Put doc strings in comments.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152 {
153 ...
154 }
155 #endif
156
157 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175 #if 0
176 static void
177 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181 {
182 ...
183 }
184 #endif
185
186 /*** COMMONLY USED MACROS ***/
187
188 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196 #define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206 #define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233 /* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243 #define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263 /* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273 #define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299 #define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309 #define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319 #define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330 \f
331 /*** 1. Preamble ***/
332
333 #ifdef emacs
334 #include <config.h>
335 #endif
336
337 #include <stdio.h>
338
339 #ifdef emacs
340
341 #include "lisp.h"
342 #include "buffer.h"
343 #include "charset.h"
344 #include "composite.h"
345 #include "ccl.h"
346 #include "coding.h"
347 #include "window.h"
348
349 #else /* not emacs */
350
351 #include "mulelib.h"
352
353 #endif /* not emacs */
354
355 Lisp_Object Qcoding_system, Qeol_type;
356 Lisp_Object Qbuffer_file_coding_system;
357 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
358 Lisp_Object Qno_conversion, Qundecided;
359 Lisp_Object Qcoding_system_history;
360 Lisp_Object Qsafe_chars;
361 Lisp_Object Qvalid_codes;
362
363 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
364 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
365 Lisp_Object Qstart_process, Qopen_network_stream;
366 Lisp_Object Qtarget_idx;
367
368 Lisp_Object Vselect_safe_coding_system_function;
369
370 /* Mnemonic string for each format of end-of-line. */
371 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
372 /* Mnemonic string to indicate format of end-of-line is not yet
373 decided. */
374 Lisp_Object eol_mnemonic_undecided;
375
376 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
377 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
378 int system_eol_type;
379
380 #ifdef emacs
381
382 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
383
384 Lisp_Object Qcoding_system_p, Qcoding_system_error;
385
386 /* Coding system emacs-mule and raw-text are for converting only
387 end-of-line format. */
388 Lisp_Object Qemacs_mule, Qraw_text;
389
390 /* Coding-systems are handed between Emacs Lisp programs and C internal
391 routines by the following three variables. */
392 /* Coding-system for reading files and receiving data from process. */
393 Lisp_Object Vcoding_system_for_read;
394 /* Coding-system for writing files and sending data to process. */
395 Lisp_Object Vcoding_system_for_write;
396 /* Coding-system actually used in the latest I/O. */
397 Lisp_Object Vlast_coding_system_used;
398
399 /* A vector of length 256 which contains information about special
400 Latin codes (especially for dealing with Microsoft codes). */
401 Lisp_Object Vlatin_extra_code_table;
402
403 /* Flag to inhibit code conversion of end-of-line format. */
404 int inhibit_eol_conversion;
405
406 /* Flag to inhibit ISO2022 escape sequence detection. */
407 int inhibit_iso_escape_detection;
408
409 /* Flag to make buffer-file-coding-system inherit from process-coding. */
410 int inherit_process_coding_system;
411
412 /* Coding system to be used to encode text for terminal display. */
413 struct coding_system terminal_coding;
414
415 /* Coding system to be used to encode text for terminal display when
416 terminal coding system is nil. */
417 struct coding_system safe_terminal_coding;
418
419 /* Coding system of what is sent from terminal keyboard. */
420 struct coding_system keyboard_coding;
421
422 /* Default coding system to be used to write a file. */
423 struct coding_system default_buffer_file_coding;
424
425 Lisp_Object Vfile_coding_system_alist;
426 Lisp_Object Vprocess_coding_system_alist;
427 Lisp_Object Vnetwork_coding_system_alist;
428
429 Lisp_Object Vlocale_coding_system;
430
431 #endif /* emacs */
432
433 Lisp_Object Qcoding_category, Qcoding_category_index;
434
435 /* List of symbols `coding-category-xxx' ordered by priority. */
436 Lisp_Object Vcoding_category_list;
437
438 /* Table of coding categories (Lisp symbols). */
439 Lisp_Object Vcoding_category_table;
440
441 /* Table of names of symbol for each coding-category. */
442 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
443 "coding-category-emacs-mule",
444 "coding-category-sjis",
445 "coding-category-iso-7",
446 "coding-category-iso-7-tight",
447 "coding-category-iso-8-1",
448 "coding-category-iso-8-2",
449 "coding-category-iso-7-else",
450 "coding-category-iso-8-else",
451 "coding-category-ccl",
452 "coding-category-big5",
453 "coding-category-utf-8",
454 "coding-category-utf-16-be",
455 "coding-category-utf-16-le",
456 "coding-category-raw-text",
457 "coding-category-binary"
458 };
459
460 /* Table of pointers to coding systems corresponding to each coding
461 categories. */
462 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
463
464 /* Table of coding category masks. Nth element is a mask for a coding
465 category of which priority is Nth. */
466 static
467 int coding_priorities[CODING_CATEGORY_IDX_MAX];
468
469 /* Flag to tell if we look up translation table on character code
470 conversion. */
471 Lisp_Object Venable_character_translation;
472 /* Standard translation table to look up on decoding (reading). */
473 Lisp_Object Vstandard_translation_table_for_decode;
474 /* Standard translation table to look up on encoding (writing). */
475 Lisp_Object Vstandard_translation_table_for_encode;
476
477 Lisp_Object Qtranslation_table;
478 Lisp_Object Qtranslation_table_id;
479 Lisp_Object Qtranslation_table_for_decode;
480 Lisp_Object Qtranslation_table_for_encode;
481
482 /* Alist of charsets vs revision number. */
483 Lisp_Object Vcharset_revision_alist;
484
485 /* Default coding systems used for process I/O. */
486 Lisp_Object Vdefault_process_coding_system;
487
488 /* Global flag to tell that we can't call post-read-conversion and
489 pre-write-conversion functions. Usually the value is zero, but it
490 is set to 1 temporarily while such functions are running. This is
491 to avoid infinite recursive call. */
492 static int inhibit_pre_post_conversion;
493
494 /* Char-table containing safe coding systems of each character. */
495 Lisp_Object Vchar_coding_system_table;
496 Lisp_Object Qchar_coding_system;
497
498 /* Return `safe-chars' property of coding system CODING. Don't check
499 validity of CODING. */
500
501 Lisp_Object
502 coding_safe_chars (coding)
503 struct coding_system *coding;
504 {
505 Lisp_Object coding_spec, plist, safe_chars;
506
507 coding_spec = Fget (coding->symbol, Qcoding_system);
508 plist = XVECTOR (coding_spec)->contents[3];
509 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
510 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
511 }
512
513 #define CODING_SAFE_CHAR_P(safe_chars, c) \
514 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
515
516 \f
517 /*** 2. Emacs internal format (emacs-mule) handlers ***/
518
519 /* Emacs' internal format for representation of multiple character
520 sets is a kind of multi-byte encoding, i.e. characters are
521 represented by variable-length sequences of one-byte codes.
522
523 ASCII characters and control characters (e.g. `tab', `newline') are
524 represented by one-byte sequences which are their ASCII codes, in
525 the range 0x00 through 0x7F.
526
527 8-bit characters of the range 0x80..0x9F are represented by
528 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
529 code + 0x20).
530
531 8-bit characters of the range 0xA0..0xFF are represented by
532 one-byte sequences which are their 8-bit code.
533
534 The other characters are represented by a sequence of `base
535 leading-code', optional `extended leading-code', and one or two
536 `position-code's. The length of the sequence is determined by the
537 base leading-code. Leading-code takes the range 0x81 through 0x9D,
538 whereas extended leading-code and position-code take the range 0xA0
539 through 0xFF. See `charset.h' for more details about leading-code
540 and position-code.
541
542 --- CODE RANGE of Emacs' internal format ---
543 character set range
544 ------------- -----
545 ascii 0x00..0x7F
546 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
547 eight-bit-graphic 0xA0..0xBF
548 ELSE 0x81..0x9D + [0xA0..0xFF]+
549 ---------------------------------------------
550
551 As this is the internal character representation, the format is
552 usually not used externally (i.e. in a file or in a data sent to a
553 process). But, it is possible to have a text externally in this
554 format (i.e. by encoding by the coding system `emacs-mule').
555
556 In that case, a sequence of one-byte codes has a slightly different
557 form.
558
559 Firstly, all characters in eight-bit-control are represented by
560 one-byte sequences which are their 8-bit code.
561
562 Next, character composition data are represented by the byte
563 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
564 where,
565 METHOD is 0xF0 plus one of composition method (enum
566 composition_method),
567
568 BYTES is 0xA0 plus the byte length of these composition data,
569
570 CHARS is 0xA0 plus the number of characters composed by these
571 data,
572
573 COMPONENTs are characters of multibyte form or composition
574 rules encoded by two-byte of ASCII codes.
575
576 In addition, for backward compatibility, the following formats are
577 also recognized as composition data on decoding.
578
579 0x80 MSEQ ...
580 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
581
582 Here,
583 MSEQ is a multibyte form but in these special format:
584 ASCII: 0xA0 ASCII_CODE+0x80,
585 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
586 RULE is a one byte code of the range 0xA0..0xF0 that
587 represents a composition rule.
588 */
589
590 enum emacs_code_class_type emacs_code_class[256];
591
592 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
593 Check if a text is encoded in Emacs' internal format. If it is,
594 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
595
596 static int
597 detect_coding_emacs_mule (src, src_end, multibytep)
598 unsigned char *src, *src_end;
599 int multibytep;
600 {
601 unsigned char c;
602 int composing = 0;
603 /* Dummy for ONE_MORE_BYTE. */
604 struct coding_system dummy_coding;
605 struct coding_system *coding = &dummy_coding;
606
607 while (1)
608 {
609 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
610
611 if (composing)
612 {
613 if (c < 0xA0)
614 composing = 0;
615 else if (c == 0xA0)
616 {
617 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
618 c &= 0x7F;
619 }
620 else
621 c -= 0x20;
622 }
623
624 if (c < 0x20)
625 {
626 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
627 return 0;
628 }
629 else if (c >= 0x80 && c < 0xA0)
630 {
631 if (c == 0x80)
632 /* Old leading code for a composite character. */
633 composing = 1;
634 else
635 {
636 unsigned char *src_base = src - 1;
637 int bytes;
638
639 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
640 bytes))
641 return 0;
642 src = src_base + bytes;
643 }
644 }
645 }
646 label_end_of_loop:
647 return CODING_CATEGORY_MASK_EMACS_MULE;
648 }
649
650
651 /* Record the starting position START and METHOD of one composition. */
652
653 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
654 do { \
655 struct composition_data *cmp_data = coding->cmp_data; \
656 int *data = cmp_data->data + cmp_data->used; \
657 coding->cmp_data_start = cmp_data->used; \
658 data[0] = -1; \
659 data[1] = cmp_data->char_offset + start; \
660 data[3] = (int) method; \
661 cmp_data->used += 4; \
662 } while (0)
663
664 /* Record the ending position END of the current composition. */
665
666 #define CODING_ADD_COMPOSITION_END(coding, end) \
667 do { \
668 struct composition_data *cmp_data = coding->cmp_data; \
669 int *data = cmp_data->data + coding->cmp_data_start; \
670 data[0] = cmp_data->used - coding->cmp_data_start; \
671 data[2] = cmp_data->char_offset + end; \
672 } while (0)
673
674 /* Record one COMPONENT (alternate character or composition rule). */
675
676 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
677 (coding->cmp_data->data[coding->cmp_data->used++] = component)
678
679
680 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
681 is not less than SRC_END, return -1 without incrementing Src. */
682
683 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
684
685
686 /* Decode a character represented as a component of composition
687 sequence of Emacs 20 style at SRC. Set C to that character, store
688 its multibyte form sequence at P, and set P to the end of that
689 sequence. If no valid character is found, set C to -1. */
690
691 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
692 do { \
693 int bytes; \
694 \
695 c = SAFE_ONE_MORE_BYTE (); \
696 if (c < 0) \
697 break; \
698 if (CHAR_HEAD_P (c)) \
699 c = -1; \
700 else if (c == 0xA0) \
701 { \
702 c = SAFE_ONE_MORE_BYTE (); \
703 if (c < 0xA0) \
704 c = -1; \
705 else \
706 { \
707 c -= 0xA0; \
708 *p++ = c; \
709 } \
710 } \
711 else if (BASE_LEADING_CODE_P (c - 0x20)) \
712 { \
713 unsigned char *p0 = p; \
714 \
715 c -= 0x20; \
716 *p++ = c; \
717 bytes = BYTES_BY_CHAR_HEAD (c); \
718 while (--bytes) \
719 { \
720 c = SAFE_ONE_MORE_BYTE (); \
721 if (c < 0) \
722 break; \
723 *p++ = c; \
724 } \
725 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
726 c = STRING_CHAR (p0, bytes); \
727 else \
728 c = -1; \
729 } \
730 else \
731 c = -1; \
732 } while (0)
733
734
735 /* Decode a composition rule represented as a component of composition
736 sequence of Emacs 20 style at SRC. Set C to the rule. If not
737 valid rule is found, set C to -1. */
738
739 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
740 do { \
741 c = SAFE_ONE_MORE_BYTE (); \
742 c -= 0xA0; \
743 if (c < 0 || c >= 81) \
744 c = -1; \
745 else \
746 { \
747 gref = c / 9, nref = c % 9; \
748 c = COMPOSITION_ENCODE_RULE (gref, nref); \
749 } \
750 } while (0)
751
752
753 /* Decode composition sequence encoded by `emacs-mule' at the source
754 pointed by SRC. SRC_END is the end of source. Store information
755 of the composition in CODING->cmp_data.
756
757 For backward compatibility, decode also a composition sequence of
758 Emacs 20 style. In that case, the composition sequence contains
759 characters that should be extracted into a buffer or string. Store
760 those characters at *DESTINATION in multibyte form.
761
762 If we encounter an invalid byte sequence, return 0.
763 If we encounter an insufficient source or destination, or
764 insufficient space in CODING->cmp_data, return 1.
765 Otherwise, return consumed bytes in the source.
766
767 */
768 static INLINE int
769 decode_composition_emacs_mule (coding, src, src_end,
770 destination, dst_end, dst_bytes)
771 struct coding_system *coding;
772 unsigned char *src, *src_end, **destination, *dst_end;
773 int dst_bytes;
774 {
775 unsigned char *dst = *destination;
776 int method, data_len, nchars;
777 unsigned char *src_base = src++;
778 /* Store components of composition. */
779 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
780 int ncomponent;
781 /* Store multibyte form of characters to be composed. This is for
782 Emacs 20 style composition sequence. */
783 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
784 unsigned char *bufp = buf;
785 int c, i, gref, nref;
786
787 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
788 >= COMPOSITION_DATA_SIZE)
789 {
790 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
791 return -1;
792 }
793
794 ONE_MORE_BYTE (c);
795 if (c - 0xF0 >= COMPOSITION_RELATIVE
796 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
797 {
798 int with_rule;
799
800 method = c - 0xF0;
801 with_rule = (method == COMPOSITION_WITH_RULE
802 || method == COMPOSITION_WITH_RULE_ALTCHARS);
803 ONE_MORE_BYTE (c);
804 data_len = c - 0xA0;
805 if (data_len < 4
806 || src_base + data_len > src_end)
807 return 0;
808 ONE_MORE_BYTE (c);
809 nchars = c - 0xA0;
810 if (c < 1)
811 return 0;
812 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
813 {
814 if (ncomponent % 2 && with_rule)
815 {
816 ONE_MORE_BYTE (gref);
817 gref -= 32;
818 ONE_MORE_BYTE (nref);
819 nref -= 32;
820 c = COMPOSITION_ENCODE_RULE (gref, nref);
821 }
822 else
823 {
824 int bytes;
825 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
826 c = STRING_CHAR (src, bytes);
827 else
828 c = *src, bytes = 1;
829 src += bytes;
830 }
831 component[ncomponent] = c;
832 }
833 }
834 else
835 {
836 /* This may be an old Emacs 20 style format. See the comment at
837 the section 2 of this file. */
838 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
839 if (src == src_end
840 && !(coding->mode & CODING_MODE_LAST_BLOCK))
841 goto label_end_of_loop;
842
843 src_end = src;
844 src = src_base + 1;
845 if (c < 0xC0)
846 {
847 method = COMPOSITION_RELATIVE;
848 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
849 {
850 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
851 if (c < 0)
852 break;
853 component[ncomponent++] = c;
854 }
855 if (ncomponent < 2)
856 return 0;
857 nchars = ncomponent;
858 }
859 else if (c == 0xFF)
860 {
861 method = COMPOSITION_WITH_RULE;
862 src++;
863 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
864 if (c < 0)
865 return 0;
866 component[0] = c;
867 for (ncomponent = 1;
868 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
869 {
870 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
871 if (c < 0)
872 break;
873 component[ncomponent++] = c;
874 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
875 if (c < 0)
876 break;
877 component[ncomponent++] = c;
878 }
879 if (ncomponent < 3)
880 return 0;
881 nchars = (ncomponent + 1) / 2;
882 }
883 else
884 return 0;
885 }
886
887 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
888 {
889 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
890 for (i = 0; i < ncomponent; i++)
891 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
892 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
893 if (buf < bufp)
894 {
895 unsigned char *p = buf;
896 EMIT_BYTES (p, bufp);
897 *destination += bufp - buf;
898 coding->produced_char += nchars;
899 }
900 return (src - src_base);
901 }
902 label_end_of_loop:
903 return -1;
904 }
905
906 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
907
908 static void
909 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
910 struct coding_system *coding;
911 unsigned char *source, *destination;
912 int src_bytes, dst_bytes;
913 {
914 unsigned char *src = source;
915 unsigned char *src_end = source + src_bytes;
916 unsigned char *dst = destination;
917 unsigned char *dst_end = destination + dst_bytes;
918 /* SRC_BASE remembers the start position in source in each loop.
919 The loop will be exited when there's not enough source code, or
920 when there's not enough destination area to produce a
921 character. */
922 unsigned char *src_base;
923
924 coding->produced_char = 0;
925 while ((src_base = src) < src_end)
926 {
927 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
928 int bytes;
929
930 if (*src == '\r')
931 {
932 int c = *src++;
933
934 if (coding->eol_type == CODING_EOL_CR)
935 c = '\n';
936 else if (coding->eol_type == CODING_EOL_CRLF)
937 {
938 ONE_MORE_BYTE (c);
939 if (c != '\n')
940 {
941 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
942 {
943 coding->result = CODING_FINISH_INCONSISTENT_EOL;
944 goto label_end_of_loop;
945 }
946 src--;
947 c = '\r';
948 }
949 }
950 *dst++ = c;
951 coding->produced_char++;
952 continue;
953 }
954 else if (*src == '\n')
955 {
956 if ((coding->eol_type == CODING_EOL_CR
957 || coding->eol_type == CODING_EOL_CRLF)
958 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
959 {
960 coding->result = CODING_FINISH_INCONSISTENT_EOL;
961 goto label_end_of_loop;
962 }
963 *dst++ = *src++;
964 coding->produced_char++;
965 continue;
966 }
967 else if (*src == 0x80)
968 {
969 /* Start of composition data. */
970 int consumed = decode_composition_emacs_mule (coding, src, src_end,
971 &dst, dst_end,
972 dst_bytes);
973 if (consumed < 0)
974 goto label_end_of_loop;
975 else if (consumed > 0)
976 {
977 src += consumed;
978 continue;
979 }
980 bytes = CHAR_STRING (*src, tmp);
981 p = tmp;
982 src++;
983 }
984 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
985 {
986 p = src;
987 src += bytes;
988 }
989 else
990 {
991 bytes = CHAR_STRING (*src, tmp);
992 p = tmp;
993 src++;
994 }
995 if (dst + bytes >= (dst_bytes ? dst_end : src))
996 {
997 coding->result = CODING_FINISH_INSUFFICIENT_DST;
998 break;
999 }
1000 while (bytes--) *dst++ = *p++;
1001 coding->produced_char++;
1002 }
1003 label_end_of_loop:
1004 coding->consumed = coding->consumed_char = src_base - source;
1005 coding->produced = dst - destination;
1006 }
1007
1008
1009 /* Encode composition data stored at DATA into a special byte sequence
1010 starting by 0x80. Update CODING->cmp_data_start and maybe
1011 CODING->cmp_data for the next call. */
1012
1013 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1014 do { \
1015 unsigned char buf[1024], *p0 = buf, *p; \
1016 int len = data[0]; \
1017 int i; \
1018 \
1019 buf[0] = 0x80; \
1020 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1021 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1022 p = buf + 4; \
1023 if (data[3] == COMPOSITION_WITH_RULE \
1024 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1025 { \
1026 p += CHAR_STRING (data[4], p); \
1027 for (i = 5; i < len; i += 2) \
1028 { \
1029 int gref, nref; \
1030 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1031 *p++ = 0x20 + gref; \
1032 *p++ = 0x20 + nref; \
1033 p += CHAR_STRING (data[i + 1], p); \
1034 } \
1035 } \
1036 else \
1037 { \
1038 for (i = 4; i < len; i++) \
1039 p += CHAR_STRING (data[i], p); \
1040 } \
1041 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1042 \
1043 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1044 { \
1045 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1046 goto label_end_of_loop; \
1047 } \
1048 while (p0 < p) \
1049 *dst++ = *p0++; \
1050 coding->cmp_data_start += data[0]; \
1051 if (coding->cmp_data_start == coding->cmp_data->used \
1052 && coding->cmp_data->next) \
1053 { \
1054 coding->cmp_data = coding->cmp_data->next; \
1055 coding->cmp_data_start = 0; \
1056 } \
1057 } while (0)
1058
1059
1060 static void encode_eol P_ ((struct coding_system *, unsigned char *,
1061 unsigned char *, int, int));
1062
1063 static void
1064 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1065 struct coding_system *coding;
1066 unsigned char *source, *destination;
1067 int src_bytes, dst_bytes;
1068 {
1069 unsigned char *src = source;
1070 unsigned char *src_end = source + src_bytes;
1071 unsigned char *dst = destination;
1072 unsigned char *dst_end = destination + dst_bytes;
1073 unsigned char *src_base;
1074 int c;
1075 int char_offset;
1076 int *data;
1077
1078 Lisp_Object translation_table;
1079
1080 translation_table = Qnil;
1081
1082 /* Optimization for the case that there's no composition. */
1083 if (!coding->cmp_data || coding->cmp_data->used == 0)
1084 {
1085 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1086 return;
1087 }
1088
1089 char_offset = coding->cmp_data->char_offset;
1090 data = coding->cmp_data->data + coding->cmp_data_start;
1091 while (1)
1092 {
1093 src_base = src;
1094
1095 /* If SRC starts a composition, encode the information about the
1096 composition in advance. */
1097 if (coding->cmp_data_start < coding->cmp_data->used
1098 && char_offset + coding->consumed_char == data[1])
1099 {
1100 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1101 char_offset = coding->cmp_data->char_offset;
1102 data = coding->cmp_data->data + coding->cmp_data_start;
1103 }
1104
1105 ONE_MORE_CHAR (c);
1106 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1107 || coding->eol_type == CODING_EOL_CR))
1108 {
1109 if (coding->eol_type == CODING_EOL_CRLF)
1110 EMIT_TWO_BYTES ('\r', c);
1111 else
1112 EMIT_ONE_BYTE ('\r');
1113 }
1114 else if (SINGLE_BYTE_CHAR_P (c))
1115 EMIT_ONE_BYTE (c);
1116 else
1117 EMIT_BYTES (src_base, src);
1118 coding->consumed_char++;
1119 }
1120 label_end_of_loop:
1121 coding->consumed = src_base - source;
1122 coding->produced = coding->produced_char = dst - destination;
1123 return;
1124 }
1125
1126 \f
1127 /*** 3. ISO2022 handlers ***/
1128
1129 /* The following note describes the coding system ISO2022 briefly.
1130 Since the intention of this note is to help understand the
1131 functions in this file, some parts are NOT ACCURATE or are OVERLY
1132 SIMPLIFIED. For thorough understanding, please refer to the
1133 original document of ISO2022. This is equivalent to the standard
1134 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1135
1136 ISO2022 provides many mechanisms to encode several character sets
1137 in 7-bit and 8-bit environments. For 7-bit environments, all text
1138 is encoded using bytes less than 128. This may make the encoded
1139 text a little bit longer, but the text passes more easily through
1140 several types of gateway, some of which strip off the MSB (Most
1141 Significant Bit).
1142
1143 There are two kinds of character sets: control character sets and
1144 graphic character sets. The former contain control characters such
1145 as `newline' and `escape' to provide control functions (control
1146 functions are also provided by escape sequences). The latter
1147 contain graphic characters such as 'A' and '-'. Emacs recognizes
1148 two control character sets and many graphic character sets.
1149
1150 Graphic character sets are classified into one of the following
1151 four classes, according to the number of bytes (DIMENSION) and
1152 number of characters in one dimension (CHARS) of the set:
1153 - DIMENSION1_CHARS94
1154 - DIMENSION1_CHARS96
1155 - DIMENSION2_CHARS94
1156 - DIMENSION2_CHARS96
1157
1158 In addition, each character set is assigned an identification tag,
1159 unique for each set, called the "final character" (denoted as <F>
1160 hereafter). The <F> of each character set is decided by ECMA(*)
1161 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1162 (0x30..0x3F are for private use only).
1163
1164 Note (*): ECMA = European Computer Manufacturers Association
1165
1166 Here are examples of graphic character sets [NAME(<F>)]:
1167 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1168 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1169 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1170 o DIMENSION2_CHARS96 -- none for the moment
1171
1172 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1173 C0 [0x00..0x1F] -- control character plane 0
1174 GL [0x20..0x7F] -- graphic character plane 0
1175 C1 [0x80..0x9F] -- control character plane 1
1176 GR [0xA0..0xFF] -- graphic character plane 1
1177
1178 A control character set is directly designated and invoked to C0 or
1179 C1 by an escape sequence. The most common case is that:
1180 - ISO646's control character set is designated/invoked to C0, and
1181 - ISO6429's control character set is designated/invoked to C1,
1182 and usually these designations/invocations are omitted in encoded
1183 text. In a 7-bit environment, only C0 can be used, and a control
1184 character for C1 is encoded by an appropriate escape sequence to
1185 fit into the environment. All control characters for C1 are
1186 defined to have corresponding escape sequences.
1187
1188 A graphic character set is at first designated to one of four
1189 graphic registers (G0 through G3), then these graphic registers are
1190 invoked to GL or GR. These designations and invocations can be
1191 done independently. The most common case is that G0 is invoked to
1192 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1193 these invocations and designations are omitted in encoded text.
1194 In a 7-bit environment, only GL can be used.
1195
1196 When a graphic character set of CHARS94 is invoked to GL, codes
1197 0x20 and 0x7F of the GL area work as control characters SPACE and
1198 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1199 be used.
1200
1201 There are two ways of invocation: locking-shift and single-shift.
1202 With locking-shift, the invocation lasts until the next different
1203 invocation, whereas with single-shift, the invocation affects the
1204 following character only and doesn't affect the locking-shift
1205 state. Invocations are done by the following control characters or
1206 escape sequences:
1207
1208 ----------------------------------------------------------------------
1209 abbrev function cntrl escape seq description
1210 ----------------------------------------------------------------------
1211 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1212 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1213 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1214 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1215 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1216 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1217 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1218 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1219 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1220 ----------------------------------------------------------------------
1221 (*) These are not used by any known coding system.
1222
1223 Control characters for these functions are defined by macros
1224 ISO_CODE_XXX in `coding.h'.
1225
1226 Designations are done by the following escape sequences:
1227 ----------------------------------------------------------------------
1228 escape sequence description
1229 ----------------------------------------------------------------------
1230 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1231 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1232 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1233 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1234 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1235 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1236 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1237 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1238 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1239 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1240 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1241 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1242 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1243 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1244 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1245 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1246 ----------------------------------------------------------------------
1247
1248 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1249 of dimension 1, chars 94, and final character <F>, etc...
1250
1251 Note (*): Although these designations are not allowed in ISO2022,
1252 Emacs accepts them on decoding, and produces them on encoding
1253 CHARS96 character sets in a coding system which is characterized as
1254 7-bit environment, non-locking-shift, and non-single-shift.
1255
1256 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1257 '(' can be omitted. We refer to this as "short-form" hereafter.
1258
1259 Now you may notice that there are a lot of ways of encoding the
1260 same multilingual text in ISO2022. Actually, there exist many
1261 coding systems such as Compound Text (used in X11's inter client
1262 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1263 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1264 localized platforms), and all of these are variants of ISO2022.
1265
1266 In addition to the above, Emacs handles two more kinds of escape
1267 sequences: ISO6429's direction specification and Emacs' private
1268 sequence for specifying character composition.
1269
1270 ISO6429's direction specification takes the following form:
1271 o CSI ']' -- end of the current direction
1272 o CSI '0' ']' -- end of the current direction
1273 o CSI '1' ']' -- start of left-to-right text
1274 o CSI '2' ']' -- start of right-to-left text
1275 The control character CSI (0x9B: control sequence introducer) is
1276 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1277
1278 Character composition specification takes the following form:
1279 o ESC '0' -- start relative composition
1280 o ESC '1' -- end composition
1281 o ESC '2' -- start rule-base composition (*)
1282 o ESC '3' -- start relative composition with alternate chars (**)
1283 o ESC '4' -- start rule-base composition with alternate chars (**)
1284 Since these are not standard escape sequences of any ISO standard,
1285 the use of them with these meanings is restricted to Emacs only.
1286
1287 (*) This form is used only in Emacs 20.5 and older versions,
1288 but the newer versions can safely decode it.
1289 (**) This form is used only in Emacs 21.1 and newer versions,
1290 and the older versions can't decode it.
1291
1292 Here's a list of example usages of these composition escape
1293 sequences (categorized by `enum composition_method').
1294
1295 COMPOSITION_RELATIVE:
1296 ESC 0 CHAR [ CHAR ] ESC 1
1297 COMPOSITION_WITH_RULE:
1298 ESC 2 CHAR [ RULE CHAR ] ESC 1
1299 COMPOSITION_WITH_ALTCHARS:
1300 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1301 COMPOSITION_WITH_RULE_ALTCHARS:
1302 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1303
1304 enum iso_code_class_type iso_code_class[256];
1305
1306 #define CHARSET_OK(idx, charset, c) \
1307 (coding_system_table[idx] \
1308 && (charset == CHARSET_ASCII \
1309 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
1310 CODING_SAFE_CHAR_P (safe_chars, c))) \
1311 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1312 charset) \
1313 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1314
1315 #define SHIFT_OUT_OK(idx) \
1316 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1317
1318 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1319 Check if a text is encoded in ISO2022. If it is, return an
1320 integer in which appropriate flag bits any of:
1321 CODING_CATEGORY_MASK_ISO_7
1322 CODING_CATEGORY_MASK_ISO_7_TIGHT
1323 CODING_CATEGORY_MASK_ISO_8_1
1324 CODING_CATEGORY_MASK_ISO_8_2
1325 CODING_CATEGORY_MASK_ISO_7_ELSE
1326 CODING_CATEGORY_MASK_ISO_8_ELSE
1327 are set. If a code which should never appear in ISO2022 is found,
1328 returns 0. */
1329
1330 static int
1331 detect_coding_iso2022 (src, src_end, multibytep)
1332 unsigned char *src, *src_end;
1333 int multibytep;
1334 {
1335 int mask = CODING_CATEGORY_MASK_ISO;
1336 int mask_found = 0;
1337 int reg[4], shift_out = 0, single_shifting = 0;
1338 int c, c1, charset;
1339 /* Dummy for ONE_MORE_BYTE. */
1340 struct coding_system dummy_coding;
1341 struct coding_system *coding = &dummy_coding;
1342 Lisp_Object safe_chars;
1343
1344 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1345 while (mask && src < src_end)
1346 {
1347 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1348 switch (c)
1349 {
1350 case ISO_CODE_ESC:
1351 if (inhibit_iso_escape_detection)
1352 break;
1353 single_shifting = 0;
1354 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1355 if (c >= '(' && c <= '/')
1356 {
1357 /* Designation sequence for a charset of dimension 1. */
1358 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1359 if (c1 < ' ' || c1 >= 0x80
1360 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1361 /* Invalid designation sequence. Just ignore. */
1362 break;
1363 reg[(c - '(') % 4] = charset;
1364 }
1365 else if (c == '$')
1366 {
1367 /* Designation sequence for a charset of dimension 2. */
1368 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1369 if (c >= '@' && c <= 'B')
1370 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1371 reg[0] = charset = iso_charset_table[1][0][c];
1372 else if (c >= '(' && c <= '/')
1373 {
1374 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1375 if (c1 < ' ' || c1 >= 0x80
1376 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1377 /* Invalid designation sequence. Just ignore. */
1378 break;
1379 reg[(c - '(') % 4] = charset;
1380 }
1381 else
1382 /* Invalid designation sequence. Just ignore. */
1383 break;
1384 }
1385 else if (c == 'N' || c == 'O')
1386 {
1387 /* ESC <Fe> for SS2 or SS3. */
1388 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1389 break;
1390 }
1391 else if (c >= '0' && c <= '4')
1392 {
1393 /* ESC <Fp> for start/end composition. */
1394 mask_found |= CODING_CATEGORY_MASK_ISO;
1395 break;
1396 }
1397 else
1398 /* Invalid escape sequence. Just ignore. */
1399 break;
1400
1401 /* We found a valid designation sequence for CHARSET. */
1402 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1403 c = MAKE_CHAR (charset, 0, 0);
1404 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1405 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1406 else
1407 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1408 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1409 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1410 else
1411 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1412 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1413 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1414 else
1415 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1416 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1417 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1418 else
1419 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1420 break;
1421
1422 case ISO_CODE_SO:
1423 if (inhibit_iso_escape_detection)
1424 break;
1425 single_shifting = 0;
1426 if (shift_out == 0
1427 && (reg[1] >= 0
1428 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1429 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1430 {
1431 /* Locking shift out. */
1432 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1433 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1434 }
1435 break;
1436
1437 case ISO_CODE_SI:
1438 if (inhibit_iso_escape_detection)
1439 break;
1440 single_shifting = 0;
1441 if (shift_out == 1)
1442 {
1443 /* Locking shift in. */
1444 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1445 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1446 }
1447 break;
1448
1449 case ISO_CODE_CSI:
1450 single_shifting = 0;
1451 case ISO_CODE_SS2:
1452 case ISO_CODE_SS3:
1453 {
1454 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1455
1456 if (inhibit_iso_escape_detection)
1457 break;
1458 if (c != ISO_CODE_CSI)
1459 {
1460 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1461 & CODING_FLAG_ISO_SINGLE_SHIFT)
1462 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1463 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1464 & CODING_FLAG_ISO_SINGLE_SHIFT)
1465 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1466 single_shifting = 1;
1467 }
1468 if (VECTORP (Vlatin_extra_code_table)
1469 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1470 {
1471 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1472 & CODING_FLAG_ISO_LATIN_EXTRA)
1473 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1474 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1475 & CODING_FLAG_ISO_LATIN_EXTRA)
1476 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1477 }
1478 mask &= newmask;
1479 mask_found |= newmask;
1480 }
1481 break;
1482
1483 default:
1484 if (c < 0x80)
1485 {
1486 single_shifting = 0;
1487 break;
1488 }
1489 else if (c < 0xA0)
1490 {
1491 single_shifting = 0;
1492 if (VECTORP (Vlatin_extra_code_table)
1493 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1494 {
1495 int newmask = 0;
1496
1497 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1498 & CODING_FLAG_ISO_LATIN_EXTRA)
1499 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1500 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1501 & CODING_FLAG_ISO_LATIN_EXTRA)
1502 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1503 mask &= newmask;
1504 mask_found |= newmask;
1505 }
1506 else
1507 return 0;
1508 }
1509 else
1510 {
1511 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1512 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1513 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1514 /* Check the length of succeeding codes of the range
1515 0xA0..0FF. If the byte length is odd, we exclude
1516 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1517 when we are not single shifting. */
1518 if (!single_shifting
1519 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1520 {
1521 int i = 1;
1522 while (src < src_end)
1523 {
1524 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1525 if (c < 0xA0)
1526 break;
1527 i++;
1528 }
1529
1530 if (i & 1 && src < src_end)
1531 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1532 else
1533 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1534 }
1535 }
1536 break;
1537 }
1538 }
1539 label_end_of_loop:
1540 return (mask & mask_found);
1541 }
1542
1543 /* Decode a character of which charset is CHARSET, the 1st position
1544 code is C1, the 2nd position code is C2, and return the decoded
1545 character code. If the variable `translation_table' is non-nil,
1546 returned the translated code. */
1547
1548 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1549 (NILP (translation_table) \
1550 ? MAKE_CHAR (charset, c1, c2) \
1551 : translate_char (translation_table, -1, charset, c1, c2))
1552
1553 /* Set designation state into CODING. */
1554 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1555 do { \
1556 int charset, c; \
1557 \
1558 if (final_char < '0' || final_char >= 128) \
1559 goto label_invalid_code; \
1560 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1561 make_number (chars), \
1562 make_number (final_char)); \
1563 c = MAKE_CHAR (charset, 0, 0); \
1564 if (charset >= 0 \
1565 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1566 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1567 { \
1568 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1569 && reg == 0 \
1570 && charset == CHARSET_ASCII) \
1571 { \
1572 /* We should insert this designation sequence as is so \
1573 that it is surely written back to a file. */ \
1574 coding->spec.iso2022.last_invalid_designation_register = -1; \
1575 goto label_invalid_code; \
1576 } \
1577 coding->spec.iso2022.last_invalid_designation_register = -1; \
1578 if ((coding->mode & CODING_MODE_DIRECTION) \
1579 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1580 charset = CHARSET_REVERSE_CHARSET (charset); \
1581 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1582 } \
1583 else \
1584 { \
1585 coding->spec.iso2022.last_invalid_designation_register = reg; \
1586 goto label_invalid_code; \
1587 } \
1588 } while (0)
1589
1590 /* Allocate a memory block for storing information about compositions.
1591 The block is chained to the already allocated blocks. */
1592
1593 void
1594 coding_allocate_composition_data (coding, char_offset)
1595 struct coding_system *coding;
1596 int char_offset;
1597 {
1598 struct composition_data *cmp_data
1599 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1600
1601 cmp_data->char_offset = char_offset;
1602 cmp_data->used = 0;
1603 cmp_data->prev = coding->cmp_data;
1604 cmp_data->next = NULL;
1605 if (coding->cmp_data)
1606 coding->cmp_data->next = cmp_data;
1607 coding->cmp_data = cmp_data;
1608 coding->cmp_data_start = 0;
1609 }
1610
1611 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1612 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1613 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1614 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1615 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1616 */
1617
1618 #define DECODE_COMPOSITION_START(c1) \
1619 do { \
1620 if (coding->composing == COMPOSITION_DISABLED) \
1621 { \
1622 *dst++ = ISO_CODE_ESC; \
1623 *dst++ = c1 & 0x7f; \
1624 coding->produced_char += 2; \
1625 } \
1626 else if (!COMPOSING_P (coding)) \
1627 { \
1628 /* This is surely the start of a composition. We must be sure \
1629 that coding->cmp_data has enough space to store the \
1630 information about the composition. If not, terminate the \
1631 current decoding loop, allocate one more memory block for \
1632 coding->cmp_data in the caller, then start the decoding \
1633 loop again. We can't allocate memory here directly because \
1634 it may cause buffer/string relocation. */ \
1635 if (!coding->cmp_data \
1636 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1637 >= COMPOSITION_DATA_SIZE)) \
1638 { \
1639 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1640 goto label_end_of_loop; \
1641 } \
1642 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1643 : c1 == '2' ? COMPOSITION_WITH_RULE \
1644 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1645 : COMPOSITION_WITH_RULE_ALTCHARS); \
1646 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1647 coding->composing); \
1648 coding->composition_rule_follows = 0; \
1649 } \
1650 else \
1651 { \
1652 /* We are already handling a composition. If the method is \
1653 the following two, the codes following the current escape \
1654 sequence are actual characters stored in a buffer. */ \
1655 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1656 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1657 { \
1658 coding->composing = COMPOSITION_RELATIVE; \
1659 coding->composition_rule_follows = 0; \
1660 } \
1661 } \
1662 } while (0)
1663
1664 /* Handle composition end sequence ESC 1. */
1665
1666 #define DECODE_COMPOSITION_END(c1) \
1667 do { \
1668 if (coding->composing == COMPOSITION_DISABLED) \
1669 { \
1670 *dst++ = ISO_CODE_ESC; \
1671 *dst++ = c1; \
1672 coding->produced_char += 2; \
1673 } \
1674 else \
1675 { \
1676 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1677 coding->composing = COMPOSITION_NO; \
1678 } \
1679 } while (0)
1680
1681 /* Decode a composition rule from the byte C1 (and maybe one more byte
1682 from SRC) and store one encoded composition rule in
1683 coding->cmp_data. */
1684
1685 #define DECODE_COMPOSITION_RULE(c1) \
1686 do { \
1687 int rule = 0; \
1688 (c1) -= 32; \
1689 if (c1 < 81) /* old format (before ver.21) */ \
1690 { \
1691 int gref = (c1) / 9; \
1692 int nref = (c1) % 9; \
1693 if (gref == 4) gref = 10; \
1694 if (nref == 4) nref = 10; \
1695 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1696 } \
1697 else if (c1 < 93) /* new format (after ver.21) */ \
1698 { \
1699 ONE_MORE_BYTE (c2); \
1700 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1701 } \
1702 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1703 coding->composition_rule_follows = 0; \
1704 } while (0)
1705
1706
1707 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1708
1709 static void
1710 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1711 struct coding_system *coding;
1712 unsigned char *source, *destination;
1713 int src_bytes, dst_bytes;
1714 {
1715 unsigned char *src = source;
1716 unsigned char *src_end = source + src_bytes;
1717 unsigned char *dst = destination;
1718 unsigned char *dst_end = destination + dst_bytes;
1719 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1720 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1721 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1722 /* SRC_BASE remembers the start position in source in each loop.
1723 The loop will be exited when there's not enough source code
1724 (within macro ONE_MORE_BYTE), or when there's not enough
1725 destination area to produce a character (within macro
1726 EMIT_CHAR). */
1727 unsigned char *src_base;
1728 int c, charset;
1729 Lisp_Object translation_table;
1730 Lisp_Object safe_chars;
1731
1732 safe_chars = coding_safe_chars (coding);
1733
1734 if (NILP (Venable_character_translation))
1735 translation_table = Qnil;
1736 else
1737 {
1738 translation_table = coding->translation_table_for_decode;
1739 if (NILP (translation_table))
1740 translation_table = Vstandard_translation_table_for_decode;
1741 }
1742
1743 coding->result = CODING_FINISH_NORMAL;
1744
1745 while (1)
1746 {
1747 int c1, c2;
1748
1749 src_base = src;
1750 ONE_MORE_BYTE (c1);
1751
1752 /* We produce no character or one character. */
1753 switch (iso_code_class [c1])
1754 {
1755 case ISO_0x20_or_0x7F:
1756 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1757 {
1758 DECODE_COMPOSITION_RULE (c1);
1759 continue;
1760 }
1761 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1762 {
1763 /* This is SPACE or DEL. */
1764 charset = CHARSET_ASCII;
1765 break;
1766 }
1767 /* This is a graphic character, we fall down ... */
1768
1769 case ISO_graphic_plane_0:
1770 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1771 {
1772 DECODE_COMPOSITION_RULE (c1);
1773 continue;
1774 }
1775 charset = charset0;
1776 break;
1777
1778 case ISO_0xA0_or_0xFF:
1779 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1780 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1781 goto label_invalid_code;
1782 /* This is a graphic character, we fall down ... */
1783
1784 case ISO_graphic_plane_1:
1785 if (charset1 < 0)
1786 goto label_invalid_code;
1787 charset = charset1;
1788 break;
1789
1790 case ISO_control_0:
1791 if (COMPOSING_P (coding))
1792 DECODE_COMPOSITION_END ('1');
1793
1794 /* All ISO2022 control characters in this class have the
1795 same representation in Emacs internal format. */
1796 if (c1 == '\n'
1797 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1798 && (coding->eol_type == CODING_EOL_CR
1799 || coding->eol_type == CODING_EOL_CRLF))
1800 {
1801 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1802 goto label_end_of_loop;
1803 }
1804 charset = CHARSET_ASCII;
1805 break;
1806
1807 case ISO_control_1:
1808 if (COMPOSING_P (coding))
1809 DECODE_COMPOSITION_END ('1');
1810 goto label_invalid_code;
1811
1812 case ISO_carriage_return:
1813 if (COMPOSING_P (coding))
1814 DECODE_COMPOSITION_END ('1');
1815
1816 if (coding->eol_type == CODING_EOL_CR)
1817 c1 = '\n';
1818 else if (coding->eol_type == CODING_EOL_CRLF)
1819 {
1820 ONE_MORE_BYTE (c1);
1821 if (c1 != ISO_CODE_LF)
1822 {
1823 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1824 {
1825 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1826 goto label_end_of_loop;
1827 }
1828 src--;
1829 c1 = '\r';
1830 }
1831 }
1832 charset = CHARSET_ASCII;
1833 break;
1834
1835 case ISO_shift_out:
1836 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1837 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1838 goto label_invalid_code;
1839 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1840 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1841 continue;
1842
1843 case ISO_shift_in:
1844 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1845 goto label_invalid_code;
1846 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1847 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1848 continue;
1849
1850 case ISO_single_shift_2_7:
1851 case ISO_single_shift_2:
1852 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1853 goto label_invalid_code;
1854 /* SS2 is handled as an escape sequence of ESC 'N' */
1855 c1 = 'N';
1856 goto label_escape_sequence;
1857
1858 case ISO_single_shift_3:
1859 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1860 goto label_invalid_code;
1861 /* SS2 is handled as an escape sequence of ESC 'O' */
1862 c1 = 'O';
1863 goto label_escape_sequence;
1864
1865 case ISO_control_sequence_introducer:
1866 /* CSI is handled as an escape sequence of ESC '[' ... */
1867 c1 = '[';
1868 goto label_escape_sequence;
1869
1870 case ISO_escape:
1871 ONE_MORE_BYTE (c1);
1872 label_escape_sequence:
1873 /* Escape sequences handled by Emacs are invocation,
1874 designation, direction specification, and character
1875 composition specification. */
1876 switch (c1)
1877 {
1878 case '&': /* revision of following character set */
1879 ONE_MORE_BYTE (c1);
1880 if (!(c1 >= '@' && c1 <= '~'))
1881 goto label_invalid_code;
1882 ONE_MORE_BYTE (c1);
1883 if (c1 != ISO_CODE_ESC)
1884 goto label_invalid_code;
1885 ONE_MORE_BYTE (c1);
1886 goto label_escape_sequence;
1887
1888 case '$': /* designation of 2-byte character set */
1889 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1890 goto label_invalid_code;
1891 ONE_MORE_BYTE (c1);
1892 if (c1 >= '@' && c1 <= 'B')
1893 { /* designation of JISX0208.1978, GB2312.1980,
1894 or JISX0208.1980 */
1895 DECODE_DESIGNATION (0, 2, 94, c1);
1896 }
1897 else if (c1 >= 0x28 && c1 <= 0x2B)
1898 { /* designation of DIMENSION2_CHARS94 character set */
1899 ONE_MORE_BYTE (c2);
1900 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1901 }
1902 else if (c1 >= 0x2C && c1 <= 0x2F)
1903 { /* designation of DIMENSION2_CHARS96 character set */
1904 ONE_MORE_BYTE (c2);
1905 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1906 }
1907 else
1908 goto label_invalid_code;
1909 /* We must update these variables now. */
1910 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1911 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1912 continue;
1913
1914 case 'n': /* invocation of locking-shift-2 */
1915 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1916 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1917 goto label_invalid_code;
1918 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1919 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1920 continue;
1921
1922 case 'o': /* invocation of locking-shift-3 */
1923 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1924 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1925 goto label_invalid_code;
1926 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1927 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1928 continue;
1929
1930 case 'N': /* invocation of single-shift-2 */
1931 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1932 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1933 goto label_invalid_code;
1934 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1935 ONE_MORE_BYTE (c1);
1936 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1937 goto label_invalid_code;
1938 break;
1939
1940 case 'O': /* invocation of single-shift-3 */
1941 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1942 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1943 goto label_invalid_code;
1944 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1945 ONE_MORE_BYTE (c1);
1946 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1947 goto label_invalid_code;
1948 break;
1949
1950 case '0': case '2': case '3': case '4': /* start composition */
1951 DECODE_COMPOSITION_START (c1);
1952 continue;
1953
1954 case '1': /* end composition */
1955 DECODE_COMPOSITION_END (c1);
1956 continue;
1957
1958 case '[': /* specification of direction */
1959 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1960 goto label_invalid_code;
1961 /* For the moment, nested direction is not supported.
1962 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1963 left-to-right, and nonzero means right-to-left. */
1964 ONE_MORE_BYTE (c1);
1965 switch (c1)
1966 {
1967 case ']': /* end of the current direction */
1968 coding->mode &= ~CODING_MODE_DIRECTION;
1969
1970 case '0': /* end of the current direction */
1971 case '1': /* start of left-to-right direction */
1972 ONE_MORE_BYTE (c1);
1973 if (c1 == ']')
1974 coding->mode &= ~CODING_MODE_DIRECTION;
1975 else
1976 goto label_invalid_code;
1977 break;
1978
1979 case '2': /* start of right-to-left direction */
1980 ONE_MORE_BYTE (c1);
1981 if (c1 == ']')
1982 coding->mode |= CODING_MODE_DIRECTION;
1983 else
1984 goto label_invalid_code;
1985 break;
1986
1987 default:
1988 goto label_invalid_code;
1989 }
1990 continue;
1991
1992 default:
1993 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1994 goto label_invalid_code;
1995 if (c1 >= 0x28 && c1 <= 0x2B)
1996 { /* designation of DIMENSION1_CHARS94 character set */
1997 ONE_MORE_BYTE (c2);
1998 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1999 }
2000 else if (c1 >= 0x2C && c1 <= 0x2F)
2001 { /* designation of DIMENSION1_CHARS96 character set */
2002 ONE_MORE_BYTE (c2);
2003 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2004 }
2005 else
2006 goto label_invalid_code;
2007 /* We must update these variables now. */
2008 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2009 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2010 continue;
2011 }
2012 }
2013
2014 /* Now we know CHARSET and 1st position code C1 of a character.
2015 Produce a multibyte sequence for that character while getting
2016 2nd position code C2 if necessary. */
2017 if (CHARSET_DIMENSION (charset) == 2)
2018 {
2019 ONE_MORE_BYTE (c2);
2020 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2021 /* C2 is not in a valid range. */
2022 goto label_invalid_code;
2023 }
2024 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2025 EMIT_CHAR (c);
2026 continue;
2027
2028 label_invalid_code:
2029 coding->errors++;
2030 if (COMPOSING_P (coding))
2031 DECODE_COMPOSITION_END ('1');
2032 src = src_base;
2033 c = *src++;
2034 EMIT_CHAR (c);
2035 }
2036
2037 label_end_of_loop:
2038 coding->consumed = coding->consumed_char = src_base - source;
2039 coding->produced = dst - destination;
2040 return;
2041 }
2042
2043
2044 /* ISO2022 encoding stuff. */
2045
2046 /*
2047 It is not enough to say just "ISO2022" on encoding, we have to
2048 specify more details. In Emacs, each ISO2022 coding system
2049 variant has the following specifications:
2050 1. Initial designation to G0 through G3.
2051 2. Allows short-form designation?
2052 3. ASCII should be designated to G0 before control characters?
2053 4. ASCII should be designated to G0 at end of line?
2054 5. 7-bit environment or 8-bit environment?
2055 6. Use locking-shift?
2056 7. Use Single-shift?
2057 And the following two are only for Japanese:
2058 8. Use ASCII in place of JIS0201-1976-Roman?
2059 9. Use JISX0208-1983 in place of JISX0208-1978?
2060 These specifications are encoded in `coding->flags' as flag bits
2061 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2062 details.
2063 */
2064
2065 /* Produce codes (escape sequence) for designating CHARSET to graphic
2066 register REG at DST, and increment DST. If <final-char> of CHARSET is
2067 '@', 'A', or 'B' and the coding system CODING allows, produce
2068 designation sequence of short-form. */
2069
2070 #define ENCODE_DESIGNATION(charset, reg, coding) \
2071 do { \
2072 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2073 char *intermediate_char_94 = "()*+"; \
2074 char *intermediate_char_96 = ",-./"; \
2075 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2076 \
2077 if (revision < 255) \
2078 { \
2079 *dst++ = ISO_CODE_ESC; \
2080 *dst++ = '&'; \
2081 *dst++ = '@' + revision; \
2082 } \
2083 *dst++ = ISO_CODE_ESC; \
2084 if (CHARSET_DIMENSION (charset) == 1) \
2085 { \
2086 if (CHARSET_CHARS (charset) == 94) \
2087 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2088 else \
2089 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2090 } \
2091 else \
2092 { \
2093 *dst++ = '$'; \
2094 if (CHARSET_CHARS (charset) == 94) \
2095 { \
2096 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2097 || reg != 0 \
2098 || final_char < '@' || final_char > 'B') \
2099 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2100 } \
2101 else \
2102 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2103 } \
2104 *dst++ = final_char; \
2105 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2106 } while (0)
2107
2108 /* The following two macros produce codes (control character or escape
2109 sequence) for ISO2022 single-shift functions (single-shift-2 and
2110 single-shift-3). */
2111
2112 #define ENCODE_SINGLE_SHIFT_2 \
2113 do { \
2114 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2115 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2116 else \
2117 *dst++ = ISO_CODE_SS2; \
2118 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2119 } while (0)
2120
2121 #define ENCODE_SINGLE_SHIFT_3 \
2122 do { \
2123 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2124 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2125 else \
2126 *dst++ = ISO_CODE_SS3; \
2127 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2128 } while (0)
2129
2130 /* The following four macros produce codes (control character or
2131 escape sequence) for ISO2022 locking-shift functions (shift-in,
2132 shift-out, locking-shift-2, and locking-shift-3). */
2133
2134 #define ENCODE_SHIFT_IN \
2135 do { \
2136 *dst++ = ISO_CODE_SI; \
2137 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2138 } while (0)
2139
2140 #define ENCODE_SHIFT_OUT \
2141 do { \
2142 *dst++ = ISO_CODE_SO; \
2143 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2144 } while (0)
2145
2146 #define ENCODE_LOCKING_SHIFT_2 \
2147 do { \
2148 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2149 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2150 } while (0)
2151
2152 #define ENCODE_LOCKING_SHIFT_3 \
2153 do { \
2154 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2155 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2156 } while (0)
2157
2158 /* Produce codes for a DIMENSION1 character whose character set is
2159 CHARSET and whose position-code is C1. Designation and invocation
2160 sequences are also produced in advance if necessary. */
2161
2162 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2163 do { \
2164 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2165 { \
2166 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2167 *dst++ = c1 & 0x7F; \
2168 else \
2169 *dst++ = c1 | 0x80; \
2170 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2171 break; \
2172 } \
2173 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2174 { \
2175 *dst++ = c1 & 0x7F; \
2176 break; \
2177 } \
2178 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2179 { \
2180 *dst++ = c1 | 0x80; \
2181 break; \
2182 } \
2183 else \
2184 /* Since CHARSET is not yet invoked to any graphic planes, we \
2185 must invoke it, or, at first, designate it to some graphic \
2186 register. Then repeat the loop to actually produce the \
2187 character. */ \
2188 dst = encode_invocation_designation (charset, coding, dst); \
2189 } while (1)
2190
2191 /* Produce codes for a DIMENSION2 character whose character set is
2192 CHARSET and whose position-codes are C1 and C2. Designation and
2193 invocation codes are also produced in advance if necessary. */
2194
2195 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2196 do { \
2197 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2198 { \
2199 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2200 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2201 else \
2202 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2203 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2204 break; \
2205 } \
2206 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2207 { \
2208 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2209 break; \
2210 } \
2211 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2212 { \
2213 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2214 break; \
2215 } \
2216 else \
2217 /* Since CHARSET is not yet invoked to any graphic planes, we \
2218 must invoke it, or, at first, designate it to some graphic \
2219 register. Then repeat the loop to actually produce the \
2220 character. */ \
2221 dst = encode_invocation_designation (charset, coding, dst); \
2222 } while (1)
2223
2224 #define ENCODE_ISO_CHARACTER(c) \
2225 do { \
2226 int charset, c1, c2; \
2227 \
2228 SPLIT_CHAR (c, charset, c1, c2); \
2229 if (CHARSET_DEFINED_P (charset)) \
2230 { \
2231 if (CHARSET_DIMENSION (charset) == 1) \
2232 { \
2233 if (charset == CHARSET_ASCII \
2234 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2235 charset = charset_latin_jisx0201; \
2236 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2237 } \
2238 else \
2239 { \
2240 if (charset == charset_jisx0208 \
2241 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2242 charset = charset_jisx0208_1978; \
2243 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2244 } \
2245 } \
2246 else \
2247 { \
2248 *dst++ = c1; \
2249 if (c2 >= 0) \
2250 *dst++ = c2; \
2251 } \
2252 } while (0)
2253
2254
2255 /* Instead of encoding character C, produce one or two `?'s. */
2256
2257 #define ENCODE_UNSAFE_CHARACTER(c) \
2258 do { \
2259 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2260 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2261 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2262 } while (0)
2263
2264
2265 /* Produce designation and invocation codes at a place pointed by DST
2266 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2267 Return new DST. */
2268
2269 unsigned char *
2270 encode_invocation_designation (charset, coding, dst)
2271 int charset;
2272 struct coding_system *coding;
2273 unsigned char *dst;
2274 {
2275 int reg; /* graphic register number */
2276
2277 /* At first, check designations. */
2278 for (reg = 0; reg < 4; reg++)
2279 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2280 break;
2281
2282 if (reg >= 4)
2283 {
2284 /* CHARSET is not yet designated to any graphic registers. */
2285 /* At first check the requested designation. */
2286 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2287 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2288 /* Since CHARSET requests no special designation, designate it
2289 to graphic register 0. */
2290 reg = 0;
2291
2292 ENCODE_DESIGNATION (charset, reg, coding);
2293 }
2294
2295 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2296 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2297 {
2298 /* Since the graphic register REG is not invoked to any graphic
2299 planes, invoke it to graphic plane 0. */
2300 switch (reg)
2301 {
2302 case 0: /* graphic register 0 */
2303 ENCODE_SHIFT_IN;
2304 break;
2305
2306 case 1: /* graphic register 1 */
2307 ENCODE_SHIFT_OUT;
2308 break;
2309
2310 case 2: /* graphic register 2 */
2311 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2312 ENCODE_SINGLE_SHIFT_2;
2313 else
2314 ENCODE_LOCKING_SHIFT_2;
2315 break;
2316
2317 case 3: /* graphic register 3 */
2318 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2319 ENCODE_SINGLE_SHIFT_3;
2320 else
2321 ENCODE_LOCKING_SHIFT_3;
2322 break;
2323 }
2324 }
2325
2326 return dst;
2327 }
2328
2329 /* Produce 2-byte codes for encoded composition rule RULE. */
2330
2331 #define ENCODE_COMPOSITION_RULE(rule) \
2332 do { \
2333 int gref, nref; \
2334 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2335 *dst++ = 32 + 81 + gref; \
2336 *dst++ = 32 + nref; \
2337 } while (0)
2338
2339 /* Produce codes for indicating the start of a composition sequence
2340 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2341 which specify information about the composition. See the comment
2342 in coding.h for the format of DATA. */
2343
2344 #define ENCODE_COMPOSITION_START(coding, data) \
2345 do { \
2346 coding->composing = data[3]; \
2347 *dst++ = ISO_CODE_ESC; \
2348 if (coding->composing == COMPOSITION_RELATIVE) \
2349 *dst++ = '0'; \
2350 else \
2351 { \
2352 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2353 ? '3' : '4'); \
2354 coding->cmp_data_index = coding->cmp_data_start + 4; \
2355 coding->composition_rule_follows = 0; \
2356 } \
2357 } while (0)
2358
2359 /* Produce codes for indicating the end of the current composition. */
2360
2361 #define ENCODE_COMPOSITION_END(coding, data) \
2362 do { \
2363 *dst++ = ISO_CODE_ESC; \
2364 *dst++ = '1'; \
2365 coding->cmp_data_start += data[0]; \
2366 coding->composing = COMPOSITION_NO; \
2367 if (coding->cmp_data_start == coding->cmp_data->used \
2368 && coding->cmp_data->next) \
2369 { \
2370 coding->cmp_data = coding->cmp_data->next; \
2371 coding->cmp_data_start = 0; \
2372 } \
2373 } while (0)
2374
2375 /* Produce composition start sequence ESC 0. Here, this sequence
2376 doesn't mean the start of a new composition but means that we have
2377 just produced components (alternate chars and composition rules) of
2378 the composition and the actual text follows in SRC. */
2379
2380 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2381 do { \
2382 *dst++ = ISO_CODE_ESC; \
2383 *dst++ = '0'; \
2384 coding->composing = COMPOSITION_RELATIVE; \
2385 } while (0)
2386
2387 /* The following three macros produce codes for indicating direction
2388 of text. */
2389 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2390 do { \
2391 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2392 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2393 else \
2394 *dst++ = ISO_CODE_CSI; \
2395 } while (0)
2396
2397 #define ENCODE_DIRECTION_R2L \
2398 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2399
2400 #define ENCODE_DIRECTION_L2R \
2401 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2402
2403 /* Produce codes for designation and invocation to reset the graphic
2404 planes and registers to initial state. */
2405 #define ENCODE_RESET_PLANE_AND_REGISTER \
2406 do { \
2407 int reg; \
2408 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2409 ENCODE_SHIFT_IN; \
2410 for (reg = 0; reg < 4; reg++) \
2411 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2412 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2413 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2414 ENCODE_DESIGNATION \
2415 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2416 } while (0)
2417
2418 /* Produce designation sequences of charsets in the line started from
2419 SRC to a place pointed by DST, and return updated DST.
2420
2421 If the current block ends before any end-of-line, we may fail to
2422 find all the necessary designations. */
2423
2424 static unsigned char *
2425 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2426 struct coding_system *coding;
2427 Lisp_Object translation_table;
2428 unsigned char *src, *src_end, *dst;
2429 {
2430 int charset, c, found = 0, reg;
2431 /* Table of charsets to be designated to each graphic register. */
2432 int r[4];
2433
2434 for (reg = 0; reg < 4; reg++)
2435 r[reg] = -1;
2436
2437 while (found < 4)
2438 {
2439 ONE_MORE_CHAR (c);
2440 if (c == '\n')
2441 break;
2442
2443 charset = CHAR_CHARSET (c);
2444 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2445 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2446 {
2447 found++;
2448 r[reg] = charset;
2449 }
2450 }
2451
2452 label_end_of_loop:
2453 if (found)
2454 {
2455 for (reg = 0; reg < 4; reg++)
2456 if (r[reg] >= 0
2457 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2458 ENCODE_DESIGNATION (r[reg], reg, coding);
2459 }
2460
2461 return dst;
2462 }
2463
2464 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2465
2466 static void
2467 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2468 struct coding_system *coding;
2469 unsigned char *source, *destination;
2470 int src_bytes, dst_bytes;
2471 {
2472 unsigned char *src = source;
2473 unsigned char *src_end = source + src_bytes;
2474 unsigned char *dst = destination;
2475 unsigned char *dst_end = destination + dst_bytes;
2476 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2477 from DST_END to assure overflow checking is necessary only at the
2478 head of loop. */
2479 unsigned char *adjusted_dst_end = dst_end - 19;
2480 /* SRC_BASE remembers the start position in source in each loop.
2481 The loop will be exited when there's not enough source text to
2482 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2483 there's not enough destination area to produce encoded codes
2484 (within macro EMIT_BYTES). */
2485 unsigned char *src_base;
2486 int c;
2487 Lisp_Object translation_table;
2488 Lisp_Object safe_chars;
2489
2490 safe_chars = coding_safe_chars (coding);
2491
2492 if (NILP (Venable_character_translation))
2493 translation_table = Qnil;
2494 else
2495 {
2496 translation_table = coding->translation_table_for_encode;
2497 if (NILP (translation_table))
2498 translation_table = Vstandard_translation_table_for_encode;
2499 }
2500
2501 coding->consumed_char = 0;
2502 coding->errors = 0;
2503 while (1)
2504 {
2505 src_base = src;
2506
2507 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2508 {
2509 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2510 break;
2511 }
2512
2513 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2514 && CODING_SPEC_ISO_BOL (coding))
2515 {
2516 /* We have to produce designation sequences if any now. */
2517 dst = encode_designation_at_bol (coding, translation_table,
2518 src, src_end, dst);
2519 CODING_SPEC_ISO_BOL (coding) = 0;
2520 }
2521
2522 /* Check composition start and end. */
2523 if (coding->composing != COMPOSITION_DISABLED
2524 && coding->cmp_data_start < coding->cmp_data->used)
2525 {
2526 struct composition_data *cmp_data = coding->cmp_data;
2527 int *data = cmp_data->data + coding->cmp_data_start;
2528 int this_pos = cmp_data->char_offset + coding->consumed_char;
2529
2530 if (coding->composing == COMPOSITION_RELATIVE)
2531 {
2532 if (this_pos == data[2])
2533 {
2534 ENCODE_COMPOSITION_END (coding, data);
2535 cmp_data = coding->cmp_data;
2536 data = cmp_data->data + coding->cmp_data_start;
2537 }
2538 }
2539 else if (COMPOSING_P (coding))
2540 {
2541 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2542 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2543 /* We have consumed components of the composition.
2544 What follows in SRC is the composition's base
2545 text. */
2546 ENCODE_COMPOSITION_FAKE_START (coding);
2547 else
2548 {
2549 int c = cmp_data->data[coding->cmp_data_index++];
2550 if (coding->composition_rule_follows)
2551 {
2552 ENCODE_COMPOSITION_RULE (c);
2553 coding->composition_rule_follows = 0;
2554 }
2555 else
2556 {
2557 if (coding->flags & CODING_FLAG_ISO_SAFE
2558 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2559 ENCODE_UNSAFE_CHARACTER (c);
2560 else
2561 ENCODE_ISO_CHARACTER (c);
2562 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2563 coding->composition_rule_follows = 1;
2564 }
2565 continue;
2566 }
2567 }
2568 if (!COMPOSING_P (coding))
2569 {
2570 if (this_pos == data[1])
2571 {
2572 ENCODE_COMPOSITION_START (coding, data);
2573 continue;
2574 }
2575 }
2576 }
2577
2578 ONE_MORE_CHAR (c);
2579
2580 /* Now encode the character C. */
2581 if (c < 0x20 || c == 0x7F)
2582 {
2583 if (c == '\r')
2584 {
2585 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2586 {
2587 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2588 ENCODE_RESET_PLANE_AND_REGISTER;
2589 *dst++ = c;
2590 continue;
2591 }
2592 /* fall down to treat '\r' as '\n' ... */
2593 c = '\n';
2594 }
2595 if (c == '\n')
2596 {
2597 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2598 ENCODE_RESET_PLANE_AND_REGISTER;
2599 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2600 bcopy (coding->spec.iso2022.initial_designation,
2601 coding->spec.iso2022.current_designation,
2602 sizeof coding->spec.iso2022.initial_designation);
2603 if (coding->eol_type == CODING_EOL_LF
2604 || coding->eol_type == CODING_EOL_UNDECIDED)
2605 *dst++ = ISO_CODE_LF;
2606 else if (coding->eol_type == CODING_EOL_CRLF)
2607 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2608 else
2609 *dst++ = ISO_CODE_CR;
2610 CODING_SPEC_ISO_BOL (coding) = 1;
2611 }
2612 else
2613 {
2614 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2615 ENCODE_RESET_PLANE_AND_REGISTER;
2616 *dst++ = c;
2617 }
2618 }
2619 else if (ASCII_BYTE_P (c))
2620 ENCODE_ISO_CHARACTER (c);
2621 else if (SINGLE_BYTE_CHAR_P (c))
2622 {
2623 *dst++ = c;
2624 coding->errors++;
2625 }
2626 else if (coding->flags & CODING_FLAG_ISO_SAFE
2627 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2628 ENCODE_UNSAFE_CHARACTER (c);
2629 else
2630 ENCODE_ISO_CHARACTER (c);
2631
2632 coding->consumed_char++;
2633 }
2634
2635 label_end_of_loop:
2636 coding->consumed = src_base - source;
2637 coding->produced = coding->produced_char = dst - destination;
2638 }
2639
2640 \f
2641 /*** 4. SJIS and BIG5 handlers ***/
2642
2643 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2644 quite widely. So, for the moment, Emacs supports them in the bare
2645 C code. But, in the future, they may be supported only by CCL. */
2646
2647 /* SJIS is a coding system encoding three character sets: ASCII, right
2648 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2649 as is. A character of charset katakana-jisx0201 is encoded by
2650 "position-code + 0x80". A character of charset japanese-jisx0208
2651 is encoded in 2-byte but two position-codes are divided and shifted
2652 so that it fits in the range below.
2653
2654 --- CODE RANGE of SJIS ---
2655 (character set) (range)
2656 ASCII 0x00 .. 0x7F
2657 KATAKANA-JISX0201 0xA1 .. 0xDF
2658 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2659 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2660 -------------------------------
2661
2662 */
2663
2664 /* BIG5 is a coding system encoding two character sets: ASCII and
2665 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2666 character set and is encoded in two bytes.
2667
2668 --- CODE RANGE of BIG5 ---
2669 (character set) (range)
2670 ASCII 0x00 .. 0x7F
2671 Big5 (1st byte) 0xA1 .. 0xFE
2672 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2673 --------------------------
2674
2675 Since the number of characters in Big5 is larger than maximum
2676 characters in Emacs' charset (96x96), it can't be handled as one
2677 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2678 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2679 contains frequently used characters and the latter contains less
2680 frequently used characters. */
2681
2682 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2683 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2684 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2685 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2686
2687 /* Number of Big5 characters which have the same code in 1st byte. */
2688 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2689
2690 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2691 do { \
2692 unsigned int temp \
2693 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2694 if (b1 < 0xC9) \
2695 charset = charset_big5_1; \
2696 else \
2697 { \
2698 charset = charset_big5_2; \
2699 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2700 } \
2701 c1 = temp / (0xFF - 0xA1) + 0x21; \
2702 c2 = temp % (0xFF - 0xA1) + 0x21; \
2703 } while (0)
2704
2705 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2706 do { \
2707 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2708 if (charset == charset_big5_2) \
2709 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2710 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2711 b2 = temp % BIG5_SAME_ROW; \
2712 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2713 } while (0)
2714
2715 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2716 Check if a text is encoded in SJIS. If it is, return
2717 CODING_CATEGORY_MASK_SJIS, else return 0. */
2718
2719 static int
2720 detect_coding_sjis (src, src_end, multibytep)
2721 unsigned char *src, *src_end;
2722 int multibytep;
2723 {
2724 int c;
2725 /* Dummy for ONE_MORE_BYTE. */
2726 struct coding_system dummy_coding;
2727 struct coding_system *coding = &dummy_coding;
2728
2729 while (1)
2730 {
2731 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2732 if (c < 0x80)
2733 continue;
2734 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2735 return 0;
2736 if (c <= 0x9F || c >= 0xE0)
2737 {
2738 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2739 if (c < 0x40 || c == 0x7F || c > 0xFC)
2740 return 0;
2741 }
2742 }
2743 label_end_of_loop:
2744 return CODING_CATEGORY_MASK_SJIS;
2745 }
2746
2747 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2748 Check if a text is encoded in BIG5. If it is, return
2749 CODING_CATEGORY_MASK_BIG5, else return 0. */
2750
2751 static int
2752 detect_coding_big5 (src, src_end, multibytep)
2753 unsigned char *src, *src_end;
2754 int multibytep;
2755 {
2756 int c;
2757 /* Dummy for ONE_MORE_BYTE. */
2758 struct coding_system dummy_coding;
2759 struct coding_system *coding = &dummy_coding;
2760
2761 while (1)
2762 {
2763 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2764 if (c < 0x80)
2765 continue;
2766 if (c < 0xA1 || c > 0xFE)
2767 return 0;
2768 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2769 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2770 return 0;
2771 }
2772 label_end_of_loop:
2773 return CODING_CATEGORY_MASK_BIG5;
2774 }
2775
2776 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2777 Check if a text is encoded in UTF-8. If it is, return
2778 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2779
2780 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2781 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2782 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2783 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2784 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2785 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2786 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2787
2788 static int
2789 detect_coding_utf_8 (src, src_end, multibytep)
2790 unsigned char *src, *src_end;
2791 int multibytep;
2792 {
2793 unsigned char c;
2794 int seq_maybe_bytes;
2795 /* Dummy for ONE_MORE_BYTE. */
2796 struct coding_system dummy_coding;
2797 struct coding_system *coding = &dummy_coding;
2798
2799 while (1)
2800 {
2801 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2802 if (UTF_8_1_OCTET_P (c))
2803 continue;
2804 else if (UTF_8_2_OCTET_LEADING_P (c))
2805 seq_maybe_bytes = 1;
2806 else if (UTF_8_3_OCTET_LEADING_P (c))
2807 seq_maybe_bytes = 2;
2808 else if (UTF_8_4_OCTET_LEADING_P (c))
2809 seq_maybe_bytes = 3;
2810 else if (UTF_8_5_OCTET_LEADING_P (c))
2811 seq_maybe_bytes = 4;
2812 else if (UTF_8_6_OCTET_LEADING_P (c))
2813 seq_maybe_bytes = 5;
2814 else
2815 return 0;
2816
2817 do
2818 {
2819 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2820 if (!UTF_8_EXTRA_OCTET_P (c))
2821 return 0;
2822 seq_maybe_bytes--;
2823 }
2824 while (seq_maybe_bytes > 0);
2825 }
2826
2827 label_end_of_loop:
2828 return CODING_CATEGORY_MASK_UTF_8;
2829 }
2830
2831 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2832 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2833 Little Endian (otherwise). If it is, return
2834 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2835 else return 0. */
2836
2837 #define UTF_16_INVALID_P(val) \
2838 (((val) == 0xFFFE) \
2839 || ((val) == 0xFFFF))
2840
2841 #define UTF_16_HIGH_SURROGATE_P(val) \
2842 (((val) & 0xD800) == 0xD800)
2843
2844 #define UTF_16_LOW_SURROGATE_P(val) \
2845 (((val) & 0xDC00) == 0xDC00)
2846
2847 static int
2848 detect_coding_utf_16 (src, src_end, multibytep)
2849 unsigned char *src, *src_end;
2850 int multibytep;
2851 {
2852 unsigned char c1, c2;
2853 /* Dummy for TWO_MORE_BYTES. */
2854 struct coding_system dummy_coding;
2855 struct coding_system *coding = &dummy_coding;
2856
2857 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2858 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2859
2860 if ((c1 == 0xFF) && (c2 == 0xFE))
2861 return CODING_CATEGORY_MASK_UTF_16_LE;
2862 else if ((c1 == 0xFE) && (c2 == 0xFF))
2863 return CODING_CATEGORY_MASK_UTF_16_BE;
2864
2865 label_end_of_loop:
2866 return 0;
2867 }
2868
2869 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2870 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2871
2872 static void
2873 decode_coding_sjis_big5 (coding, source, destination,
2874 src_bytes, dst_bytes, sjis_p)
2875 struct coding_system *coding;
2876 unsigned char *source, *destination;
2877 int src_bytes, dst_bytes;
2878 int sjis_p;
2879 {
2880 unsigned char *src = source;
2881 unsigned char *src_end = source + src_bytes;
2882 unsigned char *dst = destination;
2883 unsigned char *dst_end = destination + dst_bytes;
2884 /* SRC_BASE remembers the start position in source in each loop.
2885 The loop will be exited when there's not enough source code
2886 (within macro ONE_MORE_BYTE), or when there's not enough
2887 destination area to produce a character (within macro
2888 EMIT_CHAR). */
2889 unsigned char *src_base;
2890 Lisp_Object translation_table;
2891
2892 if (NILP (Venable_character_translation))
2893 translation_table = Qnil;
2894 else
2895 {
2896 translation_table = coding->translation_table_for_decode;
2897 if (NILP (translation_table))
2898 translation_table = Vstandard_translation_table_for_decode;
2899 }
2900
2901 coding->produced_char = 0;
2902 while (1)
2903 {
2904 int c, charset, c1, c2;
2905
2906 src_base = src;
2907 ONE_MORE_BYTE (c1);
2908
2909 if (c1 < 0x80)
2910 {
2911 charset = CHARSET_ASCII;
2912 if (c1 < 0x20)
2913 {
2914 if (c1 == '\r')
2915 {
2916 if (coding->eol_type == CODING_EOL_CRLF)
2917 {
2918 ONE_MORE_BYTE (c2);
2919 if (c2 == '\n')
2920 c1 = c2;
2921 else if (coding->mode
2922 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2923 {
2924 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2925 goto label_end_of_loop;
2926 }
2927 else
2928 /* To process C2 again, SRC is subtracted by 1. */
2929 src--;
2930 }
2931 else if (coding->eol_type == CODING_EOL_CR)
2932 c1 = '\n';
2933 }
2934 else if (c1 == '\n'
2935 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2936 && (coding->eol_type == CODING_EOL_CR
2937 || coding->eol_type == CODING_EOL_CRLF))
2938 {
2939 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2940 goto label_end_of_loop;
2941 }
2942 }
2943 }
2944 else
2945 {
2946 if (sjis_p)
2947 {
2948 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2949 goto label_invalid_code;
2950 if (c1 <= 0x9F || c1 >= 0xE0)
2951 {
2952 /* SJIS -> JISX0208 */
2953 ONE_MORE_BYTE (c2);
2954 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2955 goto label_invalid_code;
2956 DECODE_SJIS (c1, c2, c1, c2);
2957 charset = charset_jisx0208;
2958 }
2959 else
2960 /* SJIS -> JISX0201-Kana */
2961 charset = charset_katakana_jisx0201;
2962 }
2963 else
2964 {
2965 /* BIG5 -> Big5 */
2966 if (c1 < 0xA0 || c1 > 0xFE)
2967 goto label_invalid_code;
2968 ONE_MORE_BYTE (c2);
2969 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2970 goto label_invalid_code;
2971 DECODE_BIG5 (c1, c2, charset, c1, c2);
2972 }
2973 }
2974
2975 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2976 EMIT_CHAR (c);
2977 continue;
2978
2979 label_invalid_code:
2980 coding->errors++;
2981 src = src_base;
2982 c = *src++;
2983 EMIT_CHAR (c);
2984 }
2985
2986 label_end_of_loop:
2987 coding->consumed = coding->consumed_char = src_base - source;
2988 coding->produced = dst - destination;
2989 return;
2990 }
2991
2992 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2993 This function can encode charsets `ascii', `katakana-jisx0201',
2994 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2995 are sure that all these charsets are registered as official charset
2996 (i.e. do not have extended leading-codes). Characters of other
2997 charsets are produced without any encoding. If SJIS_P is 1, encode
2998 SJIS text, else encode BIG5 text. */
2999
3000 static void
3001 encode_coding_sjis_big5 (coding, source, destination,
3002 src_bytes, dst_bytes, sjis_p)
3003 struct coding_system *coding;
3004 unsigned char *source, *destination;
3005 int src_bytes, dst_bytes;
3006 int sjis_p;
3007 {
3008 unsigned char *src = source;
3009 unsigned char *src_end = source + src_bytes;
3010 unsigned char *dst = destination;
3011 unsigned char *dst_end = destination + dst_bytes;
3012 /* SRC_BASE remembers the start position in source in each loop.
3013 The loop will be exited when there's not enough source text to
3014 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3015 there's not enough destination area to produce encoded codes
3016 (within macro EMIT_BYTES). */
3017 unsigned char *src_base;
3018 Lisp_Object translation_table;
3019
3020 if (NILP (Venable_character_translation))
3021 translation_table = Qnil;
3022 else
3023 {
3024 translation_table = coding->translation_table_for_encode;
3025 if (NILP (translation_table))
3026 translation_table = Vstandard_translation_table_for_encode;
3027 }
3028
3029 while (1)
3030 {
3031 int c, charset, c1, c2;
3032
3033 src_base = src;
3034 ONE_MORE_CHAR (c);
3035
3036 /* Now encode the character C. */
3037 if (SINGLE_BYTE_CHAR_P (c))
3038 {
3039 switch (c)
3040 {
3041 case '\r':
3042 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3043 {
3044 EMIT_ONE_BYTE (c);
3045 break;
3046 }
3047 c = '\n';
3048 case '\n':
3049 if (coding->eol_type == CODING_EOL_CRLF)
3050 {
3051 EMIT_TWO_BYTES ('\r', c);
3052 break;
3053 }
3054 else if (coding->eol_type == CODING_EOL_CR)
3055 c = '\r';
3056 default:
3057 EMIT_ONE_BYTE (c);
3058 }
3059 }
3060 else
3061 {
3062 SPLIT_CHAR (c, charset, c1, c2);
3063 if (sjis_p)
3064 {
3065 if (charset == charset_jisx0208
3066 || charset == charset_jisx0208_1978)
3067 {
3068 ENCODE_SJIS (c1, c2, c1, c2);
3069 EMIT_TWO_BYTES (c1, c2);
3070 }
3071 else if (charset == charset_katakana_jisx0201)
3072 EMIT_ONE_BYTE (c1 | 0x80);
3073 else if (charset == charset_latin_jisx0201)
3074 EMIT_ONE_BYTE (c1);
3075 else
3076 /* There's no way other than producing the internal
3077 codes as is. */
3078 EMIT_BYTES (src_base, src);
3079 }
3080 else
3081 {
3082 if (charset == charset_big5_1 || charset == charset_big5_2)
3083 {
3084 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3085 EMIT_TWO_BYTES (c1, c2);
3086 }
3087 else
3088 /* There's no way other than producing the internal
3089 codes as is. */
3090 EMIT_BYTES (src_base, src);
3091 }
3092 }
3093 coding->consumed_char++;
3094 }
3095
3096 label_end_of_loop:
3097 coding->consumed = src_base - source;
3098 coding->produced = coding->produced_char = dst - destination;
3099 }
3100
3101 \f
3102 /*** 5. CCL handlers ***/
3103
3104 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3105 Check if a text is encoded in a coding system of which
3106 encoder/decoder are written in CCL program. If it is, return
3107 CODING_CATEGORY_MASK_CCL, else return 0. */
3108
3109 static int
3110 detect_coding_ccl (src, src_end, multibytep)
3111 unsigned char *src, *src_end;
3112 int multibytep;
3113 {
3114 unsigned char *valid;
3115 int c;
3116 /* Dummy for ONE_MORE_BYTE. */
3117 struct coding_system dummy_coding;
3118 struct coding_system *coding = &dummy_coding;
3119
3120 /* No coding system is assigned to coding-category-ccl. */
3121 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3122 return 0;
3123
3124 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3125 while (1)
3126 {
3127 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3128 if (! valid[c])
3129 return 0;
3130 }
3131 label_end_of_loop:
3132 return CODING_CATEGORY_MASK_CCL;
3133 }
3134
3135 \f
3136 /*** 6. End-of-line handlers ***/
3137
3138 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3139
3140 static void
3141 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3142 struct coding_system *coding;
3143 unsigned char *source, *destination;
3144 int src_bytes, dst_bytes;
3145 {
3146 unsigned char *src = source;
3147 unsigned char *dst = destination;
3148 unsigned char *src_end = src + src_bytes;
3149 unsigned char *dst_end = dst + dst_bytes;
3150 Lisp_Object translation_table;
3151 /* SRC_BASE remembers the start position in source in each loop.
3152 The loop will be exited when there's not enough source code
3153 (within macro ONE_MORE_BYTE), or when there's not enough
3154 destination area to produce a character (within macro
3155 EMIT_CHAR). */
3156 unsigned char *src_base;
3157 int c;
3158
3159 translation_table = Qnil;
3160 switch (coding->eol_type)
3161 {
3162 case CODING_EOL_CRLF:
3163 while (1)
3164 {
3165 src_base = src;
3166 ONE_MORE_BYTE (c);
3167 if (c == '\r')
3168 {
3169 ONE_MORE_BYTE (c);
3170 if (c != '\n')
3171 {
3172 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3173 {
3174 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3175 goto label_end_of_loop;
3176 }
3177 src--;
3178 c = '\r';
3179 }
3180 }
3181 else if (c == '\n'
3182 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3183 {
3184 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3185 goto label_end_of_loop;
3186 }
3187 EMIT_CHAR (c);
3188 }
3189 break;
3190
3191 case CODING_EOL_CR:
3192 while (1)
3193 {
3194 src_base = src;
3195 ONE_MORE_BYTE (c);
3196 if (c == '\n')
3197 {
3198 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3199 {
3200 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3201 goto label_end_of_loop;
3202 }
3203 }
3204 else if (c == '\r')
3205 c = '\n';
3206 EMIT_CHAR (c);
3207 }
3208 break;
3209
3210 default: /* no need for EOL handling */
3211 while (1)
3212 {
3213 src_base = src;
3214 ONE_MORE_BYTE (c);
3215 EMIT_CHAR (c);
3216 }
3217 }
3218
3219 label_end_of_loop:
3220 coding->consumed = coding->consumed_char = src_base - source;
3221 coding->produced = dst - destination;
3222 return;
3223 }
3224
3225 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3226 format of end-of-line according to `coding->eol_type'. It also
3227 convert multibyte form 8-bit characters to unibyte if
3228 CODING->src_multibyte is nonzero. If `coding->mode &
3229 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3230 also means end-of-line. */
3231
3232 static void
3233 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3234 struct coding_system *coding;
3235 unsigned char *source, *destination;
3236 int src_bytes, dst_bytes;
3237 {
3238 unsigned char *src = source;
3239 unsigned char *dst = destination;
3240 unsigned char *src_end = src + src_bytes;
3241 unsigned char *dst_end = dst + dst_bytes;
3242 Lisp_Object translation_table;
3243 /* SRC_BASE remembers the start position in source in each loop.
3244 The loop will be exited when there's not enough source text to
3245 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3246 there's not enough destination area to produce encoded codes
3247 (within macro EMIT_BYTES). */
3248 unsigned char *src_base;
3249 int c;
3250 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3251
3252 translation_table = Qnil;
3253 if (coding->src_multibyte
3254 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3255 {
3256 src_end--;
3257 src_bytes--;
3258 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3259 }
3260
3261 if (coding->eol_type == CODING_EOL_CRLF)
3262 {
3263 while (src < src_end)
3264 {
3265 src_base = src;
3266 c = *src++;
3267 if (c >= 0x20)
3268 EMIT_ONE_BYTE (c);
3269 else if (c == '\n' || (c == '\r' && selective_display))
3270 EMIT_TWO_BYTES ('\r', '\n');
3271 else
3272 EMIT_ONE_BYTE (c);
3273 }
3274 src_base = src;
3275 label_end_of_loop:
3276 ;
3277 }
3278 else
3279 {
3280 if (!dst_bytes || src_bytes <= dst_bytes)
3281 {
3282 safe_bcopy (src, dst, src_bytes);
3283 src_base = src_end;
3284 dst += src_bytes;
3285 }
3286 else
3287 {
3288 if (coding->src_multibyte
3289 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3290 dst_bytes--;
3291 safe_bcopy (src, dst, dst_bytes);
3292 src_base = src + dst_bytes;
3293 dst = destination + dst_bytes;
3294 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3295 }
3296 if (coding->eol_type == CODING_EOL_CR)
3297 {
3298 for (src = destination; src < dst; src++)
3299 if (*src == '\n') *src = '\r';
3300 }
3301 else if (selective_display)
3302 {
3303 for (src = destination; src < dst; src++)
3304 if (*src == '\r') *src = '\n';
3305 }
3306 }
3307 if (coding->src_multibyte)
3308 dst = destination + str_as_unibyte (destination, dst - destination);
3309
3310 coding->consumed = src_base - source;
3311 coding->produced = dst - destination;
3312 coding->produced_char = coding->produced;
3313 }
3314
3315 \f
3316 /*** 7. C library functions ***/
3317
3318 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3319 has a property `coding-system'. The value of this property is a
3320 vector of length 5 (called the coding-vector). Among elements of
3321 this vector, the first (element[0]) and the fifth (element[4])
3322 carry important information for decoding/encoding. Before
3323 decoding/encoding, this information should be set in fields of a
3324 structure of type `coding_system'.
3325
3326 The value of the property `coding-system' can be a symbol of another
3327 subsidiary coding-system. In that case, Emacs gets coding-vector
3328 from that symbol.
3329
3330 `element[0]' contains information to be set in `coding->type'. The
3331 value and its meaning is as follows:
3332
3333 0 -- coding_type_emacs_mule
3334 1 -- coding_type_sjis
3335 2 -- coding_type_iso2022
3336 3 -- coding_type_big5
3337 4 -- coding_type_ccl encoder/decoder written in CCL
3338 nil -- coding_type_no_conversion
3339 t -- coding_type_undecided (automatic conversion on decoding,
3340 no-conversion on encoding)
3341
3342 `element[4]' contains information to be set in `coding->flags' and
3343 `coding->spec'. The meaning varies by `coding->type'.
3344
3345 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3346 of length 32 (of which the first 13 sub-elements are used now).
3347 Meanings of these sub-elements are:
3348
3349 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3350 If the value is an integer of valid charset, the charset is
3351 assumed to be designated to graphic register N initially.
3352
3353 If the value is minus, it is a minus value of charset which
3354 reserves graphic register N, which means that the charset is
3355 not designated initially but should be designated to graphic
3356 register N just before encoding a character in that charset.
3357
3358 If the value is nil, graphic register N is never used on
3359 encoding.
3360
3361 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3362 Each value takes t or nil. See the section ISO2022 of
3363 `coding.h' for more information.
3364
3365 If `coding->type' is `coding_type_big5', element[4] is t to denote
3366 BIG5-ETen or nil to denote BIG5-HKU.
3367
3368 If `coding->type' takes the other value, element[4] is ignored.
3369
3370 Emacs Lisp's coding systems also carry information about format of
3371 end-of-line in a value of property `eol-type'. If the value is
3372 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3373 means CODING_EOL_CR. If it is not integer, it should be a vector
3374 of subsidiary coding systems of which property `eol-type' has one
3375 of the above values.
3376
3377 */
3378
3379 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3380 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3381 is setup so that no conversion is necessary and return -1, else
3382 return 0. */
3383
3384 int
3385 setup_coding_system (coding_system, coding)
3386 Lisp_Object coding_system;
3387 struct coding_system *coding;
3388 {
3389 Lisp_Object coding_spec, coding_type, eol_type, plist;
3390 Lisp_Object val;
3391
3392 /* At first, zero clear all members. */
3393 bzero (coding, sizeof (struct coding_system));
3394
3395 /* Initialize some fields required for all kinds of coding systems. */
3396 coding->symbol = coding_system;
3397 coding->heading_ascii = -1;
3398 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3399 coding->composing = COMPOSITION_DISABLED;
3400 coding->cmp_data = NULL;
3401
3402 if (NILP (coding_system))
3403 goto label_invalid_coding_system;
3404
3405 coding_spec = Fget (coding_system, Qcoding_system);
3406
3407 if (!VECTORP (coding_spec)
3408 || XVECTOR (coding_spec)->size != 5
3409 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3410 goto label_invalid_coding_system;
3411
3412 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3413 if (VECTORP (eol_type))
3414 {
3415 coding->eol_type = CODING_EOL_UNDECIDED;
3416 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3417 }
3418 else if (XFASTINT (eol_type) == 1)
3419 {
3420 coding->eol_type = CODING_EOL_CRLF;
3421 coding->common_flags
3422 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3423 }
3424 else if (XFASTINT (eol_type) == 2)
3425 {
3426 coding->eol_type = CODING_EOL_CR;
3427 coding->common_flags
3428 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3429 }
3430 else
3431 coding->eol_type = CODING_EOL_LF;
3432
3433 coding_type = XVECTOR (coding_spec)->contents[0];
3434 /* Try short cut. */
3435 if (SYMBOLP (coding_type))
3436 {
3437 if (EQ (coding_type, Qt))
3438 {
3439 coding->type = coding_type_undecided;
3440 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3441 }
3442 else
3443 coding->type = coding_type_no_conversion;
3444 /* Initialize this member. Any thing other than
3445 CODING_CATEGORY_IDX_UTF_16_BE and
3446 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3447 special treatment in detect_eol. */
3448 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3449
3450 return 0;
3451 }
3452
3453 /* Get values of coding system properties:
3454 `post-read-conversion', `pre-write-conversion',
3455 `translation-table-for-decode', `translation-table-for-encode'. */
3456 plist = XVECTOR (coding_spec)->contents[3];
3457 /* Pre & post conversion functions should be disabled if
3458 inhibit_eol_conversion is nonzero. This is the case that a code
3459 conversion function is called while those functions are running. */
3460 if (! inhibit_pre_post_conversion)
3461 {
3462 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3463 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3464 }
3465 val = Fplist_get (plist, Qtranslation_table_for_decode);
3466 if (SYMBOLP (val))
3467 val = Fget (val, Qtranslation_table_for_decode);
3468 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3469 val = Fplist_get (plist, Qtranslation_table_for_encode);
3470 if (SYMBOLP (val))
3471 val = Fget (val, Qtranslation_table_for_encode);
3472 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3473 val = Fplist_get (plist, Qcoding_category);
3474 if (!NILP (val))
3475 {
3476 val = Fget (val, Qcoding_category_index);
3477 if (INTEGERP (val))
3478 coding->category_idx = XINT (val);
3479 else
3480 goto label_invalid_coding_system;
3481 }
3482 else
3483 goto label_invalid_coding_system;
3484
3485 /* If the coding system has non-nil `composition' property, enable
3486 composition handling. */
3487 val = Fplist_get (plist, Qcomposition);
3488 if (!NILP (val))
3489 coding->composing = COMPOSITION_NO;
3490
3491 switch (XFASTINT (coding_type))
3492 {
3493 case 0:
3494 coding->type = coding_type_emacs_mule;
3495 coding->common_flags
3496 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3497 coding->composing = COMPOSITION_NO;
3498 if (!NILP (coding->post_read_conversion))
3499 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3500 if (!NILP (coding->pre_write_conversion))
3501 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3502 break;
3503
3504 case 1:
3505 coding->type = coding_type_sjis;
3506 coding->common_flags
3507 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3508 break;
3509
3510 case 2:
3511 coding->type = coding_type_iso2022;
3512 coding->common_flags
3513 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3514 {
3515 Lisp_Object val, temp;
3516 Lisp_Object *flags;
3517 int i, charset, reg_bits = 0;
3518
3519 val = XVECTOR (coding_spec)->contents[4];
3520
3521 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3522 goto label_invalid_coding_system;
3523
3524 flags = XVECTOR (val)->contents;
3525 coding->flags
3526 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3527 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3528 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3529 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3530 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3531 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3532 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3533 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3534 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3535 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3536 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3537 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3538 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3539 );
3540
3541 /* Invoke graphic register 0 to plane 0. */
3542 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3543 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3544 CODING_SPEC_ISO_INVOCATION (coding, 1)
3545 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3546 /* Not single shifting at first. */
3547 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3548 /* Beginning of buffer should also be regarded as bol. */
3549 CODING_SPEC_ISO_BOL (coding) = 1;
3550
3551 for (charset = 0; charset <= MAX_CHARSET; charset++)
3552 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3553 val = Vcharset_revision_alist;
3554 while (CONSP (val))
3555 {
3556 charset = get_charset_id (Fcar_safe (XCAR (val)));
3557 if (charset >= 0
3558 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3559 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3560 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3561 val = XCDR (val);
3562 }
3563
3564 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3565 FLAGS[REG] can be one of below:
3566 integer CHARSET: CHARSET occupies register I,
3567 t: designate nothing to REG initially, but can be used
3568 by any charsets,
3569 list of integer, nil, or t: designate the first
3570 element (if integer) to REG initially, the remaining
3571 elements (if integer) is designated to REG on request,
3572 if an element is t, REG can be used by any charsets,
3573 nil: REG is never used. */
3574 for (charset = 0; charset <= MAX_CHARSET; charset++)
3575 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3576 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3577 for (i = 0; i < 4; i++)
3578 {
3579 if (INTEGERP (flags[i])
3580 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
3581 || (charset = get_charset_id (flags[i])) >= 0)
3582 {
3583 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3584 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3585 }
3586 else if (EQ (flags[i], Qt))
3587 {
3588 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3589 reg_bits |= 1 << i;
3590 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3591 }
3592 else if (CONSP (flags[i]))
3593 {
3594 Lisp_Object tail;
3595 tail = flags[i];
3596
3597 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3598 if (INTEGERP (XCAR (tail))
3599 && (charset = XINT (XCAR (tail)),
3600 CHARSET_VALID_P (charset))
3601 || (charset = get_charset_id (XCAR (tail))) >= 0)
3602 {
3603 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3604 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3605 }
3606 else
3607 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3608 tail = XCDR (tail);
3609 while (CONSP (tail))
3610 {
3611 if (INTEGERP (XCAR (tail))
3612 && (charset = XINT (XCAR (tail)),
3613 CHARSET_VALID_P (charset))
3614 || (charset = get_charset_id (XCAR (tail))) >= 0)
3615 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3616 = i;
3617 else if (EQ (XCAR (tail), Qt))
3618 reg_bits |= 1 << i;
3619 tail = XCDR (tail);
3620 }
3621 }
3622 else
3623 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3624
3625 CODING_SPEC_ISO_DESIGNATION (coding, i)
3626 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3627 }
3628
3629 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3630 {
3631 /* REG 1 can be used only by locking shift in 7-bit env. */
3632 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3633 reg_bits &= ~2;
3634 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3635 /* Without any shifting, only REG 0 and 1 can be used. */
3636 reg_bits &= 3;
3637 }
3638
3639 if (reg_bits)
3640 for (charset = 0; charset <= MAX_CHARSET; charset++)
3641 {
3642 if (CHARSET_DEFINED_P (charset)
3643 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3644 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3645 {
3646 /* There exist some default graphic registers to be
3647 used by CHARSET. */
3648
3649 /* We had better avoid designating a charset of
3650 CHARS96 to REG 0 as far as possible. */
3651 if (CHARSET_CHARS (charset) == 96)
3652 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3653 = (reg_bits & 2
3654 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3655 else
3656 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3657 = (reg_bits & 1
3658 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3659 }
3660 }
3661 }
3662 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3663 coding->spec.iso2022.last_invalid_designation_register = -1;
3664 break;
3665
3666 case 3:
3667 coding->type = coding_type_big5;
3668 coding->common_flags
3669 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3670 coding->flags
3671 = (NILP (XVECTOR (coding_spec)->contents[4])
3672 ? CODING_FLAG_BIG5_HKU
3673 : CODING_FLAG_BIG5_ETEN);
3674 break;
3675
3676 case 4:
3677 coding->type = coding_type_ccl;
3678 coding->common_flags
3679 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3680 {
3681 val = XVECTOR (coding_spec)->contents[4];
3682 if (! CONSP (val)
3683 || setup_ccl_program (&(coding->spec.ccl.decoder),
3684 XCAR (val)) < 0
3685 || setup_ccl_program (&(coding->spec.ccl.encoder),
3686 XCDR (val)) < 0)
3687 goto label_invalid_coding_system;
3688
3689 bzero (coding->spec.ccl.valid_codes, 256);
3690 val = Fplist_get (plist, Qvalid_codes);
3691 if (CONSP (val))
3692 {
3693 Lisp_Object this;
3694
3695 for (; CONSP (val); val = XCDR (val))
3696 {
3697 this = XCAR (val);
3698 if (INTEGERP (this)
3699 && XINT (this) >= 0 && XINT (this) < 256)
3700 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3701 else if (CONSP (this)
3702 && INTEGERP (XCAR (this))
3703 && INTEGERP (XCDR (this)))
3704 {
3705 int start = XINT (XCAR (this));
3706 int end = XINT (XCDR (this));
3707
3708 if (start >= 0 && start <= end && end < 256)
3709 while (start <= end)
3710 coding->spec.ccl.valid_codes[start++] = 1;
3711 }
3712 }
3713 }
3714 }
3715 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3716 coding->spec.ccl.cr_carryover = 0;
3717 coding->spec.ccl.eight_bit_carryover[0] = 0;
3718 break;
3719
3720 case 5:
3721 coding->type = coding_type_raw_text;
3722 break;
3723
3724 default:
3725 goto label_invalid_coding_system;
3726 }
3727 return 0;
3728
3729 label_invalid_coding_system:
3730 coding->type = coding_type_no_conversion;
3731 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3732 coding->common_flags = 0;
3733 coding->eol_type = CODING_EOL_LF;
3734 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3735 return -1;
3736 }
3737
3738 /* Free memory blocks allocated for storing composition information. */
3739
3740 void
3741 coding_free_composition_data (coding)
3742 struct coding_system *coding;
3743 {
3744 struct composition_data *cmp_data = coding->cmp_data, *next;
3745
3746 if (!cmp_data)
3747 return;
3748 /* Memory blocks are chained. At first, rewind to the first, then,
3749 free blocks one by one. */
3750 while (cmp_data->prev)
3751 cmp_data = cmp_data->prev;
3752 while (cmp_data)
3753 {
3754 next = cmp_data->next;
3755 xfree (cmp_data);
3756 cmp_data = next;
3757 }
3758 coding->cmp_data = NULL;
3759 }
3760
3761 /* Set `char_offset' member of all memory blocks pointed by
3762 coding->cmp_data to POS. */
3763
3764 void
3765 coding_adjust_composition_offset (coding, pos)
3766 struct coding_system *coding;
3767 int pos;
3768 {
3769 struct composition_data *cmp_data;
3770
3771 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3772 cmp_data->char_offset = pos;
3773 }
3774
3775 /* Setup raw-text or one of its subsidiaries in the structure
3776 coding_system CODING according to the already setup value eol_type
3777 in CODING. CODING should be setup for some coding system in
3778 advance. */
3779
3780 void
3781 setup_raw_text_coding_system (coding)
3782 struct coding_system *coding;
3783 {
3784 if (coding->type != coding_type_raw_text)
3785 {
3786 coding->symbol = Qraw_text;
3787 coding->type = coding_type_raw_text;
3788 if (coding->eol_type != CODING_EOL_UNDECIDED)
3789 {
3790 Lisp_Object subsidiaries;
3791 subsidiaries = Fget (Qraw_text, Qeol_type);
3792
3793 if (VECTORP (subsidiaries)
3794 && XVECTOR (subsidiaries)->size == 3)
3795 coding->symbol
3796 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3797 }
3798 setup_coding_system (coding->symbol, coding);
3799 }
3800 return;
3801 }
3802
3803 /* Emacs has a mechanism to automatically detect a coding system if it
3804 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3805 it's impossible to distinguish some coding systems accurately
3806 because they use the same range of codes. So, at first, coding
3807 systems are categorized into 7, those are:
3808
3809 o coding-category-emacs-mule
3810
3811 The category for a coding system which has the same code range
3812 as Emacs' internal format. Assigned the coding-system (Lisp
3813 symbol) `emacs-mule' by default.
3814
3815 o coding-category-sjis
3816
3817 The category for a coding system which has the same code range
3818 as SJIS. Assigned the coding-system (Lisp
3819 symbol) `japanese-shift-jis' by default.
3820
3821 o coding-category-iso-7
3822
3823 The category for a coding system which has the same code range
3824 as ISO2022 of 7-bit environment. This doesn't use any locking
3825 shift and single shift functions. This can encode/decode all
3826 charsets. Assigned the coding-system (Lisp symbol)
3827 `iso-2022-7bit' by default.
3828
3829 o coding-category-iso-7-tight
3830
3831 Same as coding-category-iso-7 except that this can
3832 encode/decode only the specified charsets.
3833
3834 o coding-category-iso-8-1
3835
3836 The category for a coding system which has the same code range
3837 as ISO2022 of 8-bit environment and graphic plane 1 used only
3838 for DIMENSION1 charset. This doesn't use any locking shift
3839 and single shift functions. Assigned the coding-system (Lisp
3840 symbol) `iso-latin-1' by default.
3841
3842 o coding-category-iso-8-2
3843
3844 The category for a coding system which has the same code range
3845 as ISO2022 of 8-bit environment and graphic plane 1 used only
3846 for DIMENSION2 charset. This doesn't use any locking shift
3847 and single shift functions. Assigned the coding-system (Lisp
3848 symbol) `japanese-iso-8bit' by default.
3849
3850 o coding-category-iso-7-else
3851
3852 The category for a coding system which has the same code range
3853 as ISO2022 of 7-bit environment but uses locking shift or
3854 single shift functions. Assigned the coding-system (Lisp
3855 symbol) `iso-2022-7bit-lock' by default.
3856
3857 o coding-category-iso-8-else
3858
3859 The category for a coding system which has the same code range
3860 as ISO2022 of 8-bit environment but uses locking shift or
3861 single shift functions. Assigned the coding-system (Lisp
3862 symbol) `iso-2022-8bit-ss2' by default.
3863
3864 o coding-category-big5
3865
3866 The category for a coding system which has the same code range
3867 as BIG5. Assigned the coding-system (Lisp symbol)
3868 `cn-big5' by default.
3869
3870 o coding-category-utf-8
3871
3872 The category for a coding system which has the same code range
3873 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3874 symbol) `utf-8' by default.
3875
3876 o coding-category-utf-16-be
3877
3878 The category for a coding system in which a text has an
3879 Unicode signature (cf. Unicode Standard) in the order of BIG
3880 endian at the head. Assigned the coding-system (Lisp symbol)
3881 `utf-16-be' by default.
3882
3883 o coding-category-utf-16-le
3884
3885 The category for a coding system in which a text has an
3886 Unicode signature (cf. Unicode Standard) in the order of
3887 LITTLE endian at the head. Assigned the coding-system (Lisp
3888 symbol) `utf-16-le' by default.
3889
3890 o coding-category-ccl
3891
3892 The category for a coding system of which encoder/decoder is
3893 written in CCL programs. The default value is nil, i.e., no
3894 coding system is assigned.
3895
3896 o coding-category-binary
3897
3898 The category for a coding system not categorized in any of the
3899 above. Assigned the coding-system (Lisp symbol)
3900 `no-conversion' by default.
3901
3902 Each of them is a Lisp symbol and the value is an actual
3903 `coding-system' (this is also a Lisp symbol) assigned by a user.
3904 What Emacs does actually is to detect a category of coding system.
3905 Then, it uses a `coding-system' assigned to it. If Emacs can't
3906 decide a single possible category, it selects a category of the
3907 highest priority. Priorities of categories are also specified by a
3908 user in a Lisp variable `coding-category-list'.
3909
3910 */
3911
3912 static
3913 int ascii_skip_code[256];
3914
3915 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3916 If it detects possible coding systems, return an integer in which
3917 appropriate flag bits are set. Flag bits are defined by macros
3918 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3919 it should point the table `coding_priorities'. In that case, only
3920 the flag bit for a coding system of the highest priority is set in
3921 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3922 range 0x80..0x9F are in multibyte form.
3923
3924 How many ASCII characters are at the head is returned as *SKIP. */
3925
3926 static int
3927 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3928 unsigned char *source;
3929 int src_bytes, *priorities, *skip;
3930 int multibytep;
3931 {
3932 register unsigned char c;
3933 unsigned char *src = source, *src_end = source + src_bytes;
3934 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3935 int i;
3936
3937 /* At first, skip all ASCII characters and control characters except
3938 for three ISO2022 specific control characters. */
3939 ascii_skip_code[ISO_CODE_SO] = 0;
3940 ascii_skip_code[ISO_CODE_SI] = 0;
3941 ascii_skip_code[ISO_CODE_ESC] = 0;
3942
3943 label_loop_detect_coding:
3944 while (src < src_end && ascii_skip_code[*src]) src++;
3945 *skip = src - source;
3946
3947 if (src >= src_end)
3948 /* We found nothing other than ASCII. There's nothing to do. */
3949 return 0;
3950
3951 c = *src;
3952 /* The text seems to be encoded in some multilingual coding system.
3953 Now, try to find in which coding system the text is encoded. */
3954 if (c < 0x80)
3955 {
3956 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3957 /* C is an ISO2022 specific control code of C0. */
3958 mask = detect_coding_iso2022 (src, src_end, multibytep);
3959 if (mask == 0)
3960 {
3961 /* No valid ISO2022 code follows C. Try again. */
3962 src++;
3963 if (c == ISO_CODE_ESC)
3964 ascii_skip_code[ISO_CODE_ESC] = 1;
3965 else
3966 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3967 goto label_loop_detect_coding;
3968 }
3969 if (priorities)
3970 {
3971 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3972 {
3973 if (mask & priorities[i])
3974 return priorities[i];
3975 }
3976 return CODING_CATEGORY_MASK_RAW_TEXT;
3977 }
3978 }
3979 else
3980 {
3981 int try;
3982
3983 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
3984 c = src[1] - 0x20;
3985
3986 if (c < 0xA0)
3987 {
3988 /* C is the first byte of SJIS character code,
3989 or a leading-code of Emacs' internal format (emacs-mule),
3990 or the first byte of UTF-16. */
3991 try = (CODING_CATEGORY_MASK_SJIS
3992 | CODING_CATEGORY_MASK_EMACS_MULE
3993 | CODING_CATEGORY_MASK_UTF_16_BE
3994 | CODING_CATEGORY_MASK_UTF_16_LE);
3995
3996 /* Or, if C is a special latin extra code,
3997 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3998 or is an ISO2022 control-sequence-introducer (CSI),
3999 we should also consider the possibility of ISO2022 codings. */
4000 if ((VECTORP (Vlatin_extra_code_table)
4001 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4002 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4003 || (c == ISO_CODE_CSI
4004 && (src < src_end
4005 && (*src == ']'
4006 || ((*src == '0' || *src == '1' || *src == '2')
4007 && src + 1 < src_end
4008 && src[1] == ']')))))
4009 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4010 | CODING_CATEGORY_MASK_ISO_8BIT);
4011 }
4012 else
4013 /* C is a character of ISO2022 in graphic plane right,
4014 or a SJIS's 1-byte character code (i.e. JISX0201),
4015 or the first byte of BIG5's 2-byte code,
4016 or the first byte of UTF-8/16. */
4017 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4018 | CODING_CATEGORY_MASK_ISO_8BIT
4019 | CODING_CATEGORY_MASK_SJIS
4020 | CODING_CATEGORY_MASK_BIG5
4021 | CODING_CATEGORY_MASK_UTF_8
4022 | CODING_CATEGORY_MASK_UTF_16_BE
4023 | CODING_CATEGORY_MASK_UTF_16_LE);
4024
4025 /* Or, we may have to consider the possibility of CCL. */
4026 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4027 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4028 ->spec.ccl.valid_codes)[c])
4029 try |= CODING_CATEGORY_MASK_CCL;
4030
4031 mask = 0;
4032 utf16_examined_p = iso2022_examined_p = 0;
4033 if (priorities)
4034 {
4035 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4036 {
4037 if (!iso2022_examined_p
4038 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4039 {
4040 mask |= detect_coding_iso2022 (src, src_end);
4041 iso2022_examined_p = 1;
4042 }
4043 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4044 mask |= detect_coding_sjis (src, src_end, multibytep);
4045 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4046 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4047 else if (!utf16_examined_p
4048 && (priorities[i] & try &
4049 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4050 {
4051 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4052 utf16_examined_p = 1;
4053 }
4054 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4055 mask |= detect_coding_big5 (src, src_end, multibytep);
4056 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4057 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4058 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4059 mask |= detect_coding_ccl (src, src_end, multibytep);
4060 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4061 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4062 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4063 mask |= CODING_CATEGORY_MASK_BINARY;
4064 if (mask & priorities[i])
4065 return priorities[i];
4066 }
4067 return CODING_CATEGORY_MASK_RAW_TEXT;
4068 }
4069 if (try & CODING_CATEGORY_MASK_ISO)
4070 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4071 if (try & CODING_CATEGORY_MASK_SJIS)
4072 mask |= detect_coding_sjis (src, src_end, multibytep);
4073 if (try & CODING_CATEGORY_MASK_BIG5)
4074 mask |= detect_coding_big5 (src, src_end, multibytep);
4075 if (try & CODING_CATEGORY_MASK_UTF_8)
4076 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4077 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4078 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4079 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4080 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4081 if (try & CODING_CATEGORY_MASK_CCL)
4082 mask |= detect_coding_ccl (src, src_end, multibytep);
4083 }
4084 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4085 }
4086
4087 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4088 The information of the detected coding system is set in CODING. */
4089
4090 void
4091 detect_coding (coding, src, src_bytes)
4092 struct coding_system *coding;
4093 unsigned char *src;
4094 int src_bytes;
4095 {
4096 unsigned int idx;
4097 int skip, mask;
4098 Lisp_Object val;
4099
4100 val = Vcoding_category_list;
4101 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4102 coding->src_multibyte);
4103 coding->heading_ascii = skip;
4104
4105 if (!mask) return;
4106
4107 /* We found a single coding system of the highest priority in MASK. */
4108 idx = 0;
4109 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4110 if (! mask)
4111 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4112
4113 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4114
4115 if (coding->eol_type != CODING_EOL_UNDECIDED)
4116 {
4117 Lisp_Object tmp;
4118
4119 tmp = Fget (val, Qeol_type);
4120 if (VECTORP (tmp))
4121 val = XVECTOR (tmp)->contents[coding->eol_type];
4122 }
4123
4124 /* Setup this new coding system while preserving some slots. */
4125 {
4126 int src_multibyte = coding->src_multibyte;
4127 int dst_multibyte = coding->dst_multibyte;
4128
4129 setup_coding_system (val, coding);
4130 coding->src_multibyte = src_multibyte;
4131 coding->dst_multibyte = dst_multibyte;
4132 coding->heading_ascii = skip;
4133 }
4134 }
4135
4136 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4137 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4138 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4139
4140 How many non-eol characters are at the head is returned as *SKIP. */
4141
4142 #define MAX_EOL_CHECK_COUNT 3
4143
4144 static int
4145 detect_eol_type (source, src_bytes, skip)
4146 unsigned char *source;
4147 int src_bytes, *skip;
4148 {
4149 unsigned char *src = source, *src_end = src + src_bytes;
4150 unsigned char c;
4151 int total = 0; /* How many end-of-lines are found so far. */
4152 int eol_type = CODING_EOL_UNDECIDED;
4153 int this_eol_type;
4154
4155 *skip = 0;
4156
4157 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4158 {
4159 c = *src++;
4160 if (c == '\n' || c == '\r')
4161 {
4162 if (*skip == 0)
4163 *skip = src - 1 - source;
4164 total++;
4165 if (c == '\n')
4166 this_eol_type = CODING_EOL_LF;
4167 else if (src >= src_end || *src != '\n')
4168 this_eol_type = CODING_EOL_CR;
4169 else
4170 this_eol_type = CODING_EOL_CRLF, src++;
4171
4172 if (eol_type == CODING_EOL_UNDECIDED)
4173 /* This is the first end-of-line. */
4174 eol_type = this_eol_type;
4175 else if (eol_type != this_eol_type)
4176 {
4177 /* The found type is different from what found before. */
4178 eol_type = CODING_EOL_INCONSISTENT;
4179 break;
4180 }
4181 }
4182 }
4183
4184 if (*skip == 0)
4185 *skip = src_end - source;
4186 return eol_type;
4187 }
4188
4189 /* Like detect_eol_type, but detect EOL type in 2-octet
4190 big-endian/little-endian format for coding systems utf-16-be and
4191 utf-16-le. */
4192
4193 static int
4194 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4195 unsigned char *source;
4196 int src_bytes, *skip, big_endian_p;
4197 {
4198 unsigned char *src = source, *src_end = src + src_bytes;
4199 unsigned int c1, c2;
4200 int total = 0; /* How many end-of-lines are found so far. */
4201 int eol_type = CODING_EOL_UNDECIDED;
4202 int this_eol_type;
4203 int msb, lsb;
4204
4205 if (big_endian_p)
4206 msb = 0, lsb = 1;
4207 else
4208 msb = 1, lsb = 0;
4209
4210 *skip = 0;
4211
4212 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4213 {
4214 c1 = (src[msb] << 8) | (src[lsb]);
4215 src += 2;
4216
4217 if (c1 == '\n' || c1 == '\r')
4218 {
4219 if (*skip == 0)
4220 *skip = src - 2 - source;
4221 total++;
4222 if (c1 == '\n')
4223 {
4224 this_eol_type = CODING_EOL_LF;
4225 }
4226 else
4227 {
4228 if ((src + 1) >= src_end)
4229 {
4230 this_eol_type = CODING_EOL_CR;
4231 }
4232 else
4233 {
4234 c2 = (src[msb] << 8) | (src[lsb]);
4235 if (c2 == '\n')
4236 this_eol_type = CODING_EOL_CRLF, src += 2;
4237 else
4238 this_eol_type = CODING_EOL_CR;
4239 }
4240 }
4241
4242 if (eol_type == CODING_EOL_UNDECIDED)
4243 /* This is the first end-of-line. */
4244 eol_type = this_eol_type;
4245 else if (eol_type != this_eol_type)
4246 {
4247 /* The found type is different from what found before. */
4248 eol_type = CODING_EOL_INCONSISTENT;
4249 break;
4250 }
4251 }
4252 }
4253
4254 if (*skip == 0)
4255 *skip = src_end - source;
4256 return eol_type;
4257 }
4258
4259 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4260 is encoded. If it detects an appropriate format of end-of-line, it
4261 sets the information in *CODING. */
4262
4263 void
4264 detect_eol (coding, src, src_bytes)
4265 struct coding_system *coding;
4266 unsigned char *src;
4267 int src_bytes;
4268 {
4269 Lisp_Object val;
4270 int skip;
4271 int eol_type;
4272
4273 switch (coding->category_idx)
4274 {
4275 case CODING_CATEGORY_IDX_UTF_16_BE:
4276 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4277 break;
4278 case CODING_CATEGORY_IDX_UTF_16_LE:
4279 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4280 break;
4281 default:
4282 eol_type = detect_eol_type (src, src_bytes, &skip);
4283 break;
4284 }
4285
4286 if (coding->heading_ascii > skip)
4287 coding->heading_ascii = skip;
4288 else
4289 skip = coding->heading_ascii;
4290
4291 if (eol_type == CODING_EOL_UNDECIDED)
4292 return;
4293 if (eol_type == CODING_EOL_INCONSISTENT)
4294 {
4295 #if 0
4296 /* This code is suppressed until we find a better way to
4297 distinguish raw text file and binary file. */
4298
4299 /* If we have already detected that the coding is raw-text, the
4300 coding should actually be no-conversion. */
4301 if (coding->type == coding_type_raw_text)
4302 {
4303 setup_coding_system (Qno_conversion, coding);
4304 return;
4305 }
4306 /* Else, let's decode only text code anyway. */
4307 #endif /* 0 */
4308 eol_type = CODING_EOL_LF;
4309 }
4310
4311 val = Fget (coding->symbol, Qeol_type);
4312 if (VECTORP (val) && XVECTOR (val)->size == 3)
4313 {
4314 int src_multibyte = coding->src_multibyte;
4315 int dst_multibyte = coding->dst_multibyte;
4316
4317 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4318 coding->src_multibyte = src_multibyte;
4319 coding->dst_multibyte = dst_multibyte;
4320 coding->heading_ascii = skip;
4321 }
4322 }
4323
4324 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4325
4326 #define DECODING_BUFFER_MAG(coding) \
4327 (coding->type == coding_type_iso2022 \
4328 ? 3 \
4329 : (coding->type == coding_type_ccl \
4330 ? coding->spec.ccl.decoder.buf_magnification \
4331 : 2))
4332
4333 /* Return maximum size (bytes) of a buffer enough for decoding
4334 SRC_BYTES of text encoded in CODING. */
4335
4336 int
4337 decoding_buffer_size (coding, src_bytes)
4338 struct coding_system *coding;
4339 int src_bytes;
4340 {
4341 return (src_bytes * DECODING_BUFFER_MAG (coding)
4342 + CONVERSION_BUFFER_EXTRA_ROOM);
4343 }
4344
4345 /* Return maximum size (bytes) of a buffer enough for encoding
4346 SRC_BYTES of text to CODING. */
4347
4348 int
4349 encoding_buffer_size (coding, src_bytes)
4350 struct coding_system *coding;
4351 int src_bytes;
4352 {
4353 int magnification;
4354
4355 if (coding->type == coding_type_ccl)
4356 magnification = coding->spec.ccl.encoder.buf_magnification;
4357 else if (CODING_REQUIRE_ENCODING (coding))
4358 magnification = 3;
4359 else
4360 magnification = 1;
4361
4362 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4363 }
4364
4365 /* Working buffer for code conversion. */
4366 struct conversion_buffer
4367 {
4368 int size; /* size of data. */
4369 int on_stack; /* 1 if allocated by alloca. */
4370 unsigned char *data;
4371 };
4372
4373 /* Don't use alloca for allocating memory space larger than this, lest
4374 we overflow their stack. */
4375 #define MAX_ALLOCA 16*1024
4376
4377 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4378 #define allocate_conversion_buffer(buf, len) \
4379 do { \
4380 if (len < MAX_ALLOCA) \
4381 { \
4382 buf.data = (unsigned char *) alloca (len); \
4383 buf.on_stack = 1; \
4384 } \
4385 else \
4386 { \
4387 buf.data = (unsigned char *) xmalloc (len); \
4388 buf.on_stack = 0; \
4389 } \
4390 buf.size = len; \
4391 } while (0)
4392
4393 /* Double the allocated memory for *BUF. */
4394 static void
4395 extend_conversion_buffer (buf)
4396 struct conversion_buffer *buf;
4397 {
4398 if (buf->on_stack)
4399 {
4400 unsigned char *save = buf->data;
4401 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4402 bcopy (save, buf->data, buf->size);
4403 buf->on_stack = 0;
4404 }
4405 else
4406 {
4407 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4408 }
4409 buf->size *= 2;
4410 }
4411
4412 /* Free the allocated memory for BUF if it is not on stack. */
4413 static void
4414 free_conversion_buffer (buf)
4415 struct conversion_buffer *buf;
4416 {
4417 if (!buf->on_stack)
4418 xfree (buf->data);
4419 }
4420
4421 int
4422 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4423 struct coding_system *coding;
4424 unsigned char *source, *destination;
4425 int src_bytes, dst_bytes, encodep;
4426 {
4427 struct ccl_program *ccl
4428 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4429 unsigned char *dst = destination;
4430
4431 ccl->suppress_error = coding->suppress_error;
4432 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4433 if (encodep)
4434 {
4435 /* On encoding, EOL format is converted within ccl_driver. For
4436 that, setup proper information in the structure CCL. */
4437 ccl->eol_type = coding->eol_type;
4438 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4439 ccl->eol_type = CODING_EOL_LF;
4440 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4441 }
4442 ccl->multibyte = coding->src_multibyte;
4443 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4444 {
4445 /* Move carryover bytes to DESTINATION. */
4446 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4447 while (*p)
4448 *dst++ = *p++;
4449 coding->spec.ccl.eight_bit_carryover[0] = 0;
4450 if (dst_bytes)
4451 dst_bytes -= dst - destination;
4452 }
4453
4454 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4455 &(coding->consumed))
4456 + dst - destination);
4457
4458 if (encodep)
4459 {
4460 coding->produced_char = coding->produced;
4461 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4462 }
4463 else if (!ccl->eight_bit_control)
4464 {
4465 /* The produced bytes forms a valid multibyte sequence. */
4466 coding->produced_char
4467 = multibyte_chars_in_text (destination, coding->produced);
4468 coding->spec.ccl.eight_bit_carryover[0] = 0;
4469 }
4470 else
4471 {
4472 /* On decoding, the destination should always multibyte. But,
4473 CCL program might have been generated an invalid multibyte
4474 sequence. Here we make such a sequence valid as
4475 multibyte. */
4476 int bytes
4477 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4478
4479 if ((coding->consumed < src_bytes
4480 || !ccl->last_block)
4481 && coding->produced >= 1
4482 && destination[coding->produced - 1] >= 0x80)
4483 {
4484 /* We should not convert the tailing 8-bit codes to
4485 multibyte form even if they doesn't form a valid
4486 multibyte sequence. They may form a valid sequence in
4487 the next call. */
4488 int carryover = 0;
4489
4490 if (destination[coding->produced - 1] < 0xA0)
4491 carryover = 1;
4492 else if (coding->produced >= 2)
4493 {
4494 if (destination[coding->produced - 2] >= 0x80)
4495 {
4496 if (destination[coding->produced - 2] < 0xA0)
4497 carryover = 2;
4498 else if (coding->produced >= 3
4499 && destination[coding->produced - 3] >= 0x80
4500 && destination[coding->produced - 3] < 0xA0)
4501 carryover = 3;
4502 }
4503 }
4504 if (carryover > 0)
4505 {
4506 BCOPY_SHORT (destination + coding->produced - carryover,
4507 coding->spec.ccl.eight_bit_carryover,
4508 carryover);
4509 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4510 coding->produced -= carryover;
4511 }
4512 }
4513 coding->produced = str_as_multibyte (destination, bytes,
4514 coding->produced,
4515 &(coding->produced_char));
4516 }
4517
4518 switch (ccl->status)
4519 {
4520 case CCL_STAT_SUSPEND_BY_SRC:
4521 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4522 break;
4523 case CCL_STAT_SUSPEND_BY_DST:
4524 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4525 break;
4526 case CCL_STAT_QUIT:
4527 case CCL_STAT_INVALID_CMD:
4528 coding->result = CODING_FINISH_INTERRUPT;
4529 break;
4530 default:
4531 coding->result = CODING_FINISH_NORMAL;
4532 break;
4533 }
4534 return coding->result;
4535 }
4536
4537 /* Decode EOL format of the text at PTR of BYTES length destructively
4538 according to CODING->eol_type. This is called after the CCL
4539 program produced a decoded text at PTR. If we do CRLF->LF
4540 conversion, update CODING->produced and CODING->produced_char. */
4541
4542 static void
4543 decode_eol_post_ccl (coding, ptr, bytes)
4544 struct coding_system *coding;
4545 unsigned char *ptr;
4546 int bytes;
4547 {
4548 Lisp_Object val, saved_coding_symbol;
4549 unsigned char *pend = ptr + bytes;
4550 int dummy;
4551
4552 /* Remember the current coding system symbol. We set it back when
4553 an inconsistent EOL is found so that `last-coding-system-used' is
4554 set to the coding system that doesn't specify EOL conversion. */
4555 saved_coding_symbol = coding->symbol;
4556
4557 coding->spec.ccl.cr_carryover = 0;
4558 if (coding->eol_type == CODING_EOL_UNDECIDED)
4559 {
4560 /* Here, to avoid the call of setup_coding_system, we directly
4561 call detect_eol_type. */
4562 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4563 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4564 coding->eol_type = CODING_EOL_LF;
4565 if (coding->eol_type != CODING_EOL_UNDECIDED)
4566 {
4567 val = Fget (coding->symbol, Qeol_type);
4568 if (VECTORP (val) && XVECTOR (val)->size == 3)
4569 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4570 }
4571 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4572 }
4573
4574 if (coding->eol_type == CODING_EOL_LF
4575 || coding->eol_type == CODING_EOL_UNDECIDED)
4576 {
4577 /* We have nothing to do. */
4578 ptr = pend;
4579 }
4580 else if (coding->eol_type == CODING_EOL_CRLF)
4581 {
4582 unsigned char *pstart = ptr, *p = ptr;
4583
4584 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4585 && *(pend - 1) == '\r')
4586 {
4587 /* If the last character is CR, we can't handle it here
4588 because LF will be in the not-yet-decoded source text.
4589 Recorded that the CR is not yet processed. */
4590 coding->spec.ccl.cr_carryover = 1;
4591 coding->produced--;
4592 coding->produced_char--;
4593 pend--;
4594 }
4595 while (ptr < pend)
4596 {
4597 if (*ptr == '\r')
4598 {
4599 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4600 {
4601 *p++ = '\n';
4602 ptr += 2;
4603 }
4604 else
4605 {
4606 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4607 goto undo_eol_conversion;
4608 *p++ = *ptr++;
4609 }
4610 }
4611 else if (*ptr == '\n'
4612 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4613 goto undo_eol_conversion;
4614 else
4615 *p++ = *ptr++;
4616 continue;
4617
4618 undo_eol_conversion:
4619 /* We have faced with inconsistent EOL format at PTR.
4620 Convert all LFs before PTR back to CRLFs. */
4621 for (p--, ptr--; p >= pstart; p--)
4622 {
4623 if (*p == '\n')
4624 *ptr-- = '\n', *ptr-- = '\r';
4625 else
4626 *ptr-- = *p;
4627 }
4628 /* If carryover is recorded, cancel it because we don't
4629 convert CRLF anymore. */
4630 if (coding->spec.ccl.cr_carryover)
4631 {
4632 coding->spec.ccl.cr_carryover = 0;
4633 coding->produced++;
4634 coding->produced_char++;
4635 pend++;
4636 }
4637 p = ptr = pend;
4638 coding->eol_type = CODING_EOL_LF;
4639 coding->symbol = saved_coding_symbol;
4640 }
4641 if (p < pend)
4642 {
4643 /* As each two-byte sequence CRLF was converted to LF, (PEND
4644 - P) is the number of deleted characters. */
4645 coding->produced -= pend - p;
4646 coding->produced_char -= pend - p;
4647 }
4648 }
4649 else /* i.e. coding->eol_type == CODING_EOL_CR */
4650 {
4651 unsigned char *p = ptr;
4652
4653 for (; ptr < pend; ptr++)
4654 {
4655 if (*ptr == '\r')
4656 *ptr = '\n';
4657 else if (*ptr == '\n'
4658 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4659 {
4660 for (; p < ptr; p++)
4661 {
4662 if (*p == '\n')
4663 *p = '\r';
4664 }
4665 ptr = pend;
4666 coding->eol_type = CODING_EOL_LF;
4667 coding->symbol = saved_coding_symbol;
4668 }
4669 }
4670 }
4671 }
4672
4673 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4674 decoding, it may detect coding system and format of end-of-line if
4675 those are not yet decided. The source should be unibyte, the
4676 result is multibyte if CODING->dst_multibyte is nonzero, else
4677 unibyte. */
4678
4679 int
4680 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4681 struct coding_system *coding;
4682 unsigned char *source, *destination;
4683 int src_bytes, dst_bytes;
4684 {
4685 if (coding->type == coding_type_undecided)
4686 detect_coding (coding, source, src_bytes);
4687
4688 if (coding->eol_type == CODING_EOL_UNDECIDED
4689 && coding->type != coding_type_ccl)
4690 {
4691 detect_eol (coding, source, src_bytes);
4692 /* We had better recover the original eol format if we
4693 encounter an inconsistent eol format while decoding. */
4694 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4695 }
4696
4697 coding->produced = coding->produced_char = 0;
4698 coding->consumed = coding->consumed_char = 0;
4699 coding->errors = 0;
4700 coding->result = CODING_FINISH_NORMAL;
4701
4702 switch (coding->type)
4703 {
4704 case coding_type_sjis:
4705 decode_coding_sjis_big5 (coding, source, destination,
4706 src_bytes, dst_bytes, 1);
4707 break;
4708
4709 case coding_type_iso2022:
4710 decode_coding_iso2022 (coding, source, destination,
4711 src_bytes, dst_bytes);
4712 break;
4713
4714 case coding_type_big5:
4715 decode_coding_sjis_big5 (coding, source, destination,
4716 src_bytes, dst_bytes, 0);
4717 break;
4718
4719 case coding_type_emacs_mule:
4720 decode_coding_emacs_mule (coding, source, destination,
4721 src_bytes, dst_bytes);
4722 break;
4723
4724 case coding_type_ccl:
4725 if (coding->spec.ccl.cr_carryover)
4726 {
4727 /* Set the CR which is not processed by the previous call of
4728 decode_eol_post_ccl in DESTINATION. */
4729 *destination = '\r';
4730 coding->produced++;
4731 coding->produced_char++;
4732 dst_bytes--;
4733 }
4734 ccl_coding_driver (coding, source,
4735 destination + coding->spec.ccl.cr_carryover,
4736 src_bytes, dst_bytes, 0);
4737 if (coding->eol_type != CODING_EOL_LF)
4738 decode_eol_post_ccl (coding, destination, coding->produced);
4739 break;
4740
4741 default:
4742 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4743 }
4744
4745 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4746 && coding->mode & CODING_MODE_LAST_BLOCK
4747 && coding->consumed == src_bytes)
4748 coding->result = CODING_FINISH_NORMAL;
4749
4750 if (coding->mode & CODING_MODE_LAST_BLOCK
4751 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4752 {
4753 unsigned char *src = source + coding->consumed;
4754 unsigned char *dst = destination + coding->produced;
4755
4756 src_bytes -= coding->consumed;
4757 coding->errors++;
4758 if (COMPOSING_P (coding))
4759 DECODE_COMPOSITION_END ('1');
4760 while (src_bytes--)
4761 {
4762 int c = *src++;
4763 dst += CHAR_STRING (c, dst);
4764 coding->produced_char++;
4765 }
4766 coding->consumed = coding->consumed_char = src - source;
4767 coding->produced = dst - destination;
4768 coding->result = CODING_FINISH_NORMAL;
4769 }
4770
4771 if (!coding->dst_multibyte)
4772 {
4773 coding->produced = str_as_unibyte (destination, coding->produced);
4774 coding->produced_char = coding->produced;
4775 }
4776
4777 return coding->result;
4778 }
4779
4780 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4781 multibyteness of the source is CODING->src_multibyte, the
4782 multibyteness of the result is always unibyte. */
4783
4784 int
4785 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4786 struct coding_system *coding;
4787 unsigned char *source, *destination;
4788 int src_bytes, dst_bytes;
4789 {
4790 coding->produced = coding->produced_char = 0;
4791 coding->consumed = coding->consumed_char = 0;
4792 coding->errors = 0;
4793 coding->result = CODING_FINISH_NORMAL;
4794
4795 switch (coding->type)
4796 {
4797 case coding_type_sjis:
4798 encode_coding_sjis_big5 (coding, source, destination,
4799 src_bytes, dst_bytes, 1);
4800 break;
4801
4802 case coding_type_iso2022:
4803 encode_coding_iso2022 (coding, source, destination,
4804 src_bytes, dst_bytes);
4805 break;
4806
4807 case coding_type_big5:
4808 encode_coding_sjis_big5 (coding, source, destination,
4809 src_bytes, dst_bytes, 0);
4810 break;
4811
4812 case coding_type_emacs_mule:
4813 encode_coding_emacs_mule (coding, source, destination,
4814 src_bytes, dst_bytes);
4815 break;
4816
4817 case coding_type_ccl:
4818 ccl_coding_driver (coding, source, destination,
4819 src_bytes, dst_bytes, 1);
4820 break;
4821
4822 default:
4823 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4824 }
4825
4826 if (coding->mode & CODING_MODE_LAST_BLOCK
4827 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4828 {
4829 unsigned char *src = source + coding->consumed;
4830 unsigned char *src_end = src + src_bytes;
4831 unsigned char *dst = destination + coding->produced;
4832
4833 if (coding->type == coding_type_iso2022)
4834 ENCODE_RESET_PLANE_AND_REGISTER;
4835 if (COMPOSING_P (coding))
4836 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4837 if (coding->consumed < src_bytes)
4838 {
4839 int len = src_bytes - coding->consumed;
4840
4841 BCOPY_SHORT (source + coding->consumed, dst, len);
4842 if (coding->src_multibyte)
4843 len = str_as_unibyte (dst, len);
4844 dst += len;
4845 coding->consumed = src_bytes;
4846 }
4847 coding->produced = coding->produced_char = dst - destination;
4848 coding->result = CODING_FINISH_NORMAL;
4849 }
4850
4851 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4852 && coding->consumed == src_bytes)
4853 coding->result = CODING_FINISH_NORMAL;
4854
4855 return coding->result;
4856 }
4857
4858 /* Scan text in the region between *BEG and *END (byte positions),
4859 skip characters which we don't have to decode by coding system
4860 CODING at the head and tail, then set *BEG and *END to the region
4861 of the text we actually have to convert. The caller should move
4862 the gap out of the region in advance if the region is from a
4863 buffer.
4864
4865 If STR is not NULL, *BEG and *END are indices into STR. */
4866
4867 static void
4868 shrink_decoding_region (beg, end, coding, str)
4869 int *beg, *end;
4870 struct coding_system *coding;
4871 unsigned char *str;
4872 {
4873 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4874 int eol_conversion;
4875 Lisp_Object translation_table;
4876
4877 if (coding->type == coding_type_ccl
4878 || coding->type == coding_type_undecided
4879 || coding->eol_type != CODING_EOL_LF
4880 || !NILP (coding->post_read_conversion)
4881 || coding->composing != COMPOSITION_DISABLED)
4882 {
4883 /* We can't skip any data. */
4884 return;
4885 }
4886 if (coding->type == coding_type_no_conversion
4887 || coding->type == coding_type_raw_text
4888 || coding->type == coding_type_emacs_mule)
4889 {
4890 /* We need no conversion, but don't have to skip any data here.
4891 Decoding routine handles them effectively anyway. */
4892 return;
4893 }
4894
4895 translation_table = coding->translation_table_for_decode;
4896 if (NILP (translation_table) && !NILP (Venable_character_translation))
4897 translation_table = Vstandard_translation_table_for_decode;
4898 if (CHAR_TABLE_P (translation_table))
4899 {
4900 int i;
4901 for (i = 0; i < 128; i++)
4902 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4903 break;
4904 if (i < 128)
4905 /* Some ASCII character should be translated. We give up
4906 shrinking. */
4907 return;
4908 }
4909
4910 if (coding->heading_ascii >= 0)
4911 /* Detection routine has already found how much we can skip at the
4912 head. */
4913 *beg += coding->heading_ascii;
4914
4915 if (str)
4916 {
4917 begp_orig = begp = str + *beg;
4918 endp_orig = endp = str + *end;
4919 }
4920 else
4921 {
4922 begp_orig = begp = BYTE_POS_ADDR (*beg);
4923 endp_orig = endp = begp + *end - *beg;
4924 }
4925
4926 eol_conversion = (coding->eol_type == CODING_EOL_CR
4927 || coding->eol_type == CODING_EOL_CRLF);
4928
4929 switch (coding->type)
4930 {
4931 case coding_type_sjis:
4932 case coding_type_big5:
4933 /* We can skip all ASCII characters at the head. */
4934 if (coding->heading_ascii < 0)
4935 {
4936 if (eol_conversion)
4937 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4938 else
4939 while (begp < endp && *begp < 0x80) begp++;
4940 }
4941 /* We can skip all ASCII characters at the tail except for the
4942 second byte of SJIS or BIG5 code. */
4943 if (eol_conversion)
4944 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4945 else
4946 while (begp < endp && endp[-1] < 0x80) endp--;
4947 /* Do not consider LF as ascii if preceded by CR, since that
4948 confuses eol decoding. */
4949 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4950 endp++;
4951 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4952 endp++;
4953 break;
4954
4955 case coding_type_iso2022:
4956 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4957 /* We can't skip any data. */
4958 break;
4959 if (coding->heading_ascii < 0)
4960 {
4961 /* We can skip all ASCII characters at the head except for a
4962 few control codes. */
4963 while (begp < endp && (c = *begp) < 0x80
4964 && c != ISO_CODE_CR && c != ISO_CODE_SO
4965 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4966 && (!eol_conversion || c != ISO_CODE_LF))
4967 begp++;
4968 }
4969 switch (coding->category_idx)
4970 {
4971 case CODING_CATEGORY_IDX_ISO_8_1:
4972 case CODING_CATEGORY_IDX_ISO_8_2:
4973 /* We can skip all ASCII characters at the tail. */
4974 if (eol_conversion)
4975 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4976 else
4977 while (begp < endp && endp[-1] < 0x80) endp--;
4978 /* Do not consider LF as ascii if preceded by CR, since that
4979 confuses eol decoding. */
4980 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4981 endp++;
4982 break;
4983
4984 case CODING_CATEGORY_IDX_ISO_7:
4985 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4986 {
4987 /* We can skip all characters at the tail except for 8-bit
4988 codes and ESC and the following 2-byte at the tail. */
4989 unsigned char *eight_bit = NULL;
4990
4991 if (eol_conversion)
4992 while (begp < endp
4993 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4994 {
4995 if (!eight_bit && c & 0x80) eight_bit = endp;
4996 endp--;
4997 }
4998 else
4999 while (begp < endp
5000 && (c = endp[-1]) != ISO_CODE_ESC)
5001 {
5002 if (!eight_bit && c & 0x80) eight_bit = endp;
5003 endp--;
5004 }
5005 /* Do not consider LF as ascii if preceded by CR, since that
5006 confuses eol decoding. */
5007 if (begp < endp && endp < endp_orig
5008 && endp[-1] == '\r' && endp[0] == '\n')
5009 endp++;
5010 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5011 {
5012 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5013 /* This is an ASCII designation sequence. We can
5014 surely skip the tail. But, if we have
5015 encountered an 8-bit code, skip only the codes
5016 after that. */
5017 endp = eight_bit ? eight_bit : endp + 2;
5018 else
5019 /* Hmmm, we can't skip the tail. */
5020 endp = endp_orig;
5021 }
5022 else if (eight_bit)
5023 endp = eight_bit;
5024 }
5025 }
5026 break;
5027
5028 default:
5029 abort ();
5030 }
5031 *beg += begp - begp_orig;
5032 *end += endp - endp_orig;
5033 return;
5034 }
5035
5036 /* Like shrink_decoding_region but for encoding. */
5037
5038 static void
5039 shrink_encoding_region (beg, end, coding, str)
5040 int *beg, *end;
5041 struct coding_system *coding;
5042 unsigned char *str;
5043 {
5044 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5045 int eol_conversion;
5046 Lisp_Object translation_table;
5047
5048 if (coding->type == coding_type_ccl
5049 || coding->eol_type == CODING_EOL_CRLF
5050 || coding->eol_type == CODING_EOL_CR
5051 || coding->cmp_data && coding->cmp_data->used > 0)
5052 {
5053 /* We can't skip any data. */
5054 return;
5055 }
5056 if (coding->type == coding_type_no_conversion
5057 || coding->type == coding_type_raw_text
5058 || coding->type == coding_type_emacs_mule
5059 || coding->type == coding_type_undecided)
5060 {
5061 /* We need no conversion, but don't have to skip any data here.
5062 Encoding routine handles them effectively anyway. */
5063 return;
5064 }
5065
5066 translation_table = coding->translation_table_for_encode;
5067 if (NILP (translation_table) && !NILP (Venable_character_translation))
5068 translation_table = Vstandard_translation_table_for_encode;
5069 if (CHAR_TABLE_P (translation_table))
5070 {
5071 int i;
5072 for (i = 0; i < 128; i++)
5073 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5074 break;
5075 if (i < 128)
5076 /* Some ASCII character should be translated. We give up
5077 shrinking. */
5078 return;
5079 }
5080
5081 if (str)
5082 {
5083 begp_orig = begp = str + *beg;
5084 endp_orig = endp = str + *end;
5085 }
5086 else
5087 {
5088 begp_orig = begp = BYTE_POS_ADDR (*beg);
5089 endp_orig = endp = begp + *end - *beg;
5090 }
5091
5092 eol_conversion = (coding->eol_type == CODING_EOL_CR
5093 || coding->eol_type == CODING_EOL_CRLF);
5094
5095 /* Here, we don't have to check coding->pre_write_conversion because
5096 the caller is expected to have handled it already. */
5097 switch (coding->type)
5098 {
5099 case coding_type_iso2022:
5100 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5101 /* We can't skip any data. */
5102 break;
5103 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5104 {
5105 unsigned char *bol = begp;
5106 while (begp < endp && *begp < 0x80)
5107 {
5108 begp++;
5109 if (begp[-1] == '\n')
5110 bol = begp;
5111 }
5112 begp = bol;
5113 goto label_skip_tail;
5114 }
5115 /* fall down ... */
5116
5117 case coding_type_sjis:
5118 case coding_type_big5:
5119 /* We can skip all ASCII characters at the head and tail. */
5120 if (eol_conversion)
5121 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5122 else
5123 while (begp < endp && *begp < 0x80) begp++;
5124 label_skip_tail:
5125 if (eol_conversion)
5126 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5127 else
5128 while (begp < endp && *(endp - 1) < 0x80) endp--;
5129 break;
5130
5131 default:
5132 abort ();
5133 }
5134
5135 *beg += begp - begp_orig;
5136 *end += endp - endp_orig;
5137 return;
5138 }
5139
5140 /* As shrinking conversion region requires some overhead, we don't try
5141 shrinking if the length of conversion region is less than this
5142 value. */
5143 static int shrink_conversion_region_threshhold = 1024;
5144
5145 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5146 do { \
5147 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5148 { \
5149 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5150 else shrink_decoding_region (beg, end, coding, str); \
5151 } \
5152 } while (0)
5153
5154 static Lisp_Object
5155 code_convert_region_unwind (dummy)
5156 Lisp_Object dummy;
5157 {
5158 inhibit_pre_post_conversion = 0;
5159 return Qnil;
5160 }
5161
5162 /* Store information about all compositions in the range FROM and TO
5163 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5164 buffer or a string, defaults to the current buffer. */
5165
5166 void
5167 coding_save_composition (coding, from, to, obj)
5168 struct coding_system *coding;
5169 int from, to;
5170 Lisp_Object obj;
5171 {
5172 Lisp_Object prop;
5173 int start, end;
5174
5175 if (coding->composing == COMPOSITION_DISABLED)
5176 return;
5177 if (!coding->cmp_data)
5178 coding_allocate_composition_data (coding, from);
5179 if (!find_composition (from, to, &start, &end, &prop, obj)
5180 || end > to)
5181 return;
5182 if (start < from
5183 && (!find_composition (end, to, &start, &end, &prop, obj)
5184 || end > to))
5185 return;
5186 coding->composing = COMPOSITION_NO;
5187 do
5188 {
5189 if (COMPOSITION_VALID_P (start, end, prop))
5190 {
5191 enum composition_method method = COMPOSITION_METHOD (prop);
5192 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5193 >= COMPOSITION_DATA_SIZE)
5194 coding_allocate_composition_data (coding, from);
5195 /* For relative composition, we remember start and end
5196 positions, for the other compositions, we also remember
5197 components. */
5198 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5199 if (method != COMPOSITION_RELATIVE)
5200 {
5201 /* We must store a*/
5202 Lisp_Object val, ch;
5203
5204 val = COMPOSITION_COMPONENTS (prop);
5205 if (CONSP (val))
5206 while (CONSP (val))
5207 {
5208 ch = XCAR (val), val = XCDR (val);
5209 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5210 }
5211 else if (VECTORP (val) || STRINGP (val))
5212 {
5213 int len = (VECTORP (val)
5214 ? XVECTOR (val)->size : XSTRING (val)->size);
5215 int i;
5216 for (i = 0; i < len; i++)
5217 {
5218 ch = (STRINGP (val)
5219 ? Faref (val, make_number (i))
5220 : XVECTOR (val)->contents[i]);
5221 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5222 }
5223 }
5224 else /* INTEGERP (val) */
5225 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5226 }
5227 CODING_ADD_COMPOSITION_END (coding, end - from);
5228 }
5229 start = end;
5230 }
5231 while (start < to
5232 && find_composition (start, to, &start, &end, &prop, obj)
5233 && end <= to);
5234
5235 /* Make coding->cmp_data point to the first memory block. */
5236 while (coding->cmp_data->prev)
5237 coding->cmp_data = coding->cmp_data->prev;
5238 coding->cmp_data_start = 0;
5239 }
5240
5241 /* Reflect the saved information about compositions to OBJ.
5242 CODING->cmp_data points to a memory block for the information. OBJ
5243 is a buffer or a string, defaults to the current buffer. */
5244
5245 void
5246 coding_restore_composition (coding, obj)
5247 struct coding_system *coding;
5248 Lisp_Object obj;
5249 {
5250 struct composition_data *cmp_data = coding->cmp_data;
5251
5252 if (!cmp_data)
5253 return;
5254
5255 while (cmp_data->prev)
5256 cmp_data = cmp_data->prev;
5257
5258 while (cmp_data)
5259 {
5260 int i;
5261
5262 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5263 i += cmp_data->data[i])
5264 {
5265 int *data = cmp_data->data + i;
5266 enum composition_method method = (enum composition_method) data[3];
5267 Lisp_Object components;
5268
5269 if (method == COMPOSITION_RELATIVE)
5270 components = Qnil;
5271 else
5272 {
5273 int len = data[0] - 4, j;
5274 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5275
5276 for (j = 0; j < len; j++)
5277 args[j] = make_number (data[4 + j]);
5278 components = (method == COMPOSITION_WITH_ALTCHARS
5279 ? Fstring (len, args) : Fvector (len, args));
5280 }
5281 compose_text (data[1], data[2], components, Qnil, obj);
5282 }
5283 cmp_data = cmp_data->next;
5284 }
5285 }
5286
5287 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5288 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5289 coding system CODING, and return the status code of code conversion
5290 (currently, this value has no meaning).
5291
5292 How many characters (and bytes) are converted to how many
5293 characters (and bytes) are recorded in members of the structure
5294 CODING.
5295
5296 If REPLACE is nonzero, we do various things as if the original text
5297 is deleted and a new text is inserted. See the comments in
5298 replace_range (insdel.c) to know what we are doing.
5299
5300 If REPLACE is zero, it is assumed that the source text is unibyte.
5301 Otherwise, it is assumed that the source text is multibyte. */
5302
5303 int
5304 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5305 int from, from_byte, to, to_byte, encodep, replace;
5306 struct coding_system *coding;
5307 {
5308 int len = to - from, len_byte = to_byte - from_byte;
5309 int require, inserted, inserted_byte;
5310 int head_skip, tail_skip, total_skip = 0;
5311 Lisp_Object saved_coding_symbol;
5312 int first = 1;
5313 unsigned char *src, *dst;
5314 Lisp_Object deletion;
5315 int orig_point = PT, orig_len = len;
5316 int prev_Z;
5317 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5318
5319 deletion = Qnil;
5320 saved_coding_symbol = coding->symbol;
5321
5322 if (from < PT && PT < to)
5323 {
5324 TEMP_SET_PT_BOTH (from, from_byte);
5325 orig_point = from;
5326 }
5327
5328 if (replace)
5329 {
5330 int saved_from = from;
5331 int saved_inhibit_modification_hooks;
5332
5333 prepare_to_modify_buffer (from, to, &from);
5334 if (saved_from != from)
5335 {
5336 to = from + len;
5337 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5338 len_byte = to_byte - from_byte;
5339 }
5340
5341 /* The code conversion routine can not preserve text properties
5342 for now. So, we must remove all text properties in the
5343 region. Here, we must suppress all modification hooks. */
5344 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5345 inhibit_modification_hooks = 1;
5346 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5347 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5348 }
5349
5350 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5351 {
5352 /* We must detect encoding of text and eol format. */
5353
5354 if (from < GPT && to > GPT)
5355 move_gap_both (from, from_byte);
5356 if (coding->type == coding_type_undecided)
5357 {
5358 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5359 if (coding->type == coding_type_undecided)
5360 {
5361 /* It seems that the text contains only ASCII, but we
5362 should not leave it undecided because the deeper
5363 decoding routine (decode_coding) tries to detect the
5364 encodings again in vain. */
5365 coding->type = coding_type_emacs_mule;
5366 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5367 /* As emacs-mule decoder will handle composition, we
5368 need this setting to allocate coding->cmp_data
5369 later. */
5370 coding->composing = COMPOSITION_NO;
5371 }
5372 }
5373 if (coding->eol_type == CODING_EOL_UNDECIDED
5374 && coding->type != coding_type_ccl)
5375 {
5376 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5377 if (coding->eol_type == CODING_EOL_UNDECIDED)
5378 coding->eol_type = CODING_EOL_LF;
5379 /* We had better recover the original eol format if we
5380 encounter an inconsistent eol format while decoding. */
5381 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5382 }
5383 }
5384
5385 /* Now we convert the text. */
5386
5387 /* For encoding, we must process pre-write-conversion in advance. */
5388 if (! inhibit_pre_post_conversion
5389 && encodep
5390 && SYMBOLP (coding->pre_write_conversion)
5391 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5392 {
5393 /* The function in pre-write-conversion may put a new text in a
5394 new buffer. */
5395 struct buffer *prev = current_buffer;
5396 Lisp_Object new;
5397 int count = specpdl_ptr - specpdl;
5398
5399 record_unwind_protect (code_convert_region_unwind, Qnil);
5400 /* We should not call any more pre-write/post-read-conversion
5401 functions while this pre-write-conversion is running. */
5402 inhibit_pre_post_conversion = 1;
5403 call2 (coding->pre_write_conversion,
5404 make_number (from), make_number (to));
5405 inhibit_pre_post_conversion = 0;
5406 /* Discard the unwind protect. */
5407 specpdl_ptr--;
5408
5409 if (current_buffer != prev)
5410 {
5411 len = ZV - BEGV;
5412 new = Fcurrent_buffer ();
5413 set_buffer_internal_1 (prev);
5414 del_range_2 (from, from_byte, to, to_byte, 0);
5415 TEMP_SET_PT_BOTH (from, from_byte);
5416 insert_from_buffer (XBUFFER (new), 1, len, 0);
5417 Fkill_buffer (new);
5418 if (orig_point >= to)
5419 orig_point += len - orig_len;
5420 else if (orig_point > from)
5421 orig_point = from;
5422 orig_len = len;
5423 to = from + len;
5424 from_byte = CHAR_TO_BYTE (from);
5425 to_byte = CHAR_TO_BYTE (to);
5426 len_byte = to_byte - from_byte;
5427 TEMP_SET_PT_BOTH (from, from_byte);
5428 }
5429 }
5430
5431 if (replace)
5432 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5433
5434 if (coding->composing != COMPOSITION_DISABLED)
5435 {
5436 if (encodep)
5437 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5438 else
5439 coding_allocate_composition_data (coding, from);
5440 }
5441
5442 /* Try to skip the heading and tailing ASCIIs. */
5443 if (coding->type != coding_type_ccl)
5444 {
5445 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5446
5447 if (from < GPT && GPT < to)
5448 move_gap_both (from, from_byte);
5449 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5450 if (from_byte == to_byte
5451 && (encodep || NILP (coding->post_read_conversion))
5452 && ! CODING_REQUIRE_FLUSHING (coding))
5453 {
5454 coding->produced = len_byte;
5455 coding->produced_char = len;
5456 if (!replace)
5457 /* We must record and adjust for this new text now. */
5458 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5459 return 0;
5460 }
5461
5462 head_skip = from_byte - from_byte_orig;
5463 tail_skip = to_byte_orig - to_byte;
5464 total_skip = head_skip + tail_skip;
5465 from += head_skip;
5466 to -= tail_skip;
5467 len -= total_skip; len_byte -= total_skip;
5468 }
5469
5470 /* For conversion, we must put the gap before the text in addition to
5471 making the gap larger for efficient decoding. The required gap
5472 size starts from 2000 which is the magic number used in make_gap.
5473 But, after one batch of conversion, it will be incremented if we
5474 find that it is not enough . */
5475 require = 2000;
5476
5477 if (GAP_SIZE < require)
5478 make_gap (require - GAP_SIZE);
5479 move_gap_both (from, from_byte);
5480
5481 inserted = inserted_byte = 0;
5482
5483 GAP_SIZE += len_byte;
5484 ZV -= len;
5485 Z -= len;
5486 ZV_BYTE -= len_byte;
5487 Z_BYTE -= len_byte;
5488
5489 if (GPT - BEG < BEG_UNCHANGED)
5490 BEG_UNCHANGED = GPT - BEG;
5491 if (Z - GPT < END_UNCHANGED)
5492 END_UNCHANGED = Z - GPT;
5493
5494 if (!encodep && coding->src_multibyte)
5495 {
5496 /* Decoding routines expects that the source text is unibyte.
5497 We must convert 8-bit characters of multibyte form to
5498 unibyte. */
5499 int len_byte_orig = len_byte;
5500 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5501 if (len_byte < len_byte_orig)
5502 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5503 len_byte);
5504 coding->src_multibyte = 0;
5505 }
5506
5507 for (;;)
5508 {
5509 int result;
5510
5511 /* The buffer memory is now:
5512 +--------+converted-text+---------+-------original-text-------+---+
5513 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5514 |<---------------------- GAP ----------------------->| */
5515 src = GAP_END_ADDR - len_byte;
5516 dst = GPT_ADDR + inserted_byte;
5517
5518 if (encodep)
5519 result = encode_coding (coding, src, dst, len_byte, 0);
5520 else
5521 result = decode_coding (coding, src, dst, len_byte, 0);
5522
5523 /* The buffer memory is now:
5524 +--------+-------converted-text----+--+------original-text----+---+
5525 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5526 |<---------------------- GAP ----------------------->| */
5527
5528 inserted += coding->produced_char;
5529 inserted_byte += coding->produced;
5530 len_byte -= coding->consumed;
5531
5532 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5533 {
5534 coding_allocate_composition_data (coding, from + inserted);
5535 continue;
5536 }
5537
5538 src += coding->consumed;
5539 dst += coding->produced;
5540
5541 if (result == CODING_FINISH_NORMAL)
5542 {
5543 src += len_byte;
5544 break;
5545 }
5546 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5547 {
5548 unsigned char *pend = dst, *p = pend - inserted_byte;
5549 Lisp_Object eol_type;
5550
5551 /* Encode LFs back to the original eol format (CR or CRLF). */
5552 if (coding->eol_type == CODING_EOL_CR)
5553 {
5554 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5555 }
5556 else
5557 {
5558 int count = 0;
5559
5560 while (p < pend) if (*p++ == '\n') count++;
5561 if (src - dst < count)
5562 {
5563 /* We don't have sufficient room for encoding LFs
5564 back to CRLF. We must record converted and
5565 not-yet-converted text back to the buffer
5566 content, enlarge the gap, then record them out of
5567 the buffer contents again. */
5568 int add = len_byte + inserted_byte;
5569
5570 GAP_SIZE -= add;
5571 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5572 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5573 make_gap (count - GAP_SIZE);
5574 GAP_SIZE += add;
5575 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5576 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5577 /* Don't forget to update SRC, DST, and PEND. */
5578 src = GAP_END_ADDR - len_byte;
5579 dst = GPT_ADDR + inserted_byte;
5580 pend = dst;
5581 }
5582 inserted += count;
5583 inserted_byte += count;
5584 coding->produced += count;
5585 p = dst = pend + count;
5586 while (count)
5587 {
5588 *--p = *--pend;
5589 if (*p == '\n') count--, *--p = '\r';
5590 }
5591 }
5592
5593 /* Suppress eol-format conversion in the further conversion. */
5594 coding->eol_type = CODING_EOL_LF;
5595
5596 /* Set the coding system symbol to that for Unix-like EOL. */
5597 eol_type = Fget (saved_coding_symbol, Qeol_type);
5598 if (VECTORP (eol_type)
5599 && XVECTOR (eol_type)->size == 3
5600 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5601 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5602 else
5603 coding->symbol = saved_coding_symbol;
5604
5605 continue;
5606 }
5607 if (len_byte <= 0)
5608 {
5609 if (coding->type != coding_type_ccl
5610 || coding->mode & CODING_MODE_LAST_BLOCK)
5611 break;
5612 coding->mode |= CODING_MODE_LAST_BLOCK;
5613 continue;
5614 }
5615 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5616 {
5617 /* The source text ends in invalid codes. Let's just
5618 make them valid buffer contents, and finish conversion. */
5619 if (multibyte_p)
5620 {
5621 unsigned char *start = dst;
5622
5623 inserted += len_byte;
5624 while (len_byte--)
5625 {
5626 int c = *src++;
5627 dst += CHAR_STRING (c, dst);
5628 }
5629
5630 inserted_byte += dst - start;
5631 }
5632 else
5633 {
5634 inserted += len_byte;
5635 inserted_byte += len_byte;
5636 while (len_byte--)
5637 *dst++ = *src++;
5638 }
5639 break;
5640 }
5641 if (result == CODING_FINISH_INTERRUPT)
5642 {
5643 /* The conversion procedure was interrupted by a user. */
5644 break;
5645 }
5646 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5647 if (coding->consumed < 1)
5648 {
5649 /* It's quite strange to require more memory without
5650 consuming any bytes. Perhaps CCL program bug. */
5651 break;
5652 }
5653 if (first)
5654 {
5655 /* We have just done the first batch of conversion which was
5656 stopped because of insufficient gap. Let's reconsider the
5657 required gap size (i.e. SRT - DST) now.
5658
5659 We have converted ORIG bytes (== coding->consumed) into
5660 NEW bytes (coding->produced). To convert the remaining
5661 LEN bytes, we may need REQUIRE bytes of gap, where:
5662 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5663 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5664 Here, we are sure that NEW >= ORIG. */
5665 float ratio = coding->produced - coding->consumed;
5666 ratio /= coding->consumed;
5667 require = len_byte * ratio;
5668 first = 0;
5669 }
5670 if ((src - dst) < (require + 2000))
5671 {
5672 /* See the comment above the previous call of make_gap. */
5673 int add = len_byte + inserted_byte;
5674
5675 GAP_SIZE -= add;
5676 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5677 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5678 make_gap (require + 2000);
5679 GAP_SIZE += add;
5680 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5681 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5682 }
5683 }
5684 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5685
5686 if (encodep && coding->dst_multibyte)
5687 {
5688 /* The output is unibyte. We must convert 8-bit characters to
5689 multibyte form. */
5690 if (inserted_byte * 2 > GAP_SIZE)
5691 {
5692 GAP_SIZE -= inserted_byte;
5693 ZV += inserted_byte; Z += inserted_byte;
5694 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5695 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5696 make_gap (inserted_byte - GAP_SIZE);
5697 GAP_SIZE += inserted_byte;
5698 ZV -= inserted_byte; Z -= inserted_byte;
5699 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5700 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5701 }
5702 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5703 }
5704
5705 /* If we shrank the conversion area, adjust it now. */
5706 if (total_skip > 0)
5707 {
5708 if (tail_skip > 0)
5709 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5710 inserted += total_skip; inserted_byte += total_skip;
5711 GAP_SIZE += total_skip;
5712 GPT -= head_skip; GPT_BYTE -= head_skip;
5713 ZV -= total_skip; ZV_BYTE -= total_skip;
5714 Z -= total_skip; Z_BYTE -= total_skip;
5715 from -= head_skip; from_byte -= head_skip;
5716 to += tail_skip; to_byte += tail_skip;
5717 }
5718
5719 prev_Z = Z;
5720 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5721 inserted = Z - prev_Z;
5722
5723 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5724 coding_restore_composition (coding, Fcurrent_buffer ());
5725 coding_free_composition_data (coding);
5726
5727 if (! inhibit_pre_post_conversion
5728 && ! encodep && ! NILP (coding->post_read_conversion))
5729 {
5730 Lisp_Object val;
5731 int count = specpdl_ptr - specpdl;
5732
5733 if (from != PT)
5734 TEMP_SET_PT_BOTH (from, from_byte);
5735 prev_Z = Z;
5736 record_unwind_protect (code_convert_region_unwind, Qnil);
5737 /* We should not call any more pre-write/post-read-conversion
5738 functions while this post-read-conversion is running. */
5739 inhibit_pre_post_conversion = 1;
5740 val = call1 (coding->post_read_conversion, make_number (inserted));
5741 inhibit_pre_post_conversion = 0;
5742 /* Discard the unwind protect. */
5743 specpdl_ptr--;
5744 CHECK_NUMBER (val, 0);
5745 inserted += Z - prev_Z;
5746 }
5747
5748 if (orig_point >= from)
5749 {
5750 if (orig_point >= from + orig_len)
5751 orig_point += inserted - orig_len;
5752 else
5753 orig_point = from;
5754 TEMP_SET_PT (orig_point);
5755 }
5756
5757 if (replace)
5758 {
5759 signal_after_change (from, to - from, inserted);
5760 update_compositions (from, from + inserted, CHECK_BORDER);
5761 }
5762
5763 {
5764 coding->consumed = to_byte - from_byte;
5765 coding->consumed_char = to - from;
5766 coding->produced = inserted_byte;
5767 coding->produced_char = inserted;
5768 }
5769
5770 return 0;
5771 }
5772
5773 Lisp_Object
5774 run_pre_post_conversion_on_str (str, coding, encodep)
5775 Lisp_Object str;
5776 struct coding_system *coding;
5777 int encodep;
5778 {
5779 int count = specpdl_ptr - specpdl;
5780 struct gcpro gcpro1;
5781 int multibyte = STRING_MULTIBYTE (str);
5782
5783 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5784 record_unwind_protect (code_convert_region_unwind, Qnil);
5785 GCPRO1 (str);
5786 temp_output_buffer_setup (" *code-converting-work*");
5787 set_buffer_internal (XBUFFER (Vstandard_output));
5788 /* We must insert the contents of STR as is without
5789 unibyte<->multibyte conversion. For that, we adjust the
5790 multibyteness of the working buffer to that of STR. */
5791 Ferase_buffer ();
5792 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5793 insert_from_string (str, 0, 0,
5794 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5795 UNGCPRO;
5796 inhibit_pre_post_conversion = 1;
5797 if (encodep)
5798 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5799 else
5800 {
5801 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5802 call1 (coding->post_read_conversion, make_number (Z - BEG));
5803 }
5804 inhibit_pre_post_conversion = 0;
5805 str = make_buffer_string (BEG, Z, 1);
5806 return unbind_to (count, str);
5807 }
5808
5809 Lisp_Object
5810 decode_coding_string (str, coding, nocopy)
5811 Lisp_Object str;
5812 struct coding_system *coding;
5813 int nocopy;
5814 {
5815 int len;
5816 struct conversion_buffer buf;
5817 int from, to_byte;
5818 struct gcpro gcpro1;
5819 Lisp_Object saved_coding_symbol;
5820 int result;
5821 int require_decoding;
5822 int shrinked_bytes = 0;
5823 Lisp_Object newstr;
5824 int consumed, consumed_char, produced, produced_char;
5825
5826 from = 0;
5827 to_byte = STRING_BYTES (XSTRING (str));
5828
5829 saved_coding_symbol = coding->symbol;
5830 coding->src_multibyte = STRING_MULTIBYTE (str);
5831 coding->dst_multibyte = 1;
5832 if (CODING_REQUIRE_DETECTION (coding))
5833 {
5834 /* See the comments in code_convert_region. */
5835 if (coding->type == coding_type_undecided)
5836 {
5837 detect_coding (coding, XSTRING (str)->data, to_byte);
5838 if (coding->type == coding_type_undecided)
5839 {
5840 coding->type = coding_type_emacs_mule;
5841 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5842 /* As emacs-mule decoder will handle composition, we
5843 need this setting to allocate coding->cmp_data
5844 later. */
5845 coding->composing = COMPOSITION_NO;
5846 }
5847 }
5848 if (coding->eol_type == CODING_EOL_UNDECIDED
5849 && coding->type != coding_type_ccl)
5850 {
5851 saved_coding_symbol = coding->symbol;
5852 detect_eol (coding, XSTRING (str)->data, to_byte);
5853 if (coding->eol_type == CODING_EOL_UNDECIDED)
5854 coding->eol_type = CODING_EOL_LF;
5855 /* We had better recover the original eol format if we
5856 encounter an inconsistent eol format while decoding. */
5857 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5858 }
5859 }
5860
5861 if (coding->type == coding_type_no_conversion
5862 || coding->type == coding_type_raw_text)
5863 coding->dst_multibyte = 0;
5864
5865 require_decoding = CODING_REQUIRE_DECODING (coding);
5866
5867 if (STRING_MULTIBYTE (str))
5868 {
5869 /* Decoding routines expect the source text to be unibyte. */
5870 str = Fstring_as_unibyte (str);
5871 to_byte = STRING_BYTES (XSTRING (str));
5872 nocopy = 1;
5873 coding->src_multibyte = 0;
5874 }
5875
5876 /* Try to skip the heading and tailing ASCIIs. */
5877 if (require_decoding && coding->type != coding_type_ccl)
5878 {
5879 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5880 0);
5881 if (from == to_byte)
5882 require_decoding = 0;
5883 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5884 }
5885
5886 if (!require_decoding)
5887 {
5888 coding->consumed = STRING_BYTES (XSTRING (str));
5889 coding->consumed_char = XSTRING (str)->size;
5890 if (coding->dst_multibyte)
5891 {
5892 str = Fstring_as_multibyte (str);
5893 nocopy = 1;
5894 }
5895 coding->produced = STRING_BYTES (XSTRING (str));
5896 coding->produced_char = XSTRING (str)->size;
5897 return (nocopy ? str : Fcopy_sequence (str));
5898 }
5899
5900 if (coding->composing != COMPOSITION_DISABLED)
5901 coding_allocate_composition_data (coding, from);
5902 len = decoding_buffer_size (coding, to_byte - from);
5903 allocate_conversion_buffer (buf, len);
5904
5905 consumed = consumed_char = produced = produced_char = 0;
5906 while (1)
5907 {
5908 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5909 buf.data + produced, to_byte - from - consumed,
5910 buf.size - produced);
5911 consumed += coding->consumed;
5912 consumed_char += coding->consumed_char;
5913 produced += coding->produced;
5914 produced_char += coding->produced_char;
5915 if (result == CODING_FINISH_NORMAL
5916 || (result == CODING_FINISH_INSUFFICIENT_SRC
5917 && coding->consumed == 0))
5918 break;
5919 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5920 coding_allocate_composition_data (coding, from + produced_char);
5921 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5922 extend_conversion_buffer (&buf);
5923 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5924 {
5925 Lisp_Object eol_type;
5926
5927 /* Recover the original EOL format. */
5928 if (coding->eol_type == CODING_EOL_CR)
5929 {
5930 unsigned char *p;
5931 for (p = buf.data; p < buf.data + produced; p++)
5932 if (*p == '\n') *p = '\r';
5933 }
5934 else if (coding->eol_type == CODING_EOL_CRLF)
5935 {
5936 int num_eol = 0;
5937 unsigned char *p0, *p1;
5938 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5939 if (*p0 == '\n') num_eol++;
5940 if (produced + num_eol >= buf.size)
5941 extend_conversion_buffer (&buf);
5942 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5943 {
5944 *--p1 = *--p0;
5945 if (*p0 == '\n') *--p1 = '\r';
5946 }
5947 produced += num_eol;
5948 produced_char += num_eol;
5949 }
5950 /* Suppress eol-format conversion in the further conversion. */
5951 coding->eol_type = CODING_EOL_LF;
5952
5953 /* Set the coding system symbol to that for Unix-like EOL. */
5954 eol_type = Fget (saved_coding_symbol, Qeol_type);
5955 if (VECTORP (eol_type)
5956 && XVECTOR (eol_type)->size == 3
5957 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5958 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5959 else
5960 coding->symbol = saved_coding_symbol;
5961
5962
5963 }
5964 }
5965
5966 coding->consumed = consumed;
5967 coding->consumed_char = consumed_char;
5968 coding->produced = produced;
5969 coding->produced_char = produced_char;
5970
5971 if (coding->dst_multibyte)
5972 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
5973 produced + shrinked_bytes);
5974 else
5975 newstr = make_uninit_string (produced + shrinked_bytes);
5976 if (from > 0)
5977 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5978 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5979 if (shrinked_bytes > from)
5980 bcopy (XSTRING (str)->data + to_byte,
5981 XSTRING (newstr)->data + from + produced,
5982 shrinked_bytes - from);
5983 free_conversion_buffer (&buf);
5984
5985 if (coding->cmp_data && coding->cmp_data->used)
5986 coding_restore_composition (coding, newstr);
5987 coding_free_composition_data (coding);
5988
5989 if (SYMBOLP (coding->post_read_conversion)
5990 && !NILP (Ffboundp (coding->post_read_conversion)))
5991 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
5992
5993 return newstr;
5994 }
5995
5996 Lisp_Object
5997 encode_coding_string (str, coding, nocopy)
5998 Lisp_Object str;
5999 struct coding_system *coding;
6000 int nocopy;
6001 {
6002 int len;
6003 struct conversion_buffer buf;
6004 int from, to, to_byte;
6005 int result;
6006 int shrinked_bytes = 0;
6007 Lisp_Object newstr;
6008 int consumed, consumed_char, produced, produced_char;
6009
6010 if (SYMBOLP (coding->pre_write_conversion)
6011 && !NILP (Ffboundp (coding->pre_write_conversion)))
6012 str = run_pre_post_conversion_on_str (str, coding, 1);
6013
6014 from = 0;
6015 to = XSTRING (str)->size;
6016 to_byte = STRING_BYTES (XSTRING (str));
6017
6018 /* Encoding routines determine the multibyteness of the source text
6019 by coding->src_multibyte. */
6020 coding->src_multibyte = STRING_MULTIBYTE (str);
6021 coding->dst_multibyte = 0;
6022 if (! CODING_REQUIRE_ENCODING (coding))
6023 {
6024 coding->consumed = STRING_BYTES (XSTRING (str));
6025 coding->consumed_char = XSTRING (str)->size;
6026 if (STRING_MULTIBYTE (str))
6027 {
6028 str = Fstring_as_unibyte (str);
6029 nocopy = 1;
6030 }
6031 coding->produced = STRING_BYTES (XSTRING (str));
6032 coding->produced_char = XSTRING (str)->size;
6033 return (nocopy ? str : Fcopy_sequence (str));
6034 }
6035
6036 if (coding->composing != COMPOSITION_DISABLED)
6037 coding_save_composition (coding, from, to, str);
6038
6039 /* Try to skip the heading and tailing ASCIIs. */
6040 if (coding->type != coding_type_ccl)
6041 {
6042 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
6043 1);
6044 if (from == to_byte)
6045 return (nocopy ? str : Fcopy_sequence (str));
6046 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
6047 }
6048
6049 len = encoding_buffer_size (coding, to_byte - from);
6050 allocate_conversion_buffer (buf, len);
6051
6052 consumed = consumed_char = produced = produced_char = 0;
6053 while (1)
6054 {
6055 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
6056 buf.data + produced, to_byte - from - consumed,
6057 buf.size - produced);
6058 consumed += coding->consumed;
6059 consumed_char += coding->consumed_char;
6060 produced += coding->produced;
6061 produced_char += coding->produced_char;
6062 if (result == CODING_FINISH_NORMAL
6063 || (result == CODING_FINISH_INSUFFICIENT_SRC
6064 && coding->consumed == 0))
6065 break;
6066 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6067 extend_conversion_buffer (&buf);
6068 }
6069
6070 coding->consumed = consumed;
6071 coding->consumed_char = consumed_char;
6072 coding->produced = produced;
6073 coding->produced_char = produced_char;
6074
6075 newstr = make_uninit_string (produced + shrinked_bytes);
6076 if (from > 0)
6077 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6078 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6079 if (shrinked_bytes > from)
6080 bcopy (XSTRING (str)->data + to_byte,
6081 XSTRING (newstr)->data + from + produced,
6082 shrinked_bytes - from);
6083
6084 free_conversion_buffer (&buf);
6085 coding_free_composition_data (coding);
6086
6087 return newstr;
6088 }
6089
6090 \f
6091 #ifdef emacs
6092 /*** 8. Emacs Lisp library functions ***/
6093
6094 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6095 "Return t if OBJECT is nil or a coding-system.\n\
6096 See the documentation of `make-coding-system' for information\n\
6097 about coding-system objects.")
6098 (obj)
6099 Lisp_Object obj;
6100 {
6101 if (NILP (obj))
6102 return Qt;
6103 if (!SYMBOLP (obj))
6104 return Qnil;
6105 /* Get coding-spec vector for OBJ. */
6106 obj = Fget (obj, Qcoding_system);
6107 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6108 ? Qt : Qnil);
6109 }
6110
6111 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6112 Sread_non_nil_coding_system, 1, 1, 0,
6113 "Read a coding system from the minibuffer, prompting with string PROMPT.")
6114 (prompt)
6115 Lisp_Object prompt;
6116 {
6117 Lisp_Object val;
6118 do
6119 {
6120 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6121 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6122 }
6123 while (XSTRING (val)->size == 0);
6124 return (Fintern (val, Qnil));
6125 }
6126
6127 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6128 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
6129 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
6130 (prompt, default_coding_system)
6131 Lisp_Object prompt, default_coding_system;
6132 {
6133 Lisp_Object val;
6134 if (SYMBOLP (default_coding_system))
6135 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
6136 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6137 Qt, Qnil, Qcoding_system_history,
6138 default_coding_system, Qnil);
6139 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
6140 }
6141
6142 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6143 1, 1, 0,
6144 "Check validity of CODING-SYSTEM.\n\
6145 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
6146 It is valid if it is a symbol with a non-nil `coding-system' property.\n\
6147 The value of property should be a vector of length 5.")
6148 (coding_system)
6149 Lisp_Object coding_system;
6150 {
6151 CHECK_SYMBOL (coding_system, 0);
6152 if (!NILP (Fcoding_system_p (coding_system)))
6153 return coding_system;
6154 while (1)
6155 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6156 }
6157 \f
6158 Lisp_Object
6159 detect_coding_system (src, src_bytes, highest, multibytep)
6160 unsigned char *src;
6161 int src_bytes, highest;
6162 int multibytep;
6163 {
6164 int coding_mask, eol_type;
6165 Lisp_Object val, tmp;
6166 int dummy;
6167
6168 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6169 eol_type = detect_eol_type (src, src_bytes, &dummy);
6170 if (eol_type == CODING_EOL_INCONSISTENT)
6171 eol_type = CODING_EOL_UNDECIDED;
6172
6173 if (!coding_mask)
6174 {
6175 val = Qundecided;
6176 if (eol_type != CODING_EOL_UNDECIDED)
6177 {
6178 Lisp_Object val2;
6179 val2 = Fget (Qundecided, Qeol_type);
6180 if (VECTORP (val2))
6181 val = XVECTOR (val2)->contents[eol_type];
6182 }
6183 return (highest ? val : Fcons (val, Qnil));
6184 }
6185
6186 /* At first, gather possible coding systems in VAL. */
6187 val = Qnil;
6188 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6189 {
6190 Lisp_Object category_val, category_index;
6191
6192 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6193 category_val = Fsymbol_value (XCAR (tmp));
6194 if (!NILP (category_val)
6195 && NATNUMP (category_index)
6196 && (coding_mask & (1 << XFASTINT (category_index))))
6197 {
6198 val = Fcons (category_val, val);
6199 if (highest)
6200 break;
6201 }
6202 }
6203 if (!highest)
6204 val = Fnreverse (val);
6205
6206 /* Then, replace the elements with subsidiary coding systems. */
6207 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6208 {
6209 if (eol_type != CODING_EOL_UNDECIDED
6210 && eol_type != CODING_EOL_INCONSISTENT)
6211 {
6212 Lisp_Object eol;
6213 eol = Fget (XCAR (tmp), Qeol_type);
6214 if (VECTORP (eol))
6215 XCAR (tmp) = XVECTOR (eol)->contents[eol_type];
6216 }
6217 }
6218 return (highest ? XCAR (val) : val);
6219 }
6220
6221 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6222 2, 3, 0,
6223 "Detect coding system of the text in the region between START and END.\n\
6224 Return a list of possible coding systems ordered by priority.\n\
6225 \n\
6226 If only ASCII characters are found, it returns a list of single element\n\
6227 `undecided' or its subsidiary coding system according to a detected\n\
6228 end-of-line format.\n\
6229 \n\
6230 If optional argument HIGHEST is non-nil, return the coding system of\n\
6231 highest priority.")
6232 (start, end, highest)
6233 Lisp_Object start, end, highest;
6234 {
6235 int from, to;
6236 int from_byte, to_byte;
6237 int include_anchor_byte = 0;
6238
6239 CHECK_NUMBER_COERCE_MARKER (start, 0);
6240 CHECK_NUMBER_COERCE_MARKER (end, 1);
6241
6242 validate_region (&start, &end);
6243 from = XINT (start), to = XINT (end);
6244 from_byte = CHAR_TO_BYTE (from);
6245 to_byte = CHAR_TO_BYTE (to);
6246
6247 if (from < GPT && to >= GPT)
6248 move_gap_both (to, to_byte);
6249 /* If we an anchor byte `\0' follows the region, we include it in
6250 the detecting source. Then code detectors can handle the tailing
6251 byte sequence more accurately.
6252
6253 Fix me: This is not an perfect solution. It is better that we
6254 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6255 */
6256 if (to == Z || (to == GPT && GAP_SIZE > 0))
6257 include_anchor_byte = 1;
6258 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6259 to_byte - from_byte + include_anchor_byte,
6260 !NILP (highest),
6261 !NILP (current_buffer
6262 ->enable_multibyte_characters));
6263 }
6264
6265 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6266 1, 2, 0,
6267 "Detect coding system of the text in STRING.\n\
6268 Return a list of possible coding systems ordered by priority.\n\
6269 \n\
6270 If only ASCII characters are found, it returns a list of single element\n\
6271 `undecided' or its subsidiary coding system according to a detected\n\
6272 end-of-line format.\n\
6273 \n\
6274 If optional argument HIGHEST is non-nil, return the coding system of\n\
6275 highest priority.")
6276 (string, highest)
6277 Lisp_Object string, highest;
6278 {
6279 CHECK_STRING (string, 0);
6280
6281 return detect_coding_system (XSTRING (string)->data,
6282 /* "+ 1" is to include the anchor byte
6283 `\0'. With this, code detectors can
6284 handle the tailing bytes more
6285 accurately. */
6286 STRING_BYTES (XSTRING (string)) + 1,
6287 !NILP (highest),
6288 STRING_MULTIBYTE (string));
6289 }
6290
6291 /* Return an intersection of lists L1 and L2. */
6292
6293 static Lisp_Object
6294 intersection (l1, l2)
6295 Lisp_Object l1, l2;
6296 {
6297 Lisp_Object val;
6298
6299 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
6300 {
6301 if (!NILP (Fmemq (XCAR (l1), l2)))
6302 val = Fcons (XCAR (l1), val);
6303 }
6304 return val;
6305 }
6306
6307
6308 /* Subroutine for Fsafe_coding_systems_region_internal.
6309
6310 Return a list of coding systems that safely encode the multibyte
6311 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6312 possible coding systems. If it is nil, it means that we have not
6313 yet found any coding systems.
6314
6315 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6316 element of WORK_TABLE is set to t once the element is looked up.
6317
6318 If a non-ASCII single byte char is found, set
6319 *single_byte_char_found to 1. */
6320
6321 static Lisp_Object
6322 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6323 unsigned char *p, *pend;
6324 Lisp_Object safe_codings, work_table;
6325 int *single_byte_char_found;
6326 {
6327 int c, len, idx;
6328 Lisp_Object val;
6329
6330 while (p < pend)
6331 {
6332 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6333 p += len;
6334 if (ASCII_BYTE_P (c))
6335 /* We can ignore ASCII characters here. */
6336 continue;
6337 if (SINGLE_BYTE_CHAR_P (c))
6338 *single_byte_char_found = 1;
6339 if (NILP (safe_codings))
6340 continue;
6341 /* Check the safe coding systems for C. */
6342 val = char_table_ref_and_index (work_table, c, &idx);
6343 if (EQ (val, Qt))
6344 /* This element was already checked. Ignore it. */
6345 continue;
6346 /* Remember that we checked this element. */
6347 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
6348
6349 /* If there are some safe coding systems for C and we have
6350 already found the other set of coding systems for the
6351 different characters, get the intersection of them. */
6352 if (!EQ (safe_codings, Qt) && !NILP (val))
6353 val = intersection (safe_codings, val);
6354 safe_codings = val;
6355 }
6356 return safe_codings;
6357 }
6358
6359
6360 /* Return a list of coding systems that safely encode the text between
6361 START and END. If the text contains only ASCII or is unibyte,
6362 return t. */
6363
6364 DEFUN ("find-coding-systems-region-internal",
6365 Ffind_coding_systems_region_internal,
6366 Sfind_coding_systems_region_internal, 2, 2, 0,
6367 "Internal use only.")
6368 (start, end)
6369 Lisp_Object start, end;
6370 {
6371 Lisp_Object work_table, safe_codings;
6372 int non_ascii_p = 0;
6373 int single_byte_char_found = 0;
6374 unsigned char *p1, *p1end, *p2, *p2end, *p;
6375
6376 if (STRINGP (start))
6377 {
6378 if (!STRING_MULTIBYTE (start))
6379 return Qt;
6380 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
6381 p2 = p2end = p1end;
6382 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
6383 non_ascii_p = 1;
6384 }
6385 else
6386 {
6387 int from, to, stop;
6388
6389 CHECK_NUMBER_COERCE_MARKER (start, 0);
6390 CHECK_NUMBER_COERCE_MARKER (end, 1);
6391 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6392 args_out_of_range (start, end);
6393 if (NILP (current_buffer->enable_multibyte_characters))
6394 return Qt;
6395 from = CHAR_TO_BYTE (XINT (start));
6396 to = CHAR_TO_BYTE (XINT (end));
6397 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6398 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6399 if (stop == to)
6400 p2 = p2end = p1end;
6401 else
6402 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6403 if (XINT (end) - XINT (start) != to - from)
6404 non_ascii_p = 1;
6405 }
6406
6407 if (!non_ascii_p)
6408 {
6409 /* We are sure that the text contains no multibyte character.
6410 Check if it contains eight-bit-graphic. */
6411 p = p1;
6412 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6413 if (p == p1end)
6414 {
6415 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6416 if (p == p2end)
6417 return Qt;
6418 }
6419 }
6420
6421 /* The text contains non-ASCII characters. */
6422 work_table = Fcopy_sequence (Vchar_coding_system_table);
6423 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
6424 &single_byte_char_found);
6425 if (p2 < p2end)
6426 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6427 &single_byte_char_found);
6428
6429 if (EQ (safe_codings, Qt))
6430 ; /* Nothing to be done. */
6431 else if (!single_byte_char_found)
6432 {
6433 /* Append generic coding systems. */
6434 Lisp_Object args[2];
6435 args[0] = safe_codings;
6436 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
6437 make_number (0));
6438 safe_codings = Fappend (2, args);
6439 }
6440 else
6441 safe_codings = Fcons (Qraw_text,
6442 Fcons (Qemacs_mule,
6443 Fcons (Qno_conversion, safe_codings)));
6444 return safe_codings;
6445 }
6446
6447
6448 Lisp_Object
6449 code_convert_region1 (start, end, coding_system, encodep)
6450 Lisp_Object start, end, coding_system;
6451 int encodep;
6452 {
6453 struct coding_system coding;
6454 int from, to;
6455
6456 CHECK_NUMBER_COERCE_MARKER (start, 0);
6457 CHECK_NUMBER_COERCE_MARKER (end, 1);
6458 CHECK_SYMBOL (coding_system, 2);
6459
6460 validate_region (&start, &end);
6461 from = XFASTINT (start);
6462 to = XFASTINT (end);
6463
6464 if (NILP (coding_system))
6465 return make_number (to - from);
6466
6467 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6468 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6469
6470 coding.mode |= CODING_MODE_LAST_BLOCK;
6471 coding.src_multibyte = coding.dst_multibyte
6472 = !NILP (current_buffer->enable_multibyte_characters);
6473 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6474 &coding, encodep, 1);
6475 Vlast_coding_system_used = coding.symbol;
6476 return make_number (coding.produced_char);
6477 }
6478
6479 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6480 3, 3, "r\nzCoding system: ",
6481 "Decode the current region from the specified coding system.\n\
6482 When called from a program, takes three arguments:\n\
6483 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
6484 This function sets `last-coding-system-used' to the precise coding system\n\
6485 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6486 not fully specified.)\n\
6487 It returns the length of the decoded text.")
6488 (start, end, coding_system)
6489 Lisp_Object start, end, coding_system;
6490 {
6491 return code_convert_region1 (start, end, coding_system, 0);
6492 }
6493
6494 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6495 3, 3, "r\nzCoding system: ",
6496 "Encode the current region into the specified coding system.\n\
6497 When called from a program, takes three arguments:\n\
6498 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
6499 This function sets `last-coding-system-used' to the precise coding system\n\
6500 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6501 not fully specified.)\n\
6502 It returns the length of the encoded text.")
6503 (start, end, coding_system)
6504 Lisp_Object start, end, coding_system;
6505 {
6506 return code_convert_region1 (start, end, coding_system, 1);
6507 }
6508
6509 Lisp_Object
6510 code_convert_string1 (string, coding_system, nocopy, encodep)
6511 Lisp_Object string, coding_system, nocopy;
6512 int encodep;
6513 {
6514 struct coding_system coding;
6515
6516 CHECK_STRING (string, 0);
6517 CHECK_SYMBOL (coding_system, 1);
6518
6519 if (NILP (coding_system))
6520 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6521
6522 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6523 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6524
6525 coding.mode |= CODING_MODE_LAST_BLOCK;
6526 string = (encodep
6527 ? encode_coding_string (string, &coding, !NILP (nocopy))
6528 : decode_coding_string (string, &coding, !NILP (nocopy)));
6529 Vlast_coding_system_used = coding.symbol;
6530
6531 return string;
6532 }
6533
6534 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6535 2, 3, 0,
6536 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
6537 Optional arg NOCOPY non-nil means it is OK to return STRING itself\n\
6538 if the decoding operation is trivial.\n\
6539 This function sets `last-coding-system-used' to the precise coding system\n\
6540 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6541 not fully specified.)")
6542 (string, coding_system, nocopy)
6543 Lisp_Object string, coding_system, nocopy;
6544 {
6545 return code_convert_string1 (string, coding_system, nocopy, 0);
6546 }
6547
6548 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6549 2, 3, 0,
6550 "Encode STRING to CODING-SYSTEM, and return the result.\n\
6551 Optional arg NOCOPY non-nil means it is OK to return STRING itself\n\
6552 if the encoding operation is trivial.\n\
6553 This function sets `last-coding-system-used' to the precise coding system\n\
6554 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
6555 not fully specified.)")
6556 (string, coding_system, nocopy)
6557 Lisp_Object string, coding_system, nocopy;
6558 {
6559 return code_convert_string1 (string, coding_system, nocopy, 1);
6560 }
6561
6562 /* Encode or decode STRING according to CODING_SYSTEM.
6563 Do not set Vlast_coding_system_used.
6564
6565 This function is called only from macros DECODE_FILE and
6566 ENCODE_FILE, thus we ignore character composition. */
6567
6568 Lisp_Object
6569 code_convert_string_norecord (string, coding_system, encodep)
6570 Lisp_Object string, coding_system;
6571 int encodep;
6572 {
6573 struct coding_system coding;
6574
6575 CHECK_STRING (string, 0);
6576 CHECK_SYMBOL (coding_system, 1);
6577
6578 if (NILP (coding_system))
6579 return string;
6580
6581 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6582 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6583
6584 coding.composing = COMPOSITION_DISABLED;
6585 coding.mode |= CODING_MODE_LAST_BLOCK;
6586 return (encodep
6587 ? encode_coding_string (string, &coding, 1)
6588 : decode_coding_string (string, &coding, 1));
6589 }
6590 \f
6591 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6592 "Decode a Japanese character which has CODE in shift_jis encoding.\n\
6593 Return the corresponding character.")
6594 (code)
6595 Lisp_Object code;
6596 {
6597 unsigned char c1, c2, s1, s2;
6598 Lisp_Object val;
6599
6600 CHECK_NUMBER (code, 0);
6601 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6602 if (s1 == 0)
6603 {
6604 if (s2 < 0x80)
6605 XSETFASTINT (val, s2);
6606 else if (s2 >= 0xA0 || s2 <= 0xDF)
6607 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6608 else
6609 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6610 }
6611 else
6612 {
6613 if ((s1 < 0x80 || s1 > 0x9F && s1 < 0xE0 || s1 > 0xEF)
6614 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6615 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6616 DECODE_SJIS (s1, s2, c1, c2);
6617 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6618 }
6619 return val;
6620 }
6621
6622 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6623 "Encode a Japanese character CHAR to shift_jis encoding.\n\
6624 Return the corresponding code in SJIS.")
6625 (ch)
6626 Lisp_Object ch;
6627 {
6628 int charset, c1, c2, s1, s2;
6629 Lisp_Object val;
6630
6631 CHECK_NUMBER (ch, 0);
6632 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6633 if (charset == CHARSET_ASCII)
6634 {
6635 val = ch;
6636 }
6637 else if (charset == charset_jisx0208
6638 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6639 {
6640 ENCODE_SJIS (c1, c2, s1, s2);
6641 XSETFASTINT (val, (s1 << 8) | s2);
6642 }
6643 else if (charset == charset_katakana_jisx0201
6644 && c1 > 0x20 && c2 < 0xE0)
6645 {
6646 XSETFASTINT (val, c1 | 0x80);
6647 }
6648 else
6649 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6650 return val;
6651 }
6652
6653 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6654 "Decode a Big5 character which has CODE in BIG5 coding system.\n\
6655 Return the corresponding character.")
6656 (code)
6657 Lisp_Object code;
6658 {
6659 int charset;
6660 unsigned char b1, b2, c1, c2;
6661 Lisp_Object val;
6662
6663 CHECK_NUMBER (code, 0);
6664 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6665 if (b1 == 0)
6666 {
6667 if (b2 >= 0x80)
6668 error ("Invalid BIG5 code: %x", XFASTINT (code));
6669 val = code;
6670 }
6671 else
6672 {
6673 if ((b1 < 0xA1 || b1 > 0xFE)
6674 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6675 error ("Invalid BIG5 code: %x", XFASTINT (code));
6676 DECODE_BIG5 (b1, b2, charset, c1, c2);
6677 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6678 }
6679 return val;
6680 }
6681
6682 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6683 "Encode the Big5 character CHAR to BIG5 coding system.\n\
6684 Return the corresponding character code in Big5.")
6685 (ch)
6686 Lisp_Object ch;
6687 {
6688 int charset, c1, c2, b1, b2;
6689 Lisp_Object val;
6690
6691 CHECK_NUMBER (ch, 0);
6692 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6693 if (charset == CHARSET_ASCII)
6694 {
6695 val = ch;
6696 }
6697 else if ((charset == charset_big5_1
6698 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6699 || (charset == charset_big5_2
6700 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6701 {
6702 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6703 XSETFASTINT (val, (b1 << 8) | b2);
6704 }
6705 else
6706 error ("Can't encode to Big5: %d", XFASTINT (ch));
6707 return val;
6708 }
6709 \f
6710 DEFUN ("set-terminal-coding-system-internal",
6711 Fset_terminal_coding_system_internal,
6712 Sset_terminal_coding_system_internal, 1, 1, 0, "")
6713 (coding_system)
6714 Lisp_Object coding_system;
6715 {
6716 CHECK_SYMBOL (coding_system, 0);
6717 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6718 /* We had better not send unsafe characters to terminal. */
6719 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6720 /* Character composition should be disabled. */
6721 terminal_coding.composing = COMPOSITION_DISABLED;
6722 /* Error notification should be suppressed. */
6723 terminal_coding.suppress_error = 1;
6724 terminal_coding.src_multibyte = 1;
6725 terminal_coding.dst_multibyte = 0;
6726 return Qnil;
6727 }
6728
6729 DEFUN ("set-safe-terminal-coding-system-internal",
6730 Fset_safe_terminal_coding_system_internal,
6731 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
6732 (coding_system)
6733 Lisp_Object coding_system;
6734 {
6735 CHECK_SYMBOL (coding_system, 0);
6736 setup_coding_system (Fcheck_coding_system (coding_system),
6737 &safe_terminal_coding);
6738 /* Character composition should be disabled. */
6739 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6740 /* Error notification should be suppressed. */
6741 terminal_coding.suppress_error = 1;
6742 safe_terminal_coding.src_multibyte = 1;
6743 safe_terminal_coding.dst_multibyte = 0;
6744 return Qnil;
6745 }
6746
6747 DEFUN ("terminal-coding-system",
6748 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6749 "Return coding system specified for terminal output.")
6750 ()
6751 {
6752 return terminal_coding.symbol;
6753 }
6754
6755 DEFUN ("set-keyboard-coding-system-internal",
6756 Fset_keyboard_coding_system_internal,
6757 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
6758 (coding_system)
6759 Lisp_Object coding_system;
6760 {
6761 CHECK_SYMBOL (coding_system, 0);
6762 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6763 /* Character composition should be disabled. */
6764 keyboard_coding.composing = COMPOSITION_DISABLED;
6765 return Qnil;
6766 }
6767
6768 DEFUN ("keyboard-coding-system",
6769 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6770 "Return coding system specified for decoding keyboard input.")
6771 ()
6772 {
6773 return keyboard_coding.symbol;
6774 }
6775
6776 \f
6777 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6778 Sfind_operation_coding_system, 1, MANY, 0,
6779 "Choose a coding system for an operation based on the target name.\n\
6780 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).\n\
6781 DECODING-SYSTEM is the coding system to use for decoding\n\
6782 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
6783 for encoding (in case OPERATION does encoding).\n\
6784 \n\
6785 The first argument OPERATION specifies an I/O primitive:\n\
6786 For file I/O, `insert-file-contents' or `write-region'.\n\
6787 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
6788 For network I/O, `open-network-stream'.\n\
6789 \n\
6790 The remaining arguments should be the same arguments that were passed\n\
6791 to the primitive. Depending on which primitive, one of those arguments\n\
6792 is selected as the TARGET. For example, if OPERATION does file I/O,\n\
6793 whichever argument specifies the file name is TARGET.\n\
6794 \n\
6795 TARGET has a meaning which depends on OPERATION:\n\
6796 For file I/O, TARGET is a file name.\n\
6797 For process I/O, TARGET is a process name.\n\
6798 For network I/O, TARGET is a service name or a port number\n\
6799 \n\
6800 This function looks up what specified for TARGET in,\n\
6801 `file-coding-system-alist', `process-coding-system-alist',\n\
6802 or `network-coding-system-alist' depending on OPERATION.\n\
6803 They may specify a coding system, a cons of coding systems,\n\
6804 or a function symbol to call.\n\
6805 In the last case, we call the function with one argument,\n\
6806 which is a list of all the arguments given to this function.")
6807 (nargs, args)
6808 int nargs;
6809 Lisp_Object *args;
6810 {
6811 Lisp_Object operation, target_idx, target, val;
6812 register Lisp_Object chain;
6813
6814 if (nargs < 2)
6815 error ("Too few arguments");
6816 operation = args[0];
6817 if (!SYMBOLP (operation)
6818 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6819 error ("Invalid first argument");
6820 if (nargs < 1 + XINT (target_idx))
6821 error ("Too few arguments for operation: %s",
6822 XSYMBOL (operation)->name->data);
6823 target = args[XINT (target_idx) + 1];
6824 if (!(STRINGP (target)
6825 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6826 error ("Invalid argument %d", XINT (target_idx) + 1);
6827
6828 chain = ((EQ (operation, Qinsert_file_contents)
6829 || EQ (operation, Qwrite_region))
6830 ? Vfile_coding_system_alist
6831 : (EQ (operation, Qopen_network_stream)
6832 ? Vnetwork_coding_system_alist
6833 : Vprocess_coding_system_alist));
6834 if (NILP (chain))
6835 return Qnil;
6836
6837 for (; CONSP (chain); chain = XCDR (chain))
6838 {
6839 Lisp_Object elt;
6840 elt = XCAR (chain);
6841
6842 if (CONSP (elt)
6843 && ((STRINGP (target)
6844 && STRINGP (XCAR (elt))
6845 && fast_string_match (XCAR (elt), target) >= 0)
6846 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6847 {
6848 val = XCDR (elt);
6849 /* Here, if VAL is both a valid coding system and a valid
6850 function symbol, we return VAL as a coding system. */
6851 if (CONSP (val))
6852 return val;
6853 if (! SYMBOLP (val))
6854 return Qnil;
6855 if (! NILP (Fcoding_system_p (val)))
6856 return Fcons (val, val);
6857 if (! NILP (Ffboundp (val)))
6858 {
6859 val = call1 (val, Flist (nargs, args));
6860 if (CONSP (val))
6861 return val;
6862 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6863 return Fcons (val, val);
6864 }
6865 return Qnil;
6866 }
6867 }
6868 return Qnil;
6869 }
6870
6871 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6872 Supdate_coding_systems_internal, 0, 0, 0,
6873 "Update internal database for ISO2022 and CCL based coding systems.\n\
6874 When values of any coding categories are changed, you must\n\
6875 call this function")
6876 ()
6877 {
6878 int i;
6879
6880 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6881 {
6882 Lisp_Object val;
6883
6884 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
6885 if (!NILP (val))
6886 {
6887 if (! coding_system_table[i])
6888 coding_system_table[i] = ((struct coding_system *)
6889 xmalloc (sizeof (struct coding_system)));
6890 setup_coding_system (val, coding_system_table[i]);
6891 }
6892 else if (coding_system_table[i])
6893 {
6894 xfree (coding_system_table[i]);
6895 coding_system_table[i] = NULL;
6896 }
6897 }
6898
6899 return Qnil;
6900 }
6901
6902 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6903 Sset_coding_priority_internal, 0, 0, 0,
6904 "Update internal database for the current value of `coding-category-list'.\n\
6905 This function is internal use only.")
6906 ()
6907 {
6908 int i = 0, idx;
6909 Lisp_Object val;
6910
6911 val = Vcoding_category_list;
6912
6913 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6914 {
6915 if (! SYMBOLP (XCAR (val)))
6916 break;
6917 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6918 if (idx >= CODING_CATEGORY_IDX_MAX)
6919 break;
6920 coding_priorities[i++] = (1 << idx);
6921 val = XCDR (val);
6922 }
6923 /* If coding-category-list is valid and contains all coding
6924 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6925 the following code saves Emacs from crashing. */
6926 while (i < CODING_CATEGORY_IDX_MAX)
6927 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6928
6929 return Qnil;
6930 }
6931
6932 #endif /* emacs */
6933
6934 \f
6935 /*** 9. Post-amble ***/
6936
6937 void
6938 init_coding_once ()
6939 {
6940 int i;
6941
6942 /* Emacs' internal format specific initialize routine. */
6943 for (i = 0; i <= 0x20; i++)
6944 emacs_code_class[i] = EMACS_control_code;
6945 emacs_code_class[0x0A] = EMACS_linefeed_code;
6946 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6947 for (i = 0x21 ; i < 0x7F; i++)
6948 emacs_code_class[i] = EMACS_ascii_code;
6949 emacs_code_class[0x7F] = EMACS_control_code;
6950 for (i = 0x80; i < 0xFF; i++)
6951 emacs_code_class[i] = EMACS_invalid_code;
6952 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6953 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6954 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6955 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6956
6957 /* ISO2022 specific initialize routine. */
6958 for (i = 0; i < 0x20; i++)
6959 iso_code_class[i] = ISO_control_0;
6960 for (i = 0x21; i < 0x7F; i++)
6961 iso_code_class[i] = ISO_graphic_plane_0;
6962 for (i = 0x80; i < 0xA0; i++)
6963 iso_code_class[i] = ISO_control_1;
6964 for (i = 0xA1; i < 0xFF; i++)
6965 iso_code_class[i] = ISO_graphic_plane_1;
6966 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6967 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6968 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6969 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6970 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6971 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6972 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6973 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6974 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6975 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6976
6977 setup_coding_system (Qnil, &keyboard_coding);
6978 setup_coding_system (Qnil, &terminal_coding);
6979 setup_coding_system (Qnil, &safe_terminal_coding);
6980 setup_coding_system (Qnil, &default_buffer_file_coding);
6981
6982 bzero (coding_system_table, sizeof coding_system_table);
6983
6984 bzero (ascii_skip_code, sizeof ascii_skip_code);
6985 for (i = 0; i < 128; i++)
6986 ascii_skip_code[i] = 1;
6987
6988 #if defined (MSDOS) || defined (WINDOWSNT)
6989 system_eol_type = CODING_EOL_CRLF;
6990 #else
6991 system_eol_type = CODING_EOL_LF;
6992 #endif
6993
6994 inhibit_pre_post_conversion = 0;
6995 }
6996
6997 #ifdef emacs
6998
6999 void
7000 syms_of_coding ()
7001 {
7002 Qtarget_idx = intern ("target-idx");
7003 staticpro (&Qtarget_idx);
7004
7005 Qcoding_system_history = intern ("coding-system-history");
7006 staticpro (&Qcoding_system_history);
7007 Fset (Qcoding_system_history, Qnil);
7008
7009 /* Target FILENAME is the first argument. */
7010 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7011 /* Target FILENAME is the third argument. */
7012 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7013
7014 Qcall_process = intern ("call-process");
7015 staticpro (&Qcall_process);
7016 /* Target PROGRAM is the first argument. */
7017 Fput (Qcall_process, Qtarget_idx, make_number (0));
7018
7019 Qcall_process_region = intern ("call-process-region");
7020 staticpro (&Qcall_process_region);
7021 /* Target PROGRAM is the third argument. */
7022 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7023
7024 Qstart_process = intern ("start-process");
7025 staticpro (&Qstart_process);
7026 /* Target PROGRAM is the third argument. */
7027 Fput (Qstart_process, Qtarget_idx, make_number (2));
7028
7029 Qopen_network_stream = intern ("open-network-stream");
7030 staticpro (&Qopen_network_stream);
7031 /* Target SERVICE is the fourth argument. */
7032 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7033
7034 Qcoding_system = intern ("coding-system");
7035 staticpro (&Qcoding_system);
7036
7037 Qeol_type = intern ("eol-type");
7038 staticpro (&Qeol_type);
7039
7040 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7041 staticpro (&Qbuffer_file_coding_system);
7042
7043 Qpost_read_conversion = intern ("post-read-conversion");
7044 staticpro (&Qpost_read_conversion);
7045
7046 Qpre_write_conversion = intern ("pre-write-conversion");
7047 staticpro (&Qpre_write_conversion);
7048
7049 Qno_conversion = intern ("no-conversion");
7050 staticpro (&Qno_conversion);
7051
7052 Qundecided = intern ("undecided");
7053 staticpro (&Qundecided);
7054
7055 Qcoding_system_p = intern ("coding-system-p");
7056 staticpro (&Qcoding_system_p);
7057
7058 Qcoding_system_error = intern ("coding-system-error");
7059 staticpro (&Qcoding_system_error);
7060
7061 Fput (Qcoding_system_error, Qerror_conditions,
7062 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7063 Fput (Qcoding_system_error, Qerror_message,
7064 build_string ("Invalid coding system"));
7065
7066 Qcoding_category = intern ("coding-category");
7067 staticpro (&Qcoding_category);
7068 Qcoding_category_index = intern ("coding-category-index");
7069 staticpro (&Qcoding_category_index);
7070
7071 Vcoding_category_table
7072 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7073 staticpro (&Vcoding_category_table);
7074 {
7075 int i;
7076 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7077 {
7078 XVECTOR (Vcoding_category_table)->contents[i]
7079 = intern (coding_category_name[i]);
7080 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7081 Qcoding_category_index, make_number (i));
7082 }
7083 }
7084
7085 Qtranslation_table = intern ("translation-table");
7086 staticpro (&Qtranslation_table);
7087 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7088
7089 Qtranslation_table_id = intern ("translation-table-id");
7090 staticpro (&Qtranslation_table_id);
7091
7092 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7093 staticpro (&Qtranslation_table_for_decode);
7094
7095 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7096 staticpro (&Qtranslation_table_for_encode);
7097
7098 Qsafe_chars = intern ("safe-chars");
7099 staticpro (&Qsafe_chars);
7100
7101 Qchar_coding_system = intern ("char-coding-system");
7102 staticpro (&Qchar_coding_system);
7103
7104 /* Intern this now in case it isn't already done.
7105 Setting this variable twice is harmless.
7106 But don't staticpro it here--that is done in alloc.c. */
7107 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7108 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7109 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (1));
7110
7111 Qvalid_codes = intern ("valid-codes");
7112 staticpro (&Qvalid_codes);
7113
7114 Qemacs_mule = intern ("emacs-mule");
7115 staticpro (&Qemacs_mule);
7116
7117 Qraw_text = intern ("raw-text");
7118 staticpro (&Qraw_text);
7119
7120 defsubr (&Scoding_system_p);
7121 defsubr (&Sread_coding_system);
7122 defsubr (&Sread_non_nil_coding_system);
7123 defsubr (&Scheck_coding_system);
7124 defsubr (&Sdetect_coding_region);
7125 defsubr (&Sdetect_coding_string);
7126 defsubr (&Sfind_coding_systems_region_internal);
7127 defsubr (&Sdecode_coding_region);
7128 defsubr (&Sencode_coding_region);
7129 defsubr (&Sdecode_coding_string);
7130 defsubr (&Sencode_coding_string);
7131 defsubr (&Sdecode_sjis_char);
7132 defsubr (&Sencode_sjis_char);
7133 defsubr (&Sdecode_big5_char);
7134 defsubr (&Sencode_big5_char);
7135 defsubr (&Sset_terminal_coding_system_internal);
7136 defsubr (&Sset_safe_terminal_coding_system_internal);
7137 defsubr (&Sterminal_coding_system);
7138 defsubr (&Sset_keyboard_coding_system_internal);
7139 defsubr (&Skeyboard_coding_system);
7140 defsubr (&Sfind_operation_coding_system);
7141 defsubr (&Supdate_coding_systems_internal);
7142 defsubr (&Sset_coding_priority_internal);
7143
7144 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7145 "List of coding systems.\n\
7146 \n\
7147 Do not alter the value of this variable manually. This variable should be\n\
7148 updated by the functions `make-coding-system' and\n\
7149 `define-coding-system-alias'.");
7150 Vcoding_system_list = Qnil;
7151
7152 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7153 "Alist of coding system names.\n\
7154 Each element is one element list of coding system name.\n\
7155 This variable is given to `completing-read' as TABLE argument.\n\
7156 \n\
7157 Do not alter the value of this variable manually. This variable should be\n\
7158 updated by the functions `make-coding-system' and\n\
7159 `define-coding-system-alias'.");
7160 Vcoding_system_alist = Qnil;
7161
7162 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7163 "List of coding-categories (symbols) ordered by priority.\n\
7164 \n\
7165 On detecting a coding system, Emacs tries code detection algorithms\n\
7166 associated with each coding-category one by one in this order. When\n\
7167 one algorithm agrees with a byte sequence of source text, the coding\n\
7168 system bound to the corresponding coding-category is selected.");
7169 {
7170 int i;
7171
7172 Vcoding_category_list = Qnil;
7173 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7174 Vcoding_category_list
7175 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7176 Vcoding_category_list);
7177 }
7178
7179 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7180 "Specify the coding system for read operations.\n\
7181 It is useful to bind this variable with `let', but do not set it globally.\n\
7182 If the value is a coding system, it is used for decoding on read operation.\n\
7183 If not, an appropriate element is used from one of the coding system alists:\n\
7184 There are three such tables, `file-coding-system-alist',\n\
7185 `process-coding-system-alist', and `network-coding-system-alist'.");
7186 Vcoding_system_for_read = Qnil;
7187
7188 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7189 "Specify the coding system for write operations.\n\
7190 Programs bind this variable with `let', but you should not set it globally.\n\
7191 If the value is a coding system, it is used for encoding of output,\n\
7192 when writing it to a file and when sending it to a file or subprocess.\n\
7193 \n\
7194 If this does not specify a coding system, an appropriate element\n\
7195 is used from one of the coding system alists:\n\
7196 There are three such tables, `file-coding-system-alist',\n\
7197 `process-coding-system-alist', and `network-coding-system-alist'.\n\
7198 For output to files, if the above procedure does not specify a coding system,\n\
7199 the value of `buffer-file-coding-system' is used.");
7200 Vcoding_system_for_write = Qnil;
7201
7202 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7203 "Coding system used in the latest file or process I/O.");
7204 Vlast_coding_system_used = Qnil;
7205
7206 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7207 "*Non-nil means always inhibit code conversion of end-of-line format.\n\
7208 See info node `Coding Systems' and info node `Text and Binary' concerning\n\
7209 such conversion.");
7210 inhibit_eol_conversion = 0;
7211
7212 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7213 "Non-nil means process buffer inherits coding system of process output.\n\
7214 Bind it to t if the process output is to be treated as if it were a file\n\
7215 read from some filesystem.");
7216 inherit_process_coding_system = 0;
7217
7218 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7219 "Alist to decide a coding system to use for a file I/O operation.\n\
7220 The format is ((PATTERN . VAL) ...),\n\
7221 where PATTERN is a regular expression matching a file name,\n\
7222 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
7223 If VAL is a coding system, it is used for both decoding and encoding\n\
7224 the file contents.\n\
7225 If VAL is a cons of coding systems, the car part is used for decoding,\n\
7226 and the cdr part is used for encoding.\n\
7227 If VAL is a function symbol, the function must return a coding system\n\
7228 or a cons of coding systems which are used as above.\n\
7229 \n\
7230 See also the function `find-operation-coding-system'\n\
7231 and the variable `auto-coding-alist'.");
7232 Vfile_coding_system_alist = Qnil;
7233
7234 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7235 "Alist to decide a coding system to use for a process I/O operation.\n\
7236 The format is ((PATTERN . VAL) ...),\n\
7237 where PATTERN is a regular expression matching a program name,\n\
7238 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
7239 If VAL is a coding system, it is used for both decoding what received\n\
7240 from the program and encoding what sent to the program.\n\
7241 If VAL is a cons of coding systems, the car part is used for decoding,\n\
7242 and the cdr part is used for encoding.\n\
7243 If VAL is a function symbol, the function must return a coding system\n\
7244 or a cons of coding systems which are used as above.\n\
7245 \n\
7246 See also the function `find-operation-coding-system'.");
7247 Vprocess_coding_system_alist = Qnil;
7248
7249 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7250 "Alist to decide a coding system to use for a network I/O operation.\n\
7251 The format is ((PATTERN . VAL) ...),\n\
7252 where PATTERN is a regular expression matching a network service name\n\
7253 or is a port number to connect to,\n\
7254 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
7255 If VAL is a coding system, it is used for both decoding what received\n\
7256 from the network stream and encoding what sent to the network stream.\n\
7257 If VAL is a cons of coding systems, the car part is used for decoding,\n\
7258 and the cdr part is used for encoding.\n\
7259 If VAL is a function symbol, the function must return a coding system\n\
7260 or a cons of coding systems which are used as above.\n\
7261 \n\
7262 See also the function `find-operation-coding-system'.");
7263 Vnetwork_coding_system_alist = Qnil;
7264
7265 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7266 "Coding system to use with system messages.");
7267 Vlocale_coding_system = Qnil;
7268
7269 /* The eol mnemonics are reset in startup.el system-dependently. */
7270 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7271 "*String displayed in mode line for UNIX-like (LF) end-of-line format.");
7272 eol_mnemonic_unix = build_string (":");
7273
7274 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7275 "*String displayed in mode line for DOS-like (CRLF) end-of-line format.");
7276 eol_mnemonic_dos = build_string ("\\");
7277
7278 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7279 "*String displayed in mode line for MAC-like (CR) end-of-line format.");
7280 eol_mnemonic_mac = build_string ("/");
7281
7282 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7283 "*String displayed in mode line when end-of-line format is not yet determined.");
7284 eol_mnemonic_undecided = build_string (":");
7285
7286 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7287 "*Non-nil enables character translation while encoding and decoding.");
7288 Venable_character_translation = Qt;
7289
7290 DEFVAR_LISP ("standard-translation-table-for-decode",
7291 &Vstandard_translation_table_for_decode,
7292 "Table for translating characters while decoding.");
7293 Vstandard_translation_table_for_decode = Qnil;
7294
7295 DEFVAR_LISP ("standard-translation-table-for-encode",
7296 &Vstandard_translation_table_for_encode,
7297 "Table for translating characters while encoding.");
7298 Vstandard_translation_table_for_encode = Qnil;
7299
7300 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7301 "Alist of charsets vs revision numbers.\n\
7302 While encoding, if a charset (car part of an element) is found,\n\
7303 designate it with the escape sequence identifying revision (cdr part of the element).");
7304 Vcharset_revision_alist = Qnil;
7305
7306 DEFVAR_LISP ("default-process-coding-system",
7307 &Vdefault_process_coding_system,
7308 "Cons of coding systems used for process I/O by default.\n\
7309 The car part is used for decoding a process output,\n\
7310 the cdr part is used for encoding a text to be sent to a process.");
7311 Vdefault_process_coding_system = Qnil;
7312
7313 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7314 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
7315 This is a vector of length 256.\n\
7316 If Nth element is non-nil, the existence of code N in a file\n\
7317 \(or output of subprocess) doesn't prevent it to be detected as\n\
7318 a coding system of ISO 2022 variant which has a flag\n\
7319 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
7320 or reading output of a subprocess.\n\
7321 Only 128th through 159th elements has a meaning.");
7322 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7323
7324 DEFVAR_LISP ("select-safe-coding-system-function",
7325 &Vselect_safe_coding_system_function,
7326 "Function to call to select safe coding system for encoding a text.\n\
7327 \n\
7328 If set, this function is called to force a user to select a proper\n\
7329 coding system which can encode the text in the case that a default\n\
7330 coding system used in each operation can't encode the text.\n\
7331 \n\
7332 The default value is `select-safe-coding-system' (which see).");
7333 Vselect_safe_coding_system_function = Qnil;
7334
7335 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
7336 "Char-table containing safe coding systems of each characters.\n\
7337 Each element doesn't include such generic coding systems that can\n\
7338 encode any characters. They are in the first extra slot.");
7339 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
7340
7341 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7342 &inhibit_iso_escape_detection,
7343 "If non-nil, Emacs ignores ISO2022's escape sequence on code detection.\n\
7344 \n\
7345 By default, on reading a file, Emacs tries to detect how the text is\n\
7346 encoded. This code detection is sensitive to escape sequences. If\n\
7347 the sequence is valid as ISO2022, the code is determined as one of\n\
7348 the ISO2022 encodings, and the file is decoded by the corresponding\n\
7349 coding system (e.g. `iso-2022-7bit').\n\
7350 \n\
7351 However, there may be a case that you want to read escape sequences in\n\
7352 a file as is. In such a case, you can set this variable to non-nil.\n\
7353 Then, as the code detection ignores any escape sequences, no file is\n\
7354 detected as encoded in some ISO2022 encoding. The result is that all\n\
7355 escape sequences become visible in a buffer.\n\
7356 \n\
7357 The default value is nil, and it is strongly recommended not to change\n\
7358 it. That is because many Emacs Lisp source files that contain\n\
7359 non-ASCII characters are encoded by the coding system `iso-2022-7bit'\n\
7360 in Emacs's distribution, and they won't be decoded correctly on\n\
7361 reading if you suppress escape sequence detection.\n\
7362 \n\
7363 The other way to read escape sequences in a file without decoding is\n\
7364 to explicitly specify some coding system that doesn't use ISO2022's\n\
7365 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument].");
7366 inhibit_iso_escape_detection = 0;
7367 }
7368
7369 char *
7370 emacs_strerror (error_number)
7371 int error_number;
7372 {
7373 char *str;
7374
7375 synchronize_system_messages_locale ();
7376 str = strerror (error_number);
7377
7378 if (! NILP (Vlocale_coding_system))
7379 {
7380 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7381 Vlocale_coding_system,
7382 0);
7383 str = (char *) XSTRING (dec)->data;
7384 }
7385
7386 return str;
7387 }
7388
7389 #endif /* emacs */
7390