (init, val);
2540 --size;
2541 }
2542 }
2543 }
2544 }
2545
2546 QUIT;
2547 }
2548
2549 return val;
2550 }
2551
2552
2553 \f
2554 /***********************************************************************
2555 Vector Allocation
2556 ***********************************************************************/
2557
2558 /* This value is balanced well enough to avoid too much internal overhead
2559 for the most common cases; it's not required to be a power of two, but
2560 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2561
2562 #define VECTOR_BLOCK_SIZE 4096
2563
2564 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2565 enum
2566 {
2567 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2568 };
2569
2570 /* ROUNDUP_SIZE must be a power of 2. */
2571 verify ((roundup_size & (roundup_size - 1)) == 0);
2572
2573 /* Verify assumptions described above. */
2574 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2575 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2576
2577 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2578
2579 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2580
2581 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2582
2583 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2584
2585 /* Size of the minimal vector allocated from block. */
2586
2587 #define VBLOCK_BYTES_MIN vroundup (header_size + sizeof (Lisp_Object))
2588
2589 /* Size of the largest vector allocated from block. */
2590
2591 #define VBLOCK_BYTES_MAX \
2592 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2593
2594 /* We maintain one free list for each possible block-allocated
2595 vector size, and this is the number of free lists we have. */
2596
2597 #define VECTOR_MAX_FREE_LIST_INDEX \
2598 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2599
2600 /* Common shortcut to advance vector pointer over a block data. */
2601
2602 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2603
2604 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2605
2606 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2607
2608 /* Get and set the next field in block-allocated vectorlike objects on
2609 the free list. Doing it this way respects C's aliasing rules.
2610 We could instead make 'contents' a union, but that would mean
2611 changes everywhere that the code uses 'contents'. */
2612 static struct Lisp_Vector *
2613 next_in_free_list (struct Lisp_Vector *v)
2614 {
2615 intptr_t i = XLI (v->contents[0]);
2616 return (struct Lisp_Vector *) i;
2617 }
2618 static void
2619 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2620 {
2621 v->contents[0] = XIL ((intptr_t) next);
2622 }
2623
2624 /* Common shortcut to setup vector on a free list. */
2625
2626 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2627 do { \
2628 (tmp) = ((nbytes - header_size) / word_size); \
2629 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2630 eassert ((nbytes) % roundup_size == 0); \
2631 (tmp) = VINDEX (nbytes); \
2632 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2633 set_next_in_free_list (v, vector_free_lists[tmp]); \
2634 vector_free_lists[tmp] = (v); \
2635 total_free_vector_slots += (nbytes) / word_size; \
2636 } while (0)
2637
2638 /* This internal type is used to maintain the list of large vectors
2639 which are allocated at their own, e.g. outside of vector blocks. */
2640
2641 struct large_vector
2642 {
2643 union {
2644 struct large_vector *vector;
2645 #if USE_LSB_TAG
2646 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2647 unsigned char c[vroundup (sizeof (struct large_vector *))];
2648 #endif
2649 } next;
2650 struct Lisp_Vector v;
2651 };
2652
2653 /* This internal type is used to maintain an underlying storage
2654 for small vectors. */
2655
2656 struct vector_block
2657 {
2658 char data[VECTOR_BLOCK_BYTES];
2659 struct vector_block *next;
2660 };
2661
2662 /* Chain of vector blocks. */
2663
2664 static struct vector_block *vector_blocks;
2665
2666 /* Vector free lists, where NTH item points to a chain of free
2667 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2668
2669 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2670
2671 /* Singly-linked list of large vectors. */
2672
2673 static struct large_vector *large_vectors;
2674
2675 /* The only vector with 0 slots, allocated from pure space. */
2676
2677 Lisp_Object zero_vector;
2678
2679 /* Number of live vectors. */
2680
2681 static EMACS_INT total_vectors;
2682
2683 /* Total size of live and free vectors, in Lisp_Object units. */
2684
2685 static EMACS_INT total_vector_slots, total_free_vector_slots;
2686
2687 /* Get a new vector block. */
2688
2689 static struct vector_block *
2690 allocate_vector_block (void)
2691 {
2692 struct vector_block *block = xmalloc (sizeof *block);
2693
2694 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2695 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2696 MEM_TYPE_VECTOR_BLOCK);
2697 #endif
2698
2699 block->next = vector_blocks;
2700 vector_blocks = block;
2701 return block;
2702 }
2703
2704 /* Called once to initialize vector allocation. */
2705
2706 static void
2707 init_vectors (void)
2708 {
2709 zero_vector = make_pure_vector (0);
2710 }
2711
2712 /* Allocate vector from a vector block. */
2713
2714 static struct Lisp_Vector *
2715 allocate_vector_from_block (size_t nbytes)
2716 {
2717 struct Lisp_Vector *vector;
2718 struct vector_block *block;
2719 size_t index, restbytes;
2720
2721 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2722 eassert (nbytes % roundup_size == 0);
2723
2724 /* First, try to allocate from a free list
2725 containing vectors of the requested size. */
2726 index = VINDEX (nbytes);
2727 if (vector_free_lists[index])
2728 {
2729 vector = vector_free_lists[index];
2730 vector_free_lists[index] = next_in_free_list (vector);
2731 total_free_vector_slots -= nbytes / word_size;
2732 return vector;
2733 }
2734
2735 /* Next, check free lists containing larger vectors. Since
2736 we will split the result, we should have remaining space
2737 large enough to use for one-slot vector at least. */
2738 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2739 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2740 if (vector_free_lists[index])
2741 {
2742 /* This vector is larger than requested. */
2743 vector = vector_free_lists[index];
2744 vector_free_lists[index] = next_in_free_list (vector);
2745 total_free_vector_slots -= nbytes / word_size;
2746
2747 /* Excess bytes are used for the smaller vector,
2748 which should be set on an appropriate free list. */
2749 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2750 eassert (restbytes % roundup_size == 0);
2751 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2752 return vector;
2753 }
2754
2755 /* Finally, need a new vector block. */
2756 block = allocate_vector_block ();
2757
2758 /* New vector will be at the beginning of this block. */
2759 vector = (struct Lisp_Vector *) block->data;
2760
2761 /* If the rest of space from this block is large enough
2762 for one-slot vector at least, set up it on a free list. */
2763 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2764 if (restbytes >= VBLOCK_BYTES_MIN)
2765 {
2766 eassert (restbytes % roundup_size == 0);
2767 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2768 }
2769 return vector;
2770 }
2771
2772 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2773
2774 #define VECTOR_IN_BLOCK(vector, block) \
2775 ((char *) (vector) <= (block)->data \
2776 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2777
2778 /* Return the memory footprint of V in bytes. */
2779
2780 static ptrdiff_t
2781 vector_nbytes (struct Lisp_Vector *v)
2782 {
2783 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2784
2785 if (size & PSEUDOVECTOR_FLAG)
2786 {
2787 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2788 size = (bool_header_size
2789 + (((struct Lisp_Bool_Vector *) v)->size
2790 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2791 / BOOL_VECTOR_BITS_PER_CHAR);
2792 else
2793 size = (header_size
2794 + ((size & PSEUDOVECTOR_SIZE_MASK)
2795 + ((size & PSEUDOVECTOR_REST_MASK)
2796 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2797 }
2798 else
2799 size = header_size + size * word_size;
2800 return vroundup (size);
2801 }
2802
2803 /* Reclaim space used by unmarked vectors. */
2804
2805 static void
2806 sweep_vectors (void)
2807 {
2808 struct vector_block *block, **bprev = &vector_blocks;
2809 struct large_vector *lv, **lvprev = &large_vectors;
2810 struct Lisp_Vector *vector, *next;
2811
2812 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2813 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2814
2815 /* Looking through vector blocks. */
2816
2817 for (block = vector_blocks; block; block = *bprev)
2818 {
2819 bool free_this_block = 0;
2820 ptrdiff_t nbytes;
2821
2822 for (vector = (struct Lisp_Vector *) block->data;
2823 VECTOR_IN_BLOCK (vector, block); vector = next)
2824 {
2825 if (VECTOR_MARKED_P (vector))
2826 {
2827 VECTOR_UNMARK (vector);
2828 total_vectors++;
2829 nbytes = vector_nbytes (vector);
2830 total_vector_slots += nbytes / word_size;
2831 next = ADVANCE (vector, nbytes);
2832 }
2833 else
2834 {
2835 ptrdiff_t total_bytes;
2836
2837 nbytes = vector_nbytes (vector);
2838 total_bytes = nbytes;
2839 next = ADVANCE (vector, nbytes);
2840
2841 /* While NEXT is not marked, try to coalesce with VECTOR,
2842 thus making VECTOR of the largest possible size. */
2843
2844 while (VECTOR_IN_BLOCK (next, block))
2845 {
2846 if (VECTOR_MARKED_P (next))
2847 break;
2848 nbytes = vector_nbytes (next);
2849 total_bytes += nbytes;
2850 next = ADVANCE (next, nbytes);
2851 }
2852
2853 eassert (total_bytes % roundup_size == 0);
2854
2855 if (vector == (struct Lisp_Vector *) block->data
2856 && !VECTOR_IN_BLOCK (next, block))
2857 /* This block should be freed because all of it's
2858 space was coalesced into the only free vector. */
2859 free_this_block = 1;
2860 else
2861 {
2862 int tmp;
2863 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2864 }
2865 }
2866 }
2867
2868 if (free_this_block)
2869 {
2870 *bprev = block->next;
2871 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2872 mem_delete (mem_find (block->data));
2873 #endif
2874 xfree (block);
2875 }
2876 else
2877 bprev = &block->next;
2878 }
2879
2880 /* Sweep large vectors. */
2881
2882 for (lv = large_vectors; lv; lv = *lvprev)
2883 {
2884 vector = &lv->v;
2885 if (VECTOR_MARKED_P (vector))
2886 {
2887 VECTOR_UNMARK (vector);
2888 total_vectors++;
2889 if (vector->header.size & PSEUDOVECTOR_FLAG)
2890 {
2891 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2892
2893 /* All non-bool pseudovectors are small enough to be allocated
2894 from vector blocks. This code should be redesigned if some
2895 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2896 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2897
2898 total_vector_slots
2899 += (bool_header_size
2900 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2901 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2902 }
2903 else
2904 total_vector_slots
2905 += header_size / word_size + vector->header.size;
2906 lvprev = &lv->next.vector;
2907 }
2908 else
2909 {
2910 *lvprev = lv->next.vector;
2911 lisp_free (lv);
2912 }
2913 }
2914 }
2915
2916 /* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2918
2919 static struct Lisp_Vector *
2920 allocate_vectorlike (ptrdiff_t len)
2921 {
2922 struct Lisp_Vector *p;
2923
2924 MALLOC_BLOCK_INPUT;
2925
2926 if (len == 0)
2927 p = XVECTOR (zero_vector);
2928 else
2929 {
2930 size_t nbytes = header_size + len * word_size;
2931
2932 #ifdef DOUG_LEA_MALLOC
2933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2934 because mapped region contents are not preserved in
2935 a dumped Emacs. */
2936 mallopt (M_MMAP_MAX, 0);
2937 #endif
2938
2939 if (nbytes <= VBLOCK_BYTES_MAX)
2940 p = allocate_vector_from_block (vroundup (nbytes));
2941 else
2942 {
2943 struct large_vector *lv
2944 = lisp_malloc ((offsetof (struct large_vector, v.contents)
2945 + len * word_size),
2946 MEM_TYPE_VECTORLIKE);
2947 lv->next.vector = large_vectors;
2948 large_vectors = lv;
2949 p = &lv->v;
2950 }
2951
2952 #ifdef DOUG_LEA_MALLOC
2953 /* Back to a reasonable maximum of mmap'ed areas. */
2954 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2955 #endif
2956
2957 consing_since_gc += nbytes;
2958 vector_cells_consed += len;
2959 }
2960
2961 MALLOC_UNBLOCK_INPUT;
2962
2963 return p;
2964 }
2965
2966
2967 /* Allocate a vector with LEN slots. */
2968
2969 struct Lisp_Vector *
2970 allocate_vector (EMACS_INT len)
2971 {
2972 struct Lisp_Vector *v;
2973 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2974
2975 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2976 memory_full (SIZE_MAX);
2977 v = allocate_vectorlike (len);
2978 v->header.size = len;
2979 return v;
2980 }
2981
2982
2983 /* Allocate other vector-like structures. */
2984
2985 struct Lisp_Vector *
2986 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2987 {
2988 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2989 int i;
2990
2991 /* Catch bogus values. */
2992 eassert (tag <= PVEC_FONT);
2993 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2994 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2995
2996 /* Only the first lisplen slots will be traced normally by the GC. */
2997 for (i = 0; i < lisplen; ++i)
2998 v->contents[i] = Qnil;
2999
3000 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3001 return v;
3002 }
3003
3004 struct buffer *
3005 allocate_buffer (void)
3006 {
3007 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3008
3009 BUFFER_PVEC_INIT (b);
3010 /* Put B on the chain of all buffers including killed ones. */
3011 b->next = all_buffers;
3012 all_buffers = b;
3013 /* Note that the rest fields of B are not initialized. */
3014 return b;
3015 }
3016
3017 struct Lisp_Hash_Table *
3018 allocate_hash_table (void)
3019 {
3020 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3021 }
3022
3023 struct window *
3024 allocate_window (void)
3025 {
3026 struct window *w;
3027
3028 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3029 /* Users assumes that non-Lisp data is zeroed. */
3030 memset (&w->current_matrix, 0,
3031 sizeof (*w) - offsetof (struct window, current_matrix));
3032 return w;
3033 }
3034
3035 struct terminal *
3036 allocate_terminal (void)
3037 {
3038 struct terminal *t;
3039
3040 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3041 /* Users assumes that non-Lisp data is zeroed. */
3042 memset (&t->next_terminal, 0,
3043 sizeof (*t) - offsetof (struct terminal, next_terminal));
3044 return t;
3045 }
3046
3047 struct frame *
3048 allocate_frame (void)
3049 {
3050 struct frame *f;
3051
3052 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&f->face_cache, 0,
3055 sizeof (*f) - offsetof (struct frame, face_cache));
3056 return f;
3057 }
3058
3059 struct Lisp_Process *
3060 allocate_process (void)
3061 {
3062 struct Lisp_Process *p;
3063
3064 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&p->pid, 0,
3067 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3068 return p;
3069 }
3070
3071 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3072 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3073 See also the function `vector'. */)
3074 (register Lisp_Object length, Lisp_Object init)
3075 {
3076 Lisp_Object vector;
3077 register ptrdiff_t sizei;
3078 register ptrdiff_t i;
3079 register struct Lisp_Vector *p;
3080
3081 CHECK_NATNUM (length);
3082
3083 p = allocate_vector (XFASTINT (length));
3084 sizei = XFASTINT (length);
3085 for (i = 0; i < sizei; i++)
3086 p->contents[i] = init;
3087
3088 XSETVECTOR (vector, p);
3089 return vector;
3090 }
3091
3092
3093 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3094 doc: /* Return a newly created vector with specified arguments as elements.
3095 Any number of arguments, even zero arguments, are allowed.
3096 usage: (vector &rest OBJECTS) */)
3097 (ptrdiff_t nargs, Lisp_Object *args)
3098 {
3099 ptrdiff_t i;
3100 register Lisp_Object val = make_uninit_vector (nargs);
3101 register struct Lisp_Vector *p = XVECTOR (val);
3102
3103 for (i = 0; i < nargs; i++)
3104 p->contents[i] = args[i];
3105 return val;
3106 }
3107
3108 void
3109 make_byte_code (struct Lisp_Vector *v)
3110 {
3111 if (v->header.size > 1 && STRINGP (v->contents[1])
3112 && STRING_MULTIBYTE (v->contents[1]))
3113 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3114 earlier because they produced a raw 8-bit string for byte-code
3115 and now such a byte-code string is loaded as multibyte while
3116 raw 8-bit characters converted to multibyte form. Thus, now we
3117 must convert them back to the original unibyte form. */
3118 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3119 XSETPVECTYPE (v, PVEC_COMPILED);
3120 }
3121
3122 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3123 doc: /* Create a byte-code object with specified arguments as elements.
3124 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3125 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3126 and (optional) INTERACTIVE-SPEC.
3127 The first four arguments are required; at most six have any
3128 significance.
3129 The ARGLIST can be either like the one of `lambda', in which case the arguments
3130 will be dynamically bound before executing the byte code, or it can be an
3131 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3132 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3133 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3134 argument to catch the left-over arguments. If such an integer is used, the
3135 arguments will not be dynamically bound but will be instead pushed on the
3136 stack before executing the byte-code.
3137 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3138 (ptrdiff_t nargs, Lisp_Object *args)
3139 {
3140 ptrdiff_t i;
3141 register Lisp_Object val = make_uninit_vector (nargs);
3142 register struct Lisp_Vector *p = XVECTOR (val);
3143
3144 /* We used to purecopy everything here, if purify-flag was set. This worked
3145 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3146 dangerous, since make-byte-code is used during execution to build
3147 closures, so any closure built during the preload phase would end up
3148 copied into pure space, including its free variables, which is sometimes
3149 just wasteful and other times plainly wrong (e.g. those free vars may want
3150 to be setcar'd). */
3151
3152 for (i = 0; i < nargs; i++)
3153 p->contents[i] = args[i];
3154 make_byte_code (p);
3155 XSETCOMPILED (val, p);
3156 return val;
3157 }
3158
3159
3160 \f
3161 /***********************************************************************
3162 Symbol Allocation
3163 ***********************************************************************/
3164
3165 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3166 of the required alignment if LSB tags are used. */
3167
3168 union aligned_Lisp_Symbol
3169 {
3170 struct Lisp_Symbol s;
3171 #if USE_LSB_TAG
3172 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3173 & -GCALIGNMENT];
3174 #endif
3175 };
3176
3177 /* Each symbol_block is just under 1020 bytes long, since malloc
3178 really allocates in units of powers of two and uses 4 bytes for its
3179 own overhead. */
3180
3181 #define SYMBOL_BLOCK_SIZE \
3182 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3183
3184 struct symbol_block
3185 {
3186 /* Place `symbols' first, to preserve alignment. */
3187 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3188 struct symbol_block *next;
3189 };
3190
3191 /* Current symbol block and index of first unused Lisp_Symbol
3192 structure in it. */
3193
3194 static struct symbol_block *symbol_block;
3195 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3196
3197 /* List of free symbols. */
3198
3199 static struct Lisp_Symbol *symbol_free_list;
3200
3201 static void
3202 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3203 {
3204 XSYMBOL (sym)->name = name;
3205 }
3206
3207 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3208 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3209 Its value is void, and its function definition and property list are nil. */)
3210 (Lisp_Object name)
3211 {
3212 register Lisp_Object val;
3213 register struct Lisp_Symbol *p;
3214
3215 CHECK_STRING (name);
3216
3217 MALLOC_BLOCK_INPUT;
3218
3219 if (symbol_free_list)
3220 {
3221 XSETSYMBOL (val, symbol_free_list);
3222 symbol_free_list = symbol_free_list->next;
3223 }
3224 else
3225 {
3226 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3227 {
3228 struct symbol_block *new
3229 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3230 new->next = symbol_block;
3231 symbol_block = new;
3232 symbol_block_index = 0;
3233 total_free_symbols += SYMBOL_BLOCK_SIZE;
3234 }
3235 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3236 symbol_block_index++;
3237 }
3238
3239 MALLOC_UNBLOCK_INPUT;
3240
3241 p = XSYMBOL (val);
3242 set_symbol_name (val, name);
3243 set_symbol_plist (val, Qnil);
3244 p->redirect = SYMBOL_PLAINVAL;
3245 SET_SYMBOL_VAL (p, Qunbound);
3246 set_symbol_function (val, Qnil);
3247 set_symbol_next (val, NULL);
3248 p->gcmarkbit = 0;
3249 p->interned = SYMBOL_UNINTERNED;
3250 p->constant = 0;
3251 p->declared_special = 0;
3252 consing_since_gc += sizeof (struct Lisp_Symbol);
3253 symbols_consed++;
3254 total_free_symbols--;
3255 return val;
3256 }
3257
3258
3259 \f
3260 /***********************************************************************
3261 Marker (Misc) Allocation
3262 ***********************************************************************/
3263
3264 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3265 the required alignment when LSB tags are used. */
3266
3267 union aligned_Lisp_Misc
3268 {
3269 union Lisp_Misc m;
3270 #if USE_LSB_TAG
3271 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3272 & -GCALIGNMENT];
3273 #endif
3274 };
3275
3276 /* Allocation of markers and other objects that share that structure.
3277 Works like allocation of conses. */
3278
3279 #define MARKER_BLOCK_SIZE \
3280 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3281
3282 struct marker_block
3283 {
3284 /* Place `markers' first, to preserve alignment. */
3285 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3286 struct marker_block *next;
3287 };
3288
3289 static struct marker_block *marker_block;
3290 static int marker_block_index = MARKER_BLOCK_SIZE;
3291
3292 static union Lisp_Misc *marker_free_list;
3293
3294 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3295
3296 static Lisp_Object
3297 allocate_misc (enum Lisp_Misc_Type type)
3298 {
3299 Lisp_Object val;
3300
3301 MALLOC_BLOCK_INPUT;
3302
3303 if (marker_free_list)
3304 {
3305 XSETMISC (val, marker_free_list);
3306 marker_free_list = marker_free_list->u_free.chain;
3307 }
3308 else
3309 {
3310 if (marker_block_index == MARKER_BLOCK_SIZE)
3311 {
3312 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3313 new->next = marker_block;
3314 marker_block = new;
3315 marker_block_index = 0;
3316 total_free_markers += MARKER_BLOCK_SIZE;
3317 }
3318 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3319 marker_block_index++;
3320 }
3321
3322 MALLOC_UNBLOCK_INPUT;
3323
3324 --total_free_markers;
3325 consing_since_gc += sizeof (union Lisp_Misc);
3326 misc_objects_consed++;
3327 XMISCANY (val)->type = type;
3328 XMISCANY (val)->gcmarkbit = 0;
3329 return val;
3330 }
3331
3332 /* Free a Lisp_Misc object. */
3333
3334 void
3335 free_misc (Lisp_Object misc)
3336 {
3337 XMISCANY (misc)->type = Lisp_Misc_Free;
3338 XMISC (misc)->u_free.chain = marker_free_list;
3339 marker_free_list = XMISC (misc);
3340 consing_since_gc -= sizeof (union Lisp_Misc);
3341 total_free_markers++;
3342 }
3343
3344 /* Verify properties of Lisp_Save_Value's representation
3345 that are assumed here and elsewhere. */
3346
3347 verify (SAVE_UNUSED == 0);
3348 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3349 >> SAVE_SLOT_BITS)
3350 == 0);
3351
3352 /* Return Lisp_Save_Value objects for the various combinations
3353 that callers need. */
3354
3355 Lisp_Object
3356 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3357 {
3358 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3359 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3360 p->save_type = SAVE_TYPE_INT_INT_INT;
3361 p->data[0].integer = a;
3362 p->data[1].integer = b;
3363 p->data[2].integer = c;
3364 return val;
3365 }
3366
3367 Lisp_Object
3368 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3369 Lisp_Object d)
3370 {
3371 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3372 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3373 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3374 p->data[0].object = a;
3375 p->data[1].object = b;
3376 p->data[2].object = c;
3377 p->data[3].object = d;
3378 return val;
3379 }
3380
3381 #if defined HAVE_NS || defined HAVE_NTGUI
3382 Lisp_Object
3383 make_save_ptr (void *a)
3384 {
3385 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3386 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3387 p->save_type = SAVE_POINTER;
3388 p->data[0].pointer = a;
3389 return val;
3390 }
3391 #endif
3392
3393 Lisp_Object
3394 make_save_ptr_int (void *a, ptrdiff_t b)
3395 {
3396 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3397 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3398 p->save_type = SAVE_TYPE_PTR_INT;
3399 p->data[0].pointer = a;
3400 p->data[1].integer = b;
3401 return val;
3402 }
3403
3404 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3405 Lisp_Object
3406 make_save_ptr_ptr (void *a, void *b)
3407 {
3408 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3409 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3410 p->save_type = SAVE_TYPE_PTR_PTR;
3411 p->data[0].pointer = a;
3412 p->data[1].pointer = b;
3413 return val;
3414 }
3415 #endif
3416
3417 Lisp_Object
3418 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3419 {
3420 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3421 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3422 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3423 p->data[0].funcpointer = a;
3424 p->data[1].pointer = b;
3425 p->data[2].object = c;
3426 return val;
3427 }
3428
3429 /* Return a Lisp_Save_Value object that represents an array A
3430 of N Lisp objects. */
3431
3432 Lisp_Object
3433 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3434 {
3435 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3436 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3437 p->save_type = SAVE_TYPE_MEMORY;
3438 p->data[0].pointer = a;
3439 p->data[1].integer = n;
3440 return val;
3441 }
3442
3443 /* Free a Lisp_Save_Value object. Do not use this function
3444 if SAVE contains pointer other than returned by xmalloc. */
3445
3446 void
3447 free_save_value (Lisp_Object save)
3448 {
3449 xfree (XSAVE_POINTER (save, 0));
3450 free_misc (save);
3451 }
3452
3453 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3454
3455 Lisp_Object
3456 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3457 {
3458 register Lisp_Object overlay;
3459
3460 overlay = allocate_misc (Lisp_Misc_Overlay);
3461 OVERLAY_START (overlay) = start;
3462 OVERLAY_END (overlay) = end;
3463 set_overlay_plist (overlay, plist);
3464 XOVERLAY (overlay)->next = NULL;
3465 return overlay;
3466 }
3467
3468 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3469 doc: /* Return a newly allocated marker which does not point at any place. */)
3470 (void)
3471 {
3472 register Lisp_Object val;
3473 register struct Lisp_Marker *p;
3474
3475 val = allocate_misc (Lisp_Misc_Marker);
3476 p = XMARKER (val);
3477 p->buffer = 0;
3478 p->bytepos = 0;
3479 p->charpos = 0;
3480 p->next = NULL;
3481 p->insertion_type = 0;
3482 p->need_adjustment = 0;
3483 return val;
3484 }
3485
3486 /* Return a newly allocated marker which points into BUF
3487 at character position CHARPOS and byte position BYTEPOS. */
3488
3489 Lisp_Object
3490 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3491 {
3492 Lisp_Object obj;
3493 struct Lisp_Marker *m;
3494
3495 /* No dead buffers here. */
3496 eassert (BUFFER_LIVE_P (buf));
3497
3498 /* Every character is at least one byte. */
3499 eassert (charpos <= bytepos);
3500
3501 obj = allocate_misc (Lisp_Misc_Marker);
3502 m = XMARKER (obj);
3503 m->buffer = buf;
3504 m->charpos = charpos;
3505 m->bytepos = bytepos;
3506 m->insertion_type = 0;
3507 m->need_adjustment = 0;
3508 m->next = BUF_MARKERS (buf);
3509 BUF_MARKERS (buf) = m;
3510 return obj;
3511 }
3512
3513 /* Put MARKER back on the free list after using it temporarily. */
3514
3515 void
3516 free_marker (Lisp_Object marker)
3517 {
3518 unchain_marker (XMARKER (marker));
3519 free_misc (marker);
3520 }
3521
3522 \f
3523 /* Return a newly created vector or string with specified arguments as
3524 elements. If all the arguments are characters that can fit
3525 in a string of events, make a string; otherwise, make a vector.
3526
3527 Any number of arguments, even zero arguments, are allowed. */
3528
3529 Lisp_Object
3530 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3531 {
3532 ptrdiff_t i;
3533
3534 for (i = 0; i < nargs; i++)
3535 /* The things that fit in a string
3536 are characters that are in 0...127,
3537 after discarding the meta bit and all the bits above it. */
3538 if (!INTEGERP (args[i])
3539 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3540 return Fvector (nargs, args);
3541
3542 /* Since the loop exited, we know that all the things in it are
3543 characters, so we can make a string. */
3544 {
3545 Lisp_Object result;
3546
3547 result = Fmake_string (make_number (nargs), make_number (0));
3548 for (i = 0; i < nargs; i++)
3549 {
3550 SSET (result, i, XINT (args[i]));
3551 /* Move the meta bit to the right place for a string char. */
3552 if (XINT (args[i]) & CHAR_META)
3553 SSET (result, i, SREF (result, i) | 0x80);
3554 }
3555
3556 return result;
3557 }
3558 }
3559
3560
3561 \f
3562 /************************************************************************
3563 Memory Full Handling
3564 ************************************************************************/
3565
3566
3567 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3568 there may have been size_t overflow so that malloc was never
3569 called, or perhaps malloc was invoked successfully but the
3570 resulting pointer had problems fitting into a tagged EMACS_INT. In
3571 either case this counts as memory being full even though malloc did
3572 not fail. */
3573
3574 void
3575 memory_full (size_t nbytes)
3576 {
3577 /* Do not go into hysterics merely because a large request failed. */
3578 bool enough_free_memory = 0;
3579 if (SPARE_MEMORY < nbytes)
3580 {
3581 void *p;
3582
3583 MALLOC_BLOCK_INPUT;
3584 p = malloc (SPARE_MEMORY);
3585 if (p)
3586 {
3587 free (p);
3588 enough_free_memory = 1;
3589 }
3590 MALLOC_UNBLOCK_INPUT;
3591 }
3592
3593 if (! enough_free_memory)
3594 {
3595 int i;
3596
3597 Vmemory_full = Qt;
3598
3599 memory_full_cons_threshold = sizeof (struct cons_block);
3600
3601 /* The first time we get here, free the spare memory. */
3602 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3603 if (spare_memory[i])
3604 {
3605 if (i == 0)
3606 free (spare_memory[i]);
3607 else if (i >= 1 && i <= 4)
3608 lisp_align_free (spare_memory[i]);
3609 else
3610 lisp_free (spare_memory[i]);
3611 spare_memory[i] = 0;
3612 }
3613 }
3614
3615 /* This used to call error, but if we've run out of memory, we could
3616 get infinite recursion trying to build the string. */
3617 xsignal (Qnil, Vmemory_signal_data);
3618 }
3619
3620 /* If we released our reserve (due to running out of memory),
3621 and we have a fair amount free once again,
3622 try to set aside another reserve in case we run out once more.
3623
3624 This is called when a relocatable block is freed in ralloc.c,
3625 and also directly from this file, in case we're not using ralloc.c. */
3626
3627 void
3628 refill_memory_reserve (void)
3629 {
3630 #ifndef SYSTEM_MALLOC
3631 if (spare_memory[0] == 0)
3632 spare_memory[0] = malloc (SPARE_MEMORY);
3633 if (spare_memory[1] == 0)
3634 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3635 MEM_TYPE_SPARE);
3636 if (spare_memory[2] == 0)
3637 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3638 MEM_TYPE_SPARE);
3639 if (spare_memory[3] == 0)
3640 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3641 MEM_TYPE_SPARE);
3642 if (spare_memory[4] == 0)
3643 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3644 MEM_TYPE_SPARE);
3645 if (spare_memory[5] == 0)
3646 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3647 MEM_TYPE_SPARE);
3648 if (spare_memory[6] == 0)
3649 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3650 MEM_TYPE_SPARE);
3651 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3652 Vmemory_full = Qnil;
3653 #endif
3654 }
3655 \f
3656 /************************************************************************
3657 C Stack Marking
3658 ************************************************************************/
3659
3660 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3661
3662 /* Conservative C stack marking requires a method to identify possibly
3663 live Lisp objects given a pointer value. We do this by keeping
3664 track of blocks of Lisp data that are allocated in a red-black tree
3665 (see also the comment of mem_node which is the type of nodes in
3666 that tree). Function lisp_malloc adds information for an allocated
3667 block to the red-black tree with calls to mem_insert, and function
3668 lisp_free removes it with mem_delete. Functions live_string_p etc
3669 call mem_find to lookup information about a given pointer in the
3670 tree, and use that to determine if the pointer points to a Lisp
3671 object or not. */
3672
3673 /* Initialize this part of alloc.c. */
3674
3675 static void
3676 mem_init (void)
3677 {
3678 mem_z.left = mem_z.right = MEM_NIL;
3679 mem_z.parent = NULL;
3680 mem_z.color = MEM_BLACK;
3681 mem_z.start = mem_z.end = NULL;
3682 mem_root = MEM_NIL;
3683 }
3684
3685
3686 /* Value is a pointer to the mem_node containing START. Value is
3687 MEM_NIL if there is no node in the tree containing START. */
3688
3689 static struct mem_node *
3690 mem_find (void *start)
3691 {
3692 struct mem_node *p;
3693
3694 if (start < min_heap_address || start > max_heap_address)
3695 return MEM_NIL;
3696
3697 /* Make the search always successful to speed up the loop below. */
3698 mem_z.start = start;
3699 mem_z.end = (char *) start + 1;
3700
3701 p = mem_root;
3702 while (start < p->start || start >= p->end)
3703 p = start < p->start ? p->left : p->right;
3704 return p;
3705 }
3706
3707
3708 /* Insert a new node into the tree for a block of memory with start
3709 address START, end address END, and type TYPE. Value is a
3710 pointer to the node that was inserted. */
3711
3712 static struct mem_node *
3713 mem_insert (void *start, void *end, enum mem_type type)
3714 {
3715 struct mem_node *c, *parent, *x;
3716
3717 if (min_heap_address == NULL || start < min_heap_address)
3718 min_heap_address = start;
3719 if (max_heap_address == NULL || end > max_heap_address)
3720 max_heap_address = end;
3721
3722 /* See where in the tree a node for START belongs. In this
3723 particular application, it shouldn't happen that a node is already
3724 present. For debugging purposes, let's check that. */
3725 c = mem_root;
3726 parent = NULL;
3727
3728 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3729
3730 while (c != MEM_NIL)
3731 {
3732 if (start >= c->start && start < c->end)
3733 emacs_abort ();
3734 parent = c;
3735 c = start < c->start ? c->left : c->right;
3736 }
3737
3738 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3739
3740 while (c != MEM_NIL)
3741 {
3742 parent = c;
3743 c = start < c->start ? c->left : c->right;
3744 }
3745
3746 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3747
3748 /* Create a new node. */
3749 #ifdef GC_MALLOC_CHECK
3750 x = malloc (sizeof *x);
3751 if (x == NULL)
3752 emacs_abort ();
3753 #else
3754 x = xmalloc (sizeof *x);
3755 #endif
3756 x->start = start;
3757 x->end = end;
3758 x->type = type;
3759 x->parent = parent;
3760 x->left = x->right = MEM_NIL;
3761 x->color = MEM_RED;
3762
3763 /* Insert it as child of PARENT or install it as root. */
3764 if (parent)
3765 {
3766 if (start < parent->start)
3767 parent->left = x;
3768 else
3769 parent->right = x;
3770 }
3771 else
3772 mem_root = x;
3773
3774 /* Re-establish red-black tree properties. */
3775 mem_insert_fixup (x);
3776
3777 return x;
3778 }
3779
3780
3781 /* Re-establish the red-black properties of the tree, and thereby
3782 balance the tree, after node X has been inserted; X is always red. */
3783
3784 static void
3785 mem_insert_fixup (struct mem_node *x)
3786 {
3787 while (x != mem_root && x->parent->color == MEM_RED)
3788 {
3789 /* X is red and its parent is red. This is a violation of
3790 red-black tree property #3. */
3791
3792 if (x->parent == x->parent->parent->left)
3793 {
3794 /* We're on the left side of our grandparent, and Y is our
3795 "uncle". */
3796 struct mem_node *y = x->parent->parent->right;
3797
3798 if (y->color == MEM_RED)
3799 {
3800 /* Uncle and parent are red but should be black because
3801 X is red. Change the colors accordingly and proceed
3802 with the grandparent. */
3803 x->parent->color = MEM_BLACK;
3804 y->color = MEM_BLACK;
3805 x->parent->parent->color = MEM_RED;
3806 x = x->parent->parent;
3807 }
3808 else
3809 {
3810 /* Parent and uncle have different colors; parent is
3811 red, uncle is black. */
3812 if (x == x->parent->right)
3813 {
3814 x = x->parent;
3815 mem_rotate_left (x);
3816 }
3817
3818 x->parent->color = MEM_BLACK;
3819 x->parent->parent->color = MEM_RED;
3820 mem_rotate_right (x->parent->parent);
3821 }
3822 }
3823 else
3824 {
3825 /* This is the symmetrical case of above. */
3826 struct mem_node *y = x->parent->parent->left;
3827
3828 if (y->color == MEM_RED)
3829 {
3830 x->parent->color = MEM_BLACK;
3831 y->color = MEM_BLACK;
3832 x->parent->parent->color = MEM_RED;
3833 x = x->parent->parent;
3834 }
3835 else
3836 {
3837 if (x == x->parent->left)
3838 {
3839 x = x->parent;
3840 mem_rotate_right (x);
3841 }
3842
3843 x->parent->color = MEM_BLACK;
3844 x->parent->parent->color = MEM_RED;
3845 mem_rotate_left (x->parent->parent);
3846 }
3847 }
3848 }
3849
3850 /* The root may have been changed to red due to the algorithm. Set
3851 it to black so that property #5 is satisfied. */
3852 mem_root->color = MEM_BLACK;
3853 }
3854
3855
3856 /* (x) (y)
3857 / \ / \
3858 a (y) ===> (x) c
3859 / \ / \
3860 b c a b */
3861
3862 static void
3863 mem_rotate_left (struct mem_node *x)
3864 {
3865 struct mem_node *y;
3866
3867 /* Turn y's left sub-tree into x's right sub-tree. */
3868 y = x->right;
3869 x->right = y->left;
3870 if (y->left != MEM_NIL)
3871 y->left->parent = x;
3872
3873 /* Y's parent was x's parent. */
3874 if (y != MEM_NIL)
3875 y->parent = x->parent;
3876
3877 /* Get the parent to point to y instead of x. */
3878 if (x->parent)
3879 {
3880 if (x == x->parent->left)
3881 x->parent->left = y;
3882 else
3883 x->parent->right = y;
3884 }
3885 else
3886 mem_root = y;
3887
3888 /* Put x on y's left. */
3889 y->left = x;
3890 if (x != MEM_NIL)
3891 x->parent = y;
3892 }
3893
3894
3895 /* (x) (Y)
3896 / \ / \
3897 (y) c ===> a (x)
3898 / \ / \
3899 a b b c */
3900
3901 static void
3902 mem_rotate_right (struct mem_node *x)
3903 {
3904 struct mem_node *y = x->left;
3905
3906 x->left = y->right;
3907 if (y->right != MEM_NIL)
3908 y->right->parent = x;
3909
3910 if (y != MEM_NIL)
3911 y->parent = x->parent;
3912 if (x->parent)
3913 {
3914 if (x == x->parent->right)
3915 x->parent->right = y;
3916 else
3917 x->parent->left = y;
3918 }
3919 else
3920 mem_root = y;
3921
3922 y->right = x;
3923 if (x != MEM_NIL)
3924 x->parent = y;
3925 }
3926
3927
3928 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3929
3930 static void
3931 mem_delete (struct mem_node *z)
3932 {
3933 struct mem_node *x, *y;
3934
3935 if (!z || z == MEM_NIL)
3936 return;
3937
3938 if (z->left == MEM_NIL || z->right == MEM_NIL)
3939 y = z;
3940 else
3941 {
3942 y = z->right;
3943 while (y->left != MEM_NIL)
3944 y = y->left;
3945 }
3946
3947 if (y->left != MEM_NIL)
3948 x = y->left;
3949 else
3950 x = y->right;
3951
3952 x->parent = y->parent;
3953 if (y->parent)
3954 {
3955 if (y == y->parent->left)
3956 y->parent->left = x;
3957 else
3958 y->parent->right = x;
3959 }
3960 else
3961 mem_root = x;
3962
3963 if (y != z)
3964 {
3965 z->start = y->start;
3966 z->end = y->end;
3967 z->type = y->type;
3968 }
3969
3970 if (y->color == MEM_BLACK)
3971 mem_delete_fixup (x);
3972
3973 #ifdef GC_MALLOC_CHECK
3974 free (y);
3975 #else
3976 xfree (y);
3977 #endif
3978 }
3979
3980
3981 /* Re-establish the red-black properties of the tree, after a
3982 deletion. */
3983
3984 static void
3985 mem_delete_fixup (struct mem_node *x)
3986 {
3987 while (x != mem_root && x->color == MEM_BLACK)
3988 {
3989 if (x == x->parent->left)
3990 {
3991 struct mem_node *w = x->parent->right;
3992
3993 if (w->color == MEM_RED)
3994 {
3995 w->color = MEM_BLACK;
3996 x->parent->color = MEM_RED;
3997 mem_rotate_left (x->parent);
3998 w = x->parent->right;
3999 }
4000
4001 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4002 {
4003 w->color = MEM_RED;
4004 x = x->parent;
4005 }
4006 else
4007 {
4008 if (w->right->color == MEM_BLACK)
4009 {
4010 w->left->color = MEM_BLACK;
4011 w->color = MEM_RED;
4012 mem_rotate_right (w);
4013 w = x->parent->right;
4014 }
4015 w->color = x->parent->color;
4016 x->parent->color = MEM_BLACK;
4017 w->right->color = MEM_BLACK;
4018 mem_rotate_left (x->parent);
4019 x = mem_root;
4020 }
4021 }
4022 else
4023 {
4024 struct mem_node *w = x->parent->left;
4025
4026 if (w->color == MEM_RED)
4027 {
4028 w->color = MEM_BLACK;
4029 x->parent->color = MEM_RED;
4030 mem_rotate_right (x->parent);
4031 w = x->parent->left;
4032 }
4033
4034 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4035 {
4036 w->color = MEM_RED;
4037 x = x->parent;
4038 }
4039 else
4040 {
4041 if (w->left->color == MEM_BLACK)
4042 {
4043 w->right->color = MEM_BLACK;
4044 w->color = MEM_RED;
4045 mem_rotate_left (w);
4046 w = x->parent->left;
4047 }
4048
4049 w->color = x->parent->color;
4050 x->parent->color = MEM_BLACK;
4051 w->left->color = MEM_BLACK;
4052 mem_rotate_right (x->parent);
4053 x = mem_root;
4054 }
4055 }
4056 }
4057
4058 x->color = MEM_BLACK;
4059 }
4060
4061
4062 /* Value is non-zero if P is a pointer to a live Lisp string on
4063 the heap. M is a pointer to the mem_block for P. */
4064
4065 static bool
4066 live_string_p (struct mem_node *m, void *p)
4067 {
4068 if (m->type == MEM_TYPE_STRING)
4069 {
4070 struct string_block *b = m->start;
4071 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4072
4073 /* P must point to the start of a Lisp_String structure, and it
4074 must not be on the free-list. */
4075 return (offset >= 0
4076 && offset % sizeof b->strings[0] == 0
4077 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4078 && ((struct Lisp_String *) p)->data != NULL);
4079 }
4080 else
4081 return 0;
4082 }
4083
4084
4085 /* Value is non-zero if P is a pointer to a live Lisp cons on
4086 the heap. M is a pointer to the mem_block for P. */
4087
4088 static bool
4089 live_cons_p (struct mem_node *m, void *p)
4090 {
4091 if (m->type == MEM_TYPE_CONS)
4092 {
4093 struct cons_block *b = m->start;
4094 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4095
4096 /* P must point to the start of a Lisp_Cons, not be
4097 one of the unused cells in the current cons block,
4098 and not be on the free-list. */
4099 return (offset >= 0
4100 && offset % sizeof b->conses[0] == 0
4101 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4102 && (b != cons_block
4103 || offset / sizeof b->conses[0] < cons_block_index)
4104 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4105 }
4106 else
4107 return 0;
4108 }
4109
4110
4111 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4112 the heap. M is a pointer to the mem_block for P. */
4113
4114 static bool
4115 live_symbol_p (struct mem_node *m, void *p)
4116 {
4117 if (m->type == MEM_TYPE_SYMBOL)
4118 {
4119 struct symbol_block *b = m->start;
4120 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4121
4122 /* P must point to the start of a Lisp_Symbol, not be
4123 one of the unused cells in the current symbol block,
4124 and not be on the free-list. */
4125 return (offset >= 0
4126 && offset % sizeof b->symbols[0] == 0
4127 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4128 && (b != symbol_block
4129 || offset / sizeof b->symbols[0] < symbol_block_index)
4130 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4131 }
4132 else
4133 return 0;
4134 }
4135
4136
4137 /* Value is non-zero if P is a pointer to a live Lisp float on
4138 the heap. M is a pointer to the mem_block for P. */
4139
4140 static bool
4141 live_float_p (struct mem_node *m, void *p)
4142 {
4143 if (m->type == MEM_TYPE_FLOAT)
4144 {
4145 struct float_block *b = m->start;
4146 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4147
4148 /* P must point to the start of a Lisp_Float and not be
4149 one of the unused cells in the current float block. */
4150 return (offset >= 0
4151 && offset % sizeof b->floats[0] == 0
4152 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4153 && (b != float_block
4154 || offset / sizeof b->floats[0] < float_block_index));
4155 }
4156 else
4157 return 0;
4158 }
4159
4160
4161 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4162 the heap. M is a pointer to the mem_block for P. */
4163
4164 static bool
4165 live_misc_p (struct mem_node *m, void *p)
4166 {
4167 if (m->type == MEM_TYPE_MISC)
4168 {
4169 struct marker_block *b = m->start;
4170 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4171
4172 /* P must point to the start of a Lisp_Misc, not be
4173 one of the unused cells in the current misc block,
4174 and not be on the free-list. */
4175 return (offset >= 0
4176 && offset % sizeof b->markers[0] == 0
4177 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4178 && (b != marker_block
4179 || offset / sizeof b->markers[0] < marker_block_index)
4180 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4181 }
4182 else
4183 return 0;
4184 }
4185
4186
4187 /* Value is non-zero if P is a pointer to a live vector-like object.
4188 M is a pointer to the mem_block for P. */
4189
4190 static bool
4191 live_vector_p (struct mem_node *m, void *p)
4192 {
4193 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4194 {
4195 /* This memory node corresponds to a vector block. */
4196 struct vector_block *block = m->start;
4197 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4198
4199 /* P is in the block's allocation range. Scan the block
4200 up to P and see whether P points to the start of some
4201 vector which is not on a free list. FIXME: check whether
4202 some allocation patterns (probably a lot of short vectors)
4203 may cause a substantial overhead of this loop. */
4204 while (VECTOR_IN_BLOCK (vector, block)
4205 && vector <= (struct Lisp_Vector *) p)
4206 {
4207 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4208 return 1;
4209 else
4210 vector = ADVANCE (vector, vector_nbytes (vector));
4211 }
4212 }
4213 else if (m->type == MEM_TYPE_VECTORLIKE
4214 && (char *) p == ((char *) m->start
4215 + offsetof (struct large_vector, v)))
4216 /* This memory node corresponds to a large vector. */
4217 return 1;
4218 return 0;
4219 }
4220
4221
4222 /* Value is non-zero if P is a pointer to a live buffer. M is a
4223 pointer to the mem_block for P. */
4224
4225 static bool
4226 live_buffer_p (struct mem_node *m, void *p)
4227 {
4228 /* P must point to the start of the block, and the buffer
4229 must not have been killed. */
4230 return (m->type == MEM_TYPE_BUFFER
4231 && p == m->start
4232 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4233 }
4234
4235 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4236
4237 #if GC_MARK_STACK
4238
4239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4240
4241 /* Currently not used, but may be called from gdb. */
4242
4243 void dump_zombies (void) EXTERNALLY_VISIBLE;
4244
4245 /* Array of objects that are kept alive because the C stack contains
4246 a pattern that looks like a reference to them . */
4247
4248 #define MAX_ZOMBIES 10
4249 static Lisp_Object zombies[MAX_ZOMBIES];
4250
4251 /* Number of zombie objects. */
4252
4253 static EMACS_INT nzombies;
4254
4255 /* Number of garbage collections. */
4256
4257 static EMACS_INT ngcs;
4258
4259 /* Average percentage of zombies per collection. */
4260
4261 static double avg_zombies;
4262
4263 /* Max. number of live and zombie objects. */
4264
4265 static EMACS_INT max_live, max_zombies;
4266
4267 /* Average number of live objects per GC. */
4268
4269 static double avg_live;
4270
4271 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4272 doc: /* Show information about live and zombie objects. */)
4273 (void)
4274 {
4275 Lisp_Object args[8], zombie_list = Qnil;
4276 EMACS_INT i;
4277 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4278 zombie_list = Fcons (zombies[i], zombie_list);
4279 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4280 args[1] = make_number (ngcs);
4281 args[2] = make_float (avg_live);
4282 args[3] = make_float (avg_zombies);
4283 args[4] = make_float (avg_zombies / avg_live / 100);
4284 args[5] = make_number (max_live);
4285 args[6] = make_number (max_zombies);
4286 args[7] = zombie_list;
4287 return Fmessage (8, args);
4288 }
4289
4290 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4291
4292
4293 /* Mark OBJ if we can prove it's a Lisp_Object. */
4294
4295 static void
4296 mark_maybe_object (Lisp_Object obj)
4297 {
4298 void *po;
4299 struct mem_node *m;
4300
4301 if (INTEGERP (obj))
4302 return;
4303
4304 po = (void *) XPNTR (obj);
4305 m = mem_find (po);
4306
4307 if (m != MEM_NIL)
4308 {
4309 bool mark_p = 0;
4310
4311 switch (XTYPE (obj))
4312 {
4313 case Lisp_String:
4314 mark_p = (live_string_p (m, po)
4315 && !STRING_MARKED_P ((struct Lisp_String *) po));
4316 break;
4317
4318 case Lisp_Cons:
4319 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4320 break;
4321
4322 case Lisp_Symbol:
4323 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4324 break;
4325
4326 case Lisp_Float:
4327 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4328 break;
4329
4330 case Lisp_Vectorlike:
4331 /* Note: can't check BUFFERP before we know it's a
4332 buffer because checking that dereferences the pointer
4333 PO which might point anywhere. */
4334 if (live_vector_p (m, po))
4335 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4336 else if (live_buffer_p (m, po))
4337 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4338 break;
4339
4340 case Lisp_Misc:
4341 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4342 break;
4343
4344 default:
4345 break;
4346 }
4347
4348 if (mark_p)
4349 {
4350 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4351 if (nzombies < MAX_ZOMBIES)
4352 zombies[nzombies] = obj;
4353 ++nzombies;
4354 #endif
4355 mark_object (obj);
4356 }
4357 }
4358 }
4359
4360
4361 /* If P points to Lisp data, mark that as live if it isn't already
4362 marked. */
4363
4364 static void
4365 mark_maybe_pointer (void *p)
4366 {
4367 struct mem_node *m;
4368
4369 /* Quickly rule out some values which can't point to Lisp data.
4370 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4371 Otherwise, assume that Lisp data is aligned on even addresses. */
4372 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4373 return;
4374
4375 m = mem_find (p);
4376 if (m != MEM_NIL)
4377 {
4378 Lisp_Object obj = Qnil;
4379
4380 switch (m->type)
4381 {
4382 case MEM_TYPE_NON_LISP:
4383 case MEM_TYPE_SPARE:
4384 /* Nothing to do; not a pointer to Lisp memory. */
4385 break;
4386
4387 case MEM_TYPE_BUFFER:
4388 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4389 XSETVECTOR (obj, p);
4390 break;
4391
4392 case MEM_TYPE_CONS:
4393 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4394 XSETCONS (obj, p);
4395 break;
4396
4397 case MEM_TYPE_STRING:
4398 if (live_string_p (m, p)
4399 && !STRING_MARKED_P ((struct Lisp_String *) p))
4400 XSETSTRING (obj, p);
4401 break;
4402
4403 case MEM_TYPE_MISC:
4404 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4405 XSETMISC (obj, p);
4406 break;
4407
4408 case MEM_TYPE_SYMBOL:
4409 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4410 XSETSYMBOL (obj, p);
4411 break;
4412
4413 case MEM_TYPE_FLOAT:
4414 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4415 XSETFLOAT (obj, p);
4416 break;
4417
4418 case MEM_TYPE_VECTORLIKE:
4419 case MEM_TYPE_VECTOR_BLOCK:
4420 if (live_vector_p (m, p))
4421 {
4422 Lisp_Object tem;
4423 XSETVECTOR (tem, p);
4424 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4425 obj = tem;
4426 }
4427 break;
4428
4429 default:
4430 emacs_abort ();
4431 }
4432
4433 if (!NILP (obj))
4434 mark_object (obj);
4435 }
4436 }
4437
4438
4439 /* Alignment of pointer values. Use alignof, as it sometimes returns
4440 a smaller alignment than GCC's __alignof__ and mark_memory might
4441 miss objects if __alignof__ were used. */
4442 #define GC_POINTER_ALIGNMENT alignof (void *)
4443
4444 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4445 not suffice, which is the typical case. A host where a Lisp_Object is
4446 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4447 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4448 suffice to widen it to to a Lisp_Object and check it that way. */
4449 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4450 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4451 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4452 nor mark_maybe_object can follow the pointers. This should not occur on
4453 any practical porting target. */
4454 # error "MSB type bits straddle pointer-word boundaries"
4455 # endif
4456 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4457 pointer words that hold pointers ORed with type bits. */
4458 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4459 #else
4460 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4461 words that hold unmodified pointers. */
4462 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4463 #endif
4464
4465 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4466 or END+OFFSET..START. */
4467
4468 static void
4469 mark_memory (void *start, void *end)
4470 #if defined (__clang__) && defined (__has_feature)
4471 #if __has_feature(address_sanitizer)
4472 /* Do not allow -faddress-sanitizer to check this function, since it
4473 crosses the function stack boundary, and thus would yield many
4474 false positives. */
4475 __attribute__((no_address_safety_analysis))
4476 #endif
4477 #endif
4478 {
4479 void **pp;
4480 int i;
4481
4482 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4483 nzombies = 0;
4484 #endif
4485
4486 /* Make START the pointer to the start of the memory region,
4487 if it isn't already. */
4488 if (end < start)
4489 {
4490 void *tem = start;
4491 start = end;
4492 end = tem;
4493 }
4494
4495 /* Mark Lisp data pointed to. This is necessary because, in some
4496 situations, the C compiler optimizes Lisp objects away, so that
4497 only a pointer to them remains. Example:
4498
4499 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4500 ()
4501 {
4502 Lisp_Object obj = build_string ("test");
4503 struct Lisp_String *s = XSTRING (obj);
4504 Fgarbage_collect ();
4505 fprintf (stderr, "test `%s'\n", s->data);
4506 return Qnil;
4507 }
4508
4509 Here, `obj' isn't really used, and the compiler optimizes it
4510 away. The only reference to the life string is through the
4511 pointer `s'. */
4512
4513 for (pp = start; (void *) pp < end; pp++)
4514 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4515 {
4516 void *p = *(void **) ((char *) pp + i);
4517 mark_maybe_pointer (p);
4518 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4519 mark_maybe_object (XIL ((intptr_t) p));
4520 }
4521 }
4522
4523 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4524
4525 static bool setjmp_tested_p;
4526 static int longjmps_done;
4527
4528 #define SETJMP_WILL_LIKELY_WORK "\
4529 \n\
4530 Emacs garbage collector has been changed to use conservative stack\n\
4531 marking. Emacs has determined that the method it uses to do the\n\
4532 marking will likely work on your system, but this isn't sure.\n\
4533 \n\
4534 If you are a system-programmer, or can get the help of a local wizard\n\
4535 who is, please take a look at the function mark_stack in alloc.c, and\n\
4536 verify that the methods used are appropriate for your system.\n\
4537 \n\
4538 Please mail the result to <emacs-devel@gnu.org>.\n\
4539 "
4540
4541 #define SETJMP_WILL_NOT_WORK "\
4542 \n\
4543 Emacs garbage collector has been changed to use conservative stack\n\
4544 marking. Emacs has determined that the default method it uses to do the\n\
4545 marking will not work on your system. We will need a system-dependent\n\
4546 solution for your system.\n\
4547 \n\
4548 Please take a look at the function mark_stack in alloc.c, and\n\
4549 try to find a way to make it work on your system.\n\
4550 \n\
4551 Note that you may get false negatives, depending on the compiler.\n\
4552 In particular, you need to use -O with GCC for this test.\n\
4553 \n\
4554 Please mail the result to <emacs-devel@gnu.org>.\n\
4555 "
4556
4557
4558 /* Perform a quick check if it looks like setjmp saves registers in a
4559 jmp_buf. Print a message to stderr saying so. When this test
4560 succeeds, this is _not_ a proof that setjmp is sufficient for
4561 conservative stack marking. Only the sources or a disassembly
4562 can prove that. */
4563
4564 static void
4565 test_setjmp (void)
4566 {
4567 char buf[10];
4568 register int x;
4569 sys_jmp_buf jbuf;
4570
4571 /* Arrange for X to be put in a register. */
4572 sprintf (buf, "1");
4573 x = strlen (buf);
4574 x = 2 * x - 1;
4575
4576 sys_setjmp (jbuf);
4577 if (longjmps_done == 1)
4578 {
4579 /* Came here after the longjmp at the end of the function.
4580
4581 If x == 1, the longjmp has restored the register to its
4582 value before the setjmp, and we can hope that setjmp
4583 saves all such registers in the jmp_buf, although that
4584 isn't sure.
4585
4586 For other values of X, either something really strange is
4587 taking place, or the setjmp just didn't save the register. */
4588
4589 if (x == 1)
4590 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4591 else
4592 {
4593 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4594 exit (1);
4595 }
4596 }
4597
4598 ++longjmps_done;
4599 x = 2;
4600 if (longjmps_done == 1)
4601 sys_longjmp (jbuf, 1);
4602 }
4603
4604 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4605
4606
4607 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4608
4609 /* Abort if anything GCPRO'd doesn't survive the GC. */
4610
4611 static void
4612 check_gcpros (void)
4613 {
4614 struct gcpro *p;
4615 ptrdiff_t i;
4616
4617 for (p = gcprolist; p; p = p->next)
4618 for (i = 0; i < p->nvars; ++i)
4619 if (!survives_gc_p (p->var[i]))
4620 /* FIXME: It's not necessarily a bug. It might just be that the
4621 GCPRO is unnecessary or should release the object sooner. */
4622 emacs_abort ();
4623 }
4624
4625 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4626
4627 void
4628 dump_zombies (void)
4629 {
4630 int i;
4631
4632 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4633 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4634 {
4635 fprintf (stderr, " %d = ", i);
4636 debug_print (zombies[i]);
4637 }
4638 }
4639
4640 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4641
4642
4643 /* Mark live Lisp objects on the C stack.
4644
4645 There are several system-dependent problems to consider when
4646 porting this to new architectures:
4647
4648 Processor Registers
4649
4650 We have to mark Lisp objects in CPU registers that can hold local
4651 variables or are used to pass parameters.
4652
4653 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4654 something that either saves relevant registers on the stack, or
4655 calls mark_maybe_object passing it each register's contents.
4656
4657 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4658 implementation assumes that calling setjmp saves registers we need
4659 to see in a jmp_buf which itself lies on the stack. This doesn't
4660 have to be true! It must be verified for each system, possibly
4661 by taking a look at the source code of setjmp.
4662
4663 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4664 can use it as a machine independent method to store all registers
4665 to the stack. In this case the macros described in the previous
4666 two paragraphs are not used.
4667
4668 Stack Layout
4669
4670 Architectures differ in the way their processor stack is organized.
4671 For example, the stack might look like this
4672
4673 +----------------+
4674 | Lisp_Object | size = 4
4675 +----------------+
4676 | something else | size = 2
4677 +----------------+
4678 | Lisp_Object | size = 4
4679 +----------------+
4680 | ... |
4681
4682 In such a case, not every Lisp_Object will be aligned equally. To
4683 find all Lisp_Object on the stack it won't be sufficient to walk
4684 the stack in steps of 4 bytes. Instead, two passes will be
4685 necessary, one starting at the start of the stack, and a second
4686 pass starting at the start of the stack + 2. Likewise, if the
4687 minimal alignment of Lisp_Objects on the stack is 1, four passes
4688 would be necessary, each one starting with one byte more offset
4689 from the stack start. */
4690
4691 static void
4692 mark_stack (void)
4693 {
4694 void *end;
4695
4696 #ifdef HAVE___BUILTIN_UNWIND_INIT
4697 /* Force callee-saved registers and register windows onto the stack.
4698 This is the preferred method if available, obviating the need for
4699 machine dependent methods. */
4700 __builtin_unwind_init ();
4701 end = &end;
4702 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4703 #ifndef GC_SAVE_REGISTERS_ON_STACK
4704 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4705 union aligned_jmpbuf {
4706 Lisp_Object o;
4707 sys_jmp_buf j;
4708 } j;
4709 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4710 #endif
4711 /* This trick flushes the register windows so that all the state of
4712 the process is contained in the stack. */
4713 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4714 needed on ia64 too. See mach_dep.c, where it also says inline
4715 assembler doesn't work with relevant proprietary compilers. */
4716 #ifdef __sparc__
4717 #if defined (__sparc64__) && defined (__FreeBSD__)
4718 /* FreeBSD does not have a ta 3 handler. */
4719 asm ("flushw");
4720 #else
4721 asm ("ta 3");
4722 #endif
4723 #endif
4724
4725 /* Save registers that we need to see on the stack. We need to see
4726 registers used to hold register variables and registers used to
4727 pass parameters. */
4728 #ifdef GC_SAVE_REGISTERS_ON_STACK
4729 GC_SAVE_REGISTERS_ON_STACK (end);
4730 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4731
4732 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4733 setjmp will definitely work, test it
4734 and print a message with the result
4735 of the test. */
4736 if (!setjmp_tested_p)
4737 {
4738 setjmp_tested_p = 1;
4739 test_setjmp ();
4740 }
4741 #endif /* GC_SETJMP_WORKS */
4742
4743 sys_setjmp (j.j);
4744 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4745 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4746 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4747
4748 /* This assumes that the stack is a contiguous region in memory. If
4749 that's not the case, something has to be done here to iterate
4750 over the stack segments. */
4751 mark_memory (stack_base, end);
4752
4753 /* Allow for marking a secondary stack, like the register stack on the
4754 ia64. */
4755 #ifdef GC_MARK_SECONDARY_STACK
4756 GC_MARK_SECONDARY_STACK ();
4757 #endif
4758
4759 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4760 check_gcpros ();
4761 #endif
4762 }
4763
4764 #else /* GC_MARK_STACK == 0 */
4765
4766 #define mark_maybe_object(obj) emacs_abort ()
4767
4768 #endif /* GC_MARK_STACK != 0 */
4769
4770
4771 /* Determine whether it is safe to access memory at address P. */
4772 static int
4773 valid_pointer_p (void *p)
4774 {
4775 #ifdef WINDOWSNT
4776 return w32_valid_pointer_p (p, 16);
4777 #else
4778 int fd[2];
4779
4780 /* Obviously, we cannot just access it (we would SEGV trying), so we
4781 trick the o/s to tell us whether p is a valid pointer.
4782 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4783 not validate p in that case. */
4784
4785 if (emacs_pipe (fd) == 0)
4786 {
4787 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4788 emacs_close (fd[1]);
4789 emacs_close (fd[0]);
4790 return valid;
4791 }
4792
4793 return -1;
4794 #endif
4795 }
4796
4797 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4798 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4799 cannot validate OBJ. This function can be quite slow, so its primary
4800 use is the manual debugging. The only exception is print_object, where
4801 we use it to check whether the memory referenced by the pointer of
4802 Lisp_Save_Value object contains valid objects. */
4803
4804 int
4805 valid_lisp_object_p (Lisp_Object obj)
4806 {
4807 void *p;
4808 #if GC_MARK_STACK
4809 struct mem_node *m;
4810 #endif
4811
4812 if (INTEGERP (obj))
4813 return 1;
4814
4815 p = (void *) XPNTR (obj);
4816 if (PURE_POINTER_P (p))
4817 return 1;
4818
4819 if (p == &buffer_defaults || p == &buffer_local_symbols)
4820 return 2;
4821
4822 #if !GC_MARK_STACK
4823 return valid_pointer_p (p);
4824 #else
4825
4826 m = mem_find (p);
4827
4828 if (m == MEM_NIL)
4829 {
4830 int valid = valid_pointer_p (p);
4831 if (valid <= 0)
4832 return valid;
4833
4834 if (SUBRP (obj))
4835 return 1;
4836
4837 return 0;
4838 }
4839
4840 switch (m->type)
4841 {
4842 case MEM_TYPE_NON_LISP:
4843 case MEM_TYPE_SPARE:
4844 return 0;
4845
4846 case MEM_TYPE_BUFFER:
4847 return live_buffer_p (m, p) ? 1 : 2;
4848
4849 case MEM_TYPE_CONS:
4850 return live_cons_p (m, p);
4851
4852 case MEM_TYPE_STRING:
4853 return live_string_p (m, p);
4854
4855 case MEM_TYPE_MISC:
4856 return live_misc_p (m, p);
4857
4858 case MEM_TYPE_SYMBOL:
4859 return live_symbol_p (m, p);
4860
4861 case MEM_TYPE_FLOAT:
4862 return live_float_p (m, p);
4863
4864 case MEM_TYPE_VECTORLIKE:
4865 case MEM_TYPE_VECTOR_BLOCK:
4866 return live_vector_p (m, p);
4867
4868 default:
4869 break;
4870 }
4871
4872 return 0;
4873 #endif
4874 }
4875
4876
4877
4878 \f
4879 /***********************************************************************
4880 Pure Storage Management
4881 ***********************************************************************/
4882
4883 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4884 pointer to it. TYPE is the Lisp type for which the memory is
4885 allocated. TYPE < 0 means it's not used for a Lisp object. */
4886
4887 static void *
4888 pure_alloc (size_t size, int type)
4889 {
4890 void *result;
4891 #if USE_LSB_TAG
4892 size_t alignment = GCALIGNMENT;
4893 #else
4894 size_t alignment = alignof (EMACS_INT);
4895
4896 /* Give Lisp_Floats an extra alignment. */
4897 if (type == Lisp_Float)
4898 alignment = alignof (struct Lisp_Float);
4899 #endif
4900
4901 again:
4902 if (type >= 0)
4903 {
4904 /* Allocate space for a Lisp object from the beginning of the free
4905 space with taking account of alignment. */
4906 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4907 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4908 }
4909 else
4910 {
4911 /* Allocate space for a non-Lisp object from the end of the free
4912 space. */
4913 pure_bytes_used_non_lisp += size;
4914 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4915 }
4916 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4917
4918 if (pure_bytes_used <= pure_size)
4919 return result;
4920
4921 /* Don't allocate a large amount here,
4922 because it might get mmap'd and then its address
4923 might not be usable. */
4924 purebeg = xmalloc (10000);
4925 pure_size = 10000;
4926 pure_bytes_used_before_overflow += pure_bytes_used - size;
4927 pure_bytes_used = 0;
4928 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4929 goto again;
4930 }
4931
4932
4933 /* Print a warning if PURESIZE is too small. */
4934
4935 void
4936 check_pure_size (void)
4937 {
4938 if (pure_bytes_used_before_overflow)
4939 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4940 " bytes needed)"),
4941 pure_bytes_used + pure_bytes_used_before_overflow);
4942 }
4943
4944
4945 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4946 the non-Lisp data pool of the pure storage, and return its start
4947 address. Return NULL if not found. */
4948
4949 static char *
4950 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4951 {
4952 int i;
4953 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4954 const unsigned char *p;
4955 char *non_lisp_beg;
4956
4957 if (pure_bytes_used_non_lisp <= nbytes)
4958 return NULL;
4959
4960 /* Set up the Boyer-Moore table. */
4961 skip = nbytes + 1;
4962 for (i = 0; i < 256; i++)
4963 bm_skip[i] = skip;
4964
4965 p = (const unsigned char *) data;
4966 while (--skip > 0)
4967 bm_skip[*p++] = skip;
4968
4969 last_char_skip = bm_skip['\0'];
4970
4971 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4972 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4973
4974 /* See the comments in the function `boyer_moore' (search.c) for the
4975 use of `infinity'. */
4976 infinity = pure_bytes_used_non_lisp + 1;
4977 bm_skip['\0'] = infinity;
4978
4979 p = (const unsigned char *) non_lisp_beg + nbytes;
4980 start = 0;
4981 do
4982 {
4983 /* Check the last character (== '\0'). */
4984 do
4985 {
4986 start += bm_skip[*(p + start)];
4987 }
4988 while (start <= start_max);
4989
4990 if (start < infinity)
4991 /* Couldn't find the last character. */
4992 return NULL;
4993
4994 /* No less than `infinity' means we could find the last
4995 character at `p[start - infinity]'. */
4996 start -= infinity;
4997
4998 /* Check the remaining characters. */
4999 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5000 /* Found. */
5001 return non_lisp_beg + start;
5002
5003 start += last_char_skip;
5004 }
5005 while (start <= start_max);
5006
5007 return NULL;
5008 }
5009
5010
5011 /* Return a string allocated in pure space. DATA is a buffer holding
5012 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5013 means make the result string multibyte.
5014
5015 Must get an error if pure storage is full, since if it cannot hold
5016 a large string it may be able to hold conses that point to that
5017 string; then the string is not protected from gc. */
5018
5019 Lisp_Object
5020 make_pure_string (const char *data,
5021 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5022 {
5023 Lisp_Object string;
5024 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5025 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5026 if (s->data == NULL)
5027 {
5028 s->data = pure_alloc (nbytes + 1, -1);
5029 memcpy (s->data, data, nbytes);
5030 s->data[nbytes] = '\0';
5031 }
5032 s->size = nchars;
5033 s->size_byte = multibyte ? nbytes : -1;
5034 s->intervals = NULL;
5035 XSETSTRING (string, s);
5036 return string;
5037 }
5038
5039 /* Return a string allocated in pure space. Do not
5040 allocate the string data, just point to DATA. */
5041
5042 Lisp_Object
5043 make_pure_c_string (const char *data, ptrdiff_t nchars)
5044 {
5045 Lisp_Object string;
5046 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5047 s->size = nchars;
5048 s->size_byte = -1;
5049 s->data = (unsigned char *) data;
5050 s->intervals = NULL;
5051 XSETSTRING (string, s);
5052 return string;
5053 }
5054
5055 /* Return a cons allocated from pure space. Give it pure copies
5056 of CAR as car and CDR as cdr. */
5057
5058 Lisp_Object
5059 pure_cons (Lisp_Object car, Lisp_Object cdr)
5060 {
5061 Lisp_Object new;
5062 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5063 XSETCONS (new, p);
5064 XSETCAR (new, Fpurecopy (car));
5065 XSETCDR (new, Fpurecopy (cdr));
5066 return new;
5067 }
5068
5069
5070 /* Value is a float object with value NUM allocated from pure space. */
5071
5072 static Lisp_Object
5073 make_pure_float (double num)
5074 {
5075 Lisp_Object new;
5076 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5077 XSETFLOAT (new, p);
5078 XFLOAT_INIT (new, num);
5079 return new;
5080 }
5081
5082
5083 /* Return a vector with room for LEN Lisp_Objects allocated from
5084 pure space. */
5085
5086 static Lisp_Object
5087 make_pure_vector (ptrdiff_t len)
5088 {
5089 Lisp_Object new;
5090 size_t size = header_size + len * word_size;
5091 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5092 XSETVECTOR (new, p);
5093 XVECTOR (new)->header.size = len;
5094 return new;
5095 }
5096
5097
5098 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5099 doc: /* Make a copy of object OBJ in pure storage.
5100 Recursively copies contents of vectors and cons cells.
5101 Does not copy symbols. Copies strings without text properties. */)
5102 (register Lisp_Object obj)
5103 {
5104 if (NILP (Vpurify_flag))
5105 return obj;
5106
5107 if (PURE_POINTER_P (XPNTR (obj)))
5108 return obj;
5109
5110 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5111 {
5112 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5113 if (!NILP (tmp))
5114 return tmp;
5115 }
5116
5117 if (CONSP (obj))
5118 obj = pure_cons (XCAR (obj), XCDR (obj));
5119 else if (FLOATP (obj))
5120 obj = make_pure_float (XFLOAT_DATA (obj));
5121 else if (STRINGP (obj))
5122 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5123 SBYTES (obj),
5124 STRING_MULTIBYTE (obj));
5125 else if (COMPILEDP (obj) || VECTORP (obj))
5126 {
5127 register struct Lisp_Vector *vec;
5128 register ptrdiff_t i;
5129 ptrdiff_t size;
5130
5131 size = ASIZE (obj);
5132 if (size & PSEUDOVECTOR_FLAG)
5133 size &= PSEUDOVECTOR_SIZE_MASK;
5134 vec = XVECTOR (make_pure_vector (size));
5135 for (i = 0; i < size; i++)
5136 vec->contents[i] = Fpurecopy (AREF (obj, i));
5137 if (COMPILEDP (obj))
5138 {
5139 XSETPVECTYPE (vec, PVEC_COMPILED);
5140 XSETCOMPILED (obj, vec);
5141 }
5142 else
5143 XSETVECTOR (obj, vec);
5144 }
5145 else if (MARKERP (obj))
5146 error ("Attempt to copy a marker to pure storage");
5147 else
5148 /* Not purified, don't hash-cons. */
5149 return obj;
5150
5151 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5152 Fputhash (obj, obj, Vpurify_flag);
5153
5154 return obj;
5155 }
5156
5157
5158 \f
5159 /***********************************************************************
5160 Protection from GC
5161 ***********************************************************************/
5162
5163 /* Put an entry in staticvec, pointing at the variable with address
5164 VARADDRESS. */
5165
5166 void
5167 staticpro (Lisp_Object *varaddress)
5168 {
5169 if (staticidx >= NSTATICS)
5170 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5171 staticvec[staticidx++] = varaddress;
5172 }
5173
5174 \f
5175 /***********************************************************************
5176 Protection from GC
5177 ***********************************************************************/
5178
5179 /* Temporarily prevent garbage collection. */
5180
5181 ptrdiff_t
5182 inhibit_garbage_collection (void)
5183 {
5184 ptrdiff_t count = SPECPDL_INDEX ();
5185
5186 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5187 return count;
5188 }
5189
5190 /* Used to avoid possible overflows when
5191 converting from C to Lisp integers. */
5192
5193 static Lisp_Object
5194 bounded_number (EMACS_INT number)
5195 {
5196 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5197 }
5198
5199 /* Calculate total bytes of live objects. */
5200
5201 static size_t
5202 total_bytes_of_live_objects (void)
5203 {
5204 size_t tot = 0;
5205 tot += total_conses * sizeof (struct Lisp_Cons);
5206 tot += total_symbols * sizeof (struct Lisp_Symbol);
5207 tot += total_markers * sizeof (union Lisp_Misc);
5208 tot += total_string_bytes;
5209 tot += total_vector_slots * word_size;
5210 tot += total_floats * sizeof (struct Lisp_Float);
5211 tot += total_intervals * sizeof (struct interval);
5212 tot += total_strings * sizeof (struct Lisp_String);
5213 return tot;
5214 }
5215
5216 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5217 doc: /* Reclaim storage for Lisp objects no longer needed.
5218 Garbage collection happens automatically if you cons more than
5219 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5220 `garbage-collect' normally returns a list with info on amount of space in use,
5221 where each entry has the form (NAME SIZE USED FREE), where:
5222 - NAME is a symbol describing the kind of objects this entry represents,
5223 - SIZE is the number of bytes used by each one,
5224 - USED is the number of those objects that were found live in the heap,
5225 - FREE is the number of those objects that are not live but that Emacs
5226 keeps around for future allocations (maybe because it does not know how
5227 to return them to the OS).
5228 However, if there was overflow in pure space, `garbage-collect'
5229 returns nil, because real GC can't be done.
5230 See Info node `(elisp)Garbage Collection'. */)
5231 (void)
5232 {
5233 struct buffer *nextb;
5234 char stack_top_variable;
5235 ptrdiff_t i;
5236 bool message_p;
5237 ptrdiff_t count = SPECPDL_INDEX ();
5238 struct timespec start;
5239 Lisp_Object retval = Qnil;
5240 size_t tot_before = 0;
5241
5242 if (abort_on_gc)
5243 emacs_abort ();
5244
5245 /* Can't GC if pure storage overflowed because we can't determine
5246 if something is a pure object or not. */
5247 if (pure_bytes_used_before_overflow)
5248 return Qnil;
5249
5250 /* Record this function, so it appears on the profiler's backtraces. */
5251 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5252
5253 check_cons_list ();
5254
5255 /* Don't keep undo information around forever.
5256 Do this early on, so it is no problem if the user quits. */
5257 FOR_EACH_BUFFER (nextb)
5258 compact_buffer (nextb);
5259
5260 if (profiler_memory_running)
5261 tot_before = total_bytes_of_live_objects ();
5262
5263 start = current_timespec ();
5264
5265 /* In case user calls debug_print during GC,
5266 don't let that cause a recursive GC. */
5267 consing_since_gc = 0;
5268
5269 /* Save what's currently displayed in the echo area. */
5270 message_p = push_message ();
5271 record_unwind_protect_void (pop_message_unwind);
5272
5273 /* Save a copy of the contents of the stack, for debugging. */
5274 #if MAX_SAVE_STACK > 0
5275 if (NILP (Vpurify_flag))
5276 {
5277 char *stack;
5278 ptrdiff_t stack_size;
5279 if (&stack_top_variable < stack_bottom)
5280 {
5281 stack = &stack_top_variable;
5282 stack_size = stack_bottom - &stack_top_variable;
5283 }
5284 else
5285 {
5286 stack = stack_bottom;
5287 stack_size = &stack_top_variable - stack_bottom;
5288 }
5289 if (stack_size <= MAX_SAVE_STACK)
5290 {
5291 if (stack_copy_size < stack_size)
5292 {
5293 stack_copy = xrealloc (stack_copy, stack_size);
5294 stack_copy_size = stack_size;
5295 }
5296 memcpy (stack_copy, stack, stack_size);
5297 }
5298 }
5299 #endif /* MAX_SAVE_STACK > 0 */
5300
5301 if (garbage_collection_messages)
5302 message1_nolog ("Garbage collecting...");
5303
5304 block_input ();
5305
5306 shrink_regexp_cache ();
5307
5308 gc_in_progress = 1;
5309
5310 /* Mark all the special slots that serve as the roots of accessibility. */
5311
5312 mark_buffer (&buffer_defaults);
5313 mark_buffer (&buffer_local_symbols);
5314
5315 for (i = 0; i < staticidx; i++)
5316 mark_object (*staticvec[i]);
5317
5318 mark_specpdl ();
5319 mark_terminals ();
5320 mark_kboards ();
5321
5322 #ifdef USE_GTK
5323 xg_mark_data ();
5324 #endif
5325
5326 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5327 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5328 mark_stack ();
5329 #else
5330 {
5331 register struct gcpro *tail;
5332 for (tail = gcprolist; tail; tail = tail->next)
5333 for (i = 0; i < tail->nvars; i++)
5334 mark_object (tail->var[i]);
5335 }
5336 mark_byte_stack ();
5337 {
5338 struct catchtag *catch;
5339 struct handler *handler;
5340
5341 for (catch = catchlist; catch; catch = catch->next)
5342 {
5343 mark_object (catch->tag);
5344 mark_object (catch->val);
5345 }
5346 for (handler = handlerlist; handler; handler = handler->next)
5347 {
5348 mark_object (handler->handler);
5349 mark_object (handler->var);
5350 }
5351 }
5352 #endif
5353
5354 #ifdef HAVE_WINDOW_SYSTEM
5355 mark_fringe_data ();
5356 #endif
5357
5358 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5359 mark_stack ();
5360 #endif
5361
5362 /* Everything is now marked, except for the things that require special
5363 finalization, i.e. the undo_list.
5364 Look thru every buffer's undo list
5365 for elements that update markers that were not marked,
5366 and delete them. */
5367 FOR_EACH_BUFFER (nextb)
5368 {
5369 /* If a buffer's undo list is Qt, that means that undo is
5370 turned off in that buffer. Calling truncate_undo_list on
5371 Qt tends to return NULL, which effectively turns undo back on.
5372 So don't call truncate_undo_list if undo_list is Qt. */
5373 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5374 {
5375 Lisp_Object tail, prev;
5376 tail = nextb->INTERNAL_FIELD (undo_list);
5377 prev = Qnil;
5378 while (CONSP (tail))
5379 {
5380 if (CONSP (XCAR (tail))
5381 && MARKERP (XCAR (XCAR (tail)))
5382 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5383 {
5384 if (NILP (prev))
5385 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5386 else
5387 {
5388 tail = XCDR (tail);
5389 XSETCDR (prev, tail);
5390 }
5391 }
5392 else
5393 {
5394 prev = tail;
5395 tail = XCDR (tail);
5396 }
5397 }
5398 }
5399 /* Now that we have stripped the elements that need not be in the
5400 undo_list any more, we can finally mark the list. */
5401 mark_object (nextb->INTERNAL_FIELD (undo_list));
5402 }
5403
5404 gc_sweep ();
5405
5406 /* Clear the mark bits that we set in certain root slots. */
5407
5408 unmark_byte_stack ();
5409 VECTOR_UNMARK (&buffer_defaults);
5410 VECTOR_UNMARK (&buffer_local_symbols);
5411
5412 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5413 dump_zombies ();
5414 #endif
5415
5416 check_cons_list ();
5417
5418 gc_in_progress = 0;
5419
5420 unblock_input ();
5421
5422 consing_since_gc = 0;
5423 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5424 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5425
5426 gc_relative_threshold = 0;
5427 if (FLOATP (Vgc_cons_percentage))
5428 { /* Set gc_cons_combined_threshold. */
5429 double tot = total_bytes_of_live_objects ();
5430
5431 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5432 if (0 < tot)
5433 {
5434 if (tot < TYPE_MAXIMUM (EMACS_INT))
5435 gc_relative_threshold = tot;
5436 else
5437 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5438 }
5439 }
5440
5441 if (garbage_collection_messages)
5442 {
5443 if (message_p || minibuf_level > 0)
5444 restore_message ();
5445 else
5446 message1_nolog ("Garbage collecting...done");
5447 }
5448
5449 unbind_to (count, Qnil);
5450 {
5451 Lisp_Object total[11];
5452 int total_size = 10;
5453
5454 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5455 bounded_number (total_conses),
5456 bounded_number (total_free_conses));
5457
5458 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5459 bounded_number (total_symbols),
5460 bounded_number (total_free_symbols));
5461
5462 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5463 bounded_number (total_markers),
5464 bounded_number (total_free_markers));
5465
5466 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5467 bounded_number (total_strings),
5468 bounded_number (total_free_strings));
5469
5470 total[4] = list3 (Qstring_bytes, make_number (1),
5471 bounded_number (total_string_bytes));
5472
5473 total[5] = list3 (Qvectors,
5474 make_number (header_size + sizeof (Lisp_Object)),
5475 bounded_number (total_vectors));
5476
5477 total[6] = list4 (Qvector_slots, make_number (word_size),
5478 bounded_number (total_vector_slots),
5479 bounded_number (total_free_vector_slots));
5480
5481 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5482 bounded_number (total_floats),
5483 bounded_number (total_free_floats));
5484
5485 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5486 bounded_number (total_intervals),
5487 bounded_number (total_free_intervals));
5488
5489 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5490 bounded_number (total_buffers));
5491
5492 #ifdef DOUG_LEA_MALLOC
5493 total_size++;
5494 total[10] = list4 (Qheap, make_number (1024),
5495 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5496 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5497 #endif
5498 retval = Flist (total_size, total);
5499 }
5500
5501 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5502 {
5503 /* Compute average percentage of zombies. */
5504 double nlive
5505 = (total_conses + total_symbols + total_markers + total_strings
5506 + total_vectors + total_floats + total_intervals + total_buffers);
5507
5508 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5509 max_live = max (nlive, max_live);
5510 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5511 max_zombies = max (nzombies, max_zombies);
5512 ++ngcs;
5513 }
5514 #endif
5515
5516 if (!NILP (Vpost_gc_hook))
5517 {
5518 ptrdiff_t gc_count = inhibit_garbage_collection ();
5519 safe_run_hooks (Qpost_gc_hook);
5520 unbind_to (gc_count, Qnil);
5521 }
5522
5523 /* Accumulate statistics. */
5524 if (FLOATP (Vgc_elapsed))
5525 {
5526 struct timespec since_start = timespec_sub (current_timespec (), start);
5527 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5528 + timespectod (since_start));
5529 }
5530
5531 gcs_done++;
5532
5533 /* Collect profiling data. */
5534 if (profiler_memory_running)
5535 {
5536 size_t swept = 0;
5537 size_t tot_after = total_bytes_of_live_objects ();
5538 if (tot_before > tot_after)
5539 swept = tot_before - tot_after;
5540 malloc_probe (swept);
5541 }
5542
5543 return retval;
5544 }
5545
5546
5547 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5548 only interesting objects referenced from glyphs are strings. */
5549
5550 static void
5551 mark_glyph_matrix (struct glyph_matrix *matrix)
5552 {
5553 struct glyph_row *row = matrix->rows;
5554 struct glyph_row *end = row + matrix->nrows;
5555
5556 for (; row < end; ++row)
5557 if (row->enabled_p)
5558 {
5559 int area;
5560 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5561 {
5562 struct glyph *glyph = row->glyphs[area];
5563 struct glyph *end_glyph = glyph + row->used[area];
5564
5565 for (; glyph < end_glyph; ++glyph)
5566 if (STRINGP (glyph->object)
5567 && !STRING_MARKED_P (XSTRING (glyph->object)))
5568 mark_object (glyph->object);
5569 }
5570 }
5571 }
5572
5573
5574 /* Mark Lisp faces in the face cache C. */
5575
5576 static void
5577 mark_face_cache (struct face_cache *c)
5578 {
5579 if (c)
5580 {
5581 int i, j;
5582 for (i = 0; i < c->used; ++i)
5583 {
5584 struct face *face = FACE_FROM_ID (c->f, i);
5585
5586 if (face)
5587 {
5588 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5589 mark_object (face->lface[j]);
5590 }
5591 }
5592 }
5593 }
5594
5595
5596 \f
5597 /* Mark reference to a Lisp_Object.
5598 If the object referred to has not been seen yet, recursively mark
5599 all the references contained in it. */
5600
5601 #define LAST_MARKED_SIZE 500
5602 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5603 static int last_marked_index;
5604
5605 /* For debugging--call abort when we cdr down this many
5606 links of a list, in mark_object. In debugging,
5607 the call to abort will hit a breakpoint.
5608 Normally this is zero and the check never goes off. */
5609 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5610
5611 static void
5612 mark_vectorlike (struct Lisp_Vector *ptr)
5613 {
5614 ptrdiff_t size = ptr->header.size;
5615 ptrdiff_t i;
5616
5617 eassert (!VECTOR_MARKED_P (ptr));
5618 VECTOR_MARK (ptr); /* Else mark it. */
5619 if (size & PSEUDOVECTOR_FLAG)
5620 size &= PSEUDOVECTOR_SIZE_MASK;
5621
5622 /* Note that this size is not the memory-footprint size, but only
5623 the number of Lisp_Object fields that we should trace.
5624 The distinction is used e.g. by Lisp_Process which places extra
5625 non-Lisp_Object fields at the end of the structure... */
5626 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5627 mark_object (ptr->contents[i]);
5628 }
5629
5630 /* Like mark_vectorlike but optimized for char-tables (and
5631 sub-char-tables) assuming that the contents are mostly integers or
5632 symbols. */
5633
5634 static void
5635 mark_char_table (struct Lisp_Vector *ptr)
5636 {
5637 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5638 int i;
5639
5640 eassert (!VECTOR_MARKED_P (ptr));
5641 VECTOR_MARK (ptr);
5642 for (i = 0; i < size; i++)
5643 {
5644 Lisp_Object val = ptr->contents[i];
5645
5646 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5647 continue;
5648 if (SUB_CHAR_TABLE_P (val))
5649 {
5650 if (! VECTOR_MARKED_P (XVECTOR (val)))
5651 mark_char_table (XVECTOR (val));
5652 }
5653 else
5654 mark_object (val);
5655 }
5656 }
5657
5658 /* Mark the chain of overlays starting at PTR. */
5659
5660 static void
5661 mark_overlay (struct Lisp_Overlay *ptr)
5662 {
5663 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5664 {
5665 ptr->gcmarkbit = 1;
5666 mark_object (ptr->start);
5667 mark_object (ptr->end);
5668 mark_object (ptr->plist);
5669 }
5670 }
5671
5672 /* Mark Lisp_Objects and special pointers in BUFFER. */
5673
5674 static void
5675 mark_buffer (struct buffer *buffer)
5676 {
5677 /* This is handled much like other pseudovectors... */
5678 mark_vectorlike ((struct Lisp_Vector *) buffer);
5679
5680 /* ...but there are some buffer-specific things. */
5681
5682 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5683
5684 /* For now, we just don't mark the undo_list. It's done later in
5685 a special way just before the sweep phase, and after stripping
5686 some of its elements that are not needed any more. */
5687
5688 mark_overlay (buffer->overlays_before);
5689 mark_overlay (buffer->overlays_after);
5690
5691 /* If this is an indirect buffer, mark its base buffer. */
5692 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5693 mark_buffer (buffer->base_buffer);
5694 }
5695
5696 /* Remove killed buffers or items whose car is a killed buffer from
5697 LIST, and mark other items. Return changed LIST, which is marked. */
5698
5699 static Lisp_Object
5700 mark_discard_killed_buffers (Lisp_Object list)
5701 {
5702 Lisp_Object tail, *prev = &list;
5703
5704 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5705 tail = XCDR (tail))
5706 {
5707 Lisp_Object tem = XCAR (tail);
5708 if (CONSP (tem))
5709 tem = XCAR (tem);
5710 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5711 *prev = XCDR (tail);
5712 else
5713 {
5714 CONS_MARK (XCONS (tail));
5715 mark_object (XCAR (tail));
5716 prev = xcdr_addr (tail);
5717 }
5718 }
5719 mark_object (tail);
5720 return list;
5721 }
5722
5723 /* Determine type of generic Lisp_Object and mark it accordingly. */
5724
5725 void
5726 mark_object (Lisp_Object arg)
5727 {
5728 register Lisp_Object obj = arg;
5729 #ifdef GC_CHECK_MARKED_OBJECTS
5730 void *po;
5731 struct mem_node *m;
5732 #endif
5733 ptrdiff_t cdr_count = 0;
5734
5735 loop:
5736
5737 if (PURE_POINTER_P (XPNTR (obj)))
5738 return;
5739
5740 last_marked[last_marked_index++] = obj;
5741 if (last_marked_index == LAST_MARKED_SIZE)
5742 last_marked_index = 0;
5743
5744 /* Perform some sanity checks on the objects marked here. Abort if
5745 we encounter an object we know is bogus. This increases GC time
5746 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5747 #ifdef GC_CHECK_MARKED_OBJECTS
5748
5749 po = (void *) XPNTR (obj);
5750
5751 /* Check that the object pointed to by PO is known to be a Lisp
5752 structure allocated from the heap. */
5753 #define CHECK_ALLOCATED() \
5754 do { \
5755 m = mem_find (po); \
5756 if (m == MEM_NIL) \
5757 emacs_abort (); \
5758 } while (0)
5759
5760 /* Check that the object pointed to by PO is live, using predicate
5761 function LIVEP. */
5762 #define CHECK_LIVE(LIVEP) \
5763 do { \
5764 if (!LIVEP (m, po)) \
5765 emacs_abort (); \
5766 } while (0)
5767
5768 /* Check both of the above conditions. */
5769 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5770 do { \
5771 CHECK_ALLOCATED (); \
5772 CHECK_LIVE (LIVEP); \
5773 } while (0) \
5774
5775 #else /* not GC_CHECK_MARKED_OBJECTS */
5776
5777 #define CHECK_LIVE(LIVEP) (void) 0
5778 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5779
5780 #endif /* not GC_CHECK_MARKED_OBJECTS */
5781
5782 switch (XTYPE (obj))
5783 {
5784 case Lisp_String:
5785 {
5786 register struct Lisp_String *ptr = XSTRING (obj);
5787 if (STRING_MARKED_P (ptr))
5788 break;
5789 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5790 MARK_STRING (ptr);
5791 MARK_INTERVAL_TREE (ptr->intervals);
5792 #ifdef GC_CHECK_STRING_BYTES
5793 /* Check that the string size recorded in the string is the
5794 same as the one recorded in the sdata structure. */
5795 string_bytes (ptr);
5796 #endif /* GC_CHECK_STRING_BYTES */
5797 }
5798 break;
5799
5800 case Lisp_Vectorlike:
5801 {
5802 register struct Lisp_Vector *ptr = XVECTOR (obj);
5803 register ptrdiff_t pvectype;
5804
5805 if (VECTOR_MARKED_P (ptr))
5806 break;
5807
5808 #ifdef GC_CHECK_MARKED_OBJECTS
5809 m = mem_find (po);
5810 if (m == MEM_NIL && !SUBRP (obj))
5811 emacs_abort ();
5812 #endif /* GC_CHECK_MARKED_OBJECTS */
5813
5814 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5815 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5816 >> PSEUDOVECTOR_AREA_BITS);
5817 else
5818 pvectype = PVEC_NORMAL_VECTOR;
5819
5820 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5821 CHECK_LIVE (live_vector_p);
5822
5823 switch (pvectype)
5824 {
5825 case PVEC_BUFFER:
5826 #ifdef GC_CHECK_MARKED_OBJECTS
5827 {
5828 struct buffer *b;
5829 FOR_EACH_BUFFER (b)
5830 if (b == po)
5831 break;
5832 if (b == NULL)
5833 emacs_abort ();
5834 }
5835 #endif /* GC_CHECK_MARKED_OBJECTS */
5836 mark_buffer ((struct buffer *) ptr);
5837 break;
5838
5839 case PVEC_COMPILED:
5840 { /* We could treat this just like a vector, but it is better
5841 to save the COMPILED_CONSTANTS element for last and avoid
5842 recursion there. */
5843 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5844 int i;
5845
5846 VECTOR_MARK (ptr);
5847 for (i = 0; i < size; i++)
5848 if (i != COMPILED_CONSTANTS)
5849 mark_object (ptr->contents[i]);
5850 if (size > COMPILED_CONSTANTS)
5851 {
5852 obj = ptr->contents[COMPILED_CONSTANTS];
5853 goto loop;
5854 }
5855 }
5856 break;
5857
5858 case PVEC_FRAME:
5859 mark_vectorlike (ptr);
5860 mark_face_cache (((struct frame *) ptr)->face_cache);
5861 break;
5862
5863 case PVEC_WINDOW:
5864 {
5865 struct window *w = (struct window *) ptr;
5866
5867 mark_vectorlike (ptr);
5868
5869 /* Mark glyph matrices, if any. Marking window
5870 matrices is sufficient because frame matrices
5871 use the same glyph memory. */
5872 if (w->current_matrix)
5873 {
5874 mark_glyph_matrix (w->current_matrix);
5875 mark_glyph_matrix (w->desired_matrix);
5876 }
5877
5878 /* Filter out killed buffers from both buffer lists
5879 in attempt to help GC to reclaim killed buffers faster.
5880 We can do it elsewhere for live windows, but this is the
5881 best place to do it for dead windows. */
5882 wset_prev_buffers
5883 (w, mark_discard_killed_buffers (w->prev_buffers));
5884 wset_next_buffers
5885 (w, mark_discard_killed_buffers (w->next_buffers));
5886 }
5887 break;
5888
5889 case PVEC_HASH_TABLE:
5890 {
5891 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5892
5893 mark_vectorlike (ptr);
5894 mark_object (h->test.name);
5895 mark_object (h->test.user_hash_function);
5896 mark_object (h->test.user_cmp_function);
5897 /* If hash table is not weak, mark all keys and values.
5898 For weak tables, mark only the vector. */
5899 if (NILP (h->weak))
5900 mark_object (h->key_and_value);
5901 else
5902 VECTOR_MARK (XVECTOR (h->key_and_value));
5903 }
5904 break;
5905
5906 case PVEC_CHAR_TABLE:
5907 mark_char_table (ptr);
5908 break;
5909
5910 case PVEC_BOOL_VECTOR:
5911 /* No Lisp_Objects to mark in a bool vector. */
5912 VECTOR_MARK (ptr);
5913 break;
5914
5915 case PVEC_SUBR:
5916 break;
5917
5918 case PVEC_FREE:
5919 emacs_abort ();
5920
5921 default:
5922 mark_vectorlike (ptr);
5923 }
5924 }
5925 break;
5926
5927 case Lisp_Symbol:
5928 {
5929 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5930 struct Lisp_Symbol *ptrx;
5931
5932 if (ptr->gcmarkbit)
5933 break;
5934 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5935 ptr->gcmarkbit = 1;
5936 mark_object (ptr->function);
5937 mark_object (ptr->plist);
5938 switch (ptr->redirect)
5939 {
5940 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5941 case SYMBOL_VARALIAS:
5942 {
5943 Lisp_Object tem;
5944 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5945 mark_object (tem);
5946 break;
5947 }
5948 case SYMBOL_LOCALIZED:
5949 {
5950 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5951 Lisp_Object where = blv->where;
5952 /* If the value is set up for a killed buffer or deleted
5953 frame, restore it's global binding. If the value is
5954 forwarded to a C variable, either it's not a Lisp_Object
5955 var, or it's staticpro'd already. */
5956 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5957 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5958 swap_in_global_binding (ptr);
5959 mark_object (blv->where);
5960 mark_object (blv->valcell);
5961 mark_object (blv->defcell);
5962 break;
5963 }
5964 case SYMBOL_FORWARDED:
5965 /* If the value is forwarded to a buffer or keyboard field,
5966 these are marked when we see the corresponding object.
5967 And if it's forwarded to a C variable, either it's not
5968 a Lisp_Object var, or it's staticpro'd already. */
5969 break;
5970 default: emacs_abort ();
5971 }
5972 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5973 MARK_STRING (XSTRING (ptr->name));
5974 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5975
5976 ptr = ptr->next;
5977 if (ptr)
5978 {
5979 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5980 XSETSYMBOL (obj, ptrx);
5981 goto loop;
5982 }
5983 }
5984 break;
5985
5986 case Lisp_Misc:
5987 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5988
5989 if (XMISCANY (obj)->gcmarkbit)
5990 break;
5991
5992 switch (XMISCTYPE (obj))
5993 {
5994 case Lisp_Misc_Marker:
5995 /* DO NOT mark thru the marker's chain.
5996 The buffer's markers chain does not preserve markers from gc;
5997 instead, markers are removed from the chain when freed by gc. */
5998 XMISCANY (obj)->gcmarkbit = 1;
5999 break;
6000
6001 case Lisp_Misc_Save_Value:
6002 XMISCANY (obj)->gcmarkbit = 1;
6003 {
6004 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6005 /* If `save_type' is zero, `data[0].pointer' is the address
6006 of a memory area containing `data[1].integer' potential
6007 Lisp_Objects. */
6008 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6009 {
6010 Lisp_Object *p = ptr->data[0].pointer;
6011 ptrdiff_t nelt;
6012 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6013 mark_maybe_object (*p);
6014 }
6015 else
6016 {
6017 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6018 int i;
6019 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6020 if (save_type (ptr, i) == SAVE_OBJECT)
6021 mark_object (ptr->data[i].object);
6022 }
6023 }
6024 break;
6025
6026 case Lisp_Misc_Overlay:
6027 mark_overlay (XOVERLAY (obj));
6028 break;
6029
6030 default:
6031 emacs_abort ();
6032 }
6033 break;
6034
6035 case Lisp_Cons:
6036 {
6037 register struct Lisp_Cons *ptr = XCONS (obj);
6038 if (CONS_MARKED_P (ptr))
6039 break;
6040 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6041 CONS_MARK (ptr);
6042 /* If the cdr is nil, avoid recursion for the car. */
6043 if (EQ (ptr->u.cdr, Qnil))
6044 {
6045 obj = ptr->car;
6046 cdr_count = 0;
6047 goto loop;
6048 }
6049 mark_object (ptr->car);
6050 obj = ptr->u.cdr;
6051 cdr_count++;
6052 if (cdr_count == mark_object_loop_halt)
6053 emacs_abort ();
6054 goto loop;
6055 }
6056
6057 case Lisp_Float:
6058 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6059 FLOAT_MARK (XFLOAT (obj));
6060 break;
6061
6062 case_Lisp_Int:
6063 break;
6064
6065 default:
6066 emacs_abort ();
6067 }
6068
6069 #undef CHECK_LIVE
6070 #undef CHECK_ALLOCATED
6071 #undef CHECK_ALLOCATED_AND_LIVE
6072 }
6073 /* Mark the Lisp pointers in the terminal objects.
6074 Called by Fgarbage_collect. */
6075
6076 static void
6077 mark_terminals (void)
6078 {
6079 struct terminal *t;
6080 for (t = terminal_list; t; t = t->next_terminal)
6081 {
6082 eassert (t->name != NULL);
6083 #ifdef HAVE_WINDOW_SYSTEM
6084 /* If a terminal object is reachable from a stacpro'ed object,
6085 it might have been marked already. Make sure the image cache
6086 gets marked. */
6087 mark_image_cache (t->image_cache);
6088 #endif /* HAVE_WINDOW_SYSTEM */
6089 if (!VECTOR_MARKED_P (t))
6090 mark_vectorlike ((struct Lisp_Vector *)t);
6091 }
6092 }
6093
6094
6095
6096 /* Value is non-zero if OBJ will survive the current GC because it's
6097 either marked or does not need to be marked to survive. */
6098
6099 bool
6100 survives_gc_p (Lisp_Object obj)
6101 {
6102 bool survives_p;
6103
6104 switch (XTYPE (obj))
6105 {
6106 case_Lisp_Int:
6107 survives_p = 1;
6108 break;
6109
6110 case Lisp_Symbol:
6111 survives_p = XSYMBOL (obj)->gcmarkbit;
6112 break;
6113
6114 case Lisp_Misc:
6115 survives_p = XMISCANY (obj)->gcmarkbit;
6116 break;
6117
6118 case Lisp_String:
6119 survives_p = STRING_MARKED_P (XSTRING (obj));
6120 break;
6121
6122 case Lisp_Vectorlike:
6123 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6124 break;
6125
6126 case Lisp_Cons:
6127 survives_p = CONS_MARKED_P (XCONS (obj));
6128 break;
6129
6130 case Lisp_Float:
6131 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6132 break;
6133
6134 default:
6135 emacs_abort ();
6136 }
6137
6138 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6139 }
6140
6141
6142 \f
6143 /* Sweep: find all structures not marked, and free them. */
6144
6145 static void
6146 gc_sweep (void)
6147 {
6148 /* Remove or mark entries in weak hash tables.
6149 This must be done before any object is unmarked. */
6150 sweep_weak_hash_tables ();
6151
6152 sweep_strings ();
6153 check_string_bytes (!noninteractive);
6154
6155 /* Put all unmarked conses on free list */
6156 {
6157 register struct cons_block *cblk;
6158 struct cons_block **cprev = &cons_block;
6159 register int lim = cons_block_index;
6160 EMACS_INT num_free = 0, num_used = 0;
6161
6162 cons_free_list = 0;
6163
6164 for (cblk = cons_block; cblk; cblk = *cprev)
6165 {
6166 register int i = 0;
6167 int this_free = 0;
6168 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6169
6170 /* Scan the mark bits an int at a time. */
6171 for (i = 0; i < ilim; i++)
6172 {
6173 if (cblk->gcmarkbits[i] == -1)
6174 {
6175 /* Fast path - all cons cells for this int are marked. */
6176 cblk->gcmarkbits[i] = 0;
6177 num_used += BITS_PER_INT;
6178 }
6179 else
6180 {
6181 /* Some cons cells for this int are not marked.
6182 Find which ones, and free them. */
6183 int start, pos, stop;
6184
6185 start = i * BITS_PER_INT;
6186 stop = lim - start;
6187 if (stop > BITS_PER_INT)
6188 stop = BITS_PER_INT;
6189 stop += start;
6190
6191 for (pos = start; pos < stop; pos++)
6192 {
6193 if (!CONS_MARKED_P (&cblk->conses[pos]))
6194 {
6195 this_free++;
6196 cblk->conses[pos].u.chain = cons_free_list;
6197 cons_free_list = &cblk->conses[pos];
6198 #if GC_MARK_STACK
6199 cons_free_list->car = Vdead;
6200 #endif
6201 }
6202 else
6203 {
6204 num_used++;
6205 CONS_UNMARK (&cblk->conses[pos]);
6206 }
6207 }
6208 }
6209 }
6210
6211 lim = CONS_BLOCK_SIZE;
6212 /* If this block contains only free conses and we have already
6213 seen more than two blocks worth of free conses then deallocate
6214 this block. */
6215 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6216 {
6217 *cprev = cblk->next;
6218 /* Unhook from the free list. */
6219 cons_free_list = cblk->conses[0].u.chain;
6220 lisp_align_free (cblk);
6221 }
6222 else
6223 {
6224 num_free += this_free;
6225 cprev = &cblk->next;
6226 }
6227 }
6228 total_conses = num_used;
6229 total_free_conses = num_free;
6230 }
6231
6232 /* Put all unmarked floats on free list */
6233 {
6234 register struct float_block *fblk;
6235 struct float_block **fprev = &float_block;
6236 register int lim = float_block_index;
6237 EMACS_INT num_free = 0, num_used = 0;
6238
6239 float_free_list = 0;
6240
6241 for (fblk = float_block; fblk; fblk = *fprev)
6242 {
6243 register int i;
6244 int this_free = 0;
6245 for (i = 0; i < lim; i++)
6246 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6247 {
6248 this_free++;
6249 fblk->floats[i].u.chain = float_free_list;
6250 float_free_list = &fblk->floats[i];
6251 }
6252 else
6253 {
6254 num_used++;
6255 FLOAT_UNMARK (&fblk->floats[i]);
6256 }
6257 lim = FLOAT_BLOCK_SIZE;
6258 /* If this block contains only free floats and we have already
6259 seen more than two blocks worth of free floats then deallocate
6260 this block. */
6261 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6262 {
6263 *fprev = fblk->next;
6264 /* Unhook from the free list. */
6265 float_free_list = fblk->floats[0].u.chain;
6266 lisp_align_free (fblk);
6267 }
6268 else
6269 {
6270 num_free += this_free;
6271 fprev = &fblk->next;
6272 }
6273 }
6274 total_floats = num_used;
6275 total_free_floats = num_free;
6276 }
6277
6278 /* Put all unmarked intervals on free list */
6279 {
6280 register struct interval_block *iblk;
6281 struct interval_block **iprev = &interval_block;
6282 register int lim = interval_block_index;
6283 EMACS_INT num_free = 0, num_used = 0;
6284
6285 interval_free_list = 0;
6286
6287 for (iblk = interval_block; iblk; iblk = *iprev)
6288 {
6289 register int i;
6290 int this_free = 0;
6291
6292 for (i = 0; i < lim; i++)
6293 {
6294 if (!iblk->intervals[i].gcmarkbit)
6295 {
6296 set_interval_parent (&iblk->intervals[i], interval_free_list);
6297 interval_free_list = &iblk->intervals[i];
6298 this_free++;
6299 }
6300 else
6301 {
6302 num_used++;
6303 iblk->intervals[i].gcmarkbit = 0;
6304 }
6305 }
6306 lim = INTERVAL_BLOCK_SIZE;
6307 /* If this block contains only free intervals and we have already
6308 seen more than two blocks worth of free intervals then
6309 deallocate this block. */
6310 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6311 {
6312 *iprev = iblk->next;
6313 /* Unhook from the free list. */
6314 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6315 lisp_free (iblk);
6316 }
6317 else
6318 {
6319 num_free += this_free;
6320 iprev = &iblk->next;
6321 }
6322 }
6323 total_intervals = num_used;
6324 total_free_intervals = num_free;
6325 }
6326
6327 /* Put all unmarked symbols on free list */
6328 {
6329 register struct symbol_block *sblk;
6330 struct symbol_block **sprev = &symbol_block;
6331 register int lim = symbol_block_index;
6332 EMACS_INT num_free = 0, num_used = 0;
6333
6334 symbol_free_list = NULL;
6335
6336 for (sblk = symbol_block; sblk; sblk = *sprev)
6337 {
6338 int this_free = 0;
6339 union aligned_Lisp_Symbol *sym = sblk->symbols;
6340 union aligned_Lisp_Symbol *end = sym + lim;
6341
6342 for (; sym < end; ++sym)
6343 {
6344 /* Check if the symbol was created during loadup. In such a case
6345 it might be pointed to by pure bytecode which we don't trace,
6346 so we conservatively assume that it is live. */
6347 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6348
6349 if (!sym->s.gcmarkbit && !pure_p)
6350 {
6351 if (sym->s.redirect == SYMBOL_LOCALIZED)
6352 xfree (SYMBOL_BLV (&sym->s));
6353 sym->s.next = symbol_free_list;
6354 symbol_free_list = &sym->s;
6355 #if GC_MARK_STACK
6356 symbol_free_list->function = Vdead;
6357 #endif
6358 ++this_free;
6359 }
6360 else
6361 {
6362 ++num_used;
6363 if (!pure_p)
6364 UNMARK_STRING (XSTRING (sym->s.name));
6365 sym->s.gcmarkbit = 0;
6366 }
6367 }
6368
6369 lim = SYMBOL_BLOCK_SIZE;
6370 /* If this block contains only free symbols and we have already
6371 seen more than two blocks worth of free symbols then deallocate
6372 this block. */
6373 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6374 {
6375 *sprev = sblk->next;
6376 /* Unhook from the free list. */
6377 symbol_free_list = sblk->symbols[0].s.next;
6378 lisp_free (sblk);
6379 }
6380 else
6381 {
6382 num_free += this_free;
6383 sprev = &sblk->next;
6384 }
6385 }
6386 total_symbols = num_used;
6387 total_free_symbols = num_free;
6388 }
6389
6390 /* Put all unmarked misc's on free list.
6391 For a marker, first unchain it from the buffer it points into. */
6392 {
6393 register struct marker_block *mblk;
6394 struct marker_block **mprev = &marker_block;
6395 register int lim = marker_block_index;
6396 EMACS_INT num_free = 0, num_used = 0;
6397
6398 marker_free_list = 0;
6399
6400 for (mblk = marker_block; mblk; mblk = *mprev)
6401 {
6402 register int i;
6403 int this_free = 0;
6404
6405 for (i = 0; i < lim; i++)
6406 {
6407 if (!mblk->markers[i].m.u_any.gcmarkbit)
6408 {
6409 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6410 unchain_marker (&mblk->markers[i].m.u_marker);
6411 /* Set the type of the freed object to Lisp_Misc_Free.
6412 We could leave the type alone, since nobody checks it,
6413 but this might catch bugs faster. */
6414 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6415 mblk->markers[i].m.u_free.chain = marker_free_list;
6416 marker_free_list = &mblk->markers[i].m;
6417 this_free++;
6418 }
6419 else
6420 {
6421 num_used++;
6422 mblk->markers[i].m.u_any.gcmarkbit = 0;
6423 }
6424 }
6425 lim = MARKER_BLOCK_SIZE;
6426 /* If this block contains only free markers and we have already
6427 seen more than two blocks worth of free markers then deallocate
6428 this block. */
6429 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6430 {
6431 *mprev = mblk->next;
6432 /* Unhook from the free list. */
6433 marker_free_list = mblk->markers[0].m.u_free.chain;
6434 lisp_free (mblk);
6435 }
6436 else
6437 {
6438 num_free += this_free;
6439 mprev = &mblk->next;
6440 }
6441 }
6442
6443 total_markers = num_used;
6444 total_free_markers = num_free;
6445 }
6446
6447 /* Free all unmarked buffers */
6448 {
6449 register struct buffer *buffer, **bprev = &all_buffers;
6450
6451 total_buffers = 0;
6452 for (buffer = all_buffers; buffer; buffer = *bprev)
6453 if (!VECTOR_MARKED_P (buffer))
6454 {
6455 *bprev = buffer->next;
6456 lisp_free (buffer);
6457 }
6458 else
6459 {
6460 VECTOR_UNMARK (buffer);
6461 /* Do not use buffer_(set|get)_intervals here. */
6462 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6463 total_buffers++;
6464 bprev = &buffer->next;
6465 }
6466 }
6467
6468 sweep_vectors ();
6469 check_string_bytes (!noninteractive);
6470 }
6471
6472
6473
6474 \f
6475 /* Debugging aids. */
6476
6477 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6478 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6479 This may be helpful in debugging Emacs's memory usage.
6480 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6481 (void)
6482 {
6483 Lisp_Object end;
6484
6485 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6486
6487 return end;
6488 }
6489
6490 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6491 doc: /* Return a list of counters that measure how much consing there has been.
6492 Each of these counters increments for a certain kind of object.
6493 The counters wrap around from the largest positive integer to zero.
6494 Garbage collection does not decrease them.
6495 The elements of the value are as follows:
6496 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6497 All are in units of 1 = one object consed
6498 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6499 objects consed.
6500 MISCS include overlays, markers, and some internal types.
6501 Frames, windows, buffers, and subprocesses count as vectors
6502 (but the contents of a buffer's text do not count here). */)
6503 (void)
6504 {
6505 return listn (CONSTYPE_HEAP, 8,
6506 bounded_number (cons_cells_consed),
6507 bounded_number (floats_consed),
6508 bounded_number (vector_cells_consed),
6509 bounded_number (symbols_consed),
6510 bounded_number (string_chars_consed),
6511 bounded_number (misc_objects_consed),
6512 bounded_number (intervals_consed),
6513 bounded_number (strings_consed));
6514 }
6515
6516 /* Find at most FIND_MAX symbols which have OBJ as their value or
6517 function. This is used in gdbinit's `xwhichsymbols' command. */
6518
6519 Lisp_Object
6520 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6521 {
6522 struct symbol_block *sblk;
6523 ptrdiff_t gc_count = inhibit_garbage_collection ();
6524 Lisp_Object found = Qnil;
6525
6526 if (! DEADP (obj))
6527 {
6528 for (sblk = symbol_block; sblk; sblk = sblk->next)
6529 {
6530 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6531 int bn;
6532
6533 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6534 {
6535 struct Lisp_Symbol *sym = &aligned_sym->s;
6536 Lisp_Object val;
6537 Lisp_Object tem;
6538
6539 if (sblk == symbol_block && bn >= symbol_block_index)
6540 break;
6541
6542 XSETSYMBOL (tem, sym);
6543 val = find_symbol_value (tem);
6544 if (EQ (val, obj)
6545 || EQ (sym->function, obj)
6546 || (!NILP (sym->function)
6547 && COMPILEDP (sym->function)
6548 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6549 || (!NILP (val)
6550 && COMPILEDP (val)
6551 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6552 {
6553 found = Fcons (tem, found);
6554 if (--find_max == 0)
6555 goto out;
6556 }
6557 }
6558 }
6559 }
6560
6561 out:
6562 unbind_to (gc_count, Qnil);
6563 return found;
6564 }
6565
6566 #ifdef ENABLE_CHECKING
6567
6568 bool suppress_checking;
6569
6570 void
6571 die (const char *msg, const char *file, int line)
6572 {
6573 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6574 file, line, msg);
6575 terminate_due_to_signal (SIGABRT, INT_MAX);
6576 }
6577 #endif
6578 \f
6579 /* Initialization. */
6580
6581 void
6582 init_alloc_once (void)
6583 {
6584 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6585 purebeg = PUREBEG;
6586 pure_size = PURESIZE;
6587
6588 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6589 mem_init ();
6590 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6591 #endif
6592
6593 #ifdef DOUG_LEA_MALLOC
6594 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6595 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6596 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6597 #endif
6598 init_strings ();
6599 init_vectors ();
6600
6601 refill_memory_reserve ();
6602 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6603 }
6604
6605 void
6606 init_alloc (void)
6607 {
6608 gcprolist = 0;
6609 byte_stack_list = 0;
6610 #if GC_MARK_STACK
6611 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6612 setjmp_tested_p = longjmps_done = 0;
6613 #endif
6614 #endif
6615 Vgc_elapsed = make_float (0.0);
6616 gcs_done = 0;
6617 }
6618
6619 void
6620 syms_of_alloc (void)
6621 {
6622 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6623 doc: /* Number of bytes of consing between garbage collections.
6624 Garbage collection can happen automatically once this many bytes have been
6625 allocated since the last garbage collection. All data types count.
6626
6627 Garbage collection happens automatically only when `eval' is called.
6628
6629 By binding this temporarily to a large number, you can effectively
6630 prevent garbage collection during a part of the program.
6631 See also `gc-cons-percentage'. */);
6632
6633 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6634 doc: /* Portion of the heap used for allocation.
6635 Garbage collection can happen automatically once this portion of the heap
6636 has been allocated since the last garbage collection.
6637 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6638 Vgc_cons_percentage = make_float (0.1);
6639
6640 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6641 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6642
6643 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6644 doc: /* Number of cons cells that have been consed so far. */);
6645
6646 DEFVAR_INT ("floats-consed", floats_consed,
6647 doc: /* Number of floats that have been consed so far. */);
6648
6649 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6650 doc: /* Number of vector cells that have been consed so far. */);
6651
6652 DEFVAR_INT ("symbols-consed", symbols_consed,
6653 doc: /* Number of symbols that have been consed so far. */);
6654
6655 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6656 doc: /* Number of string characters that have been consed so far. */);
6657
6658 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6659 doc: /* Number of miscellaneous objects that have been consed so far.
6660 These include markers and overlays, plus certain objects not visible
6661 to users. */);
6662
6663 DEFVAR_INT ("intervals-consed", intervals_consed,
6664 doc: /* Number of intervals that have been consed so far. */);
6665
6666 DEFVAR_INT ("strings-consed", strings_consed,
6667 doc: /* Number of strings that have been consed so far. */);
6668
6669 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6670 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6671 This means that certain objects should be allocated in shared (pure) space.
6672 It can also be set to a hash-table, in which case this table is used to
6673 do hash-consing of the objects allocated to pure space. */);
6674
6675 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6676 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6677 garbage_collection_messages = 0;
6678
6679 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6680 doc: /* Hook run after garbage collection has finished. */);
6681 Vpost_gc_hook = Qnil;
6682 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6683
6684 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6685 doc: /* Precomputed `signal' argument for memory-full error. */);
6686 /* We build this in advance because if we wait until we need it, we might
6687 not be able to allocate the memory to hold it. */
6688 Vmemory_signal_data
6689 = listn (CONSTYPE_PURE, 2, Qerror,
6690 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6691
6692 DEFVAR_LISP ("memory-full", Vmemory_full,
6693 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6694 Vmemory_full = Qnil;
6695
6696 DEFSYM (Qconses, "conses");
6697 DEFSYM (Qsymbols, "symbols");
6698 DEFSYM (Qmiscs, "miscs");
6699 DEFSYM (Qstrings, "strings");
6700 DEFSYM (Qvectors, "vectors");
6701 DEFSYM (Qfloats, "floats");
6702 DEFSYM (Qintervals, "intervals");
6703 DEFSYM (Qbuffers, "buffers");
6704 DEFSYM (Qstring_bytes, "string-bytes");
6705 DEFSYM (Qvector_slots, "vector-slots");
6706 DEFSYM (Qheap, "heap");
6707 DEFSYM (Qautomatic_gc, "Automatic GC");
6708
6709 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6710 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6711
6712 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6713 doc: /* Accumulated time elapsed in garbage collections.
6714 The time is in seconds as a floating point value. */);
6715 DEFVAR_INT ("gcs-done", gcs_done,
6716 doc: /* Accumulated number of garbage collections done. */);
6717
6718 defsubr (&Scons);
6719 defsubr (&Slist);
6720 defsubr (&Svector);
6721 defsubr (&Smake_byte_code);
6722 defsubr (&Smake_list);
6723 defsubr (&Smake_vector);
6724 defsubr (&Smake_string);
6725 defsubr (&Smake_bool_vector);
6726 defsubr (&Smake_symbol);
6727 defsubr (&Smake_marker);
6728 defsubr (&Spurecopy);
6729 defsubr (&Sgarbage_collect);
6730 defsubr (&Smemory_limit);
6731 defsubr (&Smemory_use_counts);
6732
6733 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6734 defsubr (&Sgc_status);
6735 #endif
6736 }
6737
6738 /* When compiled with GCC, GDB might say "No enum type named
6739 pvec_type" if we don't have at least one symbol with that type, and
6740 then xbacktrace could fail. Similarly for the other enums and
6741 their values. Some non-GCC compilers don't like these constructs. */
6742 #ifdef __GNUC__
6743 union
6744 {
6745 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6746 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6747 enum char_bits char_bits;
6748 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6749 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6750 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6751 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6752 enum Lisp_Bits Lisp_Bits;
6753 enum Lisp_Compiled Lisp_Compiled;
6754 enum maxargs maxargs;
6755 enum MAX_ALLOCA MAX_ALLOCA;
6756 enum More_Lisp_Bits More_Lisp_Bits;
6757 enum pvec_type pvec_type;
6758 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6759 #endif /* __GNUC__ */