(pure_alloc): Corrected last change; now align the
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 /* Note that this declares bzero on OSF/1. How dumb. */
30
31 #include <signal.h>
32
33 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
34 memory. Can do this only if using gmalloc.c. */
35
36 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
37 #undef GC_MALLOC_CHECK
38 #endif
39
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
43
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "charset.h"
55 #include "syssignal.h"
56 #include <setjmp.h>
57
58 #ifdef HAVE_UNISTD_H
59 #include <unistd.h>
60 #else
61 extern POINTER_TYPE *sbrk ();
62 #endif
63
64 #ifdef DOUG_LEA_MALLOC
65
66 #include <malloc.h>
67 /* malloc.h #defines this as size_t, at least in glibc2. */
68 #ifndef __malloc_size_t
69 #define __malloc_size_t int
70 #endif
71
72 /* Specify maximum number of areas to mmap. It would be nice to use a
73 value that explicitly means "no limit". */
74
75 #define MMAP_MAX_AREAS 100000000
76
77 #else /* not DOUG_LEA_MALLOC */
78
79 /* The following come from gmalloc.c. */
80
81 #define __malloc_size_t size_t
82 extern __malloc_size_t _bytes_used;
83 extern __malloc_size_t __malloc_extra_blocks;
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Macro to verify that storage intended for Lisp objects is not
88 out of range to fit in the space for a pointer.
89 ADDRESS is the start of the block, and SIZE
90 is the amount of space within which objects can start. */
91
92 #define VALIDATE_LISP_STORAGE(address, size) \
93 do \
94 { \
95 Lisp_Object val; \
96 XSETCONS (val, (char *) address + size); \
97 if ((char *) XCONS (val) != (char *) address + size) \
98 { \
99 xfree (address); \
100 memory_full (); \
101 } \
102 } while (0)
103
104 /* Value of _bytes_used, when spare_memory was freed. */
105
106 static __malloc_size_t bytes_used_when_full;
107
108 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
109 to a struct Lisp_String. */
110
111 #define MARK_STRING(S) ((S)->size |= MARKBIT)
112 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
113 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
114
115 /* Value is the number of bytes/chars of S, a pointer to a struct
116 Lisp_String. This must be used instead of STRING_BYTES (S) or
117 S->size during GC, because S->size contains the mark bit for
118 strings. */
119
120 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
121 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
122
123 /* Number of bytes of consing done since the last gc. */
124
125 int consing_since_gc;
126
127 /* Count the amount of consing of various sorts of space. */
128
129 EMACS_INT cons_cells_consed;
130 EMACS_INT floats_consed;
131 EMACS_INT vector_cells_consed;
132 EMACS_INT symbols_consed;
133 EMACS_INT string_chars_consed;
134 EMACS_INT misc_objects_consed;
135 EMACS_INT intervals_consed;
136 EMACS_INT strings_consed;
137
138 /* Number of bytes of consing since GC before another GC should be done. */
139
140 EMACS_INT gc_cons_threshold;
141
142 /* Nonzero during GC. */
143
144 int gc_in_progress;
145
146 /* Nonzero means display messages at beginning and end of GC. */
147
148 int garbage_collection_messages;
149
150 #ifndef VIRT_ADDR_VARIES
151 extern
152 #endif /* VIRT_ADDR_VARIES */
153 int malloc_sbrk_used;
154
155 #ifndef VIRT_ADDR_VARIES
156 extern
157 #endif /* VIRT_ADDR_VARIES */
158 int malloc_sbrk_unused;
159
160 /* Two limits controlling how much undo information to keep. */
161
162 EMACS_INT undo_limit;
163 EMACS_INT undo_strong_limit;
164
165 /* Number of live and free conses etc. */
166
167 static int total_conses, total_markers, total_symbols, total_vector_size;
168 static int total_free_conses, total_free_markers, total_free_symbols;
169 static int total_free_floats, total_floats;
170
171 /* Points to memory space allocated as "spare", to be freed if we run
172 out of memory. */
173
174 static char *spare_memory;
175
176 /* Amount of spare memory to keep in reserve. */
177
178 #define SPARE_MEMORY (1 << 14)
179
180 /* Number of extra blocks malloc should get when it needs more core. */
181
182 static int malloc_hysteresis;
183
184 /* Non-nil means defun should do purecopy on the function definition. */
185
186 Lisp_Object Vpurify_flag;
187
188 /* Non-nil means we are handling a memory-full error. */
189
190 Lisp_Object Vmemory_full;
191
192 #ifndef HAVE_SHM
193
194 /* Force it into data space! */
195
196 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
197 #define PUREBEG (char *) pure
198
199 #else /* HAVE_SHM */
200
201 #define pure PURE_SEG_BITS /* Use shared memory segment */
202 #define PUREBEG (char *)PURE_SEG_BITS
203
204 #endif /* HAVE_SHM */
205
206 /* Pointer to the pure area, and its size. */
207
208 static char *purebeg;
209 static size_t pure_size;
210
211 /* Number of bytes of pure storage used before pure storage overflowed.
212 If this is non-zero, this implies that an overflow occurred. */
213
214 static size_t pure_bytes_used_before_overflow;
215
216 /* Value is non-zero if P points into pure space. */
217
218 #define PURE_POINTER_P(P) \
219 (((PNTR_COMPARISON_TYPE) (P) \
220 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
221 && ((PNTR_COMPARISON_TYPE) (P) \
222 >= (PNTR_COMPARISON_TYPE) purebeg))
223
224 /* Index in pure at which next pure object will be allocated.. */
225
226 EMACS_INT pure_bytes_used;
227
228 /* If nonzero, this is a warning delivered by malloc and not yet
229 displayed. */
230
231 char *pending_malloc_warning;
232
233 /* Pre-computed signal argument for use when memory is exhausted. */
234
235 Lisp_Object Vmemory_signal_data;
236
237 /* Maximum amount of C stack to save when a GC happens. */
238
239 #ifndef MAX_SAVE_STACK
240 #define MAX_SAVE_STACK 16000
241 #endif
242
243 /* Buffer in which we save a copy of the C stack at each GC. */
244
245 char *stack_copy;
246 int stack_copy_size;
247
248 /* Non-zero means ignore malloc warnings. Set during initialization.
249 Currently not used. */
250
251 int ignore_warnings;
252
253 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
254
255 /* Hook run after GC has finished. */
256
257 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
258
259 static void mark_buffer P_ ((Lisp_Object));
260 static void mark_kboards P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
264
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
269
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
274
275 extern int message_enable_multibyte;
276
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281 enum mem_type
282 {
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298 };
299
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
305
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309 Lisp_Object Vdead;
310
311 #ifdef GC_MALLOC_CHECK
312
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
315
316 #endif /* GC_MALLOC_CHECK */
317
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342 struct mem_node
343 {
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359 };
360
361 /* Base address of stack. Set in main. */
362
363 Lisp_Object *stack_base;
364
365 /* Root of the tree describing allocated Lisp memory. */
366
367 static struct mem_node *mem_root;
368
369 /* Lowest and highest known address in the heap. */
370
371 static void *min_heap_address, *max_heap_address;
372
373 /* Sentinel node of the tree. */
374
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
377
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
399
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
403
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. */
411
412 #define NSTATICS 1280
413 Lisp_Object *staticvec[NSTATICS] = {0};
414
415 /* Index of next unused slot in staticvec. */
416
417 int staticidx = 0;
418
419 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
420
421
422 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
423 ALIGNMENT must be a power of 2. */
424
425 #define ALIGN(SZ, ALIGNMENT) \
426 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input.. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static POINTER_TYPE *
585 lisp_malloc (nbytes, type)
586 size_t nbytes;
587 enum mem_type type;
588 {
589 register void *val;
590
591 BLOCK_INPUT;
592
593 #ifdef GC_MALLOC_CHECK
594 allocated_mem_type = type;
595 #endif
596
597 val = (void *) malloc (nbytes);
598
599 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
600 if (val && type != MEM_TYPE_NON_LISP)
601 mem_insert (val, (char *) val + nbytes, type);
602 #endif
603
604 UNBLOCK_INPUT;
605 if (!val && nbytes)
606 memory_full ();
607 return val;
608 }
609
610
611 /* Return a new buffer structure allocated from the heap with
612 a call to lisp_malloc. */
613
614 struct buffer *
615 allocate_buffer ()
616 {
617 struct buffer *b
618 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
619 MEM_TYPE_BUFFER);
620 VALIDATE_LISP_STORAGE (b, sizeof *b);
621 return b;
622 }
623
624
625 /* Free BLOCK. This must be called to free memory allocated with a
626 call to lisp_malloc. */
627
628 static void
629 lisp_free (block)
630 POINTER_TYPE *block;
631 {
632 BLOCK_INPUT;
633 free (block);
634 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
635 mem_delete (mem_find (block));
636 #endif
637 UNBLOCK_INPUT;
638 }
639
640 \f
641 /* Arranging to disable input signals while we're in malloc.
642
643 This only works with GNU malloc. To help out systems which can't
644 use GNU malloc, all the calls to malloc, realloc, and free
645 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
646 pairs; unfortunately, we have no idea what C library functions
647 might call malloc, so we can't really protect them unless you're
648 using GNU malloc. Fortunately, most of the major operating can use
649 GNU malloc. */
650
651 #ifndef SYSTEM_MALLOC
652 #ifndef DOUG_LEA_MALLOC
653 extern void * (*__malloc_hook) P_ ((size_t));
654 extern void * (*__realloc_hook) P_ ((void *, size_t));
655 extern void (*__free_hook) P_ ((void *));
656 /* Else declared in malloc.h, perhaps with an extra arg. */
657 #endif /* DOUG_LEA_MALLOC */
658 static void * (*old_malloc_hook) ();
659 static void * (*old_realloc_hook) ();
660 static void (*old_free_hook) ();
661
662 /* This function is used as the hook for free to call. */
663
664 static void
665 emacs_blocked_free (ptr)
666 void *ptr;
667 {
668 BLOCK_INPUT;
669
670 #ifdef GC_MALLOC_CHECK
671 if (ptr)
672 {
673 struct mem_node *m;
674
675 m = mem_find (ptr);
676 if (m == MEM_NIL || m->start != ptr)
677 {
678 fprintf (stderr,
679 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
680 abort ();
681 }
682 else
683 {
684 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
685 mem_delete (m);
686 }
687 }
688 #endif /* GC_MALLOC_CHECK */
689
690 __free_hook = old_free_hook;
691 free (ptr);
692
693 /* If we released our reserve (due to running out of memory),
694 and we have a fair amount free once again,
695 try to set aside another reserve in case we run out once more. */
696 if (spare_memory == 0
697 /* Verify there is enough space that even with the malloc
698 hysteresis this call won't run out again.
699 The code here is correct as long as SPARE_MEMORY
700 is substantially larger than the block size malloc uses. */
701 && (bytes_used_when_full
702 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
703 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
704
705 __free_hook = emacs_blocked_free;
706 UNBLOCK_INPUT;
707 }
708
709
710 /* If we released our reserve (due to running out of memory),
711 and we have a fair amount free once again,
712 try to set aside another reserve in case we run out once more.
713
714 This is called when a relocatable block is freed in ralloc.c. */
715
716 void
717 refill_memory_reserve ()
718 {
719 if (spare_memory == 0)
720 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
721 }
722
723
724 /* This function is the malloc hook that Emacs uses. */
725
726 static void *
727 emacs_blocked_malloc (size)
728 size_t size;
729 {
730 void *value;
731
732 BLOCK_INPUT;
733 __malloc_hook = old_malloc_hook;
734 #ifdef DOUG_LEA_MALLOC
735 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
736 #else
737 __malloc_extra_blocks = malloc_hysteresis;
738 #endif
739
740 value = (void *) malloc (size);
741
742 #ifdef GC_MALLOC_CHECK
743 {
744 struct mem_node *m = mem_find (value);
745 if (m != MEM_NIL)
746 {
747 fprintf (stderr, "Malloc returned %p which is already in use\n",
748 value);
749 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
750 m->start, m->end, (char *) m->end - (char *) m->start,
751 m->type);
752 abort ();
753 }
754
755 if (!dont_register_blocks)
756 {
757 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
758 allocated_mem_type = MEM_TYPE_NON_LISP;
759 }
760 }
761 #endif /* GC_MALLOC_CHECK */
762
763 __malloc_hook = emacs_blocked_malloc;
764 UNBLOCK_INPUT;
765
766 /* fprintf (stderr, "%p malloc\n", value); */
767 return value;
768 }
769
770
771 /* This function is the realloc hook that Emacs uses. */
772
773 static void *
774 emacs_blocked_realloc (ptr, size)
775 void *ptr;
776 size_t size;
777 {
778 void *value;
779
780 BLOCK_INPUT;
781 __realloc_hook = old_realloc_hook;
782
783 #ifdef GC_MALLOC_CHECK
784 if (ptr)
785 {
786 struct mem_node *m = mem_find (ptr);
787 if (m == MEM_NIL || m->start != ptr)
788 {
789 fprintf (stderr,
790 "Realloc of %p which wasn't allocated with malloc\n",
791 ptr);
792 abort ();
793 }
794
795 mem_delete (m);
796 }
797
798 /* fprintf (stderr, "%p -> realloc\n", ptr); */
799
800 /* Prevent malloc from registering blocks. */
801 dont_register_blocks = 1;
802 #endif /* GC_MALLOC_CHECK */
803
804 value = (void *) realloc (ptr, size);
805
806 #ifdef GC_MALLOC_CHECK
807 dont_register_blocks = 0;
808
809 {
810 struct mem_node *m = mem_find (value);
811 if (m != MEM_NIL)
812 {
813 fprintf (stderr, "Realloc returns memory that is already in use\n");
814 abort ();
815 }
816
817 /* Can't handle zero size regions in the red-black tree. */
818 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
819 }
820
821 /* fprintf (stderr, "%p <- realloc\n", value); */
822 #endif /* GC_MALLOC_CHECK */
823
824 __realloc_hook = emacs_blocked_realloc;
825 UNBLOCK_INPUT;
826
827 return value;
828 }
829
830
831 /* Called from main to set up malloc to use our hooks. */
832
833 void
834 uninterrupt_malloc ()
835 {
836 if (__free_hook != emacs_blocked_free)
837 old_free_hook = __free_hook;
838 __free_hook = emacs_blocked_free;
839
840 if (__malloc_hook != emacs_blocked_malloc)
841 old_malloc_hook = __malloc_hook;
842 __malloc_hook = emacs_blocked_malloc;
843
844 if (__realloc_hook != emacs_blocked_realloc)
845 old_realloc_hook = __realloc_hook;
846 __realloc_hook = emacs_blocked_realloc;
847 }
848
849 #endif /* not SYSTEM_MALLOC */
850
851
852 \f
853 /***********************************************************************
854 Interval Allocation
855 ***********************************************************************/
856
857 /* Number of intervals allocated in an interval_block structure.
858 The 1020 is 1024 minus malloc overhead. */
859
860 #define INTERVAL_BLOCK_SIZE \
861 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
862
863 /* Intervals are allocated in chunks in form of an interval_block
864 structure. */
865
866 struct interval_block
867 {
868 struct interval_block *next;
869 struct interval intervals[INTERVAL_BLOCK_SIZE];
870 };
871
872 /* Current interval block. Its `next' pointer points to older
873 blocks. */
874
875 struct interval_block *interval_block;
876
877 /* Index in interval_block above of the next unused interval
878 structure. */
879
880 static int interval_block_index;
881
882 /* Number of free and live intervals. */
883
884 static int total_free_intervals, total_intervals;
885
886 /* List of free intervals. */
887
888 INTERVAL interval_free_list;
889
890 /* Total number of interval blocks now in use. */
891
892 int n_interval_blocks;
893
894
895 /* Initialize interval allocation. */
896
897 static void
898 init_intervals ()
899 {
900 interval_block
901 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
902 MEM_TYPE_NON_LISP);
903 interval_block->next = 0;
904 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
905 interval_block_index = 0;
906 interval_free_list = 0;
907 n_interval_blocks = 1;
908 }
909
910
911 /* Return a new interval. */
912
913 INTERVAL
914 make_interval ()
915 {
916 INTERVAL val;
917
918 if (interval_free_list)
919 {
920 val = interval_free_list;
921 interval_free_list = INTERVAL_PARENT (interval_free_list);
922 }
923 else
924 {
925 if (interval_block_index == INTERVAL_BLOCK_SIZE)
926 {
927 register struct interval_block *newi;
928
929 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
930 MEM_TYPE_NON_LISP);
931
932 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
933 newi->next = interval_block;
934 interval_block = newi;
935 interval_block_index = 0;
936 n_interval_blocks++;
937 }
938 val = &interval_block->intervals[interval_block_index++];
939 }
940 consing_since_gc += sizeof (struct interval);
941 intervals_consed++;
942 RESET_INTERVAL (val);
943 return val;
944 }
945
946
947 /* Mark Lisp objects in interval I. */
948
949 static void
950 mark_interval (i, dummy)
951 register INTERVAL i;
952 Lisp_Object dummy;
953 {
954 if (XMARKBIT (i->plist))
955 abort ();
956 mark_object (&i->plist);
957 XMARK (i->plist);
958 }
959
960
961 /* Mark the interval tree rooted in TREE. Don't call this directly;
962 use the macro MARK_INTERVAL_TREE instead. */
963
964 static void
965 mark_interval_tree (tree)
966 register INTERVAL tree;
967 {
968 /* No need to test if this tree has been marked already; this
969 function is always called through the MARK_INTERVAL_TREE macro,
970 which takes care of that. */
971
972 /* XMARK expands to an assignment; the LHS of an assignment can't be
973 a cast. */
974 XMARK (tree->up.obj);
975
976 traverse_intervals_noorder (tree, mark_interval, Qnil);
977 }
978
979
980 /* Mark the interval tree rooted in I. */
981
982 #define MARK_INTERVAL_TREE(i) \
983 do { \
984 if (!NULL_INTERVAL_P (i) \
985 && ! XMARKBIT (i->up.obj)) \
986 mark_interval_tree (i); \
987 } while (0)
988
989
990 /* The oddity in the call to XUNMARK is necessary because XUNMARK
991 expands to an assignment to its argument, and most C compilers
992 don't support casts on the left operand of `='. */
993
994 #define UNMARK_BALANCE_INTERVALS(i) \
995 do { \
996 if (! NULL_INTERVAL_P (i)) \
997 { \
998 XUNMARK ((i)->up.obj); \
999 (i) = balance_intervals (i); \
1000 } \
1001 } while (0)
1002
1003 \f
1004 /* Number support. If NO_UNION_TYPE isn't in effect, we
1005 can't create number objects in macros. */
1006 #ifndef make_number
1007 Lisp_Object
1008 make_number (n)
1009 int n;
1010 {
1011 Lisp_Object obj;
1012 obj.s.val = n;
1013 obj.s.type = Lisp_Int;
1014 return obj;
1015 }
1016 #endif
1017 \f
1018 /***********************************************************************
1019 String Allocation
1020 ***********************************************************************/
1021
1022 /* Lisp_Strings are allocated in string_block structures. When a new
1023 string_block is allocated, all the Lisp_Strings it contains are
1024 added to a free-list string_free_list. When a new Lisp_String is
1025 needed, it is taken from that list. During the sweep phase of GC,
1026 string_blocks that are entirely free are freed, except two which
1027 we keep.
1028
1029 String data is allocated from sblock structures. Strings larger
1030 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1031 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1032
1033 Sblocks consist internally of sdata structures, one for each
1034 Lisp_String. The sdata structure points to the Lisp_String it
1035 belongs to. The Lisp_String points back to the `u.data' member of
1036 its sdata structure.
1037
1038 When a Lisp_String is freed during GC, it is put back on
1039 string_free_list, and its `data' member and its sdata's `string'
1040 pointer is set to null. The size of the string is recorded in the
1041 `u.nbytes' member of the sdata. So, sdata structures that are no
1042 longer used, can be easily recognized, and it's easy to compact the
1043 sblocks of small strings which we do in compact_small_strings. */
1044
1045 /* Size in bytes of an sblock structure used for small strings. This
1046 is 8192 minus malloc overhead. */
1047
1048 #define SBLOCK_SIZE 8188
1049
1050 /* Strings larger than this are considered large strings. String data
1051 for large strings is allocated from individual sblocks. */
1052
1053 #define LARGE_STRING_BYTES 1024
1054
1055 /* Structure describing string memory sub-allocated from an sblock.
1056 This is where the contents of Lisp strings are stored. */
1057
1058 struct sdata
1059 {
1060 /* Back-pointer to the string this sdata belongs to. If null, this
1061 structure is free, and the NBYTES member of the union below
1062 contains the string's byte size (the same value that STRING_BYTES
1063 would return if STRING were non-null). If non-null, STRING_BYTES
1064 (STRING) is the size of the data, and DATA contains the string's
1065 contents. */
1066 struct Lisp_String *string;
1067
1068 #ifdef GC_CHECK_STRING_BYTES
1069
1070 EMACS_INT nbytes;
1071 unsigned char data[1];
1072
1073 #define SDATA_NBYTES(S) (S)->nbytes
1074 #define SDATA_DATA(S) (S)->data
1075
1076 #else /* not GC_CHECK_STRING_BYTES */
1077
1078 union
1079 {
1080 /* When STRING in non-null. */
1081 unsigned char data[1];
1082
1083 /* When STRING is null. */
1084 EMACS_INT nbytes;
1085 } u;
1086
1087
1088 #define SDATA_NBYTES(S) (S)->u.nbytes
1089 #define SDATA_DATA(S) (S)->u.data
1090
1091 #endif /* not GC_CHECK_STRING_BYTES */
1092 };
1093
1094
1095 /* Structure describing a block of memory which is sub-allocated to
1096 obtain string data memory for strings. Blocks for small strings
1097 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1098 as large as needed. */
1099
1100 struct sblock
1101 {
1102 /* Next in list. */
1103 struct sblock *next;
1104
1105 /* Pointer to the next free sdata block. This points past the end
1106 of the sblock if there isn't any space left in this block. */
1107 struct sdata *next_free;
1108
1109 /* Start of data. */
1110 struct sdata first_data;
1111 };
1112
1113 /* Number of Lisp strings in a string_block structure. The 1020 is
1114 1024 minus malloc overhead. */
1115
1116 #define STRINGS_IN_STRING_BLOCK \
1117 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1118
1119 /* Structure describing a block from which Lisp_String structures
1120 are allocated. */
1121
1122 struct string_block
1123 {
1124 struct string_block *next;
1125 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1126 };
1127
1128 /* Head and tail of the list of sblock structures holding Lisp string
1129 data. We always allocate from current_sblock. The NEXT pointers
1130 in the sblock structures go from oldest_sblock to current_sblock. */
1131
1132 static struct sblock *oldest_sblock, *current_sblock;
1133
1134 /* List of sblocks for large strings. */
1135
1136 static struct sblock *large_sblocks;
1137
1138 /* List of string_block structures, and how many there are. */
1139
1140 static struct string_block *string_blocks;
1141 static int n_string_blocks;
1142
1143 /* Free-list of Lisp_Strings. */
1144
1145 static struct Lisp_String *string_free_list;
1146
1147 /* Number of live and free Lisp_Strings. */
1148
1149 static int total_strings, total_free_strings;
1150
1151 /* Number of bytes used by live strings. */
1152
1153 static int total_string_size;
1154
1155 /* Given a pointer to a Lisp_String S which is on the free-list
1156 string_free_list, return a pointer to its successor in the
1157 free-list. */
1158
1159 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1160
1161 /* Return a pointer to the sdata structure belonging to Lisp string S.
1162 S must be live, i.e. S->data must not be null. S->data is actually
1163 a pointer to the `u.data' member of its sdata structure; the
1164 structure starts at a constant offset in front of that. */
1165
1166 #ifdef GC_CHECK_STRING_BYTES
1167
1168 #define SDATA_OF_STRING(S) \
1169 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1170 - sizeof (EMACS_INT)))
1171
1172 #else /* not GC_CHECK_STRING_BYTES */
1173
1174 #define SDATA_OF_STRING(S) \
1175 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1176
1177 #endif /* not GC_CHECK_STRING_BYTES */
1178
1179 /* Value is the size of an sdata structure large enough to hold NBYTES
1180 bytes of string data. The value returned includes a terminating
1181 NUL byte, the size of the sdata structure, and padding. */
1182
1183 #ifdef GC_CHECK_STRING_BYTES
1184
1185 #define SDATA_SIZE(NBYTES) \
1186 ((sizeof (struct Lisp_String *) \
1187 + (NBYTES) + 1 \
1188 + sizeof (EMACS_INT) \
1189 + sizeof (EMACS_INT) - 1) \
1190 & ~(sizeof (EMACS_INT) - 1))
1191
1192 #else /* not GC_CHECK_STRING_BYTES */
1193
1194 #define SDATA_SIZE(NBYTES) \
1195 ((sizeof (struct Lisp_String *) \
1196 + (NBYTES) + 1 \
1197 + sizeof (EMACS_INT) - 1) \
1198 & ~(sizeof (EMACS_INT) - 1))
1199
1200 #endif /* not GC_CHECK_STRING_BYTES */
1201
1202 /* Initialize string allocation. Called from init_alloc_once. */
1203
1204 void
1205 init_strings ()
1206 {
1207 total_strings = total_free_strings = total_string_size = 0;
1208 oldest_sblock = current_sblock = large_sblocks = NULL;
1209 string_blocks = NULL;
1210 n_string_blocks = 0;
1211 string_free_list = NULL;
1212 }
1213
1214
1215 #ifdef GC_CHECK_STRING_BYTES
1216
1217 static int check_string_bytes_count;
1218
1219 void check_string_bytes P_ ((int));
1220 void check_sblock P_ ((struct sblock *));
1221
1222 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1223
1224
1225 /* Like GC_STRING_BYTES, but with debugging check. */
1226
1227 int
1228 string_bytes (s)
1229 struct Lisp_String *s;
1230 {
1231 int nbytes = (s->size_byte < 0 ? s->size : s->size_byte) & ~MARKBIT;
1232 if (!PURE_POINTER_P (s)
1233 && s->data
1234 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1235 abort ();
1236 return nbytes;
1237 }
1238
1239 /* Check validity Lisp strings' string_bytes member in B. */
1240
1241 void
1242 check_sblock (b)
1243 struct sblock *b;
1244 {
1245 struct sdata *from, *end, *from_end;
1246
1247 end = b->next_free;
1248
1249 for (from = &b->first_data; from < end; from = from_end)
1250 {
1251 /* Compute the next FROM here because copying below may
1252 overwrite data we need to compute it. */
1253 int nbytes;
1254
1255 /* Check that the string size recorded in the string is the
1256 same as the one recorded in the sdata structure. */
1257 if (from->string)
1258 CHECK_STRING_BYTES (from->string);
1259
1260 if (from->string)
1261 nbytes = GC_STRING_BYTES (from->string);
1262 else
1263 nbytes = SDATA_NBYTES (from);
1264
1265 nbytes = SDATA_SIZE (nbytes);
1266 from_end = (struct sdata *) ((char *) from + nbytes);
1267 }
1268 }
1269
1270
1271 /* Check validity of Lisp strings' string_bytes member. ALL_P
1272 non-zero means check all strings, otherwise check only most
1273 recently allocated strings. Used for hunting a bug. */
1274
1275 void
1276 check_string_bytes (all_p)
1277 int all_p;
1278 {
1279 if (all_p)
1280 {
1281 struct sblock *b;
1282
1283 for (b = large_sblocks; b; b = b->next)
1284 {
1285 struct Lisp_String *s = b->first_data.string;
1286 if (s)
1287 CHECK_STRING_BYTES (s);
1288 }
1289
1290 for (b = oldest_sblock; b; b = b->next)
1291 check_sblock (b);
1292 }
1293 else
1294 check_sblock (current_sblock);
1295 }
1296
1297 #endif /* GC_CHECK_STRING_BYTES */
1298
1299
1300 /* Return a new Lisp_String. */
1301
1302 static struct Lisp_String *
1303 allocate_string ()
1304 {
1305 struct Lisp_String *s;
1306
1307 /* If the free-list is empty, allocate a new string_block, and
1308 add all the Lisp_Strings in it to the free-list. */
1309 if (string_free_list == NULL)
1310 {
1311 struct string_block *b;
1312 int i;
1313
1314 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1315 VALIDATE_LISP_STORAGE (b, sizeof *b);
1316 bzero (b, sizeof *b);
1317 b->next = string_blocks;
1318 string_blocks = b;
1319 ++n_string_blocks;
1320
1321 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1322 {
1323 s = b->strings + i;
1324 NEXT_FREE_LISP_STRING (s) = string_free_list;
1325 string_free_list = s;
1326 }
1327
1328 total_free_strings += STRINGS_IN_STRING_BLOCK;
1329 }
1330
1331 /* Pop a Lisp_String off the free-list. */
1332 s = string_free_list;
1333 string_free_list = NEXT_FREE_LISP_STRING (s);
1334
1335 /* Probably not strictly necessary, but play it safe. */
1336 bzero (s, sizeof *s);
1337
1338 --total_free_strings;
1339 ++total_strings;
1340 ++strings_consed;
1341 consing_since_gc += sizeof *s;
1342
1343 #ifdef GC_CHECK_STRING_BYTES
1344 if (!noninteractive
1345 #ifdef MAC_OS8
1346 && current_sblock
1347 #endif
1348 )
1349 {
1350 if (++check_string_bytes_count == 200)
1351 {
1352 check_string_bytes_count = 0;
1353 check_string_bytes (1);
1354 }
1355 else
1356 check_string_bytes (0);
1357 }
1358 #endif /* GC_CHECK_STRING_BYTES */
1359
1360 return s;
1361 }
1362
1363
1364 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1365 plus a NUL byte at the end. Allocate an sdata structure for S, and
1366 set S->data to its `u.data' member. Store a NUL byte at the end of
1367 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1368 S->data if it was initially non-null. */
1369
1370 void
1371 allocate_string_data (s, nchars, nbytes)
1372 struct Lisp_String *s;
1373 int nchars, nbytes;
1374 {
1375 struct sdata *data, *old_data;
1376 struct sblock *b;
1377 int needed, old_nbytes;
1378
1379 /* Determine the number of bytes needed to store NBYTES bytes
1380 of string data. */
1381 needed = SDATA_SIZE (nbytes);
1382
1383 if (nbytes > LARGE_STRING_BYTES)
1384 {
1385 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1386
1387 #ifdef DOUG_LEA_MALLOC
1388 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1389 because mapped region contents are not preserved in
1390 a dumped Emacs. */
1391 mallopt (M_MMAP_MAX, 0);
1392 #endif
1393
1394 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1395
1396 #ifdef DOUG_LEA_MALLOC
1397 /* Back to a reasonable maximum of mmap'ed areas. */
1398 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1399 #endif
1400
1401 b->next_free = &b->first_data;
1402 b->first_data.string = NULL;
1403 b->next = large_sblocks;
1404 large_sblocks = b;
1405 }
1406 else if (current_sblock == NULL
1407 || (((char *) current_sblock + SBLOCK_SIZE
1408 - (char *) current_sblock->next_free)
1409 < needed))
1410 {
1411 /* Not enough room in the current sblock. */
1412 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1413 b->next_free = &b->first_data;
1414 b->first_data.string = NULL;
1415 b->next = NULL;
1416
1417 if (current_sblock)
1418 current_sblock->next = b;
1419 else
1420 oldest_sblock = b;
1421 current_sblock = b;
1422 }
1423 else
1424 b = current_sblock;
1425
1426 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1427 old_nbytes = GC_STRING_BYTES (s);
1428
1429 data = b->next_free;
1430 data->string = s;
1431 s->data = SDATA_DATA (data);
1432 #ifdef GC_CHECK_STRING_BYTES
1433 SDATA_NBYTES (data) = nbytes;
1434 #endif
1435 s->size = nchars;
1436 s->size_byte = nbytes;
1437 s->data[nbytes] = '\0';
1438 b->next_free = (struct sdata *) ((char *) data + needed);
1439
1440 /* If S had already data assigned, mark that as free by setting its
1441 string back-pointer to null, and recording the size of the data
1442 in it. */
1443 if (old_data)
1444 {
1445 SDATA_NBYTES (old_data) = old_nbytes;
1446 old_data->string = NULL;
1447 }
1448
1449 consing_since_gc += needed;
1450 }
1451
1452
1453 /* Sweep and compact strings. */
1454
1455 static void
1456 sweep_strings ()
1457 {
1458 struct string_block *b, *next;
1459 struct string_block *live_blocks = NULL;
1460
1461 string_free_list = NULL;
1462 total_strings = total_free_strings = 0;
1463 total_string_size = 0;
1464
1465 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1466 for (b = string_blocks; b; b = next)
1467 {
1468 int i, nfree = 0;
1469 struct Lisp_String *free_list_before = string_free_list;
1470
1471 next = b->next;
1472
1473 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1474 {
1475 struct Lisp_String *s = b->strings + i;
1476
1477 if (s->data)
1478 {
1479 /* String was not on free-list before. */
1480 if (STRING_MARKED_P (s))
1481 {
1482 /* String is live; unmark it and its intervals. */
1483 UNMARK_STRING (s);
1484
1485 if (!NULL_INTERVAL_P (s->intervals))
1486 UNMARK_BALANCE_INTERVALS (s->intervals);
1487
1488 ++total_strings;
1489 total_string_size += STRING_BYTES (s);
1490 }
1491 else
1492 {
1493 /* String is dead. Put it on the free-list. */
1494 struct sdata *data = SDATA_OF_STRING (s);
1495
1496 /* Save the size of S in its sdata so that we know
1497 how large that is. Reset the sdata's string
1498 back-pointer so that we know it's free. */
1499 #ifdef GC_CHECK_STRING_BYTES
1500 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1501 abort ();
1502 #else
1503 data->u.nbytes = GC_STRING_BYTES (s);
1504 #endif
1505 data->string = NULL;
1506
1507 /* Reset the strings's `data' member so that we
1508 know it's free. */
1509 s->data = NULL;
1510
1511 /* Put the string on the free-list. */
1512 NEXT_FREE_LISP_STRING (s) = string_free_list;
1513 string_free_list = s;
1514 ++nfree;
1515 }
1516 }
1517 else
1518 {
1519 /* S was on the free-list before. Put it there again. */
1520 NEXT_FREE_LISP_STRING (s) = string_free_list;
1521 string_free_list = s;
1522 ++nfree;
1523 }
1524 }
1525
1526 /* Free blocks that contain free Lisp_Strings only, except
1527 the first two of them. */
1528 if (nfree == STRINGS_IN_STRING_BLOCK
1529 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1530 {
1531 lisp_free (b);
1532 --n_string_blocks;
1533 string_free_list = free_list_before;
1534 }
1535 else
1536 {
1537 total_free_strings += nfree;
1538 b->next = live_blocks;
1539 live_blocks = b;
1540 }
1541 }
1542
1543 string_blocks = live_blocks;
1544 free_large_strings ();
1545 compact_small_strings ();
1546 }
1547
1548
1549 /* Free dead large strings. */
1550
1551 static void
1552 free_large_strings ()
1553 {
1554 struct sblock *b, *next;
1555 struct sblock *live_blocks = NULL;
1556
1557 for (b = large_sblocks; b; b = next)
1558 {
1559 next = b->next;
1560
1561 if (b->first_data.string == NULL)
1562 lisp_free (b);
1563 else
1564 {
1565 b->next = live_blocks;
1566 live_blocks = b;
1567 }
1568 }
1569
1570 large_sblocks = live_blocks;
1571 }
1572
1573
1574 /* Compact data of small strings. Free sblocks that don't contain
1575 data of live strings after compaction. */
1576
1577 static void
1578 compact_small_strings ()
1579 {
1580 struct sblock *b, *tb, *next;
1581 struct sdata *from, *to, *end, *tb_end;
1582 struct sdata *to_end, *from_end;
1583
1584 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1585 to, and TB_END is the end of TB. */
1586 tb = oldest_sblock;
1587 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1588 to = &tb->first_data;
1589
1590 /* Step through the blocks from the oldest to the youngest. We
1591 expect that old blocks will stabilize over time, so that less
1592 copying will happen this way. */
1593 for (b = oldest_sblock; b; b = b->next)
1594 {
1595 end = b->next_free;
1596 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1597
1598 for (from = &b->first_data; from < end; from = from_end)
1599 {
1600 /* Compute the next FROM here because copying below may
1601 overwrite data we need to compute it. */
1602 int nbytes;
1603
1604 #ifdef GC_CHECK_STRING_BYTES
1605 /* Check that the string size recorded in the string is the
1606 same as the one recorded in the sdata structure. */
1607 if (from->string
1608 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1609 abort ();
1610 #endif /* GC_CHECK_STRING_BYTES */
1611
1612 if (from->string)
1613 nbytes = GC_STRING_BYTES (from->string);
1614 else
1615 nbytes = SDATA_NBYTES (from);
1616
1617 nbytes = SDATA_SIZE (nbytes);
1618 from_end = (struct sdata *) ((char *) from + nbytes);
1619
1620 /* FROM->string non-null means it's alive. Copy its data. */
1621 if (from->string)
1622 {
1623 /* If TB is full, proceed with the next sblock. */
1624 to_end = (struct sdata *) ((char *) to + nbytes);
1625 if (to_end > tb_end)
1626 {
1627 tb->next_free = to;
1628 tb = tb->next;
1629 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1630 to = &tb->first_data;
1631 to_end = (struct sdata *) ((char *) to + nbytes);
1632 }
1633
1634 /* Copy, and update the string's `data' pointer. */
1635 if (from != to)
1636 {
1637 xassert (tb != b || to <= from);
1638 safe_bcopy ((char *) from, (char *) to, nbytes);
1639 to->string->data = SDATA_DATA (to);
1640 }
1641
1642 /* Advance past the sdata we copied to. */
1643 to = to_end;
1644 }
1645 }
1646 }
1647
1648 /* The rest of the sblocks following TB don't contain live data, so
1649 we can free them. */
1650 for (b = tb->next; b; b = next)
1651 {
1652 next = b->next;
1653 lisp_free (b);
1654 }
1655
1656 tb->next_free = to;
1657 tb->next = NULL;
1658 current_sblock = tb;
1659 }
1660
1661
1662 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1663 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1664 Both LENGTH and INIT must be numbers. */)
1665 (length, init)
1666 Lisp_Object length, init;
1667 {
1668 register Lisp_Object val;
1669 register unsigned char *p, *end;
1670 int c, nbytes;
1671
1672 CHECK_NATNUM (length);
1673 CHECK_NUMBER (init);
1674
1675 c = XINT (init);
1676 if (SINGLE_BYTE_CHAR_P (c))
1677 {
1678 nbytes = XINT (length);
1679 val = make_uninit_string (nbytes);
1680 p = SDATA (val);
1681 end = p + SCHARS (val);
1682 while (p != end)
1683 *p++ = c;
1684 }
1685 else
1686 {
1687 unsigned char str[MAX_MULTIBYTE_LENGTH];
1688 int len = CHAR_STRING (c, str);
1689
1690 nbytes = len * XINT (length);
1691 val = make_uninit_multibyte_string (XINT (length), nbytes);
1692 p = SDATA (val);
1693 end = p + nbytes;
1694 while (p != end)
1695 {
1696 bcopy (str, p, len);
1697 p += len;
1698 }
1699 }
1700
1701 *p = 0;
1702 return val;
1703 }
1704
1705
1706 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1707 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1708 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1709 (length, init)
1710 Lisp_Object length, init;
1711 {
1712 register Lisp_Object val;
1713 struct Lisp_Bool_Vector *p;
1714 int real_init, i;
1715 int length_in_chars, length_in_elts, bits_per_value;
1716
1717 CHECK_NATNUM (length);
1718
1719 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1720
1721 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1722 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1723
1724 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1725 slot `size' of the struct Lisp_Bool_Vector. */
1726 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1727 p = XBOOL_VECTOR (val);
1728
1729 /* Get rid of any bits that would cause confusion. */
1730 p->vector_size = 0;
1731 XSETBOOL_VECTOR (val, p);
1732 p->size = XFASTINT (length);
1733
1734 real_init = (NILP (init) ? 0 : -1);
1735 for (i = 0; i < length_in_chars ; i++)
1736 p->data[i] = real_init;
1737
1738 /* Clear the extraneous bits in the last byte. */
1739 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1740 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1741 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1742
1743 return val;
1744 }
1745
1746
1747 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1748 of characters from the contents. This string may be unibyte or
1749 multibyte, depending on the contents. */
1750
1751 Lisp_Object
1752 make_string (contents, nbytes)
1753 const char *contents;
1754 int nbytes;
1755 {
1756 register Lisp_Object val;
1757 int nchars, multibyte_nbytes;
1758
1759 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1760 if (nbytes == nchars || nbytes != multibyte_nbytes)
1761 /* CONTENTS contains no multibyte sequences or contains an invalid
1762 multibyte sequence. We must make unibyte string. */
1763 val = make_unibyte_string (contents, nbytes);
1764 else
1765 val = make_multibyte_string (contents, nchars, nbytes);
1766 return val;
1767 }
1768
1769
1770 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1771
1772 Lisp_Object
1773 make_unibyte_string (contents, length)
1774 const char *contents;
1775 int length;
1776 {
1777 register Lisp_Object val;
1778 val = make_uninit_string (length);
1779 bcopy (contents, SDATA (val), length);
1780 STRING_SET_UNIBYTE (val);
1781 return val;
1782 }
1783
1784
1785 /* Make a multibyte string from NCHARS characters occupying NBYTES
1786 bytes at CONTENTS. */
1787
1788 Lisp_Object
1789 make_multibyte_string (contents, nchars, nbytes)
1790 const char *contents;
1791 int nchars, nbytes;
1792 {
1793 register Lisp_Object val;
1794 val = make_uninit_multibyte_string (nchars, nbytes);
1795 bcopy (contents, SDATA (val), nbytes);
1796 return val;
1797 }
1798
1799
1800 /* Make a string from NCHARS characters occupying NBYTES bytes at
1801 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1802
1803 Lisp_Object
1804 make_string_from_bytes (contents, nchars, nbytes)
1805 char *contents;
1806 int nchars, nbytes;
1807 {
1808 register Lisp_Object val;
1809 val = make_uninit_multibyte_string (nchars, nbytes);
1810 bcopy (contents, SDATA (val), nbytes);
1811 if (SBYTES (val) == SCHARS (val))
1812 STRING_SET_UNIBYTE (val);
1813 return val;
1814 }
1815
1816
1817 /* Make a string from NCHARS characters occupying NBYTES bytes at
1818 CONTENTS. The argument MULTIBYTE controls whether to label the
1819 string as multibyte. */
1820
1821 Lisp_Object
1822 make_specified_string (contents, nchars, nbytes, multibyte)
1823 char *contents;
1824 int nchars, nbytes;
1825 int multibyte;
1826 {
1827 register Lisp_Object val;
1828 val = make_uninit_multibyte_string (nchars, nbytes);
1829 bcopy (contents, SDATA (val), nbytes);
1830 if (!multibyte)
1831 STRING_SET_UNIBYTE (val);
1832 return val;
1833 }
1834
1835
1836 /* Make a string from the data at STR, treating it as multibyte if the
1837 data warrants. */
1838
1839 Lisp_Object
1840 build_string (str)
1841 const char *str;
1842 {
1843 return make_string (str, strlen (str));
1844 }
1845
1846
1847 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1848 occupying LENGTH bytes. */
1849
1850 Lisp_Object
1851 make_uninit_string (length)
1852 int length;
1853 {
1854 Lisp_Object val;
1855 val = make_uninit_multibyte_string (length, length);
1856 STRING_SET_UNIBYTE (val);
1857 return val;
1858 }
1859
1860
1861 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1862 which occupy NBYTES bytes. */
1863
1864 Lisp_Object
1865 make_uninit_multibyte_string (nchars, nbytes)
1866 int nchars, nbytes;
1867 {
1868 Lisp_Object string;
1869 struct Lisp_String *s;
1870
1871 if (nchars < 0)
1872 abort ();
1873
1874 s = allocate_string ();
1875 allocate_string_data (s, nchars, nbytes);
1876 XSETSTRING (string, s);
1877 string_chars_consed += nbytes;
1878 return string;
1879 }
1880
1881
1882 \f
1883 /***********************************************************************
1884 Float Allocation
1885 ***********************************************************************/
1886
1887 /* We store float cells inside of float_blocks, allocating a new
1888 float_block with malloc whenever necessary. Float cells reclaimed
1889 by GC are put on a free list to be reallocated before allocating
1890 any new float cells from the latest float_block.
1891
1892 Each float_block is just under 1020 bytes long, since malloc really
1893 allocates in units of powers of two and uses 4 bytes for its own
1894 overhead. */
1895
1896 #define FLOAT_BLOCK_SIZE \
1897 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1898
1899 struct float_block
1900 {
1901 struct float_block *next;
1902 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1903 };
1904
1905 /* Current float_block. */
1906
1907 struct float_block *float_block;
1908
1909 /* Index of first unused Lisp_Float in the current float_block. */
1910
1911 int float_block_index;
1912
1913 /* Total number of float blocks now in use. */
1914
1915 int n_float_blocks;
1916
1917 /* Free-list of Lisp_Floats. */
1918
1919 struct Lisp_Float *float_free_list;
1920
1921
1922 /* Initialize float allocation. */
1923
1924 void
1925 init_float ()
1926 {
1927 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1928 MEM_TYPE_FLOAT);
1929 float_block->next = 0;
1930 bzero ((char *) float_block->floats, sizeof float_block->floats);
1931 float_block_index = 0;
1932 float_free_list = 0;
1933 n_float_blocks = 1;
1934 }
1935
1936
1937 /* Explicitly free a float cell by putting it on the free-list. */
1938
1939 void
1940 free_float (ptr)
1941 struct Lisp_Float *ptr;
1942 {
1943 *(struct Lisp_Float **)&ptr->data = float_free_list;
1944 #if GC_MARK_STACK
1945 ptr->type = Vdead;
1946 #endif
1947 float_free_list = ptr;
1948 }
1949
1950
1951 /* Return a new float object with value FLOAT_VALUE. */
1952
1953 Lisp_Object
1954 make_float (float_value)
1955 double float_value;
1956 {
1957 register Lisp_Object val;
1958
1959 if (float_free_list)
1960 {
1961 /* We use the data field for chaining the free list
1962 so that we won't use the same field that has the mark bit. */
1963 XSETFLOAT (val, float_free_list);
1964 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1965 }
1966 else
1967 {
1968 if (float_block_index == FLOAT_BLOCK_SIZE)
1969 {
1970 register struct float_block *new;
1971
1972 new = (struct float_block *) lisp_malloc (sizeof *new,
1973 MEM_TYPE_FLOAT);
1974 VALIDATE_LISP_STORAGE (new, sizeof *new);
1975 new->next = float_block;
1976 float_block = new;
1977 float_block_index = 0;
1978 n_float_blocks++;
1979 }
1980 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1981 }
1982
1983 XFLOAT_DATA (val) = float_value;
1984 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1985 consing_since_gc += sizeof (struct Lisp_Float);
1986 floats_consed++;
1987 return val;
1988 }
1989
1990
1991 \f
1992 /***********************************************************************
1993 Cons Allocation
1994 ***********************************************************************/
1995
1996 /* We store cons cells inside of cons_blocks, allocating a new
1997 cons_block with malloc whenever necessary. Cons cells reclaimed by
1998 GC are put on a free list to be reallocated before allocating
1999 any new cons cells from the latest cons_block.
2000
2001 Each cons_block is just under 1020 bytes long,
2002 since malloc really allocates in units of powers of two
2003 and uses 4 bytes for its own overhead. */
2004
2005 #define CONS_BLOCK_SIZE \
2006 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2007
2008 struct cons_block
2009 {
2010 struct cons_block *next;
2011 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2012 };
2013
2014 /* Current cons_block. */
2015
2016 struct cons_block *cons_block;
2017
2018 /* Index of first unused Lisp_Cons in the current block. */
2019
2020 int cons_block_index;
2021
2022 /* Free-list of Lisp_Cons structures. */
2023
2024 struct Lisp_Cons *cons_free_list;
2025
2026 /* Total number of cons blocks now in use. */
2027
2028 int n_cons_blocks;
2029
2030
2031 /* Initialize cons allocation. */
2032
2033 void
2034 init_cons ()
2035 {
2036 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2037 MEM_TYPE_CONS);
2038 cons_block->next = 0;
2039 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2040 cons_block_index = 0;
2041 cons_free_list = 0;
2042 n_cons_blocks = 1;
2043 }
2044
2045
2046 /* Explicitly free a cons cell by putting it on the free-list. */
2047
2048 void
2049 free_cons (ptr)
2050 struct Lisp_Cons *ptr;
2051 {
2052 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2053 #if GC_MARK_STACK
2054 ptr->car = Vdead;
2055 #endif
2056 cons_free_list = ptr;
2057 }
2058
2059
2060 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2061 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2062 (car, cdr)
2063 Lisp_Object car, cdr;
2064 {
2065 register Lisp_Object val;
2066
2067 if (cons_free_list)
2068 {
2069 /* We use the cdr for chaining the free list
2070 so that we won't use the same field that has the mark bit. */
2071 XSETCONS (val, cons_free_list);
2072 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2073 }
2074 else
2075 {
2076 if (cons_block_index == CONS_BLOCK_SIZE)
2077 {
2078 register struct cons_block *new;
2079 new = (struct cons_block *) lisp_malloc (sizeof *new,
2080 MEM_TYPE_CONS);
2081 VALIDATE_LISP_STORAGE (new, sizeof *new);
2082 new->next = cons_block;
2083 cons_block = new;
2084 cons_block_index = 0;
2085 n_cons_blocks++;
2086 }
2087 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2088 }
2089
2090 XSETCAR (val, car);
2091 XSETCDR (val, cdr);
2092 consing_since_gc += sizeof (struct Lisp_Cons);
2093 cons_cells_consed++;
2094 return val;
2095 }
2096
2097
2098 /* Make a list of 2, 3, 4 or 5 specified objects. */
2099
2100 Lisp_Object
2101 list2 (arg1, arg2)
2102 Lisp_Object arg1, arg2;
2103 {
2104 return Fcons (arg1, Fcons (arg2, Qnil));
2105 }
2106
2107
2108 Lisp_Object
2109 list3 (arg1, arg2, arg3)
2110 Lisp_Object arg1, arg2, arg3;
2111 {
2112 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2113 }
2114
2115
2116 Lisp_Object
2117 list4 (arg1, arg2, arg3, arg4)
2118 Lisp_Object arg1, arg2, arg3, arg4;
2119 {
2120 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2121 }
2122
2123
2124 Lisp_Object
2125 list5 (arg1, arg2, arg3, arg4, arg5)
2126 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2127 {
2128 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2129 Fcons (arg5, Qnil)))));
2130 }
2131
2132
2133 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2134 doc: /* Return a newly created list with specified arguments as elements.
2135 Any number of arguments, even zero arguments, are allowed.
2136 usage: (list &rest OBJECTS) */)
2137 (nargs, args)
2138 int nargs;
2139 register Lisp_Object *args;
2140 {
2141 register Lisp_Object val;
2142 val = Qnil;
2143
2144 while (nargs > 0)
2145 {
2146 nargs--;
2147 val = Fcons (args[nargs], val);
2148 }
2149 return val;
2150 }
2151
2152
2153 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2154 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2155 (length, init)
2156 register Lisp_Object length, init;
2157 {
2158 register Lisp_Object val;
2159 register int size;
2160
2161 CHECK_NATNUM (length);
2162 size = XFASTINT (length);
2163
2164 val = Qnil;
2165 while (size > 0)
2166 {
2167 val = Fcons (init, val);
2168 --size;
2169
2170 if (size > 0)
2171 {
2172 val = Fcons (init, val);
2173 --size;
2174
2175 if (size > 0)
2176 {
2177 val = Fcons (init, val);
2178 --size;
2179
2180 if (size > 0)
2181 {
2182 val = Fcons (init, val);
2183 --size;
2184
2185 if (size > 0)
2186 {
2187 val = Fcons (init, val);
2188 --size;
2189 }
2190 }
2191 }
2192 }
2193
2194 QUIT;
2195 }
2196
2197 return val;
2198 }
2199
2200
2201 \f
2202 /***********************************************************************
2203 Vector Allocation
2204 ***********************************************************************/
2205
2206 /* Singly-linked list of all vectors. */
2207
2208 struct Lisp_Vector *all_vectors;
2209
2210 /* Total number of vector-like objects now in use. */
2211
2212 int n_vectors;
2213
2214
2215 /* Value is a pointer to a newly allocated Lisp_Vector structure
2216 with room for LEN Lisp_Objects. */
2217
2218 static struct Lisp_Vector *
2219 allocate_vectorlike (len, type)
2220 EMACS_INT len;
2221 enum mem_type type;
2222 {
2223 struct Lisp_Vector *p;
2224 size_t nbytes;
2225
2226 #ifdef DOUG_LEA_MALLOC
2227 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2228 because mapped region contents are not preserved in
2229 a dumped Emacs. */
2230 mallopt (M_MMAP_MAX, 0);
2231 #endif
2232
2233 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2234 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2235
2236 #ifdef DOUG_LEA_MALLOC
2237 /* Back to a reasonable maximum of mmap'ed areas. */
2238 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2239 #endif
2240
2241 VALIDATE_LISP_STORAGE (p, 0);
2242 consing_since_gc += nbytes;
2243 vector_cells_consed += len;
2244
2245 p->next = all_vectors;
2246 all_vectors = p;
2247 ++n_vectors;
2248 return p;
2249 }
2250
2251
2252 /* Allocate a vector with NSLOTS slots. */
2253
2254 struct Lisp_Vector *
2255 allocate_vector (nslots)
2256 EMACS_INT nslots;
2257 {
2258 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2259 v->size = nslots;
2260 return v;
2261 }
2262
2263
2264 /* Allocate other vector-like structures. */
2265
2266 struct Lisp_Hash_Table *
2267 allocate_hash_table ()
2268 {
2269 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2270 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2271 EMACS_INT i;
2272
2273 v->size = len;
2274 for (i = 0; i < len; ++i)
2275 v->contents[i] = Qnil;
2276
2277 return (struct Lisp_Hash_Table *) v;
2278 }
2279
2280
2281 struct window *
2282 allocate_window ()
2283 {
2284 EMACS_INT len = VECSIZE (struct window);
2285 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2286 EMACS_INT i;
2287
2288 for (i = 0; i < len; ++i)
2289 v->contents[i] = Qnil;
2290 v->size = len;
2291
2292 return (struct window *) v;
2293 }
2294
2295
2296 struct frame *
2297 allocate_frame ()
2298 {
2299 EMACS_INT len = VECSIZE (struct frame);
2300 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2301 EMACS_INT i;
2302
2303 for (i = 0; i < len; ++i)
2304 v->contents[i] = make_number (0);
2305 v->size = len;
2306 return (struct frame *) v;
2307 }
2308
2309
2310 struct Lisp_Process *
2311 allocate_process ()
2312 {
2313 EMACS_INT len = VECSIZE (struct Lisp_Process);
2314 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2315 EMACS_INT i;
2316
2317 for (i = 0; i < len; ++i)
2318 v->contents[i] = Qnil;
2319 v->size = len;
2320
2321 return (struct Lisp_Process *) v;
2322 }
2323
2324
2325 struct Lisp_Vector *
2326 allocate_other_vector (len)
2327 EMACS_INT len;
2328 {
2329 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2330 EMACS_INT i;
2331
2332 for (i = 0; i < len; ++i)
2333 v->contents[i] = Qnil;
2334 v->size = len;
2335
2336 return v;
2337 }
2338
2339
2340 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2341 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2342 See also the function `vector'. */)
2343 (length, init)
2344 register Lisp_Object length, init;
2345 {
2346 Lisp_Object vector;
2347 register EMACS_INT sizei;
2348 register int index;
2349 register struct Lisp_Vector *p;
2350
2351 CHECK_NATNUM (length);
2352 sizei = XFASTINT (length);
2353
2354 p = allocate_vector (sizei);
2355 for (index = 0; index < sizei; index++)
2356 p->contents[index] = init;
2357
2358 XSETVECTOR (vector, p);
2359 return vector;
2360 }
2361
2362
2363 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2364 doc: /* Return a newly created char-table, with purpose PURPOSE.
2365 Each element is initialized to INIT, which defaults to nil.
2366 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2367 The property's value should be an integer between 0 and 10. */)
2368 (purpose, init)
2369 register Lisp_Object purpose, init;
2370 {
2371 Lisp_Object vector;
2372 Lisp_Object n;
2373 CHECK_SYMBOL (purpose);
2374 n = Fget (purpose, Qchar_table_extra_slots);
2375 CHECK_NUMBER (n);
2376 if (XINT (n) < 0 || XINT (n) > 10)
2377 args_out_of_range (n, Qnil);
2378 /* Add 2 to the size for the defalt and parent slots. */
2379 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2380 init);
2381 XCHAR_TABLE (vector)->top = Qt;
2382 XCHAR_TABLE (vector)->parent = Qnil;
2383 XCHAR_TABLE (vector)->purpose = purpose;
2384 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2385 return vector;
2386 }
2387
2388
2389 /* Return a newly created sub char table with default value DEFALT.
2390 Since a sub char table does not appear as a top level Emacs Lisp
2391 object, we don't need a Lisp interface to make it. */
2392
2393 Lisp_Object
2394 make_sub_char_table (defalt)
2395 Lisp_Object defalt;
2396 {
2397 Lisp_Object vector
2398 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2399 XCHAR_TABLE (vector)->top = Qnil;
2400 XCHAR_TABLE (vector)->defalt = defalt;
2401 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2402 return vector;
2403 }
2404
2405
2406 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2407 doc: /* Return a newly created vector with specified arguments as elements.
2408 Any number of arguments, even zero arguments, are allowed.
2409 usage: (vector &rest OBJECTS) */)
2410 (nargs, args)
2411 register int nargs;
2412 Lisp_Object *args;
2413 {
2414 register Lisp_Object len, val;
2415 register int index;
2416 register struct Lisp_Vector *p;
2417
2418 XSETFASTINT (len, nargs);
2419 val = Fmake_vector (len, Qnil);
2420 p = XVECTOR (val);
2421 for (index = 0; index < nargs; index++)
2422 p->contents[index] = args[index];
2423 return val;
2424 }
2425
2426
2427 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2428 doc: /* Create a byte-code object with specified arguments as elements.
2429 The arguments should be the arglist, bytecode-string, constant vector,
2430 stack size, (optional) doc string, and (optional) interactive spec.
2431 The first four arguments are required; at most six have any
2432 significance.
2433 usage: (make-byte-code &rest ELEMENTS) */)
2434 (nargs, args)
2435 register int nargs;
2436 Lisp_Object *args;
2437 {
2438 register Lisp_Object len, val;
2439 register int index;
2440 register struct Lisp_Vector *p;
2441
2442 XSETFASTINT (len, nargs);
2443 if (!NILP (Vpurify_flag))
2444 val = make_pure_vector ((EMACS_INT) nargs);
2445 else
2446 val = Fmake_vector (len, Qnil);
2447
2448 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2449 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2450 earlier because they produced a raw 8-bit string for byte-code
2451 and now such a byte-code string is loaded as multibyte while
2452 raw 8-bit characters converted to multibyte form. Thus, now we
2453 must convert them back to the original unibyte form. */
2454 args[1] = Fstring_as_unibyte (args[1]);
2455
2456 p = XVECTOR (val);
2457 for (index = 0; index < nargs; index++)
2458 {
2459 if (!NILP (Vpurify_flag))
2460 args[index] = Fpurecopy (args[index]);
2461 p->contents[index] = args[index];
2462 }
2463 XSETCOMPILED (val, p);
2464 return val;
2465 }
2466
2467
2468 \f
2469 /***********************************************************************
2470 Symbol Allocation
2471 ***********************************************************************/
2472
2473 /* Each symbol_block is just under 1020 bytes long, since malloc
2474 really allocates in units of powers of two and uses 4 bytes for its
2475 own overhead. */
2476
2477 #define SYMBOL_BLOCK_SIZE \
2478 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2479
2480 struct symbol_block
2481 {
2482 struct symbol_block *next;
2483 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2484 };
2485
2486 /* Current symbol block and index of first unused Lisp_Symbol
2487 structure in it. */
2488
2489 struct symbol_block *symbol_block;
2490 int symbol_block_index;
2491
2492 /* List of free symbols. */
2493
2494 struct Lisp_Symbol *symbol_free_list;
2495
2496 /* Total number of symbol blocks now in use. */
2497
2498 int n_symbol_blocks;
2499
2500
2501 /* Initialize symbol allocation. */
2502
2503 void
2504 init_symbol ()
2505 {
2506 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2507 MEM_TYPE_SYMBOL);
2508 symbol_block->next = 0;
2509 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2510 symbol_block_index = 0;
2511 symbol_free_list = 0;
2512 n_symbol_blocks = 1;
2513 }
2514
2515
2516 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2517 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2518 Its value and function definition are void, and its property list is nil. */)
2519 (name)
2520 Lisp_Object name;
2521 {
2522 register Lisp_Object val;
2523 register struct Lisp_Symbol *p;
2524
2525 CHECK_STRING (name);
2526
2527 if (symbol_free_list)
2528 {
2529 XSETSYMBOL (val, symbol_free_list);
2530 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2531 }
2532 else
2533 {
2534 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2535 {
2536 struct symbol_block *new;
2537 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2538 MEM_TYPE_SYMBOL);
2539 VALIDATE_LISP_STORAGE (new, sizeof *new);
2540 new->next = symbol_block;
2541 symbol_block = new;
2542 symbol_block_index = 0;
2543 n_symbol_blocks++;
2544 }
2545 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2546 }
2547
2548 p = XSYMBOL (val);
2549 p->xname = name;
2550 p->plist = Qnil;
2551 p->value = Qunbound;
2552 p->function = Qunbound;
2553 p->next = NULL;
2554 p->interned = SYMBOL_UNINTERNED;
2555 p->constant = 0;
2556 p->indirect_variable = 0;
2557 consing_since_gc += sizeof (struct Lisp_Symbol);
2558 symbols_consed++;
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Marker (Misc) Allocation
2566 ***********************************************************************/
2567
2568 /* Allocation of markers and other objects that share that structure.
2569 Works like allocation of conses. */
2570
2571 #define MARKER_BLOCK_SIZE \
2572 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2573
2574 struct marker_block
2575 {
2576 struct marker_block *next;
2577 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2578 };
2579
2580 struct marker_block *marker_block;
2581 int marker_block_index;
2582
2583 union Lisp_Misc *marker_free_list;
2584
2585 /* Total number of marker blocks now in use. */
2586
2587 int n_marker_blocks;
2588
2589 void
2590 init_marker ()
2591 {
2592 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2593 MEM_TYPE_MISC);
2594 marker_block->next = 0;
2595 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2596 marker_block_index = 0;
2597 marker_free_list = 0;
2598 n_marker_blocks = 1;
2599 }
2600
2601 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2602
2603 Lisp_Object
2604 allocate_misc ()
2605 {
2606 Lisp_Object val;
2607
2608 if (marker_free_list)
2609 {
2610 XSETMISC (val, marker_free_list);
2611 marker_free_list = marker_free_list->u_free.chain;
2612 }
2613 else
2614 {
2615 if (marker_block_index == MARKER_BLOCK_SIZE)
2616 {
2617 struct marker_block *new;
2618 new = (struct marker_block *) lisp_malloc (sizeof *new,
2619 MEM_TYPE_MISC);
2620 VALIDATE_LISP_STORAGE (new, sizeof *new);
2621 new->next = marker_block;
2622 marker_block = new;
2623 marker_block_index = 0;
2624 n_marker_blocks++;
2625 }
2626 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2627 }
2628
2629 consing_since_gc += sizeof (union Lisp_Misc);
2630 misc_objects_consed++;
2631 return val;
2632 }
2633
2634 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2635 INTEGER. This is used to package C values to call record_unwind_protect.
2636 The unwind function can get the C values back using XSAVE_VALUE. */
2637
2638 Lisp_Object
2639 make_save_value (pointer, integer)
2640 void *pointer;
2641 int integer;
2642 {
2643 register Lisp_Object val;
2644 register struct Lisp_Save_Value *p;
2645
2646 val = allocate_misc ();
2647 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2648 p = XSAVE_VALUE (val);
2649 p->pointer = pointer;
2650 p->integer = integer;
2651 return val;
2652 }
2653
2654 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2655 doc: /* Return a newly allocated marker which does not point at any place. */)
2656 ()
2657 {
2658 register Lisp_Object val;
2659 register struct Lisp_Marker *p;
2660
2661 val = allocate_misc ();
2662 XMISCTYPE (val) = Lisp_Misc_Marker;
2663 p = XMARKER (val);
2664 p->buffer = 0;
2665 p->bytepos = 0;
2666 p->charpos = 0;
2667 p->chain = Qnil;
2668 p->insertion_type = 0;
2669 return val;
2670 }
2671
2672 /* Put MARKER back on the free list after using it temporarily. */
2673
2674 void
2675 free_marker (marker)
2676 Lisp_Object marker;
2677 {
2678 unchain_marker (marker);
2679
2680 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2681 XMISC (marker)->u_free.chain = marker_free_list;
2682 marker_free_list = XMISC (marker);
2683
2684 total_free_markers++;
2685 }
2686
2687 \f
2688 /* Return a newly created vector or string with specified arguments as
2689 elements. If all the arguments are characters that can fit
2690 in a string of events, make a string; otherwise, make a vector.
2691
2692 Any number of arguments, even zero arguments, are allowed. */
2693
2694 Lisp_Object
2695 make_event_array (nargs, args)
2696 register int nargs;
2697 Lisp_Object *args;
2698 {
2699 int i;
2700
2701 for (i = 0; i < nargs; i++)
2702 /* The things that fit in a string
2703 are characters that are in 0...127,
2704 after discarding the meta bit and all the bits above it. */
2705 if (!INTEGERP (args[i])
2706 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2707 return Fvector (nargs, args);
2708
2709 /* Since the loop exited, we know that all the things in it are
2710 characters, so we can make a string. */
2711 {
2712 Lisp_Object result;
2713
2714 result = Fmake_string (make_number (nargs), make_number (0));
2715 for (i = 0; i < nargs; i++)
2716 {
2717 SSET (result, i, XINT (args[i]));
2718 /* Move the meta bit to the right place for a string char. */
2719 if (XINT (args[i]) & CHAR_META)
2720 SSET (result, i, SREF (result, i) | 0x80);
2721 }
2722
2723 return result;
2724 }
2725 }
2726
2727
2728 \f
2729 /************************************************************************
2730 C Stack Marking
2731 ************************************************************************/
2732
2733 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2734
2735 /* Conservative C stack marking requires a method to identify possibly
2736 live Lisp objects given a pointer value. We do this by keeping
2737 track of blocks of Lisp data that are allocated in a red-black tree
2738 (see also the comment of mem_node which is the type of nodes in
2739 that tree). Function lisp_malloc adds information for an allocated
2740 block to the red-black tree with calls to mem_insert, and function
2741 lisp_free removes it with mem_delete. Functions live_string_p etc
2742 call mem_find to lookup information about a given pointer in the
2743 tree, and use that to determine if the pointer points to a Lisp
2744 object or not. */
2745
2746 /* Initialize this part of alloc.c. */
2747
2748 static void
2749 mem_init ()
2750 {
2751 mem_z.left = mem_z.right = MEM_NIL;
2752 mem_z.parent = NULL;
2753 mem_z.color = MEM_BLACK;
2754 mem_z.start = mem_z.end = NULL;
2755 mem_root = MEM_NIL;
2756 }
2757
2758
2759 /* Value is a pointer to the mem_node containing START. Value is
2760 MEM_NIL if there is no node in the tree containing START. */
2761
2762 static INLINE struct mem_node *
2763 mem_find (start)
2764 void *start;
2765 {
2766 struct mem_node *p;
2767
2768 if (start < min_heap_address || start > max_heap_address)
2769 return MEM_NIL;
2770
2771 /* Make the search always successful to speed up the loop below. */
2772 mem_z.start = start;
2773 mem_z.end = (char *) start + 1;
2774
2775 p = mem_root;
2776 while (start < p->start || start >= p->end)
2777 p = start < p->start ? p->left : p->right;
2778 return p;
2779 }
2780
2781
2782 /* Insert a new node into the tree for a block of memory with start
2783 address START, end address END, and type TYPE. Value is a
2784 pointer to the node that was inserted. */
2785
2786 static struct mem_node *
2787 mem_insert (start, end, type)
2788 void *start, *end;
2789 enum mem_type type;
2790 {
2791 struct mem_node *c, *parent, *x;
2792
2793 if (start < min_heap_address)
2794 min_heap_address = start;
2795 if (end > max_heap_address)
2796 max_heap_address = end;
2797
2798 /* See where in the tree a node for START belongs. In this
2799 particular application, it shouldn't happen that a node is already
2800 present. For debugging purposes, let's check that. */
2801 c = mem_root;
2802 parent = NULL;
2803
2804 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2805
2806 while (c != MEM_NIL)
2807 {
2808 if (start >= c->start && start < c->end)
2809 abort ();
2810 parent = c;
2811 c = start < c->start ? c->left : c->right;
2812 }
2813
2814 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2815
2816 while (c != MEM_NIL)
2817 {
2818 parent = c;
2819 c = start < c->start ? c->left : c->right;
2820 }
2821
2822 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2823
2824 /* Create a new node. */
2825 #ifdef GC_MALLOC_CHECK
2826 x = (struct mem_node *) _malloc_internal (sizeof *x);
2827 if (x == NULL)
2828 abort ();
2829 #else
2830 x = (struct mem_node *) xmalloc (sizeof *x);
2831 #endif
2832 x->start = start;
2833 x->end = end;
2834 x->type = type;
2835 x->parent = parent;
2836 x->left = x->right = MEM_NIL;
2837 x->color = MEM_RED;
2838
2839 /* Insert it as child of PARENT or install it as root. */
2840 if (parent)
2841 {
2842 if (start < parent->start)
2843 parent->left = x;
2844 else
2845 parent->right = x;
2846 }
2847 else
2848 mem_root = x;
2849
2850 /* Re-establish red-black tree properties. */
2851 mem_insert_fixup (x);
2852
2853 return x;
2854 }
2855
2856
2857 /* Re-establish the red-black properties of the tree, and thereby
2858 balance the tree, after node X has been inserted; X is always red. */
2859
2860 static void
2861 mem_insert_fixup (x)
2862 struct mem_node *x;
2863 {
2864 while (x != mem_root && x->parent->color == MEM_RED)
2865 {
2866 /* X is red and its parent is red. This is a violation of
2867 red-black tree property #3. */
2868
2869 if (x->parent == x->parent->parent->left)
2870 {
2871 /* We're on the left side of our grandparent, and Y is our
2872 "uncle". */
2873 struct mem_node *y = x->parent->parent->right;
2874
2875 if (y->color == MEM_RED)
2876 {
2877 /* Uncle and parent are red but should be black because
2878 X is red. Change the colors accordingly and proceed
2879 with the grandparent. */
2880 x->parent->color = MEM_BLACK;
2881 y->color = MEM_BLACK;
2882 x->parent->parent->color = MEM_RED;
2883 x = x->parent->parent;
2884 }
2885 else
2886 {
2887 /* Parent and uncle have different colors; parent is
2888 red, uncle is black. */
2889 if (x == x->parent->right)
2890 {
2891 x = x->parent;
2892 mem_rotate_left (x);
2893 }
2894
2895 x->parent->color = MEM_BLACK;
2896 x->parent->parent->color = MEM_RED;
2897 mem_rotate_right (x->parent->parent);
2898 }
2899 }
2900 else
2901 {
2902 /* This is the symmetrical case of above. */
2903 struct mem_node *y = x->parent->parent->left;
2904
2905 if (y->color == MEM_RED)
2906 {
2907 x->parent->color = MEM_BLACK;
2908 y->color = MEM_BLACK;
2909 x->parent->parent->color = MEM_RED;
2910 x = x->parent->parent;
2911 }
2912 else
2913 {
2914 if (x == x->parent->left)
2915 {
2916 x = x->parent;
2917 mem_rotate_right (x);
2918 }
2919
2920 x->parent->color = MEM_BLACK;
2921 x->parent->parent->color = MEM_RED;
2922 mem_rotate_left (x->parent->parent);
2923 }
2924 }
2925 }
2926
2927 /* The root may have been changed to red due to the algorithm. Set
2928 it to black so that property #5 is satisfied. */
2929 mem_root->color = MEM_BLACK;
2930 }
2931
2932
2933 /* (x) (y)
2934 / \ / \
2935 a (y) ===> (x) c
2936 / \ / \
2937 b c a b */
2938
2939 static void
2940 mem_rotate_left (x)
2941 struct mem_node *x;
2942 {
2943 struct mem_node *y;
2944
2945 /* Turn y's left sub-tree into x's right sub-tree. */
2946 y = x->right;
2947 x->right = y->left;
2948 if (y->left != MEM_NIL)
2949 y->left->parent = x;
2950
2951 /* Y's parent was x's parent. */
2952 if (y != MEM_NIL)
2953 y->parent = x->parent;
2954
2955 /* Get the parent to point to y instead of x. */
2956 if (x->parent)
2957 {
2958 if (x == x->parent->left)
2959 x->parent->left = y;
2960 else
2961 x->parent->right = y;
2962 }
2963 else
2964 mem_root = y;
2965
2966 /* Put x on y's left. */
2967 y->left = x;
2968 if (x != MEM_NIL)
2969 x->parent = y;
2970 }
2971
2972
2973 /* (x) (Y)
2974 / \ / \
2975 (y) c ===> a (x)
2976 / \ / \
2977 a b b c */
2978
2979 static void
2980 mem_rotate_right (x)
2981 struct mem_node *x;
2982 {
2983 struct mem_node *y = x->left;
2984
2985 x->left = y->right;
2986 if (y->right != MEM_NIL)
2987 y->right->parent = x;
2988
2989 if (y != MEM_NIL)
2990 y->parent = x->parent;
2991 if (x->parent)
2992 {
2993 if (x == x->parent->right)
2994 x->parent->right = y;
2995 else
2996 x->parent->left = y;
2997 }
2998 else
2999 mem_root = y;
3000
3001 y->right = x;
3002 if (x != MEM_NIL)
3003 x->parent = y;
3004 }
3005
3006
3007 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3008
3009 static void
3010 mem_delete (z)
3011 struct mem_node *z;
3012 {
3013 struct mem_node *x, *y;
3014
3015 if (!z || z == MEM_NIL)
3016 return;
3017
3018 if (z->left == MEM_NIL || z->right == MEM_NIL)
3019 y = z;
3020 else
3021 {
3022 y = z->right;
3023 while (y->left != MEM_NIL)
3024 y = y->left;
3025 }
3026
3027 if (y->left != MEM_NIL)
3028 x = y->left;
3029 else
3030 x = y->right;
3031
3032 x->parent = y->parent;
3033 if (y->parent)
3034 {
3035 if (y == y->parent->left)
3036 y->parent->left = x;
3037 else
3038 y->parent->right = x;
3039 }
3040 else
3041 mem_root = x;
3042
3043 if (y != z)
3044 {
3045 z->start = y->start;
3046 z->end = y->end;
3047 z->type = y->type;
3048 }
3049
3050 if (y->color == MEM_BLACK)
3051 mem_delete_fixup (x);
3052
3053 #ifdef GC_MALLOC_CHECK
3054 _free_internal (y);
3055 #else
3056 xfree (y);
3057 #endif
3058 }
3059
3060
3061 /* Re-establish the red-black properties of the tree, after a
3062 deletion. */
3063
3064 static void
3065 mem_delete_fixup (x)
3066 struct mem_node *x;
3067 {
3068 while (x != mem_root && x->color == MEM_BLACK)
3069 {
3070 if (x == x->parent->left)
3071 {
3072 struct mem_node *w = x->parent->right;
3073
3074 if (w->color == MEM_RED)
3075 {
3076 w->color = MEM_BLACK;
3077 x->parent->color = MEM_RED;
3078 mem_rotate_left (x->parent);
3079 w = x->parent->right;
3080 }
3081
3082 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3083 {
3084 w->color = MEM_RED;
3085 x = x->parent;
3086 }
3087 else
3088 {
3089 if (w->right->color == MEM_BLACK)
3090 {
3091 w->left->color = MEM_BLACK;
3092 w->color = MEM_RED;
3093 mem_rotate_right (w);
3094 w = x->parent->right;
3095 }
3096 w->color = x->parent->color;
3097 x->parent->color = MEM_BLACK;
3098 w->right->color = MEM_BLACK;
3099 mem_rotate_left (x->parent);
3100 x = mem_root;
3101 }
3102 }
3103 else
3104 {
3105 struct mem_node *w = x->parent->left;
3106
3107 if (w->color == MEM_RED)
3108 {
3109 w->color = MEM_BLACK;
3110 x->parent->color = MEM_RED;
3111 mem_rotate_right (x->parent);
3112 w = x->parent->left;
3113 }
3114
3115 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3116 {
3117 w->color = MEM_RED;
3118 x = x->parent;
3119 }
3120 else
3121 {
3122 if (w->left->color == MEM_BLACK)
3123 {
3124 w->right->color = MEM_BLACK;
3125 w->color = MEM_RED;
3126 mem_rotate_left (w);
3127 w = x->parent->left;
3128 }
3129
3130 w->color = x->parent->color;
3131 x->parent->color = MEM_BLACK;
3132 w->left->color = MEM_BLACK;
3133 mem_rotate_right (x->parent);
3134 x = mem_root;
3135 }
3136 }
3137 }
3138
3139 x->color = MEM_BLACK;
3140 }
3141
3142
3143 /* Value is non-zero if P is a pointer to a live Lisp string on
3144 the heap. M is a pointer to the mem_block for P. */
3145
3146 static INLINE int
3147 live_string_p (m, p)
3148 struct mem_node *m;
3149 void *p;
3150 {
3151 if (m->type == MEM_TYPE_STRING)
3152 {
3153 struct string_block *b = (struct string_block *) m->start;
3154 int offset = (char *) p - (char *) &b->strings[0];
3155
3156 /* P must point to the start of a Lisp_String structure, and it
3157 must not be on the free-list. */
3158 return (offset >= 0
3159 && offset % sizeof b->strings[0] == 0
3160 && ((struct Lisp_String *) p)->data != NULL);
3161 }
3162 else
3163 return 0;
3164 }
3165
3166
3167 /* Value is non-zero if P is a pointer to a live Lisp cons on
3168 the heap. M is a pointer to the mem_block for P. */
3169
3170 static INLINE int
3171 live_cons_p (m, p)
3172 struct mem_node *m;
3173 void *p;
3174 {
3175 if (m->type == MEM_TYPE_CONS)
3176 {
3177 struct cons_block *b = (struct cons_block *) m->start;
3178 int offset = (char *) p - (char *) &b->conses[0];
3179
3180 /* P must point to the start of a Lisp_Cons, not be
3181 one of the unused cells in the current cons block,
3182 and not be on the free-list. */
3183 return (offset >= 0
3184 && offset % sizeof b->conses[0] == 0
3185 && (b != cons_block
3186 || offset / sizeof b->conses[0] < cons_block_index)
3187 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3188 }
3189 else
3190 return 0;
3191 }
3192
3193
3194 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3195 the heap. M is a pointer to the mem_block for P. */
3196
3197 static INLINE int
3198 live_symbol_p (m, p)
3199 struct mem_node *m;
3200 void *p;
3201 {
3202 if (m->type == MEM_TYPE_SYMBOL)
3203 {
3204 struct symbol_block *b = (struct symbol_block *) m->start;
3205 int offset = (char *) p - (char *) &b->symbols[0];
3206
3207 /* P must point to the start of a Lisp_Symbol, not be
3208 one of the unused cells in the current symbol block,
3209 and not be on the free-list. */
3210 return (offset >= 0
3211 && offset % sizeof b->symbols[0] == 0
3212 && (b != symbol_block
3213 || offset / sizeof b->symbols[0] < symbol_block_index)
3214 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3215 }
3216 else
3217 return 0;
3218 }
3219
3220
3221 /* Value is non-zero if P is a pointer to a live Lisp float on
3222 the heap. M is a pointer to the mem_block for P. */
3223
3224 static INLINE int
3225 live_float_p (m, p)
3226 struct mem_node *m;
3227 void *p;
3228 {
3229 if (m->type == MEM_TYPE_FLOAT)
3230 {
3231 struct float_block *b = (struct float_block *) m->start;
3232 int offset = (char *) p - (char *) &b->floats[0];
3233
3234 /* P must point to the start of a Lisp_Float, not be
3235 one of the unused cells in the current float block,
3236 and not be on the free-list. */
3237 return (offset >= 0
3238 && offset % sizeof b->floats[0] == 0
3239 && (b != float_block
3240 || offset / sizeof b->floats[0] < float_block_index)
3241 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
3242 }
3243 else
3244 return 0;
3245 }
3246
3247
3248 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3249 the heap. M is a pointer to the mem_block for P. */
3250
3251 static INLINE int
3252 live_misc_p (m, p)
3253 struct mem_node *m;
3254 void *p;
3255 {
3256 if (m->type == MEM_TYPE_MISC)
3257 {
3258 struct marker_block *b = (struct marker_block *) m->start;
3259 int offset = (char *) p - (char *) &b->markers[0];
3260
3261 /* P must point to the start of a Lisp_Misc, not be
3262 one of the unused cells in the current misc block,
3263 and not be on the free-list. */
3264 return (offset >= 0
3265 && offset % sizeof b->markers[0] == 0
3266 && (b != marker_block
3267 || offset / sizeof b->markers[0] < marker_block_index)
3268 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3269 }
3270 else
3271 return 0;
3272 }
3273
3274
3275 /* Value is non-zero if P is a pointer to a live vector-like object.
3276 M is a pointer to the mem_block for P. */
3277
3278 static INLINE int
3279 live_vector_p (m, p)
3280 struct mem_node *m;
3281 void *p;
3282 {
3283 return (p == m->start
3284 && m->type >= MEM_TYPE_VECTOR
3285 && m->type <= MEM_TYPE_WINDOW);
3286 }
3287
3288
3289 /* Value is non-zero of P is a pointer to a live buffer. M is a
3290 pointer to the mem_block for P. */
3291
3292 static INLINE int
3293 live_buffer_p (m, p)
3294 struct mem_node *m;
3295 void *p;
3296 {
3297 /* P must point to the start of the block, and the buffer
3298 must not have been killed. */
3299 return (m->type == MEM_TYPE_BUFFER
3300 && p == m->start
3301 && !NILP (((struct buffer *) p)->name));
3302 }
3303
3304 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3305
3306 #if GC_MARK_STACK
3307
3308 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3309
3310 /* Array of objects that are kept alive because the C stack contains
3311 a pattern that looks like a reference to them . */
3312
3313 #define MAX_ZOMBIES 10
3314 static Lisp_Object zombies[MAX_ZOMBIES];
3315
3316 /* Number of zombie objects. */
3317
3318 static int nzombies;
3319
3320 /* Number of garbage collections. */
3321
3322 static int ngcs;
3323
3324 /* Average percentage of zombies per collection. */
3325
3326 static double avg_zombies;
3327
3328 /* Max. number of live and zombie objects. */
3329
3330 static int max_live, max_zombies;
3331
3332 /* Average number of live objects per GC. */
3333
3334 static double avg_live;
3335
3336 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3337 doc: /* Show information about live and zombie objects. */)
3338 ()
3339 {
3340 Lisp_Object args[7];
3341 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3342 args[1] = make_number (ngcs);
3343 args[2] = make_float (avg_live);
3344 args[3] = make_float (avg_zombies);
3345 args[4] = make_float (avg_zombies / avg_live / 100);
3346 args[5] = make_number (max_live);
3347 args[6] = make_number (max_zombies);
3348 return Fmessage (7, args);
3349 }
3350
3351 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3352
3353
3354 /* Mark OBJ if we can prove it's a Lisp_Object. */
3355
3356 static INLINE void
3357 mark_maybe_object (obj)
3358 Lisp_Object obj;
3359 {
3360 void *po = (void *) XPNTR (obj);
3361 struct mem_node *m = mem_find (po);
3362
3363 if (m != MEM_NIL)
3364 {
3365 int mark_p = 0;
3366
3367 switch (XGCTYPE (obj))
3368 {
3369 case Lisp_String:
3370 mark_p = (live_string_p (m, po)
3371 && !STRING_MARKED_P ((struct Lisp_String *) po));
3372 break;
3373
3374 case Lisp_Cons:
3375 mark_p = (live_cons_p (m, po)
3376 && !XMARKBIT (XCONS (obj)->car));
3377 break;
3378
3379 case Lisp_Symbol:
3380 mark_p = (live_symbol_p (m, po)
3381 && !XMARKBIT (XSYMBOL (obj)->plist));
3382 break;
3383
3384 case Lisp_Float:
3385 mark_p = (live_float_p (m, po)
3386 && !XMARKBIT (XFLOAT (obj)->type));
3387 break;
3388
3389 case Lisp_Vectorlike:
3390 /* Note: can't check GC_BUFFERP before we know it's a
3391 buffer because checking that dereferences the pointer
3392 PO which might point anywhere. */
3393 if (live_vector_p (m, po))
3394 mark_p = (!GC_SUBRP (obj)
3395 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
3396 else if (live_buffer_p (m, po))
3397 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
3398 break;
3399
3400 case Lisp_Misc:
3401 if (live_misc_p (m, po))
3402 {
3403 switch (XMISCTYPE (obj))
3404 {
3405 case Lisp_Misc_Marker:
3406 mark_p = !XMARKBIT (XMARKER (obj)->chain);
3407 break;
3408
3409 case Lisp_Misc_Buffer_Local_Value:
3410 case Lisp_Misc_Some_Buffer_Local_Value:
3411 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
3412 break;
3413
3414 case Lisp_Misc_Overlay:
3415 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
3416 break;
3417 }
3418 }
3419 break;
3420
3421 case Lisp_Int:
3422 case Lisp_Type_Limit:
3423 break;
3424 }
3425
3426 if (mark_p)
3427 {
3428 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3429 if (nzombies < MAX_ZOMBIES)
3430 zombies[nzombies] = *p;
3431 ++nzombies;
3432 #endif
3433 mark_object (&obj);
3434 }
3435 }
3436 }
3437
3438
3439 /* If P points to Lisp data, mark that as live if it isn't already
3440 marked. */
3441
3442 static INLINE void
3443 mark_maybe_pointer (p)
3444 void *p;
3445 {
3446 struct mem_node *m;
3447
3448 /* Quickly rule out some values which can't point to Lisp data. We
3449 assume that Lisp data is aligned on even addresses. */
3450 if ((EMACS_INT) p & 1)
3451 return;
3452
3453 m = mem_find (p);
3454 if (m != MEM_NIL)
3455 {
3456 Lisp_Object obj = Qnil;
3457
3458 switch (m->type)
3459 {
3460 case MEM_TYPE_NON_LISP:
3461 /* Nothing to do; not a pointer to Lisp memory. */
3462 break;
3463
3464 case MEM_TYPE_BUFFER:
3465 if (live_buffer_p (m, p)
3466 && !XMARKBIT (((struct buffer *) p)->name))
3467 XSETVECTOR (obj, p);
3468 break;
3469
3470 case MEM_TYPE_CONS:
3471 if (live_cons_p (m, p)
3472 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3473 XSETCONS (obj, p);
3474 break;
3475
3476 case MEM_TYPE_STRING:
3477 if (live_string_p (m, p)
3478 && !STRING_MARKED_P ((struct Lisp_String *) p))
3479 XSETSTRING (obj, p);
3480 break;
3481
3482 case MEM_TYPE_MISC:
3483 if (live_misc_p (m, p))
3484 {
3485 Lisp_Object tem;
3486 XSETMISC (tem, p);
3487
3488 switch (XMISCTYPE (tem))
3489 {
3490 case Lisp_Misc_Marker:
3491 if (!XMARKBIT (XMARKER (tem)->chain))
3492 obj = tem;
3493 break;
3494
3495 case Lisp_Misc_Buffer_Local_Value:
3496 case Lisp_Misc_Some_Buffer_Local_Value:
3497 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem)->realvalue))
3498 obj = tem;
3499 break;
3500
3501 case Lisp_Misc_Overlay:
3502 if (!XMARKBIT (XOVERLAY (tem)->plist))
3503 obj = tem;
3504 break;
3505 }
3506 }
3507 break;
3508
3509 case MEM_TYPE_SYMBOL:
3510 if (live_symbol_p (m, p)
3511 && !XMARKBIT (((struct Lisp_Symbol *) p)->plist))
3512 XSETSYMBOL (obj, p);
3513 break;
3514
3515 case MEM_TYPE_FLOAT:
3516 if (live_float_p (m, p)
3517 && !XMARKBIT (((struct Lisp_Float *) p)->type))
3518 XSETFLOAT (obj, p);
3519 break;
3520
3521 case MEM_TYPE_VECTOR:
3522 case MEM_TYPE_PROCESS:
3523 case MEM_TYPE_HASH_TABLE:
3524 case MEM_TYPE_FRAME:
3525 case MEM_TYPE_WINDOW:
3526 if (live_vector_p (m, p))
3527 {
3528 Lisp_Object tem;
3529 XSETVECTOR (tem, p);
3530 if (!GC_SUBRP (tem)
3531 && !(XVECTOR (tem)->size & ARRAY_MARK_FLAG))
3532 obj = tem;
3533 }
3534 break;
3535
3536 default:
3537 abort ();
3538 }
3539
3540 if (!GC_NILP (obj))
3541 mark_object (&obj);
3542 }
3543 }
3544
3545
3546 /* Mark Lisp objects referenced from the address range START..END. */
3547
3548 static void
3549 mark_memory (start, end)
3550 void *start, *end;
3551 {
3552 Lisp_Object *p;
3553 void **pp;
3554
3555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3556 nzombies = 0;
3557 #endif
3558
3559 /* Make START the pointer to the start of the memory region,
3560 if it isn't already. */
3561 if (end < start)
3562 {
3563 void *tem = start;
3564 start = end;
3565 end = tem;
3566 }
3567
3568 /* Mark Lisp_Objects. */
3569 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3570 mark_maybe_object (*p);
3571
3572 /* Mark Lisp data pointed to. This is necessary because, in some
3573 situations, the C compiler optimizes Lisp objects away, so that
3574 only a pointer to them remains. Example:
3575
3576 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3577 ()
3578 {
3579 Lisp_Object obj = build_string ("test");
3580 struct Lisp_String *s = XSTRING (obj);
3581 Fgarbage_collect ();
3582 fprintf (stderr, "test `%s'\n", s->data);
3583 return Qnil;
3584 }
3585
3586 Here, `obj' isn't really used, and the compiler optimizes it
3587 away. The only reference to the life string is through the
3588 pointer `s'. */
3589
3590 for (pp = (void **) start; (void *) pp < end; ++pp)
3591 mark_maybe_pointer (*pp);
3592 }
3593
3594 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3595 the GCC system configuration. In gcc 3.2, the only systems for
3596 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3597 by others?) and ns32k-pc532-min. */
3598
3599 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3600
3601 static int setjmp_tested_p, longjmps_done;
3602
3603 #define SETJMP_WILL_LIKELY_WORK "\
3604 \n\
3605 Emacs garbage collector has been changed to use conservative stack\n\
3606 marking. Emacs has determined that the method it uses to do the\n\
3607 marking will likely work on your system, but this isn't sure.\n\
3608 \n\
3609 If you are a system-programmer, or can get the help of a local wizard\n\
3610 who is, please take a look at the function mark_stack in alloc.c, and\n\
3611 verify that the methods used are appropriate for your system.\n\
3612 \n\
3613 Please mail the result to <emacs-devel@gnu.org>.\n\
3614 "
3615
3616 #define SETJMP_WILL_NOT_WORK "\
3617 \n\
3618 Emacs garbage collector has been changed to use conservative stack\n\
3619 marking. Emacs has determined that the default method it uses to do the\n\
3620 marking will not work on your system. We will need a system-dependent\n\
3621 solution for your system.\n\
3622 \n\
3623 Please take a look at the function mark_stack in alloc.c, and\n\
3624 try to find a way to make it work on your system.\n\
3625 \n\
3626 Note that you may get false negatives, depending on the compiler.\n\
3627 In particular, you need to use -O with GCC for this test.\n\
3628 \n\
3629 Please mail the result to <emacs-devel@gnu.org>.\n\
3630 "
3631
3632
3633 /* Perform a quick check if it looks like setjmp saves registers in a
3634 jmp_buf. Print a message to stderr saying so. When this test
3635 succeeds, this is _not_ a proof that setjmp is sufficient for
3636 conservative stack marking. Only the sources or a disassembly
3637 can prove that. */
3638
3639 static void
3640 test_setjmp ()
3641 {
3642 char buf[10];
3643 register int x;
3644 jmp_buf jbuf;
3645 int result = 0;
3646
3647 /* Arrange for X to be put in a register. */
3648 sprintf (buf, "1");
3649 x = strlen (buf);
3650 x = 2 * x - 1;
3651
3652 setjmp (jbuf);
3653 if (longjmps_done == 1)
3654 {
3655 /* Came here after the longjmp at the end of the function.
3656
3657 If x == 1, the longjmp has restored the register to its
3658 value before the setjmp, and we can hope that setjmp
3659 saves all such registers in the jmp_buf, although that
3660 isn't sure.
3661
3662 For other values of X, either something really strange is
3663 taking place, or the setjmp just didn't save the register. */
3664
3665 if (x == 1)
3666 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3667 else
3668 {
3669 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3670 exit (1);
3671 }
3672 }
3673
3674 ++longjmps_done;
3675 x = 2;
3676 if (longjmps_done == 1)
3677 longjmp (jbuf, 1);
3678 }
3679
3680 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3681
3682
3683 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3684
3685 /* Abort if anything GCPRO'd doesn't survive the GC. */
3686
3687 static void
3688 check_gcpros ()
3689 {
3690 struct gcpro *p;
3691 int i;
3692
3693 for (p = gcprolist; p; p = p->next)
3694 for (i = 0; i < p->nvars; ++i)
3695 if (!survives_gc_p (p->var[i]))
3696 abort ();
3697 }
3698
3699 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3700
3701 static void
3702 dump_zombies ()
3703 {
3704 int i;
3705
3706 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3707 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3708 {
3709 fprintf (stderr, " %d = ", i);
3710 debug_print (zombies[i]);
3711 }
3712 }
3713
3714 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3715
3716
3717 /* Mark live Lisp objects on the C stack.
3718
3719 There are several system-dependent problems to consider when
3720 porting this to new architectures:
3721
3722 Processor Registers
3723
3724 We have to mark Lisp objects in CPU registers that can hold local
3725 variables or are used to pass parameters.
3726
3727 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3728 something that either saves relevant registers on the stack, or
3729 calls mark_maybe_object passing it each register's contents.
3730
3731 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3732 implementation assumes that calling setjmp saves registers we need
3733 to see in a jmp_buf which itself lies on the stack. This doesn't
3734 have to be true! It must be verified for each system, possibly
3735 by taking a look at the source code of setjmp.
3736
3737 Stack Layout
3738
3739 Architectures differ in the way their processor stack is organized.
3740 For example, the stack might look like this
3741
3742 +----------------+
3743 | Lisp_Object | size = 4
3744 +----------------+
3745 | something else | size = 2
3746 +----------------+
3747 | Lisp_Object | size = 4
3748 +----------------+
3749 | ... |
3750
3751 In such a case, not every Lisp_Object will be aligned equally. To
3752 find all Lisp_Object on the stack it won't be sufficient to walk
3753 the stack in steps of 4 bytes. Instead, two passes will be
3754 necessary, one starting at the start of the stack, and a second
3755 pass starting at the start of the stack + 2. Likewise, if the
3756 minimal alignment of Lisp_Objects on the stack is 1, four passes
3757 would be necessary, each one starting with one byte more offset
3758 from the stack start.
3759
3760 The current code assumes by default that Lisp_Objects are aligned
3761 equally on the stack. */
3762
3763 static void
3764 mark_stack ()
3765 {
3766 int i;
3767 jmp_buf j;
3768 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3769 void *end;
3770
3771 /* This trick flushes the register windows so that all the state of
3772 the process is contained in the stack. */
3773 #ifdef sparc
3774 asm ("ta 3");
3775 #endif
3776
3777 /* Save registers that we need to see on the stack. We need to see
3778 registers used to hold register variables and registers used to
3779 pass parameters. */
3780 #ifdef GC_SAVE_REGISTERS_ON_STACK
3781 GC_SAVE_REGISTERS_ON_STACK (end);
3782 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3783
3784 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3785 setjmp will definitely work, test it
3786 and print a message with the result
3787 of the test. */
3788 if (!setjmp_tested_p)
3789 {
3790 setjmp_tested_p = 1;
3791 test_setjmp ();
3792 }
3793 #endif /* GC_SETJMP_WORKS */
3794
3795 setjmp (j);
3796 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3797 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3798
3799 /* This assumes that the stack is a contiguous region in memory. If
3800 that's not the case, something has to be done here to iterate
3801 over the stack segments. */
3802 #ifndef GC_LISP_OBJECT_ALIGNMENT
3803 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
3804 #endif
3805 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
3806 mark_memory ((char *) stack_base + i, end);
3807
3808 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3809 check_gcpros ();
3810 #endif
3811 }
3812
3813
3814 #endif /* GC_MARK_STACK != 0 */
3815
3816
3817 \f
3818 /***********************************************************************
3819 Pure Storage Management
3820 ***********************************************************************/
3821
3822 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3823 pointer to it. TYPE is the Lisp type for which the memory is
3824 allocated. TYPE < 0 means it's not used for a Lisp object.
3825
3826 If store_pure_type_info is set and TYPE is >= 0, the type of
3827 the allocated object is recorded in pure_types. */
3828
3829 static POINTER_TYPE *
3830 pure_alloc (size, type)
3831 size_t size;
3832 int type;
3833 {
3834 size_t nbytes;
3835 POINTER_TYPE *result;
3836 char *beg;
3837
3838 again:
3839 beg = purebeg;
3840 result = (POINTER_TYPE *) (beg + pure_bytes_used);
3841 nbytes = ALIGN (size, sizeof (EMACS_INT));
3842
3843 /* Give Lisp_Floats an extra alignment. */
3844 if (type == Lisp_Float)
3845 {
3846 POINTER_TYPE *orig = result;
3847 size_t alignment;
3848 #if defined __GNUC__ && __GNUC__ >= 2
3849 alignment = __alignof (struct Lisp_Float);
3850 #else
3851 alignment = sizeof (struct Lisp_Float);
3852 #endif
3853 /* Make sure result is correctly aligned for a
3854 Lisp_Float, which might need stricter alignment than
3855 EMACS_INT. */
3856 result = (POINTER_TYPE *)ALIGN((EMACS_UINT)result, alignment);
3857 nbytes += (char *)result - (char *)orig;
3858 }
3859
3860 if (pure_bytes_used + nbytes > pure_size)
3861 {
3862 /* Don't allocate a large amount here,
3863 because it might get mmap'd and then its address
3864 might not be usable. */
3865 purebeg = (char *) xmalloc (10000);
3866 pure_size = 10000;
3867 pure_bytes_used_before_overflow += pure_bytes_used;
3868 pure_bytes_used = 0;
3869 goto again;
3870 }
3871
3872 pure_bytes_used += nbytes;
3873 return result;
3874 }
3875
3876
3877 /* Print a warning if PURESIZE is too small. */
3878
3879 void
3880 check_pure_size ()
3881 {
3882 if (pure_bytes_used_before_overflow)
3883 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
3884 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
3885 }
3886
3887
3888 /* Return a string allocated in pure space. DATA is a buffer holding
3889 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3890 non-zero means make the result string multibyte.
3891
3892 Must get an error if pure storage is full, since if it cannot hold
3893 a large string it may be able to hold conses that point to that
3894 string; then the string is not protected from gc. */
3895
3896 Lisp_Object
3897 make_pure_string (data, nchars, nbytes, multibyte)
3898 char *data;
3899 int nchars, nbytes;
3900 int multibyte;
3901 {
3902 Lisp_Object string;
3903 struct Lisp_String *s;
3904
3905 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
3906 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
3907 s->size = nchars;
3908 s->size_byte = multibyte ? nbytes : -1;
3909 bcopy (data, s->data, nbytes);
3910 s->data[nbytes] = '\0';
3911 s->intervals = NULL_INTERVAL;
3912 XSETSTRING (string, s);
3913 return string;
3914 }
3915
3916
3917 /* Return a cons allocated from pure space. Give it pure copies
3918 of CAR as car and CDR as cdr. */
3919
3920 Lisp_Object
3921 pure_cons (car, cdr)
3922 Lisp_Object car, cdr;
3923 {
3924 register Lisp_Object new;
3925 struct Lisp_Cons *p;
3926
3927 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
3928 XSETCONS (new, p);
3929 XSETCAR (new, Fpurecopy (car));
3930 XSETCDR (new, Fpurecopy (cdr));
3931 return new;
3932 }
3933
3934
3935 /* Value is a float object with value NUM allocated from pure space. */
3936
3937 Lisp_Object
3938 make_pure_float (num)
3939 double num;
3940 {
3941 register Lisp_Object new;
3942 struct Lisp_Float *p;
3943
3944 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
3945 XSETFLOAT (new, p);
3946 XFLOAT_DATA (new) = num;
3947 return new;
3948 }
3949
3950
3951 /* Return a vector with room for LEN Lisp_Objects allocated from
3952 pure space. */
3953
3954 Lisp_Object
3955 make_pure_vector (len)
3956 EMACS_INT len;
3957 {
3958 Lisp_Object new;
3959 struct Lisp_Vector *p;
3960 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
3961
3962 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
3963 XSETVECTOR (new, p);
3964 XVECTOR (new)->size = len;
3965 return new;
3966 }
3967
3968
3969 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3970 doc: /* Make a copy of OBJECT in pure storage.
3971 Recursively copies contents of vectors and cons cells.
3972 Does not copy symbols. Copies strings without text properties. */)
3973 (obj)
3974 register Lisp_Object obj;
3975 {
3976 if (NILP (Vpurify_flag))
3977 return obj;
3978
3979 if (PURE_POINTER_P (XPNTR (obj)))
3980 return obj;
3981
3982 if (CONSP (obj))
3983 return pure_cons (XCAR (obj), XCDR (obj));
3984 else if (FLOATP (obj))
3985 return make_pure_float (XFLOAT_DATA (obj));
3986 else if (STRINGP (obj))
3987 return make_pure_string (SDATA (obj), SCHARS (obj),
3988 SBYTES (obj),
3989 STRING_MULTIBYTE (obj));
3990 else if (COMPILEDP (obj) || VECTORP (obj))
3991 {
3992 register struct Lisp_Vector *vec;
3993 register int i, size;
3994
3995 size = XVECTOR (obj)->size;
3996 if (size & PSEUDOVECTOR_FLAG)
3997 size &= PSEUDOVECTOR_SIZE_MASK;
3998 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3999 for (i = 0; i < size; i++)
4000 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4001 if (COMPILEDP (obj))
4002 XSETCOMPILED (obj, vec);
4003 else
4004 XSETVECTOR (obj, vec);
4005 return obj;
4006 }
4007 else if (MARKERP (obj))
4008 error ("Attempt to copy a marker to pure storage");
4009
4010 return obj;
4011 }
4012
4013
4014 \f
4015 /***********************************************************************
4016 Protection from GC
4017 ***********************************************************************/
4018
4019 /* Put an entry in staticvec, pointing at the variable with address
4020 VARADDRESS. */
4021
4022 void
4023 staticpro (varaddress)
4024 Lisp_Object *varaddress;
4025 {
4026 staticvec[staticidx++] = varaddress;
4027 if (staticidx >= NSTATICS)
4028 abort ();
4029 }
4030
4031 struct catchtag
4032 {
4033 Lisp_Object tag;
4034 Lisp_Object val;
4035 struct catchtag *next;
4036 };
4037
4038 struct backtrace
4039 {
4040 struct backtrace *next;
4041 Lisp_Object *function;
4042 Lisp_Object *args; /* Points to vector of args. */
4043 int nargs; /* Length of vector. */
4044 /* If nargs is UNEVALLED, args points to slot holding list of
4045 unevalled args. */
4046 char evalargs;
4047 };
4048
4049
4050 \f
4051 /***********************************************************************
4052 Protection from GC
4053 ***********************************************************************/
4054
4055 /* Temporarily prevent garbage collection. */
4056
4057 int
4058 inhibit_garbage_collection ()
4059 {
4060 int count = SPECPDL_INDEX ();
4061 int nbits = min (VALBITS, BITS_PER_INT);
4062
4063 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4064 return count;
4065 }
4066
4067
4068 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4069 doc: /* Reclaim storage for Lisp objects no longer needed.
4070 Returns info on amount of space in use:
4071 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4072 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4073 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4074 (USED-STRINGS . FREE-STRINGS))
4075 Garbage collection happens automatically if you cons more than
4076 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4077 ()
4078 {
4079 register struct gcpro *tail;
4080 register struct specbinding *bind;
4081 struct catchtag *catch;
4082 struct handler *handler;
4083 register struct backtrace *backlist;
4084 char stack_top_variable;
4085 register int i;
4086 int message_p;
4087 Lisp_Object total[8];
4088 int count = SPECPDL_INDEX ();
4089
4090 /* Can't GC if pure storage overflowed because we can't determine
4091 if something is a pure object or not. */
4092 if (pure_bytes_used_before_overflow)
4093 return Qnil;
4094
4095 /* In case user calls debug_print during GC,
4096 don't let that cause a recursive GC. */
4097 consing_since_gc = 0;
4098
4099 /* Save what's currently displayed in the echo area. */
4100 message_p = push_message ();
4101 record_unwind_protect (pop_message_unwind, Qnil);
4102
4103 /* Save a copy of the contents of the stack, for debugging. */
4104 #if MAX_SAVE_STACK > 0
4105 if (NILP (Vpurify_flag))
4106 {
4107 i = &stack_top_variable - stack_bottom;
4108 if (i < 0) i = -i;
4109 if (i < MAX_SAVE_STACK)
4110 {
4111 if (stack_copy == 0)
4112 stack_copy = (char *) xmalloc (stack_copy_size = i);
4113 else if (stack_copy_size < i)
4114 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4115 if (stack_copy)
4116 {
4117 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4118 bcopy (stack_bottom, stack_copy, i);
4119 else
4120 bcopy (&stack_top_variable, stack_copy, i);
4121 }
4122 }
4123 }
4124 #endif /* MAX_SAVE_STACK > 0 */
4125
4126 if (garbage_collection_messages)
4127 message1_nolog ("Garbage collecting...");
4128
4129 BLOCK_INPUT;
4130
4131 shrink_regexp_cache ();
4132
4133 /* Don't keep undo information around forever. */
4134 {
4135 register struct buffer *nextb = all_buffers;
4136
4137 while (nextb)
4138 {
4139 /* If a buffer's undo list is Qt, that means that undo is
4140 turned off in that buffer. Calling truncate_undo_list on
4141 Qt tends to return NULL, which effectively turns undo back on.
4142 So don't call truncate_undo_list if undo_list is Qt. */
4143 if (! EQ (nextb->undo_list, Qt))
4144 nextb->undo_list
4145 = truncate_undo_list (nextb->undo_list, undo_limit,
4146 undo_strong_limit);
4147
4148 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4149 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4150 {
4151 /* If a buffer's gap size is more than 10% of the buffer
4152 size, or larger than 2000 bytes, then shrink it
4153 accordingly. Keep a minimum size of 20 bytes. */
4154 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4155
4156 if (nextb->text->gap_size > size)
4157 {
4158 struct buffer *save_current = current_buffer;
4159 current_buffer = nextb;
4160 make_gap (-(nextb->text->gap_size - size));
4161 current_buffer = save_current;
4162 }
4163 }
4164
4165 nextb = nextb->next;
4166 }
4167 }
4168
4169 gc_in_progress = 1;
4170
4171 /* clear_marks (); */
4172
4173 /* Mark all the special slots that serve as the roots of accessibility.
4174
4175 Usually the special slots to mark are contained in particular structures.
4176 Then we know no slot is marked twice because the structures don't overlap.
4177 In some cases, the structures point to the slots to be marked.
4178 For these, we use MARKBIT to avoid double marking of the slot. */
4179
4180 for (i = 0; i < staticidx; i++)
4181 mark_object (staticvec[i]);
4182
4183 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4184 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4185 mark_stack ();
4186 #else
4187 for (tail = gcprolist; tail; tail = tail->next)
4188 for (i = 0; i < tail->nvars; i++)
4189 if (!XMARKBIT (tail->var[i]))
4190 {
4191 /* Explicit casting prevents compiler warning about
4192 discarding the `volatile' qualifier. */
4193 mark_object ((Lisp_Object *)&tail->var[i]);
4194 XMARK (tail->var[i]);
4195 }
4196 #endif
4197
4198 mark_byte_stack ();
4199 for (bind = specpdl; bind != specpdl_ptr; bind++)
4200 {
4201 mark_object (&bind->symbol);
4202 mark_object (&bind->old_value);
4203 }
4204 for (catch = catchlist; catch; catch = catch->next)
4205 {
4206 mark_object (&catch->tag);
4207 mark_object (&catch->val);
4208 }
4209 for (handler = handlerlist; handler; handler = handler->next)
4210 {
4211 mark_object (&handler->handler);
4212 mark_object (&handler->var);
4213 }
4214 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4215 {
4216 if (!XMARKBIT (*backlist->function))
4217 {
4218 mark_object (backlist->function);
4219 XMARK (*backlist->function);
4220 }
4221 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4222 i = 0;
4223 else
4224 i = backlist->nargs - 1;
4225 for (; i >= 0; i--)
4226 if (!XMARKBIT (backlist->args[i]))
4227 {
4228 mark_object (&backlist->args[i]);
4229 XMARK (backlist->args[i]);
4230 }
4231 }
4232 mark_kboards ();
4233
4234 /* Look thru every buffer's undo list
4235 for elements that update markers that were not marked,
4236 and delete them. */
4237 {
4238 register struct buffer *nextb = all_buffers;
4239
4240 while (nextb)
4241 {
4242 /* If a buffer's undo list is Qt, that means that undo is
4243 turned off in that buffer. Calling truncate_undo_list on
4244 Qt tends to return NULL, which effectively turns undo back on.
4245 So don't call truncate_undo_list if undo_list is Qt. */
4246 if (! EQ (nextb->undo_list, Qt))
4247 {
4248 Lisp_Object tail, prev;
4249 tail = nextb->undo_list;
4250 prev = Qnil;
4251 while (CONSP (tail))
4252 {
4253 if (GC_CONSP (XCAR (tail))
4254 && GC_MARKERP (XCAR (XCAR (tail)))
4255 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4256 {
4257 if (NILP (prev))
4258 nextb->undo_list = tail = XCDR (tail);
4259 else
4260 {
4261 tail = XCDR (tail);
4262 XSETCDR (prev, tail);
4263 }
4264 }
4265 else
4266 {
4267 prev = tail;
4268 tail = XCDR (tail);
4269 }
4270 }
4271 }
4272
4273 nextb = nextb->next;
4274 }
4275 }
4276
4277 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4278 mark_stack ();
4279 #endif
4280
4281 gc_sweep ();
4282
4283 /* Clear the mark bits that we set in certain root slots. */
4284
4285 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4286 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4287 for (tail = gcprolist; tail; tail = tail->next)
4288 for (i = 0; i < tail->nvars; i++)
4289 XUNMARK (tail->var[i]);
4290 #endif
4291
4292 unmark_byte_stack ();
4293 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4294 {
4295 XUNMARK (*backlist->function);
4296 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4297 i = 0;
4298 else
4299 i = backlist->nargs - 1;
4300 for (; i >= 0; i--)
4301 XUNMARK (backlist->args[i]);
4302 }
4303 XUNMARK (buffer_defaults.name);
4304 XUNMARK (buffer_local_symbols.name);
4305
4306 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4307 dump_zombies ();
4308 #endif
4309
4310 UNBLOCK_INPUT;
4311
4312 /* clear_marks (); */
4313 gc_in_progress = 0;
4314
4315 consing_since_gc = 0;
4316 if (gc_cons_threshold < 10000)
4317 gc_cons_threshold = 10000;
4318
4319 if (garbage_collection_messages)
4320 {
4321 if (message_p || minibuf_level > 0)
4322 restore_message ();
4323 else
4324 message1_nolog ("Garbage collecting...done");
4325 }
4326
4327 unbind_to (count, Qnil);
4328
4329 total[0] = Fcons (make_number (total_conses),
4330 make_number (total_free_conses));
4331 total[1] = Fcons (make_number (total_symbols),
4332 make_number (total_free_symbols));
4333 total[2] = Fcons (make_number (total_markers),
4334 make_number (total_free_markers));
4335 total[3] = make_number (total_string_size);
4336 total[4] = make_number (total_vector_size);
4337 total[5] = Fcons (make_number (total_floats),
4338 make_number (total_free_floats));
4339 total[6] = Fcons (make_number (total_intervals),
4340 make_number (total_free_intervals));
4341 total[7] = Fcons (make_number (total_strings),
4342 make_number (total_free_strings));
4343
4344 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4345 {
4346 /* Compute average percentage of zombies. */
4347 double nlive = 0;
4348
4349 for (i = 0; i < 7; ++i)
4350 nlive += XFASTINT (XCAR (total[i]));
4351
4352 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4353 max_live = max (nlive, max_live);
4354 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4355 max_zombies = max (nzombies, max_zombies);
4356 ++ngcs;
4357 }
4358 #endif
4359
4360 if (!NILP (Vpost_gc_hook))
4361 {
4362 int count = inhibit_garbage_collection ();
4363 safe_run_hooks (Qpost_gc_hook);
4364 unbind_to (count, Qnil);
4365 }
4366
4367 return Flist (sizeof total / sizeof *total, total);
4368 }
4369
4370
4371 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4372 only interesting objects referenced from glyphs are strings. */
4373
4374 static void
4375 mark_glyph_matrix (matrix)
4376 struct glyph_matrix *matrix;
4377 {
4378 struct glyph_row *row = matrix->rows;
4379 struct glyph_row *end = row + matrix->nrows;
4380
4381 for (; row < end; ++row)
4382 if (row->enabled_p)
4383 {
4384 int area;
4385 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4386 {
4387 struct glyph *glyph = row->glyphs[area];
4388 struct glyph *end_glyph = glyph + row->used[area];
4389
4390 for (; glyph < end_glyph; ++glyph)
4391 if (GC_STRINGP (glyph->object)
4392 && !STRING_MARKED_P (XSTRING (glyph->object)))
4393 mark_object (&glyph->object);
4394 }
4395 }
4396 }
4397
4398
4399 /* Mark Lisp faces in the face cache C. */
4400
4401 static void
4402 mark_face_cache (c)
4403 struct face_cache *c;
4404 {
4405 if (c)
4406 {
4407 int i, j;
4408 for (i = 0; i < c->used; ++i)
4409 {
4410 struct face *face = FACE_FROM_ID (c->f, i);
4411
4412 if (face)
4413 {
4414 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4415 mark_object (&face->lface[j]);
4416 }
4417 }
4418 }
4419 }
4420
4421
4422 #ifdef HAVE_WINDOW_SYSTEM
4423
4424 /* Mark Lisp objects in image IMG. */
4425
4426 static void
4427 mark_image (img)
4428 struct image *img;
4429 {
4430 mark_object (&img->spec);
4431
4432 if (!NILP (img->data.lisp_val))
4433 mark_object (&img->data.lisp_val);
4434 }
4435
4436
4437 /* Mark Lisp objects in image cache of frame F. It's done this way so
4438 that we don't have to include xterm.h here. */
4439
4440 static void
4441 mark_image_cache (f)
4442 struct frame *f;
4443 {
4444 forall_images_in_image_cache (f, mark_image);
4445 }
4446
4447 #endif /* HAVE_X_WINDOWS */
4448
4449
4450 \f
4451 /* Mark reference to a Lisp_Object.
4452 If the object referred to has not been seen yet, recursively mark
4453 all the references contained in it. */
4454
4455 #define LAST_MARKED_SIZE 500
4456 Lisp_Object *last_marked[LAST_MARKED_SIZE];
4457 int last_marked_index;
4458
4459 /* For debugging--call abort when we cdr down this many
4460 links of a list, in mark_object. In debugging,
4461 the call to abort will hit a breakpoint.
4462 Normally this is zero and the check never goes off. */
4463 int mark_object_loop_halt;
4464
4465 void
4466 mark_object (argptr)
4467 Lisp_Object *argptr;
4468 {
4469 Lisp_Object *objptr = argptr;
4470 register Lisp_Object obj;
4471 #ifdef GC_CHECK_MARKED_OBJECTS
4472 void *po;
4473 struct mem_node *m;
4474 #endif
4475 int cdr_count = 0;
4476
4477 loop:
4478 obj = *objptr;
4479 loop2:
4480 XUNMARK (obj);
4481
4482 if (PURE_POINTER_P (XPNTR (obj)))
4483 return;
4484
4485 last_marked[last_marked_index++] = objptr;
4486 if (last_marked_index == LAST_MARKED_SIZE)
4487 last_marked_index = 0;
4488
4489 /* Perform some sanity checks on the objects marked here. Abort if
4490 we encounter an object we know is bogus. This increases GC time
4491 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4492 #ifdef GC_CHECK_MARKED_OBJECTS
4493
4494 po = (void *) XPNTR (obj);
4495
4496 /* Check that the object pointed to by PO is known to be a Lisp
4497 structure allocated from the heap. */
4498 #define CHECK_ALLOCATED() \
4499 do { \
4500 m = mem_find (po); \
4501 if (m == MEM_NIL) \
4502 abort (); \
4503 } while (0)
4504
4505 /* Check that the object pointed to by PO is live, using predicate
4506 function LIVEP. */
4507 #define CHECK_LIVE(LIVEP) \
4508 do { \
4509 if (!LIVEP (m, po)) \
4510 abort (); \
4511 } while (0)
4512
4513 /* Check both of the above conditions. */
4514 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4515 do { \
4516 CHECK_ALLOCATED (); \
4517 CHECK_LIVE (LIVEP); \
4518 } while (0) \
4519
4520 #else /* not GC_CHECK_MARKED_OBJECTS */
4521
4522 #define CHECK_ALLOCATED() (void) 0
4523 #define CHECK_LIVE(LIVEP) (void) 0
4524 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4525
4526 #endif /* not GC_CHECK_MARKED_OBJECTS */
4527
4528 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4529 {
4530 case Lisp_String:
4531 {
4532 register struct Lisp_String *ptr = XSTRING (obj);
4533 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4534 MARK_INTERVAL_TREE (ptr->intervals);
4535 MARK_STRING (ptr);
4536 #ifdef GC_CHECK_STRING_BYTES
4537 /* Check that the string size recorded in the string is the
4538 same as the one recorded in the sdata structure. */
4539 CHECK_STRING_BYTES (ptr);
4540 #endif /* GC_CHECK_STRING_BYTES */
4541 }
4542 break;
4543
4544 case Lisp_Vectorlike:
4545 #ifdef GC_CHECK_MARKED_OBJECTS
4546 m = mem_find (po);
4547 if (m == MEM_NIL && !GC_SUBRP (obj)
4548 && po != &buffer_defaults
4549 && po != &buffer_local_symbols)
4550 abort ();
4551 #endif /* GC_CHECK_MARKED_OBJECTS */
4552
4553 if (GC_BUFFERP (obj))
4554 {
4555 if (!XMARKBIT (XBUFFER (obj)->name))
4556 {
4557 #ifdef GC_CHECK_MARKED_OBJECTS
4558 if (po != &buffer_defaults && po != &buffer_local_symbols)
4559 {
4560 struct buffer *b;
4561 for (b = all_buffers; b && b != po; b = b->next)
4562 ;
4563 if (b == NULL)
4564 abort ();
4565 }
4566 #endif /* GC_CHECK_MARKED_OBJECTS */
4567 mark_buffer (obj);
4568 }
4569 }
4570 else if (GC_SUBRP (obj))
4571 break;
4572 else if (GC_COMPILEDP (obj))
4573 /* We could treat this just like a vector, but it is better to
4574 save the COMPILED_CONSTANTS element for last and avoid
4575 recursion there. */
4576 {
4577 register struct Lisp_Vector *ptr = XVECTOR (obj);
4578 register EMACS_INT size = ptr->size;
4579 register int i;
4580
4581 if (size & ARRAY_MARK_FLAG)
4582 break; /* Already marked */
4583
4584 CHECK_LIVE (live_vector_p);
4585 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4586 size &= PSEUDOVECTOR_SIZE_MASK;
4587 for (i = 0; i < size; i++) /* and then mark its elements */
4588 {
4589 if (i != COMPILED_CONSTANTS)
4590 mark_object (&ptr->contents[i]);
4591 }
4592 /* This cast should be unnecessary, but some Mips compiler complains
4593 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4594 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
4595 goto loop;
4596 }
4597 else if (GC_FRAMEP (obj))
4598 {
4599 register struct frame *ptr = XFRAME (obj);
4600 register EMACS_INT size = ptr->size;
4601
4602 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4603 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4604
4605 CHECK_LIVE (live_vector_p);
4606 mark_object (&ptr->name);
4607 mark_object (&ptr->icon_name);
4608 mark_object (&ptr->title);
4609 mark_object (&ptr->focus_frame);
4610 mark_object (&ptr->selected_window);
4611 mark_object (&ptr->minibuffer_window);
4612 mark_object (&ptr->param_alist);
4613 mark_object (&ptr->scroll_bars);
4614 mark_object (&ptr->condemned_scroll_bars);
4615 mark_object (&ptr->menu_bar_items);
4616 mark_object (&ptr->face_alist);
4617 mark_object (&ptr->menu_bar_vector);
4618 mark_object (&ptr->buffer_predicate);
4619 mark_object (&ptr->buffer_list);
4620 mark_object (&ptr->menu_bar_window);
4621 mark_object (&ptr->tool_bar_window);
4622 mark_face_cache (ptr->face_cache);
4623 #ifdef HAVE_WINDOW_SYSTEM
4624 mark_image_cache (ptr);
4625 mark_object (&ptr->tool_bar_items);
4626 mark_object (&ptr->desired_tool_bar_string);
4627 mark_object (&ptr->current_tool_bar_string);
4628 #endif /* HAVE_WINDOW_SYSTEM */
4629 }
4630 else if (GC_BOOL_VECTOR_P (obj))
4631 {
4632 register struct Lisp_Vector *ptr = XVECTOR (obj);
4633
4634 if (ptr->size & ARRAY_MARK_FLAG)
4635 break; /* Already marked */
4636 CHECK_LIVE (live_vector_p);
4637 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4638 }
4639 else if (GC_WINDOWP (obj))
4640 {
4641 register struct Lisp_Vector *ptr = XVECTOR (obj);
4642 struct window *w = XWINDOW (obj);
4643 register EMACS_INT size = ptr->size;
4644 register int i;
4645
4646 /* Stop if already marked. */
4647 if (size & ARRAY_MARK_FLAG)
4648 break;
4649
4650 /* Mark it. */
4651 CHECK_LIVE (live_vector_p);
4652 ptr->size |= ARRAY_MARK_FLAG;
4653
4654 /* There is no Lisp data above The member CURRENT_MATRIX in
4655 struct WINDOW. Stop marking when that slot is reached. */
4656 for (i = 0;
4657 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4658 i++)
4659 mark_object (&ptr->contents[i]);
4660
4661 /* Mark glyphs for leaf windows. Marking window matrices is
4662 sufficient because frame matrices use the same glyph
4663 memory. */
4664 if (NILP (w->hchild)
4665 && NILP (w->vchild)
4666 && w->current_matrix)
4667 {
4668 mark_glyph_matrix (w->current_matrix);
4669 mark_glyph_matrix (w->desired_matrix);
4670 }
4671 }
4672 else if (GC_HASH_TABLE_P (obj))
4673 {
4674 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4675 EMACS_INT size = h->size;
4676
4677 /* Stop if already marked. */
4678 if (size & ARRAY_MARK_FLAG)
4679 break;
4680
4681 /* Mark it. */
4682 CHECK_LIVE (live_vector_p);
4683 h->size |= ARRAY_MARK_FLAG;
4684
4685 /* Mark contents. */
4686 /* Do not mark next_free or next_weak.
4687 Being in the next_weak chain
4688 should not keep the hash table alive.
4689 No need to mark `count' since it is an integer. */
4690 mark_object (&h->test);
4691 mark_object (&h->weak);
4692 mark_object (&h->rehash_size);
4693 mark_object (&h->rehash_threshold);
4694 mark_object (&h->hash);
4695 mark_object (&h->next);
4696 mark_object (&h->index);
4697 mark_object (&h->user_hash_function);
4698 mark_object (&h->user_cmp_function);
4699
4700 /* If hash table is not weak, mark all keys and values.
4701 For weak tables, mark only the vector. */
4702 if (GC_NILP (h->weak))
4703 mark_object (&h->key_and_value);
4704 else
4705 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4706
4707 }
4708 else
4709 {
4710 register struct Lisp_Vector *ptr = XVECTOR (obj);
4711 register EMACS_INT size = ptr->size;
4712 register int i;
4713
4714 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4715 CHECK_LIVE (live_vector_p);
4716 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4717 if (size & PSEUDOVECTOR_FLAG)
4718 size &= PSEUDOVECTOR_SIZE_MASK;
4719
4720 for (i = 0; i < size; i++) /* and then mark its elements */
4721 mark_object (&ptr->contents[i]);
4722 }
4723 break;
4724
4725 case Lisp_Symbol:
4726 {
4727 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4728 struct Lisp_Symbol *ptrx;
4729
4730 if (XMARKBIT (ptr->plist)) break;
4731 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4732 XMARK (ptr->plist);
4733 mark_object ((Lisp_Object *) &ptr->value);
4734 mark_object (&ptr->function);
4735 mark_object (&ptr->plist);
4736
4737 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4738 MARK_STRING (XSTRING (ptr->xname));
4739 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4740
4741 /* Note that we do not mark the obarray of the symbol.
4742 It is safe not to do so because nothing accesses that
4743 slot except to check whether it is nil. */
4744 ptr = ptr->next;
4745 if (ptr)
4746 {
4747 /* For the benefit of the last_marked log. */
4748 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4749 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4750 XSETSYMBOL (obj, ptrx);
4751 /* We can't goto loop here because *objptr doesn't contain an
4752 actual Lisp_Object with valid datatype field. */
4753 goto loop2;
4754 }
4755 }
4756 break;
4757
4758 case Lisp_Misc:
4759 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4760 switch (XMISCTYPE (obj))
4761 {
4762 case Lisp_Misc_Marker:
4763 XMARK (XMARKER (obj)->chain);
4764 /* DO NOT mark thru the marker's chain.
4765 The buffer's markers chain does not preserve markers from gc;
4766 instead, markers are removed from the chain when freed by gc. */
4767 break;
4768
4769 case Lisp_Misc_Buffer_Local_Value:
4770 case Lisp_Misc_Some_Buffer_Local_Value:
4771 {
4772 register struct Lisp_Buffer_Local_Value *ptr
4773 = XBUFFER_LOCAL_VALUE (obj);
4774 if (XMARKBIT (ptr->realvalue)) break;
4775 XMARK (ptr->realvalue);
4776 /* If the cdr is nil, avoid recursion for the car. */
4777 if (EQ (ptr->cdr, Qnil))
4778 {
4779 objptr = &ptr->realvalue;
4780 goto loop;
4781 }
4782 mark_object (&ptr->realvalue);
4783 mark_object (&ptr->buffer);
4784 mark_object (&ptr->frame);
4785 objptr = &ptr->cdr;
4786 goto loop;
4787 }
4788
4789 case Lisp_Misc_Intfwd:
4790 case Lisp_Misc_Boolfwd:
4791 case Lisp_Misc_Objfwd:
4792 case Lisp_Misc_Buffer_Objfwd:
4793 case Lisp_Misc_Kboard_Objfwd:
4794 /* Don't bother with Lisp_Buffer_Objfwd,
4795 since all markable slots in current buffer marked anyway. */
4796 /* Don't need to do Lisp_Objfwd, since the places they point
4797 are protected with staticpro. */
4798 break;
4799
4800 case Lisp_Misc_Overlay:
4801 {
4802 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4803 if (!XMARKBIT (ptr->plist))
4804 {
4805 XMARK (ptr->plist);
4806 mark_object (&ptr->start);
4807 mark_object (&ptr->end);
4808 objptr = &ptr->plist;
4809 goto loop;
4810 }
4811 }
4812 break;
4813
4814 default:
4815 abort ();
4816 }
4817 break;
4818
4819 case Lisp_Cons:
4820 {
4821 register struct Lisp_Cons *ptr = XCONS (obj);
4822 if (XMARKBIT (ptr->car)) break;
4823 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4824 XMARK (ptr->car);
4825 /* If the cdr is nil, avoid recursion for the car. */
4826 if (EQ (ptr->cdr, Qnil))
4827 {
4828 objptr = &ptr->car;
4829 cdr_count = 0;
4830 goto loop;
4831 }
4832 mark_object (&ptr->car);
4833 objptr = &ptr->cdr;
4834 cdr_count++;
4835 if (cdr_count == mark_object_loop_halt)
4836 abort ();
4837 goto loop;
4838 }
4839
4840 case Lisp_Float:
4841 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4842 XMARK (XFLOAT (obj)->type);
4843 break;
4844
4845 case Lisp_Int:
4846 break;
4847
4848 default:
4849 abort ();
4850 }
4851
4852 #undef CHECK_LIVE
4853 #undef CHECK_ALLOCATED
4854 #undef CHECK_ALLOCATED_AND_LIVE
4855 }
4856
4857 /* Mark the pointers in a buffer structure. */
4858
4859 static void
4860 mark_buffer (buf)
4861 Lisp_Object buf;
4862 {
4863 register struct buffer *buffer = XBUFFER (buf);
4864 register Lisp_Object *ptr;
4865 Lisp_Object base_buffer;
4866
4867 /* This is the buffer's markbit */
4868 mark_object (&buffer->name);
4869 XMARK (buffer->name);
4870
4871 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4872
4873 if (CONSP (buffer->undo_list))
4874 {
4875 Lisp_Object tail;
4876 tail = buffer->undo_list;
4877
4878 while (CONSP (tail))
4879 {
4880 register struct Lisp_Cons *ptr = XCONS (tail);
4881
4882 if (XMARKBIT (ptr->car))
4883 break;
4884 XMARK (ptr->car);
4885 if (GC_CONSP (ptr->car)
4886 && ! XMARKBIT (XCAR (ptr->car))
4887 && GC_MARKERP (XCAR (ptr->car)))
4888 {
4889 XMARK (XCAR_AS_LVALUE (ptr->car));
4890 mark_object (&XCDR_AS_LVALUE (ptr->car));
4891 }
4892 else
4893 mark_object (&ptr->car);
4894
4895 if (CONSP (ptr->cdr))
4896 tail = ptr->cdr;
4897 else
4898 break;
4899 }
4900
4901 mark_object (&XCDR_AS_LVALUE (tail));
4902 }
4903 else
4904 mark_object (&buffer->undo_list);
4905
4906 for (ptr = &buffer->name + 1;
4907 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4908 ptr++)
4909 mark_object (ptr);
4910
4911 /* If this is an indirect buffer, mark its base buffer. */
4912 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4913 {
4914 XSETBUFFER (base_buffer, buffer->base_buffer);
4915 mark_buffer (base_buffer);
4916 }
4917 }
4918
4919
4920 /* Mark the pointers in the kboard objects. */
4921
4922 static void
4923 mark_kboards ()
4924 {
4925 KBOARD *kb;
4926 Lisp_Object *p;
4927 for (kb = all_kboards; kb; kb = kb->next_kboard)
4928 {
4929 if (kb->kbd_macro_buffer)
4930 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4931 mark_object (p);
4932 mark_object (&kb->Voverriding_terminal_local_map);
4933 mark_object (&kb->Vlast_command);
4934 mark_object (&kb->Vreal_last_command);
4935 mark_object (&kb->Vprefix_arg);
4936 mark_object (&kb->Vlast_prefix_arg);
4937 mark_object (&kb->kbd_queue);
4938 mark_object (&kb->defining_kbd_macro);
4939 mark_object (&kb->Vlast_kbd_macro);
4940 mark_object (&kb->Vsystem_key_alist);
4941 mark_object (&kb->system_key_syms);
4942 mark_object (&kb->Vdefault_minibuffer_frame);
4943 mark_object (&kb->echo_string);
4944 }
4945 }
4946
4947
4948 /* Value is non-zero if OBJ will survive the current GC because it's
4949 either marked or does not need to be marked to survive. */
4950
4951 int
4952 survives_gc_p (obj)
4953 Lisp_Object obj;
4954 {
4955 int survives_p;
4956
4957 switch (XGCTYPE (obj))
4958 {
4959 case Lisp_Int:
4960 survives_p = 1;
4961 break;
4962
4963 case Lisp_Symbol:
4964 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4965 break;
4966
4967 case Lisp_Misc:
4968 switch (XMISCTYPE (obj))
4969 {
4970 case Lisp_Misc_Marker:
4971 survives_p = XMARKBIT (obj);
4972 break;
4973
4974 case Lisp_Misc_Buffer_Local_Value:
4975 case Lisp_Misc_Some_Buffer_Local_Value:
4976 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4977 break;
4978
4979 case Lisp_Misc_Intfwd:
4980 case Lisp_Misc_Boolfwd:
4981 case Lisp_Misc_Objfwd:
4982 case Lisp_Misc_Buffer_Objfwd:
4983 case Lisp_Misc_Kboard_Objfwd:
4984 survives_p = 1;
4985 break;
4986
4987 case Lisp_Misc_Overlay:
4988 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4989 break;
4990
4991 default:
4992 abort ();
4993 }
4994 break;
4995
4996 case Lisp_String:
4997 {
4998 struct Lisp_String *s = XSTRING (obj);
4999 survives_p = STRING_MARKED_P (s);
5000 }
5001 break;
5002
5003 case Lisp_Vectorlike:
5004 if (GC_BUFFERP (obj))
5005 survives_p = XMARKBIT (XBUFFER (obj)->name);
5006 else if (GC_SUBRP (obj))
5007 survives_p = 1;
5008 else
5009 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
5010 break;
5011
5012 case Lisp_Cons:
5013 survives_p = XMARKBIT (XCAR (obj));
5014 break;
5015
5016 case Lisp_Float:
5017 survives_p = XMARKBIT (XFLOAT (obj)->type);
5018 break;
5019
5020 default:
5021 abort ();
5022 }
5023
5024 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5025 }
5026
5027
5028 \f
5029 /* Sweep: find all structures not marked, and free them. */
5030
5031 static void
5032 gc_sweep ()
5033 {
5034 /* Remove or mark entries in weak hash tables.
5035 This must be done before any object is unmarked. */
5036 sweep_weak_hash_tables ();
5037
5038 sweep_strings ();
5039 #ifdef GC_CHECK_STRING_BYTES
5040 if (!noninteractive)
5041 check_string_bytes (1);
5042 #endif
5043
5044 /* Put all unmarked conses on free list */
5045 {
5046 register struct cons_block *cblk;
5047 struct cons_block **cprev = &cons_block;
5048 register int lim = cons_block_index;
5049 register int num_free = 0, num_used = 0;
5050
5051 cons_free_list = 0;
5052
5053 for (cblk = cons_block; cblk; cblk = *cprev)
5054 {
5055 register int i;
5056 int this_free = 0;
5057 for (i = 0; i < lim; i++)
5058 if (!XMARKBIT (cblk->conses[i].car))
5059 {
5060 this_free++;
5061 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5062 cons_free_list = &cblk->conses[i];
5063 #if GC_MARK_STACK
5064 cons_free_list->car = Vdead;
5065 #endif
5066 }
5067 else
5068 {
5069 num_used++;
5070 XUNMARK (cblk->conses[i].car);
5071 }
5072 lim = CONS_BLOCK_SIZE;
5073 /* If this block contains only free conses and we have already
5074 seen more than two blocks worth of free conses then deallocate
5075 this block. */
5076 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5077 {
5078 *cprev = cblk->next;
5079 /* Unhook from the free list. */
5080 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5081 lisp_free (cblk);
5082 n_cons_blocks--;
5083 }
5084 else
5085 {
5086 num_free += this_free;
5087 cprev = &cblk->next;
5088 }
5089 }
5090 total_conses = num_used;
5091 total_free_conses = num_free;
5092 }
5093
5094 /* Put all unmarked floats on free list */
5095 {
5096 register struct float_block *fblk;
5097 struct float_block **fprev = &float_block;
5098 register int lim = float_block_index;
5099 register int num_free = 0, num_used = 0;
5100
5101 float_free_list = 0;
5102
5103 for (fblk = float_block; fblk; fblk = *fprev)
5104 {
5105 register int i;
5106 int this_free = 0;
5107 for (i = 0; i < lim; i++)
5108 if (!XMARKBIT (fblk->floats[i].type))
5109 {
5110 this_free++;
5111 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5112 float_free_list = &fblk->floats[i];
5113 #if GC_MARK_STACK
5114 float_free_list->type = Vdead;
5115 #endif
5116 }
5117 else
5118 {
5119 num_used++;
5120 XUNMARK (fblk->floats[i].type);
5121 }
5122 lim = FLOAT_BLOCK_SIZE;
5123 /* If this block contains only free floats and we have already
5124 seen more than two blocks worth of free floats then deallocate
5125 this block. */
5126 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5127 {
5128 *fprev = fblk->next;
5129 /* Unhook from the free list. */
5130 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5131 lisp_free (fblk);
5132 n_float_blocks--;
5133 }
5134 else
5135 {
5136 num_free += this_free;
5137 fprev = &fblk->next;
5138 }
5139 }
5140 total_floats = num_used;
5141 total_free_floats = num_free;
5142 }
5143
5144 /* Put all unmarked intervals on free list */
5145 {
5146 register struct interval_block *iblk;
5147 struct interval_block **iprev = &interval_block;
5148 register int lim = interval_block_index;
5149 register int num_free = 0, num_used = 0;
5150
5151 interval_free_list = 0;
5152
5153 for (iblk = interval_block; iblk; iblk = *iprev)
5154 {
5155 register int i;
5156 int this_free = 0;
5157
5158 for (i = 0; i < lim; i++)
5159 {
5160 if (! XMARKBIT (iblk->intervals[i].plist))
5161 {
5162 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5163 interval_free_list = &iblk->intervals[i];
5164 this_free++;
5165 }
5166 else
5167 {
5168 num_used++;
5169 XUNMARK (iblk->intervals[i].plist);
5170 }
5171 }
5172 lim = INTERVAL_BLOCK_SIZE;
5173 /* If this block contains only free intervals and we have already
5174 seen more than two blocks worth of free intervals then
5175 deallocate this block. */
5176 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5177 {
5178 *iprev = iblk->next;
5179 /* Unhook from the free list. */
5180 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5181 lisp_free (iblk);
5182 n_interval_blocks--;
5183 }
5184 else
5185 {
5186 num_free += this_free;
5187 iprev = &iblk->next;
5188 }
5189 }
5190 total_intervals = num_used;
5191 total_free_intervals = num_free;
5192 }
5193
5194 /* Put all unmarked symbols on free list */
5195 {
5196 register struct symbol_block *sblk;
5197 struct symbol_block **sprev = &symbol_block;
5198 register int lim = symbol_block_index;
5199 register int num_free = 0, num_used = 0;
5200
5201 symbol_free_list = NULL;
5202
5203 for (sblk = symbol_block; sblk; sblk = *sprev)
5204 {
5205 int this_free = 0;
5206 struct Lisp_Symbol *sym = sblk->symbols;
5207 struct Lisp_Symbol *end = sym + lim;
5208
5209 for (; sym < end; ++sym)
5210 {
5211 /* Check if the symbol was created during loadup. In such a case
5212 it might be pointed to by pure bytecode which we don't trace,
5213 so we conservatively assume that it is live. */
5214 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5215
5216 if (!XMARKBIT (sym->plist) && !pure_p)
5217 {
5218 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5219 symbol_free_list = sym;
5220 #if GC_MARK_STACK
5221 symbol_free_list->function = Vdead;
5222 #endif
5223 ++this_free;
5224 }
5225 else
5226 {
5227 ++num_used;
5228 if (!pure_p)
5229 UNMARK_STRING (XSTRING (sym->xname));
5230 XUNMARK (sym->plist);
5231 }
5232 }
5233
5234 lim = SYMBOL_BLOCK_SIZE;
5235 /* If this block contains only free symbols and we have already
5236 seen more than two blocks worth of free symbols then deallocate
5237 this block. */
5238 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5239 {
5240 *sprev = sblk->next;
5241 /* Unhook from the free list. */
5242 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5243 lisp_free (sblk);
5244 n_symbol_blocks--;
5245 }
5246 else
5247 {
5248 num_free += this_free;
5249 sprev = &sblk->next;
5250 }
5251 }
5252 total_symbols = num_used;
5253 total_free_symbols = num_free;
5254 }
5255
5256 /* Put all unmarked misc's on free list.
5257 For a marker, first unchain it from the buffer it points into. */
5258 {
5259 register struct marker_block *mblk;
5260 struct marker_block **mprev = &marker_block;
5261 register int lim = marker_block_index;
5262 register int num_free = 0, num_used = 0;
5263
5264 marker_free_list = 0;
5265
5266 for (mblk = marker_block; mblk; mblk = *mprev)
5267 {
5268 register int i;
5269 int this_free = 0;
5270 EMACS_INT already_free = -1;
5271
5272 for (i = 0; i < lim; i++)
5273 {
5274 Lisp_Object *markword;
5275 switch (mblk->markers[i].u_marker.type)
5276 {
5277 case Lisp_Misc_Marker:
5278 markword = &mblk->markers[i].u_marker.chain;
5279 break;
5280 case Lisp_Misc_Buffer_Local_Value:
5281 case Lisp_Misc_Some_Buffer_Local_Value:
5282 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
5283 break;
5284 case Lisp_Misc_Overlay:
5285 markword = &mblk->markers[i].u_overlay.plist;
5286 break;
5287 case Lisp_Misc_Free:
5288 /* If the object was already free, keep it
5289 on the free list. */
5290 markword = (Lisp_Object *) &already_free;
5291 break;
5292 default:
5293 markword = 0;
5294 break;
5295 }
5296 if (markword && !XMARKBIT (*markword))
5297 {
5298 Lisp_Object tem;
5299 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5300 {
5301 /* tem1 avoids Sun compiler bug */
5302 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
5303 XSETMARKER (tem, tem1);
5304 unchain_marker (tem);
5305 }
5306 /* Set the type of the freed object to Lisp_Misc_Free.
5307 We could leave the type alone, since nobody checks it,
5308 but this might catch bugs faster. */
5309 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5310 mblk->markers[i].u_free.chain = marker_free_list;
5311 marker_free_list = &mblk->markers[i];
5312 this_free++;
5313 }
5314 else
5315 {
5316 num_used++;
5317 if (markword)
5318 XUNMARK (*markword);
5319 }
5320 }
5321 lim = MARKER_BLOCK_SIZE;
5322 /* If this block contains only free markers and we have already
5323 seen more than two blocks worth of free markers then deallocate
5324 this block. */
5325 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5326 {
5327 *mprev = mblk->next;
5328 /* Unhook from the free list. */
5329 marker_free_list = mblk->markers[0].u_free.chain;
5330 lisp_free (mblk);
5331 n_marker_blocks--;
5332 }
5333 else
5334 {
5335 num_free += this_free;
5336 mprev = &mblk->next;
5337 }
5338 }
5339
5340 total_markers = num_used;
5341 total_free_markers = num_free;
5342 }
5343
5344 /* Free all unmarked buffers */
5345 {
5346 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5347
5348 while (buffer)
5349 if (!XMARKBIT (buffer->name))
5350 {
5351 if (prev)
5352 prev->next = buffer->next;
5353 else
5354 all_buffers = buffer->next;
5355 next = buffer->next;
5356 lisp_free (buffer);
5357 buffer = next;
5358 }
5359 else
5360 {
5361 XUNMARK (buffer->name);
5362 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5363 prev = buffer, buffer = buffer->next;
5364 }
5365 }
5366
5367 /* Free all unmarked vectors */
5368 {
5369 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5370 total_vector_size = 0;
5371
5372 while (vector)
5373 if (!(vector->size & ARRAY_MARK_FLAG))
5374 {
5375 if (prev)
5376 prev->next = vector->next;
5377 else
5378 all_vectors = vector->next;
5379 next = vector->next;
5380 lisp_free (vector);
5381 n_vectors--;
5382 vector = next;
5383
5384 }
5385 else
5386 {
5387 vector->size &= ~ARRAY_MARK_FLAG;
5388 if (vector->size & PSEUDOVECTOR_FLAG)
5389 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5390 else
5391 total_vector_size += vector->size;
5392 prev = vector, vector = vector->next;
5393 }
5394 }
5395
5396 #ifdef GC_CHECK_STRING_BYTES
5397 if (!noninteractive)
5398 check_string_bytes (1);
5399 #endif
5400 }
5401
5402
5403
5404 \f
5405 /* Debugging aids. */
5406
5407 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5408 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5409 This may be helpful in debugging Emacs's memory usage.
5410 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5411 ()
5412 {
5413 Lisp_Object end;
5414
5415 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5416
5417 return end;
5418 }
5419
5420 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5421 doc: /* Return a list of counters that measure how much consing there has been.
5422 Each of these counters increments for a certain kind of object.
5423 The counters wrap around from the largest positive integer to zero.
5424 Garbage collection does not decrease them.
5425 The elements of the value are as follows:
5426 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5427 All are in units of 1 = one object consed
5428 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5429 objects consed.
5430 MISCS include overlays, markers, and some internal types.
5431 Frames, windows, buffers, and subprocesses count as vectors
5432 (but the contents of a buffer's text do not count here). */)
5433 ()
5434 {
5435 Lisp_Object consed[8];
5436
5437 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5438 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5439 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5440 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5441 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5442 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5443 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5444 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5445
5446 return Flist (8, consed);
5447 }
5448
5449 int suppress_checking;
5450 void
5451 die (msg, file, line)
5452 const char *msg;
5453 const char *file;
5454 int line;
5455 {
5456 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5457 file, line, msg);
5458 abort ();
5459 }
5460 \f
5461 /* Initialization */
5462
5463 void
5464 init_alloc_once ()
5465 {
5466 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5467 purebeg = PUREBEG;
5468 pure_size = PURESIZE;
5469 pure_bytes_used = 0;
5470 pure_bytes_used_before_overflow = 0;
5471
5472 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5473 mem_init ();
5474 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5475 #endif
5476
5477 all_vectors = 0;
5478 ignore_warnings = 1;
5479 #ifdef DOUG_LEA_MALLOC
5480 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5481 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5482 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5483 #endif
5484 init_strings ();
5485 init_cons ();
5486 init_symbol ();
5487 init_marker ();
5488 init_float ();
5489 init_intervals ();
5490
5491 #ifdef REL_ALLOC
5492 malloc_hysteresis = 32;
5493 #else
5494 malloc_hysteresis = 0;
5495 #endif
5496
5497 spare_memory = (char *) malloc (SPARE_MEMORY);
5498
5499 ignore_warnings = 0;
5500 gcprolist = 0;
5501 byte_stack_list = 0;
5502 staticidx = 0;
5503 consing_since_gc = 0;
5504 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5505 #ifdef VIRT_ADDR_VARIES
5506 malloc_sbrk_unused = 1<<22; /* A large number */
5507 malloc_sbrk_used = 100000; /* as reasonable as any number */
5508 #endif /* VIRT_ADDR_VARIES */
5509 }
5510
5511 void
5512 init_alloc ()
5513 {
5514 gcprolist = 0;
5515 byte_stack_list = 0;
5516 #if GC_MARK_STACK
5517 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5518 setjmp_tested_p = longjmps_done = 0;
5519 #endif
5520 #endif
5521 }
5522
5523 void
5524 syms_of_alloc ()
5525 {
5526 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5527 doc: /* *Number of bytes of consing between garbage collections.
5528 Garbage collection can happen automatically once this many bytes have been
5529 allocated since the last garbage collection. All data types count.
5530
5531 Garbage collection happens automatically only when `eval' is called.
5532
5533 By binding this temporarily to a large number, you can effectively
5534 prevent garbage collection during a part of the program. */);
5535
5536 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5537 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5538
5539 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5540 doc: /* Number of cons cells that have been consed so far. */);
5541
5542 DEFVAR_INT ("floats-consed", &floats_consed,
5543 doc: /* Number of floats that have been consed so far. */);
5544
5545 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5546 doc: /* Number of vector cells that have been consed so far. */);
5547
5548 DEFVAR_INT ("symbols-consed", &symbols_consed,
5549 doc: /* Number of symbols that have been consed so far. */);
5550
5551 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5552 doc: /* Number of string characters that have been consed so far. */);
5553
5554 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5555 doc: /* Number of miscellaneous objects that have been consed so far. */);
5556
5557 DEFVAR_INT ("intervals-consed", &intervals_consed,
5558 doc: /* Number of intervals that have been consed so far. */);
5559
5560 DEFVAR_INT ("strings-consed", &strings_consed,
5561 doc: /* Number of strings that have been consed so far. */);
5562
5563 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5564 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5565 This means that certain objects should be allocated in shared (pure) space. */);
5566
5567 DEFVAR_INT ("undo-limit", &undo_limit,
5568 doc: /* Keep no more undo information once it exceeds this size.
5569 This limit is applied when garbage collection happens.
5570 The size is counted as the number of bytes occupied,
5571 which includes both saved text and other data. */);
5572 undo_limit = 20000;
5573
5574 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5575 doc: /* Don't keep more than this much size of undo information.
5576 A command which pushes past this size is itself forgotten.
5577 This limit is applied when garbage collection happens.
5578 The size is counted as the number of bytes occupied,
5579 which includes both saved text and other data. */);
5580 undo_strong_limit = 30000;
5581
5582 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5583 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5584 garbage_collection_messages = 0;
5585
5586 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5587 doc: /* Hook run after garbage collection has finished. */);
5588 Vpost_gc_hook = Qnil;
5589 Qpost_gc_hook = intern ("post-gc-hook");
5590 staticpro (&Qpost_gc_hook);
5591
5592 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5593 doc: /* Precomputed `signal' argument for memory-full error. */);
5594 /* We build this in advance because if we wait until we need it, we might
5595 not be able to allocate the memory to hold it. */
5596 Vmemory_signal_data
5597 = list2 (Qerror,
5598 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5599
5600 DEFVAR_LISP ("memory-full", &Vmemory_full,
5601 doc: /* Non-nil means we are handling a memory-full error. */);
5602 Vmemory_full = Qnil;
5603
5604 staticpro (&Qgc_cons_threshold);
5605 Qgc_cons_threshold = intern ("gc-cons-threshold");
5606
5607 staticpro (&Qchar_table_extra_slots);
5608 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5609
5610 defsubr (&Scons);
5611 defsubr (&Slist);
5612 defsubr (&Svector);
5613 defsubr (&Smake_byte_code);
5614 defsubr (&Smake_list);
5615 defsubr (&Smake_vector);
5616 defsubr (&Smake_char_table);
5617 defsubr (&Smake_string);
5618 defsubr (&Smake_bool_vector);
5619 defsubr (&Smake_symbol);
5620 defsubr (&Smake_marker);
5621 defsubr (&Spurecopy);
5622 defsubr (&Sgarbage_collect);
5623 defsubr (&Smemory_limit);
5624 defsubr (&Smemory_use_counts);
5625
5626 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5627 defsubr (&Sgc_status);
5628 #endif
5629 }