(construct_menu_click, construct_mouse_click):
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include <config.h>
42 #include "lisp.h"
43 #include "intervals.h"
44 #include "buffer.h"
45 #include "puresize.h"
46
47 /* The rest of the file is within this conditional. */
48 #ifdef USE_TEXT_PROPERTIES
49
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
52
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
54
55 /* Factor for weight-balancing interval trees. */
56 Lisp_Object interval_balance_threshold;
57
58 Lisp_Object merge_properties_sticky ();
59 \f
60 /* Utility functions for intervals. */
61
62
63 /* Create the root interval of some object, a buffer or string. */
64
65 INTERVAL
66 create_root_interval (parent)
67 Lisp_Object parent;
68 {
69 INTERVAL new;
70
71 CHECK_IMPURE (parent);
72
73 new = make_interval ();
74
75 if (XTYPE (parent) == Lisp_Buffer)
76 {
77 new->total_length = (BUF_Z (XBUFFER (parent))
78 - BUF_BEG (XBUFFER (parent)));
79 XBUFFER (parent)->intervals = new;
80 }
81 else if (XTYPE (parent) == Lisp_String)
82 {
83 new->total_length = XSTRING (parent)->size;
84 XSTRING (parent)->intervals = new;
85 }
86
87 new->parent = (INTERVAL) parent;
88 new->position = 1;
89
90 return new;
91 }
92
93 /* Make the interval TARGET have exactly the properties of SOURCE */
94
95 void
96 copy_properties (source, target)
97 register INTERVAL source, target;
98 {
99 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
100 return;
101
102 COPY_INTERVAL_CACHE (source, target);
103 target->plist = Fcopy_sequence (source->plist);
104 }
105
106 /* Merge the properties of interval SOURCE into the properties
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
109
110 static void
111 merge_properties (source, target)
112 register INTERVAL source, target;
113 {
114 register Lisp_Object o, sym, val;
115
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
118
119 MERGE_INTERVAL_CACHE (source, target);
120
121 o = source->plist;
122 while (! EQ (o, Qnil))
123 {
124 sym = Fcar (o);
125 val = Fmemq (sym, target->plist);
126
127 if (NILP (val))
128 {
129 o = Fcdr (o);
130 val = Fcar (o);
131 target->plist = Fcons (sym, Fcons (val, target->plist));
132 o = Fcdr (o);
133 }
134 else
135 o = Fcdr (Fcdr (o));
136 }
137 }
138
139 /* Return 1 if the two intervals have the same properties,
140 0 otherwise. */
141
142 int
143 intervals_equal (i0, i1)
144 INTERVAL i0, i1;
145 {
146 register Lisp_Object i0_cdr, i0_sym, i1_val;
147 register i1_len;
148
149 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
150 return 1;
151
152 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
153 return 0;
154
155 i1_len = XFASTINT (Flength (i1->plist));
156 if (i1_len & 0x1) /* Paranoia -- plists are always even */
157 abort ();
158 i1_len /= 2;
159 i0_cdr = i0->plist;
160 while (!NILP (i0_cdr))
161 {
162 /* Lengths of the two plists were unequal. */
163 if (i1_len == 0)
164 return 0;
165
166 i0_sym = Fcar (i0_cdr);
167 i1_val = Fmemq (i0_sym, i1->plist);
168
169 /* i0 has something i1 doesn't. */
170 if (EQ (i1_val, Qnil))
171 return 0;
172
173 /* i0 and i1 both have sym, but it has different values in each. */
174 i0_cdr = Fcdr (i0_cdr);
175 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
176 return 0;
177
178 i0_cdr = Fcdr (i0_cdr);
179 i1_len--;
180 }
181
182 /* Lengths of the two plists were unequal. */
183 if (i1_len > 0)
184 return 0;
185
186 return 1;
187 }
188 \f
189 static int icount;
190 static int idepth;
191 static int zero_length;
192
193 /* Traverse an interval tree TREE, performing FUNCTION on each node.
194 Pass FUNCTION two args: an interval, and ARG. */
195
196 void
197 traverse_intervals (tree, position, depth, function, arg)
198 INTERVAL tree;
199 int position, depth;
200 void (* function) ();
201 Lisp_Object arg;
202 {
203 if (NULL_INTERVAL_P (tree))
204 return;
205
206 traverse_intervals (tree->left, position, depth + 1, function, arg);
207 position += LEFT_TOTAL_LENGTH (tree);
208 tree->position = position;
209 (*function) (tree, arg);
210 position += LENGTH (tree);
211 traverse_intervals (tree->right, position, depth + 1, function, arg);
212 }
213 \f
214 #if 0
215 /* These functions are temporary, for debugging purposes only. */
216
217 INTERVAL search_interval, found_interval;
218
219 void
220 check_for_interval (i)
221 register INTERVAL i;
222 {
223 if (i == search_interval)
224 {
225 found_interval = i;
226 icount++;
227 }
228 }
229
230 INTERVAL
231 search_for_interval (i, tree)
232 register INTERVAL i, tree;
233 {
234 icount = 0;
235 search_interval = i;
236 found_interval = NULL_INTERVAL;
237 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
238 return found_interval;
239 }
240
241 static void
242 inc_interval_count (i)
243 INTERVAL i;
244 {
245 icount++;
246 if (LENGTH (i) == 0)
247 zero_length++;
248 if (depth > idepth)
249 idepth = depth;
250 }
251
252 int
253 count_intervals (i)
254 register INTERVAL i;
255 {
256 icount = 0;
257 idepth = 0;
258 zero_length = 0;
259 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
260
261 return icount;
262 }
263
264 static INTERVAL
265 root_interval (interval)
266 INTERVAL interval;
267 {
268 register INTERVAL i = interval;
269
270 while (! ROOT_INTERVAL_P (i))
271 i = i->parent;
272
273 return i;
274 }
275 #endif
276 \f
277 /* Assuming that a left child exists, perform the following operation:
278
279 A B
280 / \ / \
281 B => A
282 / \ / \
283 c c
284 */
285
286 static INTERVAL
287 rotate_right (interval)
288 INTERVAL interval;
289 {
290 INTERVAL i;
291 INTERVAL B = interval->left;
292 int old_total = interval->total_length;
293
294 /* Deal with any Parent of A; make it point to B. */
295 if (! ROOT_INTERVAL_P (interval))
296 if (AM_LEFT_CHILD (interval))
297 interval->parent->left = B;
298 else
299 interval->parent->right = B;
300 B->parent = interval->parent;
301
302 /* Make B the parent of A */
303 i = B->right;
304 B->right = interval;
305 interval->parent = B;
306
307 /* Make A point to c */
308 interval->left = i;
309 if (! NULL_INTERVAL_P (i))
310 i->parent = interval;
311
312 /* A's total length is decreased by the length of B and its left child. */
313 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
314
315 /* B must have the same total length of A. */
316 B->total_length = old_total;
317
318 return B;
319 }
320
321 /* Assuming that a right child exists, perform the following operation:
322
323 A B
324 / \ / \
325 B => A
326 / \ / \
327 c c
328 */
329
330 static INTERVAL
331 rotate_left (interval)
332 INTERVAL interval;
333 {
334 INTERVAL i;
335 INTERVAL B = interval->right;
336 int old_total = interval->total_length;
337
338 /* Deal with any parent of A; make it point to B. */
339 if (! ROOT_INTERVAL_P (interval))
340 if (AM_LEFT_CHILD (interval))
341 interval->parent->left = B;
342 else
343 interval->parent->right = B;
344 B->parent = interval->parent;
345
346 /* Make B the parent of A */
347 i = B->left;
348 B->left = interval;
349 interval->parent = B;
350
351 /* Make A point to c */
352 interval->right = i;
353 if (! NULL_INTERVAL_P (i))
354 i->parent = interval;
355
356 /* A's total length is decreased by the length of B and its right child. */
357 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
358
359 /* B must have the same total length of A. */
360 B->total_length = old_total;
361
362 return B;
363 }
364 \f
365 /* Balance an interval tree with the assumption that the subtrees
366 themselves are already balanced. */
367
368 static INTERVAL
369 balance_an_interval (i)
370 INTERVAL i;
371 {
372 register int old_diff, new_diff;
373
374 while (1)
375 {
376 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
377 if (old_diff > 0)
378 {
379 new_diff = i->total_length - i->left->total_length
380 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
381 if (abs (new_diff) >= old_diff)
382 break;
383 i = rotate_right (i);
384 balance_an_interval (i->right);
385 }
386 else if (old_diff < 0)
387 {
388 new_diff = i->total_length - i->right->total_length
389 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
390 if (abs (new_diff) >= -old_diff)
391 break;
392 i = rotate_left (i);
393 balance_an_interval (i->left);
394 }
395 else
396 break;
397 }
398 return i;
399 }
400
401 /* Balance INTERVAL, potentially stuffing it back into its parent
402 Lisp Object. */
403
404 static INLINE INTERVAL
405 balance_possible_root_interval (interval)
406 register INTERVAL interval;
407 {
408 Lisp_Object parent;
409
410 if (interval->parent == NULL_INTERVAL)
411 return interval;
412
413 parent = (Lisp_Object) (interval->parent);
414 interval = balance_an_interval (interval);
415
416 if (XTYPE (parent) == Lisp_Buffer)
417 XBUFFER (parent)->intervals = interval;
418 else if (XTYPE (parent) == Lisp_String)
419 XSTRING (parent)->intervals = interval;
420
421 return interval;
422 }
423
424 /* Balance the interval tree TREE. Balancing is by weight
425 (the amount of text). */
426
427 static INTERVAL
428 balance_intervals_internal (tree)
429 register INTERVAL tree;
430 {
431 /* Balance within each side. */
432 if (tree->left)
433 balance_intervals (tree->left);
434 if (tree->right)
435 balance_intervals (tree->right);
436 return balance_an_interval (tree);
437 }
438
439 /* Advertised interface to balance intervals. */
440
441 INTERVAL
442 balance_intervals (tree)
443 INTERVAL tree;
444 {
445 if (tree == NULL_INTERVAL)
446 return NULL_INTERVAL;
447
448 return balance_intervals_internal (tree);
449 }
450 \f
451 /* Split INTERVAL into two pieces, starting the second piece at
452 character position OFFSET (counting from 0), relative to INTERVAL.
453 INTERVAL becomes the left-hand piece, and the right-hand piece
454 (second, lexicographically) is returned.
455
456 The size and position fields of the two intervals are set based upon
457 those of the original interval. The property list of the new interval
458 is reset, thus it is up to the caller to do the right thing with the
459 result.
460
461 Note that this does not change the position of INTERVAL; if it is a root,
462 it is still a root after this operation. */
463
464 INTERVAL
465 split_interval_right (interval, offset)
466 INTERVAL interval;
467 int offset;
468 {
469 INTERVAL new = make_interval ();
470 int position = interval->position;
471 int new_length = LENGTH (interval) - offset;
472
473 new->position = position + offset;
474 new->parent = interval;
475
476 if (NULL_RIGHT_CHILD (interval))
477 {
478 interval->right = new;
479 new->total_length = new_length;
480
481 return new;
482 }
483
484 /* Insert the new node between INTERVAL and its right child. */
485 new->right = interval->right;
486 interval->right->parent = new;
487 interval->right = new;
488 new->total_length = new_length + new->right->total_length;
489
490 balance_an_interval (new);
491 balance_possible_root_interval (interval);
492
493 return new;
494 }
495
496 /* Split INTERVAL into two pieces, starting the second piece at
497 character position OFFSET (counting from 0), relative to INTERVAL.
498 INTERVAL becomes the right-hand piece, and the left-hand piece
499 (first, lexicographically) is returned.
500
501 The size and position fields of the two intervals are set based upon
502 those of the original interval. The property list of the new interval
503 is reset, thus it is up to the caller to do the right thing with the
504 result.
505
506 Note that this does not change the position of INTERVAL; if it is a root,
507 it is still a root after this operation. */
508
509 INTERVAL
510 split_interval_left (interval, offset)
511 INTERVAL interval;
512 int offset;
513 {
514 INTERVAL new = make_interval ();
515 int position = interval->position;
516 int new_length = offset;
517
518 new->position = interval->position;
519 interval->position = interval->position + offset;
520 new->parent = interval;
521
522 if (NULL_LEFT_CHILD (interval))
523 {
524 interval->left = new;
525 new->total_length = new_length;
526
527 return new;
528 }
529
530 /* Insert the new node between INTERVAL and its left child. */
531 new->left = interval->left;
532 new->left->parent = new;
533 interval->left = new;
534 new->total_length = new_length + new->left->total_length;
535
536 balance_an_interval (new);
537 balance_possible_root_interval (interval);
538
539 return new;
540 }
541 \f
542 /* Find the interval containing text position POSITION in the text
543 represented by the interval tree TREE. POSITION is a buffer
544 position; the earliest position is 1. If POSITION is at the end of
545 the buffer, return the interval containing the last character.
546
547 The `position' field, which is a cache of an interval's position,
548 is updated in the interval found. Other functions (e.g., next_interval)
549 will update this cache based on the result of find_interval. */
550
551 INLINE INTERVAL
552 find_interval (tree, position)
553 register INTERVAL tree;
554 register int position;
555 {
556 /* The distance from the left edge of the subtree at TREE
557 to POSITION. */
558 register int relative_position = position - BEG;
559
560 if (NULL_INTERVAL_P (tree))
561 return NULL_INTERVAL;
562
563 if (relative_position > TOTAL_LENGTH (tree))
564 abort (); /* Paranoia */
565
566 tree = balance_possible_root_interval (tree);
567
568 while (1)
569 {
570 if (relative_position < LEFT_TOTAL_LENGTH (tree))
571 {
572 tree = tree->left;
573 }
574 else if (! NULL_RIGHT_CHILD (tree)
575 && relative_position >= (TOTAL_LENGTH (tree)
576 - RIGHT_TOTAL_LENGTH (tree)))
577 {
578 relative_position -= (TOTAL_LENGTH (tree)
579 - RIGHT_TOTAL_LENGTH (tree));
580 tree = tree->right;
581 }
582 else
583 {
584 tree->position =
585 (position - relative_position /* the left edge of *tree */
586 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
587
588 return tree;
589 }
590 }
591 }
592 \f
593 /* Find the succeeding interval (lexicographically) to INTERVAL.
594 Sets the `position' field based on that of INTERVAL (see
595 find_interval). */
596
597 INTERVAL
598 next_interval (interval)
599 register INTERVAL interval;
600 {
601 register INTERVAL i = interval;
602 register int next_position;
603
604 if (NULL_INTERVAL_P (i))
605 return NULL_INTERVAL;
606 next_position = interval->position + LENGTH (interval);
607
608 if (! NULL_RIGHT_CHILD (i))
609 {
610 i = i->right;
611 while (! NULL_LEFT_CHILD (i))
612 i = i->left;
613
614 i->position = next_position;
615 return i;
616 }
617
618 while (! NULL_PARENT (i))
619 {
620 if (AM_LEFT_CHILD (i))
621 {
622 i = i->parent;
623 i->position = next_position;
624 return i;
625 }
626
627 i = i->parent;
628 }
629
630 return NULL_INTERVAL;
631 }
632
633 /* Find the preceding interval (lexicographically) to INTERVAL.
634 Sets the `position' field based on that of INTERVAL (see
635 find_interval). */
636
637 INTERVAL
638 previous_interval (interval)
639 register INTERVAL interval;
640 {
641 register INTERVAL i;
642 register position_of_previous;
643
644 if (NULL_INTERVAL_P (interval))
645 return NULL_INTERVAL;
646
647 if (! NULL_LEFT_CHILD (interval))
648 {
649 i = interval->left;
650 while (! NULL_RIGHT_CHILD (i))
651 i = i->right;
652
653 i->position = interval->position - LENGTH (i);
654 return i;
655 }
656
657 i = interval;
658 while (! NULL_PARENT (i))
659 {
660 if (AM_RIGHT_CHILD (i))
661 {
662 i = i->parent;
663
664 i->position = interval->position - LENGTH (i);
665 return i;
666 }
667 i = i->parent;
668 }
669
670 return NULL_INTERVAL;
671 }
672 \f
673 #if 0
674 /* Traverse a path down the interval tree TREE to the interval
675 containing POSITION, adjusting all nodes on the path for
676 an addition of LENGTH characters. Insertion between two intervals
677 (i.e., point == i->position, where i is second interval) means
678 text goes into second interval.
679
680 Modifications are needed to handle the hungry bits -- after simply
681 finding the interval at position (don't add length going down),
682 if it's the beginning of the interval, get the previous interval
683 and check the hugry bits of both. Then add the length going back up
684 to the root. */
685
686 static INTERVAL
687 adjust_intervals_for_insertion (tree, position, length)
688 INTERVAL tree;
689 int position, length;
690 {
691 register int relative_position;
692 register INTERVAL this;
693
694 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
695 abort ();
696
697 /* If inserting at point-max of a buffer, that position
698 will be out of range */
699 if (position > TOTAL_LENGTH (tree))
700 position = TOTAL_LENGTH (tree);
701 relative_position = position;
702 this = tree;
703
704 while (1)
705 {
706 if (relative_position <= LEFT_TOTAL_LENGTH (this))
707 {
708 this->total_length += length;
709 this = this->left;
710 }
711 else if (relative_position > (TOTAL_LENGTH (this)
712 - RIGHT_TOTAL_LENGTH (this)))
713 {
714 relative_position -= (TOTAL_LENGTH (this)
715 - RIGHT_TOTAL_LENGTH (this));
716 this->total_length += length;
717 this = this->right;
718 }
719 else
720 {
721 /* If we are to use zero-length intervals as buffer pointers,
722 then this code will have to change. */
723 this->total_length += length;
724 this->position = LEFT_TOTAL_LENGTH (this)
725 + position - relative_position + 1;
726 return tree;
727 }
728 }
729 }
730 #endif
731
732 /* Effect an adjustment corresponding to the addition of LENGTH characters
733 of text. Do this by finding the interval containing POSITION in the
734 interval tree TREE, and then adjusting all of its ancestors by adding
735 LENGTH to them.
736
737 If POSITION is the first character of an interval, meaning that point
738 is actually between the two intervals, make the new text belong to
739 the interval which is "sticky".
740
741 If both intervals are "sticky", then make them belong to the left-most
742 interval. Another possibility would be to create a new interval for
743 this text, and make it have the merged properties of both ends. */
744
745 static INTERVAL
746 adjust_intervals_for_insertion (tree, position, length)
747 INTERVAL tree;
748 int position, length;
749 {
750 register INTERVAL i;
751 register INTERVAL temp;
752 int eobp = 0;
753
754 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
755 abort ();
756
757 /* If inserting at point-max of a buffer, that position will be out
758 of range. Remember that buffer positions are 1-based. */
759 if (position >= BEG + TOTAL_LENGTH (tree)){
760 position = BEG + TOTAL_LENGTH (tree);
761 eobp = 1;
762 }
763
764 i = find_interval (tree, position);
765
766 /* If in middle of an interval which is not sticky either way,
767 we must not just give its properties to the insertion.
768 So split this interval at the insertion point. */
769 if (! (position == i->position || eobp)
770 && END_NONSTICKY_P (i)
771 && ! FRONT_STICKY_P (i))
772 {
773 temp = split_interval_right (i, position - i->position);
774 copy_properties (i, temp);
775 i = temp;
776 }
777
778 /* If we are positioned between intervals, check the stickiness of
779 both of them. We have to do this too, if we are at BEG or Z. */
780 if (position == i->position || eobp)
781 {
782 register INTERVAL prev;
783
784 if (position == BEG)
785 prev = 0;
786 else if (eobp)
787 {
788 prev = i;
789 i = 0;
790 }
791 else
792 prev = previous_interval (i);
793
794 /* Even if we are positioned between intervals, we default
795 to the left one if it exists. We extend it now and split
796 off a part later, if stickyness demands it. */
797 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
798 {
799 temp->total_length += length;
800 temp = balance_possible_root_interval (temp);
801 }
802
803 /* If at least one interval has sticky properties,
804 we check the stickyness property by property. */
805 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
806 {
807 Lisp_Object pleft, pright;
808 struct interval newi;
809
810 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
811 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
812 newi.plist = merge_properties_sticky (pleft, pright);
813
814 if(! prev) /* i.e. position == BEG */
815 {
816 if (! intervals_equal (i, &newi))
817 {
818 i = split_interval_left (i, length);
819 i->plist = newi.plist;
820 }
821 }
822 else if (! intervals_equal (prev, &newi))
823 {
824 prev = split_interval_right (prev,
825 position - prev->position);
826 prev->plist = newi.plist;
827 if (! NULL_INTERVAL_P (i)
828 && intervals_equal (prev, i))
829 merge_interval_right (prev);
830 }
831
832 /* We will need to update the cache here later. */
833 }
834 else if (! prev && ! NILP (i->plist))
835 {
836 /* Just split off a new interval at the left.
837 Since I wasn't front-sticky, the empty plist is ok. */
838 i = split_interval_left (i, length);
839 }
840 }
841
842 /* Otherwise just extend the interval. */
843 else
844 {
845 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
846 {
847 temp->total_length += length;
848 temp = balance_possible_root_interval (temp);
849 }
850 }
851
852 return tree;
853 }
854
855 /* Any property might be front-sticky on the left, rear-sticky on the left,
856 front-sticky on the right, or rear-sticky on the right; the 16 combinations
857 can be arranged in a matrix with rows denoting the left conditions and
858 columns denoting the right conditions:
859 _ __ _
860 _ FR FR FR FR
861 FR__ 0 1 2 3
862 _FR 4 5 6 7
863 FR 8 9 A B
864 FR C D E F
865
866 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
867 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
868 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
869 p8 L p9 L pa L pb L pc L pd L pe L pf L)
870 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
871 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
872 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
873 p8 R p9 R pa R pb R pc R pd R pe R pf R)
874
875 We inherit from whoever has a sticky side facing us. If both sides
876 do (cases 2, 3, E, and F), then we inherit from whichever side has a
877 non-nil value for the current property. If both sides do, then we take
878 from the left.
879
880 When we inherit a property, we get its stickiness as well as its value.
881 So, when we merge the above two lists, we expect to get this:
882
883 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
884 rear-nonsticky (p6 pa)
885 p0 L p1 L p2 L p3 L p6 R p7 R
886 pa R pb R pc L pd L pe L pf L)
887
888 The optimizable special cases are:
889 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
890 left rear-nonsticky = t, right front-sticky = t (inherit right)
891 left rear-nonsticky = t, right front-sticky = nil (inherit none)
892 */
893
894 Lisp_Object
895 merge_properties_sticky (pleft, pright)
896 Lisp_Object pleft, pright;
897 {
898 register Lisp_Object props, front, rear;
899 Lisp_Object lfront, lrear, rfront, rrear;
900 register Lisp_Object tail1, tail2, sym, lval, rval;
901 int use_left, use_right;
902
903 props = Qnil;
904 front = Qnil;
905 rear = Qnil;
906 lfront = textget (pleft, Qfront_sticky);
907 lrear = textget (pleft, Qrear_nonsticky);
908 rfront = textget (pright, Qfront_sticky);
909 rrear = textget (pright, Qrear_nonsticky);
910
911 /* Go through each element of PRIGHT. */
912 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
913 {
914 sym = Fcar (tail1);
915
916 /* Sticky properties get special treatment. */
917 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
918 continue;
919
920 rval = Fcar (Fcdr (tail1));
921 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
922 if (EQ (sym, Fcar (tail2)))
923 break;
924 lval = (NILP (tail2) ? Qnil : Fcar( Fcdr (tail2)));
925
926 use_left = ! TMEM (sym, lrear);
927 use_right = TMEM (sym, rfront);
928 if (use_left && use_right)
929 {
930 use_left = ! NILP (lval);
931 use_right = ! NILP (rval);
932 }
933 if (use_left)
934 {
935 /* We build props as (value sym ...) rather than (sym value ...)
936 because we plan to nreverse it when we're done. */
937 if (! NILP (lval))
938 props = Fcons (lval, Fcons (sym, props));
939 if (TMEM (sym, lfront))
940 front = Fcons (sym, front);
941 if (TMEM (sym, lrear))
942 rear = Fcons (sym, rear);
943 }
944 else if (use_right)
945 {
946 if (! NILP (rval))
947 props = Fcons (rval, Fcons (sym, props));
948 if (TMEM (sym, rfront))
949 front = Fcons (sym, front);
950 if (TMEM (sym, rrear))
951 rear = Fcons (sym, rear);
952 }
953 }
954
955 /* Now go through each element of PLEFT. */
956 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
957 {
958 sym = Fcar (tail2);
959
960 /* Sticky properties get special treatment. */
961 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
962 continue;
963
964 /* If sym is in PRIGHT, we've already considered it. */
965 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
966 if (EQ (sym, Fcar (tail1)))
967 break;
968 if (! NILP (tail1))
969 continue;
970
971 lval = Fcar (Fcdr (tail2));
972
973 /* Since rval is known to be nil in this loop, the test simplifies. */
974 if (! TMEM (sym, lrear))
975 {
976 if (! NILP (lval))
977 props = Fcons (lval, Fcons (sym, props));
978 if (TMEM (sym, lfront))
979 front = Fcons (sym, front);
980 }
981 else if (TMEM (sym, rfront))
982 {
983 /* The value is nil, but we still inherit the stickiness
984 from the right. */
985 front = Fcons (sym, front);
986 if (TMEM (sym, rrear))
987 rear = Fcons (sym, rear);
988 }
989 }
990 props = Fnreverse (props);
991 if (! NILP (rear))
992 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
993 if (! NILP (front))
994 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
995 return props;
996 }
997
998 \f
999 /* Delete an node I from its interval tree by merging its subtrees
1000 into one subtree which is then returned. Caller is responsible for
1001 storing the resulting subtree into its parent. */
1002
1003 static INTERVAL
1004 delete_node (i)
1005 register INTERVAL i;
1006 {
1007 register INTERVAL migrate, this;
1008 register int migrate_amt;
1009
1010 if (NULL_INTERVAL_P (i->left))
1011 return i->right;
1012 if (NULL_INTERVAL_P (i->right))
1013 return i->left;
1014
1015 migrate = i->left;
1016 migrate_amt = i->left->total_length;
1017 this = i->right;
1018 this->total_length += migrate_amt;
1019 while (! NULL_INTERVAL_P (this->left))
1020 {
1021 this = this->left;
1022 this->total_length += migrate_amt;
1023 }
1024 this->left = migrate;
1025 migrate->parent = this;
1026
1027 return i->right;
1028 }
1029
1030 /* Delete interval I from its tree by calling `delete_node'
1031 and properly connecting the resultant subtree.
1032
1033 I is presumed to be empty; that is, no adjustments are made
1034 for the length of I. */
1035
1036 void
1037 delete_interval (i)
1038 register INTERVAL i;
1039 {
1040 register INTERVAL parent;
1041 int amt = LENGTH (i);
1042
1043 if (amt > 0) /* Only used on zero-length intervals now. */
1044 abort ();
1045
1046 if (ROOT_INTERVAL_P (i))
1047 {
1048 Lisp_Object owner;
1049 owner = (Lisp_Object) i->parent;
1050 parent = delete_node (i);
1051 if (! NULL_INTERVAL_P (parent))
1052 parent->parent = (INTERVAL) owner;
1053
1054 if (XTYPE (owner) == Lisp_Buffer)
1055 XBUFFER (owner)->intervals = parent;
1056 else if (XTYPE (owner) == Lisp_String)
1057 XSTRING (owner)->intervals = parent;
1058 else
1059 abort ();
1060
1061 return;
1062 }
1063
1064 parent = i->parent;
1065 if (AM_LEFT_CHILD (i))
1066 {
1067 parent->left = delete_node (i);
1068 if (! NULL_INTERVAL_P (parent->left))
1069 parent->left->parent = parent;
1070 }
1071 else
1072 {
1073 parent->right = delete_node (i);
1074 if (! NULL_INTERVAL_P (parent->right))
1075 parent->right->parent = parent;
1076 }
1077 }
1078 \f
1079 /* Find the interval in TREE corresponding to the relative position
1080 FROM and delete as much as possible of AMOUNT from that interval.
1081 Return the amount actually deleted, and if the interval was
1082 zeroed-out, delete that interval node from the tree.
1083
1084 Note that FROM is actually origin zero, aka relative to the
1085 leftmost edge of tree. This is appropriate since we call ourselves
1086 recursively on subtrees.
1087
1088 Do this by recursing down TREE to the interval in question, and
1089 deleting the appropriate amount of text. */
1090
1091 static int
1092 interval_deletion_adjustment (tree, from, amount)
1093 register INTERVAL tree;
1094 register int from, amount;
1095 {
1096 register int relative_position = from;
1097
1098 if (NULL_INTERVAL_P (tree))
1099 return 0;
1100
1101 /* Left branch */
1102 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1103 {
1104 int subtract = interval_deletion_adjustment (tree->left,
1105 relative_position,
1106 amount);
1107 tree->total_length -= subtract;
1108 return subtract;
1109 }
1110 /* Right branch */
1111 else if (relative_position >= (TOTAL_LENGTH (tree)
1112 - RIGHT_TOTAL_LENGTH (tree)))
1113 {
1114 int subtract;
1115
1116 relative_position -= (tree->total_length
1117 - RIGHT_TOTAL_LENGTH (tree));
1118 subtract = interval_deletion_adjustment (tree->right,
1119 relative_position,
1120 amount);
1121 tree->total_length -= subtract;
1122 return subtract;
1123 }
1124 /* Here -- this node. */
1125 else
1126 {
1127 /* How much can we delete from this interval? */
1128 int my_amount = ((tree->total_length
1129 - RIGHT_TOTAL_LENGTH (tree))
1130 - relative_position);
1131
1132 if (amount > my_amount)
1133 amount = my_amount;
1134
1135 tree->total_length -= amount;
1136 if (LENGTH (tree) == 0)
1137 delete_interval (tree);
1138
1139 return amount;
1140 }
1141
1142 /* Never reach here. */
1143 }
1144
1145 /* Effect the adjustments necessary to the interval tree of BUFFER to
1146 correspond to the deletion of LENGTH characters from that buffer
1147 text. The deletion is effected at position START (which is a
1148 buffer position, i.e. origin 1). */
1149
1150 static void
1151 adjust_intervals_for_deletion (buffer, start, length)
1152 struct buffer *buffer;
1153 int start, length;
1154 {
1155 register int left_to_delete = length;
1156 register INTERVAL tree = buffer->intervals;
1157 register int deleted;
1158
1159 if (NULL_INTERVAL_P (tree))
1160 return;
1161
1162 if (start > BEG + TOTAL_LENGTH (tree)
1163 || start + length > BEG + TOTAL_LENGTH (tree))
1164 abort ();
1165
1166 if (length == TOTAL_LENGTH (tree))
1167 {
1168 buffer->intervals = NULL_INTERVAL;
1169 return;
1170 }
1171
1172 if (ONLY_INTERVAL_P (tree))
1173 {
1174 tree->total_length -= length;
1175 return;
1176 }
1177
1178 if (start > BEG + TOTAL_LENGTH (tree))
1179 start = BEG + TOTAL_LENGTH (tree);
1180 while (left_to_delete > 0)
1181 {
1182 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
1183 left_to_delete);
1184 tree = buffer->intervals;
1185 if (left_to_delete == tree->total_length)
1186 {
1187 buffer->intervals = NULL_INTERVAL;
1188 return;
1189 }
1190 }
1191 }
1192 \f
1193 /* Make the adjustments necessary to the interval tree of BUFFER to
1194 represent an addition or deletion of LENGTH characters starting
1195 at position START. Addition or deletion is indicated by the sign
1196 of LENGTH. */
1197
1198 INLINE void
1199 offset_intervals (buffer, start, length)
1200 struct buffer *buffer;
1201 int start, length;
1202 {
1203 if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
1204 return;
1205
1206 if (length > 0)
1207 adjust_intervals_for_insertion (buffer->intervals, start, length);
1208 else
1209 adjust_intervals_for_deletion (buffer, start, -length);
1210 }
1211 \f
1212 /* Merge interval I with its lexicographic successor. The resulting
1213 interval is returned, and has the properties of the original
1214 successor. The properties of I are lost. I is removed from the
1215 interval tree.
1216
1217 IMPORTANT:
1218 The caller must verify that this is not the last (rightmost)
1219 interval. */
1220
1221 INTERVAL
1222 merge_interval_right (i)
1223 register INTERVAL i;
1224 {
1225 register int absorb = LENGTH (i);
1226 register INTERVAL successor;
1227
1228 /* Zero out this interval. */
1229 i->total_length -= absorb;
1230
1231 /* Find the succeeding interval. */
1232 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1233 as we descend. */
1234 {
1235 successor = i->right;
1236 while (! NULL_LEFT_CHILD (successor))
1237 {
1238 successor->total_length += absorb;
1239 successor = successor->left;
1240 }
1241
1242 successor->total_length += absorb;
1243 delete_interval (i);
1244 return successor;
1245 }
1246
1247 successor = i;
1248 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1249 we ascend. */
1250 {
1251 if (AM_LEFT_CHILD (successor))
1252 {
1253 successor = successor->parent;
1254 delete_interval (i);
1255 return successor;
1256 }
1257
1258 successor = successor->parent;
1259 successor->total_length -= absorb;
1260 }
1261
1262 /* This must be the rightmost or last interval and cannot
1263 be merged right. The caller should have known. */
1264 abort ();
1265 }
1266 \f
1267 /* Merge interval I with its lexicographic predecessor. The resulting
1268 interval is returned, and has the properties of the original predecessor.
1269 The properties of I are lost. Interval node I is removed from the tree.
1270
1271 IMPORTANT:
1272 The caller must verify that this is not the first (leftmost) interval. */
1273
1274 INTERVAL
1275 merge_interval_left (i)
1276 register INTERVAL i;
1277 {
1278 register int absorb = LENGTH (i);
1279 register INTERVAL predecessor;
1280
1281 /* Zero out this interval. */
1282 i->total_length -= absorb;
1283
1284 /* Find the preceding interval. */
1285 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1286 adding ABSORB as we go. */
1287 {
1288 predecessor = i->left;
1289 while (! NULL_RIGHT_CHILD (predecessor))
1290 {
1291 predecessor->total_length += absorb;
1292 predecessor = predecessor->right;
1293 }
1294
1295 predecessor->total_length += absorb;
1296 delete_interval (i);
1297 return predecessor;
1298 }
1299
1300 predecessor = i;
1301 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1302 subtracting ABSORB. */
1303 {
1304 if (AM_RIGHT_CHILD (predecessor))
1305 {
1306 predecessor = predecessor->parent;
1307 delete_interval (i);
1308 return predecessor;
1309 }
1310
1311 predecessor = predecessor->parent;
1312 predecessor->total_length -= absorb;
1313 }
1314
1315 /* This must be the leftmost or first interval and cannot
1316 be merged left. The caller should have known. */
1317 abort ();
1318 }
1319 \f
1320 /* Make an exact copy of interval tree SOURCE which descends from
1321 PARENT. This is done by recursing through SOURCE, copying
1322 the current interval and its properties, and then adjusting
1323 the pointers of the copy. */
1324
1325 static INTERVAL
1326 reproduce_tree (source, parent)
1327 INTERVAL source, parent;
1328 {
1329 register INTERVAL t = make_interval ();
1330
1331 bcopy (source, t, INTERVAL_SIZE);
1332 copy_properties (source, t);
1333 t->parent = parent;
1334 if (! NULL_LEFT_CHILD (source))
1335 t->left = reproduce_tree (source->left, t);
1336 if (! NULL_RIGHT_CHILD (source))
1337 t->right = reproduce_tree (source->right, t);
1338
1339 return t;
1340 }
1341
1342 #if 0
1343 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1344
1345 /* Make a new interval of length LENGTH starting at START in the
1346 group of intervals INTERVALS, which is actually an interval tree.
1347 Returns the new interval.
1348
1349 Generate an error if the new positions would overlap an existing
1350 interval. */
1351
1352 static INTERVAL
1353 make_new_interval (intervals, start, length)
1354 INTERVAL intervals;
1355 int start, length;
1356 {
1357 INTERVAL slot;
1358
1359 slot = find_interval (intervals, start);
1360 if (start + length > slot->position + LENGTH (slot))
1361 error ("Interval would overlap");
1362
1363 if (start == slot->position && length == LENGTH (slot))
1364 return slot;
1365
1366 if (slot->position == start)
1367 {
1368 /* New right node. */
1369 split_interval_right (slot, length);
1370 return slot;
1371 }
1372
1373 if (slot->position + LENGTH (slot) == start + length)
1374 {
1375 /* New left node. */
1376 split_interval_left (slot, LENGTH (slot) - length);
1377 return slot;
1378 }
1379
1380 /* Convert interval SLOT into three intervals. */
1381 split_interval_left (slot, start - slot->position);
1382 split_interval_right (slot, length);
1383 return slot;
1384 }
1385 #endif
1386 \f
1387 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1388 LENGTH is the length of the text in SOURCE.
1389
1390 This is used in insdel.c when inserting Lisp_Strings into the
1391 buffer. The text corresponding to SOURCE is already in the buffer
1392 when this is called. The intervals of new tree are a copy of those
1393 belonging to the string being inserted; intervals are never
1394 shared.
1395
1396 If the inserted text had no intervals associated, and we don't
1397 want to inherit the surrounding text's properties, this function
1398 simply returns -- offset_intervals should handle placing the
1399 text in the correct interval, depending on the sticky bits.
1400
1401 If the inserted text had properties (intervals), then there are two
1402 cases -- either insertion happened in the middle of some interval,
1403 or between two intervals.
1404
1405 If the text goes into the middle of an interval, then new
1406 intervals are created in the middle with only the properties of
1407 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1408 which case the new text has the union of its properties and those
1409 of the text into which it was inserted.
1410
1411 If the text goes between two intervals, then if neither interval
1412 had its appropriate sticky property set (front_sticky, rear_sticky),
1413 the new text has only its properties. If one of the sticky properties
1414 is set, then the new text "sticks" to that region and its properties
1415 depend on merging as above. If both the preceding and succeeding
1416 intervals to the new text are "sticky", then the new text retains
1417 only its properties, as if neither sticky property were set. Perhaps
1418 we should consider merging all three sets of properties onto the new
1419 text... */
1420
1421 void
1422 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1423 INTERVAL source;
1424 int position, length;
1425 struct buffer *buffer;
1426 int inherit;
1427 {
1428 register INTERVAL under, over, this, prev;
1429 register INTERVAL tree = buffer->intervals;
1430 int middle;
1431
1432 /* If the new text has no properties, it becomes part of whatever
1433 interval it was inserted into. */
1434 if (NULL_INTERVAL_P (source))
1435 {
1436 Lisp_Object buf;
1437 if (!inherit && ! NULL_INTERVAL_P (tree))
1438 {
1439 XSET (buf, Lisp_Buffer, buffer);
1440 Fset_text_properties (make_number (position),
1441 make_number (position + length),
1442 Qnil, buf);
1443 }
1444 if (! NULL_INTERVAL_P (buffer->intervals))
1445 buffer->intervals = balance_an_interval (buffer->intervals);
1446 return;
1447 }
1448
1449 if (NULL_INTERVAL_P (tree))
1450 {
1451 /* The inserted text constitutes the whole buffer, so
1452 simply copy over the interval structure. */
1453 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1454 {
1455 Lisp_Object buf;
1456 XSET (buf, Lisp_Buffer, buffer);
1457 buffer->intervals = reproduce_tree (source, buf);
1458 /* Explicitly free the old tree here. */
1459
1460 return;
1461 }
1462
1463 /* Create an interval tree in which to place a copy
1464 of the intervals of the inserted string. */
1465 {
1466 Lisp_Object buf;
1467 XSET (buf, Lisp_Buffer, buffer);
1468 tree = create_root_interval (buf);
1469 }
1470 }
1471 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1472 /* If the buffer contains only the new string, but
1473 there was already some interval tree there, then it may be
1474 some zero length intervals. Eventually, do something clever
1475 about inserting properly. For now, just waste the old intervals. */
1476 {
1477 buffer->intervals = reproduce_tree (source, tree->parent);
1478 /* Explicitly free the old tree here. */
1479
1480 return;
1481 }
1482 /* Paranoia -- the text has already been added, so this buffer
1483 should be of non-zero length. */
1484 else if (TOTAL_LENGTH (tree) == 0)
1485 abort ();
1486
1487 this = under = find_interval (tree, position);
1488 if (NULL_INTERVAL_P (under)) /* Paranoia */
1489 abort ();
1490 over = find_interval (source, 1);
1491
1492 /* Here for insertion in the middle of an interval.
1493 Split off an equivalent interval to the right,
1494 then don't bother with it any more. */
1495
1496 if (position > under->position)
1497 {
1498 INTERVAL end_unchanged
1499 = split_interval_left (this, position - under->position);
1500 copy_properties (under, end_unchanged);
1501 under->position = position;
1502 prev = 0;
1503 middle = 1;
1504 }
1505 else
1506 {
1507 prev = previous_interval (under);
1508 if (prev && !END_NONSTICKY_P (prev))
1509 prev = 0;
1510 }
1511
1512 /* Insertion is now at beginning of UNDER. */
1513
1514 /* The inserted text "sticks" to the interval `under',
1515 which means it gets those properties.
1516 The properties of under are the result of
1517 adjust_intervals_for_insertion, so stickyness has
1518 already been taken care of. */
1519
1520 while (! NULL_INTERVAL_P (over))
1521 {
1522 if (LENGTH (over) < LENGTH (under))
1523 {
1524 this = split_interval_left (under, LENGTH (over));
1525 copy_properties (under, this);
1526 }
1527 else
1528 this = under;
1529 copy_properties (over, this);
1530 if (inherit)
1531 merge_properties (over, this);
1532 else
1533 copy_properties (over, this);
1534 over = next_interval (over);
1535 }
1536
1537 if (! NULL_INTERVAL_P (buffer->intervals))
1538 buffer->intervals = balance_an_interval (buffer->intervals);
1539 return;
1540 }
1541
1542 /* Get the value of property PROP from PLIST,
1543 which is the plist of an interval.
1544 We check for direct properties and for categories with property PROP. */
1545
1546 Lisp_Object
1547 textget (plist, prop)
1548 Lisp_Object plist;
1549 register Lisp_Object prop;
1550 {
1551 register Lisp_Object tail, fallback;
1552 fallback = Qnil;
1553
1554 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1555 {
1556 register Lisp_Object tem;
1557 tem = Fcar (tail);
1558 if (EQ (prop, tem))
1559 return Fcar (Fcdr (tail));
1560 if (EQ (tem, Qcategory))
1561 fallback = Fget (Fcar (Fcdr (tail)), prop);
1562 }
1563
1564 return fallback;
1565 }
1566
1567 /* Get the value of property PROP from PLIST,
1568 which is the plist of an interval.
1569 We check for direct properties only! */
1570
1571 Lisp_Object
1572 textget_direct (plist, prop)
1573 Lisp_Object plist;
1574 register Lisp_Object prop;
1575 {
1576 register Lisp_Object tail;
1577
1578 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1579 {
1580 if (EQ (prop, Fcar (tail)))
1581 return Fcar (Fcdr (tail));
1582 }
1583
1584 return Qnil;
1585 }
1586 \f
1587 /* Set point in BUFFER to POSITION. If the target position is
1588 before an invisible character which is not displayed with a special glyph,
1589 move back to an ok place to display. */
1590
1591 void
1592 set_point (position, buffer)
1593 register int position;
1594 register struct buffer *buffer;
1595 {
1596 register INTERVAL to, from, toprev, fromprev, target;
1597 int buffer_point;
1598 register Lisp_Object obj;
1599 int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
1600 int old_position = buffer->text.pt;
1601
1602 if (position == buffer->text.pt)
1603 return;
1604
1605 /* Check this now, before checking if the buffer has any intervals.
1606 That way, we can catch conditions which break this sanity check
1607 whether or not there are intervals in the buffer. */
1608 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1609 abort ();
1610
1611 if (NULL_INTERVAL_P (buffer->intervals))
1612 {
1613 buffer->text.pt = position;
1614 return;
1615 }
1616
1617 /* Set TO to the interval containing the char after POSITION,
1618 and TOPREV to the interval containing the char before POSITION.
1619 Either one may be null. They may be equal. */
1620 to = find_interval (buffer->intervals, position);
1621 if (position == BUF_BEGV (buffer))
1622 toprev = 0;
1623 else if (to->position == position)
1624 toprev = previous_interval (to);
1625 else
1626 toprev = to;
1627
1628 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1629 ? BUF_ZV (buffer) - 1
1630 : BUF_PT (buffer));
1631
1632 /* Set FROM to the interval containing the char after PT,
1633 and FROMPREV to the interval containing the char before PT.
1634 Either one may be null. They may be equal. */
1635 /* We could cache this and save time. */
1636 from = find_interval (buffer->intervals, buffer_point);
1637 if (buffer_point == BUF_BEGV (buffer))
1638 fromprev = 0;
1639 else if (from->position == BUF_PT (buffer))
1640 fromprev = previous_interval (from);
1641 else if (buffer_point != BUF_PT (buffer))
1642 fromprev = from, from = 0;
1643 else
1644 fromprev = from;
1645
1646 /* Moving within an interval. */
1647 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
1648 {
1649 buffer->text.pt = position;
1650 return;
1651 }
1652
1653 /* If the new position is before an invisible character
1654 that has an `invisible' property of value `hidden',
1655 move forward over all such. */
1656 while (! NULL_INTERVAL_P (to)
1657 && EQ (textget (to->plist, Qinvisible), Qhidden)
1658 && ! DISPLAY_INVISIBLE_GLYPH (to))
1659 {
1660 toprev = to;
1661 to = next_interval (to);
1662 if (NULL_INTERVAL_P (to))
1663 position = BUF_ZV (buffer);
1664 else
1665 position = to->position;
1666 }
1667
1668 buffer->text.pt = position;
1669
1670 /* We run point-left and point-entered hooks here, iff the
1671 two intervals are not equivalent. These hooks take
1672 (old_point, new_point) as arguments. */
1673 if (NILP (Vinhibit_point_motion_hooks)
1674 && (! intervals_equal (from, to)
1675 || ! intervals_equal (fromprev, toprev)))
1676 {
1677 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1678
1679 if (fromprev)
1680 leave_after = textget (fromprev->plist, Qpoint_left);
1681 else
1682 leave_after = Qnil;
1683 if (from)
1684 leave_before = textget (from->plist, Qpoint_left);
1685 else
1686 leave_before = Qnil;
1687
1688 if (toprev)
1689 enter_after = textget (toprev->plist, Qpoint_entered);
1690 else
1691 enter_after = Qnil;
1692 if (to)
1693 enter_before = textget (to->plist, Qpoint_entered);
1694 else
1695 enter_before = Qnil;
1696
1697 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1698 call2 (leave_before, old_position, position);
1699 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1700 call2 (leave_after, old_position, position);
1701
1702 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1703 call2 (enter_before, old_position, position);
1704 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1705 call2 (enter_after, old_position, position);
1706 }
1707 }
1708
1709 /* Set point temporarily, without checking any text properties. */
1710
1711 INLINE void
1712 temp_set_point (position, buffer)
1713 int position;
1714 struct buffer *buffer;
1715 {
1716 buffer->text.pt = position;
1717 }
1718 \f
1719 /* Return the proper local map for position POSITION in BUFFER.
1720 Use the map specified by the local-map property, if any.
1721 Otherwise, use BUFFER's local map. */
1722
1723 Lisp_Object
1724 get_local_map (position, buffer)
1725 register int position;
1726 register struct buffer *buffer;
1727 {
1728 register INTERVAL interval;
1729 Lisp_Object prop, tem;
1730
1731 if (NULL_INTERVAL_P (buffer->intervals))
1732 return current_buffer->keymap;
1733
1734 /* Perhaps we should just change `position' to the limit. */
1735 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1736 abort ();
1737
1738 interval = find_interval (buffer->intervals, position);
1739 prop = textget (interval->plist, Qlocal_map);
1740 if (NILP (prop))
1741 return current_buffer->keymap;
1742
1743 /* Use the local map only if it is valid. */
1744 tem = Fkeymapp (prop);
1745 if (!NILP (tem))
1746 return prop;
1747
1748 return current_buffer->keymap;
1749 }
1750 \f
1751 /* Call the modification hook functions in LIST, each with START and END. */
1752
1753 static void
1754 call_mod_hooks (list, start, end)
1755 Lisp_Object list, start, end;
1756 {
1757 struct gcpro gcpro1;
1758 GCPRO1 (list);
1759 while (!NILP (list))
1760 {
1761 call2 (Fcar (list), start, end);
1762 list = Fcdr (list);
1763 }
1764 UNGCPRO;
1765 }
1766
1767 /* Check for read-only intervals and signal an error if we find one.
1768 Then check for any modification hooks in the range START up to
1769 (but not including) TO. Create a list of all these hooks in
1770 lexicographic order, eliminating consecutive extra copies of the
1771 same hook. Then call those hooks in order, with START and END - 1
1772 as arguments. */
1773
1774 void
1775 verify_interval_modification (buf, start, end)
1776 struct buffer *buf;
1777 int start, end;
1778 {
1779 register INTERVAL intervals = buf->intervals;
1780 register INTERVAL i, prev;
1781 Lisp_Object hooks;
1782 register Lisp_Object prev_mod_hooks;
1783 Lisp_Object mod_hooks;
1784 struct gcpro gcpro1;
1785
1786 hooks = Qnil;
1787 prev_mod_hooks = Qnil;
1788 mod_hooks = Qnil;
1789
1790 if (NULL_INTERVAL_P (intervals))
1791 return;
1792
1793 if (start > end)
1794 {
1795 int temp = start;
1796 start = end;
1797 end = temp;
1798 }
1799
1800 /* For an insert operation, check the two chars around the position. */
1801 if (start == end)
1802 {
1803 INTERVAL prev;
1804 Lisp_Object before, after;
1805
1806 /* Set I to the interval containing the char after START,
1807 and PREV to the interval containing the char before START.
1808 Either one may be null. They may be equal. */
1809 i = find_interval (intervals, start);
1810
1811 if (start == BUF_BEGV (buf))
1812 prev = 0;
1813 else if (i->position == start)
1814 prev = previous_interval (i);
1815 else if (i->position < start)
1816 prev = i;
1817 if (start == BUF_ZV (buf))
1818 i = 0;
1819
1820 /* If Vinhibit_read_only is set and is not a list, we can
1821 skip the read_only checks. */
1822 if (NILP (Vinhibit_read_only) || CONSP (Vinhibit_read_only))
1823 {
1824 /* If I and PREV differ we need to check for the read-only
1825 property together with its stickyness. If either I or
1826 PREV are 0, this check is all we need.
1827 We have to take special care, since read-only may be
1828 indirectly defined via the category property. */
1829 if (i != prev)
1830 {
1831 if (! NULL_INTERVAL_P (i))
1832 {
1833 after = textget (i->plist, Qread_only);
1834
1835 /* If interval I is read-only and read-only is
1836 front-sticky, inhibit insertion.
1837 Check for read-only as well as category. */
1838 if (! NILP (after)
1839 && NILP (Fmemq (after, Vinhibit_read_only)))
1840 {
1841 Lisp_Object tem;
1842
1843 tem = textget (i->plist, Qfront_sticky);
1844 if (TMEM (Qread_only, tem)
1845 || (NILP (textget_direct (i->plist, Qread_only))
1846 && TMEM (Qcategory, tem)))
1847 error ("Attempt to insert within read-only text");
1848 }
1849 }
1850
1851 if (! NULL_INTERVAL_P (prev))
1852 {
1853 before = textget (prev->plist, Qread_only);
1854
1855 /* If interval PREV is read-only and read-only isn't
1856 rear-nonsticky, inhibit insertion.
1857 Check for read-only as well as category. */
1858 if (! NILP (before)
1859 && NILP (Fmemq (before, Vinhibit_read_only)))
1860 {
1861 Lisp_Object tem;
1862
1863 tem = textget (prev->plist, Qrear_nonsticky);
1864 if (! TMEM (Qread_only, tem)
1865 && (! NILP (textget_direct (prev->plist,Qread_only))
1866 || ! TMEM (Qcategory, tem)))
1867 error ("Attempt to insert within read-only text");
1868 }
1869 }
1870 }
1871 else if (! NULL_INTERVAL_P (i))
1872 {
1873 after = textget (i->plist, Qread_only);
1874
1875 /* If interval I is read-only and read-only is
1876 front-sticky, inhibit insertion.
1877 Check for read-only as well as category. */
1878 if (! NILP (after) && NILP (Fmemq (after, Vinhibit_read_only)))
1879 {
1880 Lisp_Object tem;
1881
1882 tem = textget (i->plist, Qfront_sticky);
1883 if (TMEM (Qread_only, tem)
1884 || (NILP (textget_direct (i->plist, Qread_only))
1885 && TMEM (Qcategory, tem)))
1886 error ("Attempt to insert within read-only text");
1887
1888 tem = textget (prev->plist, Qrear_nonsticky);
1889 if (! TMEM (Qread_only, tem)
1890 && (! NILP (textget_direct (prev->plist, Qread_only))
1891 || ! TMEM (Qcategory, tem)))
1892 error ("Attempt to insert within read-only text");
1893 }
1894 }
1895 }
1896
1897 /* Run both insert hooks (just once if they're the same). */
1898 if (!NULL_INTERVAL_P (prev))
1899 prev_mod_hooks = textget (prev->plist, Qinsert_behind_hooks);
1900 if (!NULL_INTERVAL_P (i))
1901 mod_hooks = textget (i->plist, Qinsert_in_front_hooks);
1902 GCPRO1 (mod_hooks);
1903 if (! NILP (prev_mod_hooks))
1904 call_mod_hooks (prev_mod_hooks, make_number (start),
1905 make_number (end));
1906 UNGCPRO;
1907 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1908 call_mod_hooks (mod_hooks, make_number (start), make_number (end));
1909 }
1910 else
1911 {
1912 /* Loop over intervals on or next to START...END,
1913 collecting their hooks. */
1914
1915 i = find_interval (intervals, start);
1916 do
1917 {
1918 if (! INTERVAL_WRITABLE_P (i))
1919 error ("Attempt to modify read-only text");
1920
1921 mod_hooks = textget (i->plist, Qmodification_hooks);
1922 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1923 {
1924 hooks = Fcons (mod_hooks, hooks);
1925 prev_mod_hooks = mod_hooks;
1926 }
1927
1928 i = next_interval (i);
1929 }
1930 /* Keep going thru the interval containing the char before END. */
1931 while (! NULL_INTERVAL_P (i) && i->position < end);
1932
1933 GCPRO1 (hooks);
1934 hooks = Fnreverse (hooks);
1935 while (! EQ (hooks, Qnil))
1936 {
1937 call_mod_hooks (Fcar (hooks), make_number (start),
1938 make_number (end));
1939 hooks = Fcdr (hooks);
1940 }
1941 UNGCPRO;
1942 }
1943 }
1944
1945 /* Produce an interval tree reflecting the intervals in
1946 TREE from START to START + LENGTH. */
1947
1948 INTERVAL
1949 copy_intervals (tree, start, length)
1950 INTERVAL tree;
1951 int start, length;
1952 {
1953 register INTERVAL i, new, t;
1954 register int got, prevlen;
1955
1956 if (NULL_INTERVAL_P (tree) || length <= 0)
1957 return NULL_INTERVAL;
1958
1959 i = find_interval (tree, start);
1960 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1961 abort ();
1962
1963 /* If there is only one interval and it's the default, return nil. */
1964 if ((start - i->position + 1 + length) < LENGTH (i)
1965 && DEFAULT_INTERVAL_P (i))
1966 return NULL_INTERVAL;
1967
1968 new = make_interval ();
1969 new->position = 1;
1970 got = (LENGTH (i) - (start - i->position));
1971 new->total_length = length;
1972 copy_properties (i, new);
1973
1974 t = new;
1975 prevlen = got;
1976 while (got < length)
1977 {
1978 i = next_interval (i);
1979 t = split_interval_right (t, prevlen);
1980 copy_properties (i, t);
1981 prevlen = LENGTH (i);
1982 got += prevlen;
1983 }
1984
1985 return balance_an_interval (new);
1986 }
1987
1988 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
1989
1990 INLINE void
1991 copy_intervals_to_string (string, buffer, position, length)
1992 Lisp_Object string, buffer;
1993 int position, length;
1994 {
1995 INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
1996 position, length);
1997 if (NULL_INTERVAL_P (interval_copy))
1998 return;
1999
2000 interval_copy->parent = (INTERVAL) string;
2001 XSTRING (string)->intervals = interval_copy;
2002 }
2003
2004 #endif /* USE_TEXT_PROPERTIES */