Merge from emacs-23; up to 2010-06-03T22:16:02Z!dann@ics.uci.edu
[bpt/emacs.git] / src / bytecode.c
1 /* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985-1988, 1993, 2000-2011 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /*
20 hacked on by jwz@lucid.com 17-jun-91
21 o added a compile-time switch to turn on simple sanity checking;
22 o put back the obsolete byte-codes for error-detection;
23 o added a new instruction, unbind_all, which I will use for
24 tail-recursion elimination;
25 o made temp_output_buffer_show be called with the right number
26 of args;
27 o made the new bytecodes be called with args in the right order;
28 o added metering support.
29
30 by Hallvard:
31 o added relative jump instructions;
32 o all conditionals now only do QUIT if they jump.
33 */
34
35 #include <config.h>
36 #include <setjmp.h>
37 #include "lisp.h"
38 #include "buffer.h"
39 #include "character.h"
40 #include "syntax.h"
41 #include "window.h"
42
43 #ifdef CHECK_FRAME_FONT
44 #include "frame.h"
45 #include "xterm.h"
46 #endif
47
48 /*
49 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
50 * debugging the byte compiler...)
51 *
52 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
53 */
54 /* #define BYTE_CODE_SAFE */
55 /* #define BYTE_CODE_METER */
56
57 \f
58 #ifdef BYTE_CODE_METER
59
60 Lisp_Object Qbyte_code_meter;
61 #define METER_2(code1, code2) \
62 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
63 ->contents[(code2)])
64
65 #define METER_1(code) METER_2 (0, (code))
66
67 #define METER_CODE(last_code, this_code) \
68 { \
69 if (byte_metering_on) \
70 { \
71 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
72 METER_1 (this_code)++; \
73 if (last_code \
74 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
75 METER_2 (last_code, this_code)++; \
76 } \
77 }
78
79 #else /* no BYTE_CODE_METER */
80
81 #define METER_CODE(last_code, this_code)
82
83 #endif /* no BYTE_CODE_METER */
84 \f
85
86 Lisp_Object Qbytecode;
87
88 /* Byte codes: */
89
90 #define Bvarref 010
91 #define Bvarset 020
92 #define Bvarbind 030
93 #define Bcall 040
94 #define Bunbind 050
95
96 #define Bnth 070
97 #define Bsymbolp 071
98 #define Bconsp 072
99 #define Bstringp 073
100 #define Blistp 074
101 #define Beq 075
102 #define Bmemq 076
103 #define Bnot 077
104 #define Bcar 0100
105 #define Bcdr 0101
106 #define Bcons 0102
107 #define Blist1 0103
108 #define Blist2 0104
109 #define Blist3 0105
110 #define Blist4 0106
111 #define Blength 0107
112 #define Baref 0110
113 #define Baset 0111
114 #define Bsymbol_value 0112
115 #define Bsymbol_function 0113
116 #define Bset 0114
117 #define Bfset 0115
118 #define Bget 0116
119 #define Bsubstring 0117
120 #define Bconcat2 0120
121 #define Bconcat3 0121
122 #define Bconcat4 0122
123 #define Bsub1 0123
124 #define Badd1 0124
125 #define Beqlsign 0125
126 #define Bgtr 0126
127 #define Blss 0127
128 #define Bleq 0130
129 #define Bgeq 0131
130 #define Bdiff 0132
131 #define Bnegate 0133
132 #define Bplus 0134
133 #define Bmax 0135
134 #define Bmin 0136
135 #define Bmult 0137
136
137 #define Bpoint 0140
138 /* Was Bmark in v17. */
139 #define Bsave_current_buffer 0141
140 #define Bgoto_char 0142
141 #define Binsert 0143
142 #define Bpoint_max 0144
143 #define Bpoint_min 0145
144 #define Bchar_after 0146
145 #define Bfollowing_char 0147
146 #define Bpreceding_char 0150
147 #define Bcurrent_column 0151
148 #define Bindent_to 0152
149 #define Bscan_buffer 0153 /* No longer generated as of v18 */
150 #define Beolp 0154
151 #define Beobp 0155
152 #define Bbolp 0156
153 #define Bbobp 0157
154 #define Bcurrent_buffer 0160
155 #define Bset_buffer 0161
156 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
157 #define Bread_char 0162 /* No longer generated as of v19 */
158 #define Bset_mark 0163 /* this loser is no longer generated as of v18 */
159 #define Binteractive_p 0164 /* Needed since interactive-p takes unevalled args */
160
161 #define Bforward_char 0165
162 #define Bforward_word 0166
163 #define Bskip_chars_forward 0167
164 #define Bskip_chars_backward 0170
165 #define Bforward_line 0171
166 #define Bchar_syntax 0172
167 #define Bbuffer_substring 0173
168 #define Bdelete_region 0174
169 #define Bnarrow_to_region 0175
170 #define Bwiden 0176
171 #define Bend_of_line 0177
172
173 #define Bconstant2 0201
174 #define Bgoto 0202
175 #define Bgotoifnil 0203
176 #define Bgotoifnonnil 0204
177 #define Bgotoifnilelsepop 0205
178 #define Bgotoifnonnilelsepop 0206
179 #define Breturn 0207
180 #define Bdiscard 0210
181 #define Bdup 0211
182
183 #define Bsave_excursion 0212
184 #define Bsave_window_excursion 0213
185 #define Bsave_restriction 0214
186 #define Bcatch 0215
187
188 #define Bunwind_protect 0216
189 #define Bcondition_case 0217
190 #define Btemp_output_buffer_setup 0220
191 #define Btemp_output_buffer_show 0221
192
193 #define Bunbind_all 0222
194
195 #define Bset_marker 0223
196 #define Bmatch_beginning 0224
197 #define Bmatch_end 0225
198 #define Bupcase 0226
199 #define Bdowncase 0227
200
201 #define Bstringeqlsign 0230
202 #define Bstringlss 0231
203 #define Bequal 0232
204 #define Bnthcdr 0233
205 #define Belt 0234
206 #define Bmember 0235
207 #define Bassq 0236
208 #define Bnreverse 0237
209 #define Bsetcar 0240
210 #define Bsetcdr 0241
211 #define Bcar_safe 0242
212 #define Bcdr_safe 0243
213 #define Bnconc 0244
214 #define Bquo 0245
215 #define Brem 0246
216 #define Bnumberp 0247
217 #define Bintegerp 0250
218
219 #define BRgoto 0252
220 #define BRgotoifnil 0253
221 #define BRgotoifnonnil 0254
222 #define BRgotoifnilelsepop 0255
223 #define BRgotoifnonnilelsepop 0256
224
225 #define BlistN 0257
226 #define BconcatN 0260
227 #define BinsertN 0261
228
229 #define Bconstant 0300
230 #define CONSTANTLIM 0100
231
232 /* Whether to maintain a `top' and `bottom' field in the stack frame. */
233 #define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK)
234 \f
235 /* Structure describing a value stack used during byte-code execution
236 in Fbyte_code. */
237
238 struct byte_stack
239 {
240 /* Program counter. This points into the byte_string below
241 and is relocated when that string is relocated. */
242 const unsigned char *pc;
243
244 /* Top and bottom of stack. The bottom points to an area of memory
245 allocated with alloca in Fbyte_code. */
246 #if BYTE_MAINTAIN_TOP
247 Lisp_Object *top, *bottom;
248 #endif
249
250 /* The string containing the byte-code, and its current address.
251 Storing this here protects it from GC because mark_byte_stack
252 marks it. */
253 Lisp_Object byte_string;
254 const unsigned char *byte_string_start;
255
256 /* The vector of constants used during byte-code execution. Storing
257 this here protects it from GC because mark_byte_stack marks it. */
258 Lisp_Object constants;
259
260 /* Next entry in byte_stack_list. */
261 struct byte_stack *next;
262 };
263
264 /* A list of currently active byte-code execution value stacks.
265 Fbyte_code adds an entry to the head of this list before it starts
266 processing byte-code, and it removed the entry again when it is
267 done. Signalling an error truncates the list analoguous to
268 gcprolist. */
269
270 struct byte_stack *byte_stack_list;
271
272 \f
273 /* Mark objects on byte_stack_list. Called during GC. */
274
275 #if BYTE_MARK_STACK
276 void
277 mark_byte_stack (void)
278 {
279 struct byte_stack *stack;
280 Lisp_Object *obj;
281
282 for (stack = byte_stack_list; stack; stack = stack->next)
283 {
284 /* If STACK->top is null here, this means there's an opcode in
285 Fbyte_code that wasn't expected to GC, but did. To find out
286 which opcode this is, record the value of `stack', and walk
287 up the stack in a debugger, stopping in frames of Fbyte_code.
288 The culprit is found in the frame of Fbyte_code where the
289 address of its local variable `stack' is equal to the
290 recorded value of `stack' here. */
291 eassert (stack->top);
292
293 for (obj = stack->bottom; obj <= stack->top; ++obj)
294 mark_object (*obj);
295
296 mark_object (stack->byte_string);
297 mark_object (stack->constants);
298 }
299 }
300 #endif
301
302 /* Unmark objects in the stacks on byte_stack_list. Relocate program
303 counters. Called when GC has completed. */
304
305 void
306 unmark_byte_stack (void)
307 {
308 struct byte_stack *stack;
309
310 for (stack = byte_stack_list; stack; stack = stack->next)
311 {
312 if (stack->byte_string_start != SDATA (stack->byte_string))
313 {
314 int offset = stack->pc - stack->byte_string_start;
315 stack->byte_string_start = SDATA (stack->byte_string);
316 stack->pc = stack->byte_string_start + offset;
317 }
318 }
319 }
320
321 \f
322 /* Fetch the next byte from the bytecode stream */
323
324 #define FETCH *stack.pc++
325
326 /* Fetch two bytes from the bytecode stream and make a 16-bit number
327 out of them */
328
329 #define FETCH2 (op = FETCH, op + (FETCH << 8))
330
331 /* Push x onto the execution stack. This used to be #define PUSH(x)
332 (*++stackp = (x)) This oddity is necessary because Alliant can't be
333 bothered to compile the preincrement operator properly, as of 4/91.
334 -JimB */
335
336 #define PUSH(x) (top++, *top = (x))
337
338 /* Pop a value off the execution stack. */
339
340 #define POP (*top--)
341
342 /* Discard n values from the execution stack. */
343
344 #define DISCARD(n) (top -= (n))
345
346 /* Get the value which is at the top of the execution stack, but don't
347 pop it. */
348
349 #define TOP (*top)
350
351 /* Actions that must be performed before and after calling a function
352 that might GC. */
353
354 #if !BYTE_MAINTAIN_TOP
355 #define BEFORE_POTENTIAL_GC() ((void)0)
356 #define AFTER_POTENTIAL_GC() ((void)0)
357 #else
358 #define BEFORE_POTENTIAL_GC() stack.top = top
359 #define AFTER_POTENTIAL_GC() stack.top = NULL
360 #endif
361
362 /* Garbage collect if we have consed enough since the last time.
363 We do this at every branch, to avoid loops that never GC. */
364
365 #define MAYBE_GC() \
366 if (consing_since_gc > gc_cons_threshold \
367 && consing_since_gc > gc_relative_threshold) \
368 { \
369 BEFORE_POTENTIAL_GC (); \
370 Fgarbage_collect (); \
371 AFTER_POTENTIAL_GC (); \
372 } \
373 else
374
375 /* Check for jumping out of range. */
376
377 #ifdef BYTE_CODE_SAFE
378
379 #define CHECK_RANGE(ARG) \
380 if (ARG >= bytestr_length) abort ()
381
382 #else /* not BYTE_CODE_SAFE */
383
384 #define CHECK_RANGE(ARG)
385
386 #endif /* not BYTE_CODE_SAFE */
387
388 /* A version of the QUIT macro which makes sure that the stack top is
389 set before signaling `quit'. */
390
391 #define BYTE_CODE_QUIT \
392 do { \
393 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
394 { \
395 Lisp_Object flag = Vquit_flag; \
396 Vquit_flag = Qnil; \
397 BEFORE_POTENTIAL_GC (); \
398 if (EQ (Vthrow_on_input, flag)) \
399 Fthrow (Vthrow_on_input, Qt); \
400 Fsignal (Qquit, Qnil); \
401 AFTER_POTENTIAL_GC (); \
402 } \
403 ELSE_PENDING_SIGNALS \
404 } while (0)
405
406
407 DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
408 doc: /* Function used internally in byte-compiled code.
409 The first argument, BYTESTR, is a string of byte code;
410 the second, VECTOR, a vector of constants;
411 the third, MAXDEPTH, the maximum stack depth used in this function.
412 If the third argument is incorrect, Emacs may crash. */)
413 (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
414 {
415 int count = SPECPDL_INDEX ();
416 #ifdef BYTE_CODE_METER
417 int this_op = 0;
418 int prev_op;
419 #endif
420 int op;
421 /* Lisp_Object v1, v2; */
422 Lisp_Object *vectorp;
423 #ifdef BYTE_CODE_SAFE
424 int const_length = XVECTOR (vector)->size;
425 Lisp_Object *stacke;
426 #endif
427 int bytestr_length;
428 struct byte_stack stack;
429 Lisp_Object *top;
430 Lisp_Object result;
431
432 #if 0 /* CHECK_FRAME_FONT */
433 {
434 struct frame *f = SELECTED_FRAME ();
435 if (FRAME_X_P (f)
436 && FRAME_FONT (f)->direction != 0
437 && FRAME_FONT (f)->direction != 1)
438 abort ();
439 }
440 #endif
441
442 CHECK_STRING (bytestr);
443 CHECK_VECTOR (vector);
444 CHECK_NUMBER (maxdepth);
445
446 if (STRING_MULTIBYTE (bytestr))
447 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
448 because they produced a raw 8-bit string for byte-code and now
449 such a byte-code string is loaded as multibyte while raw 8-bit
450 characters converted to multibyte form. Thus, now we must
451 convert them back to the originally intended unibyte form. */
452 bytestr = Fstring_as_unibyte (bytestr);
453
454 bytestr_length = SBYTES (bytestr);
455 vectorp = XVECTOR (vector)->contents;
456
457 stack.byte_string = bytestr;
458 stack.pc = stack.byte_string_start = SDATA (bytestr);
459 stack.constants = vector;
460 top = (Lisp_Object *) alloca (XFASTINT (maxdepth)
461 * sizeof (Lisp_Object));
462 #if BYTE_MAINTAIN_TOP
463 stack.bottom = top;
464 stack.top = NULL;
465 #endif
466 top -= 1;
467 stack.next = byte_stack_list;
468 byte_stack_list = &stack;
469
470 #ifdef BYTE_CODE_SAFE
471 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
472 #endif
473
474 while (1)
475 {
476 #ifdef BYTE_CODE_SAFE
477 if (top > stacke)
478 abort ();
479 else if (top < stack.bottom - 1)
480 abort ();
481 #endif
482
483 #ifdef BYTE_CODE_METER
484 prev_op = this_op;
485 this_op = op = FETCH;
486 METER_CODE (prev_op, op);
487 #else
488 op = FETCH;
489 #endif
490
491 switch (op)
492 {
493 case Bvarref + 7:
494 op = FETCH2;
495 goto varref;
496
497 case Bvarref:
498 case Bvarref + 1:
499 case Bvarref + 2:
500 case Bvarref + 3:
501 case Bvarref + 4:
502 case Bvarref + 5:
503 op = op - Bvarref;
504 goto varref;
505
506 /* This seems to be the most frequently executed byte-code
507 among the Bvarref's, so avoid a goto here. */
508 case Bvarref+6:
509 op = FETCH;
510 varref:
511 {
512 Lisp_Object v1, v2;
513
514 v1 = vectorp[op];
515 if (SYMBOLP (v1))
516 {
517 if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
518 || (v2 = SYMBOL_VAL (XSYMBOL (v1)),
519 EQ (v2, Qunbound)))
520 {
521 BEFORE_POTENTIAL_GC ();
522 v2 = Fsymbol_value (v1);
523 AFTER_POTENTIAL_GC ();
524 }
525 }
526 else
527 {
528 BEFORE_POTENTIAL_GC ();
529 v2 = Fsymbol_value (v1);
530 AFTER_POTENTIAL_GC ();
531 }
532 PUSH (v2);
533 break;
534 }
535
536 case Bgotoifnil:
537 {
538 Lisp_Object v1;
539 MAYBE_GC ();
540 op = FETCH2;
541 v1 = POP;
542 if (NILP (v1))
543 {
544 BYTE_CODE_QUIT;
545 CHECK_RANGE (op);
546 stack.pc = stack.byte_string_start + op;
547 }
548 break;
549 }
550
551 case Bcar:
552 {
553 Lisp_Object v1;
554 v1 = TOP;
555 TOP = CAR (v1);
556 break;
557 }
558
559 case Beq:
560 {
561 Lisp_Object v1;
562 v1 = POP;
563 TOP = EQ (v1, TOP) ? Qt : Qnil;
564 break;
565 }
566
567 case Bmemq:
568 {
569 Lisp_Object v1;
570 BEFORE_POTENTIAL_GC ();
571 v1 = POP;
572 TOP = Fmemq (TOP, v1);
573 AFTER_POTENTIAL_GC ();
574 break;
575 }
576
577 case Bcdr:
578 {
579 Lisp_Object v1;
580 v1 = TOP;
581 TOP = CDR (v1);
582 break;
583 }
584
585 case Bvarset:
586 case Bvarset+1:
587 case Bvarset+2:
588 case Bvarset+3:
589 case Bvarset+4:
590 case Bvarset+5:
591 op -= Bvarset;
592 goto varset;
593
594 case Bvarset+7:
595 op = FETCH2;
596 goto varset;
597
598 case Bvarset+6:
599 op = FETCH;
600 varset:
601 {
602 Lisp_Object sym, val;
603
604 sym = vectorp[op];
605 val = TOP;
606
607 /* Inline the most common case. */
608 if (SYMBOLP (sym)
609 && !EQ (val, Qunbound)
610 && !XSYMBOL (sym)->redirect
611 && !SYMBOL_CONSTANT_P (sym))
612 XSYMBOL (sym)->val.value = val;
613 else
614 {
615 BEFORE_POTENTIAL_GC ();
616 set_internal (sym, val, Qnil, 0);
617 AFTER_POTENTIAL_GC ();
618 }
619 }
620 (void) POP;
621 break;
622
623 case Bdup:
624 {
625 Lisp_Object v1;
626 v1 = TOP;
627 PUSH (v1);
628 break;
629 }
630
631 /* ------------------ */
632
633 case Bvarbind+6:
634 op = FETCH;
635 goto varbind;
636
637 case Bvarbind+7:
638 op = FETCH2;
639 goto varbind;
640
641 case Bvarbind:
642 case Bvarbind+1:
643 case Bvarbind+2:
644 case Bvarbind+3:
645 case Bvarbind+4:
646 case Bvarbind+5:
647 op -= Bvarbind;
648 varbind:
649 /* Specbind can signal and thus GC. */
650 BEFORE_POTENTIAL_GC ();
651 specbind (vectorp[op], POP);
652 AFTER_POTENTIAL_GC ();
653 break;
654
655 case Bcall+6:
656 op = FETCH;
657 goto docall;
658
659 case Bcall+7:
660 op = FETCH2;
661 goto docall;
662
663 case Bcall:
664 case Bcall+1:
665 case Bcall+2:
666 case Bcall+3:
667 case Bcall+4:
668 case Bcall+5:
669 op -= Bcall;
670 docall:
671 {
672 BEFORE_POTENTIAL_GC ();
673 DISCARD (op);
674 #ifdef BYTE_CODE_METER
675 if (byte_metering_on && SYMBOLP (TOP))
676 {
677 Lisp_Object v1, v2;
678
679 v1 = TOP;
680 v2 = Fget (v1, Qbyte_code_meter);
681 if (INTEGERP (v2)
682 && XINT (v2) < MOST_POSITIVE_FIXNUM)
683 {
684 XSETINT (v2, XINT (v2) + 1);
685 Fput (v1, Qbyte_code_meter, v2);
686 }
687 }
688 #endif
689 TOP = Ffuncall (op + 1, &TOP);
690 AFTER_POTENTIAL_GC ();
691 break;
692 }
693
694 case Bunbind+6:
695 op = FETCH;
696 goto dounbind;
697
698 case Bunbind+7:
699 op = FETCH2;
700 goto dounbind;
701
702 case Bunbind:
703 case Bunbind+1:
704 case Bunbind+2:
705 case Bunbind+3:
706 case Bunbind+4:
707 case Bunbind+5:
708 op -= Bunbind;
709 dounbind:
710 BEFORE_POTENTIAL_GC ();
711 unbind_to (SPECPDL_INDEX () - op, Qnil);
712 AFTER_POTENTIAL_GC ();
713 break;
714
715 case Bunbind_all:
716 /* To unbind back to the beginning of this frame. Not used yet,
717 but will be needed for tail-recursion elimination. */
718 BEFORE_POTENTIAL_GC ();
719 unbind_to (count, Qnil);
720 AFTER_POTENTIAL_GC ();
721 break;
722
723 case Bgoto:
724 MAYBE_GC ();
725 BYTE_CODE_QUIT;
726 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
727 CHECK_RANGE (op);
728 stack.pc = stack.byte_string_start + op;
729 break;
730
731 case Bgotoifnonnil:
732 {
733 Lisp_Object v1;
734 MAYBE_GC ();
735 op = FETCH2;
736 v1 = POP;
737 if (!NILP (v1))
738 {
739 BYTE_CODE_QUIT;
740 CHECK_RANGE (op);
741 stack.pc = stack.byte_string_start + op;
742 }
743 break;
744 }
745
746 case Bgotoifnilelsepop:
747 MAYBE_GC ();
748 op = FETCH2;
749 if (NILP (TOP))
750 {
751 BYTE_CODE_QUIT;
752 CHECK_RANGE (op);
753 stack.pc = stack.byte_string_start + op;
754 }
755 else DISCARD (1);
756 break;
757
758 case Bgotoifnonnilelsepop:
759 MAYBE_GC ();
760 op = FETCH2;
761 if (!NILP (TOP))
762 {
763 BYTE_CODE_QUIT;
764 CHECK_RANGE (op);
765 stack.pc = stack.byte_string_start + op;
766 }
767 else DISCARD (1);
768 break;
769
770 case BRgoto:
771 MAYBE_GC ();
772 BYTE_CODE_QUIT;
773 stack.pc += (int) *stack.pc - 127;
774 break;
775
776 case BRgotoifnil:
777 {
778 Lisp_Object v1;
779 MAYBE_GC ();
780 v1 = POP;
781 if (NILP (v1))
782 {
783 BYTE_CODE_QUIT;
784 stack.pc += (int) *stack.pc - 128;
785 }
786 stack.pc++;
787 break;
788 }
789
790 case BRgotoifnonnil:
791 {
792 Lisp_Object v1;
793 MAYBE_GC ();
794 v1 = POP;
795 if (!NILP (v1))
796 {
797 BYTE_CODE_QUIT;
798 stack.pc += (int) *stack.pc - 128;
799 }
800 stack.pc++;
801 break;
802 }
803
804 case BRgotoifnilelsepop:
805 MAYBE_GC ();
806 op = *stack.pc++;
807 if (NILP (TOP))
808 {
809 BYTE_CODE_QUIT;
810 stack.pc += op - 128;
811 }
812 else DISCARD (1);
813 break;
814
815 case BRgotoifnonnilelsepop:
816 MAYBE_GC ();
817 op = *stack.pc++;
818 if (!NILP (TOP))
819 {
820 BYTE_CODE_QUIT;
821 stack.pc += op - 128;
822 }
823 else DISCARD (1);
824 break;
825
826 case Breturn:
827 result = POP;
828 goto exit;
829
830 case Bdiscard:
831 DISCARD (1);
832 break;
833
834 case Bconstant2:
835 PUSH (vectorp[FETCH2]);
836 break;
837
838 case Bsave_excursion:
839 record_unwind_protect (save_excursion_restore,
840 save_excursion_save ());
841 break;
842
843 case Bsave_current_buffer:
844 case Bsave_current_buffer_1:
845 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
846 break;
847
848 case Bsave_window_excursion:
849 BEFORE_POTENTIAL_GC ();
850 TOP = Fsave_window_excursion (TOP);
851 AFTER_POTENTIAL_GC ();
852 break;
853
854 case Bsave_restriction:
855 record_unwind_protect (save_restriction_restore,
856 save_restriction_save ());
857 break;
858
859 case Bcatch:
860 {
861 Lisp_Object v1;
862 BEFORE_POTENTIAL_GC ();
863 v1 = POP;
864 TOP = internal_catch (TOP, Feval, v1);
865 AFTER_POTENTIAL_GC ();
866 break;
867 }
868
869 case Bunwind_protect:
870 record_unwind_protect (Fprogn, POP);
871 break;
872
873 case Bcondition_case:
874 {
875 Lisp_Object handlers, body;
876 handlers = POP;
877 body = POP;
878 BEFORE_POTENTIAL_GC ();
879 TOP = internal_lisp_condition_case (TOP, body, handlers);
880 AFTER_POTENTIAL_GC ();
881 break;
882 }
883
884 case Btemp_output_buffer_setup:
885 BEFORE_POTENTIAL_GC ();
886 CHECK_STRING (TOP);
887 temp_output_buffer_setup (SSDATA (TOP));
888 AFTER_POTENTIAL_GC ();
889 TOP = Vstandard_output;
890 break;
891
892 case Btemp_output_buffer_show:
893 {
894 Lisp_Object v1;
895 BEFORE_POTENTIAL_GC ();
896 v1 = POP;
897 temp_output_buffer_show (TOP);
898 TOP = v1;
899 /* pop binding of standard-output */
900 unbind_to (SPECPDL_INDEX () - 1, Qnil);
901 AFTER_POTENTIAL_GC ();
902 break;
903 }
904
905 case Bnth:
906 {
907 Lisp_Object v1, v2;
908 BEFORE_POTENTIAL_GC ();
909 v1 = POP;
910 v2 = TOP;
911 CHECK_NUMBER (v2);
912 AFTER_POTENTIAL_GC ();
913 op = XINT (v2);
914 immediate_quit = 1;
915 while (--op >= 0 && CONSP (v1))
916 v1 = XCDR (v1);
917 immediate_quit = 0;
918 TOP = CAR (v1);
919 break;
920 }
921
922 case Bsymbolp:
923 TOP = SYMBOLP (TOP) ? Qt : Qnil;
924 break;
925
926 case Bconsp:
927 TOP = CONSP (TOP) ? Qt : Qnil;
928 break;
929
930 case Bstringp:
931 TOP = STRINGP (TOP) ? Qt : Qnil;
932 break;
933
934 case Blistp:
935 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
936 break;
937
938 case Bnot:
939 TOP = NILP (TOP) ? Qt : Qnil;
940 break;
941
942 case Bcons:
943 {
944 Lisp_Object v1;
945 v1 = POP;
946 TOP = Fcons (TOP, v1);
947 break;
948 }
949
950 case Blist1:
951 TOP = Fcons (TOP, Qnil);
952 break;
953
954 case Blist2:
955 {
956 Lisp_Object v1;
957 v1 = POP;
958 TOP = Fcons (TOP, Fcons (v1, Qnil));
959 break;
960 }
961
962 case Blist3:
963 DISCARD (2);
964 TOP = Flist (3, &TOP);
965 break;
966
967 case Blist4:
968 DISCARD (3);
969 TOP = Flist (4, &TOP);
970 break;
971
972 case BlistN:
973 op = FETCH;
974 DISCARD (op - 1);
975 TOP = Flist (op, &TOP);
976 break;
977
978 case Blength:
979 BEFORE_POTENTIAL_GC ();
980 TOP = Flength (TOP);
981 AFTER_POTENTIAL_GC ();
982 break;
983
984 case Baref:
985 {
986 Lisp_Object v1;
987 BEFORE_POTENTIAL_GC ();
988 v1 = POP;
989 TOP = Faref (TOP, v1);
990 AFTER_POTENTIAL_GC ();
991 break;
992 }
993
994 case Baset:
995 {
996 Lisp_Object v1, v2;
997 BEFORE_POTENTIAL_GC ();
998 v2 = POP; v1 = POP;
999 TOP = Faset (TOP, v1, v2);
1000 AFTER_POTENTIAL_GC ();
1001 break;
1002 }
1003
1004 case Bsymbol_value:
1005 BEFORE_POTENTIAL_GC ();
1006 TOP = Fsymbol_value (TOP);
1007 AFTER_POTENTIAL_GC ();
1008 break;
1009
1010 case Bsymbol_function:
1011 BEFORE_POTENTIAL_GC ();
1012 TOP = Fsymbol_function (TOP);
1013 AFTER_POTENTIAL_GC ();
1014 break;
1015
1016 case Bset:
1017 {
1018 Lisp_Object v1;
1019 BEFORE_POTENTIAL_GC ();
1020 v1 = POP;
1021 TOP = Fset (TOP, v1);
1022 AFTER_POTENTIAL_GC ();
1023 break;
1024 }
1025
1026 case Bfset:
1027 {
1028 Lisp_Object v1;
1029 BEFORE_POTENTIAL_GC ();
1030 v1 = POP;
1031 TOP = Ffset (TOP, v1);
1032 AFTER_POTENTIAL_GC ();
1033 break;
1034 }
1035
1036 case Bget:
1037 {
1038 Lisp_Object v1;
1039 BEFORE_POTENTIAL_GC ();
1040 v1 = POP;
1041 TOP = Fget (TOP, v1);
1042 AFTER_POTENTIAL_GC ();
1043 break;
1044 }
1045
1046 case Bsubstring:
1047 {
1048 Lisp_Object v1, v2;
1049 BEFORE_POTENTIAL_GC ();
1050 v2 = POP; v1 = POP;
1051 TOP = Fsubstring (TOP, v1, v2);
1052 AFTER_POTENTIAL_GC ();
1053 break;
1054 }
1055
1056 case Bconcat2:
1057 BEFORE_POTENTIAL_GC ();
1058 DISCARD (1);
1059 TOP = Fconcat (2, &TOP);
1060 AFTER_POTENTIAL_GC ();
1061 break;
1062
1063 case Bconcat3:
1064 BEFORE_POTENTIAL_GC ();
1065 DISCARD (2);
1066 TOP = Fconcat (3, &TOP);
1067 AFTER_POTENTIAL_GC ();
1068 break;
1069
1070 case Bconcat4:
1071 BEFORE_POTENTIAL_GC ();
1072 DISCARD (3);
1073 TOP = Fconcat (4, &TOP);
1074 AFTER_POTENTIAL_GC ();
1075 break;
1076
1077 case BconcatN:
1078 op = FETCH;
1079 BEFORE_POTENTIAL_GC ();
1080 DISCARD (op - 1);
1081 TOP = Fconcat (op, &TOP);
1082 AFTER_POTENTIAL_GC ();
1083 break;
1084
1085 case Bsub1:
1086 {
1087 Lisp_Object v1;
1088 v1 = TOP;
1089 if (INTEGERP (v1))
1090 {
1091 XSETINT (v1, XINT (v1) - 1);
1092 TOP = v1;
1093 }
1094 else
1095 {
1096 BEFORE_POTENTIAL_GC ();
1097 TOP = Fsub1 (v1);
1098 AFTER_POTENTIAL_GC ();
1099 }
1100 break;
1101 }
1102
1103 case Badd1:
1104 {
1105 Lisp_Object v1;
1106 v1 = TOP;
1107 if (INTEGERP (v1))
1108 {
1109 XSETINT (v1, XINT (v1) + 1);
1110 TOP = v1;
1111 }
1112 else
1113 {
1114 BEFORE_POTENTIAL_GC ();
1115 TOP = Fadd1 (v1);
1116 AFTER_POTENTIAL_GC ();
1117 }
1118 break;
1119 }
1120
1121 case Beqlsign:
1122 {
1123 Lisp_Object v1, v2;
1124 BEFORE_POTENTIAL_GC ();
1125 v2 = POP; v1 = TOP;
1126 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1127 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1128 AFTER_POTENTIAL_GC ();
1129 if (FLOATP (v1) || FLOATP (v2))
1130 {
1131 double f1, f2;
1132
1133 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1134 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1135 TOP = (f1 == f2 ? Qt : Qnil);
1136 }
1137 else
1138 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1139 break;
1140 }
1141
1142 case Bgtr:
1143 {
1144 Lisp_Object v1;
1145 BEFORE_POTENTIAL_GC ();
1146 v1 = POP;
1147 TOP = Fgtr (TOP, v1);
1148 AFTER_POTENTIAL_GC ();
1149 break;
1150 }
1151
1152 case Blss:
1153 {
1154 Lisp_Object v1;
1155 BEFORE_POTENTIAL_GC ();
1156 v1 = POP;
1157 TOP = Flss (TOP, v1);
1158 AFTER_POTENTIAL_GC ();
1159 break;
1160 }
1161
1162 case Bleq:
1163 {
1164 Lisp_Object v1;
1165 BEFORE_POTENTIAL_GC ();
1166 v1 = POP;
1167 TOP = Fleq (TOP, v1);
1168 AFTER_POTENTIAL_GC ();
1169 break;
1170 }
1171
1172 case Bgeq:
1173 {
1174 Lisp_Object v1;
1175 BEFORE_POTENTIAL_GC ();
1176 v1 = POP;
1177 TOP = Fgeq (TOP, v1);
1178 AFTER_POTENTIAL_GC ();
1179 break;
1180 }
1181
1182 case Bdiff:
1183 BEFORE_POTENTIAL_GC ();
1184 DISCARD (1);
1185 TOP = Fminus (2, &TOP);
1186 AFTER_POTENTIAL_GC ();
1187 break;
1188
1189 case Bnegate:
1190 {
1191 Lisp_Object v1;
1192 v1 = TOP;
1193 if (INTEGERP (v1))
1194 {
1195 XSETINT (v1, - XINT (v1));
1196 TOP = v1;
1197 }
1198 else
1199 {
1200 BEFORE_POTENTIAL_GC ();
1201 TOP = Fminus (1, &TOP);
1202 AFTER_POTENTIAL_GC ();
1203 }
1204 break;
1205 }
1206
1207 case Bplus:
1208 BEFORE_POTENTIAL_GC ();
1209 DISCARD (1);
1210 TOP = Fplus (2, &TOP);
1211 AFTER_POTENTIAL_GC ();
1212 break;
1213
1214 case Bmax:
1215 BEFORE_POTENTIAL_GC ();
1216 DISCARD (1);
1217 TOP = Fmax (2, &TOP);
1218 AFTER_POTENTIAL_GC ();
1219 break;
1220
1221 case Bmin:
1222 BEFORE_POTENTIAL_GC ();
1223 DISCARD (1);
1224 TOP = Fmin (2, &TOP);
1225 AFTER_POTENTIAL_GC ();
1226 break;
1227
1228 case Bmult:
1229 BEFORE_POTENTIAL_GC ();
1230 DISCARD (1);
1231 TOP = Ftimes (2, &TOP);
1232 AFTER_POTENTIAL_GC ();
1233 break;
1234
1235 case Bquo:
1236 BEFORE_POTENTIAL_GC ();
1237 DISCARD (1);
1238 TOP = Fquo (2, &TOP);
1239 AFTER_POTENTIAL_GC ();
1240 break;
1241
1242 case Brem:
1243 {
1244 Lisp_Object v1;
1245 BEFORE_POTENTIAL_GC ();
1246 v1 = POP;
1247 TOP = Frem (TOP, v1);
1248 AFTER_POTENTIAL_GC ();
1249 break;
1250 }
1251
1252 case Bpoint:
1253 {
1254 Lisp_Object v1;
1255 XSETFASTINT (v1, PT);
1256 PUSH (v1);
1257 break;
1258 }
1259
1260 case Bgoto_char:
1261 BEFORE_POTENTIAL_GC ();
1262 TOP = Fgoto_char (TOP);
1263 AFTER_POTENTIAL_GC ();
1264 break;
1265
1266 case Binsert:
1267 BEFORE_POTENTIAL_GC ();
1268 TOP = Finsert (1, &TOP);
1269 AFTER_POTENTIAL_GC ();
1270 break;
1271
1272 case BinsertN:
1273 op = FETCH;
1274 BEFORE_POTENTIAL_GC ();
1275 DISCARD (op - 1);
1276 TOP = Finsert (op, &TOP);
1277 AFTER_POTENTIAL_GC ();
1278 break;
1279
1280 case Bpoint_max:
1281 {
1282 Lisp_Object v1;
1283 XSETFASTINT (v1, ZV);
1284 PUSH (v1);
1285 break;
1286 }
1287
1288 case Bpoint_min:
1289 {
1290 Lisp_Object v1;
1291 XSETFASTINT (v1, BEGV);
1292 PUSH (v1);
1293 break;
1294 }
1295
1296 case Bchar_after:
1297 BEFORE_POTENTIAL_GC ();
1298 TOP = Fchar_after (TOP);
1299 AFTER_POTENTIAL_GC ();
1300 break;
1301
1302 case Bfollowing_char:
1303 {
1304 Lisp_Object v1;
1305 BEFORE_POTENTIAL_GC ();
1306 v1 = Ffollowing_char ();
1307 AFTER_POTENTIAL_GC ();
1308 PUSH (v1);
1309 break;
1310 }
1311
1312 case Bpreceding_char:
1313 {
1314 Lisp_Object v1;
1315 BEFORE_POTENTIAL_GC ();
1316 v1 = Fprevious_char ();
1317 AFTER_POTENTIAL_GC ();
1318 PUSH (v1);
1319 break;
1320 }
1321
1322 case Bcurrent_column:
1323 {
1324 Lisp_Object v1;
1325 BEFORE_POTENTIAL_GC ();
1326 XSETFASTINT (v1, current_column ());
1327 AFTER_POTENTIAL_GC ();
1328 PUSH (v1);
1329 break;
1330 }
1331
1332 case Bindent_to:
1333 BEFORE_POTENTIAL_GC ();
1334 TOP = Findent_to (TOP, Qnil);
1335 AFTER_POTENTIAL_GC ();
1336 break;
1337
1338 case Beolp:
1339 PUSH (Feolp ());
1340 break;
1341
1342 case Beobp:
1343 PUSH (Feobp ());
1344 break;
1345
1346 case Bbolp:
1347 PUSH (Fbolp ());
1348 break;
1349
1350 case Bbobp:
1351 PUSH (Fbobp ());
1352 break;
1353
1354 case Bcurrent_buffer:
1355 PUSH (Fcurrent_buffer ());
1356 break;
1357
1358 case Bset_buffer:
1359 BEFORE_POTENTIAL_GC ();
1360 TOP = Fset_buffer (TOP);
1361 AFTER_POTENTIAL_GC ();
1362 break;
1363
1364 case Binteractive_p:
1365 PUSH (Finteractive_p ());
1366 break;
1367
1368 case Bforward_char:
1369 BEFORE_POTENTIAL_GC ();
1370 TOP = Fforward_char (TOP);
1371 AFTER_POTENTIAL_GC ();
1372 break;
1373
1374 case Bforward_word:
1375 BEFORE_POTENTIAL_GC ();
1376 TOP = Fforward_word (TOP);
1377 AFTER_POTENTIAL_GC ();
1378 break;
1379
1380 case Bskip_chars_forward:
1381 {
1382 Lisp_Object v1;
1383 BEFORE_POTENTIAL_GC ();
1384 v1 = POP;
1385 TOP = Fskip_chars_forward (TOP, v1);
1386 AFTER_POTENTIAL_GC ();
1387 break;
1388 }
1389
1390 case Bskip_chars_backward:
1391 {
1392 Lisp_Object v1;
1393 BEFORE_POTENTIAL_GC ();
1394 v1 = POP;
1395 TOP = Fskip_chars_backward (TOP, v1);
1396 AFTER_POTENTIAL_GC ();
1397 break;
1398 }
1399
1400 case Bforward_line:
1401 BEFORE_POTENTIAL_GC ();
1402 TOP = Fforward_line (TOP);
1403 AFTER_POTENTIAL_GC ();
1404 break;
1405
1406 case Bchar_syntax:
1407 {
1408 int c;
1409
1410 BEFORE_POTENTIAL_GC ();
1411 CHECK_CHARACTER (TOP);
1412 AFTER_POTENTIAL_GC ();
1413 c = XFASTINT (TOP);
1414 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
1415 MAKE_CHAR_MULTIBYTE (c);
1416 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]);
1417 }
1418 break;
1419
1420 case Bbuffer_substring:
1421 {
1422 Lisp_Object v1;
1423 BEFORE_POTENTIAL_GC ();
1424 v1 = POP;
1425 TOP = Fbuffer_substring (TOP, v1);
1426 AFTER_POTENTIAL_GC ();
1427 break;
1428 }
1429
1430 case Bdelete_region:
1431 {
1432 Lisp_Object v1;
1433 BEFORE_POTENTIAL_GC ();
1434 v1 = POP;
1435 TOP = Fdelete_region (TOP, v1);
1436 AFTER_POTENTIAL_GC ();
1437 break;
1438 }
1439
1440 case Bnarrow_to_region:
1441 {
1442 Lisp_Object v1;
1443 BEFORE_POTENTIAL_GC ();
1444 v1 = POP;
1445 TOP = Fnarrow_to_region (TOP, v1);
1446 AFTER_POTENTIAL_GC ();
1447 break;
1448 }
1449
1450 case Bwiden:
1451 BEFORE_POTENTIAL_GC ();
1452 PUSH (Fwiden ());
1453 AFTER_POTENTIAL_GC ();
1454 break;
1455
1456 case Bend_of_line:
1457 BEFORE_POTENTIAL_GC ();
1458 TOP = Fend_of_line (TOP);
1459 AFTER_POTENTIAL_GC ();
1460 break;
1461
1462 case Bset_marker:
1463 {
1464 Lisp_Object v1, v2;
1465 BEFORE_POTENTIAL_GC ();
1466 v1 = POP;
1467 v2 = POP;
1468 TOP = Fset_marker (TOP, v2, v1);
1469 AFTER_POTENTIAL_GC ();
1470 break;
1471 }
1472
1473 case Bmatch_beginning:
1474 BEFORE_POTENTIAL_GC ();
1475 TOP = Fmatch_beginning (TOP);
1476 AFTER_POTENTIAL_GC ();
1477 break;
1478
1479 case Bmatch_end:
1480 BEFORE_POTENTIAL_GC ();
1481 TOP = Fmatch_end (TOP);
1482 AFTER_POTENTIAL_GC ();
1483 break;
1484
1485 case Bupcase:
1486 BEFORE_POTENTIAL_GC ();
1487 TOP = Fupcase (TOP);
1488 AFTER_POTENTIAL_GC ();
1489 break;
1490
1491 case Bdowncase:
1492 BEFORE_POTENTIAL_GC ();
1493 TOP = Fdowncase (TOP);
1494 AFTER_POTENTIAL_GC ();
1495 break;
1496
1497 case Bstringeqlsign:
1498 {
1499 Lisp_Object v1;
1500 BEFORE_POTENTIAL_GC ();
1501 v1 = POP;
1502 TOP = Fstring_equal (TOP, v1);
1503 AFTER_POTENTIAL_GC ();
1504 break;
1505 }
1506
1507 case Bstringlss:
1508 {
1509 Lisp_Object v1;
1510 BEFORE_POTENTIAL_GC ();
1511 v1 = POP;
1512 TOP = Fstring_lessp (TOP, v1);
1513 AFTER_POTENTIAL_GC ();
1514 break;
1515 }
1516
1517 case Bequal:
1518 {
1519 Lisp_Object v1;
1520 v1 = POP;
1521 TOP = Fequal (TOP, v1);
1522 break;
1523 }
1524
1525 case Bnthcdr:
1526 {
1527 Lisp_Object v1;
1528 BEFORE_POTENTIAL_GC ();
1529 v1 = POP;
1530 TOP = Fnthcdr (TOP, v1);
1531 AFTER_POTENTIAL_GC ();
1532 break;
1533 }
1534
1535 case Belt:
1536 {
1537 Lisp_Object v1, v2;
1538 if (CONSP (TOP))
1539 {
1540 /* Exchange args and then do nth. */
1541 BEFORE_POTENTIAL_GC ();
1542 v2 = POP;
1543 v1 = TOP;
1544 CHECK_NUMBER (v2);
1545 AFTER_POTENTIAL_GC ();
1546 op = XINT (v2);
1547 immediate_quit = 1;
1548 while (--op >= 0 && CONSP (v1))
1549 v1 = XCDR (v1);
1550 immediate_quit = 0;
1551 TOP = CAR (v1);
1552 }
1553 else
1554 {
1555 BEFORE_POTENTIAL_GC ();
1556 v1 = POP;
1557 TOP = Felt (TOP, v1);
1558 AFTER_POTENTIAL_GC ();
1559 }
1560 break;
1561 }
1562
1563 case Bmember:
1564 {
1565 Lisp_Object v1;
1566 BEFORE_POTENTIAL_GC ();
1567 v1 = POP;
1568 TOP = Fmember (TOP, v1);
1569 AFTER_POTENTIAL_GC ();
1570 break;
1571 }
1572
1573 case Bassq:
1574 {
1575 Lisp_Object v1;
1576 BEFORE_POTENTIAL_GC ();
1577 v1 = POP;
1578 TOP = Fassq (TOP, v1);
1579 AFTER_POTENTIAL_GC ();
1580 break;
1581 }
1582
1583 case Bnreverse:
1584 BEFORE_POTENTIAL_GC ();
1585 TOP = Fnreverse (TOP);
1586 AFTER_POTENTIAL_GC ();
1587 break;
1588
1589 case Bsetcar:
1590 {
1591 Lisp_Object v1;
1592 BEFORE_POTENTIAL_GC ();
1593 v1 = POP;
1594 TOP = Fsetcar (TOP, v1);
1595 AFTER_POTENTIAL_GC ();
1596 break;
1597 }
1598
1599 case Bsetcdr:
1600 {
1601 Lisp_Object v1;
1602 BEFORE_POTENTIAL_GC ();
1603 v1 = POP;
1604 TOP = Fsetcdr (TOP, v1);
1605 AFTER_POTENTIAL_GC ();
1606 break;
1607 }
1608
1609 case Bcar_safe:
1610 {
1611 Lisp_Object v1;
1612 v1 = TOP;
1613 TOP = CAR_SAFE (v1);
1614 break;
1615 }
1616
1617 case Bcdr_safe:
1618 {
1619 Lisp_Object v1;
1620 v1 = TOP;
1621 TOP = CDR_SAFE (v1);
1622 break;
1623 }
1624
1625 case Bnconc:
1626 BEFORE_POTENTIAL_GC ();
1627 DISCARD (1);
1628 TOP = Fnconc (2, &TOP);
1629 AFTER_POTENTIAL_GC ();
1630 break;
1631
1632 case Bnumberp:
1633 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1634 break;
1635
1636 case Bintegerp:
1637 TOP = INTEGERP (TOP) ? Qt : Qnil;
1638 break;
1639
1640 #ifdef BYTE_CODE_SAFE
1641 case Bset_mark:
1642 BEFORE_POTENTIAL_GC ();
1643 error ("set-mark is an obsolete bytecode");
1644 AFTER_POTENTIAL_GC ();
1645 break;
1646 case Bscan_buffer:
1647 BEFORE_POTENTIAL_GC ();
1648 error ("scan-buffer is an obsolete bytecode");
1649 AFTER_POTENTIAL_GC ();
1650 break;
1651 #endif
1652
1653 case 0:
1654 abort ();
1655
1656 case 255:
1657 default:
1658 #ifdef BYTE_CODE_SAFE
1659 if (op < Bconstant)
1660 {
1661 abort ();
1662 }
1663 if ((op -= Bconstant) >= const_length)
1664 {
1665 abort ();
1666 }
1667 PUSH (vectorp[op]);
1668 #else
1669 PUSH (vectorp[op - Bconstant]);
1670 #endif
1671 }
1672 }
1673
1674 exit:
1675
1676 byte_stack_list = byte_stack_list->next;
1677
1678 /* Binds and unbinds are supposed to be compiled balanced. */
1679 if (SPECPDL_INDEX () != count)
1680 #ifdef BYTE_CODE_SAFE
1681 error ("binding stack not balanced (serious byte compiler bug)");
1682 #else
1683 abort ();
1684 #endif
1685
1686 return result;
1687 }
1688
1689 void
1690 syms_of_bytecode (void)
1691 {
1692 Qbytecode = intern_c_string ("byte-code");
1693 staticpro (&Qbytecode);
1694
1695 defsubr (&Sbyte_code);
1696
1697 #ifdef BYTE_CODE_METER
1698
1699 DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
1700 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1701 \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1702 opcode CODE has been executed.
1703 \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1704 indicates how many times the byte opcodes CODE1 and CODE2 have been
1705 executed in succession. */);
1706
1707 DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
1708 doc: /* If non-nil, keep profiling information on byte code usage.
1709 The variable byte-code-meter indicates how often each byte opcode is used.
1710 If a symbol has a property named `byte-code-meter' whose value is an
1711 integer, it is incremented each time that symbol's function is called. */);
1712
1713 byte_metering_on = 0;
1714 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1715 Qbyte_code_meter = intern_c_string ("byte-code-meter");
1716 staticpro (&Qbyte_code_meter);
1717 {
1718 int i = 256;
1719 while (i--)
1720 XVECTOR (Vbyte_code_meter)->contents[i] =
1721 Fmake_vector (make_number (256), make_number (0));
1722 }
1723 #endif
1724 }