Port better to POSIX hosts lacking _setjmp.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #endif
28
29 #include <unistd.h>
30
31 #ifdef HAVE_SYS_UTSNAME_H
32 #include <sys/utsname.h>
33 #endif
34
35 #include "lisp.h"
36
37 /* systime.h includes <sys/time.h> which, on some systems, is required
38 for <sys/resource.h>; thus systime.h must be included before
39 <sys/resource.h> */
40 #include "systime.h"
41
42 #if defined HAVE_SYS_RESOURCE_H
43 #include <sys/resource.h>
44 #endif
45
46 #include <float.h>
47 #include <limits.h>
48 #include <intprops.h>
49 #include <strftime.h>
50 #include <verify.h>
51
52 #include "intervals.h"
53 #include "character.h"
54 #include "buffer.h"
55 #include "coding.h"
56 #include "frame.h"
57 #include "window.h"
58 #include "blockinput.h"
59
60 #define TM_YEAR_BASE 1900
61
62 #ifdef WINDOWSNT
63 extern Lisp_Object w32_get_internal_run_time (void);
64 #endif
65
66 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
67 bool, struct tm *);
68 static int tm_diff (struct tm *, struct tm *);
69 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
70
71 static Lisp_Object Qbuffer_access_fontify_functions;
72
73 /* Symbol for the text property used to mark fields. */
74
75 Lisp_Object Qfield;
76
77 /* A special value for Qfield properties. */
78
79 static Lisp_Object Qboundary;
80
81
82 void
83 init_editfns (void)
84 {
85 const char *user_name;
86 register char *p;
87 struct passwd *pw; /* password entry for the current user */
88 Lisp_Object tem;
89
90 /* Set up system_name even when dumping. */
91 init_system_name ();
92
93 #ifndef CANNOT_DUMP
94 /* Don't bother with this on initial start when just dumping out */
95 if (!initialized)
96 return;
97 #endif /* not CANNOT_DUMP */
98
99 pw = getpwuid (getuid ());
100 #ifdef MSDOS
101 /* We let the real user name default to "root" because that's quite
102 accurate on MSDOG and because it lets Emacs find the init file.
103 (The DVX libraries override the Djgpp libraries here.) */
104 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
105 #else
106 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
107 #endif
108
109 /* Get the effective user name, by consulting environment variables,
110 or the effective uid if those are unset. */
111 user_name = getenv ("LOGNAME");
112 if (!user_name)
113 #ifdef WINDOWSNT
114 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
115 #else /* WINDOWSNT */
116 user_name = getenv ("USER");
117 #endif /* WINDOWSNT */
118 if (!user_name)
119 {
120 pw = getpwuid (geteuid ());
121 user_name = pw ? pw->pw_name : "unknown";
122 }
123 Vuser_login_name = build_string (user_name);
124
125 /* If the user name claimed in the environment vars differs from
126 the real uid, use the claimed name to find the full name. */
127 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
128 if (! NILP (tem))
129 tem = Vuser_login_name;
130 else
131 {
132 uid_t euid = geteuid ();
133 tem = make_fixnum_or_float (euid);
134 }
135 Vuser_full_name = Fuser_full_name (tem);
136
137 p = getenv ("NAME");
138 if (p)
139 Vuser_full_name = build_string (p);
140 else if (NILP (Vuser_full_name))
141 Vuser_full_name = build_string ("unknown");
142
143 #ifdef HAVE_SYS_UTSNAME_H
144 {
145 struct utsname uts;
146 uname (&uts);
147 Voperating_system_release = build_string (uts.release);
148 }
149 #else
150 Voperating_system_release = Qnil;
151 #endif
152 }
153 \f
154 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
155 doc: /* Convert arg CHAR to a string containing that character.
156 usage: (char-to-string CHAR) */)
157 (Lisp_Object character)
158 {
159 int c, len;
160 unsigned char str[MAX_MULTIBYTE_LENGTH];
161
162 CHECK_CHARACTER (character);
163 c = XFASTINT (character);
164
165 len = CHAR_STRING (c, str);
166 return make_string_from_bytes ((char *) str, 1, len);
167 }
168
169 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
170 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
171 (Lisp_Object byte)
172 {
173 unsigned char b;
174 CHECK_NUMBER (byte);
175 if (XINT (byte) < 0 || XINT (byte) > 255)
176 error ("Invalid byte");
177 b = XINT (byte);
178 return make_string_from_bytes ((char *) &b, 1, 1);
179 }
180
181 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
182 doc: /* Return the first character in STRING. */)
183 (register Lisp_Object string)
184 {
185 register Lisp_Object val;
186 CHECK_STRING (string);
187 if (SCHARS (string))
188 {
189 if (STRING_MULTIBYTE (string))
190 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
191 else
192 XSETFASTINT (val, SREF (string, 0));
193 }
194 else
195 XSETFASTINT (val, 0);
196 return val;
197 }
198
199 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
200 doc: /* Return value of point, as an integer.
201 Beginning of buffer is position (point-min). */)
202 (void)
203 {
204 Lisp_Object temp;
205 XSETFASTINT (temp, PT);
206 return temp;
207 }
208
209 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
210 doc: /* Return value of point, as a marker object. */)
211 (void)
212 {
213 return build_marker (current_buffer, PT, PT_BYTE);
214 }
215
216 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
217 doc: /* Set point to POSITION, a number or marker.
218 Beginning of buffer is position (point-min), end is (point-max).
219
220 The return value is POSITION. */)
221 (register Lisp_Object position)
222 {
223 ptrdiff_t pos;
224
225 if (MARKERP (position)
226 && current_buffer == XMARKER (position)->buffer)
227 {
228 pos = marker_position (position);
229 if (pos < BEGV)
230 SET_PT_BOTH (BEGV, BEGV_BYTE);
231 else if (pos > ZV)
232 SET_PT_BOTH (ZV, ZV_BYTE);
233 else
234 SET_PT_BOTH (pos, marker_byte_position (position));
235
236 return position;
237 }
238
239 CHECK_NUMBER_COERCE_MARKER (position);
240
241 pos = clip_to_bounds (BEGV, XINT (position), ZV);
242 SET_PT (pos);
243 return position;
244 }
245
246
247 /* Return the start or end position of the region.
248 BEGINNINGP means return the start.
249 If there is no region active, signal an error. */
250
251 static Lisp_Object
252 region_limit (bool beginningp)
253 {
254 Lisp_Object m;
255
256 if (!NILP (Vtransient_mark_mode)
257 && NILP (Vmark_even_if_inactive)
258 && NILP (BVAR (current_buffer, mark_active)))
259 xsignal0 (Qmark_inactive);
260
261 m = Fmarker_position (BVAR (current_buffer, mark));
262 if (NILP (m))
263 error ("The mark is not set now, so there is no region");
264
265 /* Clip to the current narrowing (bug#11770). */
266 return make_number ((PT < XFASTINT (m)) == beginningp
267 ? PT
268 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
269 }
270
271 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
272 doc: /* Return the integer value of point or mark, whichever is smaller. */)
273 (void)
274 {
275 return region_limit (1);
276 }
277
278 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
279 doc: /* Return the integer value of point or mark, whichever is larger. */)
280 (void)
281 {
282 return region_limit (0);
283 }
284
285 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
286 doc: /* Return this buffer's mark, as a marker object.
287 Watch out! Moving this marker changes the mark position.
288 If you set the marker not to point anywhere, the buffer will have no mark. */)
289 (void)
290 {
291 return BVAR (current_buffer, mark);
292 }
293
294 \f
295 /* Find all the overlays in the current buffer that touch position POS.
296 Return the number found, and store them in a vector in VEC
297 of length LEN. */
298
299 static ptrdiff_t
300 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
301 {
302 Lisp_Object overlay, start, end;
303 struct Lisp_Overlay *tail;
304 ptrdiff_t startpos, endpos;
305 ptrdiff_t idx = 0;
306
307 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
308 {
309 XSETMISC (overlay, tail);
310
311 end = OVERLAY_END (overlay);
312 endpos = OVERLAY_POSITION (end);
313 if (endpos < pos)
314 break;
315 start = OVERLAY_START (overlay);
316 startpos = OVERLAY_POSITION (start);
317 if (startpos <= pos)
318 {
319 if (idx < len)
320 vec[idx] = overlay;
321 /* Keep counting overlays even if we can't return them all. */
322 idx++;
323 }
324 }
325
326 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
327 {
328 XSETMISC (overlay, tail);
329
330 start = OVERLAY_START (overlay);
331 startpos = OVERLAY_POSITION (start);
332 if (pos < startpos)
333 break;
334 end = OVERLAY_END (overlay);
335 endpos = OVERLAY_POSITION (end);
336 if (pos <= endpos)
337 {
338 if (idx < len)
339 vec[idx] = overlay;
340 idx++;
341 }
342 }
343
344 return idx;
345 }
346
347 /* Return the value of property PROP, in OBJECT at POSITION.
348 It's the value of PROP that a char inserted at POSITION would get.
349 OBJECT is optional and defaults to the current buffer.
350 If OBJECT is a buffer, then overlay properties are considered as well as
351 text properties.
352 If OBJECT is a window, then that window's buffer is used, but
353 window-specific overlays are considered only if they are associated
354 with OBJECT. */
355 Lisp_Object
356 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
357 {
358 CHECK_NUMBER_COERCE_MARKER (position);
359
360 if (NILP (object))
361 XSETBUFFER (object, current_buffer);
362 else if (WINDOWP (object))
363 object = XWINDOW (object)->buffer;
364
365 if (!BUFFERP (object))
366 /* pos-property only makes sense in buffers right now, since strings
367 have no overlays and no notion of insertion for which stickiness
368 could be obeyed. */
369 return Fget_text_property (position, prop, object);
370 else
371 {
372 EMACS_INT posn = XINT (position);
373 ptrdiff_t noverlays;
374 Lisp_Object *overlay_vec, tem;
375 struct buffer *obuf = current_buffer;
376
377 set_buffer_temp (XBUFFER (object));
378
379 /* First try with room for 40 overlays. */
380 noverlays = 40;
381 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
382 noverlays = overlays_around (posn, overlay_vec, noverlays);
383
384 /* If there are more than 40,
385 make enough space for all, and try again. */
386 if (noverlays > 40)
387 {
388 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
389 noverlays = overlays_around (posn, overlay_vec, noverlays);
390 }
391 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
392
393 set_buffer_temp (obuf);
394
395 /* Now check the overlays in order of decreasing priority. */
396 while (--noverlays >= 0)
397 {
398 Lisp_Object ol = overlay_vec[noverlays];
399 tem = Foverlay_get (ol, prop);
400 if (!NILP (tem))
401 {
402 /* Check the overlay is indeed active at point. */
403 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
404 if ((OVERLAY_POSITION (start) == posn
405 && XMARKER (start)->insertion_type == 1)
406 || (OVERLAY_POSITION (finish) == posn
407 && XMARKER (finish)->insertion_type == 0))
408 ; /* The overlay will not cover a char inserted at point. */
409 else
410 {
411 return tem;
412 }
413 }
414 }
415
416 { /* Now check the text properties. */
417 int stickiness = text_property_stickiness (prop, position, object);
418 if (stickiness > 0)
419 return Fget_text_property (position, prop, object);
420 else if (stickiness < 0
421 && XINT (position) > BUF_BEGV (XBUFFER (object)))
422 return Fget_text_property (make_number (XINT (position) - 1),
423 prop, object);
424 else
425 return Qnil;
426 }
427 }
428 }
429
430 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
431 the value of point is used instead. If BEG or END is null,
432 means don't store the beginning or end of the field.
433
434 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
435 results; they do not effect boundary behavior.
436
437 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
438 position of a field, then the beginning of the previous field is
439 returned instead of the beginning of POS's field (since the end of a
440 field is actually also the beginning of the next input field, this
441 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
442 non-nil case, if two fields are separated by a field with the special
443 value `boundary', and POS lies within it, then the two separated
444 fields are considered to be adjacent, and POS between them, when
445 finding the beginning and ending of the "merged" field.
446
447 Either BEG or END may be 0, in which case the corresponding value
448 is not stored. */
449
450 static void
451 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
452 Lisp_Object beg_limit,
453 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
454 {
455 /* Fields right before and after the point. */
456 Lisp_Object before_field, after_field;
457 /* True if POS counts as the start of a field. */
458 bool at_field_start = 0;
459 /* True if POS counts as the end of a field. */
460 bool at_field_end = 0;
461
462 if (NILP (pos))
463 XSETFASTINT (pos, PT);
464 else
465 CHECK_NUMBER_COERCE_MARKER (pos);
466
467 after_field
468 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
469 before_field
470 = (XFASTINT (pos) > BEGV
471 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
472 Qfield, Qnil, NULL)
473 /* Using nil here would be a more obvious choice, but it would
474 fail when the buffer starts with a non-sticky field. */
475 : after_field);
476
477 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
478 and POS is at beginning of a field, which can also be interpreted
479 as the end of the previous field. Note that the case where if
480 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
481 more natural one; then we avoid treating the beginning of a field
482 specially. */
483 if (NILP (merge_at_boundary))
484 {
485 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
486 if (!EQ (field, after_field))
487 at_field_end = 1;
488 if (!EQ (field, before_field))
489 at_field_start = 1;
490 if (NILP (field) && at_field_start && at_field_end)
491 /* If an inserted char would have a nil field while the surrounding
492 text is non-nil, we're probably not looking at a
493 zero-length field, but instead at a non-nil field that's
494 not intended for editing (such as comint's prompts). */
495 at_field_end = at_field_start = 0;
496 }
497
498 /* Note about special `boundary' fields:
499
500 Consider the case where the point (`.') is between the fields `x' and `y':
501
502 xxxx.yyyy
503
504 In this situation, if merge_at_boundary is non-nil, consider the
505 `x' and `y' fields as forming one big merged field, and so the end
506 of the field is the end of `y'.
507
508 However, if `x' and `y' are separated by a special `boundary' field
509 (a field with a `field' char-property of 'boundary), then ignore
510 this special field when merging adjacent fields. Here's the same
511 situation, but with a `boundary' field between the `x' and `y' fields:
512
513 xxx.BBBByyyy
514
515 Here, if point is at the end of `x', the beginning of `y', or
516 anywhere in-between (within the `boundary' field), merge all
517 three fields and consider the beginning as being the beginning of
518 the `x' field, and the end as being the end of the `y' field. */
519
520 if (beg)
521 {
522 if (at_field_start)
523 /* POS is at the edge of a field, and we should consider it as
524 the beginning of the following field. */
525 *beg = XFASTINT (pos);
526 else
527 /* Find the previous field boundary. */
528 {
529 Lisp_Object p = pos;
530 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
531 /* Skip a `boundary' field. */
532 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
533 beg_limit);
534
535 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
536 beg_limit);
537 *beg = NILP (p) ? BEGV : XFASTINT (p);
538 }
539 }
540
541 if (end)
542 {
543 if (at_field_end)
544 /* POS is at the edge of a field, and we should consider it as
545 the end of the previous field. */
546 *end = XFASTINT (pos);
547 else
548 /* Find the next field boundary. */
549 {
550 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
551 /* Skip a `boundary' field. */
552 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
553 end_limit);
554
555 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
556 end_limit);
557 *end = NILP (pos) ? ZV : XFASTINT (pos);
558 }
559 }
560 }
561
562 \f
563 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
564 doc: /* Delete the field surrounding POS.
565 A field is a region of text with the same `field' property.
566 If POS is nil, the value of point is used for POS. */)
567 (Lisp_Object pos)
568 {
569 ptrdiff_t beg, end;
570 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
571 if (beg != end)
572 del_range (beg, end);
573 return Qnil;
574 }
575
576 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
577 doc: /* Return the contents of the field surrounding POS as a string.
578 A field is a region of text with the same `field' property.
579 If POS is nil, the value of point is used for POS. */)
580 (Lisp_Object pos)
581 {
582 ptrdiff_t beg, end;
583 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
584 return make_buffer_string (beg, end, 1);
585 }
586
587 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
588 doc: /* Return the contents of the field around POS, without text properties.
589 A field is a region of text with the same `field' property.
590 If POS is nil, the value of point is used for POS. */)
591 (Lisp_Object pos)
592 {
593 ptrdiff_t beg, end;
594 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
595 return make_buffer_string (beg, end, 0);
596 }
597
598 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
599 doc: /* Return the beginning of the field surrounding POS.
600 A field is a region of text with the same `field' property.
601 If POS is nil, the value of point is used for POS.
602 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
603 field, then the beginning of the *previous* field is returned.
604 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
605 is before LIMIT, then LIMIT will be returned instead. */)
606 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
607 {
608 ptrdiff_t beg;
609 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
610 return make_number (beg);
611 }
612
613 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
614 doc: /* Return the end of the field surrounding POS.
615 A field is a region of text with the same `field' property.
616 If POS is nil, the value of point is used for POS.
617 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
618 then the end of the *following* field is returned.
619 If LIMIT is non-nil, it is a buffer position; if the end of the field
620 is after LIMIT, then LIMIT will be returned instead. */)
621 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
622 {
623 ptrdiff_t end;
624 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
625 return make_number (end);
626 }
627
628 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
629 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
630 A field is a region of text with the same `field' property.
631
632 If NEW-POS is nil, then use the current point instead, and move point
633 to the resulting constrained position, in addition to returning that
634 position.
635
636 If OLD-POS is at the boundary of two fields, then the allowable
637 positions for NEW-POS depends on the value of the optional argument
638 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
639 constrained to the field that has the same `field' char-property
640 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
641 is non-nil, NEW-POS is constrained to the union of the two adjacent
642 fields. Additionally, if two fields are separated by another field with
643 the special value `boundary', then any point within this special field is
644 also considered to be `on the boundary'.
645
646 If the optional argument ONLY-IN-LINE is non-nil and constraining
647 NEW-POS would move it to a different line, NEW-POS is returned
648 unconstrained. This useful for commands that move by line, like
649 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
650 only in the case where they can still move to the right line.
651
652 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
653 a non-nil property of that name, then any field boundaries are ignored.
654
655 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
656 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
657 {
658 /* If non-zero, then the original point, before re-positioning. */
659 ptrdiff_t orig_point = 0;
660 bool fwd;
661 Lisp_Object prev_old, prev_new;
662
663 if (NILP (new_pos))
664 /* Use the current point, and afterwards, set it. */
665 {
666 orig_point = PT;
667 XSETFASTINT (new_pos, PT);
668 }
669
670 CHECK_NUMBER_COERCE_MARKER (new_pos);
671 CHECK_NUMBER_COERCE_MARKER (old_pos);
672
673 fwd = (XINT (new_pos) > XINT (old_pos));
674
675 prev_old = make_number (XINT (old_pos) - 1);
676 prev_new = make_number (XINT (new_pos) - 1);
677
678 if (NILP (Vinhibit_field_text_motion)
679 && !EQ (new_pos, old_pos)
680 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
681 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
682 /* To recognize field boundaries, we must also look at the
683 previous positions; we could use `get_pos_property'
684 instead, but in itself that would fail inside non-sticky
685 fields (like comint prompts). */
686 || (XFASTINT (new_pos) > BEGV
687 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
688 || (XFASTINT (old_pos) > BEGV
689 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
690 && (NILP (inhibit_capture_property)
691 /* Field boundaries are again a problem; but now we must
692 decide the case exactly, so we need to call
693 `get_pos_property' as well. */
694 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
695 && (XFASTINT (old_pos) <= BEGV
696 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
697 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
698 /* It is possible that NEW_POS is not within the same field as
699 OLD_POS; try to move NEW_POS so that it is. */
700 {
701 ptrdiff_t shortage;
702 Lisp_Object field_bound;
703
704 if (fwd)
705 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
706 else
707 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
708
709 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
710 other side of NEW_POS, which would mean that NEW_POS is
711 already acceptable, and it's not necessary to constrain it
712 to FIELD_BOUND. */
713 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
714 /* NEW_POS should be constrained, but only if either
715 ONLY_IN_LINE is nil (in which case any constraint is OK),
716 or NEW_POS and FIELD_BOUND are on the same line (in which
717 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
718 && (NILP (only_in_line)
719 /* This is the ONLY_IN_LINE case, check that NEW_POS and
720 FIELD_BOUND are on the same line by seeing whether
721 there's an intervening newline or not. */
722 || (scan_buffer ('\n',
723 XFASTINT (new_pos), XFASTINT (field_bound),
724 fwd ? -1 : 1, &shortage, 1),
725 shortage != 0)))
726 /* Constrain NEW_POS to FIELD_BOUND. */
727 new_pos = field_bound;
728
729 if (orig_point && XFASTINT (new_pos) != orig_point)
730 /* The NEW_POS argument was originally nil, so automatically set PT. */
731 SET_PT (XFASTINT (new_pos));
732 }
733
734 return new_pos;
735 }
736
737 \f
738 DEFUN ("line-beginning-position",
739 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
740 doc: /* Return the character position of the first character on the current line.
741 With argument N not nil or 1, move forward N - 1 lines first.
742 If scan reaches end of buffer, return that position.
743
744 The returned position is of the first character in the logical order,
745 i.e. the one that has the smallest character position.
746
747 This function constrains the returned position to the current field
748 unless that would be on a different line than the original,
749 unconstrained result. If N is nil or 1, and a front-sticky field
750 starts at point, the scan stops as soon as it starts. To ignore field
751 boundaries bind `inhibit-field-text-motion' to t.
752
753 This function does not move point. */)
754 (Lisp_Object n)
755 {
756 ptrdiff_t orig, orig_byte, end;
757 ptrdiff_t count = SPECPDL_INDEX ();
758 specbind (Qinhibit_point_motion_hooks, Qt);
759
760 if (NILP (n))
761 XSETFASTINT (n, 1);
762 else
763 CHECK_NUMBER (n);
764
765 orig = PT;
766 orig_byte = PT_BYTE;
767 Fforward_line (make_number (XINT (n) - 1));
768 end = PT;
769
770 SET_PT_BOTH (orig, orig_byte);
771
772 unbind_to (count, Qnil);
773
774 /* Return END constrained to the current input field. */
775 return Fconstrain_to_field (make_number (end), make_number (orig),
776 XINT (n) != 1 ? Qt : Qnil,
777 Qt, Qnil);
778 }
779
780 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
781 doc: /* Return the character position of the last character on the current line.
782 With argument N not nil or 1, move forward N - 1 lines first.
783 If scan reaches end of buffer, return that position.
784
785 The returned position is of the last character in the logical order,
786 i.e. the character whose buffer position is the largest one.
787
788 This function constrains the returned position to the current field
789 unless that would be on a different line than the original,
790 unconstrained result. If N is nil or 1, and a rear-sticky field ends
791 at point, the scan stops as soon as it starts. To ignore field
792 boundaries bind `inhibit-field-text-motion' to t.
793
794 This function does not move point. */)
795 (Lisp_Object n)
796 {
797 ptrdiff_t clipped_n;
798 ptrdiff_t end_pos;
799 ptrdiff_t orig = PT;
800
801 if (NILP (n))
802 XSETFASTINT (n, 1);
803 else
804 CHECK_NUMBER (n);
805
806 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
807 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
808
809 /* Return END_POS constrained to the current input field. */
810 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
811 Qnil, Qt, Qnil);
812 }
813
814 \f
815 Lisp_Object
816 save_excursion_save (void)
817 {
818 bool visible = (XBUFFER (XWINDOW (selected_window)->buffer)
819 == current_buffer);
820
821 return Fcons (Fpoint_marker (),
822 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
823 Fcons (visible ? Qt : Qnil,
824 Fcons (BVAR (current_buffer, mark_active),
825 selected_window))));
826 }
827
828 Lisp_Object
829 save_excursion_restore (Lisp_Object info)
830 {
831 Lisp_Object tem, tem1, omark, nmark;
832 struct gcpro gcpro1, gcpro2, gcpro3;
833 bool visible_p;
834
835 tem = Fmarker_buffer (XCAR (info));
836 /* If buffer being returned to is now deleted, avoid error */
837 /* Otherwise could get error here while unwinding to top level
838 and crash */
839 /* In that case, Fmarker_buffer returns nil now. */
840 if (NILP (tem))
841 return Qnil;
842
843 omark = nmark = Qnil;
844 GCPRO3 (info, omark, nmark);
845
846 Fset_buffer (tem);
847
848 /* Point marker. */
849 tem = XCAR (info);
850 Fgoto_char (tem);
851 unchain_marker (XMARKER (tem));
852
853 /* Mark marker. */
854 info = XCDR (info);
855 tem = XCAR (info);
856 omark = Fmarker_position (BVAR (current_buffer, mark));
857 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
858 nmark = Fmarker_position (tem);
859 unchain_marker (XMARKER (tem));
860
861 /* visible */
862 info = XCDR (info);
863 visible_p = !NILP (XCAR (info));
864
865 #if 0 /* We used to make the current buffer visible in the selected window
866 if that was true previously. That avoids some anomalies.
867 But it creates others, and it wasn't documented, and it is simpler
868 and cleaner never to alter the window/buffer connections. */
869 tem1 = Fcar (tem);
870 if (!NILP (tem1)
871 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
872 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
873 #endif /* 0 */
874
875 /* Mark active */
876 info = XCDR (info);
877 tem = XCAR (info);
878 tem1 = BVAR (current_buffer, mark_active);
879 bset_mark_active (current_buffer, tem);
880
881 /* If mark is active now, and either was not active
882 or was at a different place, run the activate hook. */
883 if (! NILP (tem))
884 {
885 if (! EQ (omark, nmark))
886 {
887 tem = intern ("activate-mark-hook");
888 Frun_hooks (1, &tem);
889 }
890 }
891 /* If mark has ceased to be active, run deactivate hook. */
892 else if (! NILP (tem1))
893 {
894 tem = intern ("deactivate-mark-hook");
895 Frun_hooks (1, &tem);
896 }
897
898 /* If buffer was visible in a window, and a different window was
899 selected, and the old selected window is still showing this
900 buffer, restore point in that window. */
901 tem = XCDR (info);
902 if (visible_p
903 && !EQ (tem, selected_window)
904 && (tem1 = XWINDOW (tem)->buffer,
905 (/* Window is live... */
906 BUFFERP (tem1)
907 /* ...and it shows the current buffer. */
908 && XBUFFER (tem1) == current_buffer)))
909 Fset_window_point (tem, make_number (PT));
910
911 UNGCPRO;
912 return Qnil;
913 }
914
915 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
916 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
917 Executes BODY just like `progn'.
918 The values of point, mark and the current buffer are restored
919 even in case of abnormal exit (throw or error).
920 The state of activation of the mark is also restored.
921
922 This construct does not save `deactivate-mark', and therefore
923 functions that change the buffer will still cause deactivation
924 of the mark at the end of the command. To prevent that, bind
925 `deactivate-mark' with `let'.
926
927 If you only want to save the current buffer but not point nor mark,
928 then just use `save-current-buffer', or even `with-current-buffer'.
929
930 usage: (save-excursion &rest BODY) */)
931 (Lisp_Object args)
932 {
933 register Lisp_Object val;
934 ptrdiff_t count = SPECPDL_INDEX ();
935
936 record_unwind_protect (save_excursion_restore, save_excursion_save ());
937
938 val = Fprogn (args);
939 return unbind_to (count, val);
940 }
941
942 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
943 doc: /* Record which buffer is current; execute BODY; make that buffer current.
944 BODY is executed just like `progn'.
945 usage: (save-current-buffer &rest BODY) */)
946 (Lisp_Object args)
947 {
948 ptrdiff_t count = SPECPDL_INDEX ();
949
950 record_unwind_current_buffer ();
951 return unbind_to (count, Fprogn (args));
952 }
953 \f
954 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
955 doc: /* Return the number of characters in the current buffer.
956 If BUFFER, return the number of characters in that buffer instead. */)
957 (Lisp_Object buffer)
958 {
959 if (NILP (buffer))
960 return make_number (Z - BEG);
961 else
962 {
963 CHECK_BUFFER (buffer);
964 return make_number (BUF_Z (XBUFFER (buffer))
965 - BUF_BEG (XBUFFER (buffer)));
966 }
967 }
968
969 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
970 doc: /* Return the minimum permissible value of point in the current buffer.
971 This is 1, unless narrowing (a buffer restriction) is in effect. */)
972 (void)
973 {
974 Lisp_Object temp;
975 XSETFASTINT (temp, BEGV);
976 return temp;
977 }
978
979 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
980 doc: /* Return a marker to the minimum permissible value of point in this buffer.
981 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
982 (void)
983 {
984 return build_marker (current_buffer, BEGV, BEGV_BYTE);
985 }
986
987 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
988 doc: /* Return the maximum permissible value of point in the current buffer.
989 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
990 is in effect, in which case it is less. */)
991 (void)
992 {
993 Lisp_Object temp;
994 XSETFASTINT (temp, ZV);
995 return temp;
996 }
997
998 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
999 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1000 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1001 is in effect, in which case it is less. */)
1002 (void)
1003 {
1004 return build_marker (current_buffer, ZV, ZV_BYTE);
1005 }
1006
1007 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1008 doc: /* Return the position of the gap, in the current buffer.
1009 See also `gap-size'. */)
1010 (void)
1011 {
1012 Lisp_Object temp;
1013 XSETFASTINT (temp, GPT);
1014 return temp;
1015 }
1016
1017 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1018 doc: /* Return the size of the current buffer's gap.
1019 See also `gap-position'. */)
1020 (void)
1021 {
1022 Lisp_Object temp;
1023 XSETFASTINT (temp, GAP_SIZE);
1024 return temp;
1025 }
1026
1027 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1028 doc: /* Return the byte position for character position POSITION.
1029 If POSITION is out of range, the value is nil. */)
1030 (Lisp_Object position)
1031 {
1032 CHECK_NUMBER_COERCE_MARKER (position);
1033 if (XINT (position) < BEG || XINT (position) > Z)
1034 return Qnil;
1035 return make_number (CHAR_TO_BYTE (XINT (position)));
1036 }
1037
1038 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1039 doc: /* Return the character position for byte position BYTEPOS.
1040 If BYTEPOS is out of range, the value is nil. */)
1041 (Lisp_Object bytepos)
1042 {
1043 CHECK_NUMBER (bytepos);
1044 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1045 return Qnil;
1046 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1047 }
1048 \f
1049 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1050 doc: /* Return the character following point, as a number.
1051 At the end of the buffer or accessible region, return 0. */)
1052 (void)
1053 {
1054 Lisp_Object temp;
1055 if (PT >= ZV)
1056 XSETFASTINT (temp, 0);
1057 else
1058 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1059 return temp;
1060 }
1061
1062 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1063 doc: /* Return the character preceding point, as a number.
1064 At the beginning of the buffer or accessible region, return 0. */)
1065 (void)
1066 {
1067 Lisp_Object temp;
1068 if (PT <= BEGV)
1069 XSETFASTINT (temp, 0);
1070 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1071 {
1072 ptrdiff_t pos = PT_BYTE;
1073 DEC_POS (pos);
1074 XSETFASTINT (temp, FETCH_CHAR (pos));
1075 }
1076 else
1077 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1078 return temp;
1079 }
1080
1081 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1082 doc: /* Return t if point is at the beginning of the buffer.
1083 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1084 (void)
1085 {
1086 if (PT == BEGV)
1087 return Qt;
1088 return Qnil;
1089 }
1090
1091 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1092 doc: /* Return t if point is at the end of the buffer.
1093 If the buffer is narrowed, this means the end of the narrowed part. */)
1094 (void)
1095 {
1096 if (PT == ZV)
1097 return Qt;
1098 return Qnil;
1099 }
1100
1101 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1102 doc: /* Return t if point is at the beginning of a line. */)
1103 (void)
1104 {
1105 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1106 return Qt;
1107 return Qnil;
1108 }
1109
1110 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1111 doc: /* Return t if point is at the end of a line.
1112 `End of a line' includes point being at the end of the buffer. */)
1113 (void)
1114 {
1115 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1116 return Qt;
1117 return Qnil;
1118 }
1119
1120 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1121 doc: /* Return character in current buffer at position POS.
1122 POS is an integer or a marker and defaults to point.
1123 If POS is out of range, the value is nil. */)
1124 (Lisp_Object pos)
1125 {
1126 register ptrdiff_t pos_byte;
1127
1128 if (NILP (pos))
1129 {
1130 pos_byte = PT_BYTE;
1131 XSETFASTINT (pos, PT);
1132 }
1133
1134 if (MARKERP (pos))
1135 {
1136 pos_byte = marker_byte_position (pos);
1137 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1138 return Qnil;
1139 }
1140 else
1141 {
1142 CHECK_NUMBER_COERCE_MARKER (pos);
1143 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1144 return Qnil;
1145
1146 pos_byte = CHAR_TO_BYTE (XINT (pos));
1147 }
1148
1149 return make_number (FETCH_CHAR (pos_byte));
1150 }
1151
1152 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1153 doc: /* Return character in current buffer preceding position POS.
1154 POS is an integer or a marker and defaults to point.
1155 If POS is out of range, the value is nil. */)
1156 (Lisp_Object pos)
1157 {
1158 register Lisp_Object val;
1159 register ptrdiff_t pos_byte;
1160
1161 if (NILP (pos))
1162 {
1163 pos_byte = PT_BYTE;
1164 XSETFASTINT (pos, PT);
1165 }
1166
1167 if (MARKERP (pos))
1168 {
1169 pos_byte = marker_byte_position (pos);
1170
1171 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1172 return Qnil;
1173 }
1174 else
1175 {
1176 CHECK_NUMBER_COERCE_MARKER (pos);
1177
1178 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1179 return Qnil;
1180
1181 pos_byte = CHAR_TO_BYTE (XINT (pos));
1182 }
1183
1184 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1185 {
1186 DEC_POS (pos_byte);
1187 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1188 }
1189 else
1190 {
1191 pos_byte--;
1192 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1193 }
1194 return val;
1195 }
1196 \f
1197 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1198 doc: /* Return the name under which the user logged in, as a string.
1199 This is based on the effective uid, not the real uid.
1200 Also, if the environment variables LOGNAME or USER are set,
1201 that determines the value of this function.
1202
1203 If optional argument UID is an integer or a float, return the login name
1204 of the user with that uid, or nil if there is no such user. */)
1205 (Lisp_Object uid)
1206 {
1207 struct passwd *pw;
1208 uid_t id;
1209
1210 /* Set up the user name info if we didn't do it before.
1211 (That can happen if Emacs is dumpable
1212 but you decide to run `temacs -l loadup' and not dump. */
1213 if (INTEGERP (Vuser_login_name))
1214 init_editfns ();
1215
1216 if (NILP (uid))
1217 return Vuser_login_name;
1218
1219 CONS_TO_INTEGER (uid, uid_t, id);
1220 BLOCK_INPUT;
1221 pw = getpwuid (id);
1222 UNBLOCK_INPUT;
1223 return (pw ? build_string (pw->pw_name) : Qnil);
1224 }
1225
1226 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1227 0, 0, 0,
1228 doc: /* Return the name of the user's real uid, as a string.
1229 This ignores the environment variables LOGNAME and USER, so it differs from
1230 `user-login-name' when running under `su'. */)
1231 (void)
1232 {
1233 /* Set up the user name info if we didn't do it before.
1234 (That can happen if Emacs is dumpable
1235 but you decide to run `temacs -l loadup' and not dump. */
1236 if (INTEGERP (Vuser_login_name))
1237 init_editfns ();
1238 return Vuser_real_login_name;
1239 }
1240
1241 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1242 doc: /* Return the effective uid of Emacs.
1243 Value is an integer or a float, depending on the value. */)
1244 (void)
1245 {
1246 uid_t euid = geteuid ();
1247 return make_fixnum_or_float (euid);
1248 }
1249
1250 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1251 doc: /* Return the real uid of Emacs.
1252 Value is an integer or a float, depending on the value. */)
1253 (void)
1254 {
1255 uid_t uid = getuid ();
1256 return make_fixnum_or_float (uid);
1257 }
1258
1259 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1260 doc: /* Return the full name of the user logged in, as a string.
1261 If the full name corresponding to Emacs's userid is not known,
1262 return "unknown".
1263
1264 If optional argument UID is an integer or float, return the full name
1265 of the user with that uid, or nil if there is no such user.
1266 If UID is a string, return the full name of the user with that login
1267 name, or nil if there is no such user. */)
1268 (Lisp_Object uid)
1269 {
1270 struct passwd *pw;
1271 register char *p, *q;
1272 Lisp_Object full;
1273
1274 if (NILP (uid))
1275 return Vuser_full_name;
1276 else if (NUMBERP (uid))
1277 {
1278 uid_t u;
1279 CONS_TO_INTEGER (uid, uid_t, u);
1280 BLOCK_INPUT;
1281 pw = getpwuid (u);
1282 UNBLOCK_INPUT;
1283 }
1284 else if (STRINGP (uid))
1285 {
1286 BLOCK_INPUT;
1287 pw = getpwnam (SSDATA (uid));
1288 UNBLOCK_INPUT;
1289 }
1290 else
1291 error ("Invalid UID specification");
1292
1293 if (!pw)
1294 return Qnil;
1295
1296 p = USER_FULL_NAME;
1297 /* Chop off everything after the first comma. */
1298 q = strchr (p, ',');
1299 full = make_string (p, q ? q - p : strlen (p));
1300
1301 #ifdef AMPERSAND_FULL_NAME
1302 p = SSDATA (full);
1303 q = strchr (p, '&');
1304 /* Substitute the login name for the &, upcasing the first character. */
1305 if (q)
1306 {
1307 register char *r;
1308 Lisp_Object login;
1309
1310 login = Fuser_login_name (make_number (pw->pw_uid));
1311 r = alloca (strlen (p) + SCHARS (login) + 1);
1312 memcpy (r, p, q - p);
1313 r[q - p] = 0;
1314 strcat (r, SSDATA (login));
1315 r[q - p] = upcase ((unsigned char) r[q - p]);
1316 strcat (r, q + 1);
1317 full = build_string (r);
1318 }
1319 #endif /* AMPERSAND_FULL_NAME */
1320
1321 return full;
1322 }
1323
1324 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1325 doc: /* Return the host name of the machine you are running on, as a string. */)
1326 (void)
1327 {
1328 return Vsystem_name;
1329 }
1330
1331 const char *
1332 get_system_name (void)
1333 {
1334 if (STRINGP (Vsystem_name))
1335 return SSDATA (Vsystem_name);
1336 else
1337 return "";
1338 }
1339
1340 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1341 doc: /* Return the process ID of Emacs, as a number. */)
1342 (void)
1343 {
1344 pid_t pid = getpid ();
1345 return make_fixnum_or_float (pid);
1346 }
1347
1348 \f
1349
1350 #ifndef TIME_T_MIN
1351 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1352 #endif
1353 #ifndef TIME_T_MAX
1354 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1355 #endif
1356
1357 /* Report that a time value is out of range for Emacs. */
1358 void
1359 time_overflow (void)
1360 {
1361 error ("Specified time is not representable");
1362 }
1363
1364 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1365 static EMACS_INT
1366 hi_time (time_t t)
1367 {
1368 time_t hi = t >> 16;
1369
1370 /* Check for overflow, helping the compiler for common cases where
1371 no runtime check is needed, and taking care not to convert
1372 negative numbers to unsigned before comparing them. */
1373 if (! ((! TYPE_SIGNED (time_t)
1374 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1375 || MOST_NEGATIVE_FIXNUM <= hi)
1376 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1377 || hi <= MOST_POSITIVE_FIXNUM)))
1378 time_overflow ();
1379
1380 return hi;
1381 }
1382
1383 /* Return the bottom 16 bits of the time T. */
1384 static int
1385 lo_time (time_t t)
1386 {
1387 return t & ((1 << 16) - 1);
1388 }
1389
1390 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1391 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1392 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1393 HIGH has the most significant bits of the seconds, while LOW has the
1394 least significant 16 bits. USEC and PSEC are the microsecond and
1395 picosecond counts. */)
1396 (void)
1397 {
1398 return make_lisp_time (current_emacs_time ());
1399 }
1400
1401 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1402 0, 0, 0,
1403 doc: /* Return the current run time used by Emacs.
1404 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1405 style as (current-time).
1406
1407 On systems that can't determine the run time, `get-internal-run-time'
1408 does the same thing as `current-time'. */)
1409 (void)
1410 {
1411 #ifdef HAVE_GETRUSAGE
1412 struct rusage usage;
1413 time_t secs;
1414 int usecs;
1415
1416 if (getrusage (RUSAGE_SELF, &usage) < 0)
1417 /* This shouldn't happen. What action is appropriate? */
1418 xsignal0 (Qerror);
1419
1420 /* Sum up user time and system time. */
1421 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1422 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1423 if (usecs >= 1000000)
1424 {
1425 usecs -= 1000000;
1426 secs++;
1427 }
1428 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1429 #else /* ! HAVE_GETRUSAGE */
1430 #ifdef WINDOWSNT
1431 return w32_get_internal_run_time ();
1432 #else /* ! WINDOWSNT */
1433 return Fcurrent_time ();
1434 #endif /* WINDOWSNT */
1435 #endif /* HAVE_GETRUSAGE */
1436 }
1437 \f
1438
1439 /* Make a Lisp list that represents the time T with fraction TAIL. */
1440 static Lisp_Object
1441 make_time_tail (time_t t, Lisp_Object tail)
1442 {
1443 return Fcons (make_number (hi_time (t)),
1444 Fcons (make_number (lo_time (t)), tail));
1445 }
1446
1447 /* Make a Lisp list that represents the system time T. */
1448 static Lisp_Object
1449 make_time (time_t t)
1450 {
1451 return make_time_tail (t, Qnil);
1452 }
1453
1454 /* Make a Lisp list that represents the Emacs time T. T may be an
1455 invalid time, with a slightly negative tv_nsec value such as
1456 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1457 correspondingly negative picosecond count. */
1458 Lisp_Object
1459 make_lisp_time (EMACS_TIME t)
1460 {
1461 int ns = EMACS_NSECS (t);
1462 return make_time_tail (EMACS_SECS (t),
1463 list2 (make_number (ns / 1000),
1464 make_number (ns % 1000 * 1000)));
1465 }
1466
1467 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1468 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1469 Return true if successful. */
1470 static bool
1471 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1472 Lisp_Object *plow, Lisp_Object *pusec,
1473 Lisp_Object *ppsec)
1474 {
1475 if (CONSP (specified_time))
1476 {
1477 Lisp_Object low = XCDR (specified_time);
1478 Lisp_Object usec = make_number (0);
1479 Lisp_Object psec = make_number (0);
1480 if (CONSP (low))
1481 {
1482 Lisp_Object low_tail = XCDR (low);
1483 low = XCAR (low);
1484 if (CONSP (low_tail))
1485 {
1486 usec = XCAR (low_tail);
1487 low_tail = XCDR (low_tail);
1488 if (CONSP (low_tail))
1489 psec = XCAR (low_tail);
1490 }
1491 else if (!NILP (low_tail))
1492 usec = low_tail;
1493 }
1494
1495 *phigh = XCAR (specified_time);
1496 *plow = low;
1497 *pusec = usec;
1498 *ppsec = psec;
1499 return 1;
1500 }
1501
1502 return 0;
1503 }
1504
1505 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1506 list, generate the corresponding time value.
1507
1508 If RESULT is not null, store into *RESULT the converted time;
1509 this can fail if the converted time does not fit into EMACS_TIME.
1510 If *DRESULT is not null, store into *DRESULT the number of
1511 seconds since the start of the POSIX Epoch.
1512
1513 Return true if successful. */
1514 bool
1515 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1516 Lisp_Object psec,
1517 EMACS_TIME *result, double *dresult)
1518 {
1519 EMACS_INT hi, lo, us, ps;
1520 if (! (INTEGERP (high) && INTEGERP (low)
1521 && INTEGERP (usec) && INTEGERP (psec)))
1522 return 0;
1523 hi = XINT (high);
1524 lo = XINT (low);
1525 us = XINT (usec);
1526 ps = XINT (psec);
1527
1528 /* Normalize out-of-range lower-order components by carrying
1529 each overflow into the next higher-order component. */
1530 us += ps / 1000000 - (ps % 1000000 < 0);
1531 lo += us / 1000000 - (us % 1000000 < 0);
1532 hi += lo >> 16;
1533 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1534 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1535 lo &= (1 << 16) - 1;
1536
1537 if (result)
1538 {
1539 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1540 && hi <= TIME_T_MAX >> 16)
1541 {
1542 /* Return the greatest representable time that is not greater
1543 than the requested time. */
1544 time_t sec = hi;
1545 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1546 }
1547 else
1548 {
1549 /* Overflow in the highest-order component. */
1550 return 0;
1551 }
1552 }
1553
1554 if (dresult)
1555 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1556
1557 return 1;
1558 }
1559
1560 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1561 If SPECIFIED_TIME is nil, use the current time.
1562
1563 Round the time down to the nearest EMACS_TIME value.
1564 Return seconds since the Epoch.
1565 Signal an error if unsuccessful. */
1566 EMACS_TIME
1567 lisp_time_argument (Lisp_Object specified_time)
1568 {
1569 EMACS_TIME t;
1570 if (NILP (specified_time))
1571 t = current_emacs_time ();
1572 else
1573 {
1574 Lisp_Object high, low, usec, psec;
1575 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1576 && decode_time_components (high, low, usec, psec, &t, 0)))
1577 error ("Invalid time specification");
1578 }
1579 return t;
1580 }
1581
1582 /* Like lisp_time_argument, except decode only the seconds part,
1583 do not allow out-of-range time stamps, do not check the subseconds part,
1584 and always round down. */
1585 static time_t
1586 lisp_seconds_argument (Lisp_Object specified_time)
1587 {
1588 if (NILP (specified_time))
1589 return time (NULL);
1590 else
1591 {
1592 Lisp_Object high, low, usec, psec;
1593 EMACS_TIME t;
1594 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1595 && decode_time_components (high, low, make_number (0),
1596 make_number (0), &t, 0)))
1597 error ("Invalid time specification");
1598 return EMACS_SECS (t);
1599 }
1600 }
1601
1602 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1603 doc: /* Return the current time, as a float number of seconds since the epoch.
1604 If SPECIFIED-TIME is given, it is the time to convert to float
1605 instead of the current time. The argument should have the form
1606 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1607 you can use times from `current-time' and from `file-attributes'.
1608 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1609 considered obsolete.
1610
1611 WARNING: Since the result is floating point, it may not be exact.
1612 If precise time stamps are required, use either `current-time',
1613 or (if you need time as a string) `format-time-string'. */)
1614 (Lisp_Object specified_time)
1615 {
1616 double t;
1617 if (NILP (specified_time))
1618 {
1619 EMACS_TIME now = current_emacs_time ();
1620 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1621 }
1622 else
1623 {
1624 Lisp_Object high, low, usec, psec;
1625 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1626 && decode_time_components (high, low, usec, psec, 0, &t)))
1627 error ("Invalid time specification");
1628 }
1629 return make_float (t);
1630 }
1631
1632 /* Write information into buffer S of size MAXSIZE, according to the
1633 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1634 Default to Universal Time if UT, local time otherwise.
1635 Use NS as the number of nanoseconds in the %N directive.
1636 Return the number of bytes written, not including the terminating
1637 '\0'. If S is NULL, nothing will be written anywhere; so to
1638 determine how many bytes would be written, use NULL for S and
1639 ((size_t) -1) for MAXSIZE.
1640
1641 This function behaves like nstrftime, except it allows null
1642 bytes in FORMAT and it does not support nanoseconds. */
1643 static size_t
1644 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1645 size_t format_len, const struct tm *tp, bool ut, int ns)
1646 {
1647 size_t total = 0;
1648
1649 /* Loop through all the null-terminated strings in the format
1650 argument. Normally there's just one null-terminated string, but
1651 there can be arbitrarily many, concatenated together, if the
1652 format contains '\0' bytes. nstrftime stops at the first
1653 '\0' byte so we must invoke it separately for each such string. */
1654 for (;;)
1655 {
1656 size_t len;
1657 size_t result;
1658
1659 if (s)
1660 s[0] = '\1';
1661
1662 result = nstrftime (s, maxsize, format, tp, ut, ns);
1663
1664 if (s)
1665 {
1666 if (result == 0 && s[0] != '\0')
1667 return 0;
1668 s += result + 1;
1669 }
1670
1671 maxsize -= result + 1;
1672 total += result;
1673 len = strlen (format);
1674 if (len == format_len)
1675 return total;
1676 total++;
1677 format += len + 1;
1678 format_len -= len + 1;
1679 }
1680 }
1681
1682 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1683 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1684 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1685 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1686 is also still accepted.
1687 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1688 as Universal Time; nil means describe TIME in the local time zone.
1689 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1690 by text that describes the specified date and time in TIME:
1691
1692 %Y is the year, %y within the century, %C the century.
1693 %G is the year corresponding to the ISO week, %g within the century.
1694 %m is the numeric month.
1695 %b and %h are the locale's abbreviated month name, %B the full name.
1696 %d is the day of the month, zero-padded, %e is blank-padded.
1697 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1698 %a is the locale's abbreviated name of the day of week, %A the full name.
1699 %U is the week number starting on Sunday, %W starting on Monday,
1700 %V according to ISO 8601.
1701 %j is the day of the year.
1702
1703 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1704 only blank-padded, %l is like %I blank-padded.
1705 %p is the locale's equivalent of either AM or PM.
1706 %M is the minute.
1707 %S is the second.
1708 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1709 %Z is the time zone name, %z is the numeric form.
1710 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1711
1712 %c is the locale's date and time format.
1713 %x is the locale's "preferred" date format.
1714 %D is like "%m/%d/%y".
1715
1716 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1717 %X is the locale's "preferred" time format.
1718
1719 Finally, %n is a newline, %t is a tab, %% is a literal %.
1720
1721 Certain flags and modifiers are available with some format controls.
1722 The flags are `_', `-', `^' and `#'. For certain characters X,
1723 %_X is like %X, but padded with blanks; %-X is like %X,
1724 but without padding. %^X is like %X, but with all textual
1725 characters up-cased; %#X is like %X, but with letter-case of
1726 all textual characters reversed.
1727 %NX (where N stands for an integer) is like %X,
1728 but takes up at least N (a number) positions.
1729 The modifiers are `E' and `O'. For certain characters X,
1730 %EX is a locale's alternative version of %X;
1731 %OX is like %X, but uses the locale's number symbols.
1732
1733 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1734
1735 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1736 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1737 {
1738 EMACS_TIME t = lisp_time_argument (timeval);
1739 struct tm tm;
1740
1741 CHECK_STRING (format_string);
1742 format_string = code_convert_string_norecord (format_string,
1743 Vlocale_coding_system, 1);
1744 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1745 t, ! NILP (universal), &tm);
1746 }
1747
1748 static Lisp_Object
1749 format_time_string (char const *format, ptrdiff_t formatlen,
1750 EMACS_TIME t, bool ut, struct tm *tmp)
1751 {
1752 char buffer[4000];
1753 char *buf = buffer;
1754 ptrdiff_t size = sizeof buffer;
1755 size_t len;
1756 Lisp_Object bufstring;
1757 int ns = EMACS_NSECS (t);
1758 struct tm *tm;
1759 USE_SAFE_ALLOCA;
1760
1761 while (1)
1762 {
1763 time_t *taddr = emacs_secs_addr (&t);
1764 BLOCK_INPUT;
1765
1766 synchronize_system_time_locale ();
1767
1768 tm = ut ? gmtime (taddr) : localtime (taddr);
1769 if (! tm)
1770 {
1771 UNBLOCK_INPUT;
1772 time_overflow ();
1773 }
1774 *tmp = *tm;
1775
1776 buf[0] = '\1';
1777 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1778 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1779 break;
1780
1781 /* Buffer was too small, so make it bigger and try again. */
1782 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1783 UNBLOCK_INPUT;
1784 if (STRING_BYTES_BOUND <= len)
1785 string_overflow ();
1786 size = len + 1;
1787 buf = SAFE_ALLOCA (size);
1788 }
1789
1790 UNBLOCK_INPUT;
1791 bufstring = make_unibyte_string (buf, len);
1792 SAFE_FREE ();
1793 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1794 }
1795
1796 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1797 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1798 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1799 as from `current-time' and `file-attributes', or nil to use the
1800 current time. The obsolete form (HIGH . LOW) is also still accepted.
1801 The list has the following nine members: SEC is an integer between 0
1802 and 60; SEC is 60 for a leap second, which only some operating systems
1803 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1804 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1805 integer between 1 and 12. YEAR is an integer indicating the
1806 four-digit year. DOW is the day of week, an integer between 0 and 6,
1807 where 0 is Sunday. DST is t if daylight saving time is in effect,
1808 otherwise nil. ZONE is an integer indicating the number of seconds
1809 east of Greenwich. (Note that Common Lisp has different meanings for
1810 DOW and ZONE.) */)
1811 (Lisp_Object specified_time)
1812 {
1813 time_t time_spec = lisp_seconds_argument (specified_time);
1814 struct tm save_tm;
1815 struct tm *decoded_time;
1816 Lisp_Object list_args[9];
1817
1818 BLOCK_INPUT;
1819 decoded_time = localtime (&time_spec);
1820 if (decoded_time)
1821 save_tm = *decoded_time;
1822 UNBLOCK_INPUT;
1823 if (! (decoded_time
1824 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1825 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1826 time_overflow ();
1827 XSETFASTINT (list_args[0], save_tm.tm_sec);
1828 XSETFASTINT (list_args[1], save_tm.tm_min);
1829 XSETFASTINT (list_args[2], save_tm.tm_hour);
1830 XSETFASTINT (list_args[3], save_tm.tm_mday);
1831 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1832 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1833 cast below avoids overflow in int arithmetics. */
1834 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1835 XSETFASTINT (list_args[6], save_tm.tm_wday);
1836 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1837
1838 BLOCK_INPUT;
1839 decoded_time = gmtime (&time_spec);
1840 if (decoded_time == 0)
1841 list_args[8] = Qnil;
1842 else
1843 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1844 UNBLOCK_INPUT;
1845 return Flist (9, list_args);
1846 }
1847
1848 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1849 the result is representable as an int. Assume OFFSET is small and
1850 nonnegative. */
1851 static int
1852 check_tm_member (Lisp_Object obj, int offset)
1853 {
1854 EMACS_INT n;
1855 CHECK_NUMBER (obj);
1856 n = XINT (obj);
1857 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1858 time_overflow ();
1859 return n - offset;
1860 }
1861
1862 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1863 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1864 This is the reverse operation of `decode-time', which see.
1865 ZONE defaults to the current time zone rule. This can
1866 be a string or t (as from `set-time-zone-rule'), or it can be a list
1867 \(as from `current-time-zone') or an integer (as from `decode-time')
1868 applied without consideration for daylight saving time.
1869
1870 You can pass more than 7 arguments; then the first six arguments
1871 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1872 The intervening arguments are ignored.
1873 This feature lets (apply 'encode-time (decode-time ...)) work.
1874
1875 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1876 for example, a DAY of 0 means the day preceding the given month.
1877 Year numbers less than 100 are treated just like other year numbers.
1878 If you want them to stand for years in this century, you must do that yourself.
1879
1880 Years before 1970 are not guaranteed to work. On some systems,
1881 year values as low as 1901 do work.
1882
1883 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1884 (ptrdiff_t nargs, Lisp_Object *args)
1885 {
1886 time_t value;
1887 struct tm tm;
1888 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1889
1890 tm.tm_sec = check_tm_member (args[0], 0);
1891 tm.tm_min = check_tm_member (args[1], 0);
1892 tm.tm_hour = check_tm_member (args[2], 0);
1893 tm.tm_mday = check_tm_member (args[3], 0);
1894 tm.tm_mon = check_tm_member (args[4], 1);
1895 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1896 tm.tm_isdst = -1;
1897
1898 if (CONSP (zone))
1899 zone = XCAR (zone);
1900 if (NILP (zone))
1901 {
1902 BLOCK_INPUT;
1903 value = mktime (&tm);
1904 UNBLOCK_INPUT;
1905 }
1906 else
1907 {
1908 char tzbuf[100];
1909 const char *tzstring;
1910 char **oldenv = environ, **newenv;
1911
1912 if (EQ (zone, Qt))
1913 tzstring = "UTC0";
1914 else if (STRINGP (zone))
1915 tzstring = SSDATA (zone);
1916 else if (INTEGERP (zone))
1917 {
1918 EMACS_INT abszone = eabs (XINT (zone));
1919 EMACS_INT zone_hr = abszone / (60*60);
1920 int zone_min = (abszone/60) % 60;
1921 int zone_sec = abszone % 60;
1922 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1923 zone_hr, zone_min, zone_sec);
1924 tzstring = tzbuf;
1925 }
1926 else
1927 error ("Invalid time zone specification");
1928
1929 BLOCK_INPUT;
1930
1931 /* Set TZ before calling mktime; merely adjusting mktime's returned
1932 value doesn't suffice, since that would mishandle leap seconds. */
1933 set_time_zone_rule (tzstring);
1934
1935 value = mktime (&tm);
1936
1937 /* Restore TZ to previous value. */
1938 newenv = environ;
1939 environ = oldenv;
1940 #ifdef LOCALTIME_CACHE
1941 tzset ();
1942 #endif
1943 UNBLOCK_INPUT;
1944
1945 xfree (newenv);
1946 }
1947
1948 if (value == (time_t) -1)
1949 time_overflow ();
1950
1951 return make_time (value);
1952 }
1953
1954 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1955 doc: /* Return the current local time, as a human-readable string.
1956 Programs can use this function to decode a time,
1957 since the number of columns in each field is fixed
1958 if the year is in the range 1000-9999.
1959 The format is `Sun Sep 16 01:03:52 1973'.
1960 However, see also the functions `decode-time' and `format-time-string'
1961 which provide a much more powerful and general facility.
1962
1963 If SPECIFIED-TIME is given, it is a time to format instead of the
1964 current time. The argument should have the form (HIGH LOW . IGNORED).
1965 Thus, you can use times obtained from `current-time' and from
1966 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1967 but this is considered obsolete. */)
1968 (Lisp_Object specified_time)
1969 {
1970 time_t value = lisp_seconds_argument (specified_time);
1971 struct tm *tm;
1972 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1973 int len IF_LINT (= 0);
1974
1975 /* Convert to a string in ctime format, except without the trailing
1976 newline, and without the 4-digit year limit. Don't use asctime
1977 or ctime, as they might dump core if the year is outside the
1978 range -999 .. 9999. */
1979 BLOCK_INPUT;
1980 tm = localtime (&value);
1981 if (tm)
1982 {
1983 static char const wday_name[][4] =
1984 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1985 static char const mon_name[][4] =
1986 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1987 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1988 printmax_t year_base = TM_YEAR_BASE;
1989
1990 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
1991 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
1992 tm->tm_hour, tm->tm_min, tm->tm_sec,
1993 tm->tm_year + year_base);
1994 }
1995 UNBLOCK_INPUT;
1996 if (! tm)
1997 time_overflow ();
1998
1999 return make_unibyte_string (buf, len);
2000 }
2001
2002 /* Yield A - B, measured in seconds.
2003 This function is copied from the GNU C Library. */
2004 static int
2005 tm_diff (struct tm *a, struct tm *b)
2006 {
2007 /* Compute intervening leap days correctly even if year is negative.
2008 Take care to avoid int overflow in leap day calculations,
2009 but it's OK to assume that A and B are close to each other. */
2010 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2011 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2012 int a100 = a4 / 25 - (a4 % 25 < 0);
2013 int b100 = b4 / 25 - (b4 % 25 < 0);
2014 int a400 = a100 >> 2;
2015 int b400 = b100 >> 2;
2016 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2017 int years = a->tm_year - b->tm_year;
2018 int days = (365 * years + intervening_leap_days
2019 + (a->tm_yday - b->tm_yday));
2020 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2021 + (a->tm_min - b->tm_min))
2022 + (a->tm_sec - b->tm_sec));
2023 }
2024
2025 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2026 doc: /* Return the offset and name for the local time zone.
2027 This returns a list of the form (OFFSET NAME).
2028 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2029 A negative value means west of Greenwich.
2030 NAME is a string giving the name of the time zone.
2031 If SPECIFIED-TIME is given, the time zone offset is determined from it
2032 instead of using the current time. The argument should have the form
2033 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2034 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2035 have the form (HIGH . LOW), but this is considered obsolete.
2036
2037 Some operating systems cannot provide all this information to Emacs;
2038 in this case, `current-time-zone' returns a list containing nil for
2039 the data it can't find. */)
2040 (Lisp_Object specified_time)
2041 {
2042 EMACS_TIME value;
2043 int offset;
2044 struct tm *t;
2045 struct tm localtm;
2046 Lisp_Object zone_offset, zone_name;
2047
2048 zone_offset = Qnil;
2049 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2050 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2051 BLOCK_INPUT;
2052 t = gmtime (emacs_secs_addr (&value));
2053 if (t)
2054 offset = tm_diff (&localtm, t);
2055 UNBLOCK_INPUT;
2056
2057 if (t)
2058 {
2059 zone_offset = make_number (offset);
2060 if (SCHARS (zone_name) == 0)
2061 {
2062 /* No local time zone name is available; use "+-NNNN" instead. */
2063 int m = offset / 60;
2064 int am = offset < 0 ? - m : m;
2065 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2066 zone_name = make_formatted_string (buf, "%c%02d%02d",
2067 (offset < 0 ? '-' : '+'),
2068 am / 60, am % 60);
2069 }
2070 }
2071
2072 return list2 (zone_offset, zone_name);
2073 }
2074
2075 /* This holds the value of `environ' produced by the previous
2076 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2077 has never been called. */
2078 static char **environbuf;
2079
2080 /* This holds the startup value of the TZ environment variable so it
2081 can be restored if the user calls set-time-zone-rule with a nil
2082 argument. */
2083 static char *initial_tz;
2084
2085 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2086 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2087 If TZ is nil, use implementation-defined default time zone information.
2088 If TZ is t, use Universal Time.
2089
2090 Instead of calling this function, you typically want (setenv "TZ" TZ).
2091 That changes both the environment of the Emacs process and the
2092 variable `process-environment', whereas `set-time-zone-rule' affects
2093 only the former. */)
2094 (Lisp_Object tz)
2095 {
2096 const char *tzstring;
2097 char **old_environbuf;
2098
2099 if (! (NILP (tz) || EQ (tz, Qt)))
2100 CHECK_STRING (tz);
2101
2102 BLOCK_INPUT;
2103
2104 /* When called for the first time, save the original TZ. */
2105 old_environbuf = environbuf;
2106 if (!old_environbuf)
2107 initial_tz = (char *) getenv ("TZ");
2108
2109 if (NILP (tz))
2110 tzstring = initial_tz;
2111 else if (EQ (tz, Qt))
2112 tzstring = "UTC0";
2113 else
2114 tzstring = SSDATA (tz);
2115
2116 set_time_zone_rule (tzstring);
2117 environbuf = environ;
2118
2119 UNBLOCK_INPUT;
2120
2121 xfree (old_environbuf);
2122 return Qnil;
2123 }
2124
2125 #ifdef LOCALTIME_CACHE
2126
2127 /* These two values are known to load tz files in buggy implementations,
2128 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2129 Their values shouldn't matter in non-buggy implementations.
2130 We don't use string literals for these strings,
2131 since if a string in the environment is in readonly
2132 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2133 See Sun bugs 1113095 and 1114114, ``Timezone routines
2134 improperly modify environment''. */
2135
2136 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2137 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2138
2139 #endif
2140
2141 /* Set the local time zone rule to TZSTRING.
2142 This allocates memory into `environ', which it is the caller's
2143 responsibility to free. */
2144
2145 void
2146 set_time_zone_rule (const char *tzstring)
2147 {
2148 ptrdiff_t envptrs;
2149 char **from, **to, **newenv;
2150
2151 /* Make the ENVIRON vector longer with room for TZSTRING. */
2152 for (from = environ; *from; from++)
2153 continue;
2154 envptrs = from - environ + 2;
2155 newenv = to = xmalloc (envptrs * sizeof *newenv
2156 + (tzstring ? strlen (tzstring) + 4 : 0));
2157
2158 /* Add TZSTRING to the end of environ, as a value for TZ. */
2159 if (tzstring)
2160 {
2161 char *t = (char *) (to + envptrs);
2162 strcpy (t, "TZ=");
2163 strcat (t, tzstring);
2164 *to++ = t;
2165 }
2166
2167 /* Copy the old environ vector elements into NEWENV,
2168 but don't copy the TZ variable.
2169 So we have only one definition of TZ, which came from TZSTRING. */
2170 for (from = environ; *from; from++)
2171 if (strncmp (*from, "TZ=", 3) != 0)
2172 *to++ = *from;
2173 *to = 0;
2174
2175 environ = newenv;
2176
2177 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2178 the TZ variable is stored. If we do not have a TZSTRING,
2179 TO points to the vector slot which has the terminating null. */
2180
2181 #ifdef LOCALTIME_CACHE
2182 {
2183 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2184 "US/Pacific" that loads a tz file, then changes to a value like
2185 "XXX0" that does not load a tz file, and then changes back to
2186 its original value, the last change is (incorrectly) ignored.
2187 Also, if TZ changes twice in succession to values that do
2188 not load a tz file, tzset can dump core (see Sun bug#1225179).
2189 The following code works around these bugs. */
2190
2191 if (tzstring)
2192 {
2193 /* Temporarily set TZ to a value that loads a tz file
2194 and that differs from tzstring. */
2195 char *tz = *newenv;
2196 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2197 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2198 tzset ();
2199 *newenv = tz;
2200 }
2201 else
2202 {
2203 /* The implied tzstring is unknown, so temporarily set TZ to
2204 two different values that each load a tz file. */
2205 *to = set_time_zone_rule_tz1;
2206 to[1] = 0;
2207 tzset ();
2208 *to = set_time_zone_rule_tz2;
2209 tzset ();
2210 *to = 0;
2211 }
2212
2213 /* Now TZ has the desired value, and tzset can be invoked safely. */
2214 }
2215
2216 tzset ();
2217 #endif
2218 }
2219 \f
2220 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2221 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2222 type of object is Lisp_String). INHERIT is passed to
2223 INSERT_FROM_STRING_FUNC as the last argument. */
2224
2225 static void
2226 general_insert_function (void (*insert_func)
2227 (const char *, ptrdiff_t),
2228 void (*insert_from_string_func)
2229 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2230 ptrdiff_t, ptrdiff_t, bool),
2231 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2232 {
2233 ptrdiff_t argnum;
2234 Lisp_Object val;
2235
2236 for (argnum = 0; argnum < nargs; argnum++)
2237 {
2238 val = args[argnum];
2239 if (CHARACTERP (val))
2240 {
2241 int c = XFASTINT (val);
2242 unsigned char str[MAX_MULTIBYTE_LENGTH];
2243 int len;
2244
2245 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2246 len = CHAR_STRING (c, str);
2247 else
2248 {
2249 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2250 len = 1;
2251 }
2252 (*insert_func) ((char *) str, len);
2253 }
2254 else if (STRINGP (val))
2255 {
2256 (*insert_from_string_func) (val, 0, 0,
2257 SCHARS (val),
2258 SBYTES (val),
2259 inherit);
2260 }
2261 else
2262 wrong_type_argument (Qchar_or_string_p, val);
2263 }
2264 }
2265
2266 void
2267 insert1 (Lisp_Object arg)
2268 {
2269 Finsert (1, &arg);
2270 }
2271
2272
2273 /* Callers passing one argument to Finsert need not gcpro the
2274 argument "array", since the only element of the array will
2275 not be used after calling insert or insert_from_string, so
2276 we don't care if it gets trashed. */
2277
2278 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2279 doc: /* Insert the arguments, either strings or characters, at point.
2280 Point and before-insertion markers move forward to end up
2281 after the inserted text.
2282 Any other markers at the point of insertion remain before the text.
2283
2284 If the current buffer is multibyte, unibyte strings are converted
2285 to multibyte for insertion (see `string-make-multibyte').
2286 If the current buffer is unibyte, multibyte strings are converted
2287 to unibyte for insertion (see `string-make-unibyte').
2288
2289 When operating on binary data, it may be necessary to preserve the
2290 original bytes of a unibyte string when inserting it into a multibyte
2291 buffer; to accomplish this, apply `string-as-multibyte' to the string
2292 and insert the result.
2293
2294 usage: (insert &rest ARGS) */)
2295 (ptrdiff_t nargs, Lisp_Object *args)
2296 {
2297 general_insert_function (insert, insert_from_string, 0, nargs, args);
2298 return Qnil;
2299 }
2300
2301 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2302 0, MANY, 0,
2303 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2304 Point and before-insertion markers move forward to end up
2305 after the inserted text.
2306 Any other markers at the point of insertion remain before the text.
2307
2308 If the current buffer is multibyte, unibyte strings are converted
2309 to multibyte for insertion (see `unibyte-char-to-multibyte').
2310 If the current buffer is unibyte, multibyte strings are converted
2311 to unibyte for insertion.
2312
2313 usage: (insert-and-inherit &rest ARGS) */)
2314 (ptrdiff_t nargs, Lisp_Object *args)
2315 {
2316 general_insert_function (insert_and_inherit, insert_from_string, 1,
2317 nargs, args);
2318 return Qnil;
2319 }
2320
2321 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2322 doc: /* Insert strings or characters at point, relocating markers after the text.
2323 Point and markers move forward to end up after the inserted text.
2324
2325 If the current buffer is multibyte, unibyte strings are converted
2326 to multibyte for insertion (see `unibyte-char-to-multibyte').
2327 If the current buffer is unibyte, multibyte strings are converted
2328 to unibyte for insertion.
2329
2330 usage: (insert-before-markers &rest ARGS) */)
2331 (ptrdiff_t nargs, Lisp_Object *args)
2332 {
2333 general_insert_function (insert_before_markers,
2334 insert_from_string_before_markers, 0,
2335 nargs, args);
2336 return Qnil;
2337 }
2338
2339 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2340 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2341 doc: /* Insert text at point, relocating markers and inheriting properties.
2342 Point and markers move forward to end up after the inserted text.
2343
2344 If the current buffer is multibyte, unibyte strings are converted
2345 to multibyte for insertion (see `unibyte-char-to-multibyte').
2346 If the current buffer is unibyte, multibyte strings are converted
2347 to unibyte for insertion.
2348
2349 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2350 (ptrdiff_t nargs, Lisp_Object *args)
2351 {
2352 general_insert_function (insert_before_markers_and_inherit,
2353 insert_from_string_before_markers, 1,
2354 nargs, args);
2355 return Qnil;
2356 }
2357 \f
2358 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2359 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2360 (prefix-numeric-value current-prefix-arg)\
2361 t))",
2362 doc: /* Insert COUNT copies of CHARACTER.
2363 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2364 of these ways:
2365
2366 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2367 Completion is available; if you type a substring of the name
2368 preceded by an asterisk `*', Emacs shows all names which include
2369 that substring, not necessarily at the beginning of the name.
2370
2371 - As a hexadecimal code point, e.g. 263A. Note that code points in
2372 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2373 the Unicode code space).
2374
2375 - As a code point with a radix specified with #, e.g. #o21430
2376 (octal), #x2318 (hex), or #10r8984 (decimal).
2377
2378 If called interactively, COUNT is given by the prefix argument. If
2379 omitted or nil, it defaults to 1.
2380
2381 Inserting the character(s) relocates point and before-insertion
2382 markers in the same ways as the function `insert'.
2383
2384 The optional third argument INHERIT, if non-nil, says to inherit text
2385 properties from adjoining text, if those properties are sticky. If
2386 called interactively, INHERIT is t. */)
2387 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2388 {
2389 int i, stringlen;
2390 register ptrdiff_t n;
2391 int c, len;
2392 unsigned char str[MAX_MULTIBYTE_LENGTH];
2393 char string[4000];
2394
2395 CHECK_CHARACTER (character);
2396 if (NILP (count))
2397 XSETFASTINT (count, 1);
2398 CHECK_NUMBER (count);
2399 c = XFASTINT (character);
2400
2401 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2402 len = CHAR_STRING (c, str);
2403 else
2404 str[0] = c, len = 1;
2405 if (XINT (count) <= 0)
2406 return Qnil;
2407 if (BUF_BYTES_MAX / len < XINT (count))
2408 buffer_overflow ();
2409 n = XINT (count) * len;
2410 stringlen = min (n, sizeof string - sizeof string % len);
2411 for (i = 0; i < stringlen; i++)
2412 string[i] = str[i % len];
2413 while (n > stringlen)
2414 {
2415 QUIT;
2416 if (!NILP (inherit))
2417 insert_and_inherit (string, stringlen);
2418 else
2419 insert (string, stringlen);
2420 n -= stringlen;
2421 }
2422 if (!NILP (inherit))
2423 insert_and_inherit (string, n);
2424 else
2425 insert (string, n);
2426 return Qnil;
2427 }
2428
2429 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2430 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2431 Both arguments are required.
2432 BYTE is a number of the range 0..255.
2433
2434 If BYTE is 128..255 and the current buffer is multibyte, the
2435 corresponding eight-bit character is inserted.
2436
2437 Point, and before-insertion markers, are relocated as in the function `insert'.
2438 The optional third arg INHERIT, if non-nil, says to inherit text properties
2439 from adjoining text, if those properties are sticky. */)
2440 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2441 {
2442 CHECK_NUMBER (byte);
2443 if (XINT (byte) < 0 || XINT (byte) > 255)
2444 args_out_of_range_3 (byte, make_number (0), make_number (255));
2445 if (XINT (byte) >= 128
2446 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2447 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2448 return Finsert_char (byte, count, inherit);
2449 }
2450
2451 \f
2452 /* Making strings from buffer contents. */
2453
2454 /* Return a Lisp_String containing the text of the current buffer from
2455 START to END. If text properties are in use and the current buffer
2456 has properties in the range specified, the resulting string will also
2457 have them, if PROPS is true.
2458
2459 We don't want to use plain old make_string here, because it calls
2460 make_uninit_string, which can cause the buffer arena to be
2461 compacted. make_string has no way of knowing that the data has
2462 been moved, and thus copies the wrong data into the string. This
2463 doesn't effect most of the other users of make_string, so it should
2464 be left as is. But we should use this function when conjuring
2465 buffer substrings. */
2466
2467 Lisp_Object
2468 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2469 {
2470 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2471 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2472
2473 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2474 }
2475
2476 /* Return a Lisp_String containing the text of the current buffer from
2477 START / START_BYTE to END / END_BYTE.
2478
2479 If text properties are in use and the current buffer
2480 has properties in the range specified, the resulting string will also
2481 have them, if PROPS is true.
2482
2483 We don't want to use plain old make_string here, because it calls
2484 make_uninit_string, which can cause the buffer arena to be
2485 compacted. make_string has no way of knowing that the data has
2486 been moved, and thus copies the wrong data into the string. This
2487 doesn't effect most of the other users of make_string, so it should
2488 be left as is. But we should use this function when conjuring
2489 buffer substrings. */
2490
2491 Lisp_Object
2492 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2493 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2494 {
2495 Lisp_Object result, tem, tem1;
2496
2497 if (start < GPT && GPT < end)
2498 move_gap (start);
2499
2500 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2501 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2502 else
2503 result = make_uninit_string (end - start);
2504 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2505
2506 /* If desired, update and copy the text properties. */
2507 if (props)
2508 {
2509 update_buffer_properties (start, end);
2510
2511 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2512 tem1 = Ftext_properties_at (make_number (start), Qnil);
2513
2514 if (XINT (tem) != end || !NILP (tem1))
2515 copy_intervals_to_string (result, current_buffer, start,
2516 end - start);
2517 }
2518
2519 return result;
2520 }
2521
2522 /* Call Vbuffer_access_fontify_functions for the range START ... END
2523 in the current buffer, if necessary. */
2524
2525 static void
2526 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2527 {
2528 /* If this buffer has some access functions,
2529 call them, specifying the range of the buffer being accessed. */
2530 if (!NILP (Vbuffer_access_fontify_functions))
2531 {
2532 Lisp_Object args[3];
2533 Lisp_Object tem;
2534
2535 args[0] = Qbuffer_access_fontify_functions;
2536 XSETINT (args[1], start);
2537 XSETINT (args[2], end);
2538
2539 /* But don't call them if we can tell that the work
2540 has already been done. */
2541 if (!NILP (Vbuffer_access_fontified_property))
2542 {
2543 tem = Ftext_property_any (args[1], args[2],
2544 Vbuffer_access_fontified_property,
2545 Qnil, Qnil);
2546 if (! NILP (tem))
2547 Frun_hook_with_args (3, args);
2548 }
2549 else
2550 Frun_hook_with_args (3, args);
2551 }
2552 }
2553
2554 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2555 doc: /* Return the contents of part of the current buffer as a string.
2556 The two arguments START and END are character positions;
2557 they can be in either order.
2558 The string returned is multibyte if the buffer is multibyte.
2559
2560 This function copies the text properties of that part of the buffer
2561 into the result string; if you don't want the text properties,
2562 use `buffer-substring-no-properties' instead. */)
2563 (Lisp_Object start, Lisp_Object end)
2564 {
2565 register ptrdiff_t b, e;
2566
2567 validate_region (&start, &end);
2568 b = XINT (start);
2569 e = XINT (end);
2570
2571 return make_buffer_string (b, e, 1);
2572 }
2573
2574 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2575 Sbuffer_substring_no_properties, 2, 2, 0,
2576 doc: /* Return the characters of part of the buffer, without the text properties.
2577 The two arguments START and END are character positions;
2578 they can be in either order. */)
2579 (Lisp_Object start, Lisp_Object end)
2580 {
2581 register ptrdiff_t b, e;
2582
2583 validate_region (&start, &end);
2584 b = XINT (start);
2585 e = XINT (end);
2586
2587 return make_buffer_string (b, e, 0);
2588 }
2589
2590 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2591 doc: /* Return the contents of the current buffer as a string.
2592 If narrowing is in effect, this function returns only the visible part
2593 of the buffer. */)
2594 (void)
2595 {
2596 return make_buffer_string (BEGV, ZV, 1);
2597 }
2598
2599 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2600 1, 3, 0,
2601 doc: /* Insert before point a substring of the contents of BUFFER.
2602 BUFFER may be a buffer or a buffer name.
2603 Arguments START and END are character positions specifying the substring.
2604 They default to the values of (point-min) and (point-max) in BUFFER. */)
2605 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2606 {
2607 register EMACS_INT b, e, temp;
2608 register struct buffer *bp, *obuf;
2609 Lisp_Object buf;
2610
2611 buf = Fget_buffer (buffer);
2612 if (NILP (buf))
2613 nsberror (buffer);
2614 bp = XBUFFER (buf);
2615 if (!BUFFER_LIVE_P (bp))
2616 error ("Selecting deleted buffer");
2617
2618 if (NILP (start))
2619 b = BUF_BEGV (bp);
2620 else
2621 {
2622 CHECK_NUMBER_COERCE_MARKER (start);
2623 b = XINT (start);
2624 }
2625 if (NILP (end))
2626 e = BUF_ZV (bp);
2627 else
2628 {
2629 CHECK_NUMBER_COERCE_MARKER (end);
2630 e = XINT (end);
2631 }
2632
2633 if (b > e)
2634 temp = b, b = e, e = temp;
2635
2636 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2637 args_out_of_range (start, end);
2638
2639 obuf = current_buffer;
2640 set_buffer_internal_1 (bp);
2641 update_buffer_properties (b, e);
2642 set_buffer_internal_1 (obuf);
2643
2644 insert_from_buffer (bp, b, e - b, 0);
2645 return Qnil;
2646 }
2647
2648 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2649 6, 6, 0,
2650 doc: /* Compare two substrings of two buffers; return result as number.
2651 the value is -N if first string is less after N-1 chars,
2652 +N if first string is greater after N-1 chars, or 0 if strings match.
2653 Each substring is represented as three arguments: BUFFER, START and END.
2654 That makes six args in all, three for each substring.
2655
2656 The value of `case-fold-search' in the current buffer
2657 determines whether case is significant or ignored. */)
2658 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2659 {
2660 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2661 register struct buffer *bp1, *bp2;
2662 register Lisp_Object trt
2663 = (!NILP (BVAR (current_buffer, case_fold_search))
2664 ? BVAR (current_buffer, case_canon_table) : Qnil);
2665 ptrdiff_t chars = 0;
2666 ptrdiff_t i1, i2, i1_byte, i2_byte;
2667
2668 /* Find the first buffer and its substring. */
2669
2670 if (NILP (buffer1))
2671 bp1 = current_buffer;
2672 else
2673 {
2674 Lisp_Object buf1;
2675 buf1 = Fget_buffer (buffer1);
2676 if (NILP (buf1))
2677 nsberror (buffer1);
2678 bp1 = XBUFFER (buf1);
2679 if (!BUFFER_LIVE_P (bp1))
2680 error ("Selecting deleted buffer");
2681 }
2682
2683 if (NILP (start1))
2684 begp1 = BUF_BEGV (bp1);
2685 else
2686 {
2687 CHECK_NUMBER_COERCE_MARKER (start1);
2688 begp1 = XINT (start1);
2689 }
2690 if (NILP (end1))
2691 endp1 = BUF_ZV (bp1);
2692 else
2693 {
2694 CHECK_NUMBER_COERCE_MARKER (end1);
2695 endp1 = XINT (end1);
2696 }
2697
2698 if (begp1 > endp1)
2699 temp = begp1, begp1 = endp1, endp1 = temp;
2700
2701 if (!(BUF_BEGV (bp1) <= begp1
2702 && begp1 <= endp1
2703 && endp1 <= BUF_ZV (bp1)))
2704 args_out_of_range (start1, end1);
2705
2706 /* Likewise for second substring. */
2707
2708 if (NILP (buffer2))
2709 bp2 = current_buffer;
2710 else
2711 {
2712 Lisp_Object buf2;
2713 buf2 = Fget_buffer (buffer2);
2714 if (NILP (buf2))
2715 nsberror (buffer2);
2716 bp2 = XBUFFER (buf2);
2717 if (!BUFFER_LIVE_P (bp2))
2718 error ("Selecting deleted buffer");
2719 }
2720
2721 if (NILP (start2))
2722 begp2 = BUF_BEGV (bp2);
2723 else
2724 {
2725 CHECK_NUMBER_COERCE_MARKER (start2);
2726 begp2 = XINT (start2);
2727 }
2728 if (NILP (end2))
2729 endp2 = BUF_ZV (bp2);
2730 else
2731 {
2732 CHECK_NUMBER_COERCE_MARKER (end2);
2733 endp2 = XINT (end2);
2734 }
2735
2736 if (begp2 > endp2)
2737 temp = begp2, begp2 = endp2, endp2 = temp;
2738
2739 if (!(BUF_BEGV (bp2) <= begp2
2740 && begp2 <= endp2
2741 && endp2 <= BUF_ZV (bp2)))
2742 args_out_of_range (start2, end2);
2743
2744 i1 = begp1;
2745 i2 = begp2;
2746 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2747 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2748
2749 while (i1 < endp1 && i2 < endp2)
2750 {
2751 /* When we find a mismatch, we must compare the
2752 characters, not just the bytes. */
2753 int c1, c2;
2754
2755 QUIT;
2756
2757 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2758 {
2759 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2760 BUF_INC_POS (bp1, i1_byte);
2761 i1++;
2762 }
2763 else
2764 {
2765 c1 = BUF_FETCH_BYTE (bp1, i1);
2766 MAKE_CHAR_MULTIBYTE (c1);
2767 i1++;
2768 }
2769
2770 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2771 {
2772 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2773 BUF_INC_POS (bp2, i2_byte);
2774 i2++;
2775 }
2776 else
2777 {
2778 c2 = BUF_FETCH_BYTE (bp2, i2);
2779 MAKE_CHAR_MULTIBYTE (c2);
2780 i2++;
2781 }
2782
2783 if (!NILP (trt))
2784 {
2785 c1 = char_table_translate (trt, c1);
2786 c2 = char_table_translate (trt, c2);
2787 }
2788 if (c1 < c2)
2789 return make_number (- 1 - chars);
2790 if (c1 > c2)
2791 return make_number (chars + 1);
2792
2793 chars++;
2794 }
2795
2796 /* The strings match as far as they go.
2797 If one is shorter, that one is less. */
2798 if (chars < endp1 - begp1)
2799 return make_number (chars + 1);
2800 else if (chars < endp2 - begp2)
2801 return make_number (- chars - 1);
2802
2803 /* Same length too => they are equal. */
2804 return make_number (0);
2805 }
2806 \f
2807 static Lisp_Object
2808 subst_char_in_region_unwind (Lisp_Object arg)
2809 {
2810 bset_undo_list (current_buffer, arg);
2811 return arg;
2812 }
2813
2814 static Lisp_Object
2815 subst_char_in_region_unwind_1 (Lisp_Object arg)
2816 {
2817 bset_filename (current_buffer, arg);
2818 return arg;
2819 }
2820
2821 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2822 Ssubst_char_in_region, 4, 5, 0,
2823 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2824 If optional arg NOUNDO is non-nil, don't record this change for undo
2825 and don't mark the buffer as really changed.
2826 Both characters must have the same length of multi-byte form. */)
2827 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2828 {
2829 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2830 /* Keep track of the first change in the buffer:
2831 if 0 we haven't found it yet.
2832 if < 0 we've found it and we've run the before-change-function.
2833 if > 0 we've actually performed it and the value is its position. */
2834 ptrdiff_t changed = 0;
2835 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2836 unsigned char *p;
2837 ptrdiff_t count = SPECPDL_INDEX ();
2838 #define COMBINING_NO 0
2839 #define COMBINING_BEFORE 1
2840 #define COMBINING_AFTER 2
2841 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2842 int maybe_byte_combining = COMBINING_NO;
2843 ptrdiff_t last_changed = 0;
2844 bool multibyte_p
2845 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2846 int fromc, toc;
2847
2848 restart:
2849
2850 validate_region (&start, &end);
2851 CHECK_CHARACTER (fromchar);
2852 CHECK_CHARACTER (tochar);
2853 fromc = XFASTINT (fromchar);
2854 toc = XFASTINT (tochar);
2855
2856 if (multibyte_p)
2857 {
2858 len = CHAR_STRING (fromc, fromstr);
2859 if (CHAR_STRING (toc, tostr) != len)
2860 error ("Characters in `subst-char-in-region' have different byte-lengths");
2861 if (!ASCII_BYTE_P (*tostr))
2862 {
2863 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2864 complete multibyte character, it may be combined with the
2865 after bytes. If it is in the range 0xA0..0xFF, it may be
2866 combined with the before and after bytes. */
2867 if (!CHAR_HEAD_P (*tostr))
2868 maybe_byte_combining = COMBINING_BOTH;
2869 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2870 maybe_byte_combining = COMBINING_AFTER;
2871 }
2872 }
2873 else
2874 {
2875 len = 1;
2876 fromstr[0] = fromc;
2877 tostr[0] = toc;
2878 }
2879
2880 pos = XINT (start);
2881 pos_byte = CHAR_TO_BYTE (pos);
2882 stop = CHAR_TO_BYTE (XINT (end));
2883 end_byte = stop;
2884
2885 /* If we don't want undo, turn off putting stuff on the list.
2886 That's faster than getting rid of things,
2887 and it prevents even the entry for a first change.
2888 Also inhibit locking the file. */
2889 if (!changed && !NILP (noundo))
2890 {
2891 record_unwind_protect (subst_char_in_region_unwind,
2892 BVAR (current_buffer, undo_list));
2893 bset_undo_list (current_buffer, Qt);
2894 /* Don't do file-locking. */
2895 record_unwind_protect (subst_char_in_region_unwind_1,
2896 BVAR (current_buffer, filename));
2897 bset_filename (current_buffer, Qnil);
2898 }
2899
2900 if (pos_byte < GPT_BYTE)
2901 stop = min (stop, GPT_BYTE);
2902 while (1)
2903 {
2904 ptrdiff_t pos_byte_next = pos_byte;
2905
2906 if (pos_byte >= stop)
2907 {
2908 if (pos_byte >= end_byte) break;
2909 stop = end_byte;
2910 }
2911 p = BYTE_POS_ADDR (pos_byte);
2912 if (multibyte_p)
2913 INC_POS (pos_byte_next);
2914 else
2915 ++pos_byte_next;
2916 if (pos_byte_next - pos_byte == len
2917 && p[0] == fromstr[0]
2918 && (len == 1
2919 || (p[1] == fromstr[1]
2920 && (len == 2 || (p[2] == fromstr[2]
2921 && (len == 3 || p[3] == fromstr[3]))))))
2922 {
2923 if (changed < 0)
2924 /* We've already seen this and run the before-change-function;
2925 this time we only need to record the actual position. */
2926 changed = pos;
2927 else if (!changed)
2928 {
2929 changed = -1;
2930 modify_region (current_buffer, pos, XINT (end), 0);
2931
2932 if (! NILP (noundo))
2933 {
2934 if (MODIFF - 1 == SAVE_MODIFF)
2935 SAVE_MODIFF++;
2936 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2937 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2938 }
2939
2940 /* The before-change-function may have moved the gap
2941 or even modified the buffer so we should start over. */
2942 goto restart;
2943 }
2944
2945 /* Take care of the case where the new character
2946 combines with neighboring bytes. */
2947 if (maybe_byte_combining
2948 && (maybe_byte_combining == COMBINING_AFTER
2949 ? (pos_byte_next < Z_BYTE
2950 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2951 : ((pos_byte_next < Z_BYTE
2952 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2953 || (pos_byte > BEG_BYTE
2954 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2955 {
2956 Lisp_Object tem, string;
2957
2958 struct gcpro gcpro1;
2959
2960 tem = BVAR (current_buffer, undo_list);
2961 GCPRO1 (tem);
2962
2963 /* Make a multibyte string containing this single character. */
2964 string = make_multibyte_string ((char *) tostr, 1, len);
2965 /* replace_range is less efficient, because it moves the gap,
2966 but it handles combining correctly. */
2967 replace_range (pos, pos + 1, string,
2968 0, 0, 1);
2969 pos_byte_next = CHAR_TO_BYTE (pos);
2970 if (pos_byte_next > pos_byte)
2971 /* Before combining happened. We should not increment
2972 POS. So, to cancel the later increment of POS,
2973 decrease it now. */
2974 pos--;
2975 else
2976 INC_POS (pos_byte_next);
2977
2978 if (! NILP (noundo))
2979 bset_undo_list (current_buffer, tem);
2980
2981 UNGCPRO;
2982 }
2983 else
2984 {
2985 if (NILP (noundo))
2986 record_change (pos, 1);
2987 for (i = 0; i < len; i++) *p++ = tostr[i];
2988 }
2989 last_changed = pos + 1;
2990 }
2991 pos_byte = pos_byte_next;
2992 pos++;
2993 }
2994
2995 if (changed > 0)
2996 {
2997 signal_after_change (changed,
2998 last_changed - changed, last_changed - changed);
2999 update_compositions (changed, last_changed, CHECK_ALL);
3000 }
3001
3002 unbind_to (count, Qnil);
3003 return Qnil;
3004 }
3005
3006
3007 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3008 Lisp_Object);
3009
3010 /* Helper function for Ftranslate_region_internal.
3011
3012 Check if a character sequence at POS (POS_BYTE) matches an element
3013 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3014 element is found, return it. Otherwise return Qnil. */
3015
3016 static Lisp_Object
3017 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3018 Lisp_Object val)
3019 {
3020 int buf_size = 16, buf_used = 0;
3021 int *buf = alloca (sizeof (int) * buf_size);
3022
3023 for (; CONSP (val); val = XCDR (val))
3024 {
3025 Lisp_Object elt;
3026 ptrdiff_t len, i;
3027
3028 elt = XCAR (val);
3029 if (! CONSP (elt))
3030 continue;
3031 elt = XCAR (elt);
3032 if (! VECTORP (elt))
3033 continue;
3034 len = ASIZE (elt);
3035 if (len <= end - pos)
3036 {
3037 for (i = 0; i < len; i++)
3038 {
3039 if (buf_used <= i)
3040 {
3041 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3042 int len1;
3043
3044 if (buf_used == buf_size)
3045 {
3046 int *newbuf;
3047
3048 buf_size += 16;
3049 newbuf = alloca (sizeof (int) * buf_size);
3050 memcpy (newbuf, buf, sizeof (int) * buf_used);
3051 buf = newbuf;
3052 }
3053 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3054 pos_byte += len1;
3055 }
3056 if (XINT (AREF (elt, i)) != buf[i])
3057 break;
3058 }
3059 if (i == len)
3060 return XCAR (val);
3061 }
3062 }
3063 return Qnil;
3064 }
3065
3066
3067 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3068 Stranslate_region_internal, 3, 3, 0,
3069 doc: /* Internal use only.
3070 From START to END, translate characters according to TABLE.
3071 TABLE is a string or a char-table; the Nth character in it is the
3072 mapping for the character with code N.
3073 It returns the number of characters changed. */)
3074 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3075 {
3076 register unsigned char *tt; /* Trans table. */
3077 register int nc; /* New character. */
3078 int cnt; /* Number of changes made. */
3079 ptrdiff_t size; /* Size of translate table. */
3080 ptrdiff_t pos, pos_byte, end_pos;
3081 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3082 bool string_multibyte IF_LINT (= 0);
3083
3084 validate_region (&start, &end);
3085 if (CHAR_TABLE_P (table))
3086 {
3087 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3088 error ("Not a translation table");
3089 size = MAX_CHAR;
3090 tt = NULL;
3091 }
3092 else
3093 {
3094 CHECK_STRING (table);
3095
3096 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3097 table = string_make_unibyte (table);
3098 string_multibyte = SCHARS (table) < SBYTES (table);
3099 size = SBYTES (table);
3100 tt = SDATA (table);
3101 }
3102
3103 pos = XINT (start);
3104 pos_byte = CHAR_TO_BYTE (pos);
3105 end_pos = XINT (end);
3106 modify_region (current_buffer, pos, end_pos, 0);
3107
3108 cnt = 0;
3109 for (; pos < end_pos; )
3110 {
3111 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3112 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3113 int len, str_len;
3114 int oc;
3115 Lisp_Object val;
3116
3117 if (multibyte)
3118 oc = STRING_CHAR_AND_LENGTH (p, len);
3119 else
3120 oc = *p, len = 1;
3121 if (oc < size)
3122 {
3123 if (tt)
3124 {
3125 /* Reload as signal_after_change in last iteration may GC. */
3126 tt = SDATA (table);
3127 if (string_multibyte)
3128 {
3129 str = tt + string_char_to_byte (table, oc);
3130 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3131 }
3132 else
3133 {
3134 nc = tt[oc];
3135 if (! ASCII_BYTE_P (nc) && multibyte)
3136 {
3137 str_len = BYTE8_STRING (nc, buf);
3138 str = buf;
3139 }
3140 else
3141 {
3142 str_len = 1;
3143 str = tt + oc;
3144 }
3145 }
3146 }
3147 else
3148 {
3149 nc = oc;
3150 val = CHAR_TABLE_REF (table, oc);
3151 if (CHARACTERP (val))
3152 {
3153 nc = XFASTINT (val);
3154 str_len = CHAR_STRING (nc, buf);
3155 str = buf;
3156 }
3157 else if (VECTORP (val) || (CONSP (val)))
3158 {
3159 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3160 where TO is TO-CHAR or [TO-CHAR ...]. */
3161 nc = -1;
3162 }
3163 }
3164
3165 if (nc != oc && nc >= 0)
3166 {
3167 /* Simple one char to one char translation. */
3168 if (len != str_len)
3169 {
3170 Lisp_Object string;
3171
3172 /* This is less efficient, because it moves the gap,
3173 but it should handle multibyte characters correctly. */
3174 string = make_multibyte_string ((char *) str, 1, str_len);
3175 replace_range (pos, pos + 1, string, 1, 0, 1);
3176 len = str_len;
3177 }
3178 else
3179 {
3180 record_change (pos, 1);
3181 while (str_len-- > 0)
3182 *p++ = *str++;
3183 signal_after_change (pos, 1, 1);
3184 update_compositions (pos, pos + 1, CHECK_BORDER);
3185 }
3186 ++cnt;
3187 }
3188 else if (nc < 0)
3189 {
3190 Lisp_Object string;
3191
3192 if (CONSP (val))
3193 {
3194 val = check_translation (pos, pos_byte, end_pos, val);
3195 if (NILP (val))
3196 {
3197 pos_byte += len;
3198 pos++;
3199 continue;
3200 }
3201 /* VAL is ([FROM-CHAR ...] . TO). */
3202 len = ASIZE (XCAR (val));
3203 val = XCDR (val);
3204 }
3205 else
3206 len = 1;
3207
3208 if (VECTORP (val))
3209 {
3210 string = Fconcat (1, &val);
3211 }
3212 else
3213 {
3214 string = Fmake_string (make_number (1), val);
3215 }
3216 replace_range (pos, pos + len, string, 1, 0, 1);
3217 pos_byte += SBYTES (string);
3218 pos += SCHARS (string);
3219 cnt += SCHARS (string);
3220 end_pos += SCHARS (string) - len;
3221 continue;
3222 }
3223 }
3224 pos_byte += len;
3225 pos++;
3226 }
3227
3228 return make_number (cnt);
3229 }
3230
3231 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3232 doc: /* Delete the text between START and END.
3233 If called interactively, delete the region between point and mark.
3234 This command deletes buffer text without modifying the kill ring. */)
3235 (Lisp_Object start, Lisp_Object end)
3236 {
3237 validate_region (&start, &end);
3238 del_range (XINT (start), XINT (end));
3239 return Qnil;
3240 }
3241
3242 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3243 Sdelete_and_extract_region, 2, 2, 0,
3244 doc: /* Delete the text between START and END and return it. */)
3245 (Lisp_Object start, Lisp_Object end)
3246 {
3247 validate_region (&start, &end);
3248 if (XINT (start) == XINT (end))
3249 return empty_unibyte_string;
3250 return del_range_1 (XINT (start), XINT (end), 1, 1);
3251 }
3252 \f
3253 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3254 doc: /* Remove restrictions (narrowing) from current buffer.
3255 This allows the buffer's full text to be seen and edited. */)
3256 (void)
3257 {
3258 if (BEG != BEGV || Z != ZV)
3259 current_buffer->clip_changed = 1;
3260 BEGV = BEG;
3261 BEGV_BYTE = BEG_BYTE;
3262 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3263 /* Changing the buffer bounds invalidates any recorded current column. */
3264 invalidate_current_column ();
3265 return Qnil;
3266 }
3267
3268 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3269 doc: /* Restrict editing in this buffer to the current region.
3270 The rest of the text becomes temporarily invisible and untouchable
3271 but is not deleted; if you save the buffer in a file, the invisible
3272 text is included in the file. \\[widen] makes all visible again.
3273 See also `save-restriction'.
3274
3275 When calling from a program, pass two arguments; positions (integers
3276 or markers) bounding the text that should remain visible. */)
3277 (register Lisp_Object start, Lisp_Object end)
3278 {
3279 CHECK_NUMBER_COERCE_MARKER (start);
3280 CHECK_NUMBER_COERCE_MARKER (end);
3281
3282 if (XINT (start) > XINT (end))
3283 {
3284 Lisp_Object tem;
3285 tem = start; start = end; end = tem;
3286 }
3287
3288 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3289 args_out_of_range (start, end);
3290
3291 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3292 current_buffer->clip_changed = 1;
3293
3294 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3295 SET_BUF_ZV (current_buffer, XFASTINT (end));
3296 if (PT < XFASTINT (start))
3297 SET_PT (XFASTINT (start));
3298 if (PT > XFASTINT (end))
3299 SET_PT (XFASTINT (end));
3300 /* Changing the buffer bounds invalidates any recorded current column. */
3301 invalidate_current_column ();
3302 return Qnil;
3303 }
3304
3305 Lisp_Object
3306 save_restriction_save (void)
3307 {
3308 if (BEGV == BEG && ZV == Z)
3309 /* The common case that the buffer isn't narrowed.
3310 We return just the buffer object, which save_restriction_restore
3311 recognizes as meaning `no restriction'. */
3312 return Fcurrent_buffer ();
3313 else
3314 /* We have to save a restriction, so return a pair of markers, one
3315 for the beginning and one for the end. */
3316 {
3317 Lisp_Object beg, end;
3318
3319 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3320 end = build_marker (current_buffer, ZV, ZV_BYTE);
3321
3322 /* END must move forward if text is inserted at its exact location. */
3323 XMARKER (end)->insertion_type = 1;
3324
3325 return Fcons (beg, end);
3326 }
3327 }
3328
3329 Lisp_Object
3330 save_restriction_restore (Lisp_Object data)
3331 {
3332 struct buffer *cur = NULL;
3333 struct buffer *buf = (CONSP (data)
3334 ? XMARKER (XCAR (data))->buffer
3335 : XBUFFER (data));
3336
3337 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3338 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3339 is the case if it is or has an indirect buffer), then make
3340 sure it is current before we update BEGV, so
3341 set_buffer_internal takes care of managing those markers. */
3342 cur = current_buffer;
3343 set_buffer_internal (buf);
3344 }
3345
3346 if (CONSP (data))
3347 /* A pair of marks bounding a saved restriction. */
3348 {
3349 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3350 struct Lisp_Marker *end = XMARKER (XCDR (data));
3351 eassert (buf == end->buffer);
3352
3353 if (buf /* Verify marker still points to a buffer. */
3354 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3355 /* The restriction has changed from the saved one, so restore
3356 the saved restriction. */
3357 {
3358 ptrdiff_t pt = BUF_PT (buf);
3359
3360 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3361 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3362
3363 if (pt < beg->charpos || pt > end->charpos)
3364 /* The point is outside the new visible range, move it inside. */
3365 SET_BUF_PT_BOTH (buf,
3366 clip_to_bounds (beg->charpos, pt, end->charpos),
3367 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3368 end->bytepos));
3369
3370 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3371 }
3372 /* These aren't needed anymore, so don't wait for GC. */
3373 free_marker (XCAR (data));
3374 free_marker (XCDR (data));
3375 free_cons (XCONS (data));
3376 }
3377 else
3378 /* A buffer, which means that there was no old restriction. */
3379 {
3380 if (buf /* Verify marker still points to a buffer. */
3381 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3382 /* The buffer has been narrowed, get rid of the narrowing. */
3383 {
3384 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3385 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3386
3387 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3388 }
3389 }
3390
3391 /* Changing the buffer bounds invalidates any recorded current column. */
3392 invalidate_current_column ();
3393
3394 if (cur)
3395 set_buffer_internal (cur);
3396
3397 return Qnil;
3398 }
3399
3400 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3401 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3402 The buffer's restrictions make parts of the beginning and end invisible.
3403 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3404 This special form, `save-restriction', saves the current buffer's restrictions
3405 when it is entered, and restores them when it is exited.
3406 So any `narrow-to-region' within BODY lasts only until the end of the form.
3407 The old restrictions settings are restored
3408 even in case of abnormal exit (throw or error).
3409
3410 The value returned is the value of the last form in BODY.
3411
3412 Note: if you are using both `save-excursion' and `save-restriction',
3413 use `save-excursion' outermost:
3414 (save-excursion (save-restriction ...))
3415
3416 usage: (save-restriction &rest BODY) */)
3417 (Lisp_Object body)
3418 {
3419 register Lisp_Object val;
3420 ptrdiff_t count = SPECPDL_INDEX ();
3421
3422 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3423 val = Fprogn (body);
3424 return unbind_to (count, val);
3425 }
3426 \f
3427 /* Buffer for the most recent text displayed by Fmessage_box. */
3428 static char *message_text;
3429
3430 /* Allocated length of that buffer. */
3431 static ptrdiff_t message_length;
3432
3433 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3434 doc: /* Display a message at the bottom of the screen.
3435 The message also goes into the `*Messages*' buffer.
3436 \(In keyboard macros, that's all it does.)
3437 Return the message.
3438
3439 The first argument is a format control string, and the rest are data
3440 to be formatted under control of the string. See `format' for details.
3441
3442 Note: Use (message "%s" VALUE) to print the value of expressions and
3443 variables to avoid accidentally interpreting `%' as format specifiers.
3444
3445 If the first argument is nil or the empty string, the function clears
3446 any existing message; this lets the minibuffer contents show. See
3447 also `current-message'.
3448
3449 usage: (message FORMAT-STRING &rest ARGS) */)
3450 (ptrdiff_t nargs, Lisp_Object *args)
3451 {
3452 if (NILP (args[0])
3453 || (STRINGP (args[0])
3454 && SBYTES (args[0]) == 0))
3455 {
3456 message (0);
3457 return args[0];
3458 }
3459 else
3460 {
3461 register Lisp_Object val;
3462 val = Fformat (nargs, args);
3463 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3464 return val;
3465 }
3466 }
3467
3468 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3469 doc: /* Display a message, in a dialog box if possible.
3470 If a dialog box is not available, use the echo area.
3471 The first argument is a format control string, and the rest are data
3472 to be formatted under control of the string. See `format' for details.
3473
3474 If the first argument is nil or the empty string, clear any existing
3475 message; let the minibuffer contents show.
3476
3477 usage: (message-box FORMAT-STRING &rest ARGS) */)
3478 (ptrdiff_t nargs, Lisp_Object *args)
3479 {
3480 if (NILP (args[0]))
3481 {
3482 message (0);
3483 return Qnil;
3484 }
3485 else
3486 {
3487 register Lisp_Object val;
3488 val = Fformat (nargs, args);
3489 #ifdef HAVE_MENUS
3490 /* The MS-DOS frames support popup menus even though they are
3491 not FRAME_WINDOW_P. */
3492 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3493 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3494 {
3495 Lisp_Object pane, menu;
3496 struct gcpro gcpro1;
3497 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3498 GCPRO1 (pane);
3499 menu = Fcons (val, pane);
3500 Fx_popup_dialog (Qt, menu, Qt);
3501 UNGCPRO;
3502 return val;
3503 }
3504 #endif /* HAVE_MENUS */
3505 /* Copy the data so that it won't move when we GC. */
3506 if (SBYTES (val) > message_length)
3507 {
3508 ptrdiff_t new_length = SBYTES (val) + 80;
3509 message_text = xrealloc (message_text, new_length);
3510 message_length = new_length;
3511 }
3512 memcpy (message_text, SDATA (val), SBYTES (val));
3513 message2 (message_text, SBYTES (val),
3514 STRING_MULTIBYTE (val));
3515 return val;
3516 }
3517 }
3518
3519 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3520 doc: /* Display a message in a dialog box or in the echo area.
3521 If this command was invoked with the mouse, use a dialog box if
3522 `use-dialog-box' is non-nil.
3523 Otherwise, use the echo area.
3524 The first argument is a format control string, and the rest are data
3525 to be formatted under control of the string. See `format' for details.
3526
3527 If the first argument is nil or the empty string, clear any existing
3528 message; let the minibuffer contents show.
3529
3530 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3531 (ptrdiff_t nargs, Lisp_Object *args)
3532 {
3533 #ifdef HAVE_MENUS
3534 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3535 && use_dialog_box)
3536 return Fmessage_box (nargs, args);
3537 #endif
3538 return Fmessage (nargs, args);
3539 }
3540
3541 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3542 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3543 (void)
3544 {
3545 return current_message ();
3546 }
3547
3548
3549 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3550 doc: /* Return a copy of STRING with text properties added.
3551 First argument is the string to copy.
3552 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3553 properties to add to the result.
3554 usage: (propertize STRING &rest PROPERTIES) */)
3555 (ptrdiff_t nargs, Lisp_Object *args)
3556 {
3557 Lisp_Object properties, string;
3558 struct gcpro gcpro1, gcpro2;
3559 ptrdiff_t i;
3560
3561 /* Number of args must be odd. */
3562 if ((nargs & 1) == 0)
3563 error ("Wrong number of arguments");
3564
3565 properties = string = Qnil;
3566 GCPRO2 (properties, string);
3567
3568 /* First argument must be a string. */
3569 CHECK_STRING (args[0]);
3570 string = Fcopy_sequence (args[0]);
3571
3572 for (i = 1; i < nargs; i += 2)
3573 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3574
3575 Fadd_text_properties (make_number (0),
3576 make_number (SCHARS (string)),
3577 properties, string);
3578 RETURN_UNGCPRO (string);
3579 }
3580
3581 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3582 doc: /* Format a string out of a format-string and arguments.
3583 The first argument is a format control string.
3584 The other arguments are substituted into it to make the result, a string.
3585
3586 The format control string may contain %-sequences meaning to substitute
3587 the next available argument:
3588
3589 %s means print a string argument. Actually, prints any object, with `princ'.
3590 %d means print as number in decimal (%o octal, %x hex).
3591 %X is like %x, but uses upper case.
3592 %e means print a number in exponential notation.
3593 %f means print a number in decimal-point notation.
3594 %g means print a number in exponential notation
3595 or decimal-point notation, whichever uses fewer characters.
3596 %c means print a number as a single character.
3597 %S means print any object as an s-expression (using `prin1').
3598
3599 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3600 Use %% to put a single % into the output.
3601
3602 A %-sequence may contain optional flag, width, and precision
3603 specifiers, as follows:
3604
3605 %<flags><width><precision>character
3606
3607 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3608
3609 The + flag character inserts a + before any positive number, while a
3610 space inserts a space before any positive number; these flags only
3611 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3612 The - and 0 flags affect the width specifier, as described below.
3613
3614 The # flag means to use an alternate display form for %o, %x, %X, %e,
3615 %f, and %g sequences: for %o, it ensures that the result begins with
3616 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3617 for %e, %f, and %g, it causes a decimal point to be included even if
3618 the precision is zero.
3619
3620 The width specifier supplies a lower limit for the length of the
3621 printed representation. The padding, if any, normally goes on the
3622 left, but it goes on the right if the - flag is present. The padding
3623 character is normally a space, but it is 0 if the 0 flag is present.
3624 The 0 flag is ignored if the - flag is present, or the format sequence
3625 is something other than %d, %e, %f, and %g.
3626
3627 For %e, %f, and %g sequences, the number after the "." in the
3628 precision specifier says how many decimal places to show; if zero, the
3629 decimal point itself is omitted. For %s and %S, the precision
3630 specifier truncates the string to the given width.
3631
3632 usage: (format STRING &rest OBJECTS) */)
3633 (ptrdiff_t nargs, Lisp_Object *args)
3634 {
3635 ptrdiff_t n; /* The number of the next arg to substitute */
3636 char initial_buffer[4000];
3637 char *buf = initial_buffer;
3638 ptrdiff_t bufsize = sizeof initial_buffer;
3639 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3640 char *p;
3641 Lisp_Object buf_save_value IF_LINT (= {0});
3642 char *format, *end, *format_start;
3643 ptrdiff_t formatlen, nchars;
3644 /* True if the format is multibyte. */
3645 bool multibyte_format = 0;
3646 /* True if the output should be a multibyte string,
3647 which is true if any of the inputs is one. */
3648 bool multibyte = 0;
3649 /* When we make a multibyte string, we must pay attention to the
3650 byte combining problem, i.e., a byte may be combined with a
3651 multibyte character of the previous string. This flag tells if we
3652 must consider such a situation or not. */
3653 bool maybe_combine_byte;
3654 Lisp_Object val;
3655 bool arg_intervals = 0;
3656 USE_SAFE_ALLOCA;
3657
3658 /* discarded[I] is 1 if byte I of the format
3659 string was not copied into the output.
3660 It is 2 if byte I was not the first byte of its character. */
3661 char *discarded;
3662
3663 /* Each element records, for one argument,
3664 the start and end bytepos in the output string,
3665 whether the argument has been converted to string (e.g., due to "%S"),
3666 and whether the argument is a string with intervals.
3667 info[0] is unused. Unused elements have -1 for start. */
3668 struct info
3669 {
3670 ptrdiff_t start, end;
3671 unsigned converted_to_string : 1;
3672 unsigned intervals : 1;
3673 } *info = 0;
3674
3675 /* It should not be necessary to GCPRO ARGS, because
3676 the caller in the interpreter should take care of that. */
3677
3678 CHECK_STRING (args[0]);
3679 format_start = SSDATA (args[0]);
3680 formatlen = SBYTES (args[0]);
3681
3682 /* Allocate the info and discarded tables. */
3683 {
3684 ptrdiff_t i;
3685 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3686 memory_full (SIZE_MAX);
3687 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3688 discarded = (char *) &info[nargs + 1];
3689 for (i = 0; i < nargs + 1; i++)
3690 {
3691 info[i].start = -1;
3692 info[i].intervals = info[i].converted_to_string = 0;
3693 }
3694 memset (discarded, 0, formatlen);
3695 }
3696
3697 /* Try to determine whether the result should be multibyte.
3698 This is not always right; sometimes the result needs to be multibyte
3699 because of an object that we will pass through prin1,
3700 and in that case, we won't know it here. */
3701 multibyte_format = STRING_MULTIBYTE (args[0]);
3702 multibyte = multibyte_format;
3703 for (n = 1; !multibyte && n < nargs; n++)
3704 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3705 multibyte = 1;
3706
3707 /* If we start out planning a unibyte result,
3708 then discover it has to be multibyte, we jump back to retry. */
3709 retry:
3710
3711 p = buf;
3712 nchars = 0;
3713 n = 0;
3714
3715 /* Scan the format and store result in BUF. */
3716 format = format_start;
3717 end = format + formatlen;
3718 maybe_combine_byte = 0;
3719
3720 while (format != end)
3721 {
3722 /* The values of N and FORMAT when the loop body is entered. */
3723 ptrdiff_t n0 = n;
3724 char *format0 = format;
3725
3726 /* Bytes needed to represent the output of this conversion. */
3727 ptrdiff_t convbytes;
3728
3729 if (*format == '%')
3730 {
3731 /* General format specifications look like
3732
3733 '%' [flags] [field-width] [precision] format
3734
3735 where
3736
3737 flags ::= [-+0# ]+
3738 field-width ::= [0-9]+
3739 precision ::= '.' [0-9]*
3740
3741 If a field-width is specified, it specifies to which width
3742 the output should be padded with blanks, if the output
3743 string is shorter than field-width.
3744
3745 If precision is specified, it specifies the number of
3746 digits to print after the '.' for floats, or the max.
3747 number of chars to print from a string. */
3748
3749 bool minus_flag = 0;
3750 bool plus_flag = 0;
3751 bool space_flag = 0;
3752 bool sharp_flag = 0;
3753 bool zero_flag = 0;
3754 ptrdiff_t field_width;
3755 bool precision_given;
3756 uintmax_t precision = UINTMAX_MAX;
3757 char *num_end;
3758 char conversion;
3759
3760 while (1)
3761 {
3762 switch (*++format)
3763 {
3764 case '-': minus_flag = 1; continue;
3765 case '+': plus_flag = 1; continue;
3766 case ' ': space_flag = 1; continue;
3767 case '#': sharp_flag = 1; continue;
3768 case '0': zero_flag = 1; continue;
3769 }
3770 break;
3771 }
3772
3773 /* Ignore flags when sprintf ignores them. */
3774 space_flag &= ~ plus_flag;
3775 zero_flag &= ~ minus_flag;
3776
3777 {
3778 uintmax_t w = strtoumax (format, &num_end, 10);
3779 if (max_bufsize <= w)
3780 string_overflow ();
3781 field_width = w;
3782 }
3783 precision_given = *num_end == '.';
3784 if (precision_given)
3785 precision = strtoumax (num_end + 1, &num_end, 10);
3786 format = num_end;
3787
3788 if (format == end)
3789 error ("Format string ends in middle of format specifier");
3790
3791 memset (&discarded[format0 - format_start], 1, format - format0);
3792 conversion = *format;
3793 if (conversion == '%')
3794 goto copy_char;
3795 discarded[format - format_start] = 1;
3796 format++;
3797
3798 ++n;
3799 if (! (n < nargs))
3800 error ("Not enough arguments for format string");
3801
3802 /* For 'S', prin1 the argument, and then treat like 's'.
3803 For 's', princ any argument that is not a string or
3804 symbol. But don't do this conversion twice, which might
3805 happen after retrying. */
3806 if ((conversion == 'S'
3807 || (conversion == 's'
3808 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3809 {
3810 if (! info[n].converted_to_string)
3811 {
3812 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3813 args[n] = Fprin1_to_string (args[n], noescape);
3814 info[n].converted_to_string = 1;
3815 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3816 {
3817 multibyte = 1;
3818 goto retry;
3819 }
3820 }
3821 conversion = 's';
3822 }
3823 else if (conversion == 'c')
3824 {
3825 if (FLOATP (args[n]))
3826 {
3827 double d = XFLOAT_DATA (args[n]);
3828 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3829 }
3830
3831 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3832 {
3833 if (!multibyte)
3834 {
3835 multibyte = 1;
3836 goto retry;
3837 }
3838 args[n] = Fchar_to_string (args[n]);
3839 info[n].converted_to_string = 1;
3840 }
3841
3842 if (info[n].converted_to_string)
3843 conversion = 's';
3844 zero_flag = 0;
3845 }
3846
3847 if (SYMBOLP (args[n]))
3848 {
3849 args[n] = SYMBOL_NAME (args[n]);
3850 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3851 {
3852 multibyte = 1;
3853 goto retry;
3854 }
3855 }
3856
3857 if (conversion == 's')
3858 {
3859 /* handle case (precision[n] >= 0) */
3860
3861 ptrdiff_t width, padding, nbytes;
3862 ptrdiff_t nchars_string;
3863
3864 ptrdiff_t prec = -1;
3865 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3866 prec = precision;
3867
3868 /* lisp_string_width ignores a precision of 0, but GNU
3869 libc functions print 0 characters when the precision
3870 is 0. Imitate libc behavior here. Changing
3871 lisp_string_width is the right thing, and will be
3872 done, but meanwhile we work with it. */
3873
3874 if (prec == 0)
3875 width = nchars_string = nbytes = 0;
3876 else
3877 {
3878 ptrdiff_t nch, nby;
3879 width = lisp_string_width (args[n], prec, &nch, &nby);
3880 if (prec < 0)
3881 {
3882 nchars_string = SCHARS (args[n]);
3883 nbytes = SBYTES (args[n]);
3884 }
3885 else
3886 {
3887 nchars_string = nch;
3888 nbytes = nby;
3889 }
3890 }
3891
3892 convbytes = nbytes;
3893 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3894 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3895
3896 padding = width < field_width ? field_width - width : 0;
3897
3898 if (max_bufsize - padding <= convbytes)
3899 string_overflow ();
3900 convbytes += padding;
3901 if (convbytes <= buf + bufsize - p)
3902 {
3903 if (! minus_flag)
3904 {
3905 memset (p, ' ', padding);
3906 p += padding;
3907 nchars += padding;
3908 }
3909
3910 if (p > buf
3911 && multibyte
3912 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3913 && STRING_MULTIBYTE (args[n])
3914 && !CHAR_HEAD_P (SREF (args[n], 0)))
3915 maybe_combine_byte = 1;
3916
3917 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3918 nbytes,
3919 STRING_MULTIBYTE (args[n]), multibyte);
3920
3921 info[n].start = nchars;
3922 nchars += nchars_string;
3923 info[n].end = nchars;
3924
3925 if (minus_flag)
3926 {
3927 memset (p, ' ', padding);
3928 p += padding;
3929 nchars += padding;
3930 }
3931
3932 /* If this argument has text properties, record where
3933 in the result string it appears. */
3934 if (string_intervals (args[n]))
3935 info[n].intervals = arg_intervals = 1;
3936
3937 continue;
3938 }
3939 }
3940 else if (! (conversion == 'c' || conversion == 'd'
3941 || conversion == 'e' || conversion == 'f'
3942 || conversion == 'g' || conversion == 'i'
3943 || conversion == 'o' || conversion == 'x'
3944 || conversion == 'X'))
3945 error ("Invalid format operation %%%c",
3946 STRING_CHAR ((unsigned char *) format - 1));
3947 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3948 error ("Format specifier doesn't match argument type");
3949 else
3950 {
3951 enum
3952 {
3953 /* Maximum precision for a %f conversion such that the
3954 trailing output digit might be nonzero. Any precision
3955 larger than this will not yield useful information. */
3956 USEFUL_PRECISION_MAX =
3957 ((1 - DBL_MIN_EXP)
3958 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3959 : FLT_RADIX == 16 ? 4
3960 : -1)),
3961
3962 /* Maximum number of bytes generated by any format, if
3963 precision is no more than USEFUL_PRECISION_MAX.
3964 On all practical hosts, %f is the worst case. */
3965 SPRINTF_BUFSIZE =
3966 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3967
3968 /* Length of pM (that is, of pMd without the
3969 trailing "d"). */
3970 pMlen = sizeof pMd - 2
3971 };
3972 verify (0 < USEFUL_PRECISION_MAX);
3973
3974 int prec;
3975 ptrdiff_t padding, sprintf_bytes;
3976 uintmax_t excess_precision, numwidth;
3977 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3978
3979 char sprintf_buf[SPRINTF_BUFSIZE];
3980
3981 /* Copy of conversion specification, modified somewhat.
3982 At most three flags F can be specified at once. */
3983 char convspec[sizeof "%FFF.*d" + pMlen];
3984
3985 /* Avoid undefined behavior in underlying sprintf. */
3986 if (conversion == 'd' || conversion == 'i')
3987 sharp_flag = 0;
3988
3989 /* Create the copy of the conversion specification, with
3990 any width and precision removed, with ".*" inserted,
3991 and with pM inserted for integer formats. */
3992 {
3993 char *f = convspec;
3994 *f++ = '%';
3995 *f = '-'; f += minus_flag;
3996 *f = '+'; f += plus_flag;
3997 *f = ' '; f += space_flag;
3998 *f = '#'; f += sharp_flag;
3999 *f = '0'; f += zero_flag;
4000 *f++ = '.';
4001 *f++ = '*';
4002 if (conversion == 'd' || conversion == 'i'
4003 || conversion == 'o' || conversion == 'x'
4004 || conversion == 'X')
4005 {
4006 memcpy (f, pMd, pMlen);
4007 f += pMlen;
4008 zero_flag &= ~ precision_given;
4009 }
4010 *f++ = conversion;
4011 *f = '\0';
4012 }
4013
4014 prec = -1;
4015 if (precision_given)
4016 prec = min (precision, USEFUL_PRECISION_MAX);
4017
4018 /* Use sprintf to format this number into sprintf_buf. Omit
4019 padding and excess precision, though, because sprintf limits
4020 output length to INT_MAX.
4021
4022 There are four types of conversion: double, unsigned
4023 char (passed as int), wide signed int, and wide
4024 unsigned int. Treat them separately because the
4025 sprintf ABI is sensitive to which type is passed. Be
4026 careful about integer overflow, NaNs, infinities, and
4027 conversions; for example, the min and max macros are
4028 not suitable here. */
4029 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4030 {
4031 double x = (INTEGERP (args[n])
4032 ? XINT (args[n])
4033 : XFLOAT_DATA (args[n]));
4034 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4035 }
4036 else if (conversion == 'c')
4037 {
4038 /* Don't use sprintf here, as it might mishandle prec. */
4039 sprintf_buf[0] = XINT (args[n]);
4040 sprintf_bytes = prec != 0;
4041 }
4042 else if (conversion == 'd')
4043 {
4044 /* For float, maybe we should use "%1.0f"
4045 instead so it also works for values outside
4046 the integer range. */
4047 printmax_t x;
4048 if (INTEGERP (args[n]))
4049 x = XINT (args[n]);
4050 else
4051 {
4052 double d = XFLOAT_DATA (args[n]);
4053 if (d < 0)
4054 {
4055 x = TYPE_MINIMUM (printmax_t);
4056 if (x < d)
4057 x = d;
4058 }
4059 else
4060 {
4061 x = TYPE_MAXIMUM (printmax_t);
4062 if (d < x)
4063 x = d;
4064 }
4065 }
4066 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4067 }
4068 else
4069 {
4070 /* Don't sign-extend for octal or hex printing. */
4071 uprintmax_t x;
4072 if (INTEGERP (args[n]))
4073 x = XUINT (args[n]);
4074 else
4075 {
4076 double d = XFLOAT_DATA (args[n]);
4077 if (d < 0)
4078 x = 0;
4079 else
4080 {
4081 x = TYPE_MAXIMUM (uprintmax_t);
4082 if (d < x)
4083 x = d;
4084 }
4085 }
4086 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4087 }
4088
4089 /* Now the length of the formatted item is known, except it omits
4090 padding and excess precision. Deal with excess precision
4091 first. This happens only when the format specifies
4092 ridiculously large precision. */
4093 excess_precision = precision - prec;
4094 if (excess_precision)
4095 {
4096 if (conversion == 'e' || conversion == 'f'
4097 || conversion == 'g')
4098 {
4099 if ((conversion == 'g' && ! sharp_flag)
4100 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4101 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4102 excess_precision = 0;
4103 else
4104 {
4105 if (conversion == 'g')
4106 {
4107 char *dot = strchr (sprintf_buf, '.');
4108 if (!dot)
4109 excess_precision = 0;
4110 }
4111 }
4112 trailing_zeros = excess_precision;
4113 }
4114 else
4115 leading_zeros = excess_precision;
4116 }
4117
4118 /* Compute the total bytes needed for this item, including
4119 excess precision and padding. */
4120 numwidth = sprintf_bytes + excess_precision;
4121 padding = numwidth < field_width ? field_width - numwidth : 0;
4122 if (max_bufsize - sprintf_bytes <= excess_precision
4123 || max_bufsize - padding <= numwidth)
4124 string_overflow ();
4125 convbytes = numwidth + padding;
4126
4127 if (convbytes <= buf + bufsize - p)
4128 {
4129 /* Copy the formatted item from sprintf_buf into buf,
4130 inserting padding and excess-precision zeros. */
4131
4132 char *src = sprintf_buf;
4133 char src0 = src[0];
4134 int exponent_bytes = 0;
4135 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4136 int significand_bytes;
4137 if (zero_flag
4138 && ((src[signedp] >= '0' && src[signedp] <= '9')
4139 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4140 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4141 {
4142 leading_zeros += padding;
4143 padding = 0;
4144 }
4145
4146 if (excess_precision
4147 && (conversion == 'e' || conversion == 'g'))
4148 {
4149 char *e = strchr (src, 'e');
4150 if (e)
4151 exponent_bytes = src + sprintf_bytes - e;
4152 }
4153
4154 if (! minus_flag)
4155 {
4156 memset (p, ' ', padding);
4157 p += padding;
4158 nchars += padding;
4159 }
4160
4161 *p = src0;
4162 src += signedp;
4163 p += signedp;
4164 memset (p, '0', leading_zeros);
4165 p += leading_zeros;
4166 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4167 memcpy (p, src, significand_bytes);
4168 p += significand_bytes;
4169 src += significand_bytes;
4170 memset (p, '0', trailing_zeros);
4171 p += trailing_zeros;
4172 memcpy (p, src, exponent_bytes);
4173 p += exponent_bytes;
4174
4175 info[n].start = nchars;
4176 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4177 info[n].end = nchars;
4178
4179 if (minus_flag)
4180 {
4181 memset (p, ' ', padding);
4182 p += padding;
4183 nchars += padding;
4184 }
4185
4186 continue;
4187 }
4188 }
4189 }
4190 else
4191 copy_char:
4192 {
4193 /* Copy a single character from format to buf. */
4194
4195 char *src = format;
4196 unsigned char str[MAX_MULTIBYTE_LENGTH];
4197
4198 if (multibyte_format)
4199 {
4200 /* Copy a whole multibyte character. */
4201 if (p > buf
4202 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4203 && !CHAR_HEAD_P (*format))
4204 maybe_combine_byte = 1;
4205
4206 do
4207 format++;
4208 while (! CHAR_HEAD_P (*format));
4209
4210 convbytes = format - src;
4211 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4212 }
4213 else
4214 {
4215 unsigned char uc = *format++;
4216 if (! multibyte || ASCII_BYTE_P (uc))
4217 convbytes = 1;
4218 else
4219 {
4220 int c = BYTE8_TO_CHAR (uc);
4221 convbytes = CHAR_STRING (c, str);
4222 src = (char *) str;
4223 }
4224 }
4225
4226 if (convbytes <= buf + bufsize - p)
4227 {
4228 memcpy (p, src, convbytes);
4229 p += convbytes;
4230 nchars++;
4231 continue;
4232 }
4233 }
4234
4235 /* There wasn't enough room to store this conversion or single
4236 character. CONVBYTES says how much room is needed. Allocate
4237 enough room (and then some) and do it again. */
4238 {
4239 ptrdiff_t used = p - buf;
4240
4241 if (max_bufsize - used < convbytes)
4242 string_overflow ();
4243 bufsize = used + convbytes;
4244 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4245
4246 if (buf == initial_buffer)
4247 {
4248 buf = xmalloc (bufsize);
4249 sa_must_free = 1;
4250 buf_save_value = make_save_value (buf, 0);
4251 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4252 memcpy (buf, initial_buffer, used);
4253 }
4254 else
4255 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4256
4257 p = buf + used;
4258 }
4259
4260 format = format0;
4261 n = n0;
4262 }
4263
4264 if (bufsize < p - buf)
4265 emacs_abort ();
4266
4267 if (maybe_combine_byte)
4268 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4269 val = make_specified_string (buf, nchars, p - buf, multibyte);
4270
4271 /* If we allocated BUF with malloc, free it too. */
4272 SAFE_FREE ();
4273
4274 /* If the format string has text properties, or any of the string
4275 arguments has text properties, set up text properties of the
4276 result string. */
4277
4278 if (string_intervals (args[0]) || arg_intervals)
4279 {
4280 Lisp_Object len, new_len, props;
4281 struct gcpro gcpro1;
4282
4283 /* Add text properties from the format string. */
4284 len = make_number (SCHARS (args[0]));
4285 props = text_property_list (args[0], make_number (0), len, Qnil);
4286 GCPRO1 (props);
4287
4288 if (CONSP (props))
4289 {
4290 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4291 ptrdiff_t argn = 1;
4292 Lisp_Object list;
4293
4294 /* Adjust the bounds of each text property
4295 to the proper start and end in the output string. */
4296
4297 /* Put the positions in PROPS in increasing order, so that
4298 we can do (effectively) one scan through the position
4299 space of the format string. */
4300 props = Fnreverse (props);
4301
4302 /* BYTEPOS is the byte position in the format string,
4303 POSITION is the untranslated char position in it,
4304 TRANSLATED is the translated char position in BUF,
4305 and ARGN is the number of the next arg we will come to. */
4306 for (list = props; CONSP (list); list = XCDR (list))
4307 {
4308 Lisp_Object item;
4309 ptrdiff_t pos;
4310
4311 item = XCAR (list);
4312
4313 /* First adjust the property start position. */
4314 pos = XINT (XCAR (item));
4315
4316 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4317 up to this position. */
4318 for (; position < pos; bytepos++)
4319 {
4320 if (! discarded[bytepos])
4321 position++, translated++;
4322 else if (discarded[bytepos] == 1)
4323 {
4324 position++;
4325 if (translated == info[argn].start)
4326 {
4327 translated += info[argn].end - info[argn].start;
4328 argn++;
4329 }
4330 }
4331 }
4332
4333 XSETCAR (item, make_number (translated));
4334
4335 /* Likewise adjust the property end position. */
4336 pos = XINT (XCAR (XCDR (item)));
4337
4338 for (; position < pos; bytepos++)
4339 {
4340 if (! discarded[bytepos])
4341 position++, translated++;
4342 else if (discarded[bytepos] == 1)
4343 {
4344 position++;
4345 if (translated == info[argn].start)
4346 {
4347 translated += info[argn].end - info[argn].start;
4348 argn++;
4349 }
4350 }
4351 }
4352
4353 XSETCAR (XCDR (item), make_number (translated));
4354 }
4355
4356 add_text_properties_from_list (val, props, make_number (0));
4357 }
4358
4359 /* Add text properties from arguments. */
4360 if (arg_intervals)
4361 for (n = 1; n < nargs; ++n)
4362 if (info[n].intervals)
4363 {
4364 len = make_number (SCHARS (args[n]));
4365 new_len = make_number (info[n].end - info[n].start);
4366 props = text_property_list (args[n], make_number (0), len, Qnil);
4367 props = extend_property_ranges (props, new_len);
4368 /* If successive arguments have properties, be sure that
4369 the value of `composition' property be the copy. */
4370 if (n > 1 && info[n - 1].end)
4371 make_composition_value_copy (props);
4372 add_text_properties_from_list (val, props,
4373 make_number (info[n].start));
4374 }
4375
4376 UNGCPRO;
4377 }
4378
4379 return val;
4380 }
4381
4382 Lisp_Object
4383 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4384 {
4385 Lisp_Object args[3];
4386 args[0] = build_string (string1);
4387 args[1] = arg0;
4388 args[2] = arg1;
4389 return Fformat (3, args);
4390 }
4391 \f
4392 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4393 doc: /* Return t if two characters match, optionally ignoring case.
4394 Both arguments must be characters (i.e. integers).
4395 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4396 (register Lisp_Object c1, Lisp_Object c2)
4397 {
4398 int i1, i2;
4399 /* Check they're chars, not just integers, otherwise we could get array
4400 bounds violations in downcase. */
4401 CHECK_CHARACTER (c1);
4402 CHECK_CHARACTER (c2);
4403
4404 if (XINT (c1) == XINT (c2))
4405 return Qt;
4406 if (NILP (BVAR (current_buffer, case_fold_search)))
4407 return Qnil;
4408
4409 i1 = XFASTINT (c1);
4410 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4411 && ! ASCII_CHAR_P (i1))
4412 {
4413 MAKE_CHAR_MULTIBYTE (i1);
4414 }
4415 i2 = XFASTINT (c2);
4416 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4417 && ! ASCII_CHAR_P (i2))
4418 {
4419 MAKE_CHAR_MULTIBYTE (i2);
4420 }
4421 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4422 }
4423 \f
4424 /* Transpose the markers in two regions of the current buffer, and
4425 adjust the ones between them if necessary (i.e.: if the regions
4426 differ in size).
4427
4428 START1, END1 are the character positions of the first region.
4429 START1_BYTE, END1_BYTE are the byte positions.
4430 START2, END2 are the character positions of the second region.
4431 START2_BYTE, END2_BYTE are the byte positions.
4432
4433 Traverses the entire marker list of the buffer to do so, adding an
4434 appropriate amount to some, subtracting from some, and leaving the
4435 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4436
4437 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4438
4439 static void
4440 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4441 ptrdiff_t start2, ptrdiff_t end2,
4442 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4443 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4444 {
4445 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4446 register struct Lisp_Marker *marker;
4447
4448 /* Update point as if it were a marker. */
4449 if (PT < start1)
4450 ;
4451 else if (PT < end1)
4452 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4453 PT_BYTE + (end2_byte - end1_byte));
4454 else if (PT < start2)
4455 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4456 (PT_BYTE + (end2_byte - start2_byte)
4457 - (end1_byte - start1_byte)));
4458 else if (PT < end2)
4459 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4460 PT_BYTE - (start2_byte - start1_byte));
4461
4462 /* We used to adjust the endpoints here to account for the gap, but that
4463 isn't good enough. Even if we assume the caller has tried to move the
4464 gap out of our way, it might still be at start1 exactly, for example;
4465 and that places it `inside' the interval, for our purposes. The amount
4466 of adjustment is nontrivial if there's a `denormalized' marker whose
4467 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4468 the dirty work to Fmarker_position, below. */
4469
4470 /* The difference between the region's lengths */
4471 diff = (end2 - start2) - (end1 - start1);
4472 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4473
4474 /* For shifting each marker in a region by the length of the other
4475 region plus the distance between the regions. */
4476 amt1 = (end2 - start2) + (start2 - end1);
4477 amt2 = (end1 - start1) + (start2 - end1);
4478 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4479 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4480
4481 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4482 {
4483 mpos = marker->bytepos;
4484 if (mpos >= start1_byte && mpos < end2_byte)
4485 {
4486 if (mpos < end1_byte)
4487 mpos += amt1_byte;
4488 else if (mpos < start2_byte)
4489 mpos += diff_byte;
4490 else
4491 mpos -= amt2_byte;
4492 marker->bytepos = mpos;
4493 }
4494 mpos = marker->charpos;
4495 if (mpos >= start1 && mpos < end2)
4496 {
4497 if (mpos < end1)
4498 mpos += amt1;
4499 else if (mpos < start2)
4500 mpos += diff;
4501 else
4502 mpos -= amt2;
4503 }
4504 marker->charpos = mpos;
4505 }
4506 }
4507
4508 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4509 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4510 The regions should not be overlapping, because the size of the buffer is
4511 never changed in a transposition.
4512
4513 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4514 any markers that happen to be located in the regions.
4515
4516 Transposing beyond buffer boundaries is an error. */)
4517 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4518 {
4519 register ptrdiff_t start1, end1, start2, end2;
4520 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4521 ptrdiff_t gap, len1, len_mid, len2;
4522 unsigned char *start1_addr, *start2_addr, *temp;
4523
4524 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4525 Lisp_Object buf;
4526
4527 XSETBUFFER (buf, current_buffer);
4528 cur_intv = buffer_intervals (current_buffer);
4529
4530 validate_region (&startr1, &endr1);
4531 validate_region (&startr2, &endr2);
4532
4533 start1 = XFASTINT (startr1);
4534 end1 = XFASTINT (endr1);
4535 start2 = XFASTINT (startr2);
4536 end2 = XFASTINT (endr2);
4537 gap = GPT;
4538
4539 /* Swap the regions if they're reversed. */
4540 if (start2 < end1)
4541 {
4542 register ptrdiff_t glumph = start1;
4543 start1 = start2;
4544 start2 = glumph;
4545 glumph = end1;
4546 end1 = end2;
4547 end2 = glumph;
4548 }
4549
4550 len1 = end1 - start1;
4551 len2 = end2 - start2;
4552
4553 if (start2 < end1)
4554 error ("Transposed regions overlap");
4555 /* Nothing to change for adjacent regions with one being empty */
4556 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4557 return Qnil;
4558
4559 /* The possibilities are:
4560 1. Adjacent (contiguous) regions, or separate but equal regions
4561 (no, really equal, in this case!), or
4562 2. Separate regions of unequal size.
4563
4564 The worst case is usually No. 2. It means that (aside from
4565 potential need for getting the gap out of the way), there also
4566 needs to be a shifting of the text between the two regions. So
4567 if they are spread far apart, we are that much slower... sigh. */
4568
4569 /* It must be pointed out that the really studly thing to do would
4570 be not to move the gap at all, but to leave it in place and work
4571 around it if necessary. This would be extremely efficient,
4572 especially considering that people are likely to do
4573 transpositions near where they are working interactively, which
4574 is exactly where the gap would be found. However, such code
4575 would be much harder to write and to read. So, if you are
4576 reading this comment and are feeling squirrely, by all means have
4577 a go! I just didn't feel like doing it, so I will simply move
4578 the gap the minimum distance to get it out of the way, and then
4579 deal with an unbroken array. */
4580
4581 /* Make sure the gap won't interfere, by moving it out of the text
4582 we will operate on. */
4583 if (start1 < gap && gap < end2)
4584 {
4585 if (gap - start1 < end2 - gap)
4586 move_gap (start1);
4587 else
4588 move_gap (end2);
4589 }
4590
4591 start1_byte = CHAR_TO_BYTE (start1);
4592 start2_byte = CHAR_TO_BYTE (start2);
4593 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4594 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4595
4596 #ifdef BYTE_COMBINING_DEBUG
4597 if (end1 == start2)
4598 {
4599 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4600 len2_byte, start1, start1_byte)
4601 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4602 len1_byte, end2, start2_byte + len2_byte)
4603 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4604 len1_byte, end2, start2_byte + len2_byte))
4605 emacs_abort ();
4606 }
4607 else
4608 {
4609 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4610 len2_byte, start1, start1_byte)
4611 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4612 len1_byte, start2, start2_byte)
4613 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4614 len2_byte, end1, start1_byte + len1_byte)
4615 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4616 len1_byte, end2, start2_byte + len2_byte))
4617 emacs_abort ();
4618 }
4619 #endif
4620
4621 /* Hmmm... how about checking to see if the gap is large
4622 enough to use as the temporary storage? That would avoid an
4623 allocation... interesting. Later, don't fool with it now. */
4624
4625 /* Working without memmove, for portability (sigh), so must be
4626 careful of overlapping subsections of the array... */
4627
4628 if (end1 == start2) /* adjacent regions */
4629 {
4630 modify_region (current_buffer, start1, end2, 0);
4631 record_change (start1, len1 + len2);
4632
4633 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4634 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4635 /* Don't use Fset_text_properties: that can cause GC, which can
4636 clobber objects stored in the tmp_intervals. */
4637 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4638 if (tmp_interval3)
4639 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4640
4641 /* First region smaller than second. */
4642 if (len1_byte < len2_byte)
4643 {
4644 USE_SAFE_ALLOCA;
4645
4646 temp = SAFE_ALLOCA (len2_byte);
4647
4648 /* Don't precompute these addresses. We have to compute them
4649 at the last minute, because the relocating allocator might
4650 have moved the buffer around during the xmalloc. */
4651 start1_addr = BYTE_POS_ADDR (start1_byte);
4652 start2_addr = BYTE_POS_ADDR (start2_byte);
4653
4654 memcpy (temp, start2_addr, len2_byte);
4655 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4656 memcpy (start1_addr, temp, len2_byte);
4657 SAFE_FREE ();
4658 }
4659 else
4660 /* First region not smaller than second. */
4661 {
4662 USE_SAFE_ALLOCA;
4663
4664 temp = SAFE_ALLOCA (len1_byte);
4665 start1_addr = BYTE_POS_ADDR (start1_byte);
4666 start2_addr = BYTE_POS_ADDR (start2_byte);
4667 memcpy (temp, start1_addr, len1_byte);
4668 memcpy (start1_addr, start2_addr, len2_byte);
4669 memcpy (start1_addr + len2_byte, temp, len1_byte);
4670 SAFE_FREE ();
4671 }
4672 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4673 len1, current_buffer, 0);
4674 graft_intervals_into_buffer (tmp_interval2, start1,
4675 len2, current_buffer, 0);
4676 update_compositions (start1, start1 + len2, CHECK_BORDER);
4677 update_compositions (start1 + len2, end2, CHECK_TAIL);
4678 }
4679 /* Non-adjacent regions, because end1 != start2, bleagh... */
4680 else
4681 {
4682 len_mid = start2_byte - (start1_byte + len1_byte);
4683
4684 if (len1_byte == len2_byte)
4685 /* Regions are same size, though, how nice. */
4686 {
4687 USE_SAFE_ALLOCA;
4688
4689 modify_region (current_buffer, start1, end1, 0);
4690 modify_region (current_buffer, start2, end2, 0);
4691 record_change (start1, len1);
4692 record_change (start2, len2);
4693 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4694 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4695
4696 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4697 if (tmp_interval3)
4698 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4699
4700 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4701 if (tmp_interval3)
4702 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4703
4704 temp = SAFE_ALLOCA (len1_byte);
4705 start1_addr = BYTE_POS_ADDR (start1_byte);
4706 start2_addr = BYTE_POS_ADDR (start2_byte);
4707 memcpy (temp, start1_addr, len1_byte);
4708 memcpy (start1_addr, start2_addr, len2_byte);
4709 memcpy (start2_addr, temp, len1_byte);
4710 SAFE_FREE ();
4711
4712 graft_intervals_into_buffer (tmp_interval1, start2,
4713 len1, current_buffer, 0);
4714 graft_intervals_into_buffer (tmp_interval2, start1,
4715 len2, current_buffer, 0);
4716 }
4717
4718 else if (len1_byte < len2_byte) /* Second region larger than first */
4719 /* Non-adjacent & unequal size, area between must also be shifted. */
4720 {
4721 USE_SAFE_ALLOCA;
4722
4723 modify_region (current_buffer, start1, end2, 0);
4724 record_change (start1, (end2 - start1));
4725 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4726 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4727 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4728
4729 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4730 if (tmp_interval3)
4731 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4732
4733 /* holds region 2 */
4734 temp = SAFE_ALLOCA (len2_byte);
4735 start1_addr = BYTE_POS_ADDR (start1_byte);
4736 start2_addr = BYTE_POS_ADDR (start2_byte);
4737 memcpy (temp, start2_addr, len2_byte);
4738 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4739 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4740 memcpy (start1_addr, temp, len2_byte);
4741 SAFE_FREE ();
4742
4743 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4744 len1, current_buffer, 0);
4745 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4746 len_mid, current_buffer, 0);
4747 graft_intervals_into_buffer (tmp_interval2, start1,
4748 len2, current_buffer, 0);
4749 }
4750 else
4751 /* Second region smaller than first. */
4752 {
4753 USE_SAFE_ALLOCA;
4754
4755 record_change (start1, (end2 - start1));
4756 modify_region (current_buffer, start1, end2, 0);
4757
4758 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4759 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4760 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4761
4762 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4763 if (tmp_interval3)
4764 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4765
4766 /* holds region 1 */
4767 temp = SAFE_ALLOCA (len1_byte);
4768 start1_addr = BYTE_POS_ADDR (start1_byte);
4769 start2_addr = BYTE_POS_ADDR (start2_byte);
4770 memcpy (temp, start1_addr, len1_byte);
4771 memcpy (start1_addr, start2_addr, len2_byte);
4772 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4773 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4774 SAFE_FREE ();
4775
4776 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4777 len1, current_buffer, 0);
4778 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4779 len_mid, current_buffer, 0);
4780 graft_intervals_into_buffer (tmp_interval2, start1,
4781 len2, current_buffer, 0);
4782 }
4783
4784 update_compositions (start1, start1 + len2, CHECK_BORDER);
4785 update_compositions (end2 - len1, end2, CHECK_BORDER);
4786 }
4787
4788 /* When doing multiple transpositions, it might be nice
4789 to optimize this. Perhaps the markers in any one buffer
4790 should be organized in some sorted data tree. */
4791 if (NILP (leave_markers))
4792 {
4793 transpose_markers (start1, end1, start2, end2,
4794 start1_byte, start1_byte + len1_byte,
4795 start2_byte, start2_byte + len2_byte);
4796 fix_start_end_in_overlays (start1, end2);
4797 }
4798
4799 signal_after_change (start1, end2 - start1, end2 - start1);
4800 return Qnil;
4801 }
4802
4803 \f
4804 void
4805 syms_of_editfns (void)
4806 {
4807 environbuf = 0;
4808 initial_tz = 0;
4809
4810 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4811
4812 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4813 doc: /* Non-nil means text motion commands don't notice fields. */);
4814 Vinhibit_field_text_motion = Qnil;
4815
4816 DEFVAR_LISP ("buffer-access-fontify-functions",
4817 Vbuffer_access_fontify_functions,
4818 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4819 Each function is called with two arguments which specify the range
4820 of the buffer being accessed. */);
4821 Vbuffer_access_fontify_functions = Qnil;
4822
4823 {
4824 Lisp_Object obuf;
4825 obuf = Fcurrent_buffer ();
4826 /* Do this here, because init_buffer_once is too early--it won't work. */
4827 Fset_buffer (Vprin1_to_string_buffer);
4828 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4829 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4830 Qnil);
4831 Fset_buffer (obuf);
4832 }
4833
4834 DEFVAR_LISP ("buffer-access-fontified-property",
4835 Vbuffer_access_fontified_property,
4836 doc: /* Property which (if non-nil) indicates text has been fontified.
4837 `buffer-substring' need not call the `buffer-access-fontify-functions'
4838 functions if all the text being accessed has this property. */);
4839 Vbuffer_access_fontified_property = Qnil;
4840
4841 DEFVAR_LISP ("system-name", Vsystem_name,
4842 doc: /* The host name of the machine Emacs is running on. */);
4843
4844 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4845 doc: /* The full name of the user logged in. */);
4846
4847 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4848 doc: /* The user's name, taken from environment variables if possible. */);
4849
4850 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4851 doc: /* The user's name, based upon the real uid only. */);
4852
4853 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4854 doc: /* The release of the operating system Emacs is running on. */);
4855
4856 defsubr (&Spropertize);
4857 defsubr (&Schar_equal);
4858 defsubr (&Sgoto_char);
4859 defsubr (&Sstring_to_char);
4860 defsubr (&Schar_to_string);
4861 defsubr (&Sbyte_to_string);
4862 defsubr (&Sbuffer_substring);
4863 defsubr (&Sbuffer_substring_no_properties);
4864 defsubr (&Sbuffer_string);
4865
4866 defsubr (&Spoint_marker);
4867 defsubr (&Smark_marker);
4868 defsubr (&Spoint);
4869 defsubr (&Sregion_beginning);
4870 defsubr (&Sregion_end);
4871
4872 DEFSYM (Qfield, "field");
4873 DEFSYM (Qboundary, "boundary");
4874 defsubr (&Sfield_beginning);
4875 defsubr (&Sfield_end);
4876 defsubr (&Sfield_string);
4877 defsubr (&Sfield_string_no_properties);
4878 defsubr (&Sdelete_field);
4879 defsubr (&Sconstrain_to_field);
4880
4881 defsubr (&Sline_beginning_position);
4882 defsubr (&Sline_end_position);
4883
4884 /* defsubr (&Smark); */
4885 /* defsubr (&Sset_mark); */
4886 defsubr (&Ssave_excursion);
4887 defsubr (&Ssave_current_buffer);
4888
4889 defsubr (&Sbufsize);
4890 defsubr (&Spoint_max);
4891 defsubr (&Spoint_min);
4892 defsubr (&Spoint_min_marker);
4893 defsubr (&Spoint_max_marker);
4894 defsubr (&Sgap_position);
4895 defsubr (&Sgap_size);
4896 defsubr (&Sposition_bytes);
4897 defsubr (&Sbyte_to_position);
4898
4899 defsubr (&Sbobp);
4900 defsubr (&Seobp);
4901 defsubr (&Sbolp);
4902 defsubr (&Seolp);
4903 defsubr (&Sfollowing_char);
4904 defsubr (&Sprevious_char);
4905 defsubr (&Schar_after);
4906 defsubr (&Schar_before);
4907 defsubr (&Sinsert);
4908 defsubr (&Sinsert_before_markers);
4909 defsubr (&Sinsert_and_inherit);
4910 defsubr (&Sinsert_and_inherit_before_markers);
4911 defsubr (&Sinsert_char);
4912 defsubr (&Sinsert_byte);
4913
4914 defsubr (&Suser_login_name);
4915 defsubr (&Suser_real_login_name);
4916 defsubr (&Suser_uid);
4917 defsubr (&Suser_real_uid);
4918 defsubr (&Suser_full_name);
4919 defsubr (&Semacs_pid);
4920 defsubr (&Scurrent_time);
4921 defsubr (&Sget_internal_run_time);
4922 defsubr (&Sformat_time_string);
4923 defsubr (&Sfloat_time);
4924 defsubr (&Sdecode_time);
4925 defsubr (&Sencode_time);
4926 defsubr (&Scurrent_time_string);
4927 defsubr (&Scurrent_time_zone);
4928 defsubr (&Sset_time_zone_rule);
4929 defsubr (&Ssystem_name);
4930 defsubr (&Smessage);
4931 defsubr (&Smessage_box);
4932 defsubr (&Smessage_or_box);
4933 defsubr (&Scurrent_message);
4934 defsubr (&Sformat);
4935
4936 defsubr (&Sinsert_buffer_substring);
4937 defsubr (&Scompare_buffer_substrings);
4938 defsubr (&Ssubst_char_in_region);
4939 defsubr (&Stranslate_region_internal);
4940 defsubr (&Sdelete_region);
4941 defsubr (&Sdelete_and_extract_region);
4942 defsubr (&Swiden);
4943 defsubr (&Snarrow_to_region);
4944 defsubr (&Ssave_restriction);
4945 defsubr (&Stranspose_regions);
4946 }