Port better to POSIX hosts lacking _setjmp.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2012 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 /* NOTES:
21
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
24
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
27
28 Need to call *_left_hook when buffer is killed.
29
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
32
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
35 to GC them.
36
37 */
38
39
40 #include <config.h>
41
42 #define INTERVALS_INLINE EXTERN_INLINE
43
44 #include <intprops.h>
45 #include "lisp.h"
46 #include "intervals.h"
47 #include "character.h"
48 #include "buffer.h"
49 #include "puresize.h"
50 #include "keyboard.h"
51 #include "keymap.h"
52
53 /* Test for membership, allowing for t (actually any non-cons) to mean the
54 universal set. */
55
56 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
57
58 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
59 static INTERVAL merge_interval_right (INTERVAL);
60 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
61 \f
62 /* Utility functions for intervals. */
63
64 /* Use these functions to set Lisp_Object
65 or pointer slots of struct interval. */
66
67 static inline void
68 set_interval_object (INTERVAL i, Lisp_Object obj)
69 {
70 eassert (BUFFERP (obj) || STRINGP (obj));
71 i->up_obj = 1;
72 i->up.obj = obj;
73 }
74
75 static inline void
76 set_interval_left (INTERVAL i, INTERVAL left)
77 {
78 i->left = left;
79 }
80
81 static inline void
82 set_interval_right (INTERVAL i, INTERVAL right)
83 {
84 i->right = right;
85 }
86
87 /* Make the parent of D be whatever the parent of S is, regardless
88 of the type. This is used when balancing an interval tree. */
89
90 static inline void
91 copy_interval_parent (INTERVAL d, INTERVAL s)
92 {
93 d->up = s->up;
94 d->up_obj = s->up_obj;
95 }
96
97 /* Create the root interval of some object, a buffer or string. */
98
99 INTERVAL
100 create_root_interval (Lisp_Object parent)
101 {
102 INTERVAL new;
103
104 CHECK_IMPURE (parent);
105
106 new = make_interval ();
107
108 if (BUFFERP (parent))
109 {
110 new->total_length = (BUF_Z (XBUFFER (parent))
111 - BUF_BEG (XBUFFER (parent)));
112 eassert (0 <= TOTAL_LENGTH (new));
113 set_buffer_intervals (XBUFFER (parent), new);
114 new->position = BEG;
115 }
116 else if (STRINGP (parent))
117 {
118 new->total_length = SCHARS (parent);
119 eassert (0 <= TOTAL_LENGTH (new));
120 set_string_intervals (parent, new);
121 new->position = 0;
122 }
123
124 set_interval_object (new, parent);
125
126 return new;
127 }
128
129 /* Make the interval TARGET have exactly the properties of SOURCE */
130
131 void
132 copy_properties (register INTERVAL source, register INTERVAL target)
133 {
134 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
135 return;
136
137 COPY_INTERVAL_CACHE (source, target);
138 set_interval_plist (target, Fcopy_sequence (source->plist));
139 }
140
141 /* Merge the properties of interval SOURCE into the properties
142 of interval TARGET. That is to say, each property in SOURCE
143 is added to TARGET if TARGET has no such property as yet. */
144
145 static void
146 merge_properties (register INTERVAL source, register INTERVAL target)
147 {
148 register Lisp_Object o, sym, val;
149
150 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
151 return;
152
153 MERGE_INTERVAL_CACHE (source, target);
154
155 o = source->plist;
156 while (CONSP (o))
157 {
158 sym = XCAR (o);
159 o = XCDR (o);
160 CHECK_CONS (o);
161
162 val = target->plist;
163 while (CONSP (val) && !EQ (XCAR (val), sym))
164 {
165 val = XCDR (val);
166 if (!CONSP (val))
167 break;
168 val = XCDR (val);
169 }
170
171 if (NILP (val))
172 {
173 val = XCAR (o);
174 set_interval_plist (target, Fcons (sym, Fcons (val, target->plist)));
175 }
176 o = XCDR (o);
177 }
178 }
179
180 /* Return true if the two intervals have the same properties. */
181
182 bool
183 intervals_equal (INTERVAL i0, INTERVAL i1)
184 {
185 Lisp_Object i0_cdr, i0_sym;
186 Lisp_Object i1_cdr, i1_val;
187
188 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
189 return 1;
190
191 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
192 return 0;
193
194 i0_cdr = i0->plist;
195 i1_cdr = i1->plist;
196 while (CONSP (i0_cdr) && CONSP (i1_cdr))
197 {
198 i0_sym = XCAR (i0_cdr);
199 i0_cdr = XCDR (i0_cdr);
200 if (!CONSP (i0_cdr))
201 return 0;
202 i1_val = i1->plist;
203 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
204 {
205 i1_val = XCDR (i1_val);
206 if (!CONSP (i1_val))
207 return 0;
208 i1_val = XCDR (i1_val);
209 }
210
211 /* i0 has something i1 doesn't. */
212 if (EQ (i1_val, Qnil))
213 return 0;
214
215 /* i0 and i1 both have sym, but it has different values in each. */
216 if (!CONSP (i1_val)
217 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
218 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
219 return 0;
220
221 i0_cdr = XCDR (i0_cdr);
222
223 i1_cdr = XCDR (i1_cdr);
224 if (!CONSP (i1_cdr))
225 return 0;
226 i1_cdr = XCDR (i1_cdr);
227 }
228
229 /* Lengths of the two plists were equal. */
230 return (NILP (i0_cdr) && NILP (i1_cdr));
231 }
232 \f
233
234 /* Traverse an interval tree TREE, performing FUNCTION on each node.
235 No guarantee is made about the order of traversal.
236 Pass FUNCTION two args: an interval, and ARG. */
237
238 void
239 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
240 {
241 /* Minimize stack usage. */
242 while (tree)
243 {
244 (*function) (tree, arg);
245 if (!tree->right)
246 tree = tree->left;
247 else
248 {
249 traverse_intervals_noorder (tree->left, function, arg);
250 tree = tree->right;
251 }
252 }
253 }
254
255 /* Traverse an interval tree TREE, performing FUNCTION on each node.
256 Pass FUNCTION two args: an interval, and ARG. */
257
258 void
259 traverse_intervals (INTERVAL tree, ptrdiff_t position,
260 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
261 {
262 while (tree)
263 {
264 traverse_intervals (tree->left, position, function, arg);
265 position += LEFT_TOTAL_LENGTH (tree);
266 tree->position = position;
267 (*function) (tree, arg);
268 position += LENGTH (tree); tree = tree->right;
269 }
270 }
271 \f
272 #if 0
273
274 static int icount;
275 static int idepth;
276 static int zero_length;
277
278 /* These functions are temporary, for debugging purposes only. */
279
280 INTERVAL search_interval, found_interval;
281
282 void
283 check_for_interval (INTERVAL i)
284 {
285 if (i == search_interval)
286 {
287 found_interval = i;
288 icount++;
289 }
290 }
291
292 INTERVAL
293 search_for_interval (INTERVAL i, INTERVAL tree)
294 {
295 icount = 0;
296 search_interval = i;
297 found_interval = NULL;
298 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
299 return found_interval;
300 }
301
302 static void
303 inc_interval_count (INTERVAL i)
304 {
305 icount++;
306 if (LENGTH (i) == 0)
307 zero_length++;
308 if (depth > idepth)
309 idepth = depth;
310 }
311
312 int
313 count_intervals (INTERVAL i)
314 {
315 icount = 0;
316 idepth = 0;
317 zero_length = 0;
318 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
319
320 return icount;
321 }
322
323 static INTERVAL
324 root_interval (INTERVAL interval)
325 {
326 register INTERVAL i = interval;
327
328 while (! ROOT_INTERVAL_P (i))
329 i = INTERVAL_PARENT (i);
330
331 return i;
332 }
333 #endif
334 \f
335 /* Assuming that a left child exists, perform the following operation:
336
337 A B
338 / \ / \
339 B => A
340 / \ / \
341 c c
342 */
343
344 static inline INTERVAL
345 rotate_right (INTERVAL interval)
346 {
347 INTERVAL i;
348 INTERVAL B = interval->left;
349 ptrdiff_t old_total = interval->total_length;
350
351 /* Deal with any Parent of A; make it point to B. */
352 if (! ROOT_INTERVAL_P (interval))
353 {
354 if (AM_LEFT_CHILD (interval))
355 set_interval_left (INTERVAL_PARENT (interval), B);
356 else
357 set_interval_right (INTERVAL_PARENT (interval), B);
358 }
359 copy_interval_parent (B, interval);
360
361 /* Make B the parent of A */
362 i = B->right;
363 set_interval_right (B, interval);
364 set_interval_parent (interval, B);
365
366 /* Make A point to c */
367 set_interval_left (interval, i);
368 if (i)
369 set_interval_parent (i, interval);
370
371 /* A's total length is decreased by the length of B and its left child. */
372 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
373 eassert (0 <= TOTAL_LENGTH (interval));
374
375 /* B must have the same total length of A. */
376 B->total_length = old_total;
377 eassert (0 <= TOTAL_LENGTH (B));
378
379 return B;
380 }
381
382 /* Assuming that a right child exists, perform the following operation:
383
384 A B
385 / \ / \
386 B => A
387 / \ / \
388 c c
389 */
390
391 static inline INTERVAL
392 rotate_left (INTERVAL interval)
393 {
394 INTERVAL i;
395 INTERVAL B = interval->right;
396 ptrdiff_t old_total = interval->total_length;
397
398 /* Deal with any parent of A; make it point to B. */
399 if (! ROOT_INTERVAL_P (interval))
400 {
401 if (AM_LEFT_CHILD (interval))
402 set_interval_left (INTERVAL_PARENT (interval), B);
403 else
404 set_interval_right (INTERVAL_PARENT (interval), B);
405 }
406 copy_interval_parent (B, interval);
407
408 /* Make B the parent of A */
409 i = B->left;
410 set_interval_left (B, interval);
411 set_interval_parent (interval, B);
412
413 /* Make A point to c */
414 set_interval_right (interval, i);
415 if (i)
416 set_interval_parent (i, interval);
417
418 /* A's total length is decreased by the length of B and its right child. */
419 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
420 eassert (0 <= TOTAL_LENGTH (interval));
421
422 /* B must have the same total length of A. */
423 B->total_length = old_total;
424 eassert (0 <= TOTAL_LENGTH (B));
425
426 return B;
427 }
428 \f
429 /* Balance an interval tree with the assumption that the subtrees
430 themselves are already balanced. */
431
432 static INTERVAL
433 balance_an_interval (INTERVAL i)
434 {
435 register ptrdiff_t old_diff, new_diff;
436
437 while (1)
438 {
439 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
440 if (old_diff > 0)
441 {
442 /* Since the left child is longer, there must be one. */
443 new_diff = i->total_length - i->left->total_length
444 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
445 if (eabs (new_diff) >= old_diff)
446 break;
447 i = rotate_right (i);
448 balance_an_interval (i->right);
449 }
450 else if (old_diff < 0)
451 {
452 /* Since the right child is longer, there must be one. */
453 new_diff = i->total_length - i->right->total_length
454 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
455 if (eabs (new_diff) >= -old_diff)
456 break;
457 i = rotate_left (i);
458 balance_an_interval (i->left);
459 }
460 else
461 break;
462 }
463 return i;
464 }
465
466 /* Balance INTERVAL, potentially stuffing it back into its parent
467 Lisp Object. */
468
469 static inline INTERVAL
470 balance_possible_root_interval (INTERVAL interval)
471 {
472 Lisp_Object parent;
473 bool have_parent = 0;
474
475 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
476 return interval;
477
478 if (INTERVAL_HAS_OBJECT (interval))
479 {
480 have_parent = 1;
481 GET_INTERVAL_OBJECT (parent, interval);
482 }
483 interval = balance_an_interval (interval);
484
485 if (have_parent)
486 {
487 if (BUFFERP (parent))
488 set_buffer_intervals (XBUFFER (parent), interval);
489 else if (STRINGP (parent))
490 set_string_intervals (parent, interval);
491 }
492
493 return interval;
494 }
495
496 /* Balance the interval tree TREE. Balancing is by weight
497 (the amount of text). */
498
499 static INTERVAL
500 balance_intervals_internal (register INTERVAL tree)
501 {
502 /* Balance within each side. */
503 if (tree->left)
504 balance_intervals_internal (tree->left);
505 if (tree->right)
506 balance_intervals_internal (tree->right);
507 return balance_an_interval (tree);
508 }
509
510 /* Advertised interface to balance intervals. */
511
512 INTERVAL
513 balance_intervals (INTERVAL tree)
514 {
515 return tree ? balance_intervals_internal (tree) : NULL;
516 }
517
518 /* Rebalance text properties of B. */
519
520 static void
521 buffer_balance_intervals (struct buffer *b)
522 {
523 INTERVAL i;
524
525 eassert (b != NULL);
526 i = buffer_intervals (b);
527 if (i)
528 set_buffer_intervals (b, balance_an_interval (i));
529 }
530
531 /* Split INTERVAL into two pieces, starting the second piece at
532 character position OFFSET (counting from 0), relative to INTERVAL.
533 INTERVAL becomes the left-hand piece, and the right-hand piece
534 (second, lexicographically) is returned.
535
536 The size and position fields of the two intervals are set based upon
537 those of the original interval. The property list of the new interval
538 is reset, thus it is up to the caller to do the right thing with the
539 result.
540
541 Note that this does not change the position of INTERVAL; if it is a root,
542 it is still a root after this operation. */
543
544 INTERVAL
545 split_interval_right (INTERVAL interval, ptrdiff_t offset)
546 {
547 INTERVAL new = make_interval ();
548 ptrdiff_t position = interval->position;
549 ptrdiff_t new_length = LENGTH (interval) - offset;
550
551 new->position = position + offset;
552 set_interval_parent (new, interval);
553
554 if (NULL_RIGHT_CHILD (interval))
555 {
556 set_interval_right (interval, new);
557 new->total_length = new_length;
558 eassert (0 <= TOTAL_LENGTH (new));
559 }
560 else
561 {
562 /* Insert the new node between INTERVAL and its right child. */
563 set_interval_right (new, interval->right);
564 set_interval_parent (interval->right, new);
565 set_interval_right (interval, new);
566 new->total_length = new_length + new->right->total_length;
567 eassert (0 <= TOTAL_LENGTH (new));
568 balance_an_interval (new);
569 }
570
571 balance_possible_root_interval (interval);
572
573 return new;
574 }
575
576 /* Split INTERVAL into two pieces, starting the second piece at
577 character position OFFSET (counting from 0), relative to INTERVAL.
578 INTERVAL becomes the right-hand piece, and the left-hand piece
579 (first, lexicographically) is returned.
580
581 The size and position fields of the two intervals are set based upon
582 those of the original interval. The property list of the new interval
583 is reset, thus it is up to the caller to do the right thing with the
584 result.
585
586 Note that this does not change the position of INTERVAL; if it is a root,
587 it is still a root after this operation. */
588
589 INTERVAL
590 split_interval_left (INTERVAL interval, ptrdiff_t offset)
591 {
592 INTERVAL new = make_interval ();
593 ptrdiff_t new_length = offset;
594
595 new->position = interval->position;
596 interval->position = interval->position + offset;
597 set_interval_parent (new, interval);
598
599 if (NULL_LEFT_CHILD (interval))
600 {
601 set_interval_left (interval, new);
602 new->total_length = new_length;
603 eassert (0 <= TOTAL_LENGTH (new));
604 }
605 else
606 {
607 /* Insert the new node between INTERVAL and its left child. */
608 set_interval_left (new, interval->left);
609 set_interval_parent (new->left, new);
610 set_interval_left (interval, new);
611 new->total_length = new_length + new->left->total_length;
612 eassert (0 <= TOTAL_LENGTH (new));
613 balance_an_interval (new);
614 }
615
616 balance_possible_root_interval (interval);
617
618 return new;
619 }
620 \f
621 /* Return the proper position for the first character
622 described by the interval tree SOURCE.
623 This is 1 if the parent is a buffer,
624 0 if the parent is a string or if there is no parent.
625
626 Don't use this function on an interval which is the child
627 of another interval! */
628
629 static int
630 interval_start_pos (INTERVAL source)
631 {
632 Lisp_Object parent;
633
634 if (!source)
635 return 0;
636
637 if (! INTERVAL_HAS_OBJECT (source))
638 return 0;
639 GET_INTERVAL_OBJECT (parent, source);
640 if (BUFFERP (parent))
641 return BUF_BEG (XBUFFER (parent));
642 return 0;
643 }
644
645 /* Find the interval containing text position POSITION in the text
646 represented by the interval tree TREE. POSITION is a buffer
647 position (starting from 1) or a string index (starting from 0).
648 If POSITION is at the end of the buffer or string,
649 return the interval containing the last character.
650
651 The `position' field, which is a cache of an interval's position,
652 is updated in the interval found. Other functions (e.g., next_interval)
653 will update this cache based on the result of find_interval. */
654
655 INTERVAL
656 find_interval (register INTERVAL tree, register ptrdiff_t position)
657 {
658 /* The distance from the left edge of the subtree at TREE
659 to POSITION. */
660 register ptrdiff_t relative_position;
661
662 if (!tree)
663 return NULL;
664
665 relative_position = position;
666 if (INTERVAL_HAS_OBJECT (tree))
667 {
668 Lisp_Object parent;
669 GET_INTERVAL_OBJECT (parent, tree);
670 if (BUFFERP (parent))
671 relative_position -= BUF_BEG (XBUFFER (parent));
672 }
673
674 eassert (relative_position <= TOTAL_LENGTH (tree));
675
676 if (!handling_signal)
677 tree = balance_possible_root_interval (tree);
678
679 while (1)
680 {
681 if (relative_position < LEFT_TOTAL_LENGTH (tree))
682 {
683 tree = tree->left;
684 }
685 else if (! NULL_RIGHT_CHILD (tree)
686 && relative_position >= (TOTAL_LENGTH (tree)
687 - RIGHT_TOTAL_LENGTH (tree)))
688 {
689 relative_position -= (TOTAL_LENGTH (tree)
690 - RIGHT_TOTAL_LENGTH (tree));
691 tree = tree->right;
692 }
693 else
694 {
695 tree->position
696 = (position - relative_position /* left edge of *tree. */
697 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
698
699 return tree;
700 }
701 }
702 }
703 \f
704 /* Find the succeeding interval (lexicographically) to INTERVAL.
705 Sets the `position' field based on that of INTERVAL (see
706 find_interval). */
707
708 INTERVAL
709 next_interval (register INTERVAL interval)
710 {
711 register INTERVAL i = interval;
712 register ptrdiff_t next_position;
713
714 if (!i)
715 return NULL;
716 next_position = interval->position + LENGTH (interval);
717
718 if (! NULL_RIGHT_CHILD (i))
719 {
720 i = i->right;
721 while (! NULL_LEFT_CHILD (i))
722 i = i->left;
723
724 i->position = next_position;
725 return i;
726 }
727
728 while (! NULL_PARENT (i))
729 {
730 if (AM_LEFT_CHILD (i))
731 {
732 i = INTERVAL_PARENT (i);
733 i->position = next_position;
734 return i;
735 }
736
737 i = INTERVAL_PARENT (i);
738 }
739
740 return NULL;
741 }
742
743 /* Find the preceding interval (lexicographically) to INTERVAL.
744 Sets the `position' field based on that of INTERVAL (see
745 find_interval). */
746
747 INTERVAL
748 previous_interval (register INTERVAL interval)
749 {
750 register INTERVAL i;
751
752 if (!interval)
753 return NULL;
754
755 if (! NULL_LEFT_CHILD (interval))
756 {
757 i = interval->left;
758 while (! NULL_RIGHT_CHILD (i))
759 i = i->right;
760
761 i->position = interval->position - LENGTH (i);
762 return i;
763 }
764
765 i = interval;
766 while (! NULL_PARENT (i))
767 {
768 if (AM_RIGHT_CHILD (i))
769 {
770 i = INTERVAL_PARENT (i);
771
772 i->position = interval->position - LENGTH (i);
773 return i;
774 }
775 i = INTERVAL_PARENT (i);
776 }
777
778 return NULL;
779 }
780
781 /* Find the interval containing POS given some non-NULL INTERVAL
782 in the same tree. Note that we need to update interval->position
783 if we go down the tree.
784 To speed up the process, we assume that the ->position of
785 I and all its parents is already uptodate. */
786 INTERVAL
787 update_interval (register INTERVAL i, ptrdiff_t pos)
788 {
789 if (!i)
790 return NULL;
791
792 while (1)
793 {
794 if (pos < i->position)
795 {
796 /* Move left. */
797 if (pos >= i->position - TOTAL_LENGTH (i->left))
798 {
799 i->left->position = i->position - TOTAL_LENGTH (i->left)
800 + LEFT_TOTAL_LENGTH (i->left);
801 i = i->left; /* Move to the left child */
802 }
803 else if (NULL_PARENT (i))
804 error ("Point before start of properties");
805 else
806 i = INTERVAL_PARENT (i);
807 continue;
808 }
809 else if (pos >= INTERVAL_LAST_POS (i))
810 {
811 /* Move right. */
812 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
813 {
814 i->right->position = INTERVAL_LAST_POS (i)
815 + LEFT_TOTAL_LENGTH (i->right);
816 i = i->right; /* Move to the right child */
817 }
818 else if (NULL_PARENT (i))
819 error ("Point %"pD"d after end of properties", pos);
820 else
821 i = INTERVAL_PARENT (i);
822 continue;
823 }
824 else
825 return i;
826 }
827 }
828
829 /* Effect an adjustment corresponding to the addition of LENGTH characters
830 of text. Do this by finding the interval containing POSITION in the
831 interval tree TREE, and then adjusting all of its ancestors by adding
832 LENGTH to them.
833
834 If POSITION is the first character of an interval, meaning that point
835 is actually between the two intervals, make the new text belong to
836 the interval which is "sticky".
837
838 If both intervals are "sticky", then make them belong to the left-most
839 interval. Another possibility would be to create a new interval for
840 this text, and make it have the merged properties of both ends. */
841
842 static INTERVAL
843 adjust_intervals_for_insertion (INTERVAL tree,
844 ptrdiff_t position, ptrdiff_t length)
845 {
846 INTERVAL i;
847 INTERVAL temp;
848 bool eobp = 0;
849 Lisp_Object parent;
850 ptrdiff_t offset;
851
852 eassert (TOTAL_LENGTH (tree) > 0);
853
854 GET_INTERVAL_OBJECT (parent, tree);
855 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
856
857 /* If inserting at point-max of a buffer, that position will be out
858 of range. Remember that buffer positions are 1-based. */
859 if (position >= TOTAL_LENGTH (tree) + offset)
860 {
861 position = TOTAL_LENGTH (tree) + offset;
862 eobp = 1;
863 }
864
865 i = find_interval (tree, position);
866
867 /* If in middle of an interval which is not sticky either way,
868 we must not just give its properties to the insertion.
869 So split this interval at the insertion point.
870
871 Originally, the if condition here was this:
872 (! (position == i->position || eobp)
873 && END_NONSTICKY_P (i)
874 && FRONT_NONSTICKY_P (i))
875 But, these macros are now unreliable because of introduction of
876 Vtext_property_default_nonsticky. So, we always check properties
877 one by one if POSITION is in middle of an interval. */
878 if (! (position == i->position || eobp))
879 {
880 Lisp_Object tail;
881 Lisp_Object front, rear;
882
883 tail = i->plist;
884
885 /* Properties font-sticky and rear-nonsticky override
886 Vtext_property_default_nonsticky. So, if they are t, we can
887 skip one by one checking of properties. */
888 rear = textget (i->plist, Qrear_nonsticky);
889 if (! CONSP (rear) && ! NILP (rear))
890 {
891 /* All properties are nonsticky. We split the interval. */
892 goto check_done;
893 }
894 front = textget (i->plist, Qfront_sticky);
895 if (! CONSP (front) && ! NILP (front))
896 {
897 /* All properties are sticky. We don't split the interval. */
898 tail = Qnil;
899 goto check_done;
900 }
901
902 /* Does any actual property pose an actual problem? We break
903 the loop if we find a nonsticky property. */
904 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
905 {
906 Lisp_Object prop, tmp;
907 prop = XCAR (tail);
908
909 /* Is this particular property front-sticky? */
910 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
911 continue;
912
913 /* Is this particular property rear-nonsticky? */
914 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
915 break;
916
917 /* Is this particular property recorded as sticky or
918 nonsticky in Vtext_property_default_nonsticky? */
919 tmp = Fassq (prop, Vtext_property_default_nonsticky);
920 if (CONSP (tmp))
921 {
922 if (NILP (tmp))
923 continue;
924 break;
925 }
926
927 /* By default, a text property is rear-sticky, thus we
928 continue the loop. */
929 }
930
931 check_done:
932 /* If any property is a real problem, split the interval. */
933 if (! NILP (tail))
934 {
935 temp = split_interval_right (i, position - i->position);
936 copy_properties (i, temp);
937 i = temp;
938 }
939 }
940
941 /* If we are positioned between intervals, check the stickiness of
942 both of them. We have to do this too, if we are at BEG or Z. */
943 if (position == i->position || eobp)
944 {
945 register INTERVAL prev;
946
947 if (position == BEG)
948 prev = 0;
949 else if (eobp)
950 {
951 prev = i;
952 i = 0;
953 }
954 else
955 prev = previous_interval (i);
956
957 /* Even if we are positioned between intervals, we default
958 to the left one if it exists. We extend it now and split
959 off a part later, if stickiness demands it. */
960 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
961 {
962 temp->total_length += length;
963 eassert (0 <= TOTAL_LENGTH (temp));
964 temp = balance_possible_root_interval (temp);
965 }
966
967 /* If at least one interval has sticky properties,
968 we check the stickiness property by property.
969
970 Originally, the if condition here was this:
971 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
972 But, these macros are now unreliable because of introduction
973 of Vtext_property_default_nonsticky. So, we always have to
974 check stickiness of properties one by one. If cache of
975 stickiness is implemented in the future, we may be able to
976 use those macros again. */
977 if (1)
978 {
979 Lisp_Object pleft, pright;
980 struct interval newi;
981
982 RESET_INTERVAL (&newi);
983 pleft = prev ? prev->plist : Qnil;
984 pright = i ? i->plist : Qnil;
985 set_interval_plist (&newi, merge_properties_sticky (pleft, pright));
986
987 if (! prev) /* i.e. position == BEG */
988 {
989 if (! intervals_equal (i, &newi))
990 {
991 i = split_interval_left (i, length);
992 set_interval_plist (i, newi.plist);
993 }
994 }
995 else if (! intervals_equal (prev, &newi))
996 {
997 prev = split_interval_right (prev, position - prev->position);
998 set_interval_plist (prev, newi.plist);
999 if (i && intervals_equal (prev, i))
1000 merge_interval_right (prev);
1001 }
1002
1003 /* We will need to update the cache here later. */
1004 }
1005 else if (! prev && ! NILP (i->plist))
1006 {
1007 /* Just split off a new interval at the left.
1008 Since I wasn't front-sticky, the empty plist is ok. */
1009 i = split_interval_left (i, length);
1010 }
1011 }
1012
1013 /* Otherwise just extend the interval. */
1014 else
1015 {
1016 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1017 {
1018 temp->total_length += length;
1019 eassert (0 <= TOTAL_LENGTH (temp));
1020 temp = balance_possible_root_interval (temp);
1021 }
1022 }
1023
1024 return tree;
1025 }
1026
1027 /* Any property might be front-sticky on the left, rear-sticky on the left,
1028 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1029 can be arranged in a matrix with rows denoting the left conditions and
1030 columns denoting the right conditions:
1031 _ __ _
1032 _ FR FR FR FR
1033 FR__ 0 1 2 3
1034 _FR 4 5 6 7
1035 FR 8 9 A B
1036 FR C D E F
1037
1038 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1039 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1040 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1041 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1042 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1043 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1044 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1045 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1046
1047 We inherit from whoever has a sticky side facing us. If both sides
1048 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1049 non-nil value for the current property. If both sides do, then we take
1050 from the left.
1051
1052 When we inherit a property, we get its stickiness as well as its value.
1053 So, when we merge the above two lists, we expect to get this:
1054
1055 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1056 rear-nonsticky (p6 pa)
1057 p0 L p1 L p2 L p3 L p6 R p7 R
1058 pa R pb R pc L pd L pe L pf L)
1059
1060 The optimizable special cases are:
1061 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1062 left rear-nonsticky = t, right front-sticky = t (inherit right)
1063 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1064 */
1065
1066 static Lisp_Object
1067 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1068 {
1069 Lisp_Object props, front, rear;
1070 Lisp_Object lfront, lrear, rfront, rrear;
1071 Lisp_Object tail1, tail2, sym, lval, rval, cat;
1072 bool use_left, use_right, lpresent;
1073
1074 props = Qnil;
1075 front = Qnil;
1076 rear = Qnil;
1077 lfront = textget (pleft, Qfront_sticky);
1078 lrear = textget (pleft, Qrear_nonsticky);
1079 rfront = textget (pright, Qfront_sticky);
1080 rrear = textget (pright, Qrear_nonsticky);
1081
1082 /* Go through each element of PRIGHT. */
1083 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1084 {
1085 Lisp_Object tmp;
1086
1087 sym = XCAR (tail1);
1088
1089 /* Sticky properties get special treatment. */
1090 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1091 continue;
1092
1093 rval = Fcar (XCDR (tail1));
1094 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1095 if (EQ (sym, XCAR (tail2)))
1096 break;
1097
1098 /* Indicate whether the property is explicitly defined on the left.
1099 (We know it is defined explicitly on the right
1100 because otherwise we don't get here.) */
1101 lpresent = ! NILP (tail2);
1102 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1103
1104 /* Even if lrear or rfront say nothing about the stickiness of
1105 SYM, Vtext_property_default_nonsticky may give default
1106 stickiness to SYM. */
1107 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1108 use_left = (lpresent
1109 && ! (TMEM (sym, lrear)
1110 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1111 use_right = (TMEM (sym, rfront)
1112 || (CONSP (tmp) && NILP (XCDR (tmp))));
1113 if (use_left && use_right)
1114 {
1115 if (NILP (lval))
1116 use_left = 0;
1117 else if (NILP (rval))
1118 use_right = 0;
1119 }
1120 if (use_left)
1121 {
1122 /* We build props as (value sym ...) rather than (sym value ...)
1123 because we plan to nreverse it when we're done. */
1124 props = Fcons (lval, Fcons (sym, props));
1125 if (TMEM (sym, lfront))
1126 front = Fcons (sym, front);
1127 if (TMEM (sym, lrear))
1128 rear = Fcons (sym, rear);
1129 }
1130 else if (use_right)
1131 {
1132 props = Fcons (rval, Fcons (sym, props));
1133 if (TMEM (sym, rfront))
1134 front = Fcons (sym, front);
1135 if (TMEM (sym, rrear))
1136 rear = Fcons (sym, rear);
1137 }
1138 }
1139
1140 /* Now go through each element of PLEFT. */
1141 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1142 {
1143 Lisp_Object tmp;
1144
1145 sym = XCAR (tail2);
1146
1147 /* Sticky properties get special treatment. */
1148 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1149 continue;
1150
1151 /* If sym is in PRIGHT, we've already considered it. */
1152 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1153 if (EQ (sym, XCAR (tail1)))
1154 break;
1155 if (! NILP (tail1))
1156 continue;
1157
1158 lval = Fcar (XCDR (tail2));
1159
1160 /* Even if lrear or rfront say nothing about the stickiness of
1161 SYM, Vtext_property_default_nonsticky may give default
1162 stickiness to SYM. */
1163 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1164
1165 /* Since rval is known to be nil in this loop, the test simplifies. */
1166 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1167 {
1168 props = Fcons (lval, Fcons (sym, props));
1169 if (TMEM (sym, lfront))
1170 front = Fcons (sym, front);
1171 }
1172 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1173 {
1174 /* The value is nil, but we still inherit the stickiness
1175 from the right. */
1176 front = Fcons (sym, front);
1177 if (TMEM (sym, rrear))
1178 rear = Fcons (sym, rear);
1179 }
1180 }
1181 props = Fnreverse (props);
1182 if (! NILP (rear))
1183 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1184
1185 cat = textget (props, Qcategory);
1186 if (! NILP (front)
1187 &&
1188 /* If we have inherited a front-stick category property that is t,
1189 we don't need to set up a detailed one. */
1190 ! (! NILP (cat) && SYMBOLP (cat)
1191 && EQ (Fget (cat, Qfront_sticky), Qt)))
1192 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1193 return props;
1194 }
1195
1196 \f
1197 /* Delete a node I from its interval tree by merging its subtrees
1198 into one subtree which is then returned. Caller is responsible for
1199 storing the resulting subtree into its parent. */
1200
1201 static INTERVAL
1202 delete_node (register INTERVAL i)
1203 {
1204 register INTERVAL migrate, this;
1205 register ptrdiff_t migrate_amt;
1206
1207 if (!i->left)
1208 return i->right;
1209 if (!i->right)
1210 return i->left;
1211
1212 migrate = i->left;
1213 migrate_amt = i->left->total_length;
1214 this = i->right;
1215 this->total_length += migrate_amt;
1216 while (this->left)
1217 {
1218 this = this->left;
1219 this->total_length += migrate_amt;
1220 }
1221 eassert (0 <= TOTAL_LENGTH (this));
1222 set_interval_left (this, migrate);
1223 set_interval_parent (migrate, this);
1224
1225 return i->right;
1226 }
1227
1228 /* Delete interval I from its tree by calling `delete_node'
1229 and properly connecting the resultant subtree.
1230
1231 I is presumed to be empty; that is, no adjustments are made
1232 for the length of I. */
1233
1234 static void
1235 delete_interval (register INTERVAL i)
1236 {
1237 register INTERVAL parent;
1238 ptrdiff_t amt = LENGTH (i);
1239
1240 eassert (amt == 0); /* Only used on zero-length intervals now. */
1241
1242 if (ROOT_INTERVAL_P (i))
1243 {
1244 Lisp_Object owner;
1245 GET_INTERVAL_OBJECT (owner, i);
1246 parent = delete_node (i);
1247 if (parent)
1248 set_interval_object (parent, owner);
1249
1250 if (BUFFERP (owner))
1251 set_buffer_intervals (XBUFFER (owner), parent);
1252 else if (STRINGP (owner))
1253 set_string_intervals (owner, parent);
1254 else
1255 emacs_abort ();
1256
1257 return;
1258 }
1259
1260 parent = INTERVAL_PARENT (i);
1261 if (AM_LEFT_CHILD (i))
1262 {
1263 set_interval_left (parent, delete_node (i));
1264 if (parent->left)
1265 set_interval_parent (parent->left, parent);
1266 }
1267 else
1268 {
1269 set_interval_right (parent, delete_node (i));
1270 if (parent->right)
1271 set_interval_parent (parent->right, parent);
1272 }
1273 }
1274 \f
1275 /* Find the interval in TREE corresponding to the relative position
1276 FROM and delete as much as possible of AMOUNT from that interval.
1277 Return the amount actually deleted, and if the interval was
1278 zeroed-out, delete that interval node from the tree.
1279
1280 Note that FROM is actually origin zero, aka relative to the
1281 leftmost edge of tree. This is appropriate since we call ourselves
1282 recursively on subtrees.
1283
1284 Do this by recursing down TREE to the interval in question, and
1285 deleting the appropriate amount of text. */
1286
1287 static ptrdiff_t
1288 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1289 register ptrdiff_t amount)
1290 {
1291 register ptrdiff_t relative_position = from;
1292
1293 if (!tree)
1294 return 0;
1295
1296 /* Left branch. */
1297 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1298 {
1299 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1300 relative_position,
1301 amount);
1302 tree->total_length -= subtract;
1303 eassert (0 <= TOTAL_LENGTH (tree));
1304 return subtract;
1305 }
1306 /* Right branch. */
1307 else if (relative_position >= (TOTAL_LENGTH (tree)
1308 - RIGHT_TOTAL_LENGTH (tree)))
1309 {
1310 ptrdiff_t subtract;
1311
1312 relative_position -= (tree->total_length
1313 - RIGHT_TOTAL_LENGTH (tree));
1314 subtract = interval_deletion_adjustment (tree->right,
1315 relative_position,
1316 amount);
1317 tree->total_length -= subtract;
1318 eassert (0 <= TOTAL_LENGTH (tree));
1319 return subtract;
1320 }
1321 /* Here -- this node. */
1322 else
1323 {
1324 /* How much can we delete from this interval? */
1325 ptrdiff_t my_amount = ((tree->total_length
1326 - RIGHT_TOTAL_LENGTH (tree))
1327 - relative_position);
1328
1329 if (amount > my_amount)
1330 amount = my_amount;
1331
1332 tree->total_length -= amount;
1333 eassert (0 <= TOTAL_LENGTH (tree));
1334 if (LENGTH (tree) == 0)
1335 delete_interval (tree);
1336
1337 return amount;
1338 }
1339
1340 /* Never reach here. */
1341 }
1342
1343 /* Effect the adjustments necessary to the interval tree of BUFFER to
1344 correspond to the deletion of LENGTH characters from that buffer
1345 text. The deletion is effected at position START (which is a
1346 buffer position, i.e. origin 1). */
1347
1348 static void
1349 adjust_intervals_for_deletion (struct buffer *buffer,
1350 ptrdiff_t start, ptrdiff_t length)
1351 {
1352 ptrdiff_t left_to_delete = length;
1353 INTERVAL tree = buffer_intervals (buffer);
1354 Lisp_Object parent;
1355 ptrdiff_t offset;
1356
1357 GET_INTERVAL_OBJECT (parent, tree);
1358 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1359
1360 if (!tree)
1361 return;
1362
1363 eassert (start <= offset + TOTAL_LENGTH (tree)
1364 && start + length <= offset + TOTAL_LENGTH (tree));
1365
1366 if (length == TOTAL_LENGTH (tree))
1367 {
1368 set_buffer_intervals (buffer, NULL);
1369 return;
1370 }
1371
1372 if (ONLY_INTERVAL_P (tree))
1373 {
1374 tree->total_length -= length;
1375 eassert (0 <= TOTAL_LENGTH (tree));
1376 return;
1377 }
1378
1379 if (start > offset + TOTAL_LENGTH (tree))
1380 start = offset + TOTAL_LENGTH (tree);
1381 while (left_to_delete > 0)
1382 {
1383 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1384 left_to_delete);
1385 tree = buffer_intervals (buffer);
1386 if (left_to_delete == tree->total_length)
1387 {
1388 set_buffer_intervals (buffer, NULL);
1389 return;
1390 }
1391 }
1392 }
1393 \f
1394 /* Make the adjustments necessary to the interval tree of BUFFER to
1395 represent an addition or deletion of LENGTH characters starting
1396 at position START. Addition or deletion is indicated by the sign
1397 of LENGTH. */
1398
1399 void
1400 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1401 {
1402 if (!buffer_intervals (buffer) || length == 0)
1403 return;
1404
1405 if (length > 0)
1406 adjust_intervals_for_insertion (buffer_intervals (buffer),
1407 start, length);
1408 else
1409 {
1410 lint_assume (- TYPE_MAXIMUM (ptrdiff_t) <= length);
1411 adjust_intervals_for_deletion (buffer, start, -length);
1412 }
1413 }
1414 \f
1415 /* Merge interval I with its lexicographic successor. The resulting
1416 interval is returned, and has the properties of the original
1417 successor. The properties of I are lost. I is removed from the
1418 interval tree.
1419
1420 IMPORTANT:
1421 The caller must verify that this is not the last (rightmost)
1422 interval. */
1423
1424 static INTERVAL
1425 merge_interval_right (register INTERVAL i)
1426 {
1427 register ptrdiff_t absorb = LENGTH (i);
1428 register INTERVAL successor;
1429
1430 /* Find the succeeding interval. */
1431 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1432 as we descend. */
1433 {
1434 successor = i->right;
1435 while (! NULL_LEFT_CHILD (successor))
1436 {
1437 successor->total_length += absorb;
1438 eassert (0 <= TOTAL_LENGTH (successor));
1439 successor = successor->left;
1440 }
1441
1442 successor->total_length += absorb;
1443 eassert (0 <= TOTAL_LENGTH (successor));
1444 delete_interval (i);
1445 return successor;
1446 }
1447
1448 /* Zero out this interval. */
1449 i->total_length -= absorb;
1450 eassert (0 <= TOTAL_LENGTH (i));
1451
1452 successor = i;
1453 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1454 we ascend. */
1455 {
1456 if (AM_LEFT_CHILD (successor))
1457 {
1458 successor = INTERVAL_PARENT (successor);
1459 delete_interval (i);
1460 return successor;
1461 }
1462
1463 successor = INTERVAL_PARENT (successor);
1464 successor->total_length -= absorb;
1465 eassert (0 <= TOTAL_LENGTH (successor));
1466 }
1467
1468 /* This must be the rightmost or last interval and cannot
1469 be merged right. The caller should have known. */
1470 emacs_abort ();
1471 }
1472 \f
1473 /* Merge interval I with its lexicographic predecessor. The resulting
1474 interval is returned, and has the properties of the original predecessor.
1475 The properties of I are lost. Interval node I is removed from the tree.
1476
1477 IMPORTANT:
1478 The caller must verify that this is not the first (leftmost) interval. */
1479
1480 INTERVAL
1481 merge_interval_left (register INTERVAL i)
1482 {
1483 register ptrdiff_t absorb = LENGTH (i);
1484 register INTERVAL predecessor;
1485
1486 /* Find the preceding interval. */
1487 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1488 adding ABSORB as we go. */
1489 {
1490 predecessor = i->left;
1491 while (! NULL_RIGHT_CHILD (predecessor))
1492 {
1493 predecessor->total_length += absorb;
1494 eassert (0 <= TOTAL_LENGTH (predecessor));
1495 predecessor = predecessor->right;
1496 }
1497
1498 predecessor->total_length += absorb;
1499 eassert (0 <= TOTAL_LENGTH (predecessor));
1500 delete_interval (i);
1501 return predecessor;
1502 }
1503
1504 /* Zero out this interval. */
1505 i->total_length -= absorb;
1506 eassert (0 <= TOTAL_LENGTH (i));
1507
1508 predecessor = i;
1509 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1510 subtracting ABSORB. */
1511 {
1512 if (AM_RIGHT_CHILD (predecessor))
1513 {
1514 predecessor = INTERVAL_PARENT (predecessor);
1515 delete_interval (i);
1516 return predecessor;
1517 }
1518
1519 predecessor = INTERVAL_PARENT (predecessor);
1520 predecessor->total_length -= absorb;
1521 eassert (0 <= TOTAL_LENGTH (predecessor));
1522 }
1523
1524 /* This must be the leftmost or first interval and cannot
1525 be merged left. The caller should have known. */
1526 emacs_abort ();
1527 }
1528 \f
1529 /* Create a copy of SOURCE but with the default value of UP. */
1530
1531 static INTERVAL
1532 reproduce_interval (INTERVAL source)
1533 {
1534 register INTERVAL target = make_interval ();
1535
1536 target->total_length = source->total_length;
1537 target->position = source->position;
1538
1539 copy_properties (source, target);
1540
1541 if (! NULL_LEFT_CHILD (source))
1542 set_interval_left (target, reproduce_tree (source->left, target));
1543 if (! NULL_RIGHT_CHILD (source))
1544 set_interval_right (target, reproduce_tree (source->right, target));
1545
1546 return target;
1547 }
1548
1549 /* Make an exact copy of interval tree SOURCE which descends from
1550 PARENT. This is done by recursing through SOURCE, copying
1551 the current interval and its properties, and then adjusting
1552 the pointers of the copy. */
1553
1554 static INTERVAL
1555 reproduce_tree (INTERVAL source, INTERVAL parent)
1556 {
1557 INTERVAL target = reproduce_interval (source);
1558 set_interval_parent (target, parent);
1559 return target;
1560 }
1561
1562 static INTERVAL
1563 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1564 {
1565 INTERVAL target = reproduce_interval (source);
1566 set_interval_object (target, parent);
1567 return target;
1568 }
1569 \f
1570 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1571 LENGTH is the length of the text in SOURCE.
1572
1573 The `position' field of the SOURCE intervals is assumed to be
1574 consistent with its parent; therefore, SOURCE must be an
1575 interval tree made with copy_interval or must be the whole
1576 tree of a buffer or a string.
1577
1578 This is used in insdel.c when inserting Lisp_Strings into the
1579 buffer. The text corresponding to SOURCE is already in the buffer
1580 when this is called. The intervals of new tree are a copy of those
1581 belonging to the string being inserted; intervals are never
1582 shared.
1583
1584 If the inserted text had no intervals associated, and we don't
1585 want to inherit the surrounding text's properties, this function
1586 simply returns -- offset_intervals should handle placing the
1587 text in the correct interval, depending on the sticky bits.
1588
1589 If the inserted text had properties (intervals), then there are two
1590 cases -- either insertion happened in the middle of some interval,
1591 or between two intervals.
1592
1593 If the text goes into the middle of an interval, then new intervals
1594 are created in the middle, and new text has the union of its properties
1595 and those of the text into which it was inserted.
1596
1597 If the text goes between two intervals, then if neither interval
1598 had its appropriate sticky property set (front_sticky, rear_sticky),
1599 the new text has only its properties. If one of the sticky properties
1600 is set, then the new text "sticks" to that region and its properties
1601 depend on merging as above. If both the preceding and succeeding
1602 intervals to the new text are "sticky", then the new text retains
1603 only its properties, as if neither sticky property were set. Perhaps
1604 we should consider merging all three sets of properties onto the new
1605 text... */
1606
1607 void
1608 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1609 ptrdiff_t length, struct buffer *buffer,
1610 bool inherit)
1611 {
1612 INTERVAL tree = buffer_intervals (buffer);
1613 INTERVAL under, over, this;
1614 ptrdiff_t over_used;
1615
1616 /* If the new text has no properties, then with inheritance it
1617 becomes part of whatever interval it was inserted into.
1618 To prevent inheritance, we must clear out the properties
1619 of the newly inserted text. */
1620 if (!source)
1621 {
1622 Lisp_Object buf;
1623 if (!inherit && tree && length > 0)
1624 {
1625 XSETBUFFER (buf, buffer);
1626 set_text_properties_1 (make_number (position),
1627 make_number (position + length),
1628 Qnil, buf, 0);
1629 }
1630 /* Shouldn't be necessary. --Stef */
1631 buffer_balance_intervals (buffer);
1632 return;
1633 }
1634
1635 eassert (length == TOTAL_LENGTH (source));
1636
1637 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1638 {
1639 /* The inserted text constitutes the whole buffer, so
1640 simply copy over the interval structure. */
1641 Lisp_Object buf;
1642
1643 XSETBUFFER (buf, buffer);
1644 set_buffer_intervals (buffer, reproduce_tree_obj (source, buf));
1645 buffer_intervals (buffer)->position = BUF_BEG (buffer);
1646 eassert (buffer_intervals (buffer)->up_obj == 1);
1647 return;
1648 }
1649 else if (!tree)
1650 {
1651 /* Create an interval tree in which to place a copy
1652 of the intervals of the inserted string. */
1653 Lisp_Object buf;
1654
1655 XSETBUFFER (buf, buffer);
1656 tree = create_root_interval (buf);
1657 }
1658 /* Paranoia -- the text has already been added, so
1659 this buffer should be of non-zero length. */
1660 eassert (TOTAL_LENGTH (tree) > 0);
1661
1662 this = under = find_interval (tree, position);
1663 eassert (under);
1664 over = find_interval (source, interval_start_pos (source));
1665
1666 /* Here for insertion in the middle of an interval.
1667 Split off an equivalent interval to the right,
1668 then don't bother with it any more. */
1669
1670 if (position > under->position)
1671 {
1672 INTERVAL end_unchanged
1673 = split_interval_left (this, position - under->position);
1674 copy_properties (under, end_unchanged);
1675 under->position = position;
1676 }
1677 else
1678 {
1679 /* This call may have some effect because previous_interval may
1680 update `position' fields of intervals. Thus, don't ignore it
1681 for the moment. Someone please tell me the truth (K.Handa). */
1682 INTERVAL prev = previous_interval (under);
1683 (void) prev;
1684 #if 0
1685 /* But, this code surely has no effect. And, anyway,
1686 END_NONSTICKY_P is unreliable now. */
1687 if (prev && !END_NONSTICKY_P (prev))
1688 prev = 0;
1689 #endif /* 0 */
1690 }
1691
1692 /* Insertion is now at beginning of UNDER. */
1693
1694 /* The inserted text "sticks" to the interval `under',
1695 which means it gets those properties.
1696 The properties of under are the result of
1697 adjust_intervals_for_insertion, so stickiness has
1698 already been taken care of. */
1699
1700 /* OVER is the interval we are copying from next.
1701 OVER_USED says how many characters' worth of OVER
1702 have already been copied into target intervals.
1703 UNDER is the next interval in the target. */
1704 over_used = 0;
1705 while (over)
1706 {
1707 /* If UNDER is longer than OVER, split it. */
1708 if (LENGTH (over) - over_used < LENGTH (under))
1709 {
1710 this = split_interval_left (under, LENGTH (over) - over_used);
1711 copy_properties (under, this);
1712 }
1713 else
1714 this = under;
1715
1716 /* THIS is now the interval to copy or merge into.
1717 OVER covers all of it. */
1718 if (inherit)
1719 merge_properties (over, this);
1720 else
1721 copy_properties (over, this);
1722
1723 /* If THIS and OVER end at the same place,
1724 advance OVER to a new source interval. */
1725 if (LENGTH (this) == LENGTH (over) - over_used)
1726 {
1727 over = next_interval (over);
1728 over_used = 0;
1729 }
1730 else
1731 /* Otherwise just record that more of OVER has been used. */
1732 over_used += LENGTH (this);
1733
1734 /* Always advance to a new target interval. */
1735 under = next_interval (this);
1736 }
1737
1738 buffer_balance_intervals (buffer);
1739 }
1740
1741 /* Get the value of property PROP from PLIST,
1742 which is the plist of an interval.
1743 We check for direct properties, for categories with property PROP,
1744 and for PROP appearing on the default-text-properties list. */
1745
1746 Lisp_Object
1747 textget (Lisp_Object plist, register Lisp_Object prop)
1748 {
1749 return lookup_char_property (plist, prop, 1);
1750 }
1751
1752 Lisp_Object
1753 lookup_char_property (Lisp_Object plist, Lisp_Object prop, bool textprop)
1754 {
1755 Lisp_Object tail, fallback = Qnil;
1756
1757 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1758 {
1759 register Lisp_Object tem;
1760 tem = XCAR (tail);
1761 if (EQ (prop, tem))
1762 return Fcar (XCDR (tail));
1763 if (EQ (tem, Qcategory))
1764 {
1765 tem = Fcar (XCDR (tail));
1766 if (SYMBOLP (tem))
1767 fallback = Fget (tem, prop);
1768 }
1769 }
1770
1771 if (! NILP (fallback))
1772 return fallback;
1773 /* Check for alternative properties */
1774 tail = Fassq (prop, Vchar_property_alias_alist);
1775 if (! NILP (tail))
1776 {
1777 tail = XCDR (tail);
1778 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1779 fallback = Fplist_get (plist, XCAR (tail));
1780 }
1781
1782 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1783 fallback = Fplist_get (Vdefault_text_properties, prop);
1784 return fallback;
1785 }
1786
1787 \f
1788 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1789 byte position BYTEPOS. */
1790
1791 void
1792 temp_set_point_both (struct buffer *buffer,
1793 ptrdiff_t charpos, ptrdiff_t bytepos)
1794 {
1795 /* In a single-byte buffer, the two positions must be equal. */
1796 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer))
1797 eassert (charpos == bytepos);
1798
1799 eassert (charpos <= bytepos);
1800 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1801
1802 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1803 }
1804
1805 /* Set point "temporarily", without checking any text properties. */
1806
1807 void
1808 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1809 {
1810 temp_set_point_both (buffer, charpos,
1811 buf_charpos_to_bytepos (buffer, charpos));
1812 }
1813
1814 /* Set point in BUFFER to CHARPOS. If the target position is
1815 before an intangible character, move to an ok place. */
1816
1817 void
1818 set_point (ptrdiff_t charpos)
1819 {
1820 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1821 }
1822
1823 /* If there's an invisible character at position POS + TEST_OFFS in the
1824 current buffer, and the invisible property has a `stickiness' such that
1825 inserting a character at position POS would inherit the property it,
1826 return POS + ADJ, otherwise return POS. If TEST_INTANG, intangibility
1827 is required as well as invisibility.
1828
1829 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1830
1831 Note that `stickiness' is determined by overlay marker insertion types,
1832 if the invisible property comes from an overlay. */
1833
1834 static ptrdiff_t
1835 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1836 bool test_intang)
1837 {
1838 Lisp_Object invis_propval, invis_overlay;
1839 Lisp_Object test_pos;
1840
1841 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1842 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1843 return pos;
1844
1845 test_pos = make_number (pos + test_offs);
1846
1847 invis_propval
1848 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1849 &invis_overlay);
1850
1851 if ((!test_intang
1852 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1853 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1854 /* This next test is true if the invisible property has a stickiness
1855 such that an insertion at POS would inherit it. */
1856 && (NILP (invis_overlay)
1857 /* Invisible property is from a text-property. */
1858 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1859 == (test_offs == 0 ? 1 : -1))
1860 /* Invisible property is from an overlay. */
1861 : (test_offs == 0
1862 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1863 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1864 pos += adj;
1865
1866 return pos;
1867 }
1868
1869 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1870 position BYTEPOS. If the target position is
1871 before an intangible character, move to an ok place. */
1872
1873 void
1874 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1875 {
1876 register INTERVAL to, from, toprev, fromprev;
1877 ptrdiff_t buffer_point;
1878 ptrdiff_t old_position = PT;
1879 /* This ensures that we move forward past intangible text when the
1880 initial position is the same as the destination, in the rare
1881 instances where this is important, e.g. in line-move-finish
1882 (simple.el). */
1883 bool backwards = charpos < old_position;
1884 bool have_overlays;
1885 ptrdiff_t original_position;
1886
1887 bset_point_before_scroll (current_buffer, Qnil);
1888
1889 if (charpos == PT)
1890 return;
1891
1892 /* In a single-byte buffer, the two positions must be equal. */
1893 eassert (ZV != ZV_BYTE || charpos == bytepos);
1894
1895 /* Check this now, before checking if the buffer has any intervals.
1896 That way, we can catch conditions which break this sanity check
1897 whether or not there are intervals in the buffer. */
1898 eassert (charpos <= ZV && charpos >= BEGV);
1899
1900 have_overlays = buffer_has_overlays ();
1901
1902 /* If we have no text properties and overlays,
1903 then we can do it quickly. */
1904 if (!buffer_intervals (current_buffer) && ! have_overlays)
1905 {
1906 temp_set_point_both (current_buffer, charpos, bytepos);
1907 return;
1908 }
1909
1910 /* Set TO to the interval containing the char after CHARPOS,
1911 and TOPREV to the interval containing the char before CHARPOS.
1912 Either one may be null. They may be equal. */
1913 to = find_interval (buffer_intervals (current_buffer), charpos);
1914 if (charpos == BEGV)
1915 toprev = 0;
1916 else if (to && to->position == charpos)
1917 toprev = previous_interval (to);
1918 else
1919 toprev = to;
1920
1921 buffer_point = (PT == ZV ? ZV - 1 : PT);
1922
1923 /* Set FROM to the interval containing the char after PT,
1924 and FROMPREV to the interval containing the char before PT.
1925 Either one may be null. They may be equal. */
1926 /* We could cache this and save time. */
1927 from = find_interval (buffer_intervals (current_buffer), buffer_point);
1928 if (buffer_point == BEGV)
1929 fromprev = 0;
1930 else if (from && from->position == PT)
1931 fromprev = previous_interval (from);
1932 else if (buffer_point != PT)
1933 fromprev = from, from = 0;
1934 else
1935 fromprev = from;
1936
1937 /* Moving within an interval. */
1938 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1939 && ! have_overlays)
1940 {
1941 temp_set_point_both (current_buffer, charpos, bytepos);
1942 return;
1943 }
1944
1945 original_position = charpos;
1946
1947 /* If the new position is between two intangible characters
1948 with the same intangible property value,
1949 move forward or backward until a change in that property. */
1950 if (NILP (Vinhibit_point_motion_hooks)
1951 && ((to && toprev)
1952 || have_overlays)
1953 /* Intangibility never stops us from positioning at the beginning
1954 or end of the buffer, so don't bother checking in that case. */
1955 && charpos != BEGV && charpos != ZV)
1956 {
1957 Lisp_Object pos;
1958 Lisp_Object intangible_propval;
1959
1960 if (backwards)
1961 {
1962 /* If the preceding character is both intangible and invisible,
1963 and the invisible property is `rear-sticky', perturb it so
1964 that the search starts one character earlier -- this ensures
1965 that point can never move to the end of an invisible/
1966 intangible/rear-sticky region. */
1967 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1968
1969 XSETINT (pos, charpos);
1970
1971 /* If following char is intangible,
1972 skip back over all chars with matching intangible property. */
1973
1974 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1975
1976 if (! NILP (intangible_propval))
1977 {
1978 while (XINT (pos) > BEGV
1979 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1980 Qintangible, Qnil),
1981 intangible_propval))
1982 pos = Fprevious_char_property_change (pos, Qnil);
1983
1984 /* Set CHARPOS from POS, and if the final intangible character
1985 that we skipped over is also invisible, and the invisible
1986 property is `front-sticky', perturb it to be one character
1987 earlier -- this ensures that point can never move to the
1988 beginning of an invisible/intangible/front-sticky region. */
1989 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
1990 }
1991 }
1992 else
1993 {
1994 /* If the following character is both intangible and invisible,
1995 and the invisible property is `front-sticky', perturb it so
1996 that the search starts one character later -- this ensures
1997 that point can never move to the beginning of an
1998 invisible/intangible/front-sticky region. */
1999 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2000
2001 XSETINT (pos, charpos);
2002
2003 /* If preceding char is intangible,
2004 skip forward over all chars with matching intangible property. */
2005
2006 intangible_propval = Fget_char_property (make_number (charpos - 1),
2007 Qintangible, Qnil);
2008
2009 if (! NILP (intangible_propval))
2010 {
2011 while (XINT (pos) < ZV
2012 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2013 intangible_propval))
2014 pos = Fnext_char_property_change (pos, Qnil);
2015
2016 /* Set CHARPOS from POS, and if the final intangible character
2017 that we skipped over is also invisible, and the invisible
2018 property is `rear-sticky', perturb it to be one character
2019 later -- this ensures that point can never move to the
2020 end of an invisible/intangible/rear-sticky region. */
2021 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2022 }
2023 }
2024
2025 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2026 }
2027
2028 if (charpos != original_position)
2029 {
2030 /* Set TO to the interval containing the char after CHARPOS,
2031 and TOPREV to the interval containing the char before CHARPOS.
2032 Either one may be null. They may be equal. */
2033 to = find_interval (buffer_intervals (current_buffer), charpos);
2034 if (charpos == BEGV)
2035 toprev = 0;
2036 else if (to && to->position == charpos)
2037 toprev = previous_interval (to);
2038 else
2039 toprev = to;
2040 }
2041
2042 /* Here TO is the interval after the stopping point
2043 and TOPREV is the interval before the stopping point.
2044 One or the other may be null. */
2045
2046 temp_set_point_both (current_buffer, charpos, bytepos);
2047
2048 /* We run point-left and point-entered hooks here, if the
2049 two intervals are not equivalent. These hooks take
2050 (old_point, new_point) as arguments. */
2051 if (NILP (Vinhibit_point_motion_hooks)
2052 && (! intervals_equal (from, to)
2053 || ! intervals_equal (fromprev, toprev)))
2054 {
2055 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2056
2057 if (fromprev)
2058 leave_before = textget (fromprev->plist, Qpoint_left);
2059 else
2060 leave_before = Qnil;
2061
2062 if (from)
2063 leave_after = textget (from->plist, Qpoint_left);
2064 else
2065 leave_after = Qnil;
2066
2067 if (toprev)
2068 enter_before = textget (toprev->plist, Qpoint_entered);
2069 else
2070 enter_before = Qnil;
2071
2072 if (to)
2073 enter_after = textget (to->plist, Qpoint_entered);
2074 else
2075 enter_after = Qnil;
2076
2077 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2078 call2 (leave_before, make_number (old_position),
2079 make_number (charpos));
2080 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2081 call2 (leave_after, make_number (old_position),
2082 make_number (charpos));
2083
2084 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2085 call2 (enter_before, make_number (old_position),
2086 make_number (charpos));
2087 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2088 call2 (enter_after, make_number (old_position),
2089 make_number (charpos));
2090 }
2091 }
2092 \f
2093 /* Move point to POSITION, unless POSITION is inside an intangible
2094 segment that reaches all the way to point. */
2095
2096 void
2097 move_if_not_intangible (ptrdiff_t position)
2098 {
2099 Lisp_Object pos;
2100 Lisp_Object intangible_propval;
2101
2102 XSETINT (pos, position);
2103
2104 if (! NILP (Vinhibit_point_motion_hooks))
2105 /* If intangible is inhibited, always move point to POSITION. */
2106 ;
2107 else if (PT < position && XINT (pos) < ZV)
2108 {
2109 /* We want to move forward, so check the text before POSITION. */
2110
2111 intangible_propval = Fget_char_property (pos,
2112 Qintangible, Qnil);
2113
2114 /* If following char is intangible,
2115 skip back over all chars with matching intangible property. */
2116 if (! NILP (intangible_propval))
2117 while (XINT (pos) > BEGV
2118 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2119 Qintangible, Qnil),
2120 intangible_propval))
2121 pos = Fprevious_char_property_change (pos, Qnil);
2122 }
2123 else if (XINT (pos) > BEGV)
2124 {
2125 /* We want to move backward, so check the text after POSITION. */
2126
2127 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2128 Qintangible, Qnil);
2129
2130 /* If following char is intangible,
2131 skip forward over all chars with matching intangible property. */
2132 if (! NILP (intangible_propval))
2133 while (XINT (pos) < ZV
2134 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2135 intangible_propval))
2136 pos = Fnext_char_property_change (pos, Qnil);
2137
2138 }
2139 else if (position < BEGV)
2140 position = BEGV;
2141 else if (position > ZV)
2142 position = ZV;
2143
2144 /* If the whole stretch between PT and POSITION isn't intangible,
2145 try moving to POSITION (which means we actually move farther
2146 if POSITION is inside of intangible text). */
2147
2148 if (XINT (pos) != PT)
2149 SET_PT (position);
2150 }
2151 \f
2152 /* If text at position POS has property PROP, set *VAL to the property
2153 value, *START and *END to the beginning and end of a region that
2154 has the same property, and return true. Otherwise return false.
2155
2156 OBJECT is the string or buffer to look for the property in;
2157 nil means the current buffer. */
2158
2159 bool
2160 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2161 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2162 {
2163 INTERVAL i, prev, next;
2164
2165 if (NILP (object))
2166 i = find_interval (buffer_intervals (current_buffer), pos);
2167 else if (BUFFERP (object))
2168 i = find_interval (buffer_intervals (XBUFFER (object)), pos);
2169 else if (STRINGP (object))
2170 i = find_interval (string_intervals (object), pos);
2171 else
2172 emacs_abort ();
2173
2174 if (!i || (i->position + LENGTH (i) <= pos))
2175 return 0;
2176 *val = textget (i->plist, prop);
2177 if (NILP (*val))
2178 return 0;
2179
2180 next = i; /* remember it in advance */
2181 prev = previous_interval (i);
2182 while (prev
2183 && EQ (*val, textget (prev->plist, prop)))
2184 i = prev, prev = previous_interval (prev);
2185 *start = i->position;
2186
2187 next = next_interval (i);
2188 while (next && EQ (*val, textget (next->plist, prop)))
2189 i = next, next = next_interval (next);
2190 *end = i->position + LENGTH (i);
2191
2192 return 1;
2193 }
2194 \f
2195 /* Return the proper local keymap TYPE for position POSITION in
2196 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2197 specified by the PROP property, if any. Otherwise, if TYPE is
2198 `local-map' use BUFFER's local map.
2199
2200 POSITION must be in the accessible part of BUFFER. */
2201
2202 Lisp_Object
2203 get_local_map (register ptrdiff_t position, register struct buffer *buffer,
2204 Lisp_Object type)
2205 {
2206 Lisp_Object prop, lispy_position, lispy_buffer;
2207 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2208
2209 /* Perhaps we should just change `position' to the limit. */
2210 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2211 emacs_abort ();
2212
2213 /* Ignore narrowing, so that a local map continues to be valid even if
2214 the visible region contains no characters and hence no properties. */
2215 old_begv = BUF_BEGV (buffer);
2216 old_zv = BUF_ZV (buffer);
2217 old_begv_byte = BUF_BEGV_BYTE (buffer);
2218 old_zv_byte = BUF_ZV_BYTE (buffer);
2219
2220 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2221 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2222
2223 XSETFASTINT (lispy_position, position);
2224 XSETBUFFER (lispy_buffer, buffer);
2225 /* First check if the CHAR has any property. This is because when
2226 we click with the mouse, the mouse pointer is really pointing
2227 to the CHAR after POS. */
2228 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2229 /* If not, look at the POS's properties. This is necessary because when
2230 editing a field with a `local-map' property, we want insertion at the end
2231 to obey the `local-map' property. */
2232 if (NILP (prop))
2233 prop = get_pos_property (lispy_position, type, lispy_buffer);
2234
2235 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2236 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2237
2238 /* Use the local map only if it is valid. */
2239 prop = get_keymap (prop, 0, 0);
2240 if (CONSP (prop))
2241 return prop;
2242
2243 if (EQ (type, Qkeymap))
2244 return Qnil;
2245 else
2246 return BVAR (buffer, keymap);
2247 }
2248 \f
2249 /* Produce an interval tree reflecting the intervals in
2250 TREE from START to START + LENGTH.
2251 The new interval tree has no parent and has a starting-position of 0. */
2252
2253 INTERVAL
2254 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2255 {
2256 register INTERVAL i, new, t;
2257 register ptrdiff_t got, prevlen;
2258
2259 if (!tree || length <= 0)
2260 return NULL;
2261
2262 i = find_interval (tree, start);
2263 eassert (i && LENGTH (i) > 0);
2264
2265 /* If there is only one interval and it's the default, return nil. */
2266 if ((start - i->position + 1 + length) < LENGTH (i)
2267 && DEFAULT_INTERVAL_P (i))
2268 return NULL;
2269
2270 new = make_interval ();
2271 new->position = 0;
2272 got = (LENGTH (i) - (start - i->position));
2273 new->total_length = length;
2274 eassert (0 <= TOTAL_LENGTH (new));
2275 copy_properties (i, new);
2276
2277 t = new;
2278 prevlen = got;
2279 while (got < length)
2280 {
2281 i = next_interval (i);
2282 t = split_interval_right (t, prevlen);
2283 copy_properties (i, t);
2284 prevlen = LENGTH (i);
2285 got += prevlen;
2286 }
2287
2288 return balance_an_interval (new);
2289 }
2290
2291 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2292
2293 void
2294 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2295 ptrdiff_t position, ptrdiff_t length)
2296 {
2297 INTERVAL interval_copy = copy_intervals (buffer_intervals (buffer),
2298 position, length);
2299 if (!interval_copy)
2300 return;
2301
2302 set_interval_object (interval_copy, string);
2303 set_string_intervals (string, interval_copy);
2304 }
2305 \f
2306 /* Return true if strings S1 and S2 have identical properties.
2307 Assume they have identical characters. */
2308
2309 bool
2310 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2311 {
2312 INTERVAL i1, i2;
2313 ptrdiff_t pos = 0;
2314 ptrdiff_t end = SCHARS (s1);
2315
2316 i1 = find_interval (string_intervals (s1), 0);
2317 i2 = find_interval (string_intervals (s2), 0);
2318
2319 while (pos < end)
2320 {
2321 /* Determine how far we can go before we reach the end of I1 or I2. */
2322 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2323 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2324 ptrdiff_t distance = min (len1, len2);
2325
2326 /* If we ever find a mismatch between the strings,
2327 they differ. */
2328 if (! intervals_equal (i1, i2))
2329 return 0;
2330
2331 /* Advance POS till the end of the shorter interval,
2332 and advance one or both interval pointers for the new position. */
2333 pos += distance;
2334 if (len1 == distance)
2335 i1 = next_interval (i1);
2336 if (len2 == distance)
2337 i2 = next_interval (i2);
2338 }
2339 return 1;
2340 }
2341 \f
2342 /* Recursively adjust interval I in the current buffer
2343 for setting enable_multibyte_characters to MULTI_FLAG.
2344 The range of interval I is START ... END in characters,
2345 START_BYTE ... END_BYTE in bytes. */
2346
2347 static void
2348 set_intervals_multibyte_1 (INTERVAL i, bool multi_flag,
2349 ptrdiff_t start, ptrdiff_t start_byte,
2350 ptrdiff_t end, ptrdiff_t end_byte)
2351 {
2352 /* Fix the length of this interval. */
2353 if (multi_flag)
2354 i->total_length = end - start;
2355 else
2356 i->total_length = end_byte - start_byte;
2357 eassert (0 <= TOTAL_LENGTH (i));
2358
2359 if (TOTAL_LENGTH (i) == 0)
2360 {
2361 delete_interval (i);
2362 return;
2363 }
2364
2365 /* Recursively fix the length of the subintervals. */
2366 if (i->left)
2367 {
2368 ptrdiff_t left_end, left_end_byte;
2369
2370 if (multi_flag)
2371 {
2372 ptrdiff_t temp;
2373 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2374 left_end = BYTE_TO_CHAR (left_end_byte);
2375
2376 temp = CHAR_TO_BYTE (left_end);
2377
2378 /* If LEFT_END_BYTE is in the middle of a character,
2379 adjust it and LEFT_END to a char boundary. */
2380 if (left_end_byte > temp)
2381 {
2382 left_end_byte = temp;
2383 }
2384 if (left_end_byte < temp)
2385 {
2386 left_end--;
2387 left_end_byte = CHAR_TO_BYTE (left_end);
2388 }
2389 }
2390 else
2391 {
2392 left_end = start + LEFT_TOTAL_LENGTH (i);
2393 left_end_byte = CHAR_TO_BYTE (left_end);
2394 }
2395
2396 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2397 left_end, left_end_byte);
2398 }
2399 if (i->right)
2400 {
2401 ptrdiff_t right_start_byte, right_start;
2402
2403 if (multi_flag)
2404 {
2405 ptrdiff_t temp;
2406
2407 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2408 right_start = BYTE_TO_CHAR (right_start_byte);
2409
2410 /* If RIGHT_START_BYTE is in the middle of a character,
2411 adjust it and RIGHT_START to a char boundary. */
2412 temp = CHAR_TO_BYTE (right_start);
2413
2414 if (right_start_byte < temp)
2415 {
2416 right_start_byte = temp;
2417 }
2418 if (right_start_byte > temp)
2419 {
2420 right_start++;
2421 right_start_byte = CHAR_TO_BYTE (right_start);
2422 }
2423 }
2424 else
2425 {
2426 right_start = end - RIGHT_TOTAL_LENGTH (i);
2427 right_start_byte = CHAR_TO_BYTE (right_start);
2428 }
2429
2430 set_intervals_multibyte_1 (i->right, multi_flag,
2431 right_start, right_start_byte,
2432 end, end_byte);
2433 }
2434
2435 /* Rounding to char boundaries can theoretically ake this interval
2436 spurious. If so, delete one child, and copy its property list
2437 to this interval. */
2438 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2439 {
2440 if ((i)->left)
2441 {
2442 set_interval_plist (i, i->left->plist);
2443 (i)->left->total_length = 0;
2444 delete_interval ((i)->left);
2445 }
2446 else
2447 {
2448 set_interval_plist (i, i->right->plist);
2449 (i)->right->total_length = 0;
2450 delete_interval ((i)->right);
2451 }
2452 }
2453 }
2454
2455 /* Update the intervals of the current buffer
2456 to fit the contents as multibyte (if MULTI_FLAG)
2457 or to fit them as non-multibyte (if not MULTI_FLAG). */
2458
2459 void
2460 set_intervals_multibyte (bool multi_flag)
2461 {
2462 INTERVAL i = buffer_intervals (current_buffer);
2463
2464 if (i)
2465 set_intervals_multibyte_1 (i, multi_flag, BEG, BEG_BYTE, Z, Z_BYTE);
2466 }