Add to last fix: In gtk resizing count tool and menubars.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MSDOG and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 if (MARKERP (position))
237 set_point_from_marker (position);
238 else if (INTEGERP (position))
239 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
240 else
241 wrong_type_argument (Qinteger_or_marker_p, position);
242 return position;
243 }
244
245
246 /* Return the start or end position of the region.
247 BEGINNINGP means return the start.
248 If there is no region active, signal an error. */
249
250 static Lisp_Object
251 region_limit (bool beginningp)
252 {
253 Lisp_Object m;
254
255 if (!NILP (Vtransient_mark_mode)
256 && NILP (Vmark_even_if_inactive)
257 && NILP (BVAR (current_buffer, mark_active)))
258 xsignal0 (Qmark_inactive);
259
260 m = Fmarker_position (BVAR (current_buffer, mark));
261 if (NILP (m))
262 error ("The mark is not set now, so there is no region");
263
264 /* Clip to the current narrowing (bug#11770). */
265 return make_number ((PT < XFASTINT (m)) == beginningp
266 ? PT
267 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
268 }
269
270 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
271 doc: /* Return the integer value of point or mark, whichever is smaller. */)
272 (void)
273 {
274 return region_limit (1);
275 }
276
277 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
278 doc: /* Return the integer value of point or mark, whichever is larger. */)
279 (void)
280 {
281 return region_limit (0);
282 }
283
284 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
285 doc: /* Return this buffer's mark, as a marker object.
286 Watch out! Moving this marker changes the mark position.
287 If you set the marker not to point anywhere, the buffer will have no mark. */)
288 (void)
289 {
290 return BVAR (current_buffer, mark);
291 }
292
293 \f
294 /* Find all the overlays in the current buffer that touch position POS.
295 Return the number found, and store them in a vector in VEC
296 of length LEN. */
297
298 static ptrdiff_t
299 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
300 {
301 Lisp_Object overlay, start, end;
302 struct Lisp_Overlay *tail;
303 ptrdiff_t startpos, endpos;
304 ptrdiff_t idx = 0;
305
306 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
307 {
308 XSETMISC (overlay, tail);
309
310 end = OVERLAY_END (overlay);
311 endpos = OVERLAY_POSITION (end);
312 if (endpos < pos)
313 break;
314 start = OVERLAY_START (overlay);
315 startpos = OVERLAY_POSITION (start);
316 if (startpos <= pos)
317 {
318 if (idx < len)
319 vec[idx] = overlay;
320 /* Keep counting overlays even if we can't return them all. */
321 idx++;
322 }
323 }
324
325 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
326 {
327 XSETMISC (overlay, tail);
328
329 start = OVERLAY_START (overlay);
330 startpos = OVERLAY_POSITION (start);
331 if (pos < startpos)
332 break;
333 end = OVERLAY_END (overlay);
334 endpos = OVERLAY_POSITION (end);
335 if (pos <= endpos)
336 {
337 if (idx < len)
338 vec[idx] = overlay;
339 idx++;
340 }
341 }
342
343 return idx;
344 }
345
346 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
347 doc: /* Return the value of POSITION's property PROP, in OBJECT.
348 Almost identical to `get-char-property' except for the following difference:
349 Whereas `get-char-property' returns the property of the char at (i.e. right
350 after) POSITION, this pays attention to properties's stickiness and overlays's
351 advancement settings, in order to find the property of POSITION itself,
352 i.e. the property that a char would inherit if it were inserted
353 at POSITION. */)
354 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
355 {
356 CHECK_NUMBER_COERCE_MARKER (position);
357
358 if (NILP (object))
359 XSETBUFFER (object, current_buffer);
360 else if (WINDOWP (object))
361 object = XWINDOW (object)->contents;
362
363 if (!BUFFERP (object))
364 /* pos-property only makes sense in buffers right now, since strings
365 have no overlays and no notion of insertion for which stickiness
366 could be obeyed. */
367 return Fget_text_property (position, prop, object);
368 else
369 {
370 EMACS_INT posn = XINT (position);
371 ptrdiff_t noverlays;
372 Lisp_Object *overlay_vec, tem;
373 struct buffer *obuf = current_buffer;
374 USE_SAFE_ALLOCA;
375
376 set_buffer_temp (XBUFFER (object));
377
378 /* First try with room for 40 overlays. */
379 noverlays = 40;
380 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
381 noverlays = overlays_around (posn, overlay_vec, noverlays);
382
383 /* If there are more than 40,
384 make enough space for all, and try again. */
385 if (noverlays > 40)
386 {
387 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
388 noverlays = overlays_around (posn, overlay_vec, noverlays);
389 }
390 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
391
392 set_buffer_temp (obuf);
393
394 /* Now check the overlays in order of decreasing priority. */
395 while (--noverlays >= 0)
396 {
397 Lisp_Object ol = overlay_vec[noverlays];
398 tem = Foverlay_get (ol, prop);
399 if (!NILP (tem))
400 {
401 /* Check the overlay is indeed active at point. */
402 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
403 if ((OVERLAY_POSITION (start) == posn
404 && XMARKER (start)->insertion_type == 1)
405 || (OVERLAY_POSITION (finish) == posn
406 && XMARKER (finish)->insertion_type == 0))
407 ; /* The overlay will not cover a char inserted at point. */
408 else
409 {
410 SAFE_FREE ();
411 return tem;
412 }
413 }
414 }
415 SAFE_FREE ();
416
417 { /* Now check the text properties. */
418 int stickiness = text_property_stickiness (prop, position, object);
419 if (stickiness > 0)
420 return Fget_text_property (position, prop, object);
421 else if (stickiness < 0
422 && XINT (position) > BUF_BEGV (XBUFFER (object)))
423 return Fget_text_property (make_number (XINT (position) - 1),
424 prop, object);
425 else
426 return Qnil;
427 }
428 }
429 }
430
431 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
432 the value of point is used instead. If BEG or END is null,
433 means don't store the beginning or end of the field.
434
435 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
436 results; they do not effect boundary behavior.
437
438 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
439 position of a field, then the beginning of the previous field is
440 returned instead of the beginning of POS's field (since the end of a
441 field is actually also the beginning of the next input field, this
442 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
443 non-nil case, if two fields are separated by a field with the special
444 value `boundary', and POS lies within it, then the two separated
445 fields are considered to be adjacent, and POS between them, when
446 finding the beginning and ending of the "merged" field.
447
448 Either BEG or END may be 0, in which case the corresponding value
449 is not stored. */
450
451 static void
452 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
453 Lisp_Object beg_limit,
454 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
455 {
456 /* Fields right before and after the point. */
457 Lisp_Object before_field, after_field;
458 /* True if POS counts as the start of a field. */
459 bool at_field_start = 0;
460 /* True if POS counts as the end of a field. */
461 bool at_field_end = 0;
462
463 if (NILP (pos))
464 XSETFASTINT (pos, PT);
465 else
466 CHECK_NUMBER_COERCE_MARKER (pos);
467
468 after_field
469 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
470 before_field
471 = (XFASTINT (pos) > BEGV
472 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
473 Qfield, Qnil, NULL)
474 /* Using nil here would be a more obvious choice, but it would
475 fail when the buffer starts with a non-sticky field. */
476 : after_field);
477
478 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
479 and POS is at beginning of a field, which can also be interpreted
480 as the end of the previous field. Note that the case where if
481 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
482 more natural one; then we avoid treating the beginning of a field
483 specially. */
484 if (NILP (merge_at_boundary))
485 {
486 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
487 if (!EQ (field, after_field))
488 at_field_end = 1;
489 if (!EQ (field, before_field))
490 at_field_start = 1;
491 if (NILP (field) && at_field_start && at_field_end)
492 /* If an inserted char would have a nil field while the surrounding
493 text is non-nil, we're probably not looking at a
494 zero-length field, but instead at a non-nil field that's
495 not intended for editing (such as comint's prompts). */
496 at_field_end = at_field_start = 0;
497 }
498
499 /* Note about special `boundary' fields:
500
501 Consider the case where the point (`.') is between the fields `x' and `y':
502
503 xxxx.yyyy
504
505 In this situation, if merge_at_boundary is non-nil, consider the
506 `x' and `y' fields as forming one big merged field, and so the end
507 of the field is the end of `y'.
508
509 However, if `x' and `y' are separated by a special `boundary' field
510 (a field with a `field' char-property of 'boundary), then ignore
511 this special field when merging adjacent fields. Here's the same
512 situation, but with a `boundary' field between the `x' and `y' fields:
513
514 xxx.BBBByyyy
515
516 Here, if point is at the end of `x', the beginning of `y', or
517 anywhere in-between (within the `boundary' field), merge all
518 three fields and consider the beginning as being the beginning of
519 the `x' field, and the end as being the end of the `y' field. */
520
521 if (beg)
522 {
523 if (at_field_start)
524 /* POS is at the edge of a field, and we should consider it as
525 the beginning of the following field. */
526 *beg = XFASTINT (pos);
527 else
528 /* Find the previous field boundary. */
529 {
530 Lisp_Object p = pos;
531 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
532 /* Skip a `boundary' field. */
533 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
534 beg_limit);
535
536 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
537 beg_limit);
538 *beg = NILP (p) ? BEGV : XFASTINT (p);
539 }
540 }
541
542 if (end)
543 {
544 if (at_field_end)
545 /* POS is at the edge of a field, and we should consider it as
546 the end of the previous field. */
547 *end = XFASTINT (pos);
548 else
549 /* Find the next field boundary. */
550 {
551 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
552 /* Skip a `boundary' field. */
553 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
554 end_limit);
555
556 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
557 end_limit);
558 *end = NILP (pos) ? ZV : XFASTINT (pos);
559 }
560 }
561 }
562
563 \f
564 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
565 doc: /* Delete the field surrounding POS.
566 A field is a region of text with the same `field' property.
567 If POS is nil, the value of point is used for POS. */)
568 (Lisp_Object pos)
569 {
570 ptrdiff_t beg, end;
571 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
572 if (beg != end)
573 del_range (beg, end);
574 return Qnil;
575 }
576
577 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
578 doc: /* Return the contents of the field surrounding POS as a string.
579 A field is a region of text with the same `field' property.
580 If POS is nil, the value of point is used for POS. */)
581 (Lisp_Object pos)
582 {
583 ptrdiff_t beg, end;
584 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
585 return make_buffer_string (beg, end, 1);
586 }
587
588 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
589 doc: /* Return the contents of the field around POS, without text properties.
590 A field is a region of text with the same `field' property.
591 If POS is nil, the value of point is used for POS. */)
592 (Lisp_Object pos)
593 {
594 ptrdiff_t beg, end;
595 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
596 return make_buffer_string (beg, end, 0);
597 }
598
599 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
600 doc: /* Return the beginning of the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS.
603 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
604 field, then the beginning of the *previous* field is returned.
605 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
606 is before LIMIT, then LIMIT will be returned instead. */)
607 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
608 {
609 ptrdiff_t beg;
610 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
611 return make_number (beg);
612 }
613
614 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
615 doc: /* Return the end of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
619 then the end of the *following* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the end of the field
621 is after LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t end;
625 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
626 return make_number (end);
627 }
628
629 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
630 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
631 A field is a region of text with the same `field' property.
632
633 If NEW-POS is nil, then use the current point instead, and move point
634 to the resulting constrained position, in addition to returning that
635 position.
636
637 If OLD-POS is at the boundary of two fields, then the allowable
638 positions for NEW-POS depends on the value of the optional argument
639 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
640 constrained to the field that has the same `field' char-property
641 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
642 is non-nil, NEW-POS is constrained to the union of the two adjacent
643 fields. Additionally, if two fields are separated by another field with
644 the special value `boundary', then any point within this special field is
645 also considered to be `on the boundary'.
646
647 If the optional argument ONLY-IN-LINE is non-nil and constraining
648 NEW-POS would move it to a different line, NEW-POS is returned
649 unconstrained. This useful for commands that move by line, like
650 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
651 only in the case where they can still move to the right line.
652
653 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
654 a non-nil property of that name, then any field boundaries are ignored.
655
656 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
657 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
658 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
659 {
660 /* If non-zero, then the original point, before re-positioning. */
661 ptrdiff_t orig_point = 0;
662 bool fwd;
663 Lisp_Object prev_old, prev_new;
664
665 if (NILP (new_pos))
666 /* Use the current point, and afterwards, set it. */
667 {
668 orig_point = PT;
669 XSETFASTINT (new_pos, PT);
670 }
671
672 CHECK_NUMBER_COERCE_MARKER (new_pos);
673 CHECK_NUMBER_COERCE_MARKER (old_pos);
674
675 fwd = (XINT (new_pos) > XINT (old_pos));
676
677 prev_old = make_number (XINT (old_pos) - 1);
678 prev_new = make_number (XINT (new_pos) - 1);
679
680 if (NILP (Vinhibit_field_text_motion)
681 && !EQ (new_pos, old_pos)
682 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
683 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
684 /* To recognize field boundaries, we must also look at the
685 previous positions; we could use `Fget_pos_property'
686 instead, but in itself that would fail inside non-sticky
687 fields (like comint prompts). */
688 || (XFASTINT (new_pos) > BEGV
689 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
690 || (XFASTINT (old_pos) > BEGV
691 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
692 && (NILP (inhibit_capture_property)
693 /* Field boundaries are again a problem; but now we must
694 decide the case exactly, so we need to call
695 `get_pos_property' as well. */
696 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
697 && (XFASTINT (old_pos) <= BEGV
698 || NILP (Fget_char_property
699 (old_pos, inhibit_capture_property, Qnil))
700 || NILP (Fget_char_property
701 (prev_old, inhibit_capture_property, Qnil))))))
702 /* It is possible that NEW_POS is not within the same field as
703 OLD_POS; try to move NEW_POS so that it is. */
704 {
705 ptrdiff_t shortage;
706 Lisp_Object field_bound;
707
708 if (fwd)
709 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
710 else
711 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
712
713 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
714 other side of NEW_POS, which would mean that NEW_POS is
715 already acceptable, and it's not necessary to constrain it
716 to FIELD_BOUND. */
717 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
718 /* NEW_POS should be constrained, but only if either
719 ONLY_IN_LINE is nil (in which case any constraint is OK),
720 or NEW_POS and FIELD_BOUND are on the same line (in which
721 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
722 && (NILP (only_in_line)
723 /* This is the ONLY_IN_LINE case, check that NEW_POS and
724 FIELD_BOUND are on the same line by seeing whether
725 there's an intervening newline or not. */
726 || (find_newline (XFASTINT (new_pos), -1,
727 XFASTINT (field_bound), -1,
728 fwd ? -1 : 1, &shortage, NULL, 1),
729 shortage != 0)))
730 /* Constrain NEW_POS to FIELD_BOUND. */
731 new_pos = field_bound;
732
733 if (orig_point && XFASTINT (new_pos) != orig_point)
734 /* The NEW_POS argument was originally nil, so automatically set PT. */
735 SET_PT (XFASTINT (new_pos));
736 }
737
738 return new_pos;
739 }
740
741 \f
742 DEFUN ("line-beginning-position",
743 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
744 doc: /* Return the character position of the first character on the current line.
745 With optional argument N, scan forward N - 1 lines first.
746 If the scan reaches the end of the buffer, return that position.
747
748 This function ignores text display directionality; it returns the
749 position of the first character in logical order, i.e. the smallest
750 character position on the line.
751
752 This function constrains the returned position to the current field
753 unless that position would be on a different line than the original,
754 unconstrained result. If N is nil or 1, and a front-sticky field
755 starts at point, the scan stops as soon as it starts. To ignore field
756 boundaries, bind `inhibit-field-text-motion' to t.
757
758 This function does not move point. */)
759 (Lisp_Object n)
760 {
761 ptrdiff_t orig, orig_byte, end;
762 ptrdiff_t count = SPECPDL_INDEX ();
763 specbind (Qinhibit_point_motion_hooks, Qt);
764
765 if (NILP (n))
766 XSETFASTINT (n, 1);
767 else
768 CHECK_NUMBER (n);
769
770 orig = PT;
771 orig_byte = PT_BYTE;
772 Fforward_line (make_number (XINT (n) - 1));
773 end = PT;
774
775 SET_PT_BOTH (orig, orig_byte);
776
777 unbind_to (count, Qnil);
778
779 /* Return END constrained to the current input field. */
780 return Fconstrain_to_field (make_number (end), make_number (orig),
781 XINT (n) != 1 ? Qt : Qnil,
782 Qt, Qnil);
783 }
784
785 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
786 doc: /* Return the character position of the last character on the current line.
787 With argument N not nil or 1, move forward N - 1 lines first.
788 If scan reaches end of buffer, return that position.
789
790 This function ignores text display directionality; it returns the
791 position of the last character in logical order, i.e. the largest
792 character position on the line.
793
794 This function constrains the returned position to the current field
795 unless that would be on a different line than the original,
796 unconstrained result. If N is nil or 1, and a rear-sticky field ends
797 at point, the scan stops as soon as it starts. To ignore field
798 boundaries bind `inhibit-field-text-motion' to t.
799
800 This function does not move point. */)
801 (Lisp_Object n)
802 {
803 ptrdiff_t clipped_n;
804 ptrdiff_t end_pos;
805 ptrdiff_t orig = PT;
806
807 if (NILP (n))
808 XSETFASTINT (n, 1);
809 else
810 CHECK_NUMBER (n);
811
812 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
813 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
814 NULL);
815
816 /* Return END_POS constrained to the current input field. */
817 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
818 Qnil, Qt, Qnil);
819 }
820
821 /* Save current buffer state for `save-excursion' special form.
822 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
823 offload some work from GC. */
824
825 Lisp_Object
826 save_excursion_save (void)
827 {
828 return make_save_obj_obj_obj_obj
829 (Fpoint_marker (),
830 /* Do not copy the mark if it points to nowhere. */
831 (XMARKER (BVAR (current_buffer, mark))->buffer
832 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
833 : Qnil),
834 /* Selected window if current buffer is shown in it, nil otherwise. */
835 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
836 ? selected_window : Qnil),
837 BVAR (current_buffer, mark_active));
838 }
839
840 /* Restore saved buffer before leaving `save-excursion' special form. */
841
842 void
843 save_excursion_restore (Lisp_Object info)
844 {
845 Lisp_Object tem, tem1, omark, nmark;
846 struct gcpro gcpro1, gcpro2, gcpro3;
847
848 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
849 /* If we're unwinding to top level, saved buffer may be deleted. This
850 means that all of its markers are unchained and so tem is nil. */
851 if (NILP (tem))
852 goto out;
853
854 omark = nmark = Qnil;
855 GCPRO3 (info, omark, nmark);
856
857 Fset_buffer (tem);
858
859 /* Point marker. */
860 tem = XSAVE_OBJECT (info, 0);
861 Fgoto_char (tem);
862 unchain_marker (XMARKER (tem));
863
864 /* Mark marker. */
865 tem = XSAVE_OBJECT (info, 1);
866 omark = Fmarker_position (BVAR (current_buffer, mark));
867 if (NILP (tem))
868 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
869 else
870 {
871 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
872 nmark = Fmarker_position (tem);
873 unchain_marker (XMARKER (tem));
874 }
875
876 /* Mark active. */
877 tem = XSAVE_OBJECT (info, 3);
878 tem1 = BVAR (current_buffer, mark_active);
879 bset_mark_active (current_buffer, tem);
880
881 /* If mark is active now, and either was not active
882 or was at a different place, run the activate hook. */
883 if (! NILP (tem))
884 {
885 if (! EQ (omark, nmark))
886 {
887 tem = intern ("activate-mark-hook");
888 Frun_hooks (1, &tem);
889 }
890 }
891 /* If mark has ceased to be active, run deactivate hook. */
892 else if (! NILP (tem1))
893 {
894 tem = intern ("deactivate-mark-hook");
895 Frun_hooks (1, &tem);
896 }
897
898 /* If buffer was visible in a window, and a different window was
899 selected, and the old selected window is still showing this
900 buffer, restore point in that window. */
901 tem = XSAVE_OBJECT (info, 2);
902 if (WINDOWP (tem)
903 && !EQ (tem, selected_window)
904 && (tem1 = XWINDOW (tem)->contents,
905 (/* Window is live... */
906 BUFFERP (tem1)
907 /* ...and it shows the current buffer. */
908 && XBUFFER (tem1) == current_buffer)))
909 Fset_window_point (tem, make_number (PT));
910
911 UNGCPRO;
912
913 out:
914
915 free_misc (info);
916 }
917
918 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
919 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
920 Executes BODY just like `progn'.
921 The values of point, mark and the current buffer are restored
922 even in case of abnormal exit (throw or error).
923 The state of activation of the mark is also restored.
924
925 This construct does not save `deactivate-mark', and therefore
926 functions that change the buffer will still cause deactivation
927 of the mark at the end of the command. To prevent that, bind
928 `deactivate-mark' with `let'.
929
930 If you only want to save the current buffer but not point nor mark,
931 then just use `save-current-buffer', or even `with-current-buffer'.
932
933 usage: (save-excursion &rest BODY) */)
934 (Lisp_Object args)
935 {
936 register Lisp_Object val;
937 ptrdiff_t count = SPECPDL_INDEX ();
938
939 record_unwind_protect (save_excursion_restore, save_excursion_save ());
940
941 val = Fprogn (args);
942 return unbind_to (count, val);
943 }
944
945 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
946 doc: /* Record which buffer is current; execute BODY; make that buffer current.
947 BODY is executed just like `progn'.
948 usage: (save-current-buffer &rest BODY) */)
949 (Lisp_Object args)
950 {
951 ptrdiff_t count = SPECPDL_INDEX ();
952
953 record_unwind_current_buffer ();
954 return unbind_to (count, Fprogn (args));
955 }
956 \f
957 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
958 doc: /* Return the number of characters in the current buffer.
959 If BUFFER, return the number of characters in that buffer instead. */)
960 (Lisp_Object buffer)
961 {
962 if (NILP (buffer))
963 return make_number (Z - BEG);
964 else
965 {
966 CHECK_BUFFER (buffer);
967 return make_number (BUF_Z (XBUFFER (buffer))
968 - BUF_BEG (XBUFFER (buffer)));
969 }
970 }
971
972 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
973 doc: /* Return the minimum permissible value of point in the current buffer.
974 This is 1, unless narrowing (a buffer restriction) is in effect. */)
975 (void)
976 {
977 Lisp_Object temp;
978 XSETFASTINT (temp, BEGV);
979 return temp;
980 }
981
982 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
983 doc: /* Return a marker to the minimum permissible value of point in this buffer.
984 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
985 (void)
986 {
987 return build_marker (current_buffer, BEGV, BEGV_BYTE);
988 }
989
990 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
991 doc: /* Return the maximum permissible value of point in the current buffer.
992 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
993 is in effect, in which case it is less. */)
994 (void)
995 {
996 Lisp_Object temp;
997 XSETFASTINT (temp, ZV);
998 return temp;
999 }
1000
1001 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1002 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1003 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1004 is in effect, in which case it is less. */)
1005 (void)
1006 {
1007 return build_marker (current_buffer, ZV, ZV_BYTE);
1008 }
1009
1010 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1011 doc: /* Return the position of the gap, in the current buffer.
1012 See also `gap-size'. */)
1013 (void)
1014 {
1015 Lisp_Object temp;
1016 XSETFASTINT (temp, GPT);
1017 return temp;
1018 }
1019
1020 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1021 doc: /* Return the size of the current buffer's gap.
1022 See also `gap-position'. */)
1023 (void)
1024 {
1025 Lisp_Object temp;
1026 XSETFASTINT (temp, GAP_SIZE);
1027 return temp;
1028 }
1029
1030 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1031 doc: /* Return the byte position for character position POSITION.
1032 If POSITION is out of range, the value is nil. */)
1033 (Lisp_Object position)
1034 {
1035 CHECK_NUMBER_COERCE_MARKER (position);
1036 if (XINT (position) < BEG || XINT (position) > Z)
1037 return Qnil;
1038 return make_number (CHAR_TO_BYTE (XINT (position)));
1039 }
1040
1041 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1042 doc: /* Return the character position for byte position BYTEPOS.
1043 If BYTEPOS is out of range, the value is nil. */)
1044 (Lisp_Object bytepos)
1045 {
1046 CHECK_NUMBER (bytepos);
1047 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1048 return Qnil;
1049 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1050 }
1051 \f
1052 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1053 doc: /* Return the character following point, as a number.
1054 At the end of the buffer or accessible region, return 0. */)
1055 (void)
1056 {
1057 Lisp_Object temp;
1058 if (PT >= ZV)
1059 XSETFASTINT (temp, 0);
1060 else
1061 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1062 return temp;
1063 }
1064
1065 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1066 doc: /* Return the character preceding point, as a number.
1067 At the beginning of the buffer or accessible region, return 0. */)
1068 (void)
1069 {
1070 Lisp_Object temp;
1071 if (PT <= BEGV)
1072 XSETFASTINT (temp, 0);
1073 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1074 {
1075 ptrdiff_t pos = PT_BYTE;
1076 DEC_POS (pos);
1077 XSETFASTINT (temp, FETCH_CHAR (pos));
1078 }
1079 else
1080 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1081 return temp;
1082 }
1083
1084 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1085 doc: /* Return t if point is at the beginning of the buffer.
1086 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1087 (void)
1088 {
1089 if (PT == BEGV)
1090 return Qt;
1091 return Qnil;
1092 }
1093
1094 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1095 doc: /* Return t if point is at the end of the buffer.
1096 If the buffer is narrowed, this means the end of the narrowed part. */)
1097 (void)
1098 {
1099 if (PT == ZV)
1100 return Qt;
1101 return Qnil;
1102 }
1103
1104 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1105 doc: /* Return t if point is at the beginning of a line. */)
1106 (void)
1107 {
1108 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1109 return Qt;
1110 return Qnil;
1111 }
1112
1113 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1114 doc: /* Return t if point is at the end of a line.
1115 `End of a line' includes point being at the end of the buffer. */)
1116 (void)
1117 {
1118 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1124 doc: /* Return character in current buffer at position POS.
1125 POS is an integer or a marker and defaults to point.
1126 If POS is out of range, the value is nil. */)
1127 (Lisp_Object pos)
1128 {
1129 register ptrdiff_t pos_byte;
1130
1131 if (NILP (pos))
1132 {
1133 pos_byte = PT_BYTE;
1134 XSETFASTINT (pos, PT);
1135 }
1136
1137 if (MARKERP (pos))
1138 {
1139 pos_byte = marker_byte_position (pos);
1140 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1141 return Qnil;
1142 }
1143 else
1144 {
1145 CHECK_NUMBER_COERCE_MARKER (pos);
1146 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1147 return Qnil;
1148
1149 pos_byte = CHAR_TO_BYTE (XINT (pos));
1150 }
1151
1152 return make_number (FETCH_CHAR (pos_byte));
1153 }
1154
1155 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1156 doc: /* Return character in current buffer preceding position POS.
1157 POS is an integer or a marker and defaults to point.
1158 If POS is out of range, the value is nil. */)
1159 (Lisp_Object pos)
1160 {
1161 register Lisp_Object val;
1162 register ptrdiff_t pos_byte;
1163
1164 if (NILP (pos))
1165 {
1166 pos_byte = PT_BYTE;
1167 XSETFASTINT (pos, PT);
1168 }
1169
1170 if (MARKERP (pos))
1171 {
1172 pos_byte = marker_byte_position (pos);
1173
1174 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1175 return Qnil;
1176 }
1177 else
1178 {
1179 CHECK_NUMBER_COERCE_MARKER (pos);
1180
1181 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1182 return Qnil;
1183
1184 pos_byte = CHAR_TO_BYTE (XINT (pos));
1185 }
1186
1187 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1188 {
1189 DEC_POS (pos_byte);
1190 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1191 }
1192 else
1193 {
1194 pos_byte--;
1195 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1196 }
1197 return val;
1198 }
1199 \f
1200 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1201 doc: /* Return the name under which the user logged in, as a string.
1202 This is based on the effective uid, not the real uid.
1203 Also, if the environment variables LOGNAME or USER are set,
1204 that determines the value of this function.
1205
1206 If optional argument UID is an integer or a float, return the login name
1207 of the user with that uid, or nil if there is no such user. */)
1208 (Lisp_Object uid)
1209 {
1210 struct passwd *pw;
1211 uid_t id;
1212
1213 /* Set up the user name info if we didn't do it before.
1214 (That can happen if Emacs is dumpable
1215 but you decide to run `temacs -l loadup' and not dump. */
1216 if (INTEGERP (Vuser_login_name))
1217 init_editfns ();
1218
1219 if (NILP (uid))
1220 return Vuser_login_name;
1221
1222 CONS_TO_INTEGER (uid, uid_t, id);
1223 block_input ();
1224 pw = getpwuid (id);
1225 unblock_input ();
1226 return (pw ? build_string (pw->pw_name) : Qnil);
1227 }
1228
1229 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1230 0, 0, 0,
1231 doc: /* Return the name of the user's real uid, as a string.
1232 This ignores the environment variables LOGNAME and USER, so it differs from
1233 `user-login-name' when running under `su'. */)
1234 (void)
1235 {
1236 /* Set up the user name info if we didn't do it before.
1237 (That can happen if Emacs is dumpable
1238 but you decide to run `temacs -l loadup' and not dump. */
1239 if (INTEGERP (Vuser_login_name))
1240 init_editfns ();
1241 return Vuser_real_login_name;
1242 }
1243
1244 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1245 doc: /* Return the effective uid of Emacs.
1246 Value is an integer or a float, depending on the value. */)
1247 (void)
1248 {
1249 uid_t euid = geteuid ();
1250 return make_fixnum_or_float (euid);
1251 }
1252
1253 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1254 doc: /* Return the real uid of Emacs.
1255 Value is an integer or a float, depending on the value. */)
1256 (void)
1257 {
1258 uid_t uid = getuid ();
1259 return make_fixnum_or_float (uid);
1260 }
1261
1262 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1263 doc: /* Return the effective gid of Emacs.
1264 Value is an integer or a float, depending on the value. */)
1265 (void)
1266 {
1267 gid_t egid = getegid ();
1268 return make_fixnum_or_float (egid);
1269 }
1270
1271 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1272 doc: /* Return the real gid of Emacs.
1273 Value is an integer or a float, depending on the value. */)
1274 (void)
1275 {
1276 gid_t gid = getgid ();
1277 return make_fixnum_or_float (gid);
1278 }
1279
1280 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1281 doc: /* Return the full name of the user logged in, as a string.
1282 If the full name corresponding to Emacs's userid is not known,
1283 return "unknown".
1284
1285 If optional argument UID is an integer or float, return the full name
1286 of the user with that uid, or nil if there is no such user.
1287 If UID is a string, return the full name of the user with that login
1288 name, or nil if there is no such user. */)
1289 (Lisp_Object uid)
1290 {
1291 struct passwd *pw;
1292 register char *p, *q;
1293 Lisp_Object full;
1294
1295 if (NILP (uid))
1296 return Vuser_full_name;
1297 else if (NUMBERP (uid))
1298 {
1299 uid_t u;
1300 CONS_TO_INTEGER (uid, uid_t, u);
1301 block_input ();
1302 pw = getpwuid (u);
1303 unblock_input ();
1304 }
1305 else if (STRINGP (uid))
1306 {
1307 block_input ();
1308 pw = getpwnam (SSDATA (uid));
1309 unblock_input ();
1310 }
1311 else
1312 error ("Invalid UID specification");
1313
1314 if (!pw)
1315 return Qnil;
1316
1317 p = USER_FULL_NAME;
1318 /* Chop off everything after the first comma. */
1319 q = strchr (p, ',');
1320 full = make_string (p, q ? q - p : strlen (p));
1321
1322 #ifdef AMPERSAND_FULL_NAME
1323 p = SSDATA (full);
1324 q = strchr (p, '&');
1325 /* Substitute the login name for the &, upcasing the first character. */
1326 if (q)
1327 {
1328 register char *r;
1329 Lisp_Object login;
1330
1331 login = Fuser_login_name (make_number (pw->pw_uid));
1332 r = alloca (strlen (p) + SCHARS (login) + 1);
1333 memcpy (r, p, q - p);
1334 r[q - p] = 0;
1335 strcat (r, SSDATA (login));
1336 r[q - p] = upcase ((unsigned char) r[q - p]);
1337 strcat (r, q + 1);
1338 full = build_string (r);
1339 }
1340 #endif /* AMPERSAND_FULL_NAME */
1341
1342 return full;
1343 }
1344
1345 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1346 doc: /* Return the host name of the machine you are running on, as a string. */)
1347 (void)
1348 {
1349 return Vsystem_name;
1350 }
1351
1352 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1353 doc: /* Return the process ID of Emacs, as a number. */)
1354 (void)
1355 {
1356 pid_t pid = getpid ();
1357 return make_fixnum_or_float (pid);
1358 }
1359
1360 \f
1361
1362 #ifndef TIME_T_MIN
1363 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1364 #endif
1365 #ifndef TIME_T_MAX
1366 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1367 #endif
1368
1369 /* Report that a time value is out of range for Emacs. */
1370 void
1371 time_overflow (void)
1372 {
1373 error ("Specified time is not representable");
1374 }
1375
1376 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1377 static EMACS_INT
1378 hi_time (time_t t)
1379 {
1380 time_t hi = t >> 16;
1381
1382 /* Check for overflow, helping the compiler for common cases where
1383 no runtime check is needed, and taking care not to convert
1384 negative numbers to unsigned before comparing them. */
1385 if (! ((! TYPE_SIGNED (time_t)
1386 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1387 || MOST_NEGATIVE_FIXNUM <= hi)
1388 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1389 || hi <= MOST_POSITIVE_FIXNUM)))
1390 time_overflow ();
1391
1392 return hi;
1393 }
1394
1395 /* Return the bottom 16 bits of the time T. */
1396 static int
1397 lo_time (time_t t)
1398 {
1399 return t & ((1 << 16) - 1);
1400 }
1401
1402 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1403 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1404 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1405 HIGH has the most significant bits of the seconds, while LOW has the
1406 least significant 16 bits. USEC and PSEC are the microsecond and
1407 picosecond counts. */)
1408 (void)
1409 {
1410 return make_lisp_time (current_timespec ());
1411 }
1412
1413 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1414 0, 0, 0,
1415 doc: /* Return the current run time used by Emacs.
1416 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1417 style as (current-time).
1418
1419 On systems that can't determine the run time, `get-internal-run-time'
1420 does the same thing as `current-time'. */)
1421 (void)
1422 {
1423 #ifdef HAVE_GETRUSAGE
1424 struct rusage usage;
1425 time_t secs;
1426 int usecs;
1427
1428 if (getrusage (RUSAGE_SELF, &usage) < 0)
1429 /* This shouldn't happen. What action is appropriate? */
1430 xsignal0 (Qerror);
1431
1432 /* Sum up user time and system time. */
1433 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1434 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1435 if (usecs >= 1000000)
1436 {
1437 usecs -= 1000000;
1438 secs++;
1439 }
1440 return make_lisp_time (make_timespec (secs, usecs * 1000));
1441 #else /* ! HAVE_GETRUSAGE */
1442 #ifdef WINDOWSNT
1443 return w32_get_internal_run_time ();
1444 #else /* ! WINDOWSNT */
1445 return Fcurrent_time ();
1446 #endif /* WINDOWSNT */
1447 #endif /* HAVE_GETRUSAGE */
1448 }
1449 \f
1450
1451 /* Make a Lisp list that represents the time T with fraction TAIL. */
1452 static Lisp_Object
1453 make_time_tail (time_t t, Lisp_Object tail)
1454 {
1455 return Fcons (make_number (hi_time (t)),
1456 Fcons (make_number (lo_time (t)), tail));
1457 }
1458
1459 /* Make a Lisp list that represents the system time T. */
1460 static Lisp_Object
1461 make_time (time_t t)
1462 {
1463 return make_time_tail (t, Qnil);
1464 }
1465
1466 /* Make a Lisp list that represents the Emacs time T. T may be an
1467 invalid time, with a slightly negative tv_nsec value such as
1468 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1469 correspondingly negative picosecond count. */
1470 Lisp_Object
1471 make_lisp_time (struct timespec t)
1472 {
1473 int ns = t.tv_nsec;
1474 return make_time_tail (t.tv_sec, list2i (ns / 1000, ns % 1000 * 1000));
1475 }
1476
1477 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1478 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1479 Return true if successful. */
1480 static bool
1481 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1482 Lisp_Object *plow, Lisp_Object *pusec,
1483 Lisp_Object *ppsec)
1484 {
1485 if (CONSP (specified_time))
1486 {
1487 Lisp_Object low = XCDR (specified_time);
1488 Lisp_Object usec = make_number (0);
1489 Lisp_Object psec = make_number (0);
1490 if (CONSP (low))
1491 {
1492 Lisp_Object low_tail = XCDR (low);
1493 low = XCAR (low);
1494 if (CONSP (low_tail))
1495 {
1496 usec = XCAR (low_tail);
1497 low_tail = XCDR (low_tail);
1498 if (CONSP (low_tail))
1499 psec = XCAR (low_tail);
1500 }
1501 else if (!NILP (low_tail))
1502 usec = low_tail;
1503 }
1504
1505 *phigh = XCAR (specified_time);
1506 *plow = low;
1507 *pusec = usec;
1508 *ppsec = psec;
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1516 list, generate the corresponding time value.
1517
1518 If RESULT is not null, store into *RESULT the converted time;
1519 this can fail if the converted time does not fit into struct timespec.
1520 If *DRESULT is not null, store into *DRESULT the number of
1521 seconds since the start of the POSIX Epoch.
1522
1523 Return true if successful. */
1524 bool
1525 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1526 Lisp_Object psec,
1527 struct timespec *result, double *dresult)
1528 {
1529 EMACS_INT hi, lo, us, ps;
1530 if (! (INTEGERP (high) && INTEGERP (low)
1531 && INTEGERP (usec) && INTEGERP (psec)))
1532 return 0;
1533 hi = XINT (high);
1534 lo = XINT (low);
1535 us = XINT (usec);
1536 ps = XINT (psec);
1537
1538 /* Normalize out-of-range lower-order components by carrying
1539 each overflow into the next higher-order component. */
1540 us += ps / 1000000 - (ps % 1000000 < 0);
1541 lo += us / 1000000 - (us % 1000000 < 0);
1542 hi += lo >> 16;
1543 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1544 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1545 lo &= (1 << 16) - 1;
1546
1547 if (result)
1548 {
1549 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1550 && hi <= TIME_T_MAX >> 16)
1551 {
1552 /* Return the greatest representable time that is not greater
1553 than the requested time. */
1554 time_t sec = hi;
1555 *result = make_timespec ((sec << 16) + lo, us * 1000 + ps / 1000);
1556 }
1557 else
1558 {
1559 /* Overflow in the highest-order component. */
1560 return 0;
1561 }
1562 }
1563
1564 if (dresult)
1565 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1566
1567 return 1;
1568 }
1569
1570 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1571 If SPECIFIED_TIME is nil, use the current time.
1572
1573 Round the time down to the nearest struct timespec value.
1574 Return seconds since the Epoch.
1575 Signal an error if unsuccessful. */
1576 struct timespec
1577 lisp_time_argument (Lisp_Object specified_time)
1578 {
1579 struct timespec t;
1580 if (NILP (specified_time))
1581 t = current_timespec ();
1582 else
1583 {
1584 Lisp_Object high, low, usec, psec;
1585 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1586 && decode_time_components (high, low, usec, psec, &t, 0)))
1587 error ("Invalid time specification");
1588 }
1589 return t;
1590 }
1591
1592 /* Like lisp_time_argument, except decode only the seconds part,
1593 do not allow out-of-range time stamps, do not check the subseconds part,
1594 and always round down. */
1595 static time_t
1596 lisp_seconds_argument (Lisp_Object specified_time)
1597 {
1598 if (NILP (specified_time))
1599 return time (NULL);
1600 else
1601 {
1602 Lisp_Object high, low, usec, psec;
1603 struct timespec t;
1604 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1605 && decode_time_components (high, low, make_number (0),
1606 make_number (0), &t, 0)))
1607 error ("Invalid time specification");
1608 return t.tv_sec;
1609 }
1610 }
1611
1612 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1613 doc: /* Return the current time, as a float number of seconds since the epoch.
1614 If SPECIFIED-TIME is given, it is the time to convert to float
1615 instead of the current time. The argument should have the form
1616 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1617 you can use times from `current-time' and from `file-attributes'.
1618 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1619 considered obsolete.
1620
1621 WARNING: Since the result is floating point, it may not be exact.
1622 If precise time stamps are required, use either `current-time',
1623 or (if you need time as a string) `format-time-string'. */)
1624 (Lisp_Object specified_time)
1625 {
1626 double t;
1627 if (NILP (specified_time))
1628 {
1629 struct timespec now = current_timespec ();
1630 t = now.tv_sec + now.tv_nsec / 1e9;
1631 }
1632 else
1633 {
1634 Lisp_Object high, low, usec, psec;
1635 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1636 && decode_time_components (high, low, usec, psec, 0, &t)))
1637 error ("Invalid time specification");
1638 }
1639 return make_float (t);
1640 }
1641
1642 /* Write information into buffer S of size MAXSIZE, according to the
1643 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1644 Default to Universal Time if UT, local time otherwise.
1645 Use NS as the number of nanoseconds in the %N directive.
1646 Return the number of bytes written, not including the terminating
1647 '\0'. If S is NULL, nothing will be written anywhere; so to
1648 determine how many bytes would be written, use NULL for S and
1649 ((size_t) -1) for MAXSIZE.
1650
1651 This function behaves like nstrftime, except it allows null
1652 bytes in FORMAT and it does not support nanoseconds. */
1653 static size_t
1654 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1655 size_t format_len, const struct tm *tp, bool ut, int ns)
1656 {
1657 size_t total = 0;
1658
1659 /* Loop through all the null-terminated strings in the format
1660 argument. Normally there's just one null-terminated string, but
1661 there can be arbitrarily many, concatenated together, if the
1662 format contains '\0' bytes. nstrftime stops at the first
1663 '\0' byte so we must invoke it separately for each such string. */
1664 for (;;)
1665 {
1666 size_t len;
1667 size_t result;
1668
1669 if (s)
1670 s[0] = '\1';
1671
1672 result = nstrftime (s, maxsize, format, tp, ut, ns);
1673
1674 if (s)
1675 {
1676 if (result == 0 && s[0] != '\0')
1677 return 0;
1678 s += result + 1;
1679 }
1680
1681 maxsize -= result + 1;
1682 total += result;
1683 len = strlen (format);
1684 if (len == format_len)
1685 return total;
1686 total++;
1687 format += len + 1;
1688 format_len -= len + 1;
1689 }
1690 }
1691
1692 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1693 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1694 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1695 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1696 is also still accepted.
1697 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1698 as Universal Time; nil means describe TIME in the local time zone.
1699 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1700 by text that describes the specified date and time in TIME:
1701
1702 %Y is the year, %y within the century, %C the century.
1703 %G is the year corresponding to the ISO week, %g within the century.
1704 %m is the numeric month.
1705 %b and %h are the locale's abbreviated month name, %B the full name.
1706 (%h is not supported on MS-Windows.)
1707 %d is the day of the month, zero-padded, %e is blank-padded.
1708 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1709 %a is the locale's abbreviated name of the day of week, %A the full name.
1710 %U is the week number starting on Sunday, %W starting on Monday,
1711 %V according to ISO 8601.
1712 %j is the day of the year.
1713
1714 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1715 only blank-padded, %l is like %I blank-padded.
1716 %p is the locale's equivalent of either AM or PM.
1717 %M is the minute.
1718 %S is the second.
1719 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1720 %Z is the time zone name, %z is the numeric form.
1721 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1722
1723 %c is the locale's date and time format.
1724 %x is the locale's "preferred" date format.
1725 %D is like "%m/%d/%y".
1726
1727 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1728 %X is the locale's "preferred" time format.
1729
1730 Finally, %n is a newline, %t is a tab, %% is a literal %.
1731
1732 Certain flags and modifiers are available with some format controls.
1733 The flags are `_', `-', `^' and `#'. For certain characters X,
1734 %_X is like %X, but padded with blanks; %-X is like %X,
1735 but without padding. %^X is like %X, but with all textual
1736 characters up-cased; %#X is like %X, but with letter-case of
1737 all textual characters reversed.
1738 %NX (where N stands for an integer) is like %X,
1739 but takes up at least N (a number) positions.
1740 The modifiers are `E' and `O'. For certain characters X,
1741 %EX is a locale's alternative version of %X;
1742 %OX is like %X, but uses the locale's number symbols.
1743
1744 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1745
1746 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1747 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1748 {
1749 struct timespec t = lisp_time_argument (timeval);
1750 struct tm tm;
1751
1752 CHECK_STRING (format_string);
1753 format_string = code_convert_string_norecord (format_string,
1754 Vlocale_coding_system, 1);
1755 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1756 t, ! NILP (universal), &tm);
1757 }
1758
1759 static Lisp_Object
1760 format_time_string (char const *format, ptrdiff_t formatlen,
1761 struct timespec t, bool ut, struct tm *tmp)
1762 {
1763 char buffer[4000];
1764 char *buf = buffer;
1765 ptrdiff_t size = sizeof buffer;
1766 size_t len;
1767 Lisp_Object bufstring;
1768 int ns = t.tv_nsec;
1769 struct tm *tm;
1770 USE_SAFE_ALLOCA;
1771
1772 while (1)
1773 {
1774 time_t *taddr = &t.tv_sec;
1775 block_input ();
1776
1777 synchronize_system_time_locale ();
1778
1779 tm = ut ? gmtime (taddr) : localtime (taddr);
1780 if (! tm)
1781 {
1782 unblock_input ();
1783 time_overflow ();
1784 }
1785 *tmp = *tm;
1786
1787 buf[0] = '\1';
1788 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1789 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1790 break;
1791
1792 /* Buffer was too small, so make it bigger and try again. */
1793 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1794 unblock_input ();
1795 if (STRING_BYTES_BOUND <= len)
1796 string_overflow ();
1797 size = len + 1;
1798 buf = SAFE_ALLOCA (size);
1799 }
1800
1801 unblock_input ();
1802 bufstring = make_unibyte_string (buf, len);
1803 SAFE_FREE ();
1804 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1805 }
1806
1807 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1808 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1809 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1810 as from `current-time' and `file-attributes', or nil to use the
1811 current time. The obsolete form (HIGH . LOW) is also still accepted.
1812 The list has the following nine members: SEC is an integer between 0
1813 and 60; SEC is 60 for a leap second, which only some operating systems
1814 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1815 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1816 integer between 1 and 12. YEAR is an integer indicating the
1817 four-digit year. DOW is the day of week, an integer between 0 and 6,
1818 where 0 is Sunday. DST is t if daylight saving time is in effect,
1819 otherwise nil. ZONE is an integer indicating the number of seconds
1820 east of Greenwich. (Note that Common Lisp has different meanings for
1821 DOW and ZONE.) */)
1822 (Lisp_Object specified_time)
1823 {
1824 time_t time_spec = lisp_seconds_argument (specified_time);
1825 struct tm save_tm;
1826 struct tm *decoded_time;
1827 Lisp_Object list_args[9];
1828
1829 block_input ();
1830 decoded_time = localtime (&time_spec);
1831 if (decoded_time)
1832 save_tm = *decoded_time;
1833 unblock_input ();
1834 if (! (decoded_time
1835 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1836 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1837 time_overflow ();
1838 XSETFASTINT (list_args[0], save_tm.tm_sec);
1839 XSETFASTINT (list_args[1], save_tm.tm_min);
1840 XSETFASTINT (list_args[2], save_tm.tm_hour);
1841 XSETFASTINT (list_args[3], save_tm.tm_mday);
1842 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1843 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1844 cast below avoids overflow in int arithmetics. */
1845 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1846 XSETFASTINT (list_args[6], save_tm.tm_wday);
1847 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1848
1849 block_input ();
1850 decoded_time = gmtime (&time_spec);
1851 if (decoded_time == 0)
1852 list_args[8] = Qnil;
1853 else
1854 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1855 unblock_input ();
1856 return Flist (9, list_args);
1857 }
1858
1859 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1860 the result is representable as an int. Assume OFFSET is small and
1861 nonnegative. */
1862 static int
1863 check_tm_member (Lisp_Object obj, int offset)
1864 {
1865 EMACS_INT n;
1866 CHECK_NUMBER (obj);
1867 n = XINT (obj);
1868 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1869 time_overflow ();
1870 return n - offset;
1871 }
1872
1873 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1874 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1875 This is the reverse operation of `decode-time', which see.
1876 ZONE defaults to the current time zone rule. This can
1877 be a string or t (as from `set-time-zone-rule'), or it can be a list
1878 \(as from `current-time-zone') or an integer (as from `decode-time')
1879 applied without consideration for daylight saving time.
1880
1881 You can pass more than 7 arguments; then the first six arguments
1882 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1883 The intervening arguments are ignored.
1884 This feature lets (apply 'encode-time (decode-time ...)) work.
1885
1886 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1887 for example, a DAY of 0 means the day preceding the given month.
1888 Year numbers less than 100 are treated just like other year numbers.
1889 If you want them to stand for years in this century, you must do that yourself.
1890
1891 Years before 1970 are not guaranteed to work. On some systems,
1892 year values as low as 1901 do work.
1893
1894 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1895 (ptrdiff_t nargs, Lisp_Object *args)
1896 {
1897 time_t value;
1898 struct tm tm;
1899 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1900
1901 tm.tm_sec = check_tm_member (args[0], 0);
1902 tm.tm_min = check_tm_member (args[1], 0);
1903 tm.tm_hour = check_tm_member (args[2], 0);
1904 tm.tm_mday = check_tm_member (args[3], 0);
1905 tm.tm_mon = check_tm_member (args[4], 1);
1906 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1907 tm.tm_isdst = -1;
1908
1909 if (CONSP (zone))
1910 zone = XCAR (zone);
1911 if (NILP (zone))
1912 {
1913 block_input ();
1914 value = mktime (&tm);
1915 unblock_input ();
1916 }
1917 else
1918 {
1919 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1920 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1921 char *old_tzstring;
1922 const char *tzstring;
1923 USE_SAFE_ALLOCA;
1924
1925 if (EQ (zone, Qt))
1926 tzstring = "UTC0";
1927 else if (STRINGP (zone))
1928 tzstring = SSDATA (zone);
1929 else if (INTEGERP (zone))
1930 {
1931 EMACS_INT abszone = eabs (XINT (zone));
1932 EMACS_INT zone_hr = abszone / (60*60);
1933 int zone_min = (abszone/60) % 60;
1934 int zone_sec = abszone % 60;
1935 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
1936 zone_hr, zone_min, zone_sec);
1937 tzstring = tzbuf;
1938 }
1939 else
1940 error ("Invalid time zone specification");
1941
1942 old_tzstring = getenv ("TZ");
1943 if (old_tzstring)
1944 {
1945 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1946 old_tzstring = strcpy (buf, old_tzstring);
1947 }
1948
1949 block_input ();
1950
1951 /* Set TZ before calling mktime; merely adjusting mktime's returned
1952 value doesn't suffice, since that would mishandle leap seconds. */
1953 set_time_zone_rule (tzstring);
1954
1955 value = mktime (&tm);
1956
1957 set_time_zone_rule (old_tzstring);
1958 #ifdef LOCALTIME_CACHE
1959 tzset ();
1960 #endif
1961 unblock_input ();
1962 SAFE_FREE ();
1963 }
1964
1965 if (value == (time_t) -1)
1966 time_overflow ();
1967
1968 return make_time (value);
1969 }
1970
1971 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1972 doc: /* Return the current local time, as a human-readable string.
1973 Programs can use this function to decode a time,
1974 since the number of columns in each field is fixed
1975 if the year is in the range 1000-9999.
1976 The format is `Sun Sep 16 01:03:52 1973'.
1977 However, see also the functions `decode-time' and `format-time-string'
1978 which provide a much more powerful and general facility.
1979
1980 If SPECIFIED-TIME is given, it is a time to format instead of the
1981 current time. The argument should have the form (HIGH LOW . IGNORED).
1982 Thus, you can use times obtained from `current-time' and from
1983 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1984 but this is considered obsolete. */)
1985 (Lisp_Object specified_time)
1986 {
1987 time_t value = lisp_seconds_argument (specified_time);
1988 struct tm *tm;
1989 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1990 int len IF_LINT (= 0);
1991
1992 /* Convert to a string in ctime format, except without the trailing
1993 newline, and without the 4-digit year limit. Don't use asctime
1994 or ctime, as they might dump core if the year is outside the
1995 range -999 .. 9999. */
1996 block_input ();
1997 tm = localtime (&value);
1998 if (tm)
1999 {
2000 static char const wday_name[][4] =
2001 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2002 static char const mon_name[][4] =
2003 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2004 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2005 printmax_t year_base = TM_YEAR_BASE;
2006
2007 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2008 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2009 tm->tm_hour, tm->tm_min, tm->tm_sec,
2010 tm->tm_year + year_base);
2011 }
2012 unblock_input ();
2013 if (! tm)
2014 time_overflow ();
2015
2016 return make_unibyte_string (buf, len);
2017 }
2018
2019 /* Yield A - B, measured in seconds.
2020 This function is copied from the GNU C Library. */
2021 static int
2022 tm_diff (struct tm *a, struct tm *b)
2023 {
2024 /* Compute intervening leap days correctly even if year is negative.
2025 Take care to avoid int overflow in leap day calculations,
2026 but it's OK to assume that A and B are close to each other. */
2027 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2028 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2029 int a100 = a4 / 25 - (a4 % 25 < 0);
2030 int b100 = b4 / 25 - (b4 % 25 < 0);
2031 int a400 = a100 >> 2;
2032 int b400 = b100 >> 2;
2033 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2034 int years = a->tm_year - b->tm_year;
2035 int days = (365 * years + intervening_leap_days
2036 + (a->tm_yday - b->tm_yday));
2037 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2038 + (a->tm_min - b->tm_min))
2039 + (a->tm_sec - b->tm_sec));
2040 }
2041
2042 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2043 doc: /* Return the offset and name for the local time zone.
2044 This returns a list of the form (OFFSET NAME).
2045 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2046 A negative value means west of Greenwich.
2047 NAME is a string giving the name of the time zone.
2048 If SPECIFIED-TIME is given, the time zone offset is determined from it
2049 instead of using the current time. The argument should have the form
2050 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2051 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2052 have the form (HIGH . LOW), but this is considered obsolete.
2053
2054 Some operating systems cannot provide all this information to Emacs;
2055 in this case, `current-time-zone' returns a list containing nil for
2056 the data it can't find. */)
2057 (Lisp_Object specified_time)
2058 {
2059 struct timespec value;
2060 int offset;
2061 struct tm *t;
2062 struct tm localtm;
2063 Lisp_Object zone_offset, zone_name;
2064
2065 zone_offset = Qnil;
2066 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2067 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2068 block_input ();
2069 t = gmtime (&value.tv_sec);
2070 if (t)
2071 offset = tm_diff (&localtm, t);
2072 unblock_input ();
2073
2074 if (t)
2075 {
2076 zone_offset = make_number (offset);
2077 if (SCHARS (zone_name) == 0)
2078 {
2079 /* No local time zone name is available; use "+-NNNN" instead. */
2080 int m = offset / 60;
2081 int am = offset < 0 ? - m : m;
2082 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2083 zone_name = make_formatted_string (buf, "%c%02d%02d",
2084 (offset < 0 ? '-' : '+'),
2085 am / 60, am % 60);
2086 }
2087 }
2088
2089 return list2 (zone_offset, zone_name);
2090 }
2091
2092 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2093 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2094 If TZ is nil, use implementation-defined default time zone information.
2095 If TZ is t, use Universal Time.
2096
2097 Instead of calling this function, you typically want (setenv "TZ" TZ).
2098 That changes both the environment of the Emacs process and the
2099 variable `process-environment', whereas `set-time-zone-rule' affects
2100 only the former. */)
2101 (Lisp_Object tz)
2102 {
2103 const char *tzstring;
2104
2105 if (! (NILP (tz) || EQ (tz, Qt)))
2106 CHECK_STRING (tz);
2107
2108 if (NILP (tz))
2109 tzstring = initial_tz;
2110 else if (EQ (tz, Qt))
2111 tzstring = "UTC0";
2112 else
2113 tzstring = SSDATA (tz);
2114
2115 block_input ();
2116 set_time_zone_rule (tzstring);
2117 unblock_input ();
2118
2119 return Qnil;
2120 }
2121
2122 /* Set the local time zone rule to TZSTRING.
2123
2124 This function is not thread-safe, partly because putenv, unsetenv
2125 and tzset are not, and partly because of the static storage it
2126 updates. Other threads that invoke localtime etc. may be adversely
2127 affected while this function is executing. */
2128
2129 void
2130 set_time_zone_rule (const char *tzstring)
2131 {
2132 /* A buffer holding a string of the form "TZ=value", intended
2133 to be part of the environment. */
2134 static char *tzvalbuf;
2135 static ptrdiff_t tzvalbufsize;
2136
2137 int tzeqlen = sizeof "TZ=" - 1;
2138
2139 #ifdef LOCALTIME_CACHE
2140 /* These two values are known to load tz files in buggy implementations,
2141 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2142 Their values shouldn't matter in non-buggy implementations.
2143 We don't use string literals for these strings,
2144 since if a string in the environment is in readonly
2145 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2146 See Sun bugs 1113095 and 1114114, ``Timezone routines
2147 improperly modify environment''. */
2148
2149 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2150 = { "TZ=GMT+0", "TZ=GMT+1" };
2151
2152 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2153 "US/Pacific" that loads a tz file, then changes to a value like
2154 "XXX0" that does not load a tz file, and then changes back to
2155 its original value, the last change is (incorrectly) ignored.
2156 Also, if TZ changes twice in succession to values that do
2157 not load a tz file, tzset can dump core (see Sun bug#1225179).
2158 The following code works around these bugs. */
2159
2160 if (tzstring)
2161 {
2162 /* Temporarily set TZ to a value that loads a tz file
2163 and that differs from tzstring. */
2164 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2165 xputenv (set_time_zone_rule_tz[eq0]);
2166 }
2167 else
2168 {
2169 /* The implied tzstring is unknown, so temporarily set TZ to
2170 two different values that each load a tz file. */
2171 xputenv (set_time_zone_rule_tz[0]);
2172 tzset ();
2173 xputenv (set_time_zone_rule_tz[1]);
2174 }
2175 tzset ();
2176 tzvalbuf_in_environ = 0;
2177 #endif
2178
2179 if (!tzstring)
2180 {
2181 unsetenv ("TZ");
2182 tzvalbuf_in_environ = 0;
2183 }
2184 else
2185 {
2186 ptrdiff_t tzstringlen = strlen (tzstring);
2187
2188 if (tzvalbufsize <= tzeqlen + tzstringlen)
2189 {
2190 unsetenv ("TZ");
2191 tzvalbuf_in_environ = 0;
2192 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2193 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2194 memcpy (tzvalbuf, "TZ=", tzeqlen);
2195 }
2196
2197 strcpy (tzvalbuf + tzeqlen, tzstring);
2198
2199 if (!tzvalbuf_in_environ)
2200 {
2201 xputenv (tzvalbuf);
2202 tzvalbuf_in_environ = 1;
2203 }
2204 }
2205
2206 #ifdef LOCALTIME_CACHE
2207 tzset ();
2208 #endif
2209 }
2210 \f
2211 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2212 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2213 type of object is Lisp_String). INHERIT is passed to
2214 INSERT_FROM_STRING_FUNC as the last argument. */
2215
2216 static void
2217 general_insert_function (void (*insert_func)
2218 (const char *, ptrdiff_t),
2219 void (*insert_from_string_func)
2220 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2221 ptrdiff_t, ptrdiff_t, bool),
2222 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2223 {
2224 ptrdiff_t argnum;
2225 Lisp_Object val;
2226
2227 for (argnum = 0; argnum < nargs; argnum++)
2228 {
2229 val = args[argnum];
2230 if (CHARACTERP (val))
2231 {
2232 int c = XFASTINT (val);
2233 unsigned char str[MAX_MULTIBYTE_LENGTH];
2234 int len;
2235
2236 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2237 len = CHAR_STRING (c, str);
2238 else
2239 {
2240 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2241 len = 1;
2242 }
2243 (*insert_func) ((char *) str, len);
2244 }
2245 else if (STRINGP (val))
2246 {
2247 (*insert_from_string_func) (val, 0, 0,
2248 SCHARS (val),
2249 SBYTES (val),
2250 inherit);
2251 }
2252 else
2253 wrong_type_argument (Qchar_or_string_p, val);
2254 }
2255 }
2256
2257 void
2258 insert1 (Lisp_Object arg)
2259 {
2260 Finsert (1, &arg);
2261 }
2262
2263
2264 /* Callers passing one argument to Finsert need not gcpro the
2265 argument "array", since the only element of the array will
2266 not be used after calling insert or insert_from_string, so
2267 we don't care if it gets trashed. */
2268
2269 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2270 doc: /* Insert the arguments, either strings or characters, at point.
2271 Point and before-insertion markers move forward to end up
2272 after the inserted text.
2273 Any other markers at the point of insertion remain before the text.
2274
2275 If the current buffer is multibyte, unibyte strings are converted
2276 to multibyte for insertion (see `string-make-multibyte').
2277 If the current buffer is unibyte, multibyte strings are converted
2278 to unibyte for insertion (see `string-make-unibyte').
2279
2280 When operating on binary data, it may be necessary to preserve the
2281 original bytes of a unibyte string when inserting it into a multibyte
2282 buffer; to accomplish this, apply `string-as-multibyte' to the string
2283 and insert the result.
2284
2285 usage: (insert &rest ARGS) */)
2286 (ptrdiff_t nargs, Lisp_Object *args)
2287 {
2288 general_insert_function (insert, insert_from_string, 0, nargs, args);
2289 return Qnil;
2290 }
2291
2292 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2293 0, MANY, 0,
2294 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2295 Point and before-insertion markers move forward to end up
2296 after the inserted text.
2297 Any other markers at the point of insertion remain before the text.
2298
2299 If the current buffer is multibyte, unibyte strings are converted
2300 to multibyte for insertion (see `unibyte-char-to-multibyte').
2301 If the current buffer is unibyte, multibyte strings are converted
2302 to unibyte for insertion.
2303
2304 usage: (insert-and-inherit &rest ARGS) */)
2305 (ptrdiff_t nargs, Lisp_Object *args)
2306 {
2307 general_insert_function (insert_and_inherit, insert_from_string, 1,
2308 nargs, args);
2309 return Qnil;
2310 }
2311
2312 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2313 doc: /* Insert strings or characters at point, relocating markers after the text.
2314 Point and markers move forward to end up after the inserted text.
2315
2316 If the current buffer is multibyte, unibyte strings are converted
2317 to multibyte for insertion (see `unibyte-char-to-multibyte').
2318 If the current buffer is unibyte, multibyte strings are converted
2319 to unibyte for insertion.
2320
2321 If an overlay begins at the insertion point, the inserted text falls
2322 outside the overlay; if a nonempty overlay ends at the insertion
2323 point, the inserted text falls inside that overlay.
2324
2325 usage: (insert-before-markers &rest ARGS) */)
2326 (ptrdiff_t nargs, Lisp_Object *args)
2327 {
2328 general_insert_function (insert_before_markers,
2329 insert_from_string_before_markers, 0,
2330 nargs, args);
2331 return Qnil;
2332 }
2333
2334 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2335 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2336 doc: /* Insert text at point, relocating markers and inheriting properties.
2337 Point and markers move forward to end up after the inserted text.
2338
2339 If the current buffer is multibyte, unibyte strings are converted
2340 to multibyte for insertion (see `unibyte-char-to-multibyte').
2341 If the current buffer is unibyte, multibyte strings are converted
2342 to unibyte for insertion.
2343
2344 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2345 (ptrdiff_t nargs, Lisp_Object *args)
2346 {
2347 general_insert_function (insert_before_markers_and_inherit,
2348 insert_from_string_before_markers, 1,
2349 nargs, args);
2350 return Qnil;
2351 }
2352 \f
2353 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2354 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2355 (prefix-numeric-value current-prefix-arg)\
2356 t))",
2357 doc: /* Insert COUNT copies of CHARACTER.
2358 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2359 of these ways:
2360
2361 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2362 Completion is available; if you type a substring of the name
2363 preceded by an asterisk `*', Emacs shows all names which include
2364 that substring, not necessarily at the beginning of the name.
2365
2366 - As a hexadecimal code point, e.g. 263A. Note that code points in
2367 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2368 the Unicode code space).
2369
2370 - As a code point with a radix specified with #, e.g. #o21430
2371 (octal), #x2318 (hex), or #10r8984 (decimal).
2372
2373 If called interactively, COUNT is given by the prefix argument. If
2374 omitted or nil, it defaults to 1.
2375
2376 Inserting the character(s) relocates point and before-insertion
2377 markers in the same ways as the function `insert'.
2378
2379 The optional third argument INHERIT, if non-nil, says to inherit text
2380 properties from adjoining text, if those properties are sticky. If
2381 called interactively, INHERIT is t. */)
2382 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2383 {
2384 int i, stringlen;
2385 register ptrdiff_t n;
2386 int c, len;
2387 unsigned char str[MAX_MULTIBYTE_LENGTH];
2388 char string[4000];
2389
2390 CHECK_CHARACTER (character);
2391 if (NILP (count))
2392 XSETFASTINT (count, 1);
2393 CHECK_NUMBER (count);
2394 c = XFASTINT (character);
2395
2396 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2397 len = CHAR_STRING (c, str);
2398 else
2399 str[0] = c, len = 1;
2400 if (XINT (count) <= 0)
2401 return Qnil;
2402 if (BUF_BYTES_MAX / len < XINT (count))
2403 buffer_overflow ();
2404 n = XINT (count) * len;
2405 stringlen = min (n, sizeof string - sizeof string % len);
2406 for (i = 0; i < stringlen; i++)
2407 string[i] = str[i % len];
2408 while (n > stringlen)
2409 {
2410 QUIT;
2411 if (!NILP (inherit))
2412 insert_and_inherit (string, stringlen);
2413 else
2414 insert (string, stringlen);
2415 n -= stringlen;
2416 }
2417 if (!NILP (inherit))
2418 insert_and_inherit (string, n);
2419 else
2420 insert (string, n);
2421 return Qnil;
2422 }
2423
2424 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2425 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2426 Both arguments are required.
2427 BYTE is a number of the range 0..255.
2428
2429 If BYTE is 128..255 and the current buffer is multibyte, the
2430 corresponding eight-bit character is inserted.
2431
2432 Point, and before-insertion markers, are relocated as in the function `insert'.
2433 The optional third arg INHERIT, if non-nil, says to inherit text properties
2434 from adjoining text, if those properties are sticky. */)
2435 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2436 {
2437 CHECK_NUMBER (byte);
2438 if (XINT (byte) < 0 || XINT (byte) > 255)
2439 args_out_of_range_3 (byte, make_number (0), make_number (255));
2440 if (XINT (byte) >= 128
2441 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2442 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2443 return Finsert_char (byte, count, inherit);
2444 }
2445
2446 \f
2447 /* Making strings from buffer contents. */
2448
2449 /* Return a Lisp_String containing the text of the current buffer from
2450 START to END. If text properties are in use and the current buffer
2451 has properties in the range specified, the resulting string will also
2452 have them, if PROPS is true.
2453
2454 We don't want to use plain old make_string here, because it calls
2455 make_uninit_string, which can cause the buffer arena to be
2456 compacted. make_string has no way of knowing that the data has
2457 been moved, and thus copies the wrong data into the string. This
2458 doesn't effect most of the other users of make_string, so it should
2459 be left as is. But we should use this function when conjuring
2460 buffer substrings. */
2461
2462 Lisp_Object
2463 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2464 {
2465 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2466 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2467
2468 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2469 }
2470
2471 /* Return a Lisp_String containing the text of the current buffer from
2472 START / START_BYTE to END / END_BYTE.
2473
2474 If text properties are in use and the current buffer
2475 has properties in the range specified, the resulting string will also
2476 have them, if PROPS is true.
2477
2478 We don't want to use plain old make_string here, because it calls
2479 make_uninit_string, which can cause the buffer arena to be
2480 compacted. make_string has no way of knowing that the data has
2481 been moved, and thus copies the wrong data into the string. This
2482 doesn't effect most of the other users of make_string, so it should
2483 be left as is. But we should use this function when conjuring
2484 buffer substrings. */
2485
2486 Lisp_Object
2487 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2488 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2489 {
2490 Lisp_Object result, tem, tem1;
2491
2492 if (start < GPT && GPT < end)
2493 move_gap_both (start, start_byte);
2494
2495 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2496 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2497 else
2498 result = make_uninit_string (end - start);
2499 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2500
2501 /* If desired, update and copy the text properties. */
2502 if (props)
2503 {
2504 update_buffer_properties (start, end);
2505
2506 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2507 tem1 = Ftext_properties_at (make_number (start), Qnil);
2508
2509 if (XINT (tem) != end || !NILP (tem1))
2510 copy_intervals_to_string (result, current_buffer, start,
2511 end - start);
2512 }
2513
2514 return result;
2515 }
2516
2517 /* Call Vbuffer_access_fontify_functions for the range START ... END
2518 in the current buffer, if necessary. */
2519
2520 static void
2521 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2522 {
2523 /* If this buffer has some access functions,
2524 call them, specifying the range of the buffer being accessed. */
2525 if (!NILP (Vbuffer_access_fontify_functions))
2526 {
2527 Lisp_Object args[3];
2528 Lisp_Object tem;
2529
2530 args[0] = Qbuffer_access_fontify_functions;
2531 XSETINT (args[1], start);
2532 XSETINT (args[2], end);
2533
2534 /* But don't call them if we can tell that the work
2535 has already been done. */
2536 if (!NILP (Vbuffer_access_fontified_property))
2537 {
2538 tem = Ftext_property_any (args[1], args[2],
2539 Vbuffer_access_fontified_property,
2540 Qnil, Qnil);
2541 if (! NILP (tem))
2542 Frun_hook_with_args (3, args);
2543 }
2544 else
2545 Frun_hook_with_args (3, args);
2546 }
2547 }
2548
2549 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2550 doc: /* Return the contents of part of the current buffer as a string.
2551 The two arguments START and END are character positions;
2552 they can be in either order.
2553 The string returned is multibyte if the buffer is multibyte.
2554
2555 This function copies the text properties of that part of the buffer
2556 into the result string; if you don't want the text properties,
2557 use `buffer-substring-no-properties' instead. */)
2558 (Lisp_Object start, Lisp_Object end)
2559 {
2560 register ptrdiff_t b, e;
2561
2562 validate_region (&start, &end);
2563 b = XINT (start);
2564 e = XINT (end);
2565
2566 return make_buffer_string (b, e, 1);
2567 }
2568
2569 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2570 Sbuffer_substring_no_properties, 2, 2, 0,
2571 doc: /* Return the characters of part of the buffer, without the text properties.
2572 The two arguments START and END are character positions;
2573 they can be in either order. */)
2574 (Lisp_Object start, Lisp_Object end)
2575 {
2576 register ptrdiff_t b, e;
2577
2578 validate_region (&start, &end);
2579 b = XINT (start);
2580 e = XINT (end);
2581
2582 return make_buffer_string (b, e, 0);
2583 }
2584
2585 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2586 doc: /* Return the contents of the current buffer as a string.
2587 If narrowing is in effect, this function returns only the visible part
2588 of the buffer. */)
2589 (void)
2590 {
2591 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2592 }
2593
2594 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2595 1, 3, 0,
2596 doc: /* Insert before point a substring of the contents of BUFFER.
2597 BUFFER may be a buffer or a buffer name.
2598 Arguments START and END are character positions specifying the substring.
2599 They default to the values of (point-min) and (point-max) in BUFFER. */)
2600 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2601 {
2602 register EMACS_INT b, e, temp;
2603 register struct buffer *bp, *obuf;
2604 Lisp_Object buf;
2605
2606 buf = Fget_buffer (buffer);
2607 if (NILP (buf))
2608 nsberror (buffer);
2609 bp = XBUFFER (buf);
2610 if (!BUFFER_LIVE_P (bp))
2611 error ("Selecting deleted buffer");
2612
2613 if (NILP (start))
2614 b = BUF_BEGV (bp);
2615 else
2616 {
2617 CHECK_NUMBER_COERCE_MARKER (start);
2618 b = XINT (start);
2619 }
2620 if (NILP (end))
2621 e = BUF_ZV (bp);
2622 else
2623 {
2624 CHECK_NUMBER_COERCE_MARKER (end);
2625 e = XINT (end);
2626 }
2627
2628 if (b > e)
2629 temp = b, b = e, e = temp;
2630
2631 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2632 args_out_of_range (start, end);
2633
2634 obuf = current_buffer;
2635 set_buffer_internal_1 (bp);
2636 update_buffer_properties (b, e);
2637 set_buffer_internal_1 (obuf);
2638
2639 insert_from_buffer (bp, b, e - b, 0);
2640 return Qnil;
2641 }
2642
2643 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2644 6, 6, 0,
2645 doc: /* Compare two substrings of two buffers; return result as number.
2646 Return -N if first string is less after N-1 chars, +N if first string is
2647 greater after N-1 chars, or 0 if strings match. Each substring is
2648 represented as three arguments: BUFFER, START and END. That makes six
2649 args in all, three for each substring.
2650
2651 The value of `case-fold-search' in the current buffer
2652 determines whether case is significant or ignored. */)
2653 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2654 {
2655 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2656 register struct buffer *bp1, *bp2;
2657 register Lisp_Object trt
2658 = (!NILP (BVAR (current_buffer, case_fold_search))
2659 ? BVAR (current_buffer, case_canon_table) : Qnil);
2660 ptrdiff_t chars = 0;
2661 ptrdiff_t i1, i2, i1_byte, i2_byte;
2662
2663 /* Find the first buffer and its substring. */
2664
2665 if (NILP (buffer1))
2666 bp1 = current_buffer;
2667 else
2668 {
2669 Lisp_Object buf1;
2670 buf1 = Fget_buffer (buffer1);
2671 if (NILP (buf1))
2672 nsberror (buffer1);
2673 bp1 = XBUFFER (buf1);
2674 if (!BUFFER_LIVE_P (bp1))
2675 error ("Selecting deleted buffer");
2676 }
2677
2678 if (NILP (start1))
2679 begp1 = BUF_BEGV (bp1);
2680 else
2681 {
2682 CHECK_NUMBER_COERCE_MARKER (start1);
2683 begp1 = XINT (start1);
2684 }
2685 if (NILP (end1))
2686 endp1 = BUF_ZV (bp1);
2687 else
2688 {
2689 CHECK_NUMBER_COERCE_MARKER (end1);
2690 endp1 = XINT (end1);
2691 }
2692
2693 if (begp1 > endp1)
2694 temp = begp1, begp1 = endp1, endp1 = temp;
2695
2696 if (!(BUF_BEGV (bp1) <= begp1
2697 && begp1 <= endp1
2698 && endp1 <= BUF_ZV (bp1)))
2699 args_out_of_range (start1, end1);
2700
2701 /* Likewise for second substring. */
2702
2703 if (NILP (buffer2))
2704 bp2 = current_buffer;
2705 else
2706 {
2707 Lisp_Object buf2;
2708 buf2 = Fget_buffer (buffer2);
2709 if (NILP (buf2))
2710 nsberror (buffer2);
2711 bp2 = XBUFFER (buf2);
2712 if (!BUFFER_LIVE_P (bp2))
2713 error ("Selecting deleted buffer");
2714 }
2715
2716 if (NILP (start2))
2717 begp2 = BUF_BEGV (bp2);
2718 else
2719 {
2720 CHECK_NUMBER_COERCE_MARKER (start2);
2721 begp2 = XINT (start2);
2722 }
2723 if (NILP (end2))
2724 endp2 = BUF_ZV (bp2);
2725 else
2726 {
2727 CHECK_NUMBER_COERCE_MARKER (end2);
2728 endp2 = XINT (end2);
2729 }
2730
2731 if (begp2 > endp2)
2732 temp = begp2, begp2 = endp2, endp2 = temp;
2733
2734 if (!(BUF_BEGV (bp2) <= begp2
2735 && begp2 <= endp2
2736 && endp2 <= BUF_ZV (bp2)))
2737 args_out_of_range (start2, end2);
2738
2739 i1 = begp1;
2740 i2 = begp2;
2741 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2742 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2743
2744 while (i1 < endp1 && i2 < endp2)
2745 {
2746 /* When we find a mismatch, we must compare the
2747 characters, not just the bytes. */
2748 int c1, c2;
2749
2750 QUIT;
2751
2752 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2753 {
2754 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2755 BUF_INC_POS (bp1, i1_byte);
2756 i1++;
2757 }
2758 else
2759 {
2760 c1 = BUF_FETCH_BYTE (bp1, i1);
2761 MAKE_CHAR_MULTIBYTE (c1);
2762 i1++;
2763 }
2764
2765 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2766 {
2767 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2768 BUF_INC_POS (bp2, i2_byte);
2769 i2++;
2770 }
2771 else
2772 {
2773 c2 = BUF_FETCH_BYTE (bp2, i2);
2774 MAKE_CHAR_MULTIBYTE (c2);
2775 i2++;
2776 }
2777
2778 if (!NILP (trt))
2779 {
2780 c1 = char_table_translate (trt, c1);
2781 c2 = char_table_translate (trt, c2);
2782 }
2783 if (c1 < c2)
2784 return make_number (- 1 - chars);
2785 if (c1 > c2)
2786 return make_number (chars + 1);
2787
2788 chars++;
2789 }
2790
2791 /* The strings match as far as they go.
2792 If one is shorter, that one is less. */
2793 if (chars < endp1 - begp1)
2794 return make_number (chars + 1);
2795 else if (chars < endp2 - begp2)
2796 return make_number (- chars - 1);
2797
2798 /* Same length too => they are equal. */
2799 return make_number (0);
2800 }
2801 \f
2802 static void
2803 subst_char_in_region_unwind (Lisp_Object arg)
2804 {
2805 bset_undo_list (current_buffer, arg);
2806 }
2807
2808 static void
2809 subst_char_in_region_unwind_1 (Lisp_Object arg)
2810 {
2811 bset_filename (current_buffer, arg);
2812 }
2813
2814 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2815 Ssubst_char_in_region, 4, 5, 0,
2816 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2817 If optional arg NOUNDO is non-nil, don't record this change for undo
2818 and don't mark the buffer as really changed.
2819 Both characters must have the same length of multi-byte form. */)
2820 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2821 {
2822 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2823 /* Keep track of the first change in the buffer:
2824 if 0 we haven't found it yet.
2825 if < 0 we've found it and we've run the before-change-function.
2826 if > 0 we've actually performed it and the value is its position. */
2827 ptrdiff_t changed = 0;
2828 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2829 unsigned char *p;
2830 ptrdiff_t count = SPECPDL_INDEX ();
2831 #define COMBINING_NO 0
2832 #define COMBINING_BEFORE 1
2833 #define COMBINING_AFTER 2
2834 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2835 int maybe_byte_combining = COMBINING_NO;
2836 ptrdiff_t last_changed = 0;
2837 bool multibyte_p
2838 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2839 int fromc, toc;
2840
2841 restart:
2842
2843 validate_region (&start, &end);
2844 CHECK_CHARACTER (fromchar);
2845 CHECK_CHARACTER (tochar);
2846 fromc = XFASTINT (fromchar);
2847 toc = XFASTINT (tochar);
2848
2849 if (multibyte_p)
2850 {
2851 len = CHAR_STRING (fromc, fromstr);
2852 if (CHAR_STRING (toc, tostr) != len)
2853 error ("Characters in `subst-char-in-region' have different byte-lengths");
2854 if (!ASCII_BYTE_P (*tostr))
2855 {
2856 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2857 complete multibyte character, it may be combined with the
2858 after bytes. If it is in the range 0xA0..0xFF, it may be
2859 combined with the before and after bytes. */
2860 if (!CHAR_HEAD_P (*tostr))
2861 maybe_byte_combining = COMBINING_BOTH;
2862 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2863 maybe_byte_combining = COMBINING_AFTER;
2864 }
2865 }
2866 else
2867 {
2868 len = 1;
2869 fromstr[0] = fromc;
2870 tostr[0] = toc;
2871 }
2872
2873 pos = XINT (start);
2874 pos_byte = CHAR_TO_BYTE (pos);
2875 stop = CHAR_TO_BYTE (XINT (end));
2876 end_byte = stop;
2877
2878 /* If we don't want undo, turn off putting stuff on the list.
2879 That's faster than getting rid of things,
2880 and it prevents even the entry for a first change.
2881 Also inhibit locking the file. */
2882 if (!changed && !NILP (noundo))
2883 {
2884 record_unwind_protect (subst_char_in_region_unwind,
2885 BVAR (current_buffer, undo_list));
2886 bset_undo_list (current_buffer, Qt);
2887 /* Don't do file-locking. */
2888 record_unwind_protect (subst_char_in_region_unwind_1,
2889 BVAR (current_buffer, filename));
2890 bset_filename (current_buffer, Qnil);
2891 }
2892
2893 if (pos_byte < GPT_BYTE)
2894 stop = min (stop, GPT_BYTE);
2895 while (1)
2896 {
2897 ptrdiff_t pos_byte_next = pos_byte;
2898
2899 if (pos_byte >= stop)
2900 {
2901 if (pos_byte >= end_byte) break;
2902 stop = end_byte;
2903 }
2904 p = BYTE_POS_ADDR (pos_byte);
2905 if (multibyte_p)
2906 INC_POS (pos_byte_next);
2907 else
2908 ++pos_byte_next;
2909 if (pos_byte_next - pos_byte == len
2910 && p[0] == fromstr[0]
2911 && (len == 1
2912 || (p[1] == fromstr[1]
2913 && (len == 2 || (p[2] == fromstr[2]
2914 && (len == 3 || p[3] == fromstr[3]))))))
2915 {
2916 if (changed < 0)
2917 /* We've already seen this and run the before-change-function;
2918 this time we only need to record the actual position. */
2919 changed = pos;
2920 else if (!changed)
2921 {
2922 changed = -1;
2923 modify_text (pos, XINT (end));
2924
2925 if (! NILP (noundo))
2926 {
2927 if (MODIFF - 1 == SAVE_MODIFF)
2928 SAVE_MODIFF++;
2929 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2930 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2931 }
2932
2933 /* The before-change-function may have moved the gap
2934 or even modified the buffer so we should start over. */
2935 goto restart;
2936 }
2937
2938 /* Take care of the case where the new character
2939 combines with neighboring bytes. */
2940 if (maybe_byte_combining
2941 && (maybe_byte_combining == COMBINING_AFTER
2942 ? (pos_byte_next < Z_BYTE
2943 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2944 : ((pos_byte_next < Z_BYTE
2945 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2946 || (pos_byte > BEG_BYTE
2947 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2948 {
2949 Lisp_Object tem, string;
2950
2951 struct gcpro gcpro1;
2952
2953 tem = BVAR (current_buffer, undo_list);
2954 GCPRO1 (tem);
2955
2956 /* Make a multibyte string containing this single character. */
2957 string = make_multibyte_string ((char *) tostr, 1, len);
2958 /* replace_range is less efficient, because it moves the gap,
2959 but it handles combining correctly. */
2960 replace_range (pos, pos + 1, string,
2961 0, 0, 1);
2962 pos_byte_next = CHAR_TO_BYTE (pos);
2963 if (pos_byte_next > pos_byte)
2964 /* Before combining happened. We should not increment
2965 POS. So, to cancel the later increment of POS,
2966 decrease it now. */
2967 pos--;
2968 else
2969 INC_POS (pos_byte_next);
2970
2971 if (! NILP (noundo))
2972 bset_undo_list (current_buffer, tem);
2973
2974 UNGCPRO;
2975 }
2976 else
2977 {
2978 if (NILP (noundo))
2979 record_change (pos, 1);
2980 for (i = 0; i < len; i++) *p++ = tostr[i];
2981 }
2982 last_changed = pos + 1;
2983 }
2984 pos_byte = pos_byte_next;
2985 pos++;
2986 }
2987
2988 if (changed > 0)
2989 {
2990 signal_after_change (changed,
2991 last_changed - changed, last_changed - changed);
2992 update_compositions (changed, last_changed, CHECK_ALL);
2993 }
2994
2995 unbind_to (count, Qnil);
2996 return Qnil;
2997 }
2998
2999
3000 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3001 Lisp_Object);
3002
3003 /* Helper function for Ftranslate_region_internal.
3004
3005 Check if a character sequence at POS (POS_BYTE) matches an element
3006 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3007 element is found, return it. Otherwise return Qnil. */
3008
3009 static Lisp_Object
3010 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3011 Lisp_Object val)
3012 {
3013 int buf_size = 16, buf_used = 0;
3014 int *buf = alloca (sizeof (int) * buf_size);
3015
3016 for (; CONSP (val); val = XCDR (val))
3017 {
3018 Lisp_Object elt;
3019 ptrdiff_t len, i;
3020
3021 elt = XCAR (val);
3022 if (! CONSP (elt))
3023 continue;
3024 elt = XCAR (elt);
3025 if (! VECTORP (elt))
3026 continue;
3027 len = ASIZE (elt);
3028 if (len <= end - pos)
3029 {
3030 for (i = 0; i < len; i++)
3031 {
3032 if (buf_used <= i)
3033 {
3034 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3035 int len1;
3036
3037 if (buf_used == buf_size)
3038 {
3039 int *newbuf;
3040
3041 buf_size += 16;
3042 newbuf = alloca (sizeof (int) * buf_size);
3043 memcpy (newbuf, buf, sizeof (int) * buf_used);
3044 buf = newbuf;
3045 }
3046 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3047 pos_byte += len1;
3048 }
3049 if (XINT (AREF (elt, i)) != buf[i])
3050 break;
3051 }
3052 if (i == len)
3053 return XCAR (val);
3054 }
3055 }
3056 return Qnil;
3057 }
3058
3059
3060 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3061 Stranslate_region_internal, 3, 3, 0,
3062 doc: /* Internal use only.
3063 From START to END, translate characters according to TABLE.
3064 TABLE is a string or a char-table; the Nth character in it is the
3065 mapping for the character with code N.
3066 It returns the number of characters changed. */)
3067 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3068 {
3069 register unsigned char *tt; /* Trans table. */
3070 register int nc; /* New character. */
3071 int cnt; /* Number of changes made. */
3072 ptrdiff_t size; /* Size of translate table. */
3073 ptrdiff_t pos, pos_byte, end_pos;
3074 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3075 bool string_multibyte IF_LINT (= 0);
3076
3077 validate_region (&start, &end);
3078 if (CHAR_TABLE_P (table))
3079 {
3080 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3081 error ("Not a translation table");
3082 size = MAX_CHAR;
3083 tt = NULL;
3084 }
3085 else
3086 {
3087 CHECK_STRING (table);
3088
3089 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3090 table = string_make_unibyte (table);
3091 string_multibyte = SCHARS (table) < SBYTES (table);
3092 size = SBYTES (table);
3093 tt = SDATA (table);
3094 }
3095
3096 pos = XINT (start);
3097 pos_byte = CHAR_TO_BYTE (pos);
3098 end_pos = XINT (end);
3099 modify_text (pos, end_pos);
3100
3101 cnt = 0;
3102 for (; pos < end_pos; )
3103 {
3104 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3105 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3106 int len, str_len;
3107 int oc;
3108 Lisp_Object val;
3109
3110 if (multibyte)
3111 oc = STRING_CHAR_AND_LENGTH (p, len);
3112 else
3113 oc = *p, len = 1;
3114 if (oc < size)
3115 {
3116 if (tt)
3117 {
3118 /* Reload as signal_after_change in last iteration may GC. */
3119 tt = SDATA (table);
3120 if (string_multibyte)
3121 {
3122 str = tt + string_char_to_byte (table, oc);
3123 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3124 }
3125 else
3126 {
3127 nc = tt[oc];
3128 if (! ASCII_BYTE_P (nc) && multibyte)
3129 {
3130 str_len = BYTE8_STRING (nc, buf);
3131 str = buf;
3132 }
3133 else
3134 {
3135 str_len = 1;
3136 str = tt + oc;
3137 }
3138 }
3139 }
3140 else
3141 {
3142 nc = oc;
3143 val = CHAR_TABLE_REF (table, oc);
3144 if (CHARACTERP (val))
3145 {
3146 nc = XFASTINT (val);
3147 str_len = CHAR_STRING (nc, buf);
3148 str = buf;
3149 }
3150 else if (VECTORP (val) || (CONSP (val)))
3151 {
3152 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3153 where TO is TO-CHAR or [TO-CHAR ...]. */
3154 nc = -1;
3155 }
3156 }
3157
3158 if (nc != oc && nc >= 0)
3159 {
3160 /* Simple one char to one char translation. */
3161 if (len != str_len)
3162 {
3163 Lisp_Object string;
3164
3165 /* This is less efficient, because it moves the gap,
3166 but it should handle multibyte characters correctly. */
3167 string = make_multibyte_string ((char *) str, 1, str_len);
3168 replace_range (pos, pos + 1, string, 1, 0, 1);
3169 len = str_len;
3170 }
3171 else
3172 {
3173 record_change (pos, 1);
3174 while (str_len-- > 0)
3175 *p++ = *str++;
3176 signal_after_change (pos, 1, 1);
3177 update_compositions (pos, pos + 1, CHECK_BORDER);
3178 }
3179 ++cnt;
3180 }
3181 else if (nc < 0)
3182 {
3183 Lisp_Object string;
3184
3185 if (CONSP (val))
3186 {
3187 val = check_translation (pos, pos_byte, end_pos, val);
3188 if (NILP (val))
3189 {
3190 pos_byte += len;
3191 pos++;
3192 continue;
3193 }
3194 /* VAL is ([FROM-CHAR ...] . TO). */
3195 len = ASIZE (XCAR (val));
3196 val = XCDR (val);
3197 }
3198 else
3199 len = 1;
3200
3201 if (VECTORP (val))
3202 {
3203 string = Fconcat (1, &val);
3204 }
3205 else
3206 {
3207 string = Fmake_string (make_number (1), val);
3208 }
3209 replace_range (pos, pos + len, string, 1, 0, 1);
3210 pos_byte += SBYTES (string);
3211 pos += SCHARS (string);
3212 cnt += SCHARS (string);
3213 end_pos += SCHARS (string) - len;
3214 continue;
3215 }
3216 }
3217 pos_byte += len;
3218 pos++;
3219 }
3220
3221 return make_number (cnt);
3222 }
3223
3224 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3225 doc: /* Delete the text between START and END.
3226 If called interactively, delete the region between point and mark.
3227 This command deletes buffer text without modifying the kill ring. */)
3228 (Lisp_Object start, Lisp_Object end)
3229 {
3230 validate_region (&start, &end);
3231 del_range (XINT (start), XINT (end));
3232 return Qnil;
3233 }
3234
3235 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3236 Sdelete_and_extract_region, 2, 2, 0,
3237 doc: /* Delete the text between START and END and return it. */)
3238 (Lisp_Object start, Lisp_Object end)
3239 {
3240 validate_region (&start, &end);
3241 if (XINT (start) == XINT (end))
3242 return empty_unibyte_string;
3243 return del_range_1 (XINT (start), XINT (end), 1, 1);
3244 }
3245 \f
3246 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3247 doc: /* Remove restrictions (narrowing) from current buffer.
3248 This allows the buffer's full text to be seen and edited. */)
3249 (void)
3250 {
3251 if (BEG != BEGV || Z != ZV)
3252 current_buffer->clip_changed = 1;
3253 BEGV = BEG;
3254 BEGV_BYTE = BEG_BYTE;
3255 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3256 /* Changing the buffer bounds invalidates any recorded current column. */
3257 invalidate_current_column ();
3258 return Qnil;
3259 }
3260
3261 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3262 doc: /* Restrict editing in this buffer to the current region.
3263 The rest of the text becomes temporarily invisible and untouchable
3264 but is not deleted; if you save the buffer in a file, the invisible
3265 text is included in the file. \\[widen] makes all visible again.
3266 See also `save-restriction'.
3267
3268 When calling from a program, pass two arguments; positions (integers
3269 or markers) bounding the text that should remain visible. */)
3270 (register Lisp_Object start, Lisp_Object end)
3271 {
3272 CHECK_NUMBER_COERCE_MARKER (start);
3273 CHECK_NUMBER_COERCE_MARKER (end);
3274
3275 if (XINT (start) > XINT (end))
3276 {
3277 Lisp_Object tem;
3278 tem = start; start = end; end = tem;
3279 }
3280
3281 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3282 args_out_of_range (start, end);
3283
3284 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3285 current_buffer->clip_changed = 1;
3286
3287 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3288 SET_BUF_ZV (current_buffer, XFASTINT (end));
3289 if (PT < XFASTINT (start))
3290 SET_PT (XFASTINT (start));
3291 if (PT > XFASTINT (end))
3292 SET_PT (XFASTINT (end));
3293 /* Changing the buffer bounds invalidates any recorded current column. */
3294 invalidate_current_column ();
3295 return Qnil;
3296 }
3297
3298 Lisp_Object
3299 save_restriction_save (void)
3300 {
3301 if (BEGV == BEG && ZV == Z)
3302 /* The common case that the buffer isn't narrowed.
3303 We return just the buffer object, which save_restriction_restore
3304 recognizes as meaning `no restriction'. */
3305 return Fcurrent_buffer ();
3306 else
3307 /* We have to save a restriction, so return a pair of markers, one
3308 for the beginning and one for the end. */
3309 {
3310 Lisp_Object beg, end;
3311
3312 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3313 end = build_marker (current_buffer, ZV, ZV_BYTE);
3314
3315 /* END must move forward if text is inserted at its exact location. */
3316 XMARKER (end)->insertion_type = 1;
3317
3318 return Fcons (beg, end);
3319 }
3320 }
3321
3322 void
3323 save_restriction_restore (Lisp_Object data)
3324 {
3325 struct buffer *cur = NULL;
3326 struct buffer *buf = (CONSP (data)
3327 ? XMARKER (XCAR (data))->buffer
3328 : XBUFFER (data));
3329
3330 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3331 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3332 is the case if it is or has an indirect buffer), then make
3333 sure it is current before we update BEGV, so
3334 set_buffer_internal takes care of managing those markers. */
3335 cur = current_buffer;
3336 set_buffer_internal (buf);
3337 }
3338
3339 if (CONSP (data))
3340 /* A pair of marks bounding a saved restriction. */
3341 {
3342 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3343 struct Lisp_Marker *end = XMARKER (XCDR (data));
3344 eassert (buf == end->buffer);
3345
3346 if (buf /* Verify marker still points to a buffer. */
3347 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3348 /* The restriction has changed from the saved one, so restore
3349 the saved restriction. */
3350 {
3351 ptrdiff_t pt = BUF_PT (buf);
3352
3353 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3354 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3355
3356 if (pt < beg->charpos || pt > end->charpos)
3357 /* The point is outside the new visible range, move it inside. */
3358 SET_BUF_PT_BOTH (buf,
3359 clip_to_bounds (beg->charpos, pt, end->charpos),
3360 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3361 end->bytepos));
3362
3363 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3364 }
3365 /* These aren't needed anymore, so don't wait for GC. */
3366 free_marker (XCAR (data));
3367 free_marker (XCDR (data));
3368 free_cons (XCONS (data));
3369 }
3370 else
3371 /* A buffer, which means that there was no old restriction. */
3372 {
3373 if (buf /* Verify marker still points to a buffer. */
3374 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3375 /* The buffer has been narrowed, get rid of the narrowing. */
3376 {
3377 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3378 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3379
3380 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3381 }
3382 }
3383
3384 /* Changing the buffer bounds invalidates any recorded current column. */
3385 invalidate_current_column ();
3386
3387 if (cur)
3388 set_buffer_internal (cur);
3389 }
3390
3391 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3392 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3393 The buffer's restrictions make parts of the beginning and end invisible.
3394 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3395 This special form, `save-restriction', saves the current buffer's restrictions
3396 when it is entered, and restores them when it is exited.
3397 So any `narrow-to-region' within BODY lasts only until the end of the form.
3398 The old restrictions settings are restored
3399 even in case of abnormal exit (throw or error).
3400
3401 The value returned is the value of the last form in BODY.
3402
3403 Note: if you are using both `save-excursion' and `save-restriction',
3404 use `save-excursion' outermost:
3405 (save-excursion (save-restriction ...))
3406
3407 usage: (save-restriction &rest BODY) */)
3408 (Lisp_Object body)
3409 {
3410 register Lisp_Object val;
3411 ptrdiff_t count = SPECPDL_INDEX ();
3412
3413 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3414 val = Fprogn (body);
3415 return unbind_to (count, val);
3416 }
3417 \f
3418 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3419 doc: /* Display a message at the bottom of the screen.
3420 The message also goes into the `*Messages*' buffer, if `message-log-max'
3421 is non-nil. (In keyboard macros, that's all it does.)
3422 Return the message.
3423
3424 In batch mode, the message is printed to the standard error stream,
3425 followed by a newline.
3426
3427 The first argument is a format control string, and the rest are data
3428 to be formatted under control of the string. See `format' for details.
3429
3430 Note: Use (message "%s" VALUE) to print the value of expressions and
3431 variables to avoid accidentally interpreting `%' as format specifiers.
3432
3433 If the first argument is nil or the empty string, the function clears
3434 any existing message; this lets the minibuffer contents show. See
3435 also `current-message'.
3436
3437 usage: (message FORMAT-STRING &rest ARGS) */)
3438 (ptrdiff_t nargs, Lisp_Object *args)
3439 {
3440 if (NILP (args[0])
3441 || (STRINGP (args[0])
3442 && SBYTES (args[0]) == 0))
3443 {
3444 message1 (0);
3445 return args[0];
3446 }
3447 else
3448 {
3449 register Lisp_Object val;
3450 val = Fformat (nargs, args);
3451 message3 (val);
3452 return val;
3453 }
3454 }
3455
3456 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3457 doc: /* Display a message, in a dialog box if possible.
3458 If a dialog box is not available, use the echo area.
3459 The first argument is a format control string, and the rest are data
3460 to be formatted under control of the string. See `format' for details.
3461
3462 If the first argument is nil or the empty string, clear any existing
3463 message; let the minibuffer contents show.
3464
3465 usage: (message-box FORMAT-STRING &rest ARGS) */)
3466 (ptrdiff_t nargs, Lisp_Object *args)
3467 {
3468 if (NILP (args[0]))
3469 {
3470 message1 (0);
3471 return Qnil;
3472 }
3473 else
3474 {
3475 Lisp_Object val = Fformat (nargs, args);
3476 Lisp_Object pane, menu;
3477 struct gcpro gcpro1;
3478
3479 pane = list1 (Fcons (build_string ("OK"), Qt));
3480 GCPRO1 (pane);
3481 menu = Fcons (val, pane);
3482 Fx_popup_dialog (Qt, menu, Qt);
3483 UNGCPRO;
3484 return val;
3485 }
3486 }
3487
3488 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3489 doc: /* Display a message in a dialog box or in the echo area.
3490 If this command was invoked with the mouse, use a dialog box if
3491 `use-dialog-box' is non-nil.
3492 Otherwise, use the echo area.
3493 The first argument is a format control string, and the rest are data
3494 to be formatted under control of the string. See `format' for details.
3495
3496 If the first argument is nil or the empty string, clear any existing
3497 message; let the minibuffer contents show.
3498
3499 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3500 (ptrdiff_t nargs, Lisp_Object *args)
3501 {
3502 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3503 && use_dialog_box)
3504 return Fmessage_box (nargs, args);
3505 return Fmessage (nargs, args);
3506 }
3507
3508 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3509 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3510 (void)
3511 {
3512 return current_message ();
3513 }
3514
3515
3516 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3517 doc: /* Return a copy of STRING with text properties added.
3518 First argument is the string to copy.
3519 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3520 properties to add to the result.
3521 usage: (propertize STRING &rest PROPERTIES) */)
3522 (ptrdiff_t nargs, Lisp_Object *args)
3523 {
3524 Lisp_Object properties, string;
3525 struct gcpro gcpro1, gcpro2;
3526 ptrdiff_t i;
3527
3528 /* Number of args must be odd. */
3529 if ((nargs & 1) == 0)
3530 error ("Wrong number of arguments");
3531
3532 properties = string = Qnil;
3533 GCPRO2 (properties, string);
3534
3535 /* First argument must be a string. */
3536 CHECK_STRING (args[0]);
3537 string = Fcopy_sequence (args[0]);
3538
3539 for (i = 1; i < nargs; i += 2)
3540 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3541
3542 Fadd_text_properties (make_number (0),
3543 make_number (SCHARS (string)),
3544 properties, string);
3545 RETURN_UNGCPRO (string);
3546 }
3547
3548 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3549 doc: /* Format a string out of a format-string and arguments.
3550 The first argument is a format control string.
3551 The other arguments are substituted into it to make the result, a string.
3552
3553 The format control string may contain %-sequences meaning to substitute
3554 the next available argument:
3555
3556 %s means print a string argument. Actually, prints any object, with `princ'.
3557 %d means print as number in decimal (%o octal, %x hex).
3558 %X is like %x, but uses upper case.
3559 %e means print a number in exponential notation.
3560 %f means print a number in decimal-point notation.
3561 %g means print a number in exponential notation
3562 or decimal-point notation, whichever uses fewer characters.
3563 %c means print a number as a single character.
3564 %S means print any object as an s-expression (using `prin1').
3565
3566 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3567 Use %% to put a single % into the output.
3568
3569 A %-sequence may contain optional flag, width, and precision
3570 specifiers, as follows:
3571
3572 %<flags><width><precision>character
3573
3574 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3575
3576 The + flag character inserts a + before any positive number, while a
3577 space inserts a space before any positive number; these flags only
3578 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3579 The - and 0 flags affect the width specifier, as described below.
3580
3581 The # flag means to use an alternate display form for %o, %x, %X, %e,
3582 %f, and %g sequences: for %o, it ensures that the result begins with
3583 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3584 for %e, %f, and %g, it causes a decimal point to be included even if
3585 the precision is zero.
3586
3587 The width specifier supplies a lower limit for the length of the
3588 printed representation. The padding, if any, normally goes on the
3589 left, but it goes on the right if the - flag is present. The padding
3590 character is normally a space, but it is 0 if the 0 flag is present.
3591 The 0 flag is ignored if the - flag is present, or the format sequence
3592 is something other than %d, %e, %f, and %g.
3593
3594 For %e, %f, and %g sequences, the number after the "." in the
3595 precision specifier says how many decimal places to show; if zero, the
3596 decimal point itself is omitted. For %s and %S, the precision
3597 specifier truncates the string to the given width.
3598
3599 usage: (format STRING &rest OBJECTS) */)
3600 (ptrdiff_t nargs, Lisp_Object *args)
3601 {
3602 ptrdiff_t n; /* The number of the next arg to substitute */
3603 char initial_buffer[4000];
3604 char *buf = initial_buffer;
3605 ptrdiff_t bufsize = sizeof initial_buffer;
3606 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3607 char *p;
3608 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3609 char *format, *end, *format_start;
3610 ptrdiff_t formatlen, nchars;
3611 /* True if the format is multibyte. */
3612 bool multibyte_format = 0;
3613 /* True if the output should be a multibyte string,
3614 which is true if any of the inputs is one. */
3615 bool multibyte = 0;
3616 /* When we make a multibyte string, we must pay attention to the
3617 byte combining problem, i.e., a byte may be combined with a
3618 multibyte character of the previous string. This flag tells if we
3619 must consider such a situation or not. */
3620 bool maybe_combine_byte;
3621 Lisp_Object val;
3622 bool arg_intervals = 0;
3623 USE_SAFE_ALLOCA;
3624
3625 /* discarded[I] is 1 if byte I of the format
3626 string was not copied into the output.
3627 It is 2 if byte I was not the first byte of its character. */
3628 char *discarded;
3629
3630 /* Each element records, for one argument,
3631 the start and end bytepos in the output string,
3632 whether the argument has been converted to string (e.g., due to "%S"),
3633 and whether the argument is a string with intervals.
3634 info[0] is unused. Unused elements have -1 for start. */
3635 struct info
3636 {
3637 ptrdiff_t start, end;
3638 unsigned converted_to_string : 1;
3639 unsigned intervals : 1;
3640 } *info = 0;
3641
3642 /* It should not be necessary to GCPRO ARGS, because
3643 the caller in the interpreter should take care of that. */
3644
3645 CHECK_STRING (args[0]);
3646 format_start = SSDATA (args[0]);
3647 formatlen = SBYTES (args[0]);
3648
3649 /* Allocate the info and discarded tables. */
3650 {
3651 ptrdiff_t i;
3652 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3653 memory_full (SIZE_MAX);
3654 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3655 discarded = (char *) &info[nargs + 1];
3656 for (i = 0; i < nargs + 1; i++)
3657 {
3658 info[i].start = -1;
3659 info[i].intervals = info[i].converted_to_string = 0;
3660 }
3661 memset (discarded, 0, formatlen);
3662 }
3663
3664 /* Try to determine whether the result should be multibyte.
3665 This is not always right; sometimes the result needs to be multibyte
3666 because of an object that we will pass through prin1,
3667 and in that case, we won't know it here. */
3668 multibyte_format = STRING_MULTIBYTE (args[0]);
3669 multibyte = multibyte_format;
3670 for (n = 1; !multibyte && n < nargs; n++)
3671 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3672 multibyte = 1;
3673
3674 /* If we start out planning a unibyte result,
3675 then discover it has to be multibyte, we jump back to retry. */
3676 retry:
3677
3678 p = buf;
3679 nchars = 0;
3680 n = 0;
3681
3682 /* Scan the format and store result in BUF. */
3683 format = format_start;
3684 end = format + formatlen;
3685 maybe_combine_byte = 0;
3686
3687 while (format != end)
3688 {
3689 /* The values of N and FORMAT when the loop body is entered. */
3690 ptrdiff_t n0 = n;
3691 char *format0 = format;
3692
3693 /* Bytes needed to represent the output of this conversion. */
3694 ptrdiff_t convbytes;
3695
3696 if (*format == '%')
3697 {
3698 /* General format specifications look like
3699
3700 '%' [flags] [field-width] [precision] format
3701
3702 where
3703
3704 flags ::= [-+0# ]+
3705 field-width ::= [0-9]+
3706 precision ::= '.' [0-9]*
3707
3708 If a field-width is specified, it specifies to which width
3709 the output should be padded with blanks, if the output
3710 string is shorter than field-width.
3711
3712 If precision is specified, it specifies the number of
3713 digits to print after the '.' for floats, or the max.
3714 number of chars to print from a string. */
3715
3716 bool minus_flag = 0;
3717 bool plus_flag = 0;
3718 bool space_flag = 0;
3719 bool sharp_flag = 0;
3720 bool zero_flag = 0;
3721 ptrdiff_t field_width;
3722 bool precision_given;
3723 uintmax_t precision = UINTMAX_MAX;
3724 char *num_end;
3725 char conversion;
3726
3727 while (1)
3728 {
3729 switch (*++format)
3730 {
3731 case '-': minus_flag = 1; continue;
3732 case '+': plus_flag = 1; continue;
3733 case ' ': space_flag = 1; continue;
3734 case '#': sharp_flag = 1; continue;
3735 case '0': zero_flag = 1; continue;
3736 }
3737 break;
3738 }
3739
3740 /* Ignore flags when sprintf ignores them. */
3741 space_flag &= ~ plus_flag;
3742 zero_flag &= ~ minus_flag;
3743
3744 {
3745 uintmax_t w = strtoumax (format, &num_end, 10);
3746 if (max_bufsize <= w)
3747 string_overflow ();
3748 field_width = w;
3749 }
3750 precision_given = *num_end == '.';
3751 if (precision_given)
3752 precision = strtoumax (num_end + 1, &num_end, 10);
3753 format = num_end;
3754
3755 if (format == end)
3756 error ("Format string ends in middle of format specifier");
3757
3758 memset (&discarded[format0 - format_start], 1, format - format0);
3759 conversion = *format;
3760 if (conversion == '%')
3761 goto copy_char;
3762 discarded[format - format_start] = 1;
3763 format++;
3764
3765 ++n;
3766 if (! (n < nargs))
3767 error ("Not enough arguments for format string");
3768
3769 /* For 'S', prin1 the argument, and then treat like 's'.
3770 For 's', princ any argument that is not a string or
3771 symbol. But don't do this conversion twice, which might
3772 happen after retrying. */
3773 if ((conversion == 'S'
3774 || (conversion == 's'
3775 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3776 {
3777 if (! info[n].converted_to_string)
3778 {
3779 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3780 args[n] = Fprin1_to_string (args[n], noescape);
3781 info[n].converted_to_string = 1;
3782 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3783 {
3784 multibyte = 1;
3785 goto retry;
3786 }
3787 }
3788 conversion = 's';
3789 }
3790 else if (conversion == 'c')
3791 {
3792 if (FLOATP (args[n]))
3793 {
3794 double d = XFLOAT_DATA (args[n]);
3795 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3796 }
3797
3798 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3799 {
3800 if (!multibyte)
3801 {
3802 multibyte = 1;
3803 goto retry;
3804 }
3805 args[n] = Fchar_to_string (args[n]);
3806 info[n].converted_to_string = 1;
3807 }
3808
3809 if (info[n].converted_to_string)
3810 conversion = 's';
3811 zero_flag = 0;
3812 }
3813
3814 if (SYMBOLP (args[n]))
3815 {
3816 args[n] = SYMBOL_NAME (args[n]);
3817 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3818 {
3819 multibyte = 1;
3820 goto retry;
3821 }
3822 }
3823
3824 if (conversion == 's')
3825 {
3826 /* handle case (precision[n] >= 0) */
3827
3828 ptrdiff_t width, padding, nbytes;
3829 ptrdiff_t nchars_string;
3830
3831 ptrdiff_t prec = -1;
3832 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3833 prec = precision;
3834
3835 /* lisp_string_width ignores a precision of 0, but GNU
3836 libc functions print 0 characters when the precision
3837 is 0. Imitate libc behavior here. Changing
3838 lisp_string_width is the right thing, and will be
3839 done, but meanwhile we work with it. */
3840
3841 if (prec == 0)
3842 width = nchars_string = nbytes = 0;
3843 else
3844 {
3845 ptrdiff_t nch, nby;
3846 width = lisp_string_width (args[n], prec, &nch, &nby);
3847 if (prec < 0)
3848 {
3849 nchars_string = SCHARS (args[n]);
3850 nbytes = SBYTES (args[n]);
3851 }
3852 else
3853 {
3854 nchars_string = nch;
3855 nbytes = nby;
3856 }
3857 }
3858
3859 convbytes = nbytes;
3860 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3861 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3862
3863 padding = width < field_width ? field_width - width : 0;
3864
3865 if (max_bufsize - padding <= convbytes)
3866 string_overflow ();
3867 convbytes += padding;
3868 if (convbytes <= buf + bufsize - p)
3869 {
3870 if (! minus_flag)
3871 {
3872 memset (p, ' ', padding);
3873 p += padding;
3874 nchars += padding;
3875 }
3876
3877 if (p > buf
3878 && multibyte
3879 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3880 && STRING_MULTIBYTE (args[n])
3881 && !CHAR_HEAD_P (SREF (args[n], 0)))
3882 maybe_combine_byte = 1;
3883
3884 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3885 nbytes,
3886 STRING_MULTIBYTE (args[n]), multibyte);
3887
3888 info[n].start = nchars;
3889 nchars += nchars_string;
3890 info[n].end = nchars;
3891
3892 if (minus_flag)
3893 {
3894 memset (p, ' ', padding);
3895 p += padding;
3896 nchars += padding;
3897 }
3898
3899 /* If this argument has text properties, record where
3900 in the result string it appears. */
3901 if (string_intervals (args[n]))
3902 info[n].intervals = arg_intervals = 1;
3903
3904 continue;
3905 }
3906 }
3907 else if (! (conversion == 'c' || conversion == 'd'
3908 || conversion == 'e' || conversion == 'f'
3909 || conversion == 'g' || conversion == 'i'
3910 || conversion == 'o' || conversion == 'x'
3911 || conversion == 'X'))
3912 error ("Invalid format operation %%%c",
3913 STRING_CHAR ((unsigned char *) format - 1));
3914 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3915 error ("Format specifier doesn't match argument type");
3916 else
3917 {
3918 enum
3919 {
3920 /* Maximum precision for a %f conversion such that the
3921 trailing output digit might be nonzero. Any precision
3922 larger than this will not yield useful information. */
3923 USEFUL_PRECISION_MAX =
3924 ((1 - DBL_MIN_EXP)
3925 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3926 : FLT_RADIX == 16 ? 4
3927 : -1)),
3928
3929 /* Maximum number of bytes generated by any format, if
3930 precision is no more than USEFUL_PRECISION_MAX.
3931 On all practical hosts, %f is the worst case. */
3932 SPRINTF_BUFSIZE =
3933 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3934
3935 /* Length of pM (that is, of pMd without the
3936 trailing "d"). */
3937 pMlen = sizeof pMd - 2
3938 };
3939 verify (USEFUL_PRECISION_MAX > 0);
3940
3941 int prec;
3942 ptrdiff_t padding, sprintf_bytes;
3943 uintmax_t excess_precision, numwidth;
3944 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3945
3946 char sprintf_buf[SPRINTF_BUFSIZE];
3947
3948 /* Copy of conversion specification, modified somewhat.
3949 At most three flags F can be specified at once. */
3950 char convspec[sizeof "%FFF.*d" + pMlen];
3951
3952 /* Avoid undefined behavior in underlying sprintf. */
3953 if (conversion == 'd' || conversion == 'i')
3954 sharp_flag = 0;
3955
3956 /* Create the copy of the conversion specification, with
3957 any width and precision removed, with ".*" inserted,
3958 and with pM inserted for integer formats. */
3959 {
3960 char *f = convspec;
3961 *f++ = '%';
3962 *f = '-'; f += minus_flag;
3963 *f = '+'; f += plus_flag;
3964 *f = ' '; f += space_flag;
3965 *f = '#'; f += sharp_flag;
3966 *f = '0'; f += zero_flag;
3967 *f++ = '.';
3968 *f++ = '*';
3969 if (conversion == 'd' || conversion == 'i'
3970 || conversion == 'o' || conversion == 'x'
3971 || conversion == 'X')
3972 {
3973 memcpy (f, pMd, pMlen);
3974 f += pMlen;
3975 zero_flag &= ~ precision_given;
3976 }
3977 *f++ = conversion;
3978 *f = '\0';
3979 }
3980
3981 prec = -1;
3982 if (precision_given)
3983 prec = min (precision, USEFUL_PRECISION_MAX);
3984
3985 /* Use sprintf to format this number into sprintf_buf. Omit
3986 padding and excess precision, though, because sprintf limits
3987 output length to INT_MAX.
3988
3989 There are four types of conversion: double, unsigned
3990 char (passed as int), wide signed int, and wide
3991 unsigned int. Treat them separately because the
3992 sprintf ABI is sensitive to which type is passed. Be
3993 careful about integer overflow, NaNs, infinities, and
3994 conversions; for example, the min and max macros are
3995 not suitable here. */
3996 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3997 {
3998 double x = (INTEGERP (args[n])
3999 ? XINT (args[n])
4000 : XFLOAT_DATA (args[n]));
4001 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4002 }
4003 else if (conversion == 'c')
4004 {
4005 /* Don't use sprintf here, as it might mishandle prec. */
4006 sprintf_buf[0] = XINT (args[n]);
4007 sprintf_bytes = prec != 0;
4008 }
4009 else if (conversion == 'd')
4010 {
4011 /* For float, maybe we should use "%1.0f"
4012 instead so it also works for values outside
4013 the integer range. */
4014 printmax_t x;
4015 if (INTEGERP (args[n]))
4016 x = XINT (args[n]);
4017 else
4018 {
4019 double d = XFLOAT_DATA (args[n]);
4020 if (d < 0)
4021 {
4022 x = TYPE_MINIMUM (printmax_t);
4023 if (x < d)
4024 x = d;
4025 }
4026 else
4027 {
4028 x = TYPE_MAXIMUM (printmax_t);
4029 if (d < x)
4030 x = d;
4031 }
4032 }
4033 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4034 }
4035 else
4036 {
4037 /* Don't sign-extend for octal or hex printing. */
4038 uprintmax_t x;
4039 if (INTEGERP (args[n]))
4040 x = XUINT (args[n]);
4041 else
4042 {
4043 double d = XFLOAT_DATA (args[n]);
4044 if (d < 0)
4045 x = 0;
4046 else
4047 {
4048 x = TYPE_MAXIMUM (uprintmax_t);
4049 if (d < x)
4050 x = d;
4051 }
4052 }
4053 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4054 }
4055
4056 /* Now the length of the formatted item is known, except it omits
4057 padding and excess precision. Deal with excess precision
4058 first. This happens only when the format specifies
4059 ridiculously large precision. */
4060 excess_precision = precision - prec;
4061 if (excess_precision)
4062 {
4063 if (conversion == 'e' || conversion == 'f'
4064 || conversion == 'g')
4065 {
4066 if ((conversion == 'g' && ! sharp_flag)
4067 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4068 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4069 excess_precision = 0;
4070 else
4071 {
4072 if (conversion == 'g')
4073 {
4074 char *dot = strchr (sprintf_buf, '.');
4075 if (!dot)
4076 excess_precision = 0;
4077 }
4078 }
4079 trailing_zeros = excess_precision;
4080 }
4081 else
4082 leading_zeros = excess_precision;
4083 }
4084
4085 /* Compute the total bytes needed for this item, including
4086 excess precision and padding. */
4087 numwidth = sprintf_bytes + excess_precision;
4088 padding = numwidth < field_width ? field_width - numwidth : 0;
4089 if (max_bufsize - sprintf_bytes <= excess_precision
4090 || max_bufsize - padding <= numwidth)
4091 string_overflow ();
4092 convbytes = numwidth + padding;
4093
4094 if (convbytes <= buf + bufsize - p)
4095 {
4096 /* Copy the formatted item from sprintf_buf into buf,
4097 inserting padding and excess-precision zeros. */
4098
4099 char *src = sprintf_buf;
4100 char src0 = src[0];
4101 int exponent_bytes = 0;
4102 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4103 int significand_bytes;
4104 if (zero_flag
4105 && ((src[signedp] >= '0' && src[signedp] <= '9')
4106 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4107 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4108 {
4109 leading_zeros += padding;
4110 padding = 0;
4111 }
4112
4113 if (excess_precision
4114 && (conversion == 'e' || conversion == 'g'))
4115 {
4116 char *e = strchr (src, 'e');
4117 if (e)
4118 exponent_bytes = src + sprintf_bytes - e;
4119 }
4120
4121 if (! minus_flag)
4122 {
4123 memset (p, ' ', padding);
4124 p += padding;
4125 nchars += padding;
4126 }
4127
4128 *p = src0;
4129 src += signedp;
4130 p += signedp;
4131 memset (p, '0', leading_zeros);
4132 p += leading_zeros;
4133 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4134 memcpy (p, src, significand_bytes);
4135 p += significand_bytes;
4136 src += significand_bytes;
4137 memset (p, '0', trailing_zeros);
4138 p += trailing_zeros;
4139 memcpy (p, src, exponent_bytes);
4140 p += exponent_bytes;
4141
4142 info[n].start = nchars;
4143 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4144 info[n].end = nchars;
4145
4146 if (minus_flag)
4147 {
4148 memset (p, ' ', padding);
4149 p += padding;
4150 nchars += padding;
4151 }
4152
4153 continue;
4154 }
4155 }
4156 }
4157 else
4158 copy_char:
4159 {
4160 /* Copy a single character from format to buf. */
4161
4162 char *src = format;
4163 unsigned char str[MAX_MULTIBYTE_LENGTH];
4164
4165 if (multibyte_format)
4166 {
4167 /* Copy a whole multibyte character. */
4168 if (p > buf
4169 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4170 && !CHAR_HEAD_P (*format))
4171 maybe_combine_byte = 1;
4172
4173 do
4174 format++;
4175 while (! CHAR_HEAD_P (*format));
4176
4177 convbytes = format - src;
4178 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4179 }
4180 else
4181 {
4182 unsigned char uc = *format++;
4183 if (! multibyte || ASCII_BYTE_P (uc))
4184 convbytes = 1;
4185 else
4186 {
4187 int c = BYTE8_TO_CHAR (uc);
4188 convbytes = CHAR_STRING (c, str);
4189 src = (char *) str;
4190 }
4191 }
4192
4193 if (convbytes <= buf + bufsize - p)
4194 {
4195 memcpy (p, src, convbytes);
4196 p += convbytes;
4197 nchars++;
4198 continue;
4199 }
4200 }
4201
4202 /* There wasn't enough room to store this conversion or single
4203 character. CONVBYTES says how much room is needed. Allocate
4204 enough room (and then some) and do it again. */
4205 {
4206 ptrdiff_t used = p - buf;
4207
4208 if (max_bufsize - used < convbytes)
4209 string_overflow ();
4210 bufsize = used + convbytes;
4211 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4212
4213 if (buf == initial_buffer)
4214 {
4215 buf = xmalloc (bufsize);
4216 sa_must_free = 1;
4217 buf_save_value_index = SPECPDL_INDEX ();
4218 record_unwind_protect_ptr (xfree, buf);
4219 memcpy (buf, initial_buffer, used);
4220 }
4221 else
4222 {
4223 buf = xrealloc (buf, bufsize);
4224 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4225 }
4226
4227 p = buf + used;
4228 }
4229
4230 format = format0;
4231 n = n0;
4232 }
4233
4234 if (bufsize < p - buf)
4235 emacs_abort ();
4236
4237 if (maybe_combine_byte)
4238 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4239 val = make_specified_string (buf, nchars, p - buf, multibyte);
4240
4241 /* If we allocated BUF with malloc, free it too. */
4242 SAFE_FREE ();
4243
4244 /* If the format string has text properties, or any of the string
4245 arguments has text properties, set up text properties of the
4246 result string. */
4247
4248 if (string_intervals (args[0]) || arg_intervals)
4249 {
4250 Lisp_Object len, new_len, props;
4251 struct gcpro gcpro1;
4252
4253 /* Add text properties from the format string. */
4254 len = make_number (SCHARS (args[0]));
4255 props = text_property_list (args[0], make_number (0), len, Qnil);
4256 GCPRO1 (props);
4257
4258 if (CONSP (props))
4259 {
4260 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4261 ptrdiff_t argn = 1;
4262 Lisp_Object list;
4263
4264 /* Adjust the bounds of each text property
4265 to the proper start and end in the output string. */
4266
4267 /* Put the positions in PROPS in increasing order, so that
4268 we can do (effectively) one scan through the position
4269 space of the format string. */
4270 props = Fnreverse (props);
4271
4272 /* BYTEPOS is the byte position in the format string,
4273 POSITION is the untranslated char position in it,
4274 TRANSLATED is the translated char position in BUF,
4275 and ARGN is the number of the next arg we will come to. */
4276 for (list = props; CONSP (list); list = XCDR (list))
4277 {
4278 Lisp_Object item;
4279 ptrdiff_t pos;
4280
4281 item = XCAR (list);
4282
4283 /* First adjust the property start position. */
4284 pos = XINT (XCAR (item));
4285
4286 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4287 up to this position. */
4288 for (; position < pos; bytepos++)
4289 {
4290 if (! discarded[bytepos])
4291 position++, translated++;
4292 else if (discarded[bytepos] == 1)
4293 {
4294 position++;
4295 if (translated == info[argn].start)
4296 {
4297 translated += info[argn].end - info[argn].start;
4298 argn++;
4299 }
4300 }
4301 }
4302
4303 XSETCAR (item, make_number (translated));
4304
4305 /* Likewise adjust the property end position. */
4306 pos = XINT (XCAR (XCDR (item)));
4307
4308 for (; position < pos; bytepos++)
4309 {
4310 if (! discarded[bytepos])
4311 position++, translated++;
4312 else if (discarded[bytepos] == 1)
4313 {
4314 position++;
4315 if (translated == info[argn].start)
4316 {
4317 translated += info[argn].end - info[argn].start;
4318 argn++;
4319 }
4320 }
4321 }
4322
4323 XSETCAR (XCDR (item), make_number (translated));
4324 }
4325
4326 add_text_properties_from_list (val, props, make_number (0));
4327 }
4328
4329 /* Add text properties from arguments. */
4330 if (arg_intervals)
4331 for (n = 1; n < nargs; ++n)
4332 if (info[n].intervals)
4333 {
4334 len = make_number (SCHARS (args[n]));
4335 new_len = make_number (info[n].end - info[n].start);
4336 props = text_property_list (args[n], make_number (0), len, Qnil);
4337 props = extend_property_ranges (props, new_len);
4338 /* If successive arguments have properties, be sure that
4339 the value of `composition' property be the copy. */
4340 if (n > 1 && info[n - 1].end)
4341 make_composition_value_copy (props);
4342 add_text_properties_from_list (val, props,
4343 make_number (info[n].start));
4344 }
4345
4346 UNGCPRO;
4347 }
4348
4349 return val;
4350 }
4351
4352 Lisp_Object
4353 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4354 {
4355 Lisp_Object args[3];
4356 args[0] = build_string (string1);
4357 args[1] = arg0;
4358 args[2] = arg1;
4359 return Fformat (3, args);
4360 }
4361 \f
4362 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4363 doc: /* Return t if two characters match, optionally ignoring case.
4364 Both arguments must be characters (i.e. integers).
4365 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4366 (register Lisp_Object c1, Lisp_Object c2)
4367 {
4368 int i1, i2;
4369 /* Check they're chars, not just integers, otherwise we could get array
4370 bounds violations in downcase. */
4371 CHECK_CHARACTER (c1);
4372 CHECK_CHARACTER (c2);
4373
4374 if (XINT (c1) == XINT (c2))
4375 return Qt;
4376 if (NILP (BVAR (current_buffer, case_fold_search)))
4377 return Qnil;
4378
4379 i1 = XFASTINT (c1);
4380 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4381 && ! ASCII_CHAR_P (i1))
4382 {
4383 MAKE_CHAR_MULTIBYTE (i1);
4384 }
4385 i2 = XFASTINT (c2);
4386 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4387 && ! ASCII_CHAR_P (i2))
4388 {
4389 MAKE_CHAR_MULTIBYTE (i2);
4390 }
4391 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4392 }
4393 \f
4394 /* Transpose the markers in two regions of the current buffer, and
4395 adjust the ones between them if necessary (i.e.: if the regions
4396 differ in size).
4397
4398 START1, END1 are the character positions of the first region.
4399 START1_BYTE, END1_BYTE are the byte positions.
4400 START2, END2 are the character positions of the second region.
4401 START2_BYTE, END2_BYTE are the byte positions.
4402
4403 Traverses the entire marker list of the buffer to do so, adding an
4404 appropriate amount to some, subtracting from some, and leaving the
4405 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4406
4407 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4408
4409 static void
4410 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4411 ptrdiff_t start2, ptrdiff_t end2,
4412 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4413 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4414 {
4415 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4416 register struct Lisp_Marker *marker;
4417
4418 /* Update point as if it were a marker. */
4419 if (PT < start1)
4420 ;
4421 else if (PT < end1)
4422 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4423 PT_BYTE + (end2_byte - end1_byte));
4424 else if (PT < start2)
4425 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4426 (PT_BYTE + (end2_byte - start2_byte)
4427 - (end1_byte - start1_byte)));
4428 else if (PT < end2)
4429 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4430 PT_BYTE - (start2_byte - start1_byte));
4431
4432 /* We used to adjust the endpoints here to account for the gap, but that
4433 isn't good enough. Even if we assume the caller has tried to move the
4434 gap out of our way, it might still be at start1 exactly, for example;
4435 and that places it `inside' the interval, for our purposes. The amount
4436 of adjustment is nontrivial if there's a `denormalized' marker whose
4437 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4438 the dirty work to Fmarker_position, below. */
4439
4440 /* The difference between the region's lengths */
4441 diff = (end2 - start2) - (end1 - start1);
4442 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4443
4444 /* For shifting each marker in a region by the length of the other
4445 region plus the distance between the regions. */
4446 amt1 = (end2 - start2) + (start2 - end1);
4447 amt2 = (end1 - start1) + (start2 - end1);
4448 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4449 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4450
4451 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4452 {
4453 mpos = marker->bytepos;
4454 if (mpos >= start1_byte && mpos < end2_byte)
4455 {
4456 if (mpos < end1_byte)
4457 mpos += amt1_byte;
4458 else if (mpos < start2_byte)
4459 mpos += diff_byte;
4460 else
4461 mpos -= amt2_byte;
4462 marker->bytepos = mpos;
4463 }
4464 mpos = marker->charpos;
4465 if (mpos >= start1 && mpos < end2)
4466 {
4467 if (mpos < end1)
4468 mpos += amt1;
4469 else if (mpos < start2)
4470 mpos += diff;
4471 else
4472 mpos -= amt2;
4473 }
4474 marker->charpos = mpos;
4475 }
4476 }
4477
4478 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4479 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4480 The regions should not be overlapping, because the size of the buffer is
4481 never changed in a transposition.
4482
4483 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4484 any markers that happen to be located in the regions.
4485
4486 Transposing beyond buffer boundaries is an error. */)
4487 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4488 {
4489 register ptrdiff_t start1, end1, start2, end2;
4490 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4491 ptrdiff_t gap, len1, len_mid, len2;
4492 unsigned char *start1_addr, *start2_addr, *temp;
4493
4494 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4495 Lisp_Object buf;
4496
4497 XSETBUFFER (buf, current_buffer);
4498 cur_intv = buffer_intervals (current_buffer);
4499
4500 validate_region (&startr1, &endr1);
4501 validate_region (&startr2, &endr2);
4502
4503 start1 = XFASTINT (startr1);
4504 end1 = XFASTINT (endr1);
4505 start2 = XFASTINT (startr2);
4506 end2 = XFASTINT (endr2);
4507 gap = GPT;
4508
4509 /* Swap the regions if they're reversed. */
4510 if (start2 < end1)
4511 {
4512 register ptrdiff_t glumph = start1;
4513 start1 = start2;
4514 start2 = glumph;
4515 glumph = end1;
4516 end1 = end2;
4517 end2 = glumph;
4518 }
4519
4520 len1 = end1 - start1;
4521 len2 = end2 - start2;
4522
4523 if (start2 < end1)
4524 error ("Transposed regions overlap");
4525 /* Nothing to change for adjacent regions with one being empty */
4526 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4527 return Qnil;
4528
4529 /* The possibilities are:
4530 1. Adjacent (contiguous) regions, or separate but equal regions
4531 (no, really equal, in this case!), or
4532 2. Separate regions of unequal size.
4533
4534 The worst case is usually No. 2. It means that (aside from
4535 potential need for getting the gap out of the way), there also
4536 needs to be a shifting of the text between the two regions. So
4537 if they are spread far apart, we are that much slower... sigh. */
4538
4539 /* It must be pointed out that the really studly thing to do would
4540 be not to move the gap at all, but to leave it in place and work
4541 around it if necessary. This would be extremely efficient,
4542 especially considering that people are likely to do
4543 transpositions near where they are working interactively, which
4544 is exactly where the gap would be found. However, such code
4545 would be much harder to write and to read. So, if you are
4546 reading this comment and are feeling squirrely, by all means have
4547 a go! I just didn't feel like doing it, so I will simply move
4548 the gap the minimum distance to get it out of the way, and then
4549 deal with an unbroken array. */
4550
4551 start1_byte = CHAR_TO_BYTE (start1);
4552 end2_byte = CHAR_TO_BYTE (end2);
4553
4554 /* Make sure the gap won't interfere, by moving it out of the text
4555 we will operate on. */
4556 if (start1 < gap && gap < end2)
4557 {
4558 if (gap - start1 < end2 - gap)
4559 move_gap_both (start1, start1_byte);
4560 else
4561 move_gap_both (end2, end2_byte);
4562 }
4563
4564 start2_byte = CHAR_TO_BYTE (start2);
4565 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4566 len2_byte = end2_byte - start2_byte;
4567
4568 #ifdef BYTE_COMBINING_DEBUG
4569 if (end1 == start2)
4570 {
4571 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4572 len2_byte, start1, start1_byte)
4573 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4574 len1_byte, end2, start2_byte + len2_byte)
4575 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4576 len1_byte, end2, start2_byte + len2_byte))
4577 emacs_abort ();
4578 }
4579 else
4580 {
4581 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4582 len2_byte, start1, start1_byte)
4583 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4584 len1_byte, start2, start2_byte)
4585 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4586 len2_byte, end1, start1_byte + len1_byte)
4587 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4588 len1_byte, end2, start2_byte + len2_byte))
4589 emacs_abort ();
4590 }
4591 #endif
4592
4593 /* Hmmm... how about checking to see if the gap is large
4594 enough to use as the temporary storage? That would avoid an
4595 allocation... interesting. Later, don't fool with it now. */
4596
4597 /* Working without memmove, for portability (sigh), so must be
4598 careful of overlapping subsections of the array... */
4599
4600 if (end1 == start2) /* adjacent regions */
4601 {
4602 modify_text (start1, end2);
4603 record_change (start1, len1 + len2);
4604
4605 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4606 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4607 /* Don't use Fset_text_properties: that can cause GC, which can
4608 clobber objects stored in the tmp_intervals. */
4609 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4610 if (tmp_interval3)
4611 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4612
4613 /* First region smaller than second. */
4614 if (len1_byte < len2_byte)
4615 {
4616 USE_SAFE_ALLOCA;
4617
4618 temp = SAFE_ALLOCA (len2_byte);
4619
4620 /* Don't precompute these addresses. We have to compute them
4621 at the last minute, because the relocating allocator might
4622 have moved the buffer around during the xmalloc. */
4623 start1_addr = BYTE_POS_ADDR (start1_byte);
4624 start2_addr = BYTE_POS_ADDR (start2_byte);
4625
4626 memcpy (temp, start2_addr, len2_byte);
4627 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4628 memcpy (start1_addr, temp, len2_byte);
4629 SAFE_FREE ();
4630 }
4631 else
4632 /* First region not smaller than second. */
4633 {
4634 USE_SAFE_ALLOCA;
4635
4636 temp = SAFE_ALLOCA (len1_byte);
4637 start1_addr = BYTE_POS_ADDR (start1_byte);
4638 start2_addr = BYTE_POS_ADDR (start2_byte);
4639 memcpy (temp, start1_addr, len1_byte);
4640 memcpy (start1_addr, start2_addr, len2_byte);
4641 memcpy (start1_addr + len2_byte, temp, len1_byte);
4642 SAFE_FREE ();
4643 }
4644 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4645 len1, current_buffer, 0);
4646 graft_intervals_into_buffer (tmp_interval2, start1,
4647 len2, current_buffer, 0);
4648 update_compositions (start1, start1 + len2, CHECK_BORDER);
4649 update_compositions (start1 + len2, end2, CHECK_TAIL);
4650 }
4651 /* Non-adjacent regions, because end1 != start2, bleagh... */
4652 else
4653 {
4654 len_mid = start2_byte - (start1_byte + len1_byte);
4655
4656 if (len1_byte == len2_byte)
4657 /* Regions are same size, though, how nice. */
4658 {
4659 USE_SAFE_ALLOCA;
4660
4661 modify_text (start1, end1);
4662 modify_text (start2, end2);
4663 record_change (start1, len1);
4664 record_change (start2, len2);
4665 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4666 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4667
4668 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4669 if (tmp_interval3)
4670 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4671
4672 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4673 if (tmp_interval3)
4674 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4675
4676 temp = SAFE_ALLOCA (len1_byte);
4677 start1_addr = BYTE_POS_ADDR (start1_byte);
4678 start2_addr = BYTE_POS_ADDR (start2_byte);
4679 memcpy (temp, start1_addr, len1_byte);
4680 memcpy (start1_addr, start2_addr, len2_byte);
4681 memcpy (start2_addr, temp, len1_byte);
4682 SAFE_FREE ();
4683
4684 graft_intervals_into_buffer (tmp_interval1, start2,
4685 len1, current_buffer, 0);
4686 graft_intervals_into_buffer (tmp_interval2, start1,
4687 len2, current_buffer, 0);
4688 }
4689
4690 else if (len1_byte < len2_byte) /* Second region larger than first */
4691 /* Non-adjacent & unequal size, area between must also be shifted. */
4692 {
4693 USE_SAFE_ALLOCA;
4694
4695 modify_text (start1, end2);
4696 record_change (start1, (end2 - start1));
4697 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4698 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4699 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4700
4701 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4702 if (tmp_interval3)
4703 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4704
4705 /* holds region 2 */
4706 temp = SAFE_ALLOCA (len2_byte);
4707 start1_addr = BYTE_POS_ADDR (start1_byte);
4708 start2_addr = BYTE_POS_ADDR (start2_byte);
4709 memcpy (temp, start2_addr, len2_byte);
4710 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4711 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4712 memcpy (start1_addr, temp, len2_byte);
4713 SAFE_FREE ();
4714
4715 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4716 len1, current_buffer, 0);
4717 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4718 len_mid, current_buffer, 0);
4719 graft_intervals_into_buffer (tmp_interval2, start1,
4720 len2, current_buffer, 0);
4721 }
4722 else
4723 /* Second region smaller than first. */
4724 {
4725 USE_SAFE_ALLOCA;
4726
4727 record_change (start1, (end2 - start1));
4728 modify_text (start1, end2);
4729
4730 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4731 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4732 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4733
4734 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4735 if (tmp_interval3)
4736 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4737
4738 /* holds region 1 */
4739 temp = SAFE_ALLOCA (len1_byte);
4740 start1_addr = BYTE_POS_ADDR (start1_byte);
4741 start2_addr = BYTE_POS_ADDR (start2_byte);
4742 memcpy (temp, start1_addr, len1_byte);
4743 memcpy (start1_addr, start2_addr, len2_byte);
4744 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4745 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4746 SAFE_FREE ();
4747
4748 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4749 len1, current_buffer, 0);
4750 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4751 len_mid, current_buffer, 0);
4752 graft_intervals_into_buffer (tmp_interval2, start1,
4753 len2, current_buffer, 0);
4754 }
4755
4756 update_compositions (start1, start1 + len2, CHECK_BORDER);
4757 update_compositions (end2 - len1, end2, CHECK_BORDER);
4758 }
4759
4760 /* When doing multiple transpositions, it might be nice
4761 to optimize this. Perhaps the markers in any one buffer
4762 should be organized in some sorted data tree. */
4763 if (NILP (leave_markers))
4764 {
4765 transpose_markers (start1, end1, start2, end2,
4766 start1_byte, start1_byte + len1_byte,
4767 start2_byte, start2_byte + len2_byte);
4768 fix_start_end_in_overlays (start1, end2);
4769 }
4770
4771 signal_after_change (start1, end2 - start1, end2 - start1);
4772 return Qnil;
4773 }
4774
4775 \f
4776 void
4777 syms_of_editfns (void)
4778 {
4779 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4780
4781 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4782 doc: /* Non-nil means text motion commands don't notice fields. */);
4783 Vinhibit_field_text_motion = Qnil;
4784
4785 DEFVAR_LISP ("buffer-access-fontify-functions",
4786 Vbuffer_access_fontify_functions,
4787 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4788 Each function is called with two arguments which specify the range
4789 of the buffer being accessed. */);
4790 Vbuffer_access_fontify_functions = Qnil;
4791
4792 {
4793 Lisp_Object obuf;
4794 obuf = Fcurrent_buffer ();
4795 /* Do this here, because init_buffer_once is too early--it won't work. */
4796 Fset_buffer (Vprin1_to_string_buffer);
4797 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4798 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4799 Qnil);
4800 Fset_buffer (obuf);
4801 }
4802
4803 DEFVAR_LISP ("buffer-access-fontified-property",
4804 Vbuffer_access_fontified_property,
4805 doc: /* Property which (if non-nil) indicates text has been fontified.
4806 `buffer-substring' need not call the `buffer-access-fontify-functions'
4807 functions if all the text being accessed has this property. */);
4808 Vbuffer_access_fontified_property = Qnil;
4809
4810 DEFVAR_LISP ("system-name", Vsystem_name,
4811 doc: /* The host name of the machine Emacs is running on. */);
4812
4813 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4814 doc: /* The full name of the user logged in. */);
4815
4816 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4817 doc: /* The user's name, taken from environment variables if possible. */);
4818
4819 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4820 doc: /* The user's name, based upon the real uid only. */);
4821
4822 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4823 doc: /* The release of the operating system Emacs is running on. */);
4824
4825 defsubr (&Spropertize);
4826 defsubr (&Schar_equal);
4827 defsubr (&Sgoto_char);
4828 defsubr (&Sstring_to_char);
4829 defsubr (&Schar_to_string);
4830 defsubr (&Sbyte_to_string);
4831 defsubr (&Sbuffer_substring);
4832 defsubr (&Sbuffer_substring_no_properties);
4833 defsubr (&Sbuffer_string);
4834 defsubr (&Sget_pos_property);
4835
4836 defsubr (&Spoint_marker);
4837 defsubr (&Smark_marker);
4838 defsubr (&Spoint);
4839 defsubr (&Sregion_beginning);
4840 defsubr (&Sregion_end);
4841
4842 DEFSYM (Qfield, "field");
4843 DEFSYM (Qboundary, "boundary");
4844 defsubr (&Sfield_beginning);
4845 defsubr (&Sfield_end);
4846 defsubr (&Sfield_string);
4847 defsubr (&Sfield_string_no_properties);
4848 defsubr (&Sdelete_field);
4849 defsubr (&Sconstrain_to_field);
4850
4851 defsubr (&Sline_beginning_position);
4852 defsubr (&Sline_end_position);
4853
4854 defsubr (&Ssave_excursion);
4855 defsubr (&Ssave_current_buffer);
4856
4857 defsubr (&Sbuffer_size);
4858 defsubr (&Spoint_max);
4859 defsubr (&Spoint_min);
4860 defsubr (&Spoint_min_marker);
4861 defsubr (&Spoint_max_marker);
4862 defsubr (&Sgap_position);
4863 defsubr (&Sgap_size);
4864 defsubr (&Sposition_bytes);
4865 defsubr (&Sbyte_to_position);
4866
4867 defsubr (&Sbobp);
4868 defsubr (&Seobp);
4869 defsubr (&Sbolp);
4870 defsubr (&Seolp);
4871 defsubr (&Sfollowing_char);
4872 defsubr (&Sprevious_char);
4873 defsubr (&Schar_after);
4874 defsubr (&Schar_before);
4875 defsubr (&Sinsert);
4876 defsubr (&Sinsert_before_markers);
4877 defsubr (&Sinsert_and_inherit);
4878 defsubr (&Sinsert_and_inherit_before_markers);
4879 defsubr (&Sinsert_char);
4880 defsubr (&Sinsert_byte);
4881
4882 defsubr (&Suser_login_name);
4883 defsubr (&Suser_real_login_name);
4884 defsubr (&Suser_uid);
4885 defsubr (&Suser_real_uid);
4886 defsubr (&Sgroup_gid);
4887 defsubr (&Sgroup_real_gid);
4888 defsubr (&Suser_full_name);
4889 defsubr (&Semacs_pid);
4890 defsubr (&Scurrent_time);
4891 defsubr (&Sget_internal_run_time);
4892 defsubr (&Sformat_time_string);
4893 defsubr (&Sfloat_time);
4894 defsubr (&Sdecode_time);
4895 defsubr (&Sencode_time);
4896 defsubr (&Scurrent_time_string);
4897 defsubr (&Scurrent_time_zone);
4898 defsubr (&Sset_time_zone_rule);
4899 defsubr (&Ssystem_name);
4900 defsubr (&Smessage);
4901 defsubr (&Smessage_box);
4902 defsubr (&Smessage_or_box);
4903 defsubr (&Scurrent_message);
4904 defsubr (&Sformat);
4905
4906 defsubr (&Sinsert_buffer_substring);
4907 defsubr (&Scompare_buffer_substrings);
4908 defsubr (&Ssubst_char_in_region);
4909 defsubr (&Stranslate_region_internal);
4910 defsubr (&Sdelete_region);
4911 defsubr (&Sdelete_and_extract_region);
4912 defsubr (&Swiden);
4913 defsubr (&Snarrow_to_region);
4914 defsubr (&Ssave_restriction);
4915 defsubr (&Stranspose_regions);
4916 }