Get rid of several uses of the term 'master' in favor of equivalent verbiage
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "d93072a26c59f663a92b10df8bc28187")
14 ;;; Generated autoloads from cl-extra.el
15
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
19
20 \(fn OBJECT TYPE)" nil nil)
21
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
27
28 \(fn X Y)" nil nil)
29
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
32
33 \(fn CL-FUNC CL-SEQS)" nil nil)
34
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
38
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
45
46 \(fn FUNCTION LIST...)" nil nil)
47
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
50
51 \(fn FUNCTION LIST...)" nil nil)
52
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
55
56 \(fn FUNCTION SEQUENCE...)" nil nil)
57
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
60
61 \(fn FUNCTION LIST...)" nil nil)
62
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
66
67 \(fn PREDICATE SEQ...)" nil nil)
68
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72 \(fn PREDICATE SEQ...)" nil nil)
73
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77 \(fn PREDICATE SEQ...)" nil nil)
78
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82 \(fn PREDICATE SEQ...)" nil nil)
83
84 (defalias 'cl-map-keymap 'map-keymap)
85
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
88
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
93
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
98
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
103
104 \(fn FRAME VAL)" nil nil)
105
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
108
109 \(fn SYMS VALUES)" nil nil)
110
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
113
114 \(fn &rest ARGS)" nil nil)
115
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
118
119 \(fn &rest ARGS)" nil nil)
120
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
123
124 \(fn X)" nil nil)
125
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
147
148 \(fn X &optional Y)" nil nil)
149
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
152
153 \(fn X Y)" nil nil)
154
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
157
158 \(fn X Y)" nil nil)
159
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
162
163 \(fn X)" nil nil)
164
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
168
169 \(fn LIM &optional STATE)" nil nil)
170
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
174
175 \(fn &optional STATE)" nil nil)
176
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
179
180 \(fn OBJECT)" nil nil)
181
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
184
185 \(fn)" nil nil)
186
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
191
192 \(fn SEQ START &optional END)" nil nil)
193
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
196
197 \(fn TYPE SEQUENCE...)" nil nil)
198
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
201
202 \(fn X Y)" nil nil)
203
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
206
207 \(fn X Y)" nil nil)
208
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
211
212 \(fn X)" nil nil)
213
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
216
217 \(fn SUBLIST LIST)" nil nil)
218
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
221
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
223
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
227
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
232
233 \(fn PLIST TAG VAL)" nil nil)
234
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
237
238 \(fn PLIST TAG)" nil nil)
239
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
242
243 \(fn SYMBOL PROPNAME)" nil nil)
244
245 (defalias 'remprop 'cl-remprop)
246
247 (defalias 'cl-gethash 'gethash)
248
249 (defalias 'cl-puthash 'puthash)
250
251 (defalias 'cl-remhash 'remhash)
252
253 (defalias 'cl-clrhash 'clrhash)
254
255 (defalias 'cl-maphash 'maphash)
256
257 (defalias 'cl-make-hash-table 'make-hash-table)
258
259 (defalias 'cl-hash-table-p 'hash-table-p)
260
261 (defalias 'cl-hash-table-count 'hash-table-count)
262
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
266
267 \(fn FORM &optional ENV)" nil nil)
268
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
271
272 \(fn FORM &optional FULL)" nil nil)
273
274 ;;;***
275 \f
276 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
277 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
281 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
282 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
283 ;;;;;; do* do loop return-from return block etypecase typecase ecase
284 ;;;;;; case load-time-value eval-when destructuring-bind function*
285 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "7fad7dd60f2f96ba90432f885015d61b")
286 ;;; Generated autoloads from cl-macs.el
287
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
291
292 \(fn &optional PREFIX)" nil nil)
293
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
297
298 \(fn &optional PREFIX)" nil nil)
299
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
304
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
306
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
311
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
313
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
318
319 \(fn FUNC)" nil (quote macro))
320
321 (autoload 'destructuring-bind "cl-macs" "\
322 Not documented
323
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
325
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
331
332 \(fn (WHEN...) BODY...)" nil (quote macro))
333
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
337
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
339
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
348
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
350
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
354
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
356
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
363
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
365
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
369
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
371
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
381
382 \(fn NAME &rest BODY)" nil (quote macro))
383
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
387
388 \(fn &optional RESULT)" nil (quote macro))
389
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jump out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
396
397 \(fn NAME &optional RESULT)" nil (quote macro))
398
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
412
413 \(fn CLAUSE...)" nil (quote macro))
414
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
417
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
419
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
422
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
424
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
429
430 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
431
432 (autoload 'dotimes "cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
436 nil.
437
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
439
440 (autoload 'do-symbols "cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
443 from OBARRAY.
444
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
446
447 (autoload 'do-all-symbols "cl-macs" "\
448 Not documented
449
450 \(fn SPEC &rest BODY)" nil (quote macro))
451
452 (autoload 'psetq "cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
456
457 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
458
459 (autoload 'progv "cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
466
467 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
468
469 (autoload 'flet "cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
475
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
477
478 (autoload 'labels "cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
482
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
484
485 (autoload 'macrolet "cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
488
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
490
491 (autoload 'symbol-macrolet "cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
495
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
497
498 (autoload 'lexical-let "cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
502
503 \(fn VARLIST BODY)" nil (quote macro))
504
505 (autoload 'lexical-let* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY, and in
508 successive bindings within BINDINGS, will create lexical closures
509 as in Common Lisp. This is similar to the behavior of `let*' in
510 Common Lisp.
511
512 \(fn VARLIST BODY)" nil (quote macro))
513
514 (autoload 'multiple-value-bind "cl-macs" "\
515 Collect multiple return values.
516 FORM must return a list; the BODY is then executed with the first N elements
517 of this list bound (`let'-style) to each of the symbols SYM in turn. This
518 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
519 simulate true multiple return values. For compatibility, (values A B C) is
520 a synonym for (list A B C).
521
522 \(fn (SYM...) FORM BODY)" nil (quote macro))
523
524 (autoload 'multiple-value-setq "cl-macs" "\
525 Collect multiple return values.
526 FORM must return a list; the first N elements of this list are stored in
527 each of the symbols SYM in turn. This is analogous to the Common Lisp
528 `multiple-value-setq' macro, using lists to simulate true multiple return
529 values. For compatibility, (values A B C) is a synonym for (list A B C).
530
531 \(fn (SYM...) FORM)" nil (quote macro))
532
533 (autoload 'locally "cl-macs" "\
534 Not documented
535
536 \(fn &rest BODY)" nil (quote macro))
537
538 (autoload 'the "cl-macs" "\
539 Not documented
540
541 \(fn TYPE FORM)" nil (quote macro))
542
543 (autoload 'declare "cl-macs" "\
544 Not documented
545
546 \(fn &rest SPECS)" nil (quote macro))
547
548 (autoload 'define-setf-method "cl-macs" "\
549 Define a `setf' method.
550 This method shows how to handle `setf's to places of the form (NAME ARGS...).
551 The argument forms ARGS are bound according to ARGLIST, as if NAME were
552 going to be expanded as a macro, then the BODY forms are executed and must
553 return a list of five elements: a temporary-variables list, a value-forms
554 list, a store-variables list (of length one), a store-form, and an access-
555 form. See `defsetf' for a simpler way to define most setf-methods.
556
557 \(fn NAME ARGLIST BODY...)" nil (quote macro))
558
559 (autoload 'defsetf "cl-macs" "\
560 Define a `setf' method.
561 This macro is an easy-to-use substitute for `define-setf-method' that works
562 well for simple place forms. In the simple `defsetf' form, `setf's of
563 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
564 calls of the form (FUNC ARGS... VAL). Example:
565
566 (defsetf aref aset)
567
568 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
569 Here, the above `setf' call is expanded by binding the argument forms ARGS
570 according to ARGLIST, binding the value form VAL to STORE, then executing
571 BODY, which must return a Lisp form that does the necessary `setf' operation.
572 Actually, ARGLIST and STORE may be bound to temporary variables which are
573 introduced automatically to preserve proper execution order of the arguments.
574 Example:
575
576 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
577
578 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
579
580 (autoload 'get-setf-method "cl-macs" "\
581 Return a list of five values describing the setf-method for PLACE.
582 PLACE may be any Lisp form which can appear as the PLACE argument to
583 a macro like `setf' or `incf'.
584
585 \(fn PLACE &optional ENV)" nil nil)
586
587 (autoload 'setf "cl-macs" "\
588 Set each PLACE to the value of its VAL.
589 This is a generalized version of `setq'; the PLACEs may be symbolic
590 references such as (car x) or (aref x i), as well as plain symbols.
591 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
592 The return value is the last VAL in the list.
593
594 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
595
596 (autoload 'psetf "cl-macs" "\
597 Set PLACEs to the values VALs in parallel.
598 This is like `setf', except that all VAL forms are evaluated (in order)
599 before assigning any PLACEs to the corresponding values.
600
601 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
602
603 (autoload 'cl-do-pop "cl-macs" "\
604 Not documented
605
606 \(fn PLACE)" nil nil)
607
608 (autoload 'remf "cl-macs" "\
609 Remove TAG from property list PLACE.
610 PLACE may be a symbol, or any generalized variable allowed by `setf'.
611 The form returns true if TAG was found and removed, nil otherwise.
612
613 \(fn PLACE TAG)" nil (quote macro))
614
615 (autoload 'shiftf "cl-macs" "\
616 Shift left among PLACEs.
617 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
618 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
619
620 \(fn PLACE... VAL)" nil (quote macro))
621
622 (autoload 'rotatef "cl-macs" "\
623 Rotate left among PLACEs.
624 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
625 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
626
627 \(fn PLACE...)" nil (quote macro))
628
629 (autoload 'letf "cl-macs" "\
630 Temporarily bind to PLACEs.
631 This is the analogue of `let', but with generalized variables (in the
632 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
633 VALUE, then the BODY forms are executed. On exit, either normally or
634 because of a `throw' or error, the PLACEs are set back to their original
635 values. Note that this macro is *not* available in Common Lisp.
636 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
637 the PLACE is not modified before executing BODY.
638
639 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
640
641 (autoload 'letf* "cl-macs" "\
642 Temporarily bind to PLACEs.
643 This is the analogue of `let*', but with generalized variables (in the
644 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
645 VALUE, then the BODY forms are executed. On exit, either normally or
646 because of a `throw' or error, the PLACEs are set back to their original
647 values. Note that this macro is *not* available in Common Lisp.
648 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
649 the PLACE is not modified before executing BODY.
650
651 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
652
653 (autoload 'callf "cl-macs" "\
654 Set PLACE to (FUNC PLACE ARGS...).
655 FUNC should be an unquoted function name. PLACE may be a symbol,
656 or any generalized variable allowed by `setf'.
657
658 \(fn FUNC PLACE ARGS...)" nil (quote macro))
659
660 (autoload 'callf2 "cl-macs" "\
661 Set PLACE to (FUNC ARG1 PLACE ARGS...).
662 Like `callf', but PLACE is the second argument of FUNC, not the first.
663
664 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
665
666 (autoload 'define-modify-macro "cl-macs" "\
667 Define a `setf'-like modify macro.
668 If NAME is called, it combines its PLACE argument with the other arguments
669 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
670
671 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
672
673 (autoload 'defstruct "cl-macs" "\
674 Define a struct type.
675 This macro defines a new data type called NAME that stores data
676 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
677 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
678 You can use the accessors to set the corresponding slots, via `setf'.
679
680 NAME may instead take the form (NAME OPTIONS...), where each
681 OPTION is either a single keyword or (KEYWORD VALUE).
682 See Info node `(cl)Structures' for a list of valid keywords.
683
684 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
685 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
686 one keyword is supported, `:read-only'. If this has a non-nil
687 value, that slot cannot be set via `setf'.
688
689 \(fn NAME SLOTS...)" nil (quote macro))
690
691 (autoload 'cl-struct-setf-expander "cl-macs" "\
692 Not documented
693
694 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
695
696 (autoload 'deftype "cl-macs" "\
697 Define NAME as a new data type.
698 The type name can then be used in `typecase', `check-type', etc.
699
700 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
701
702 (autoload 'typep "cl-macs" "\
703 Check that OBJECT is of type TYPE.
704 TYPE is a Common Lisp-style type specifier.
705
706 \(fn OBJECT TYPE)" nil nil)
707
708 (autoload 'check-type "cl-macs" "\
709 Verify that FORM is of type TYPE; signal an error if not.
710 STRING is an optional description of the desired type.
711
712 \(fn FORM TYPE &optional STRING)" nil (quote macro))
713
714 (autoload 'assert "cl-macs" "\
715 Verify that FORM returns non-nil; signal an error if not.
716 Second arg SHOW-ARGS means to include arguments of FORM in message.
717 Other args STRING and ARGS... are arguments to be passed to `error'.
718 They are not evaluated unless the assertion fails. If STRING is
719 omitted, a default message listing FORM itself is used.
720
721 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
722
723 (autoload 'define-compiler-macro "cl-macs" "\
724 Define a compiler-only macro.
725 This is like `defmacro', but macro expansion occurs only if the call to
726 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
727 for optimizing the way calls to FUNC are compiled; the form returned by
728 BODY should do the same thing as a call to the normal function called
729 FUNC, though possibly more efficiently. Note that, like regular macros,
730 compiler macros are expanded repeatedly until no further expansions are
731 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
732 original function call alone by declaring an initial `&whole foo' parameter
733 and then returning foo.
734
735 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
736
737 (autoload 'compiler-macroexpand "cl-macs" "\
738 Not documented
739
740 \(fn FORM)" nil nil)
741
742 (autoload 'defsubst* "cl-macs" "\
743 Define NAME as a function.
744 Like `defun', except the function is automatically declared `inline',
745 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
746 surrounded by (block NAME ...).
747
748 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
749
750 ;;;***
751 \f
752 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
753 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
754 ;;;;;; nset-difference set-difference nintersection intersection
755 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
756 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
757 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
758 ;;;;;; count position-if-not position-if position find-if-not find-if
759 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
760 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
761 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
762 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "ec3ea1c77742734db8496272fe5721be")
763 ;;; Generated autoloads from cl-seq.el
764
765 (autoload 'reduce "cl-seq" "\
766 Reduce two-argument FUNCTION across SEQ.
767
768 Keywords supported: :start :end :from-end :initial-value :key
769
770 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
771
772 (autoload 'fill "cl-seq" "\
773 Fill the elements of SEQ with ITEM.
774
775 Keywords supported: :start :end
776
777 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
778
779 (autoload 'replace "cl-seq" "\
780 Replace the elements of SEQ1 with the elements of SEQ2.
781 SEQ1 is destructively modified, then returned.
782
783 Keywords supported: :start1 :end1 :start2 :end2
784
785 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
786
787 (autoload 'remove* "cl-seq" "\
788 Remove all occurrences of ITEM in SEQ.
789 This is a non-destructive function; it makes a copy of SEQ if necessary
790 to avoid corrupting the original SEQ.
791
792 Keywords supported: :test :test-not :key :count :start :end :from-end
793
794 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
795
796 (autoload 'remove-if "cl-seq" "\
797 Remove all items satisfying PREDICATE in SEQ.
798 This is a non-destructive function; it makes a copy of SEQ if necessary
799 to avoid corrupting the original SEQ.
800
801 Keywords supported: :key :count :start :end :from-end
802
803 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
804
805 (autoload 'remove-if-not "cl-seq" "\
806 Remove all items not satisfying PREDICATE in SEQ.
807 This is a non-destructive function; it makes a copy of SEQ if necessary
808 to avoid corrupting the original SEQ.
809
810 Keywords supported: :key :count :start :end :from-end
811
812 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
813
814 (autoload 'delete* "cl-seq" "\
815 Remove all occurrences of ITEM in SEQ.
816 This is a destructive function; it reuses the storage of SEQ whenever possible.
817
818 Keywords supported: :test :test-not :key :count :start :end :from-end
819
820 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
821
822 (autoload 'delete-if "cl-seq" "\
823 Remove all items satisfying PREDICATE in SEQ.
824 This is a destructive function; it reuses the storage of SEQ whenever possible.
825
826 Keywords supported: :key :count :start :end :from-end
827
828 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
829
830 (autoload 'delete-if-not "cl-seq" "\
831 Remove all items not satisfying PREDICATE in SEQ.
832 This is a destructive function; it reuses the storage of SEQ whenever possible.
833
834 Keywords supported: :key :count :start :end :from-end
835
836 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
837
838 (autoload 'remove-duplicates "cl-seq" "\
839 Return a copy of SEQ with all duplicate elements removed.
840
841 Keywords supported: :test :test-not :key :start :end :from-end
842
843 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
844
845 (autoload 'delete-duplicates "cl-seq" "\
846 Remove all duplicate elements from SEQ (destructively).
847
848 Keywords supported: :test :test-not :key :start :end :from-end
849
850 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
851
852 (autoload 'substitute "cl-seq" "\
853 Substitute NEW for OLD in SEQ.
854 This is a non-destructive function; it makes a copy of SEQ if necessary
855 to avoid corrupting the original SEQ.
856
857 Keywords supported: :test :test-not :key :count :start :end :from-end
858
859 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
860
861 (autoload 'substitute-if "cl-seq" "\
862 Substitute NEW for all items satisfying PREDICATE in SEQ.
863 This is a non-destructive function; it makes a copy of SEQ if necessary
864 to avoid corrupting the original SEQ.
865
866 Keywords supported: :key :count :start :end :from-end
867
868 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
869
870 (autoload 'substitute-if-not "cl-seq" "\
871 Substitute NEW for all items not satisfying PREDICATE in SEQ.
872 This is a non-destructive function; it makes a copy of SEQ if necessary
873 to avoid corrupting the original SEQ.
874
875 Keywords supported: :key :count :start :end :from-end
876
877 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
878
879 (autoload 'nsubstitute "cl-seq" "\
880 Substitute NEW for OLD in SEQ.
881 This is a destructive function; it reuses the storage of SEQ whenever possible.
882
883 Keywords supported: :test :test-not :key :count :start :end :from-end
884
885 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
886
887 (autoload 'nsubstitute-if "cl-seq" "\
888 Substitute NEW for all items satisfying PREDICATE in SEQ.
889 This is a destructive function; it reuses the storage of SEQ whenever possible.
890
891 Keywords supported: :key :count :start :end :from-end
892
893 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
894
895 (autoload 'nsubstitute-if-not "cl-seq" "\
896 Substitute NEW for all items not satisfying PREDICATE in SEQ.
897 This is a destructive function; it reuses the storage of SEQ whenever possible.
898
899 Keywords supported: :key :count :start :end :from-end
900
901 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
902
903 (autoload 'find "cl-seq" "\
904 Find the first occurrence of ITEM in SEQ.
905 Return the matching ITEM, or nil if not found.
906
907 Keywords supported: :test :test-not :key :start :end :from-end
908
909 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
910
911 (autoload 'find-if "cl-seq" "\
912 Find the first item satisfying PREDICATE in SEQ.
913 Return the matching item, or nil if not found.
914
915 Keywords supported: :key :start :end :from-end
916
917 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
918
919 (autoload 'find-if-not "cl-seq" "\
920 Find the first item not satisfying PREDICATE in SEQ.
921 Return the matching item, or nil if not found.
922
923 Keywords supported: :key :start :end :from-end
924
925 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
926
927 (autoload 'position "cl-seq" "\
928 Find the first occurrence of ITEM in SEQ.
929 Return the index of the matching item, or nil if not found.
930
931 Keywords supported: :test :test-not :key :start :end :from-end
932
933 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
934
935 (autoload 'position-if "cl-seq" "\
936 Find the first item satisfying PREDICATE in SEQ.
937 Return the index of the matching item, or nil if not found.
938
939 Keywords supported: :key :start :end :from-end
940
941 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
942
943 (autoload 'position-if-not "cl-seq" "\
944 Find the first item not satisfying PREDICATE in SEQ.
945 Return the index of the matching item, or nil if not found.
946
947 Keywords supported: :key :start :end :from-end
948
949 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
950
951 (autoload 'count "cl-seq" "\
952 Count the number of occurrences of ITEM in SEQ.
953
954 Keywords supported: :test :test-not :key :start :end
955
956 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
957
958 (autoload 'count-if "cl-seq" "\
959 Count the number of items satisfying PREDICATE in SEQ.
960
961 Keywords supported: :key :start :end
962
963 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
964
965 (autoload 'count-if-not "cl-seq" "\
966 Count the number of items not satisfying PREDICATE in SEQ.
967
968 Keywords supported: :key :start :end
969
970 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
971
972 (autoload 'mismatch "cl-seq" "\
973 Compare SEQ1 with SEQ2, return index of first mismatching element.
974 Return nil if the sequences match. If one sequence is a prefix of the
975 other, the return value indicates the end of the shorter sequence.
976
977 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
978
979 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
980
981 (autoload 'search "cl-seq" "\
982 Search for SEQ1 as a subsequence of SEQ2.
983 Return the index of the leftmost element of the first match found;
984 return nil if there are no matches.
985
986 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
987
988 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
989
990 (autoload 'sort* "cl-seq" "\
991 Sort the argument SEQ according to PREDICATE.
992 This is a destructive function; it reuses the storage of SEQ if possible.
993
994 Keywords supported: :key
995
996 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
997
998 (autoload 'stable-sort "cl-seq" "\
999 Sort the argument SEQ stably according to PREDICATE.
1000 This is a destructive function; it reuses the storage of SEQ if possible.
1001
1002 Keywords supported: :key
1003
1004 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1005
1006 (autoload 'merge "cl-seq" "\
1007 Destructively merge the two sequences to produce a new sequence.
1008 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1009 sequences, and PREDICATE is a `less-than' predicate on the elements.
1010
1011 Keywords supported: :key
1012
1013 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1014
1015 (autoload 'member* "cl-seq" "\
1016 Find the first occurrence of ITEM in LIST.
1017 Return the sublist of LIST whose car is ITEM.
1018
1019 Keywords supported: :test :test-not :key
1020
1021 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1022
1023 (autoload 'member-if "cl-seq" "\
1024 Find the first item satisfying PREDICATE in LIST.
1025 Return the sublist of LIST whose car matches.
1026
1027 Keywords supported: :key
1028
1029 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1030
1031 (autoload 'member-if-not "cl-seq" "\
1032 Find the first item not satisfying PREDICATE in LIST.
1033 Return the sublist of LIST whose car matches.
1034
1035 Keywords supported: :key
1036
1037 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1038
1039 (autoload 'cl-adjoin "cl-seq" "\
1040 Not documented
1041
1042 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1043
1044 (autoload 'assoc* "cl-seq" "\
1045 Find the first item whose car matches ITEM in LIST.
1046
1047 Keywords supported: :test :test-not :key
1048
1049 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1050
1051 (autoload 'assoc-if "cl-seq" "\
1052 Find the first item whose car satisfies PREDICATE in LIST.
1053
1054 Keywords supported: :key
1055
1056 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1057
1058 (autoload 'assoc-if-not "cl-seq" "\
1059 Find the first item whose car does not satisfy PREDICATE in LIST.
1060
1061 Keywords supported: :key
1062
1063 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1064
1065 (autoload 'rassoc* "cl-seq" "\
1066 Find the first item whose cdr matches ITEM in LIST.
1067
1068 Keywords supported: :test :test-not :key
1069
1070 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1071
1072 (autoload 'rassoc-if "cl-seq" "\
1073 Find the first item whose cdr satisfies PREDICATE in LIST.
1074
1075 Keywords supported: :key
1076
1077 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1078
1079 (autoload 'rassoc-if-not "cl-seq" "\
1080 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1081
1082 Keywords supported: :key
1083
1084 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1085
1086 (autoload 'union "cl-seq" "\
1087 Combine LIST1 and LIST2 using a set-union operation.
1088 The result list contains all items that appear in either LIST1 or LIST2.
1089 This is a non-destructive function; it makes a copy of the data if necessary
1090 to avoid corrupting the original LIST1 and LIST2.
1091
1092 Keywords supported: :test :test-not :key
1093
1094 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1095
1096 (autoload 'nunion "cl-seq" "\
1097 Combine LIST1 and LIST2 using a set-union operation.
1098 The result list contains all items that appear in either LIST1 or LIST2.
1099 This is a destructive function; it reuses the storage of LIST1 and LIST2
1100 whenever possible.
1101
1102 Keywords supported: :test :test-not :key
1103
1104 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1105
1106 (autoload 'intersection "cl-seq" "\
1107 Combine LIST1 and LIST2 using a set-intersection operation.
1108 The result list contains all items that appear in both LIST1 and LIST2.
1109 This is a non-destructive function; it makes a copy of the data if necessary
1110 to avoid corrupting the original LIST1 and LIST2.
1111
1112 Keywords supported: :test :test-not :key
1113
1114 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1115
1116 (autoload 'nintersection "cl-seq" "\
1117 Combine LIST1 and LIST2 using a set-intersection operation.
1118 The result list contains all items that appear in both LIST1 and LIST2.
1119 This is a destructive function; it reuses the storage of LIST1 and LIST2
1120 whenever possible.
1121
1122 Keywords supported: :test :test-not :key
1123
1124 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1125
1126 (autoload 'set-difference "cl-seq" "\
1127 Combine LIST1 and LIST2 using a set-difference operation.
1128 The result list contains all items that appear in LIST1 but not LIST2.
1129 This is a non-destructive function; it makes a copy of the data if necessary
1130 to avoid corrupting the original LIST1 and LIST2.
1131
1132 Keywords supported: :test :test-not :key
1133
1134 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1135
1136 (autoload 'nset-difference "cl-seq" "\
1137 Combine LIST1 and LIST2 using a set-difference operation.
1138 The result list contains all items that appear in LIST1 but not LIST2.
1139 This is a destructive function; it reuses the storage of LIST1 and LIST2
1140 whenever possible.
1141
1142 Keywords supported: :test :test-not :key
1143
1144 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1145
1146 (autoload 'set-exclusive-or "cl-seq" "\
1147 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1148 The result list contains all items that appear in exactly one of LIST1, LIST2.
1149 This is a non-destructive function; it makes a copy of the data if necessary
1150 to avoid corrupting the original LIST1 and LIST2.
1151
1152 Keywords supported: :test :test-not :key
1153
1154 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1155
1156 (autoload 'nset-exclusive-or "cl-seq" "\
1157 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1158 The result list contains all items that appear in exactly one of LIST1, LIST2.
1159 This is a destructive function; it reuses the storage of LIST1 and LIST2
1160 whenever possible.
1161
1162 Keywords supported: :test :test-not :key
1163
1164 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1165
1166 (autoload 'subsetp "cl-seq" "\
1167 Return true if LIST1 is a subset of LIST2.
1168 I.e., if every element of LIST1 also appears in LIST2.
1169
1170 Keywords supported: :test :test-not :key
1171
1172 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1173
1174 (autoload 'subst-if "cl-seq" "\
1175 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1176 Return a copy of TREE with all matching elements replaced by NEW.
1177
1178 Keywords supported: :key
1179
1180 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1181
1182 (autoload 'subst-if-not "cl-seq" "\
1183 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1184 Return a copy of TREE with all non-matching elements replaced by NEW.
1185
1186 Keywords supported: :key
1187
1188 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1189
1190 (autoload 'nsubst "cl-seq" "\
1191 Substitute NEW for OLD everywhere in TREE (destructively).
1192 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1193 to `setcar').
1194
1195 Keywords supported: :test :test-not :key
1196
1197 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1198
1199 (autoload 'nsubst-if "cl-seq" "\
1200 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1201 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1202
1203 Keywords supported: :key
1204
1205 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1206
1207 (autoload 'nsubst-if-not "cl-seq" "\
1208 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1209 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1210
1211 Keywords supported: :key
1212
1213 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1214
1215 (autoload 'sublis "cl-seq" "\
1216 Perform substitutions indicated by ALIST in TREE (non-destructively).
1217 Return a copy of TREE with all matching elements replaced.
1218
1219 Keywords supported: :test :test-not :key
1220
1221 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1222
1223 (autoload 'nsublis "cl-seq" "\
1224 Perform substitutions indicated by ALIST in TREE (destructively).
1225 Any matching element of TREE is changed via a call to `setcar'.
1226
1227 Keywords supported: :test :test-not :key
1228
1229 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1230
1231 (autoload 'tree-equal "cl-seq" "\
1232 Return t if trees TREE1 and TREE2 have `eql' leaves.
1233 Atoms are compared by `eql'; cons cells are compared recursively.
1234
1235 Keywords supported: :test :test-not :key
1236
1237 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1238
1239 ;;;***
1240 \f
1241 ;; Local Variables:
1242 ;; version-control: never
1243 ;; no-byte-compile: t
1244 ;; no-update-autoloads: t
1245 ;; End:
1246
1247 ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1248 ;;; cl-loaddefs.el ends here