(Fremap_command): Return nil if arg is not a symbol.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* List of emulation mode keymap alists. */
79 Lisp_Object Vemulation_mode_map_alists;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
96
97 /* Alist of elements like (DEL . "\d"). */
98 static Lisp_Object exclude_keys;
99
100 /* Pre-allocated 2-element vector for Fremap_command to use. */
101 static Lisp_Object remap_command_vector;
102
103 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
104 in a string key sequence is equivalent to prefixing with this
105 character. */
106 extern Lisp_Object meta_prefix_char;
107
108 extern Lisp_Object Voverriding_local_map;
109
110 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
111 static Lisp_Object where_is_cache;
112 /* Which keymaps are reverse-stored in the cache. */
113 static Lisp_Object where_is_cache_keymaps;
114
115 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
116 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117
118 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
119 static void describe_command P_ ((Lisp_Object, Lisp_Object));
120 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
121 static void describe_map P_ ((Lisp_Object, Lisp_Object,
122 void (*) P_ ((Lisp_Object, Lisp_Object)),
123 int, Lisp_Object, Lisp_Object*, int));
124 static void silly_event_symbol_error P_ ((Lisp_Object));
125 \f
126 /* Keymap object support - constructors and predicates. */
127
128 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
129 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
130 CHARTABLE is a char-table that holds the bindings for the ASCII
131 characters. ALIST is an assoc-list which holds bindings for function keys,
132 mouse events, and any other things that appear in the input stream.
133 All entries in it are initially nil, meaning "command undefined".
134
135 The optional arg STRING supplies a menu name for the keymap
136 in case you use it as a menu with `x-popup-menu'. */)
137 (string)
138 Lisp_Object string;
139 {
140 Lisp_Object tail;
141 if (!NILP (string))
142 tail = Fcons (string, Qnil);
143 else
144 tail = Qnil;
145 return Fcons (Qkeymap,
146 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
147 }
148
149 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
150 doc: /* Construct and return a new sparse keymap.
151 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
152 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
153 which binds the function key or mouse event SYMBOL to DEFINITION.
154 Initially the alist is nil.
155
156 The optional arg STRING supplies a menu name for the keymap
157 in case you use it as a menu with `x-popup-menu'. */)
158 (string)
159 Lisp_Object string;
160 {
161 if (!NILP (string))
162 return Fcons (Qkeymap, Fcons (string, Qnil));
163 return Fcons (Qkeymap, Qnil);
164 }
165
166 /* This function is used for installing the standard key bindings
167 at initialization time.
168
169 For example:
170
171 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
172
173 void
174 initial_define_key (keymap, key, defname)
175 Lisp_Object keymap;
176 int key;
177 char *defname;
178 {
179 store_in_keymap (keymap, make_number (key), intern (defname));
180 }
181
182 void
183 initial_define_lispy_key (keymap, keyname, defname)
184 Lisp_Object keymap;
185 char *keyname;
186 char *defname;
187 {
188 store_in_keymap (keymap, intern (keyname), intern (defname));
189 }
190
191 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
192 doc: /* Return t if OBJECT is a keymap.
193
194 A keymap is a list (keymap . ALIST),
195 or a symbol whose function definition is itself a keymap.
196 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
197 a vector of densely packed bindings for small character codes
198 is also allowed as an element. */)
199 (object)
200 Lisp_Object object;
201 {
202 return (KEYMAPP (object) ? Qt : Qnil);
203 }
204
205 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
206 doc: /* Return the prompt-string of a keymap MAP.
207 If non-nil, the prompt is shown in the echo-area
208 when reading a key-sequence to be looked-up in this keymap. */)
209 (map)
210 Lisp_Object map;
211 {
212 while (CONSP (map))
213 {
214 register Lisp_Object tem;
215 tem = Fcar (map);
216 if (STRINGP (tem))
217 return tem;
218 map = Fcdr (map);
219 }
220 return Qnil;
221 }
222
223 /* Check that OBJECT is a keymap (after dereferencing through any
224 symbols). If it is, return it.
225
226 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
227 is an autoload form, do the autoload and try again.
228 If AUTOLOAD is nonzero, callers must assume GC is possible.
229
230 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
231 is zero as well), return Qt.
232
233 ERROR controls how we respond if OBJECT isn't a keymap.
234 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
235
236 Note that most of the time, we don't want to pursue autoloads.
237 Functions like Faccessible_keymaps which scan entire keymap trees
238 shouldn't load every autoloaded keymap. I'm not sure about this,
239 but it seems to me that only read_key_sequence, Flookup_key, and
240 Fdefine_key should cause keymaps to be autoloaded.
241
242 This function can GC when AUTOLOAD is non-zero, because it calls
243 do_autoload which can GC. */
244
245 Lisp_Object
246 get_keymap (object, error, autoload)
247 Lisp_Object object;
248 int error, autoload;
249 {
250 Lisp_Object tem;
251
252 autoload_retry:
253 if (NILP (object))
254 goto end;
255 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
256 return object;
257
258 tem = indirect_function (object);
259 if (CONSP (tem))
260 {
261 if (EQ (XCAR (tem), Qkeymap))
262 return tem;
263
264 /* Should we do an autoload? Autoload forms for keymaps have
265 Qkeymap as their fifth element. */
266 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
267 {
268 Lisp_Object tail;
269
270 tail = Fnth (make_number (4), tem);
271 if (EQ (tail, Qkeymap))
272 {
273 if (autoload)
274 {
275 struct gcpro gcpro1, gcpro2;
276
277 GCPRO2 (tem, object);
278 do_autoload (tem, object);
279 UNGCPRO;
280
281 goto autoload_retry;
282 }
283 else
284 return Qt;
285 }
286 }
287 }
288
289 end:
290 if (error)
291 wrong_type_argument (Qkeymapp, object);
292 return Qnil;
293 }
294 \f
295 /* Return the parent map of KEYMAP, or nil if it has none.
296 We assume that KEYMAP is a valid keymap. */
297
298 Lisp_Object
299 keymap_parent (keymap, autoload)
300 Lisp_Object keymap;
301 int autoload;
302 {
303 Lisp_Object list;
304
305 keymap = get_keymap (keymap, 1, autoload);
306
307 /* Skip past the initial element `keymap'. */
308 list = XCDR (keymap);
309 for (; CONSP (list); list = XCDR (list))
310 {
311 /* See if there is another `keymap'. */
312 if (KEYMAPP (list))
313 return list;
314 }
315
316 return get_keymap (list, 0, autoload);
317 }
318
319 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
320 doc: /* Return the parent keymap of KEYMAP. */)
321 (keymap)
322 Lisp_Object keymap;
323 {
324 return keymap_parent (keymap, 1);
325 }
326
327 /* Check whether MAP is one of MAPS parents. */
328 int
329 keymap_memberp (map, maps)
330 Lisp_Object map, maps;
331 {
332 if (NILP (map)) return 0;
333 while (KEYMAPP (maps) && !EQ (map, maps))
334 maps = keymap_parent (maps, 0);
335 return (EQ (map, maps));
336 }
337
338 /* Set the parent keymap of MAP to PARENT. */
339
340 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
341 doc: /* Modify KEYMAP to set its parent map to PARENT.
342 PARENT should be nil or another keymap. */)
343 (keymap, parent)
344 Lisp_Object keymap, parent;
345 {
346 Lisp_Object list, prev;
347 struct gcpro gcpro1, gcpro2;
348 int i;
349
350 /* Force a keymap flush for the next call to where-is.
351 Since this can be called from within where-is, we don't set where_is_cache
352 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
353 be changed during where-is, while where_is_cache_keymaps is only used at
354 the very beginning of where-is and can thus be changed here without any
355 adverse effect.
356 This is a very minor correctness (rather than safety) issue. */
357 where_is_cache_keymaps = Qt;
358
359 GCPRO2 (keymap, parent);
360 keymap = get_keymap (keymap, 1, 1);
361
362 if (!NILP (parent))
363 {
364 parent = get_keymap (parent, 1, 1);
365
366 /* Check for cycles. */
367 if (keymap_memberp (keymap, parent))
368 error ("Cyclic keymap inheritance");
369 }
370
371 /* Skip past the initial element `keymap'. */
372 prev = keymap;
373 while (1)
374 {
375 list = XCDR (prev);
376 /* If there is a parent keymap here, replace it.
377 If we came to the end, add the parent in PREV. */
378 if (!CONSP (list) || KEYMAPP (list))
379 {
380 /* If we already have the right parent, return now
381 so that we avoid the loops below. */
382 if (EQ (XCDR (prev), parent))
383 RETURN_UNGCPRO (parent);
384
385 XSETCDR (prev, parent);
386 break;
387 }
388 prev = list;
389 }
390
391 /* Scan through for submaps, and set their parents too. */
392
393 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
394 {
395 /* Stop the scan when we come to the parent. */
396 if (EQ (XCAR (list), Qkeymap))
397 break;
398
399 /* If this element holds a prefix map, deal with it. */
400 if (CONSP (XCAR (list))
401 && CONSP (XCDR (XCAR (list))))
402 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
403 XCDR (XCAR (list)));
404
405 if (VECTORP (XCAR (list)))
406 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
407 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
408 fix_submap_inheritance (keymap, make_number (i),
409 XVECTOR (XCAR (list))->contents[i]);
410
411 if (CHAR_TABLE_P (XCAR (list)))
412 {
413 Lisp_Object indices[3];
414
415 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
416 keymap, 0, indices);
417 }
418 }
419
420 RETURN_UNGCPRO (parent);
421 }
422
423 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
424 if EVENT is also a prefix in MAP's parent,
425 make sure that SUBMAP inherits that definition as its own parent. */
426
427 static void
428 fix_submap_inheritance (map, event, submap)
429 Lisp_Object map, event, submap;
430 {
431 Lisp_Object map_parent, parent_entry;
432
433 /* SUBMAP is a cons that we found as a key binding.
434 Discard the other things found in a menu key binding. */
435
436 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
437
438 /* If it isn't a keymap now, there's no work to do. */
439 if (!CONSP (submap))
440 return;
441
442 map_parent = keymap_parent (map, 0);
443 if (!NILP (map_parent))
444 parent_entry =
445 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
446 else
447 parent_entry = Qnil;
448
449 /* If MAP's parent has something other than a keymap,
450 our own submap shadows it completely. */
451 if (!CONSP (parent_entry))
452 return;
453
454 if (! EQ (parent_entry, submap))
455 {
456 Lisp_Object submap_parent;
457 submap_parent = submap;
458 while (1)
459 {
460 Lisp_Object tem;
461
462 tem = keymap_parent (submap_parent, 0);
463
464 if (KEYMAPP (tem))
465 {
466 if (keymap_memberp (tem, parent_entry))
467 /* Fset_keymap_parent could create a cycle. */
468 return;
469 submap_parent = tem;
470 }
471 else
472 break;
473 }
474 Fset_keymap_parent (submap_parent, parent_entry);
475 }
476 }
477 \f
478 /* Look up IDX in MAP. IDX may be any sort of event.
479 Note that this does only one level of lookup; IDX must be a single
480 event, not a sequence.
481
482 If T_OK is non-zero, bindings for Qt are treated as default
483 bindings; any key left unmentioned by other tables and bindings is
484 given the binding of Qt.
485
486 If T_OK is zero, bindings for Qt are not treated specially.
487
488 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
489
490 Lisp_Object
491 access_keymap (map, idx, t_ok, noinherit, autoload)
492 Lisp_Object map;
493 Lisp_Object idx;
494 int t_ok;
495 int noinherit;
496 int autoload;
497 {
498 Lisp_Object val;
499
500 /* Qunbound in VAL means we have found no binding yet. */
501 val = Qunbound;
502
503 /* If idx is a list (some sort of mouse click, perhaps?),
504 the index we want to use is the car of the list, which
505 ought to be a symbol. */
506 idx = EVENT_HEAD (idx);
507
508 /* If idx is a symbol, it might have modifiers, which need to
509 be put in the canonical order. */
510 if (SYMBOLP (idx))
511 idx = reorder_modifiers (idx);
512 else if (INTEGERP (idx))
513 /* Clobber the high bits that can be present on a machine
514 with more than 24 bits of integer. */
515 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
516
517 /* Handle the special meta -> esc mapping. */
518 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
519 {
520 /* See if there is a meta-map. If there's none, there is
521 no binding for IDX, unless a default binding exists in MAP. */
522 struct gcpro gcpro1;
523 Lisp_Object meta_map;
524 GCPRO1 (map);
525 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
526 t_ok, noinherit, autoload),
527 0, autoload);
528 UNGCPRO;
529 if (CONSP (meta_map))
530 {
531 map = meta_map;
532 idx = make_number (XUINT (idx) & ~meta_modifier);
533 }
534 else if (t_ok)
535 /* Set IDX to t, so that we only find a default binding. */
536 idx = Qt;
537 else
538 /* We know there is no binding. */
539 return Qnil;
540 }
541
542 /* t_binding is where we put a default binding that applies,
543 to use in case we do not find a binding specifically
544 for this key sequence. */
545 {
546 Lisp_Object tail;
547 Lisp_Object t_binding = Qnil;
548 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
549
550 GCPRO4 (map, tail, idx, t_binding);
551
552 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
553 If it is 1, only generic-char bindings are accepted.
554 Otherwise, neither are. */
555 t_ok = t_ok ? 2 : 0;
556
557 for (tail = XCDR (map);
558 (CONSP (tail)
559 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
560 tail = XCDR (tail))
561 {
562 Lisp_Object binding;
563
564 binding = XCAR (tail);
565 if (SYMBOLP (binding))
566 {
567 /* If NOINHERIT, stop finding prefix definitions
568 after we pass a second occurrence of the `keymap' symbol. */
569 if (noinherit && EQ (binding, Qkeymap))
570 RETURN_UNGCPRO (Qnil);
571 }
572 else if (CONSP (binding))
573 {
574 Lisp_Object key = XCAR (binding);
575
576 if (EQ (key, idx))
577 val = XCDR (binding);
578 else if (t_ok
579 && INTEGERP (idx)
580 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
581 && INTEGERP (key)
582 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
583 && !SINGLE_BYTE_CHAR_P (XINT (idx))
584 && !SINGLE_BYTE_CHAR_P (XINT (key))
585 && CHAR_VALID_P (XINT (key), 1)
586 && !CHAR_VALID_P (XINT (key), 0)
587 && (CHAR_CHARSET (XINT (key))
588 == CHAR_CHARSET (XINT (idx))))
589 {
590 /* KEY is the generic character of the charset of IDX.
591 Use KEY's binding if there isn't a binding for IDX
592 itself. */
593 t_binding = XCDR (binding);
594 t_ok = 0;
595 }
596 else if (t_ok > 1 && EQ (key, Qt))
597 {
598 t_binding = XCDR (binding);
599 t_ok = 1;
600 }
601 }
602 else if (VECTORP (binding))
603 {
604 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
605 val = AREF (binding, XFASTINT (idx));
606 }
607 else if (CHAR_TABLE_P (binding))
608 {
609 /* Character codes with modifiers
610 are not included in a char-table.
611 All character codes without modifiers are included. */
612 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
613 {
614 val = Faref (binding, idx);
615 /* `nil' has a special meaning for char-tables, so
616 we use something else to record an explicitly
617 unbound entry. */
618 if (NILP (val))
619 val = Qunbound;
620 }
621 }
622
623 /* If we found a binding, clean it up and return it. */
624 if (!EQ (val, Qunbound))
625 {
626 if (EQ (val, Qt))
627 /* A Qt binding is just like an explicit nil binding
628 (i.e. it shadows any parent binding but not bindings in
629 keymaps of lower precedence). */
630 val = Qnil;
631 val = get_keyelt (val, autoload);
632 if (KEYMAPP (val))
633 fix_submap_inheritance (map, idx, val);
634 RETURN_UNGCPRO (val);
635 }
636 QUIT;
637 }
638 UNGCPRO;
639 return get_keyelt (t_binding, autoload);
640 }
641 }
642
643 /* Given OBJECT which was found in a slot in a keymap,
644 trace indirect definitions to get the actual definition of that slot.
645 An indirect definition is a list of the form
646 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
647 and INDEX is the object to look up in KEYMAP to yield the definition.
648
649 Also if OBJECT has a menu string as the first element,
650 remove that. Also remove a menu help string as second element.
651
652 If AUTOLOAD is nonzero, load autoloadable keymaps
653 that are referred to with indirection. */
654
655 Lisp_Object
656 get_keyelt (object, autoload)
657 Lisp_Object object;
658 int autoload;
659 {
660 while (1)
661 {
662 if (!(CONSP (object)))
663 /* This is really the value. */
664 return object;
665
666 /* If the keymap contents looks like (keymap ...) or (lambda ...)
667 then use itself. */
668 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
669 return object;
670
671 /* If the keymap contents looks like (menu-item name . DEFN)
672 or (menu-item name DEFN ...) then use DEFN.
673 This is a new format menu item. */
674 else if (EQ (XCAR (object), Qmenu_item))
675 {
676 if (CONSP (XCDR (object)))
677 {
678 Lisp_Object tem;
679
680 object = XCDR (XCDR (object));
681 tem = object;
682 if (CONSP (object))
683 object = XCAR (object);
684
685 /* If there's a `:filter FILTER', apply FILTER to the
686 menu-item's definition to get the real definition to
687 use. */
688 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
689 if (EQ (XCAR (tem), QCfilter) && autoload)
690 {
691 Lisp_Object filter;
692 filter = XCAR (XCDR (tem));
693 filter = list2 (filter, list2 (Qquote, object));
694 object = menu_item_eval_property (filter);
695 break;
696 }
697 }
698 else
699 /* Invalid keymap. */
700 return object;
701 }
702
703 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
704 Keymap alist elements like (CHAR MENUSTRING . DEFN)
705 will be used by HierarKey menus. */
706 else if (STRINGP (XCAR (object)))
707 {
708 object = XCDR (object);
709 /* Also remove a menu help string, if any,
710 following the menu item name. */
711 if (CONSP (object) && STRINGP (XCAR (object)))
712 object = XCDR (object);
713 /* Also remove the sublist that caches key equivalences, if any. */
714 if (CONSP (object) && CONSP (XCAR (object)))
715 {
716 Lisp_Object carcar;
717 carcar = XCAR (XCAR (object));
718 if (NILP (carcar) || VECTORP (carcar))
719 object = XCDR (object);
720 }
721 }
722
723 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
724 else
725 {
726 struct gcpro gcpro1;
727 Lisp_Object map;
728 GCPRO1 (object);
729 map = get_keymap (Fcar_safe (object), 0, autoload);
730 UNGCPRO;
731 return (!CONSP (map) ? object /* Invalid keymap */
732 : access_keymap (map, Fcdr (object), 0, 0, autoload));
733 }
734 }
735 }
736
737 static Lisp_Object
738 store_in_keymap (keymap, idx, def)
739 Lisp_Object keymap;
740 register Lisp_Object idx;
741 register Lisp_Object def;
742 {
743 /* Flush any reverse-map cache. */
744 where_is_cache = Qnil;
745 where_is_cache_keymaps = Qt;
746
747 /* If we are preparing to dump, and DEF is a menu element
748 with a menu item indicator, copy it to ensure it is not pure. */
749 if (CONSP (def) && PURE_P (def)
750 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
751 def = Fcons (XCAR (def), XCDR (def));
752
753 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
754 error ("attempt to define a key in a non-keymap");
755
756 /* If idx is a list (some sort of mouse click, perhaps?),
757 the index we want to use is the car of the list, which
758 ought to be a symbol. */
759 idx = EVENT_HEAD (idx);
760
761 /* If idx is a symbol, it might have modifiers, which need to
762 be put in the canonical order. */
763 if (SYMBOLP (idx))
764 idx = reorder_modifiers (idx);
765 else if (INTEGERP (idx))
766 /* Clobber the high bits that can be present on a machine
767 with more than 24 bits of integer. */
768 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
769
770 /* Scan the keymap for a binding of idx. */
771 {
772 Lisp_Object tail;
773
774 /* The cons after which we should insert new bindings. If the
775 keymap has a table element, we record its position here, so new
776 bindings will go after it; this way, the table will stay
777 towards the front of the alist and character lookups in dense
778 keymaps will remain fast. Otherwise, this just points at the
779 front of the keymap. */
780 Lisp_Object insertion_point;
781
782 insertion_point = keymap;
783 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
784 {
785 Lisp_Object elt;
786
787 elt = XCAR (tail);
788 if (VECTORP (elt))
789 {
790 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
791 {
792 ASET (elt, XFASTINT (idx), def);
793 return def;
794 }
795 insertion_point = tail;
796 }
797 else if (CHAR_TABLE_P (elt))
798 {
799 /* Character codes with modifiers
800 are not included in a char-table.
801 All character codes without modifiers are included. */
802 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
803 {
804 Faset (elt, idx,
805 /* `nil' has a special meaning for char-tables, so
806 we use something else to record an explicitly
807 unbound entry. */
808 NILP (def) ? Qt : def);
809 return def;
810 }
811 insertion_point = tail;
812 }
813 else if (CONSP (elt))
814 {
815 if (EQ (idx, XCAR (elt)))
816 {
817 XSETCDR (elt, def);
818 return def;
819 }
820 }
821 else if (EQ (elt, Qkeymap))
822 /* If we find a 'keymap' symbol in the spine of KEYMAP,
823 then we must have found the start of a second keymap
824 being used as the tail of KEYMAP, and a binding for IDX
825 should be inserted before it. */
826 goto keymap_end;
827
828 QUIT;
829 }
830
831 keymap_end:
832 /* We have scanned the entire keymap, and not found a binding for
833 IDX. Let's add one. */
834 XSETCDR (insertion_point,
835 Fcons (Fcons (idx, def), XCDR (insertion_point)));
836 }
837
838 return def;
839 }
840
841 EXFUN (Fcopy_keymap, 1);
842
843 Lisp_Object
844 copy_keymap_item (elt)
845 Lisp_Object elt;
846 {
847 Lisp_Object res, tem;
848
849 if (!CONSP (elt))
850 return elt;
851
852 res = tem = elt;
853
854 /* Is this a new format menu item. */
855 if (EQ (XCAR (tem), Qmenu_item))
856 {
857 /* Copy cell with menu-item marker. */
858 res = elt = Fcons (XCAR (tem), XCDR (tem));
859 tem = XCDR (elt);
860 if (CONSP (tem))
861 {
862 /* Copy cell with menu-item name. */
863 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
864 elt = XCDR (elt);
865 tem = XCDR (elt);
866 }
867 if (CONSP (tem))
868 {
869 /* Copy cell with binding and if the binding is a keymap,
870 copy that. */
871 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
872 elt = XCDR (elt);
873 tem = XCAR (elt);
874 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
875 XSETCAR (elt, Fcopy_keymap (tem));
876 tem = XCDR (elt);
877 if (CONSP (tem) && CONSP (XCAR (tem)))
878 /* Delete cache for key equivalences. */
879 XSETCDR (elt, XCDR (tem));
880 }
881 }
882 else
883 {
884 /* It may be an old fomat menu item.
885 Skip the optional menu string. */
886 if (STRINGP (XCAR (tem)))
887 {
888 /* Copy the cell, since copy-alist didn't go this deep. */
889 res = elt = Fcons (XCAR (tem), XCDR (tem));
890 tem = XCDR (elt);
891 /* Also skip the optional menu help string. */
892 if (CONSP (tem) && STRINGP (XCAR (tem)))
893 {
894 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
895 elt = XCDR (elt);
896 tem = XCDR (elt);
897 }
898 /* There may also be a list that caches key equivalences.
899 Just delete it for the new keymap. */
900 if (CONSP (tem)
901 && CONSP (XCAR (tem))
902 && (NILP (XCAR (XCAR (tem)))
903 || VECTORP (XCAR (XCAR (tem)))))
904 {
905 XSETCDR (elt, XCDR (tem));
906 tem = XCDR (tem);
907 }
908 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
909 XSETCDR (elt, Fcopy_keymap (tem));
910 }
911 else if (EQ (XCAR (tem), Qkeymap))
912 res = Fcopy_keymap (elt);
913 }
914 return res;
915 }
916
917 void
918 copy_keymap_1 (chartable, idx, elt)
919 Lisp_Object chartable, idx, elt;
920 {
921 Faset (chartable, idx, copy_keymap_item (elt));
922 }
923
924 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
925 doc: /* Return a copy of the keymap KEYMAP.
926 The copy starts out with the same definitions of KEYMAP,
927 but changing either the copy or KEYMAP does not affect the other.
928 Any key definitions that are subkeymaps are recursively copied.
929 However, a key definition which is a symbol whose definition is a keymap
930 is not copied. */)
931 (keymap)
932 Lisp_Object keymap;
933 {
934 register Lisp_Object copy, tail;
935 keymap = get_keymap (keymap, 1, 0);
936 copy = tail = Fcons (Qkeymap, Qnil);
937 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
938
939 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
940 {
941 Lisp_Object elt = XCAR (keymap);
942 if (CHAR_TABLE_P (elt))
943 {
944 Lisp_Object indices[3];
945 elt = Fcopy_sequence (elt);
946 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
947 }
948 else if (VECTORP (elt))
949 {
950 int i;
951 elt = Fcopy_sequence (elt);
952 for (i = 0; i < ASIZE (elt); i++)
953 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
954 }
955 else if (CONSP (elt))
956 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
957 XSETCDR (tail, Fcons (elt, Qnil));
958 tail = XCDR (tail);
959 keymap = XCDR (keymap);
960 }
961 XSETCDR (tail, keymap);
962 return copy;
963 }
964 \f
965 /* Simple Keymap mutators and accessors. */
966
967 /* GC is possible in this function if it autoloads a keymap. */
968
969 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
970 doc: /* Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.
971 KEYMAP is a keymap.
972
973 KEY is a string or a vector of symbols and characters meaning a
974 sequence of keystrokes and events. Non-ASCII characters with codes
975 above 127 (such as ISO Latin-1) can be included if you use a vector.
976 Using [t] for KEY creates a default definition, which applies to any
977 event type that has no other definition in thus keymap.
978
979 DEF is anything that can be a key's definition:
980 nil (means key is undefined in this keymap),
981 a command (a Lisp function suitable for interactive calling)
982 a string (treated as a keyboard macro),
983 a keymap (to define a prefix key),
984 a symbol. When the key is looked up, the symbol will stand for its
985 function definition, which should at that time be one of the above,
986 or another symbol whose function definition is used, etc.
987 a cons (STRING . DEFN), meaning that DEFN is the definition
988 (DEFN should be a valid definition in its own right),
989 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
990
991 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at
992 the front of KEYMAP. */)
993 (keymap, key, def)
994 Lisp_Object keymap;
995 Lisp_Object key;
996 Lisp_Object def;
997 {
998 register int idx;
999 register Lisp_Object c;
1000 register Lisp_Object cmd;
1001 int metized = 0;
1002 int meta_bit;
1003 int length;
1004 struct gcpro gcpro1, gcpro2, gcpro3;
1005
1006 GCPRO3 (keymap, key, def);
1007 keymap = get_keymap (keymap, 1, 1);
1008
1009 if (!VECTORP (key) && !STRINGP (key))
1010 key = wrong_type_argument (Qarrayp, key);
1011
1012 length = XFASTINT (Flength (key));
1013 if (length == 0)
1014 RETURN_UNGCPRO (Qnil);
1015
1016 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1017 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1018
1019 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1020
1021 idx = 0;
1022 while (1)
1023 {
1024 c = Faref (key, make_number (idx));
1025
1026 if (CONSP (c) && lucid_event_type_list_p (c))
1027 c = Fevent_convert_list (c);
1028
1029 if (SYMBOLP (c))
1030 silly_event_symbol_error (c);
1031
1032 if (INTEGERP (c)
1033 && (XINT (c) & meta_bit)
1034 && !metized)
1035 {
1036 c = meta_prefix_char;
1037 metized = 1;
1038 }
1039 else
1040 {
1041 if (INTEGERP (c))
1042 XSETINT (c, XINT (c) & ~meta_bit);
1043
1044 metized = 0;
1045 idx++;
1046 }
1047
1048 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1049 error ("Key sequence contains invalid event");
1050
1051 if (idx == length)
1052 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1053
1054 cmd = access_keymap (keymap, c, 0, 1, 1);
1055
1056 /* If this key is undefined, make it a prefix. */
1057 if (NILP (cmd))
1058 cmd = define_as_prefix (keymap, c);
1059
1060 keymap = get_keymap (cmd, 0, 1);
1061 if (!CONSP (keymap))
1062 /* We must use Fkey_description rather than just passing key to
1063 error; key might be a vector, not a string. */
1064 error ("Key sequence %s uses invalid prefix characters",
1065 SDATA (Fkey_description (key)));
1066 }
1067 }
1068
1069 /* This function may GC (it calls Fkey_binding). */
1070
1071 DEFUN ("remap-command", Fremap_command, Sremap_command, 1, 1, 0,
1072 doc: /* Return the remapping for command COMMAND in current keymaps.
1073 Returns nil if COMMAND is not remapped (or not a symbol). */)
1074 (command)
1075 Lisp_Object command;
1076 {
1077 if (!SYMBOLP (command))
1078 return Qnil;
1079
1080 ASET (remap_command_vector, 1, command);
1081 return Fkey_binding (remap_command_vector, Qnil, Qt);
1082 }
1083
1084 /* Value is number if KEY is too long; nil if valid but has no definition. */
1085 /* GC is possible in this function if it autoloads a keymap. */
1086
1087 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1088 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1089 nil means undefined. See doc of `define-key' for kinds of definitions.
1090
1091 A number as value means KEY is "too long";
1092 that is, characters or symbols in it except for the last one
1093 fail to be a valid sequence of prefix characters in KEYMAP.
1094 The number is how many characters at the front of KEY
1095 it takes to reach a non-prefix command.
1096
1097 Normally, `lookup-key' ignores bindings for t, which act as default
1098 bindings, used when nothing else in the keymap applies; this makes it
1099 usable as a general function for probing keymaps. However, if the
1100 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1101 recognize the default bindings, just as `read-key-sequence' does. */)
1102 (keymap, key, accept_default)
1103 Lisp_Object keymap;
1104 Lisp_Object key;
1105 Lisp_Object accept_default;
1106 {
1107 register int idx;
1108 register Lisp_Object cmd;
1109 register Lisp_Object c;
1110 int length;
1111 int t_ok = !NILP (accept_default);
1112 struct gcpro gcpro1, gcpro2;
1113
1114 GCPRO2 (keymap, key);
1115 keymap = get_keymap (keymap, 1, 1);
1116
1117 if (!VECTORP (key) && !STRINGP (key))
1118 key = wrong_type_argument (Qarrayp, key);
1119
1120 length = XFASTINT (Flength (key));
1121 if (length == 0)
1122 RETURN_UNGCPRO (keymap);
1123
1124 idx = 0;
1125 while (1)
1126 {
1127 c = Faref (key, make_number (idx++));
1128
1129 if (CONSP (c) && lucid_event_type_list_p (c))
1130 c = Fevent_convert_list (c);
1131
1132 /* Turn the 8th bit of string chars into a meta modifier. */
1133 if (XINT (c) & 0x80 && STRINGP (key))
1134 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1135
1136 /* Allow string since binding for `menu-bar-select-buffer'
1137 includes the buffer name in the key sequence. */
1138 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1139 error ("Key sequence contains invalid event");
1140
1141 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1142 if (idx == length)
1143 RETURN_UNGCPRO (cmd);
1144
1145 keymap = get_keymap (cmd, 0, 1);
1146 if (!CONSP (keymap))
1147 RETURN_UNGCPRO (make_number (idx));
1148
1149 QUIT;
1150 }
1151 }
1152
1153 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1154 Assume that currently it does not define C at all.
1155 Return the keymap. */
1156
1157 static Lisp_Object
1158 define_as_prefix (keymap, c)
1159 Lisp_Object keymap, c;
1160 {
1161 Lisp_Object cmd;
1162
1163 cmd = Fmake_sparse_keymap (Qnil);
1164 /* If this key is defined as a prefix in an inherited keymap,
1165 make it a prefix in this map, and make its definition
1166 inherit the other prefix definition. */
1167 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1168 store_in_keymap (keymap, c, cmd);
1169
1170 return cmd;
1171 }
1172
1173 /* Append a key to the end of a key sequence. We always make a vector. */
1174
1175 Lisp_Object
1176 append_key (key_sequence, key)
1177 Lisp_Object key_sequence, key;
1178 {
1179 Lisp_Object args[2];
1180
1181 args[0] = key_sequence;
1182
1183 args[1] = Fcons (key, Qnil);
1184 return Fvconcat (2, args);
1185 }
1186
1187 /* Given a event type C which is a symbol,
1188 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1189
1190 static void
1191 silly_event_symbol_error (c)
1192 Lisp_Object c;
1193 {
1194 Lisp_Object parsed, base, name, assoc;
1195 int modifiers;
1196
1197 parsed = parse_modifiers (c);
1198 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1199 base = XCAR (parsed);
1200 name = Fsymbol_name (base);
1201 /* This alist includes elements such as ("RET" . "\\r"). */
1202 assoc = Fassoc (name, exclude_keys);
1203
1204 if (! NILP (assoc))
1205 {
1206 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1207 char *p = new_mods;
1208 Lisp_Object keystring;
1209 if (modifiers & alt_modifier)
1210 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1211 if (modifiers & ctrl_modifier)
1212 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1213 if (modifiers & hyper_modifier)
1214 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1215 if (modifiers & meta_modifier)
1216 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1217 if (modifiers & shift_modifier)
1218 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1219 if (modifiers & super_modifier)
1220 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1221 *p = 0;
1222
1223 c = reorder_modifiers (c);
1224 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1225
1226 error ((modifiers & ~meta_modifier
1227 ? "To bind the key %s, use [?%s], not [%s]"
1228 : "To bind the key %s, use \"%s\", not [%s]"),
1229 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1230 SDATA (SYMBOL_NAME (c)));
1231 }
1232 }
1233 \f
1234 /* Global, local, and minor mode keymap stuff. */
1235
1236 /* We can't put these variables inside current_minor_maps, since under
1237 some systems, static gets macro-defined to be the empty string.
1238 Ickypoo. */
1239 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1240 static int cmm_size = 0;
1241
1242 /* Error handler used in current_minor_maps. */
1243 static Lisp_Object
1244 current_minor_maps_error ()
1245 {
1246 return Qnil;
1247 }
1248
1249 /* Store a pointer to an array of the keymaps of the currently active
1250 minor modes in *buf, and return the number of maps it contains.
1251
1252 This function always returns a pointer to the same buffer, and may
1253 free or reallocate it, so if you want to keep it for a long time or
1254 hand it out to lisp code, copy it. This procedure will be called
1255 for every key sequence read, so the nice lispy approach (return a
1256 new assoclist, list, what have you) for each invocation would
1257 result in a lot of consing over time.
1258
1259 If we used xrealloc/xmalloc and ran out of memory, they would throw
1260 back to the command loop, which would try to read a key sequence,
1261 which would call this function again, resulting in an infinite
1262 loop. Instead, we'll use realloc/malloc and silently truncate the
1263 list, let the key sequence be read, and hope some other piece of
1264 code signals the error. */
1265 int
1266 current_minor_maps (modeptr, mapptr)
1267 Lisp_Object **modeptr, **mapptr;
1268 {
1269 int i = 0;
1270 int list_number = 0;
1271 Lisp_Object alist, assoc, var, val;
1272 Lisp_Object emulation_alists;
1273 Lisp_Object lists[2];
1274
1275 emulation_alists = Vemulation_mode_map_alists;
1276 lists[0] = Vminor_mode_overriding_map_alist;
1277 lists[1] = Vminor_mode_map_alist;
1278
1279 for (list_number = 0; list_number < 2; list_number++)
1280 {
1281 if (CONSP (emulation_alists))
1282 {
1283 alist = XCAR (emulation_alists);
1284 emulation_alists = XCDR (emulation_alists);
1285 if (SYMBOLP (alist))
1286 alist = find_symbol_value (alist);
1287 list_number = -1;
1288 }
1289 else
1290 alist = lists[list_number];
1291
1292 for ( ; CONSP (alist); alist = XCDR (alist))
1293 if ((assoc = XCAR (alist), CONSP (assoc))
1294 && (var = XCAR (assoc), SYMBOLP (var))
1295 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1296 && !NILP (val))
1297 {
1298 Lisp_Object temp;
1299
1300 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1301 and also an entry in Vminor_mode_map_alist,
1302 ignore the latter. */
1303 if (list_number == 1)
1304 {
1305 val = assq_no_quit (var, lists[0]);
1306 if (!NILP (val))
1307 continue;
1308 }
1309
1310 if (i >= cmm_size)
1311 {
1312 int newsize, allocsize;
1313 Lisp_Object *newmodes, *newmaps;
1314
1315 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1316 allocsize = newsize * sizeof *newmodes;
1317
1318 /* Use malloc here. See the comment above this function.
1319 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1320 BLOCK_INPUT;
1321 newmodes = (Lisp_Object *) malloc (allocsize);
1322 if (newmodes)
1323 {
1324 if (cmm_modes)
1325 {
1326 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1327 free (cmm_modes);
1328 }
1329 cmm_modes = newmodes;
1330 }
1331
1332 newmaps = (Lisp_Object *) malloc (allocsize);
1333 if (newmaps)
1334 {
1335 if (cmm_maps)
1336 {
1337 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1338 free (cmm_maps);
1339 }
1340 cmm_maps = newmaps;
1341 }
1342 UNBLOCK_INPUT;
1343
1344 if (newmodes == NULL || newmaps == NULL)
1345 break;
1346 cmm_size = newsize;
1347 }
1348
1349 /* Get the keymap definition--or nil if it is not defined. */
1350 temp = internal_condition_case_1 (Findirect_function,
1351 XCDR (assoc),
1352 Qerror, current_minor_maps_error);
1353 if (!NILP (temp))
1354 {
1355 cmm_modes[i] = var;
1356 cmm_maps [i] = temp;
1357 i++;
1358 }
1359 }
1360 }
1361
1362 if (modeptr) *modeptr = cmm_modes;
1363 if (mapptr) *mapptr = cmm_maps;
1364 return i;
1365 }
1366
1367 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1368 0, 1, 0,
1369 doc: /* Return a list of the currently active keymaps.
1370 OLP if non-nil indicates that we should obey `overriding-local-map' and
1371 `overriding-terminal-local-map'. */)
1372 (olp)
1373 Lisp_Object olp;
1374 {
1375 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1376
1377 if (!NILP (olp))
1378 {
1379 if (!NILP (Voverriding_local_map))
1380 keymaps = Fcons (Voverriding_local_map, keymaps);
1381 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1382 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1383 }
1384 if (NILP (XCDR (keymaps)))
1385 {
1386 Lisp_Object local;
1387 Lisp_Object *maps;
1388 int nmaps, i;
1389
1390 local = get_local_map (PT, current_buffer, Qlocal_map);
1391 if (!NILP (local))
1392 keymaps = Fcons (local, keymaps);
1393
1394 nmaps = current_minor_maps (0, &maps);
1395
1396 for (i = --nmaps; i >= 0; i--)
1397 if (!NILP (maps[i]))
1398 keymaps = Fcons (maps[i], keymaps);
1399
1400 local = get_local_map (PT, current_buffer, Qkeymap);
1401 if (!NILP (local))
1402 keymaps = Fcons (local, keymaps);
1403 }
1404
1405 return keymaps;
1406 }
1407
1408 /* GC is possible in this function if it autoloads a keymap. */
1409
1410 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1411 doc: /* Return the binding for command KEY in current keymaps.
1412 KEY is a string or vector, a sequence of keystrokes.
1413 The binding is probably a symbol with a function definition.
1414
1415 Normally, `key-binding' ignores bindings for t, which act as default
1416 bindings, used when nothing else in the keymap applies; this makes it
1417 usable as a general function for probing keymaps. However, if the
1418 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1419 recognize the default bindings, just as `read-key-sequence' does.
1420
1421 Like the normal command loop, `key-binding' will remap the command
1422 resulting from looking up KEY by looking up the command in the
1423 current keymaps. However, if the optional third argument NO-REMAP
1424 is non-nil, `key-binding' returns the unmapped command. */)
1425 (key, accept_default, no_remap)
1426 Lisp_Object key, accept_default, no_remap;
1427 {
1428 Lisp_Object *maps, value;
1429 int nmaps, i;
1430 struct gcpro gcpro1;
1431
1432 GCPRO1 (key);
1433
1434 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1435 {
1436 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1437 key, accept_default);
1438 if (! NILP (value) && !INTEGERP (value))
1439 goto done;
1440 }
1441 else if (!NILP (Voverriding_local_map))
1442 {
1443 value = Flookup_key (Voverriding_local_map, key, accept_default);
1444 if (! NILP (value) && !INTEGERP (value))
1445 goto done;
1446 }
1447 else
1448 {
1449 Lisp_Object local;
1450
1451 local = get_local_map (PT, current_buffer, Qkeymap);
1452 if (! NILP (local))
1453 {
1454 value = Flookup_key (local, key, accept_default);
1455 if (! NILP (value) && !INTEGERP (value))
1456 goto done;
1457 }
1458
1459 nmaps = current_minor_maps (0, &maps);
1460 /* Note that all these maps are GCPRO'd
1461 in the places where we found them. */
1462
1463 for (i = 0; i < nmaps; i++)
1464 if (! NILP (maps[i]))
1465 {
1466 value = Flookup_key (maps[i], key, accept_default);
1467 if (! NILP (value) && !INTEGERP (value))
1468 goto done;
1469 }
1470
1471 local = get_local_map (PT, current_buffer, Qlocal_map);
1472 if (! NILP (local))
1473 {
1474 value = Flookup_key (local, key, accept_default);
1475 if (! NILP (value) && !INTEGERP (value))
1476 goto done;
1477 }
1478 }
1479
1480 value = Flookup_key (current_global_map, key, accept_default);
1481
1482 done:
1483 UNGCPRO;
1484 if (NILP (value) || INTEGERP (value))
1485 return Qnil;
1486
1487 /* If the result of the ordinary keymap lookup is an interactive
1488 command, look for a key binding (ie. remapping) for that command. */
1489
1490 if (NILP (no_remap) && SYMBOLP (value))
1491 {
1492 Lisp_Object value1;
1493 if (value1 = Fremap_command (value), !NILP (value1))
1494 value = value1;
1495 }
1496
1497 return value;
1498 }
1499
1500 /* GC is possible in this function if it autoloads a keymap. */
1501
1502 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1503 doc: /* Return the binding for command KEYS in current local keymap only.
1504 KEYS is a string, a sequence of keystrokes.
1505 The binding is probably a symbol with a function definition.
1506
1507 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1508 bindings; see the description of `lookup-key' for more details about this. */)
1509 (keys, accept_default)
1510 Lisp_Object keys, accept_default;
1511 {
1512 register Lisp_Object map;
1513 map = current_buffer->keymap;
1514 if (NILP (map))
1515 return Qnil;
1516 return Flookup_key (map, keys, accept_default);
1517 }
1518
1519 /* GC is possible in this function if it autoloads a keymap. */
1520
1521 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1522 doc: /* Return the binding for command KEYS in current global keymap only.
1523 KEYS is a string, a sequence of keystrokes.
1524 The binding is probably a symbol with a function definition.
1525 This function's return values are the same as those of lookup-key
1526 \(which see).
1527
1528 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1529 bindings; see the description of `lookup-key' for more details about this. */)
1530 (keys, accept_default)
1531 Lisp_Object keys, accept_default;
1532 {
1533 return Flookup_key (current_global_map, keys, accept_default);
1534 }
1535
1536 /* GC is possible in this function if it autoloads a keymap. */
1537
1538 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1539 doc: /* Find the visible minor mode bindings of KEY.
1540 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1541 the symbol which names the minor mode binding KEY, and BINDING is
1542 KEY's definition in that mode. In particular, if KEY has no
1543 minor-mode bindings, return nil. If the first binding is a
1544 non-prefix, all subsequent bindings will be omitted, since they would
1545 be ignored. Similarly, the list doesn't include non-prefix bindings
1546 that come after prefix bindings.
1547
1548 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1549 bindings; see the description of `lookup-key' for more details about this. */)
1550 (key, accept_default)
1551 Lisp_Object key, accept_default;
1552 {
1553 Lisp_Object *modes, *maps;
1554 int nmaps;
1555 Lisp_Object binding;
1556 int i, j;
1557 struct gcpro gcpro1, gcpro2;
1558
1559 nmaps = current_minor_maps (&modes, &maps);
1560 /* Note that all these maps are GCPRO'd
1561 in the places where we found them. */
1562
1563 binding = Qnil;
1564 GCPRO2 (key, binding);
1565
1566 for (i = j = 0; i < nmaps; i++)
1567 if (!NILP (maps[i])
1568 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1569 && !INTEGERP (binding))
1570 {
1571 if (KEYMAPP (binding))
1572 maps[j++] = Fcons (modes[i], binding);
1573 else if (j == 0)
1574 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1575 }
1576
1577 UNGCPRO;
1578 return Flist (j, maps);
1579 }
1580
1581 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1582 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1583 A new sparse keymap is stored as COMMAND's function definition and its value.
1584 If a second optional argument MAPVAR is given, the map is stored as
1585 its value instead of as COMMAND's value; but COMMAND is still defined
1586 as a function.
1587 The third optional argument NAME, if given, supplies a menu name
1588 string for the map. This is required to use the keymap as a menu. */)
1589 (command, mapvar, name)
1590 Lisp_Object command, mapvar, name;
1591 {
1592 Lisp_Object map;
1593 map = Fmake_sparse_keymap (name);
1594 Ffset (command, map);
1595 if (!NILP (mapvar))
1596 Fset (mapvar, map);
1597 else
1598 Fset (command, map);
1599 return command;
1600 }
1601
1602 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1603 doc: /* Select KEYMAP as the global keymap. */)
1604 (keymap)
1605 Lisp_Object keymap;
1606 {
1607 keymap = get_keymap (keymap, 1, 1);
1608 current_global_map = keymap;
1609
1610 return Qnil;
1611 }
1612
1613 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1614 doc: /* Select KEYMAP as the local keymap.
1615 If KEYMAP is nil, that means no local keymap. */)
1616 (keymap)
1617 Lisp_Object keymap;
1618 {
1619 if (!NILP (keymap))
1620 keymap = get_keymap (keymap, 1, 1);
1621
1622 current_buffer->keymap = keymap;
1623
1624 return Qnil;
1625 }
1626
1627 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1628 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1629 ()
1630 {
1631 return current_buffer->keymap;
1632 }
1633
1634 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1635 doc: /* Return the current global keymap. */)
1636 ()
1637 {
1638 return current_global_map;
1639 }
1640
1641 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1642 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1643 ()
1644 {
1645 Lisp_Object *maps;
1646 int nmaps = current_minor_maps (0, &maps);
1647
1648 return Flist (nmaps, maps);
1649 }
1650 \f
1651 /* Help functions for describing and documenting keymaps. */
1652
1653
1654 static void
1655 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1656 Lisp_Object maps, tail, thisseq, key, cmd;
1657 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1658 {
1659 Lisp_Object tem;
1660
1661 cmd = get_keyelt (cmd, 0);
1662 if (NILP (cmd))
1663 return;
1664
1665 tem = get_keymap (cmd, 0, 0);
1666 if (CONSP (tem))
1667 {
1668 cmd = tem;
1669 /* Ignore keymaps that are already added to maps. */
1670 tem = Frassq (cmd, maps);
1671 if (NILP (tem))
1672 {
1673 /* If the last key in thisseq is meta-prefix-char,
1674 turn it into a meta-ized keystroke. We know
1675 that the event we're about to append is an
1676 ascii keystroke since we're processing a
1677 keymap table. */
1678 if (is_metized)
1679 {
1680 int meta_bit = meta_modifier;
1681 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1682 tem = Fcopy_sequence (thisseq);
1683
1684 Faset (tem, last, make_number (XINT (key) | meta_bit));
1685
1686 /* This new sequence is the same length as
1687 thisseq, so stick it in the list right
1688 after this one. */
1689 XSETCDR (tail,
1690 Fcons (Fcons (tem, cmd), XCDR (tail)));
1691 }
1692 else
1693 {
1694 tem = append_key (thisseq, key);
1695 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1696 }
1697 }
1698 }
1699 }
1700
1701 static void
1702 accessible_keymaps_char_table (args, index, cmd)
1703 Lisp_Object args, index, cmd;
1704 {
1705 accessible_keymaps_1 (index, cmd,
1706 XCAR (XCAR (args)),
1707 XCAR (XCDR (args)),
1708 XCDR (XCDR (args)),
1709 XINT (XCDR (XCAR (args))));
1710 }
1711
1712 /* This function cannot GC. */
1713
1714 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1715 1, 2, 0,
1716 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1717 Returns a list of elements of the form (KEYS . MAP), where the sequence
1718 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1719 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1720 An optional argument PREFIX, if non-nil, should be a key sequence;
1721 then the value includes only maps for prefixes that start with PREFIX. */)
1722 (keymap, prefix)
1723 Lisp_Object keymap, prefix;
1724 {
1725 Lisp_Object maps, good_maps, tail;
1726 int prefixlen = 0;
1727
1728 /* no need for gcpro because we don't autoload any keymaps. */
1729
1730 if (!NILP (prefix))
1731 prefixlen = XINT (Flength (prefix));
1732
1733 if (!NILP (prefix))
1734 {
1735 /* If a prefix was specified, start with the keymap (if any) for
1736 that prefix, so we don't waste time considering other prefixes. */
1737 Lisp_Object tem;
1738 tem = Flookup_key (keymap, prefix, Qt);
1739 /* Flookup_key may give us nil, or a number,
1740 if the prefix is not defined in this particular map.
1741 It might even give us a list that isn't a keymap. */
1742 tem = get_keymap (tem, 0, 0);
1743 if (CONSP (tem))
1744 {
1745 /* Convert PREFIX to a vector now, so that later on
1746 we don't have to deal with the possibility of a string. */
1747 if (STRINGP (prefix))
1748 {
1749 int i, i_byte, c;
1750 Lisp_Object copy;
1751
1752 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1753 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1754 {
1755 int i_before = i;
1756
1757 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1758 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1759 c ^= 0200 | meta_modifier;
1760 ASET (copy, i_before, make_number (c));
1761 }
1762 prefix = copy;
1763 }
1764 maps = Fcons (Fcons (prefix, tem), Qnil);
1765 }
1766 else
1767 return Qnil;
1768 }
1769 else
1770 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1771 get_keymap (keymap, 1, 0)),
1772 Qnil);
1773
1774 /* For each map in the list maps,
1775 look at any other maps it points to,
1776 and stick them at the end if they are not already in the list.
1777
1778 This is a breadth-first traversal, where tail is the queue of
1779 nodes, and maps accumulates a list of all nodes visited. */
1780
1781 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1782 {
1783 register Lisp_Object thisseq, thismap;
1784 Lisp_Object last;
1785 /* Does the current sequence end in the meta-prefix-char? */
1786 int is_metized;
1787
1788 thisseq = Fcar (Fcar (tail));
1789 thismap = Fcdr (Fcar (tail));
1790 last = make_number (XINT (Flength (thisseq)) - 1);
1791 is_metized = (XINT (last) >= 0
1792 /* Don't metize the last char of PREFIX. */
1793 && XINT (last) >= prefixlen
1794 && EQ (Faref (thisseq, last), meta_prefix_char));
1795
1796 for (; CONSP (thismap); thismap = XCDR (thismap))
1797 {
1798 Lisp_Object elt;
1799
1800 elt = XCAR (thismap);
1801
1802 QUIT;
1803
1804 if (CHAR_TABLE_P (elt))
1805 {
1806 Lisp_Object indices[3];
1807
1808 map_char_table (accessible_keymaps_char_table, Qnil,
1809 elt, Fcons (Fcons (maps, make_number (is_metized)),
1810 Fcons (tail, thisseq)),
1811 0, indices);
1812 }
1813 else if (VECTORP (elt))
1814 {
1815 register int i;
1816
1817 /* Vector keymap. Scan all the elements. */
1818 for (i = 0; i < ASIZE (elt); i++)
1819 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1820 maps, tail, thisseq, is_metized);
1821
1822 }
1823 else if (CONSP (elt))
1824 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1825 maps, tail, thisseq,
1826 is_metized && INTEGERP (XCAR (elt)));
1827
1828 }
1829 }
1830
1831 if (NILP (prefix))
1832 return maps;
1833
1834 /* Now find just the maps whose access prefixes start with PREFIX. */
1835
1836 good_maps = Qnil;
1837 for (; CONSP (maps); maps = XCDR (maps))
1838 {
1839 Lisp_Object elt, thisseq;
1840 elt = XCAR (maps);
1841 thisseq = XCAR (elt);
1842 /* The access prefix must be at least as long as PREFIX,
1843 and the first elements must match those of PREFIX. */
1844 if (XINT (Flength (thisseq)) >= prefixlen)
1845 {
1846 int i;
1847 for (i = 0; i < prefixlen; i++)
1848 {
1849 Lisp_Object i1;
1850 XSETFASTINT (i1, i);
1851 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1852 break;
1853 }
1854 if (i == prefixlen)
1855 good_maps = Fcons (elt, good_maps);
1856 }
1857 }
1858
1859 return Fnreverse (good_maps);
1860 }
1861 \f
1862 Lisp_Object Qsingle_key_description, Qkey_description;
1863
1864 /* This function cannot GC. */
1865
1866 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1867 doc: /* Return a pretty description of key-sequence KEYS.
1868 Control characters turn into "C-foo" sequences, meta into "M-foo"
1869 spaces are put between sequence elements, etc. */)
1870 (keys)
1871 Lisp_Object keys;
1872 {
1873 int len = 0;
1874 int i, i_byte;
1875 Lisp_Object sep;
1876 Lisp_Object *args = NULL;
1877
1878 if (STRINGP (keys))
1879 {
1880 Lisp_Object vector;
1881 vector = Fmake_vector (Flength (keys), Qnil);
1882 for (i = 0, i_byte = 0; i < SCHARS (keys); )
1883 {
1884 int c;
1885 int i_before = i;
1886
1887 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1888 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1889 c ^= 0200 | meta_modifier;
1890 XSETFASTINT (AREF (vector, i_before), c);
1891 }
1892 keys = vector;
1893 }
1894
1895 if (VECTORP (keys))
1896 {
1897 /* In effect, this computes
1898 (mapconcat 'single-key-description keys " ")
1899 but we shouldn't use mapconcat because it can do GC. */
1900
1901 len = XVECTOR (keys)->size;
1902 sep = build_string (" ");
1903 /* This has one extra element at the end that we don't pass to Fconcat. */
1904 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1905
1906 for (i = 0; i < len; i++)
1907 {
1908 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1909 args[i * 2 + 1] = sep;
1910 }
1911 }
1912 else if (CONSP (keys))
1913 {
1914 /* In effect, this computes
1915 (mapconcat 'single-key-description keys " ")
1916 but we shouldn't use mapconcat because it can do GC. */
1917
1918 len = XFASTINT (Flength (keys));
1919 sep = build_string (" ");
1920 /* This has one extra element at the end that we don't pass to Fconcat. */
1921 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1922
1923 for (i = 0; i < len; i++)
1924 {
1925 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1926 args[i * 2 + 1] = sep;
1927 keys = XCDR (keys);
1928 }
1929 }
1930 else
1931 keys = wrong_type_argument (Qarrayp, keys);
1932
1933 if (len == 0)
1934 return empty_string;
1935 return Fconcat (len * 2 - 1, args);
1936 }
1937
1938 char *
1939 push_key_description (c, p, force_multibyte)
1940 register unsigned int c;
1941 register char *p;
1942 int force_multibyte;
1943 {
1944 unsigned c2;
1945
1946 /* Clear all the meaningless bits above the meta bit. */
1947 c &= meta_modifier | ~ - meta_modifier;
1948 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1949 | meta_modifier | shift_modifier | super_modifier);
1950
1951 if (c & alt_modifier)
1952 {
1953 *p++ = 'A';
1954 *p++ = '-';
1955 c -= alt_modifier;
1956 }
1957 if ((c & ctrl_modifier) != 0
1958 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1959 {
1960 *p++ = 'C';
1961 *p++ = '-';
1962 c &= ~ctrl_modifier;
1963 }
1964 if (c & hyper_modifier)
1965 {
1966 *p++ = 'H';
1967 *p++ = '-';
1968 c -= hyper_modifier;
1969 }
1970 if (c & meta_modifier)
1971 {
1972 *p++ = 'M';
1973 *p++ = '-';
1974 c -= meta_modifier;
1975 }
1976 if (c & shift_modifier)
1977 {
1978 *p++ = 'S';
1979 *p++ = '-';
1980 c -= shift_modifier;
1981 }
1982 if (c & super_modifier)
1983 {
1984 *p++ = 's';
1985 *p++ = '-';
1986 c -= super_modifier;
1987 }
1988 if (c < 040)
1989 {
1990 if (c == 033)
1991 {
1992 *p++ = 'E';
1993 *p++ = 'S';
1994 *p++ = 'C';
1995 }
1996 else if (c == '\t')
1997 {
1998 *p++ = 'T';
1999 *p++ = 'A';
2000 *p++ = 'B';
2001 }
2002 else if (c == Ctl ('M'))
2003 {
2004 *p++ = 'R';
2005 *p++ = 'E';
2006 *p++ = 'T';
2007 }
2008 else
2009 {
2010 /* `C-' already added above. */
2011 if (c > 0 && c <= Ctl ('Z'))
2012 *p++ = c + 0140;
2013 else
2014 *p++ = c + 0100;
2015 }
2016 }
2017 else if (c == 0177)
2018 {
2019 *p++ = 'D';
2020 *p++ = 'E';
2021 *p++ = 'L';
2022 }
2023 else if (c == ' ')
2024 {
2025 *p++ = 'S';
2026 *p++ = 'P';
2027 *p++ = 'C';
2028 }
2029 else if (c < 128
2030 || (NILP (current_buffer->enable_multibyte_characters)
2031 && SINGLE_BYTE_CHAR_P (c)
2032 && !force_multibyte))
2033 {
2034 *p++ = c;
2035 }
2036 else
2037 {
2038 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2039
2040 if (force_multibyte && valid_p)
2041 {
2042 if (SINGLE_BYTE_CHAR_P (c))
2043 c = unibyte_char_to_multibyte (c);
2044 p += CHAR_STRING (c, p);
2045 }
2046 else if (NILP (current_buffer->enable_multibyte_characters)
2047 || valid_p)
2048 {
2049 int bit_offset;
2050 *p++ = '\\';
2051 /* The biggest character code uses 19 bits. */
2052 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2053 {
2054 if (c >= (1 << bit_offset))
2055 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2056 }
2057 }
2058 else
2059 p += CHAR_STRING (c, p);
2060 }
2061
2062 return p;
2063 }
2064
2065 /* This function cannot GC. */
2066
2067 DEFUN ("single-key-description", Fsingle_key_description,
2068 Ssingle_key_description, 1, 2, 0,
2069 doc: /* Return a pretty description of command character KEY.
2070 Control characters turn into C-whatever, etc.
2071 Optional argument NO-ANGLES non-nil means don't put angle brackets
2072 around function keys and event symbols. */)
2073 (key, no_angles)
2074 Lisp_Object key, no_angles;
2075 {
2076 if (CONSP (key) && lucid_event_type_list_p (key))
2077 key = Fevent_convert_list (key);
2078
2079 key = EVENT_HEAD (key);
2080
2081 if (INTEGERP (key)) /* Normal character */
2082 {
2083 unsigned int charset, c1, c2;
2084 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2085
2086 if (SINGLE_BYTE_CHAR_P (without_bits))
2087 charset = 0;
2088 else
2089 SPLIT_CHAR (without_bits, charset, c1, c2);
2090
2091 if (charset
2092 && CHARSET_DEFINED_P (charset)
2093 && ((c1 >= 0 && c1 < 32)
2094 || (c2 >= 0 && c2 < 32)))
2095 {
2096 /* Handle a generic character. */
2097 Lisp_Object name;
2098 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2099 CHECK_STRING (name);
2100 return concat2 (build_string ("Character set "), name);
2101 }
2102 else
2103 {
2104 char tem[KEY_DESCRIPTION_SIZE], *end;
2105 int nbytes, nchars;
2106 Lisp_Object string;
2107
2108 end = push_key_description (XUINT (key), tem, 1);
2109 nbytes = end - tem;
2110 nchars = multibyte_chars_in_text (tem, nbytes);
2111 if (nchars == nbytes)
2112 {
2113 *end = '\0';
2114 string = build_string (tem);
2115 }
2116 else
2117 string = make_multibyte_string (tem, nchars, nbytes);
2118 return string;
2119 }
2120 }
2121 else if (SYMBOLP (key)) /* Function key or event-symbol */
2122 {
2123 if (NILP (no_angles))
2124 {
2125 char *buffer
2126 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2127 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2128 return build_string (buffer);
2129 }
2130 else
2131 return Fsymbol_name (key);
2132 }
2133 else if (STRINGP (key)) /* Buffer names in the menubar. */
2134 return Fcopy_sequence (key);
2135 else
2136 error ("KEY must be an integer, cons, symbol, or string");
2137 return Qnil;
2138 }
2139
2140 char *
2141 push_text_char_description (c, p)
2142 register unsigned int c;
2143 register char *p;
2144 {
2145 if (c >= 0200)
2146 {
2147 *p++ = 'M';
2148 *p++ = '-';
2149 c -= 0200;
2150 }
2151 if (c < 040)
2152 {
2153 *p++ = '^';
2154 *p++ = c + 64; /* 'A' - 1 */
2155 }
2156 else if (c == 0177)
2157 {
2158 *p++ = '^';
2159 *p++ = '?';
2160 }
2161 else
2162 *p++ = c;
2163 return p;
2164 }
2165
2166 /* This function cannot GC. */
2167
2168 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2169 doc: /* Return a pretty description of file-character CHARACTER.
2170 Control characters turn into "^char", etc. */)
2171 (character)
2172 Lisp_Object character;
2173 {
2174 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2175 unsigned char str[6];
2176 int c;
2177
2178 CHECK_NUMBER (character);
2179
2180 c = XINT (character);
2181 if (!SINGLE_BYTE_CHAR_P (c))
2182 {
2183 int len = CHAR_STRING (c, str);
2184
2185 return make_multibyte_string (str, 1, len);
2186 }
2187
2188 *push_text_char_description (c & 0377, str) = 0;
2189
2190 return build_string (str);
2191 }
2192
2193 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2194 a meta bit. */
2195 static int
2196 ascii_sequence_p (seq)
2197 Lisp_Object seq;
2198 {
2199 int i;
2200 int len = XINT (Flength (seq));
2201
2202 for (i = 0; i < len; i++)
2203 {
2204 Lisp_Object ii, elt;
2205
2206 XSETFASTINT (ii, i);
2207 elt = Faref (seq, ii);
2208
2209 if (!INTEGERP (elt)
2210 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2211 return 0;
2212 }
2213
2214 return 1;
2215 }
2216
2217 \f
2218 /* where-is - finding a command in a set of keymaps. */
2219
2220 static Lisp_Object where_is_internal ();
2221 static Lisp_Object where_is_internal_1 ();
2222 static void where_is_internal_2 ();
2223
2224 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2225 Returns the first non-nil binding found in any of those maps. */
2226
2227 static Lisp_Object
2228 shadow_lookup (shadow, key, flag)
2229 Lisp_Object shadow, key, flag;
2230 {
2231 Lisp_Object tail, value;
2232
2233 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2234 {
2235 value = Flookup_key (XCAR (tail), key, flag);
2236 if (!NILP (value) && !NATNUMP (value))
2237 return value;
2238 }
2239 return Qnil;
2240 }
2241
2242 /* This function can GC if Flookup_key autoloads any keymaps. */
2243
2244 static Lisp_Object
2245 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2246 Lisp_Object definition, keymaps;
2247 Lisp_Object firstonly, noindirect, no_remap;
2248 {
2249 Lisp_Object maps = Qnil;
2250 Lisp_Object found, sequences;
2251 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2252 /* 1 means ignore all menu bindings entirely. */
2253 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2254
2255 /* If this command is remapped, then it has no key bindings
2256 of its own. */
2257 if (NILP (no_remap) && SYMBOLP (definition))
2258 {
2259 Lisp_Object tem;
2260 if (tem = Fremap_command (definition), !NILP (tem))
2261 return Qnil;
2262 }
2263
2264 found = keymaps;
2265 while (CONSP (found))
2266 {
2267 maps =
2268 nconc2 (maps,
2269 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2270 found = XCDR (found);
2271 }
2272
2273 GCPRO5 (definition, keymaps, maps, found, sequences);
2274 found = Qnil;
2275 sequences = Qnil;
2276
2277 for (; !NILP (maps); maps = Fcdr (maps))
2278 {
2279 /* Key sequence to reach map, and the map that it reaches */
2280 register Lisp_Object this, map;
2281
2282 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2283 [M-CHAR] sequences, check if last character of the sequence
2284 is the meta-prefix char. */
2285 Lisp_Object last;
2286 int last_is_meta;
2287
2288 this = Fcar (Fcar (maps));
2289 map = Fcdr (Fcar (maps));
2290 last = make_number (XINT (Flength (this)) - 1);
2291 last_is_meta = (XINT (last) >= 0
2292 && EQ (Faref (this, last), meta_prefix_char));
2293
2294 /* if (nomenus && !ascii_sequence_p (this)) */
2295 if (nomenus && XINT (last) >= 0
2296 && !INTEGERP (Faref (this, make_number (0))))
2297 /* If no menu entries should be returned, skip over the
2298 keymaps bound to `menu-bar' and `tool-bar' and other
2299 non-ascii prefixes like `C-down-mouse-2'. */
2300 continue;
2301
2302 QUIT;
2303
2304 while (CONSP (map))
2305 {
2306 /* Because the code we want to run on each binding is rather
2307 large, we don't want to have two separate loop bodies for
2308 sparse keymap bindings and tables; we want to iterate one
2309 loop body over both keymap and vector bindings.
2310
2311 For this reason, if Fcar (map) is a vector, we don't
2312 advance map to the next element until i indicates that we
2313 have finished off the vector. */
2314 Lisp_Object elt, key, binding;
2315 elt = XCAR (map);
2316 map = XCDR (map);
2317
2318 sequences = Qnil;
2319
2320 QUIT;
2321
2322 /* Set key and binding to the current key and binding, and
2323 advance map and i to the next binding. */
2324 if (VECTORP (elt))
2325 {
2326 Lisp_Object sequence;
2327 int i;
2328 /* In a vector, look at each element. */
2329 for (i = 0; i < XVECTOR (elt)->size; i++)
2330 {
2331 binding = AREF (elt, i);
2332 XSETFASTINT (key, i);
2333 sequence = where_is_internal_1 (binding, key, definition,
2334 noindirect, this,
2335 last, nomenus, last_is_meta);
2336 if (!NILP (sequence))
2337 sequences = Fcons (sequence, sequences);
2338 }
2339 }
2340 else if (CHAR_TABLE_P (elt))
2341 {
2342 Lisp_Object indices[3];
2343 Lisp_Object args;
2344
2345 args = Fcons (Fcons (Fcons (definition, noindirect),
2346 Qnil), /* Result accumulator. */
2347 Fcons (Fcons (this, last),
2348 Fcons (make_number (nomenus),
2349 make_number (last_is_meta))));
2350 map_char_table (where_is_internal_2, Qnil, elt, args,
2351 0, indices);
2352 sequences = XCDR (XCAR (args));
2353 }
2354 else if (CONSP (elt))
2355 {
2356 Lisp_Object sequence;
2357
2358 key = XCAR (elt);
2359 binding = XCDR (elt);
2360
2361 sequence = where_is_internal_1 (binding, key, definition,
2362 noindirect, this,
2363 last, nomenus, last_is_meta);
2364 if (!NILP (sequence))
2365 sequences = Fcons (sequence, sequences);
2366 }
2367
2368
2369 while (!NILP (sequences))
2370 {
2371 Lisp_Object sequence, remapped, function;
2372
2373 sequence = XCAR (sequences);
2374 sequences = XCDR (sequences);
2375
2376 /* If the current sequence is a command remapping with
2377 format [remap COMMAND], find the key sequences
2378 which run COMMAND, and use those sequences instead. */
2379 remapped = Qnil;
2380 if (NILP (no_remap)
2381 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2382 && EQ (AREF (sequence, 0), Qremap)
2383 && (function = AREF (sequence, 1), SYMBOLP (function)))
2384 {
2385 Lisp_Object remapped1;
2386
2387 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2388 if (CONSP (remapped1))
2389 {
2390 /* Verify that this key binding actually maps to the
2391 remapped command (see below). */
2392 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2393 continue;
2394 sequence = XCAR (remapped1);
2395 remapped = XCDR (remapped1);
2396 goto record_sequence;
2397 }
2398 }
2399
2400 /* Verify that this key binding is not shadowed by another
2401 binding for the same key, before we say it exists.
2402
2403 Mechanism: look for local definition of this key and if
2404 it is defined and does not match what we found then
2405 ignore this key.
2406
2407 Either nil or number as value from Flookup_key
2408 means undefined. */
2409 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2410 continue;
2411
2412 record_sequence:
2413 /* It is a true unshadowed match. Record it, unless it's already
2414 been seen (as could happen when inheriting keymaps). */
2415 if (NILP (Fmember (sequence, found)))
2416 found = Fcons (sequence, found);
2417
2418 /* If firstonly is Qnon_ascii, then we can return the first
2419 binding we find. If firstonly is not Qnon_ascii but not
2420 nil, then we should return the first ascii-only binding
2421 we find. */
2422 if (EQ (firstonly, Qnon_ascii))
2423 RETURN_UNGCPRO (sequence);
2424 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2425 RETURN_UNGCPRO (sequence);
2426
2427 if (CONSP (remapped))
2428 {
2429 sequence = XCAR (remapped);
2430 remapped = XCDR (remapped);
2431 goto record_sequence;
2432 }
2433 }
2434 }
2435 }
2436
2437 UNGCPRO;
2438
2439 found = Fnreverse (found);
2440
2441 /* firstonly may have been t, but we may have gone all the way through
2442 the keymaps without finding an all-ASCII key sequence. So just
2443 return the best we could find. */
2444 if (!NILP (firstonly))
2445 return Fcar (found);
2446
2447 return found;
2448 }
2449
2450 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2451 doc: /* Return list of keys that invoke DEFINITION.
2452 If KEYMAP is non-nil, search only KEYMAP and the global keymap.
2453 If KEYMAP is nil, search all the currently active keymaps.
2454 If KEYMAP is a list of keymaps, search only those keymaps.
2455
2456 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2457 rather than a list of all possible key sequences.
2458 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2459 no matter what it is.
2460 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,
2461 and entirely reject menu bindings.
2462
2463 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2464 to other keymaps or slots. This makes it possible to search for an
2465 indirect definition itself.
2466
2467 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2468 that invoke a command which is remapped to DEFINITION, but include the
2469 remapped command in the returned list. */)
2470 (definition, keymap, firstonly, noindirect, no_remap)
2471 Lisp_Object definition, keymap;
2472 Lisp_Object firstonly, noindirect, no_remap;
2473 {
2474 Lisp_Object sequences, keymaps;
2475 /* 1 means ignore all menu bindings entirely. */
2476 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2477 Lisp_Object result;
2478
2479 /* Find the relevant keymaps. */
2480 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2481 keymaps = keymap;
2482 else if (!NILP (keymap))
2483 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2484 else
2485 keymaps = Fcurrent_active_maps (Qnil);
2486
2487 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2488 We don't really need to check `keymap'. */
2489 if (nomenus && NILP (noindirect) && NILP (keymap))
2490 {
2491 Lisp_Object *defns;
2492 int i, j, n;
2493 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2494
2495 /* Check heuristic-consistency of the cache. */
2496 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2497 where_is_cache = Qnil;
2498
2499 if (NILP (where_is_cache))
2500 {
2501 /* We need to create the cache. */
2502 Lisp_Object args[2];
2503 where_is_cache = Fmake_hash_table (0, args);
2504 where_is_cache_keymaps = Qt;
2505
2506 /* Fill in the cache. */
2507 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2508 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2509 UNGCPRO;
2510
2511 where_is_cache_keymaps = keymaps;
2512 }
2513
2514 /* We want to process definitions from the last to the first.
2515 Instead of consing, copy definitions to a vector and step
2516 over that vector. */
2517 sequences = Fgethash (definition, where_is_cache, Qnil);
2518 n = XINT (Flength (sequences));
2519 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2520 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2521 defns[i++] = XCAR (sequences);
2522
2523 /* Verify that the key bindings are not shadowed. Note that
2524 the following can GC. */
2525 GCPRO2 (definition, keymaps);
2526 result = Qnil;
2527 j = -1;
2528 for (i = n - 1; i >= 0; --i)
2529 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2530 {
2531 if (ascii_sequence_p (defns[i]))
2532 break;
2533 else if (j < 0)
2534 j = i;
2535 }
2536
2537 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2538 UNGCPRO;
2539 }
2540 else
2541 {
2542 /* Kill the cache so that where_is_internal_1 doesn't think
2543 we're filling it up. */
2544 where_is_cache = Qnil;
2545 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2546 }
2547
2548 return result;
2549 }
2550
2551 /* This is the function that Fwhere_is_internal calls using map_char_table.
2552 ARGS has the form
2553 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2554 .
2555 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2556 Since map_char_table doesn't really use the return value from this function,
2557 we the result append to RESULT, the slot in ARGS.
2558
2559 This function can GC because it calls where_is_internal_1 which can
2560 GC. */
2561
2562 static void
2563 where_is_internal_2 (args, key, binding)
2564 Lisp_Object args, key, binding;
2565 {
2566 Lisp_Object definition, noindirect, this, last;
2567 Lisp_Object result, sequence;
2568 int nomenus, last_is_meta;
2569 struct gcpro gcpro1, gcpro2, gcpro3;
2570
2571 GCPRO3 (args, key, binding);
2572 result = XCDR (XCAR (args));
2573 definition = XCAR (XCAR (XCAR (args)));
2574 noindirect = XCDR (XCAR (XCAR (args)));
2575 this = XCAR (XCAR (XCDR (args)));
2576 last = XCDR (XCAR (XCDR (args)));
2577 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2578 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2579
2580 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2581 this, last, nomenus, last_is_meta);
2582
2583 if (!NILP (sequence))
2584 XSETCDR (XCAR (args), Fcons (sequence, result));
2585
2586 UNGCPRO;
2587 }
2588
2589
2590 /* This function cannot GC. */
2591
2592 static Lisp_Object
2593 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2594 nomenus, last_is_meta)
2595 Lisp_Object binding, key, definition, noindirect, this, last;
2596 int nomenus, last_is_meta;
2597 {
2598 Lisp_Object sequence;
2599
2600 /* Search through indirections unless that's not wanted. */
2601 if (NILP (noindirect))
2602 binding = get_keyelt (binding, 0);
2603
2604 /* End this iteration if this element does not match
2605 the target. */
2606
2607 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2608 || EQ (binding, definition)
2609 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2610 /* Doesn't match. */
2611 return Qnil;
2612
2613 /* We have found a match. Construct the key sequence where we found it. */
2614 if (INTEGERP (key) && last_is_meta)
2615 {
2616 sequence = Fcopy_sequence (this);
2617 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2618 }
2619 else
2620 sequence = append_key (this, key);
2621
2622 if (!NILP (where_is_cache))
2623 {
2624 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2625 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2626 return Qnil;
2627 }
2628 else
2629 return sequence;
2630 }
2631 \f
2632 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2633
2634 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2635 doc: /* Insert the list of all defined keys and their definitions.
2636 The list is inserted in the current buffer, while the bindings are
2637 looked up in BUFFER.
2638 The optional argument PREFIX, if non-nil, should be a key sequence;
2639 then we display only bindings that start with that prefix.
2640 The optional argument MENUS, if non-nil, says to mention menu bindings.
2641 \(Ordinarily these are omitted from the output.) */)
2642 (buffer, prefix, menus)
2643 Lisp_Object buffer, prefix, menus;
2644 {
2645 Lisp_Object outbuf, shadow;
2646 int nomenu = NILP (menus);
2647 register Lisp_Object start1;
2648 struct gcpro gcpro1;
2649
2650 char *alternate_heading
2651 = "\
2652 Keyboard translations:\n\n\
2653 You type Translation\n\
2654 -------- -----------\n";
2655
2656 shadow = Qnil;
2657 GCPRO1 (shadow);
2658
2659 outbuf = Fcurrent_buffer ();
2660
2661 /* Report on alternates for keys. */
2662 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2663 {
2664 int c;
2665 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2666 int translate_len = SCHARS (Vkeyboard_translate_table);
2667
2668 for (c = 0; c < translate_len; c++)
2669 if (translate[c] != c)
2670 {
2671 char buf[KEY_DESCRIPTION_SIZE];
2672 char *bufend;
2673
2674 if (alternate_heading)
2675 {
2676 insert_string (alternate_heading);
2677 alternate_heading = 0;
2678 }
2679
2680 bufend = push_key_description (translate[c], buf, 1);
2681 insert (buf, bufend - buf);
2682 Findent_to (make_number (16), make_number (1));
2683 bufend = push_key_description (c, buf, 1);
2684 insert (buf, bufend - buf);
2685
2686 insert ("\n", 1);
2687 }
2688
2689 insert ("\n", 1);
2690 }
2691
2692 if (!NILP (Vkey_translation_map))
2693 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2694 "Key translations", nomenu, 1, 0);
2695
2696
2697 /* Print the (major mode) local map. */
2698 start1 = Qnil;
2699 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2700 start1 = current_kboard->Voverriding_terminal_local_map;
2701 else if (!NILP (Voverriding_local_map))
2702 start1 = Voverriding_local_map;
2703
2704 if (!NILP (start1))
2705 {
2706 describe_map_tree (start1, 1, shadow, prefix,
2707 "\f\nOverriding Bindings", nomenu, 0, 0);
2708 shadow = Fcons (start1, shadow);
2709 }
2710 else
2711 {
2712 /* Print the minor mode and major mode keymaps. */
2713 int i, nmaps;
2714 Lisp_Object *modes, *maps;
2715
2716 /* Temporarily switch to `buffer', so that we can get that buffer's
2717 minor modes correctly. */
2718 Fset_buffer (buffer);
2719
2720 nmaps = current_minor_maps (&modes, &maps);
2721 Fset_buffer (outbuf);
2722
2723 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2724 XBUFFER (buffer), Qkeymap);
2725 if (!NILP (start1))
2726 {
2727 describe_map_tree (start1, 1, shadow, prefix,
2728 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2729 shadow = Fcons (start1, shadow);
2730 }
2731
2732 /* Print the minor mode maps. */
2733 for (i = 0; i < nmaps; i++)
2734 {
2735 /* The title for a minor mode keymap
2736 is constructed at run time.
2737 We let describe_map_tree do the actual insertion
2738 because it takes care of other features when doing so. */
2739 char *title, *p;
2740
2741 if (!SYMBOLP (modes[i]))
2742 abort();
2743
2744 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2745 *p++ = '\f';
2746 *p++ = '\n';
2747 *p++ = '`';
2748 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2749 SCHARS (SYMBOL_NAME (modes[i])));
2750 p += SCHARS (SYMBOL_NAME (modes[i]));
2751 *p++ = '\'';
2752 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2753 p += sizeof (" Minor Mode Bindings") - 1;
2754 *p = 0;
2755
2756 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2757 shadow = Fcons (maps[i], shadow);
2758 }
2759
2760 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2761 XBUFFER (buffer), Qlocal_map);
2762 if (!NILP (start1))
2763 {
2764 if (EQ (start1, XBUFFER (buffer)->keymap))
2765 describe_map_tree (start1, 1, shadow, prefix,
2766 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2767 else
2768 describe_map_tree (start1, 1, shadow, prefix,
2769 "\f\n`local-map' Property Bindings",
2770 nomenu, 0, 0);
2771
2772 shadow = Fcons (start1, shadow);
2773 }
2774 }
2775
2776 describe_map_tree (current_global_map, 1, shadow, prefix,
2777 "\f\nGlobal Bindings", nomenu, 0, 1);
2778
2779 /* Print the function-key-map translations under this prefix. */
2780 if (!NILP (Vfunction_key_map))
2781 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2782 "\f\nFunction key map translations", nomenu, 1, 0);
2783
2784 UNGCPRO;
2785 return Qnil;
2786 }
2787
2788 /* Insert a description of the key bindings in STARTMAP,
2789 followed by those of all maps reachable through STARTMAP.
2790 If PARTIAL is nonzero, omit certain "uninteresting" commands
2791 (such as `undefined').
2792 If SHADOW is non-nil, it is a list of maps;
2793 don't mention keys which would be shadowed by any of them.
2794 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2795 TITLE, if not 0, is a string to insert at the beginning.
2796 TITLE should not end with a colon or a newline; we supply that.
2797 If NOMENU is not 0, then omit menu-bar commands.
2798
2799 If TRANSL is nonzero, the definitions are actually key translations
2800 so print strings and vectors differently.
2801
2802 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2803 to look through. */
2804
2805 void
2806 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2807 always_title)
2808 Lisp_Object startmap, shadow, prefix;
2809 int partial;
2810 char *title;
2811 int nomenu;
2812 int transl;
2813 int always_title;
2814 {
2815 Lisp_Object maps, orig_maps, seen, sub_shadows;
2816 struct gcpro gcpro1, gcpro2, gcpro3;
2817 int something = 0;
2818 char *key_heading
2819 = "\
2820 key binding\n\
2821 --- -------\n";
2822
2823 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2824 seen = Qnil;
2825 sub_shadows = Qnil;
2826 GCPRO3 (maps, seen, sub_shadows);
2827
2828 if (nomenu)
2829 {
2830 Lisp_Object list;
2831
2832 /* Delete from MAPS each element that is for the menu bar. */
2833 for (list = maps; !NILP (list); list = XCDR (list))
2834 {
2835 Lisp_Object elt, prefix, tem;
2836
2837 elt = Fcar (list);
2838 prefix = Fcar (elt);
2839 if (XVECTOR (prefix)->size >= 1)
2840 {
2841 tem = Faref (prefix, make_number (0));
2842 if (EQ (tem, Qmenu_bar))
2843 maps = Fdelq (elt, maps);
2844 }
2845 }
2846 }
2847
2848 if (!NILP (maps) || always_title)
2849 {
2850 if (title)
2851 {
2852 insert_string (title);
2853 if (!NILP (prefix))
2854 {
2855 insert_string (" Starting With ");
2856 insert1 (Fkey_description (prefix));
2857 }
2858 insert_string (":\n");
2859 }
2860 insert_string (key_heading);
2861 something = 1;
2862 }
2863
2864 for (; !NILP (maps); maps = Fcdr (maps))
2865 {
2866 register Lisp_Object elt, prefix, tail;
2867
2868 elt = Fcar (maps);
2869 prefix = Fcar (elt);
2870
2871 sub_shadows = Qnil;
2872
2873 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2874 {
2875 Lisp_Object shmap;
2876
2877 shmap = XCAR (tail);
2878
2879 /* If the sequence by which we reach this keymap is zero-length,
2880 then the shadow map for this keymap is just SHADOW. */
2881 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
2882 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2883 ;
2884 /* If the sequence by which we reach this keymap actually has
2885 some elements, then the sequence's definition in SHADOW is
2886 what we should use. */
2887 else
2888 {
2889 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2890 if (INTEGERP (shmap))
2891 shmap = Qnil;
2892 }
2893
2894 /* If shmap is not nil and not a keymap,
2895 it completely shadows this map, so don't
2896 describe this map at all. */
2897 if (!NILP (shmap) && !KEYMAPP (shmap))
2898 goto skip;
2899
2900 if (!NILP (shmap))
2901 sub_shadows = Fcons (shmap, sub_shadows);
2902 }
2903
2904 /* Maps we have already listed in this loop shadow this map. */
2905 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2906 {
2907 Lisp_Object tem;
2908 tem = Fequal (Fcar (XCAR (tail)), prefix);
2909 if (!NILP (tem))
2910 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2911 }
2912
2913 describe_map (Fcdr (elt), prefix,
2914 transl ? describe_translation : describe_command,
2915 partial, sub_shadows, &seen, nomenu);
2916
2917 skip: ;
2918 }
2919
2920 if (something)
2921 insert_string ("\n");
2922
2923 UNGCPRO;
2924 }
2925
2926 static int previous_description_column;
2927
2928 static void
2929 describe_command (definition, args)
2930 Lisp_Object definition, args;
2931 {
2932 register Lisp_Object tem1;
2933 int column = (int) current_column (); /* iftc */
2934 int description_column;
2935
2936 /* If column 16 is no good, go to col 32;
2937 but don't push beyond that--go to next line instead. */
2938 if (column > 30)
2939 {
2940 insert_char ('\n');
2941 description_column = 32;
2942 }
2943 else if (column > 14 || (column > 10 && previous_description_column == 32))
2944 description_column = 32;
2945 else
2946 description_column = 16;
2947
2948 Findent_to (make_number (description_column), make_number (1));
2949 previous_description_column = description_column;
2950
2951 if (SYMBOLP (definition))
2952 {
2953 tem1 = SYMBOL_NAME (definition);
2954 insert1 (tem1);
2955 insert_string ("\n");
2956 }
2957 else if (STRINGP (definition) || VECTORP (definition))
2958 insert_string ("Keyboard Macro\n");
2959 else if (KEYMAPP (definition))
2960 insert_string ("Prefix Command\n");
2961 else
2962 insert_string ("??\n");
2963 }
2964
2965 static void
2966 describe_translation (definition, args)
2967 Lisp_Object definition, args;
2968 {
2969 register Lisp_Object tem1;
2970
2971 Findent_to (make_number (16), make_number (1));
2972
2973 if (SYMBOLP (definition))
2974 {
2975 tem1 = SYMBOL_NAME (definition);
2976 insert1 (tem1);
2977 insert_string ("\n");
2978 }
2979 else if (STRINGP (definition) || VECTORP (definition))
2980 {
2981 insert1 (Fkey_description (definition));
2982 insert_string ("\n");
2983 }
2984 else if (KEYMAPP (definition))
2985 insert_string ("Prefix Command\n");
2986 else
2987 insert_string ("??\n");
2988 }
2989
2990 /* Describe the contents of map MAP, assuming that this map itself is
2991 reached by the sequence of prefix keys KEYS (a string or vector).
2992 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2993
2994 static void
2995 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2996 register Lisp_Object map;
2997 Lisp_Object keys;
2998 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
2999 int partial;
3000 Lisp_Object shadow;
3001 Lisp_Object *seen;
3002 int nomenu;
3003 {
3004 Lisp_Object elt_prefix;
3005 Lisp_Object tail, definition, event;
3006 Lisp_Object tem;
3007 Lisp_Object suppress;
3008 Lisp_Object kludge;
3009 int first = 1;
3010 struct gcpro gcpro1, gcpro2, gcpro3;
3011
3012 suppress = Qnil;
3013
3014 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
3015 {
3016 /* Call Fkey_description first, to avoid GC bug for the other string. */
3017 tem = Fkey_description (keys);
3018 elt_prefix = concat2 (tem, build_string (" "));
3019 }
3020 else
3021 elt_prefix = Qnil;
3022
3023 if (partial)
3024 suppress = intern ("suppress-keymap");
3025
3026 /* This vector gets used to present single keys to Flookup_key. Since
3027 that is done once per keymap element, we don't want to cons up a
3028 fresh vector every time. */
3029 kludge = Fmake_vector (make_number (1), Qnil);
3030 definition = Qnil;
3031
3032 GCPRO3 (elt_prefix, definition, kludge);
3033
3034 for (tail = map; CONSP (tail); tail = XCDR (tail))
3035 {
3036 QUIT;
3037
3038 if (VECTORP (XCAR (tail))
3039 || CHAR_TABLE_P (XCAR (tail)))
3040 describe_vector (XCAR (tail),
3041 elt_prefix, Qnil, elt_describer, partial, shadow, map,
3042 (int *)0, 0);
3043 else if (CONSP (XCAR (tail)))
3044 {
3045 event = XCAR (XCAR (tail));
3046
3047 /* Ignore bindings whose "keys" are not really valid events.
3048 (We get these in the frames and buffers menu.) */
3049 if (!(SYMBOLP (event) || INTEGERP (event)))
3050 continue;
3051
3052 if (nomenu && EQ (event, Qmenu_bar))
3053 continue;
3054
3055 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3056
3057 /* Don't show undefined commands or suppressed commands. */
3058 if (NILP (definition)) continue;
3059 if (SYMBOLP (definition) && partial)
3060 {
3061 tem = Fget (definition, suppress);
3062 if (!NILP (tem))
3063 continue;
3064 }
3065
3066 /* Don't show a command that isn't really visible
3067 because a local definition of the same key shadows it. */
3068
3069 ASET (kludge, 0, event);
3070 if (!NILP (shadow))
3071 {
3072 tem = shadow_lookup (shadow, kludge, Qt);
3073 if (!NILP (tem)) continue;
3074 }
3075
3076 tem = Flookup_key (map, kludge, Qt);
3077 if (!EQ (tem, definition)) continue;
3078
3079 if (first)
3080 {
3081 previous_description_column = 0;
3082 insert ("\n", 1);
3083 first = 0;
3084 }
3085
3086 if (!NILP (elt_prefix))
3087 insert1 (elt_prefix);
3088
3089 /* THIS gets the string to describe the character EVENT. */
3090 insert1 (Fsingle_key_description (event, Qnil));
3091
3092 /* Print a description of the definition of this character.
3093 elt_describer will take care of spacing out far enough
3094 for alignment purposes. */
3095 (*elt_describer) (definition, Qnil);
3096 }
3097 else if (EQ (XCAR (tail), Qkeymap))
3098 {
3099 /* The same keymap might be in the structure twice, if we're
3100 using an inherited keymap. So skip anything we've already
3101 encountered. */
3102 tem = Fassq (tail, *seen);
3103 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
3104 break;
3105 *seen = Fcons (Fcons (tail, keys), *seen);
3106 }
3107 }
3108
3109 UNGCPRO;
3110 }
3111
3112 static void
3113 describe_vector_princ (elt, fun)
3114 Lisp_Object elt, fun;
3115 {
3116 Findent_to (make_number (16), make_number (1));
3117 call1 (fun, elt);
3118 Fterpri (Qnil);
3119 }
3120
3121 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3122 doc: /* Insert a description of contents of VECTOR.
3123 This is text showing the elements of vector matched against indices. */)
3124 (vector, describer)
3125 Lisp_Object vector, describer;
3126 {
3127 int count = SPECPDL_INDEX ();
3128 if (NILP (describer))
3129 describer = intern ("princ");
3130 specbind (Qstandard_output, Fcurrent_buffer ());
3131 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3132 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3133 Qnil, Qnil, (int *)0, 0);
3134
3135 return unbind_to (count, Qnil);
3136 }
3137
3138 /* Insert in the current buffer a description of the contents of VECTOR.
3139 We call ELT_DESCRIBER to insert the description of one value found
3140 in VECTOR.
3141
3142 ELT_PREFIX describes what "comes before" the keys or indices defined
3143 by this vector. This is a human-readable string whose size
3144 is not necessarily related to the situation.
3145
3146 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3147 leads to this keymap.
3148
3149 If the vector is a chartable, ELT_PREFIX is the vector
3150 of bytes that lead to the character set or portion of a character
3151 set described by this chartable.
3152
3153 If PARTIAL is nonzero, it means do not mention suppressed commands
3154 (that assumes the vector is in a keymap).
3155
3156 SHADOW is a list of keymaps that shadow this map.
3157 If it is non-nil, then we look up the key in those maps
3158 and we don't mention it now if it is defined by any of them.
3159
3160 ENTIRE_MAP is the keymap in which this vector appears.
3161 If the definition in effect in the whole map does not match
3162 the one in this vector, we ignore this one.
3163
3164 When describing a sub-char-table, INDICES is a list of
3165 indices at higher levels in this char-table,
3166 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3167
3168 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3169
3170 void
3171 describe_vector (vector, elt_prefix, args, elt_describer,
3172 partial, shadow, entire_map,
3173 indices, char_table_depth)
3174 register Lisp_Object vector;
3175 Lisp_Object elt_prefix, args;
3176 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3177 int partial;
3178 Lisp_Object shadow;
3179 Lisp_Object entire_map;
3180 int *indices;
3181 int char_table_depth;
3182 {
3183 Lisp_Object definition;
3184 Lisp_Object tem2;
3185 register int i;
3186 Lisp_Object suppress;
3187 Lisp_Object kludge;
3188 int first = 1;
3189 struct gcpro gcpro1, gcpro2, gcpro3;
3190 /* Range of elements to be handled. */
3191 int from, to;
3192 /* A flag to tell if a leaf in this level of char-table is not a
3193 generic character (i.e. a complete multibyte character). */
3194 int complete_char;
3195 int character;
3196 int starting_i;
3197
3198 suppress = Qnil;
3199
3200 if (indices == 0)
3201 indices = (int *) alloca (3 * sizeof (int));
3202
3203 definition = Qnil;
3204
3205 /* This vector gets used to present single keys to Flookup_key. Since
3206 that is done once per vector element, we don't want to cons up a
3207 fresh vector every time. */
3208 kludge = Fmake_vector (make_number (1), Qnil);
3209 GCPRO3 (elt_prefix, definition, kludge);
3210
3211 if (partial)
3212 suppress = intern ("suppress-keymap");
3213
3214 if (CHAR_TABLE_P (vector))
3215 {
3216 if (char_table_depth == 0)
3217 {
3218 /* VECTOR is a top level char-table. */
3219 complete_char = 1;
3220 from = 0;
3221 to = CHAR_TABLE_ORDINARY_SLOTS;
3222 }
3223 else
3224 {
3225 /* VECTOR is a sub char-table. */
3226 if (char_table_depth >= 3)
3227 /* A char-table is never that deep. */
3228 error ("Too deep char table");
3229
3230 complete_char
3231 = (CHARSET_VALID_P (indices[0])
3232 && ((CHARSET_DIMENSION (indices[0]) == 1
3233 && char_table_depth == 1)
3234 || char_table_depth == 2));
3235
3236 /* Meaningful elements are from 32th to 127th. */
3237 from = 32;
3238 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3239 }
3240 }
3241 else
3242 {
3243 /* This does the right thing for ordinary vectors. */
3244
3245 complete_char = 1;
3246 from = 0;
3247 to = XVECTOR (vector)->size;
3248 }
3249
3250 for (i = from; i < to; i++)
3251 {
3252 QUIT;
3253
3254 if (CHAR_TABLE_P (vector))
3255 {
3256 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3257 complete_char = 0;
3258
3259 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3260 && !CHARSET_DEFINED_P (i - 128))
3261 continue;
3262
3263 definition
3264 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3265 }
3266 else
3267 definition = get_keyelt (AREF (vector, i), 0);
3268
3269 if (NILP (definition)) continue;
3270
3271 /* Don't mention suppressed commands. */
3272 if (SYMBOLP (definition) && partial)
3273 {
3274 Lisp_Object tem;
3275
3276 tem = Fget (definition, suppress);
3277
3278 if (!NILP (tem)) continue;
3279 }
3280
3281 /* Set CHARACTER to the character this entry describes, if any.
3282 Also update *INDICES. */
3283 if (CHAR_TABLE_P (vector))
3284 {
3285 indices[char_table_depth] = i;
3286
3287 if (char_table_depth == 0)
3288 {
3289 character = i;
3290 indices[0] = i - 128;
3291 }
3292 else if (complete_char)
3293 {
3294 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3295 }
3296 else
3297 character = 0;
3298 }
3299 else
3300 character = i;
3301
3302 /* If this binding is shadowed by some other map, ignore it. */
3303 if (!NILP (shadow) && complete_char)
3304 {
3305 Lisp_Object tem;
3306
3307 ASET (kludge, 0, make_number (character));
3308 tem = shadow_lookup (shadow, kludge, Qt);
3309
3310 if (!NILP (tem)) continue;
3311 }
3312
3313 /* Ignore this definition if it is shadowed by an earlier
3314 one in the same keymap. */
3315 if (!NILP (entire_map) && complete_char)
3316 {
3317 Lisp_Object tem;
3318
3319 ASET (kludge, 0, make_number (character));
3320 tem = Flookup_key (entire_map, kludge, Qt);
3321
3322 if (!EQ (tem, definition))
3323 continue;
3324 }
3325
3326 if (first)
3327 {
3328 if (char_table_depth == 0)
3329 insert ("\n", 1);
3330 first = 0;
3331 }
3332
3333 /* For a sub char-table, show the depth by indentation.
3334 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3335 if (char_table_depth > 0)
3336 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3337
3338 /* Output the prefix that applies to every entry in this map. */
3339 if (!NILP (elt_prefix))
3340 insert1 (elt_prefix);
3341
3342 /* Insert or describe the character this slot is for,
3343 or a description of what it is for. */
3344 if (SUB_CHAR_TABLE_P (vector))
3345 {
3346 if (complete_char)
3347 insert_char (character);
3348 else
3349 {
3350 /* We need an octal representation for this block of
3351 characters. */
3352 char work[16];
3353 sprintf (work, "(row %d)", i);
3354 insert (work, strlen (work));
3355 }
3356 }
3357 else if (CHAR_TABLE_P (vector))
3358 {
3359 if (complete_char)
3360 insert1 (Fsingle_key_description (make_number (character), Qnil));
3361 else
3362 {
3363 /* Print the information for this character set. */
3364 insert_string ("<");
3365 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3366 if (STRINGP (tem2))
3367 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3368 SBYTES (tem2), 0);
3369 else
3370 insert ("?", 1);
3371 insert (">", 1);
3372 }
3373 }
3374 else
3375 {
3376 insert1 (Fsingle_key_description (make_number (character), Qnil));
3377 }
3378
3379 /* If we find a sub char-table within a char-table,
3380 scan it recursively; it defines the details for
3381 a character set or a portion of a character set. */
3382 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3383 {
3384 insert ("\n", 1);
3385 describe_vector (definition, elt_prefix, args, elt_describer,
3386 partial, shadow, entire_map,
3387 indices, char_table_depth + 1);
3388 continue;
3389 }
3390
3391 starting_i = i;
3392
3393 /* Find all consecutive characters or rows that have the same
3394 definition. But, for elements of a top level char table, if
3395 they are for charsets, we had better describe one by one even
3396 if they have the same definition. */
3397 if (CHAR_TABLE_P (vector))
3398 {
3399 int limit = to;
3400
3401 if (char_table_depth == 0)
3402 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3403
3404 while (i + 1 < limit
3405 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3406 !NILP (tem2))
3407 && !NILP (Fequal (tem2, definition)))
3408 i++;
3409 }
3410 else
3411 while (i + 1 < to
3412 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3413 !NILP (tem2))
3414 && !NILP (Fequal (tem2, definition)))
3415 i++;
3416
3417
3418 /* If we have a range of more than one character,
3419 print where the range reaches to. */
3420
3421 if (i != starting_i)
3422 {
3423 insert (" .. ", 4);
3424
3425 if (!NILP (elt_prefix))
3426 insert1 (elt_prefix);
3427
3428 if (CHAR_TABLE_P (vector))
3429 {
3430 if (char_table_depth == 0)
3431 {
3432 insert1 (Fsingle_key_description (make_number (i), Qnil));
3433 }
3434 else if (complete_char)
3435 {
3436 indices[char_table_depth] = i;
3437 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3438 insert_char (character);
3439 }
3440 else
3441 {
3442 /* We need an octal representation for this block of
3443 characters. */
3444 char work[16];
3445 sprintf (work, "(row %d)", i);
3446 insert (work, strlen (work));
3447 }
3448 }
3449 else
3450 {
3451 insert1 (Fsingle_key_description (make_number (i), Qnil));
3452 }
3453 }
3454
3455 /* Print a description of the definition of this character.
3456 elt_describer will take care of spacing out far enough
3457 for alignment purposes. */
3458 (*elt_describer) (definition, args);
3459 }
3460
3461 /* For (sub) char-table, print `defalt' slot at last. */
3462 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3463 {
3464 insert (" ", char_table_depth * 2);
3465 insert_string ("<<default>>");
3466 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3467 }
3468
3469 UNGCPRO;
3470 }
3471 \f
3472 /* Apropos - finding all symbols whose names match a regexp. */
3473 static Lisp_Object apropos_predicate;
3474 static Lisp_Object apropos_accumulate;
3475
3476 static void
3477 apropos_accum (symbol, string)
3478 Lisp_Object symbol, string;
3479 {
3480 register Lisp_Object tem;
3481
3482 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3483 if (!NILP (tem) && !NILP (apropos_predicate))
3484 tem = call1 (apropos_predicate, symbol);
3485 if (!NILP (tem))
3486 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3487 }
3488
3489 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3490 doc: /* Show all symbols whose names contain match for REGEXP.
3491 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3492 for each symbol and a symbol is mentioned only if that returns non-nil.
3493 Return list of symbols found. */)
3494 (regexp, predicate)
3495 Lisp_Object regexp, predicate;
3496 {
3497 Lisp_Object tem;
3498 struct gcpro gcpro1, gcpro2;
3499 CHECK_STRING (regexp);
3500 apropos_predicate = predicate;
3501 apropos_accumulate = Qnil;
3502 map_obarray (Vobarray, apropos_accum, regexp);
3503 tem = Fsort (apropos_accumulate, Qstring_lessp);
3504 apropos_accumulate = Qnil;
3505 apropos_predicate = Qnil;
3506 return tem;
3507 }
3508 \f
3509 void
3510 syms_of_keymap ()
3511 {
3512 Qkeymap = intern ("keymap");
3513 staticpro (&Qkeymap);
3514 staticpro (&apropos_predicate);
3515 staticpro (&apropos_accumulate);
3516 apropos_predicate = Qnil;
3517 apropos_accumulate = Qnil;
3518
3519 /* Now we are ready to set up this property, so we can
3520 create char tables. */
3521 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3522
3523 /* Initialize the keymaps standardly used.
3524 Each one is the value of a Lisp variable, and is also
3525 pointed to by a C variable */
3526
3527 global_map = Fmake_keymap (Qnil);
3528 Fset (intern ("global-map"), global_map);
3529
3530 current_global_map = global_map;
3531 staticpro (&global_map);
3532 staticpro (&current_global_map);
3533
3534 meta_map = Fmake_keymap (Qnil);
3535 Fset (intern ("esc-map"), meta_map);
3536 Ffset (intern ("ESC-prefix"), meta_map);
3537
3538 control_x_map = Fmake_keymap (Qnil);
3539 Fset (intern ("ctl-x-map"), control_x_map);
3540 Ffset (intern ("Control-X-prefix"), control_x_map);
3541
3542 exclude_keys
3543 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3544 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3545 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3546 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3547 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3548 Qnil)))));
3549 staticpro (&exclude_keys);
3550
3551 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3552 doc: /* List of commands given new key bindings recently.
3553 This is used for internal purposes during Emacs startup;
3554 don't alter it yourself. */);
3555 Vdefine_key_rebound_commands = Qt;
3556
3557 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3558 doc: /* Default keymap to use when reading from the minibuffer. */);
3559 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3560
3561 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3562 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3563 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3564 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3565
3566 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3567 doc: /* Local keymap for minibuffer input with completion. */);
3568 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3569 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3570
3571 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3572 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3573 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3574 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3575 Vminibuffer_local_completion_map);
3576
3577 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3578 doc: /* Alist of keymaps to use for minor modes.
3579 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3580 key sequences and look up bindings iff VARIABLE's value is non-nil.
3581 If two active keymaps bind the same key, the keymap appearing earlier
3582 in the list takes precedence. */);
3583 Vminor_mode_map_alist = Qnil;
3584
3585 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3586 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3587 This variable is an alist just like `minor-mode-map-alist', and it is
3588 used the same way (and before `minor-mode-map-alist'); however,
3589 it is provided for major modes to bind locally. */);
3590 Vminor_mode_overriding_map_alist = Qnil;
3591
3592 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3593 doc: /* List of keymap alists to use for emulations modes.
3594 It is intended for modes or packages using multiple minor-mode keymaps.
3595 Each element is a keymap alist just like `minor-mode-map-alist', or a
3596 symbol with a variable binding which is a keymap alist, and it is used
3597 the same way. The "active" keymaps in each alist are used before
3598 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3599 Vemulation_mode_map_alists = Qnil;
3600
3601
3602 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3603 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3604 This allows Emacs to recognize function keys sent from ASCII
3605 terminals at any point in a key sequence.
3606
3607 The `read-key-sequence' function replaces any subsequence bound by
3608 `function-key-map' with its binding. More precisely, when the active
3609 keymaps have no binding for the current key sequence but
3610 `function-key-map' binds a suffix of the sequence to a vector or string,
3611 `read-key-sequence' replaces the matching suffix with its binding, and
3612 continues with the new sequence.
3613
3614 The events that come from bindings in `function-key-map' are not
3615 themselves looked up in `function-key-map'.
3616
3617 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3618 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3619 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3620 key, typing `ESC O P x' would return [f1 x]. */);
3621 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3622
3623 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3624 doc: /* Keymap of key translations that can override keymaps.
3625 This keymap works like `function-key-map', but comes after that,
3626 and applies even for keys that have ordinary bindings. */);
3627 Vkey_translation_map = Qnil;
3628
3629 Qsingle_key_description = intern ("single-key-description");
3630 staticpro (&Qsingle_key_description);
3631
3632 Qkey_description = intern ("key-description");
3633 staticpro (&Qkey_description);
3634
3635 Qkeymapp = intern ("keymapp");
3636 staticpro (&Qkeymapp);
3637
3638 Qnon_ascii = intern ("non-ascii");
3639 staticpro (&Qnon_ascii);
3640
3641 Qmenu_item = intern ("menu-item");
3642 staticpro (&Qmenu_item);
3643
3644 Qremap = intern ("remap");
3645 staticpro (&Qremap);
3646
3647 remap_command_vector = Fmake_vector (make_number (2), Qremap);
3648 staticpro (&remap_command_vector);
3649
3650 where_is_cache_keymaps = Qt;
3651 where_is_cache = Qnil;
3652 staticpro (&where_is_cache);
3653 staticpro (&where_is_cache_keymaps);
3654
3655 defsubr (&Skeymapp);
3656 defsubr (&Skeymap_parent);
3657 defsubr (&Skeymap_prompt);
3658 defsubr (&Sset_keymap_parent);
3659 defsubr (&Smake_keymap);
3660 defsubr (&Smake_sparse_keymap);
3661 defsubr (&Scopy_keymap);
3662 defsubr (&Sremap_command);
3663 defsubr (&Skey_binding);
3664 defsubr (&Slocal_key_binding);
3665 defsubr (&Sglobal_key_binding);
3666 defsubr (&Sminor_mode_key_binding);
3667 defsubr (&Sdefine_key);
3668 defsubr (&Slookup_key);
3669 defsubr (&Sdefine_prefix_command);
3670 defsubr (&Suse_global_map);
3671 defsubr (&Suse_local_map);
3672 defsubr (&Scurrent_local_map);
3673 defsubr (&Scurrent_global_map);
3674 defsubr (&Scurrent_minor_mode_maps);
3675 defsubr (&Scurrent_active_maps);
3676 defsubr (&Saccessible_keymaps);
3677 defsubr (&Skey_description);
3678 defsubr (&Sdescribe_vector);
3679 defsubr (&Ssingle_key_description);
3680 defsubr (&Stext_char_description);
3681 defsubr (&Swhere_is_internal);
3682 defsubr (&Sdescribe_buffer_bindings);
3683 defsubr (&Sapropos_internal);
3684 }
3685
3686 void
3687 keys_of_keymap ()
3688 {
3689 initial_define_key (global_map, 033, "ESC-prefix");
3690 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3691 }