Test SHARABLE_LIB_BUG, not SHAREABLE_LIB_BUG.
[bpt/emacs.git] / src / search.c
CommitLineData
ca1d1d23 1/* String search routines for GNU Emacs.
3a22ee35 2 Copyright (C) 1985, 1986, 1987, 1993, 1994 Free Software Foundation, Inc.
ca1d1d23
JB
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
7c938215 8the Free Software Foundation; either version 2, or (at your option)
ca1d1d23
JB
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
18160b98 21#include <config.h>
ca1d1d23
JB
22#include "lisp.h"
23#include "syntax.h"
24#include "buffer.h"
9169c321 25#include "region-cache.h"
ca1d1d23 26#include "commands.h"
9ac0d9e0 27#include "blockinput.h"
4746118a 28
ca1d1d23
JB
29#include <sys/types.h>
30#include "regex.h"
31
487282dc 32#define REGEXP_CACHE_SIZE 5
ca1d1d23 33
487282dc
KH
34/* If the regexp is non-nil, then the buffer contains the compiled form
35 of that regexp, suitable for searching. */
36struct regexp_cache {
37 struct regexp_cache *next;
38 Lisp_Object regexp;
39 struct re_pattern_buffer buf;
40 char fastmap[0400];
b819a390
RS
41 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
42 char posix;
487282dc 43};
ca1d1d23 44
487282dc
KH
45/* The instances of that struct. */
46struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
ca1d1d23 47
487282dc
KH
48/* The head of the linked list; points to the most recently used buffer. */
49struct regexp_cache *searchbuf_head;
ca1d1d23 50
ca1d1d23 51
4746118a
JB
52/* Every call to re_match, etc., must pass &search_regs as the regs
53 argument unless you can show it is unnecessary (i.e., if re_match
54 is certainly going to be called again before region-around-match
55 can be called).
56
57 Since the registers are now dynamically allocated, we need to make
58 sure not to refer to the Nth register before checking that it has
1113d9db
JB
59 been allocated by checking search_regs.num_regs.
60
61 The regex code keeps track of whether it has allocated the search
487282dc
KH
62 buffer using bits in the re_pattern_buffer. This means that whenever
63 you compile a new pattern, it completely forgets whether it has
1113d9db
JB
64 allocated any registers, and will allocate new registers the next
65 time you call a searching or matching function. Therefore, we need
66 to call re_set_registers after compiling a new pattern or after
67 setting the match registers, so that the regex functions will be
68 able to free or re-allocate it properly. */
ca1d1d23
JB
69static struct re_registers search_regs;
70
daa37602
JB
71/* The buffer in which the last search was performed, or
72 Qt if the last search was done in a string;
73 Qnil if no searching has been done yet. */
74static Lisp_Object last_thing_searched;
ca1d1d23
JB
75
76/* error condition signalled when regexp compile_pattern fails */
77
78Lisp_Object Qinvalid_regexp;
79
ca325161 80static void set_search_regs ();
044f81f1 81static void save_search_regs ();
ca325161 82
b819a390
RS
83static int search_buffer ();
84
ca1d1d23
JB
85static void
86matcher_overflow ()
87{
88 error ("Stack overflow in regexp matcher");
89}
90
91#ifdef __STDC__
92#define CONST const
93#else
94#define CONST
95#endif
96
b819a390
RS
97/* Compile a regexp and signal a Lisp error if anything goes wrong.
98 PATTERN is the pattern to compile.
99 CP is the place to put the result.
100 TRANSLATE is a translation table for ignoring case, or NULL for none.
101 REGP is the structure that says where to store the "register"
102 values that will result from matching this pattern.
103 If it is 0, we should compile the pattern not to record any
104 subexpression bounds.
105 POSIX is nonzero if we want full backtracking (POSIX style)
106 for this pattern. 0 means backtrack only enough to get a valid match. */
ca1d1d23 107
487282dc 108static void
b819a390 109compile_pattern_1 (cp, pattern, translate, regp, posix)
487282dc 110 struct regexp_cache *cp;
ca1d1d23 111 Lisp_Object pattern;
b1428bd8 112 Lisp_Object *translate;
487282dc 113 struct re_registers *regp;
b819a390 114 int posix;
ca1d1d23
JB
115{
116 CONST char *val;
b819a390 117 reg_syntax_t old;
ca1d1d23 118
487282dc
KH
119 cp->regexp = Qnil;
120 cp->buf.translate = translate;
b819a390 121 cp->posix = posix;
9ac0d9e0 122 BLOCK_INPUT;
b819a390
RS
123 old = re_set_syntax (RE_SYNTAX_EMACS
124 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
b90d9e80 125 val = (CONST char *) re_compile_pattern ((char *) XSTRING (pattern)->data,
487282dc 126 XSTRING (pattern)->size, &cp->buf);
b819a390 127 re_set_syntax (old);
9ac0d9e0 128 UNBLOCK_INPUT;
ca1d1d23 129 if (val)
487282dc 130 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
1113d9db 131
487282dc 132 cp->regexp = Fcopy_sequence (pattern);
487282dc
KH
133}
134
135/* Compile a regexp if necessary, but first check to see if there's one in
b819a390
RS
136 the cache.
137 PATTERN is the pattern to compile.
138 TRANSLATE is a translation table for ignoring case, or NULL for none.
139 REGP is the structure that says where to store the "register"
140 values that will result from matching this pattern.
141 If it is 0, we should compile the pattern not to record any
142 subexpression bounds.
143 POSIX is nonzero if we want full backtracking (POSIX style)
144 for this pattern. 0 means backtrack only enough to get a valid match. */
487282dc
KH
145
146struct re_pattern_buffer *
b819a390 147compile_pattern (pattern, regp, translate, posix)
487282dc
KH
148 Lisp_Object pattern;
149 struct re_registers *regp;
b1428bd8 150 Lisp_Object *translate;
b819a390 151 int posix;
487282dc
KH
152{
153 struct regexp_cache *cp, **cpp;
154
155 for (cpp = &searchbuf_head; ; cpp = &cp->next)
156 {
157 cp = *cpp;
158 if (!NILP (Fstring_equal (cp->regexp, pattern))
b819a390
RS
159 && cp->buf.translate == translate
160 && cp->posix == posix)
487282dc
KH
161 break;
162
163 /* If we're at the end of the cache, compile into the last cell. */
164 if (cp->next == 0)
165 {
b819a390 166 compile_pattern_1 (cp, pattern, translate, regp, posix);
487282dc
KH
167 break;
168 }
169 }
170
171 /* When we get here, cp (aka *cpp) contains the compiled pattern,
172 either because we found it in the cache or because we just compiled it.
173 Move it to the front of the queue to mark it as most recently used. */
174 *cpp = cp->next;
175 cp->next = searchbuf_head;
176 searchbuf_head = cp;
1113d9db 177
6639708c
RS
178 /* Advise the searching functions about the space we have allocated
179 for register data. */
180 if (regp)
181 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
182
487282dc 183 return &cp->buf;
ca1d1d23
JB
184}
185
186/* Error condition used for failing searches */
187Lisp_Object Qsearch_failed;
188
189Lisp_Object
190signal_failure (arg)
191 Lisp_Object arg;
192{
193 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
194 return Qnil;
195}
196\f
b819a390
RS
197static Lisp_Object
198looking_at_1 (string, posix)
ca1d1d23 199 Lisp_Object string;
b819a390 200 int posix;
ca1d1d23
JB
201{
202 Lisp_Object val;
203 unsigned char *p1, *p2;
204 int s1, s2;
205 register int i;
487282dc 206 struct re_pattern_buffer *bufp;
ca1d1d23 207
7074fde6
FP
208 if (running_asynch_code)
209 save_search_regs ();
210
ca1d1d23 211 CHECK_STRING (string, 0);
487282dc
KH
212 bufp = compile_pattern (string, &search_regs,
213 (!NILP (current_buffer->case_fold_search)
b819a390
RS
214 ? DOWNCASE_TABLE : 0),
215 posix);
ca1d1d23
JB
216
217 immediate_quit = 1;
218 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
219
220 /* Get pointers and sizes of the two strings
221 that make up the visible portion of the buffer. */
222
223 p1 = BEGV_ADDR;
224 s1 = GPT - BEGV;
225 p2 = GAP_END_ADDR;
226 s2 = ZV - GPT;
227 if (s1 < 0)
228 {
229 p2 = p1;
230 s2 = ZV - BEGV;
231 s1 = 0;
232 }
233 if (s2 < 0)
234 {
235 s1 = ZV - BEGV;
236 s2 = 0;
237 }
238
487282dc 239 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
ca1d1d23
JB
240 point - BEGV, &search_regs,
241 ZV - BEGV);
242 if (i == -2)
243 matcher_overflow ();
244
245 val = (0 <= i ? Qt : Qnil);
4746118a 246 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
247 if (search_regs.start[i] >= 0)
248 {
249 search_regs.start[i] += BEGV;
250 search_regs.end[i] += BEGV;
251 }
a3668d92 252 XSETBUFFER (last_thing_searched, current_buffer);
ca1d1d23
JB
253 immediate_quit = 0;
254 return val;
255}
256
b819a390 257DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
94f94972 258 "Return t if text after point matches regular expression REGEXP.\n\
b819a390
RS
259This function modifies the match data that `match-beginning',\n\
260`match-end' and `match-data' access; save and restore the match\n\
261data if you want to preserve them.")
94f94972
RS
262 (regexp)
263 Lisp_Object regexp;
b819a390 264{
94f94972 265 return looking_at_1 (regexp, 0);
b819a390
RS
266}
267
268DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
94f94972 269 "Return t if text after point matches regular expression REGEXP.\n\
b819a390
RS
270Find the longest match, in accord with Posix regular expression rules.\n\
271This function modifies the match data that `match-beginning',\n\
272`match-end' and `match-data' access; save and restore the match\n\
273data if you want to preserve them.")
94f94972
RS
274 (regexp)
275 Lisp_Object regexp;
b819a390 276{
94f94972 277 return looking_at_1 (regexp, 1);
b819a390
RS
278}
279\f
280static Lisp_Object
281string_match_1 (regexp, string, start, posix)
ca1d1d23 282 Lisp_Object regexp, string, start;
b819a390 283 int posix;
ca1d1d23
JB
284{
285 int val;
286 int s;
487282dc 287 struct re_pattern_buffer *bufp;
ca1d1d23 288
7074fde6
FP
289 if (running_asynch_code)
290 save_search_regs ();
291
ca1d1d23
JB
292 CHECK_STRING (regexp, 0);
293 CHECK_STRING (string, 1);
294
295 if (NILP (start))
296 s = 0;
297 else
298 {
299 int len = XSTRING (string)->size;
300
301 CHECK_NUMBER (start, 2);
302 s = XINT (start);
303 if (s < 0 && -s <= len)
26faf9f4 304 s = len + s;
ca1d1d23
JB
305 else if (0 > s || s > len)
306 args_out_of_range (string, start);
307 }
308
487282dc
KH
309 bufp = compile_pattern (regexp, &search_regs,
310 (!NILP (current_buffer->case_fold_search)
b819a390 311 ? DOWNCASE_TABLE : 0),
24b704fa 312 posix);
ca1d1d23 313 immediate_quit = 1;
487282dc 314 val = re_search (bufp, (char *) XSTRING (string)->data,
ca1d1d23
JB
315 XSTRING (string)->size, s, XSTRING (string)->size - s,
316 &search_regs);
317 immediate_quit = 0;
daa37602 318 last_thing_searched = Qt;
ca1d1d23
JB
319 if (val == -2)
320 matcher_overflow ();
321 if (val < 0) return Qnil;
322 return make_number (val);
323}
e59a8453 324
b819a390
RS
325DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
326 "Return index of start of first match for REGEXP in STRING, or nil.\n\
327If third arg START is non-nil, start search at that index in STRING.\n\
328For index of first char beyond the match, do (match-end 0).\n\
329`match-end' and `match-beginning' also give indices of substrings\n\
330matched by parenthesis constructs in the pattern.")
331 (regexp, string, start)
332 Lisp_Object regexp, string, start;
333{
334 return string_match_1 (regexp, string, start, 0);
335}
336
337DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
338 "Return index of start of first match for REGEXP in STRING, or nil.\n\
339Find the longest match, in accord with Posix regular expression rules.\n\
340If third arg START is non-nil, start search at that index in STRING.\n\
341For index of first char beyond the match, do (match-end 0).\n\
342`match-end' and `match-beginning' also give indices of substrings\n\
343matched by parenthesis constructs in the pattern.")
344 (regexp, string, start)
345 Lisp_Object regexp, string, start;
346{
347 return string_match_1 (regexp, string, start, 1);
348}
349
e59a8453
RS
350/* Match REGEXP against STRING, searching all of STRING,
351 and return the index of the match, or negative on failure.
352 This does not clobber the match data. */
353
354int
355fast_string_match (regexp, string)
356 Lisp_Object regexp, string;
357{
358 int val;
487282dc 359 struct re_pattern_buffer *bufp;
e59a8453 360
b819a390 361 bufp = compile_pattern (regexp, 0, 0, 0);
e59a8453 362 immediate_quit = 1;
487282dc 363 val = re_search (bufp, (char *) XSTRING (string)->data,
e59a8453
RS
364 XSTRING (string)->size, 0, XSTRING (string)->size,
365 0);
366 immediate_quit = 0;
367 return val;
368}
ca1d1d23 369\f
9169c321
JB
370/* max and min. */
371
372static int
373max (a, b)
374 int a, b;
375{
376 return ((a > b) ? a : b);
377}
378
379static int
380min (a, b)
381 int a, b;
382{
383 return ((a < b) ? a : b);
384}
385
386\f
387/* The newline cache: remembering which sections of text have no newlines. */
388
389/* If the user has requested newline caching, make sure it's on.
390 Otherwise, make sure it's off.
391 This is our cheezy way of associating an action with the change of
392 state of a buffer-local variable. */
393static void
394newline_cache_on_off (buf)
395 struct buffer *buf;
396{
397 if (NILP (buf->cache_long_line_scans))
398 {
399 /* It should be off. */
400 if (buf->newline_cache)
401 {
402 free_region_cache (buf->newline_cache);
403 buf->newline_cache = 0;
404 }
405 }
406 else
407 {
408 /* It should be on. */
409 if (buf->newline_cache == 0)
410 buf->newline_cache = new_region_cache ();
411 }
412}
413
414\f
415/* Search for COUNT instances of the character TARGET between START and END.
416
417 If COUNT is positive, search forwards; END must be >= START.
418 If COUNT is negative, search backwards for the -COUNTth instance;
419 END must be <= START.
420 If COUNT is zero, do anything you please; run rogue, for all I care.
421
422 If END is zero, use BEGV or ZV instead, as appropriate for the
423 direction indicated by COUNT.
ffd56f97
JB
424
425 If we find COUNT instances, set *SHORTAGE to zero, and return the
5bfe95c9
RS
426 position after the COUNTth match. Note that for reverse motion
427 this is not the same as the usual convention for Emacs motion commands.
ffd56f97 428
9169c321
JB
429 If we don't find COUNT instances before reaching END, set *SHORTAGE
430 to the number of TARGETs left unfound, and return END.
ffd56f97 431
087a5f81
RS
432 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
433 except when inside redisplay. */
434
9169c321
JB
435scan_buffer (target, start, end, count, shortage, allow_quit)
436 register int target;
437 int start, end;
438 int count;
439 int *shortage;
087a5f81 440 int allow_quit;
ca1d1d23 441{
9169c321
JB
442 struct region_cache *newline_cache;
443 int direction;
ffd56f97 444
9169c321
JB
445 if (count > 0)
446 {
447 direction = 1;
448 if (! end) end = ZV;
449 }
450 else
451 {
452 direction = -1;
453 if (! end) end = BEGV;
454 }
ffd56f97 455
9169c321
JB
456 newline_cache_on_off (current_buffer);
457 newline_cache = current_buffer->newline_cache;
ca1d1d23
JB
458
459 if (shortage != 0)
460 *shortage = 0;
461
087a5f81 462 immediate_quit = allow_quit;
ca1d1d23 463
ffd56f97 464 if (count > 0)
9169c321 465 while (start != end)
ca1d1d23 466 {
9169c321
JB
467 /* Our innermost scanning loop is very simple; it doesn't know
468 about gaps, buffer ends, or the newline cache. ceiling is
469 the position of the last character before the next such
470 obstacle --- the last character the dumb search loop should
471 examine. */
472 register int ceiling = end - 1;
473
474 /* If we're looking for a newline, consult the newline cache
475 to see where we can avoid some scanning. */
476 if (target == '\n' && newline_cache)
477 {
478 int next_change;
479 immediate_quit = 0;
480 while (region_cache_forward
481 (current_buffer, newline_cache, start, &next_change))
482 start = next_change;
cbe0db0d 483 immediate_quit = allow_quit;
9169c321
JB
484
485 /* start should never be after end. */
486 if (start >= end)
487 start = end - 1;
488
489 /* Now the text after start is an unknown region, and
490 next_change is the position of the next known region. */
491 ceiling = min (next_change - 1, ceiling);
492 }
493
494 /* The dumb loop can only scan text stored in contiguous
495 bytes. BUFFER_CEILING_OF returns the last character
496 position that is contiguous, so the ceiling is the
497 position after that. */
498 ceiling = min (BUFFER_CEILING_OF (start), ceiling);
499
500 {
501 /* The termination address of the dumb loop. */
502 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling) + 1;
503 register unsigned char *cursor = &FETCH_CHAR (start);
504 unsigned char *base = cursor;
505
506 while (cursor < ceiling_addr)
507 {
508 unsigned char *scan_start = cursor;
509
510 /* The dumb loop. */
511 while (*cursor != target && ++cursor < ceiling_addr)
512 ;
513
514 /* If we're looking for newlines, cache the fact that
515 the region from start to cursor is free of them. */
516 if (target == '\n' && newline_cache)
517 know_region_cache (current_buffer, newline_cache,
518 start + scan_start - base,
519 start + cursor - base);
520
521 /* Did we find the target character? */
522 if (cursor < ceiling_addr)
523 {
524 if (--count == 0)
525 {
526 immediate_quit = 0;
527 return (start + cursor - base + 1);
528 }
529 cursor++;
530 }
531 }
532
533 start += cursor - base;
534 }
ca1d1d23
JB
535 }
536 else
9169c321
JB
537 while (start > end)
538 {
539 /* The last character to check before the next obstacle. */
540 register int ceiling = end;
541
542 /* Consult the newline cache, if appropriate. */
543 if (target == '\n' && newline_cache)
544 {
545 int next_change;
546 immediate_quit = 0;
547 while (region_cache_backward
548 (current_buffer, newline_cache, start, &next_change))
549 start = next_change;
cbe0db0d 550 immediate_quit = allow_quit;
9169c321
JB
551
552 /* Start should never be at or before end. */
553 if (start <= end)
554 start = end + 1;
555
556 /* Now the text before start is an unknown region, and
557 next_change is the position of the next known region. */
558 ceiling = max (next_change, ceiling);
559 }
560
561 /* Stop scanning before the gap. */
562 ceiling = max (BUFFER_FLOOR_OF (start - 1), ceiling);
563
564 {
565 /* The termination address of the dumb loop. */
566 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling);
567 register unsigned char *cursor = &FETCH_CHAR (start - 1);
568 unsigned char *base = cursor;
569
570 while (cursor >= ceiling_addr)
571 {
572 unsigned char *scan_start = cursor;
573
574 while (*cursor != target && --cursor >= ceiling_addr)
575 ;
576
577 /* If we're looking for newlines, cache the fact that
578 the region from after the cursor to start is free of them. */
579 if (target == '\n' && newline_cache)
580 know_region_cache (current_buffer, newline_cache,
581 start + cursor - base,
582 start + scan_start - base);
583
584 /* Did we find the target character? */
585 if (cursor >= ceiling_addr)
586 {
587 if (++count >= 0)
588 {
589 immediate_quit = 0;
590 return (start + cursor - base);
591 }
592 cursor--;
593 }
594 }
595
596 start += cursor - base;
597 }
598 }
599
ca1d1d23
JB
600 immediate_quit = 0;
601 if (shortage != 0)
ffd56f97 602 *shortage = count * direction;
9169c321 603 return start;
ca1d1d23
JB
604}
605
63fa018d
RS
606int
607find_next_newline_no_quit (from, cnt)
608 register int from, cnt;
609{
9169c321 610 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
63fa018d
RS
611}
612
ca1d1d23
JB
613int
614find_next_newline (from, cnt)
615 register int from, cnt;
616{
9169c321
JB
617 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 1);
618}
619
620
621/* Like find_next_newline, but returns position before the newline,
622 not after, and only search up to TO. This isn't just
623 find_next_newline (...)-1, because you might hit TO. */
624int
625find_before_next_newline (from, to, cnt)
cbe0db0d 626 int from, to, cnt;
9169c321
JB
627{
628 int shortage;
629 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
630
631 if (shortage == 0)
632 pos--;
633
634 return pos;
ca1d1d23
JB
635}
636\f
c1dc99a1
JB
637Lisp_Object skip_chars ();
638
ca1d1d23 639DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
3acb9a69
RS
640 "Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
641STRING is like the inside of a `[...]' in a regular expression\n\
ca1d1d23
JB
642except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
643Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
c1dc99a1
JB
644With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
645Returns the distance traveled, either zero or positive.")
ca1d1d23
JB
646 (string, lim)
647 Lisp_Object string, lim;
648{
17431c60 649 return skip_chars (1, 0, string, lim);
ca1d1d23
JB
650}
651
652DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
3acb9a69 653 "Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
c1dc99a1
JB
654See `skip-chars-forward' for details.\n\
655Returns the distance traveled, either zero or negative.")
ca1d1d23
JB
656 (string, lim)
657 Lisp_Object string, lim;
658{
17431c60
RS
659 return skip_chars (0, 0, string, lim);
660}
661
662DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
663 "Move point forward across chars in specified syntax classes.\n\
664SYNTAX is a string of syntax code characters.\n\
665Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
666If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
667This function returns the distance traveled, either zero or positive.")
668 (syntax, lim)
669 Lisp_Object syntax, lim;
670{
671 return skip_chars (1, 1, syntax, lim);
672}
673
674DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
675 "Move point backward across chars in specified syntax classes.\n\
676SYNTAX is a string of syntax code characters.\n\
677Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
678If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
679This function returns the distance traveled, either zero or negative.")
680 (syntax, lim)
681 Lisp_Object syntax, lim;
682{
683 return skip_chars (0, 1, syntax, lim);
ca1d1d23
JB
684}
685
c1dc99a1 686Lisp_Object
17431c60
RS
687skip_chars (forwardp, syntaxp, string, lim)
688 int forwardp, syntaxp;
ca1d1d23
JB
689 Lisp_Object string, lim;
690{
691 register unsigned char *p, *pend;
692 register unsigned char c;
693 unsigned char fastmap[0400];
694 int negate = 0;
695 register int i;
696
697 CHECK_STRING (string, 0);
698
699 if (NILP (lim))
a3668d92 700 XSETINT (lim, forwardp ? ZV : BEGV);
ca1d1d23
JB
701 else
702 CHECK_NUMBER_COERCE_MARKER (lim, 1);
703
ca1d1d23 704 /* In any case, don't allow scan outside bounds of buffer. */
c5241910
RS
705 /* jla turned this off, for no known reason.
706 bfox turned the ZV part on, and rms turned the
707 BEGV part back on. */
708 if (XINT (lim) > ZV)
c235cce7 709 XSETFASTINT (lim, ZV);
c5241910 710 if (XINT (lim) < BEGV)
c235cce7 711 XSETFASTINT (lim, BEGV);
ca1d1d23
JB
712
713 p = XSTRING (string)->data;
714 pend = p + XSTRING (string)->size;
715 bzero (fastmap, sizeof fastmap);
716
717 if (p != pend && *p == '^')
718 {
719 negate = 1; p++;
720 }
721
17431c60
RS
722 /* Find the characters specified and set their elements of fastmap.
723 If syntaxp, each character counts as itself.
724 Otherwise, handle backslashes and ranges specially */
ca1d1d23
JB
725
726 while (p != pend)
727 {
728 c = *p++;
17431c60
RS
729 if (syntaxp)
730 fastmap[c] = 1;
731 else
ca1d1d23 732 {
17431c60 733 if (c == '\\')
ca1d1d23 734 {
17431c60
RS
735 if (p == pend) break;
736 c = *p++;
737 }
738 if (p != pend && *p == '-')
739 {
740 p++;
741 if (p == pend) break;
742 while (c <= *p)
743 {
744 fastmap[c] = 1;
745 c++;
746 }
747 p++;
ca1d1d23 748 }
17431c60
RS
749 else
750 fastmap[c] = 1;
ca1d1d23 751 }
ca1d1d23
JB
752 }
753
9239c6c1
RS
754 if (syntaxp && fastmap['-'] != 0)
755 fastmap[' '] = 1;
756
ca1d1d23
JB
757 /* If ^ was the first character, complement the fastmap. */
758
759 if (negate)
760 for (i = 0; i < sizeof fastmap; i++)
761 fastmap[i] ^= 1;
762
c1dc99a1
JB
763 {
764 int start_point = point;
765
766 immediate_quit = 1;
17431c60 767 if (syntaxp)
c1dc99a1 768 {
17431c60
RS
769
770 if (forwardp)
771 {
772 while (point < XINT (lim)
773 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
774 SET_PT (point + 1);
775 }
776 else
777 {
778 while (point > XINT (lim)
779 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
780 SET_PT (point - 1);
781 }
c1dc99a1
JB
782 }
783 else
784 {
17431c60
RS
785 if (forwardp)
786 {
787 while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
788 SET_PT (point + 1);
789 }
790 else
791 {
792 while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
793 SET_PT (point - 1);
794 }
c1dc99a1
JB
795 }
796 immediate_quit = 0;
797
798 return make_number (point - start_point);
799 }
ca1d1d23
JB
800}
801\f
802/* Subroutines of Lisp buffer search functions. */
803
804static Lisp_Object
b819a390 805search_command (string, bound, noerror, count, direction, RE, posix)
ca1d1d23
JB
806 Lisp_Object string, bound, noerror, count;
807 int direction;
808 int RE;
b819a390 809 int posix;
ca1d1d23
JB
810{
811 register int np;
812 int lim;
813 int n = direction;
814
815 if (!NILP (count))
816 {
817 CHECK_NUMBER (count, 3);
818 n *= XINT (count);
819 }
820
821 CHECK_STRING (string, 0);
822 if (NILP (bound))
823 lim = n > 0 ? ZV : BEGV;
824 else
825 {
826 CHECK_NUMBER_COERCE_MARKER (bound, 1);
827 lim = XINT (bound);
828 if (n > 0 ? lim < point : lim > point)
829 error ("Invalid search bound (wrong side of point)");
830 if (lim > ZV)
831 lim = ZV;
832 if (lim < BEGV)
833 lim = BEGV;
834 }
835
836 np = search_buffer (string, point, lim, n, RE,
837 (!NILP (current_buffer->case_fold_search)
b1428bd8
RS
838 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents
839 : 0),
ca1d1d23 840 (!NILP (current_buffer->case_fold_search)
b1428bd8
RS
841 ? XCHAR_TABLE (current_buffer->case_eqv_table)->contents
842 : 0),
b819a390 843 posix);
ca1d1d23
JB
844 if (np <= 0)
845 {
846 if (NILP (noerror))
847 return signal_failure (string);
848 if (!EQ (noerror, Qt))
849 {
850 if (lim < BEGV || lim > ZV)
851 abort ();
a5f217b8
RS
852 SET_PT (lim);
853 return Qnil;
854#if 0 /* This would be clean, but maybe programs depend on
855 a value of nil here. */
481399bf 856 np = lim;
a5f217b8 857#endif
ca1d1d23 858 }
481399bf
RS
859 else
860 return Qnil;
ca1d1d23
JB
861 }
862
863 if (np < BEGV || np > ZV)
864 abort ();
865
866 SET_PT (np);
867
868 return make_number (np);
869}
870\f
b6d6a51c
KH
871static int
872trivial_regexp_p (regexp)
873 Lisp_Object regexp;
874{
875 int len = XSTRING (regexp)->size;
876 unsigned char *s = XSTRING (regexp)->data;
877 unsigned char c;
878 while (--len >= 0)
879 {
880 switch (*s++)
881 {
882 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
883 return 0;
884 case '\\':
885 if (--len < 0)
886 return 0;
887 switch (*s++)
888 {
889 case '|': case '(': case ')': case '`': case '\'': case 'b':
890 case 'B': case '<': case '>': case 'w': case 'W': case 's':
866f60fd
KH
891 case 'S': case '=':
892 case '1': case '2': case '3': case '4': case '5':
b6d6a51c
KH
893 case '6': case '7': case '8': case '9':
894 return 0;
895 }
896 }
897 }
898 return 1;
899}
900
ca325161 901/* Search for the n'th occurrence of STRING in the current buffer,
ca1d1d23 902 starting at position POS and stopping at position LIM,
b819a390 903 treating STRING as a literal string if RE is false or as
ca1d1d23
JB
904 a regular expression if RE is true.
905
906 If N is positive, searching is forward and LIM must be greater than POS.
907 If N is negative, searching is backward and LIM must be less than POS.
908
909 Returns -x if only N-x occurrences found (x > 0),
910 or else the position at the beginning of the Nth occurrence
b819a390
RS
911 (if searching backward) or the end (if searching forward).
912
913 POSIX is nonzero if we want full backtracking (POSIX style)
914 for this pattern. 0 means backtrack only enough to get a valid match. */
ca1d1d23 915
b819a390
RS
916static int
917search_buffer (string, pos, lim, n, RE, trt, inverse_trt, posix)
ca1d1d23
JB
918 Lisp_Object string;
919 int pos;
920 int lim;
921 int n;
922 int RE;
b1428bd8
RS
923 Lisp_Object *trt;
924 Lisp_Object *inverse_trt;
b819a390 925 int posix;
ca1d1d23
JB
926{
927 int len = XSTRING (string)->size;
928 unsigned char *base_pat = XSTRING (string)->data;
929 register int *BM_tab;
930 int *BM_tab_base;
931 register int direction = ((n > 0) ? 1 : -1);
932 register int dirlen;
933 int infinity, limit, k, stride_for_teases;
934 register unsigned char *pat, *cursor, *p_limit;
935 register int i, j;
936 unsigned char *p1, *p2;
937 int s1, s2;
938
7074fde6
FP
939 if (running_asynch_code)
940 save_search_regs ();
941
ca1d1d23 942 /* Null string is found at starting position. */
3f57a499 943 if (len == 0)
ca325161
RS
944 {
945 set_search_regs (pos, 0);
946 return pos;
947 }
3f57a499
RS
948
949 /* Searching 0 times means don't move. */
950 if (n == 0)
ca1d1d23
JB
951 return pos;
952
b6d6a51c 953 if (RE && !trivial_regexp_p (string))
ca1d1d23 954 {
487282dc
KH
955 struct re_pattern_buffer *bufp;
956
b1428bd8 957 bufp = compile_pattern (string, &search_regs, trt, posix);
ca1d1d23 958
ca1d1d23
JB
959 immediate_quit = 1; /* Quit immediately if user types ^G,
960 because letting this function finish
961 can take too long. */
962 QUIT; /* Do a pending quit right away,
963 to avoid paradoxical behavior */
964 /* Get pointers and sizes of the two strings
965 that make up the visible portion of the buffer. */
966
967 p1 = BEGV_ADDR;
968 s1 = GPT - BEGV;
969 p2 = GAP_END_ADDR;
970 s2 = ZV - GPT;
971 if (s1 < 0)
972 {
973 p2 = p1;
974 s2 = ZV - BEGV;
975 s1 = 0;
976 }
977 if (s2 < 0)
978 {
979 s1 = ZV - BEGV;
980 s2 = 0;
981 }
982 while (n < 0)
983 {
42db823b 984 int val;
487282dc 985 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
42db823b
RS
986 pos - BEGV, lim - pos, &search_regs,
987 /* Don't allow match past current point */
988 pos - BEGV);
ca1d1d23 989 if (val == -2)
b6d6a51c
KH
990 {
991 matcher_overflow ();
992 }
ca1d1d23
JB
993 if (val >= 0)
994 {
995 j = BEGV;
4746118a 996 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
997 if (search_regs.start[i] >= 0)
998 {
999 search_regs.start[i] += j;
1000 search_regs.end[i] += j;
1001 }
a3668d92 1002 XSETBUFFER (last_thing_searched, current_buffer);
ca1d1d23
JB
1003 /* Set pos to the new position. */
1004 pos = search_regs.start[0];
1005 }
1006 else
1007 {
1008 immediate_quit = 0;
1009 return (n);
1010 }
1011 n++;
1012 }
1013 while (n > 0)
1014 {
42db823b 1015 int val;
487282dc 1016 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
42db823b
RS
1017 pos - BEGV, lim - pos, &search_regs,
1018 lim - BEGV);
ca1d1d23 1019 if (val == -2)
b6d6a51c
KH
1020 {
1021 matcher_overflow ();
1022 }
ca1d1d23
JB
1023 if (val >= 0)
1024 {
1025 j = BEGV;
4746118a 1026 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1027 if (search_regs.start[i] >= 0)
1028 {
1029 search_regs.start[i] += j;
1030 search_regs.end[i] += j;
1031 }
a3668d92 1032 XSETBUFFER (last_thing_searched, current_buffer);
ca1d1d23
JB
1033 pos = search_regs.end[0];
1034 }
1035 else
1036 {
1037 immediate_quit = 0;
1038 return (0 - n);
1039 }
1040 n--;
1041 }
1042 immediate_quit = 0;
1043 return (pos);
1044 }
1045 else /* non-RE case */
1046 {
1047#ifdef C_ALLOCA
1048 int BM_tab_space[0400];
1049 BM_tab = &BM_tab_space[0];
1050#else
1051 BM_tab = (int *) alloca (0400 * sizeof (int));
1052#endif
b6d6a51c
KH
1053 {
1054 unsigned char *patbuf = (unsigned char *) alloca (len);
1055 pat = patbuf;
1056 while (--len >= 0)
1057 {
1058 /* If we got here and the RE flag is set, it's because we're
1059 dealing with a regexp known to be trivial, so the backslash
1060 just quotes the next character. */
1061 if (RE && *base_pat == '\\')
1062 {
1063 len--;
1064 base_pat++;
1065 }
1066 *pat++ = (trt ? trt[*base_pat++] : *base_pat++);
1067 }
1068 len = pat - patbuf;
1069 pat = base_pat = patbuf;
1070 }
ca1d1d23
JB
1071 /* The general approach is that we are going to maintain that we know */
1072 /* the first (closest to the present position, in whatever direction */
1073 /* we're searching) character that could possibly be the last */
1074 /* (furthest from present position) character of a valid match. We */
1075 /* advance the state of our knowledge by looking at that character */
1076 /* and seeing whether it indeed matches the last character of the */
1077 /* pattern. If it does, we take a closer look. If it does not, we */
1078 /* move our pointer (to putative last characters) as far as is */
1079 /* logically possible. This amount of movement, which I call a */
1080 /* stride, will be the length of the pattern if the actual character */
1081 /* appears nowhere in the pattern, otherwise it will be the distance */
1082 /* from the last occurrence of that character to the end of the */
1083 /* pattern. */
1084 /* As a coding trick, an enormous stride is coded into the table for */
1085 /* characters that match the last character. This allows use of only */
1086 /* a single test, a test for having gone past the end of the */
1087 /* permissible match region, to test for both possible matches (when */
1088 /* the stride goes past the end immediately) and failure to */
1089 /* match (where you get nudged past the end one stride at a time). */
1090
1091 /* Here we make a "mickey mouse" BM table. The stride of the search */
1092 /* is determined only by the last character of the putative match. */
1093 /* If that character does not match, we will stride the proper */
1094 /* distance to propose a match that superimposes it on the last */
1095 /* instance of a character that matches it (per trt), or misses */
1096 /* it entirely if there is none. */
1097
1098 dirlen = len * direction;
1099 infinity = dirlen - (lim + pos + len + len) * direction;
1100 if (direction < 0)
1101 pat = (base_pat += len - 1);
1102 BM_tab_base = BM_tab;
1103 BM_tab += 0400;
1104 j = dirlen; /* to get it in a register */
1105 /* A character that does not appear in the pattern induces a */
1106 /* stride equal to the pattern length. */
1107 while (BM_tab_base != BM_tab)
1108 {
1109 *--BM_tab = j;
1110 *--BM_tab = j;
1111 *--BM_tab = j;
1112 *--BM_tab = j;
1113 }
1114 i = 0;
1115 while (i != infinity)
1116 {
1117 j = pat[i]; i += direction;
1118 if (i == dirlen) i = infinity;
8d505039 1119 if (trt != 0)
ca1d1d23
JB
1120 {
1121 k = (j = trt[j]);
1122 if (i == infinity)
1123 stride_for_teases = BM_tab[j];
1124 BM_tab[j] = dirlen - i;
1125 /* A translation table is accompanied by its inverse -- see */
1126 /* comment following downcase_table for details */
b1428bd8 1127 while ((j = (unsigned char) inverse_trt[j]) != k)
ca1d1d23
JB
1128 BM_tab[j] = dirlen - i;
1129 }
1130 else
1131 {
1132 if (i == infinity)
1133 stride_for_teases = BM_tab[j];
1134 BM_tab[j] = dirlen - i;
1135 }
1136 /* stride_for_teases tells how much to stride if we get a */
1137 /* match on the far character but are subsequently */
1138 /* disappointed, by recording what the stride would have been */
1139 /* for that character if the last character had been */
1140 /* different. */
1141 }
1142 infinity = dirlen - infinity;
1143 pos += dirlen - ((direction > 0) ? direction : 0);
1144 /* loop invariant - pos points at where last char (first char if reverse)
1145 of pattern would align in a possible match. */
1146 while (n != 0)
1147 {
b2c71fb4
KH
1148 /* It's been reported that some (broken) compiler thinks that
1149 Boolean expressions in an arithmetic context are unsigned.
1150 Using an explicit ?1:0 prevents this. */
1151 if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
ca1d1d23
JB
1152 return (n * (0 - direction));
1153 /* First we do the part we can by pointers (maybe nothing) */
1154 QUIT;
1155 pat = base_pat;
1156 limit = pos - dirlen + direction;
1157 limit = ((direction > 0)
1158 ? BUFFER_CEILING_OF (limit)
1159 : BUFFER_FLOOR_OF (limit));
1160 /* LIMIT is now the last (not beyond-last!) value
1161 POS can take on without hitting edge of buffer or the gap. */
1162 limit = ((direction > 0)
1163 ? min (lim - 1, min (limit, pos + 20000))
1164 : max (lim, max (limit, pos - 20000)));
1165 if ((limit - pos) * direction > 20)
1166 {
1167 p_limit = &FETCH_CHAR (limit);
1168 p2 = (cursor = &FETCH_CHAR (pos));
1169 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1170 while (1) /* use one cursor setting as long as i can */
1171 {
1172 if (direction > 0) /* worth duplicating */
1173 {
1174 /* Use signed comparison if appropriate
1175 to make cursor+infinity sure to be > p_limit.
1176 Assuming that the buffer lies in a range of addresses
1177 that are all "positive" (as ints) or all "negative",
1178 either kind of comparison will work as long
1179 as we don't step by infinity. So pick the kind
1180 that works when we do step by infinity. */
8d505039 1181 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
9fa17f93 1182 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
ca1d1d23
JB
1183 cursor += BM_tab[*cursor];
1184 else
8d505039 1185 while ((unsigned EMACS_INT) cursor <= (unsigned EMACS_INT) p_limit)
ca1d1d23
JB
1186 cursor += BM_tab[*cursor];
1187 }
1188 else
1189 {
8d505039
RS
1190 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1191 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
ca1d1d23
JB
1192 cursor += BM_tab[*cursor];
1193 else
8d505039 1194 while ((unsigned EMACS_INT) cursor >= (unsigned EMACS_INT) p_limit)
ca1d1d23
JB
1195 cursor += BM_tab[*cursor];
1196 }
1197/* If you are here, cursor is beyond the end of the searched region. */
1198 /* This can happen if you match on the far character of the pattern, */
1199 /* because the "stride" of that character is infinity, a number able */
1200 /* to throw you well beyond the end of the search. It can also */
1201 /* happen if you fail to match within the permitted region and would */
1202 /* otherwise try a character beyond that region */
1203 if ((cursor - p_limit) * direction <= len)
1204 break; /* a small overrun is genuine */
1205 cursor -= infinity; /* large overrun = hit */
1206 i = dirlen - direction;
8d505039 1207 if (trt != 0)
ca1d1d23
JB
1208 {
1209 while ((i -= direction) + direction != 0)
1210 if (pat[i] != trt[*(cursor -= direction)])
1211 break;
1212 }
1213 else
1214 {
1215 while ((i -= direction) + direction != 0)
1216 if (pat[i] != *(cursor -= direction))
1217 break;
1218 }
1219 cursor += dirlen - i - direction; /* fix cursor */
1220 if (i + direction == 0)
1221 {
1222 cursor -= direction;
1113d9db 1223
ca325161
RS
1224 set_search_regs (pos + cursor - p2 + ((direction > 0)
1225 ? 1 - len : 0),
1226 len);
1227
ca1d1d23
JB
1228 if ((n -= direction) != 0)
1229 cursor += dirlen; /* to resume search */
1230 else
1231 return ((direction > 0)
1232 ? search_regs.end[0] : search_regs.start[0]);
1233 }
1234 else
1235 cursor += stride_for_teases; /* <sigh> we lose - */
1236 }
1237 pos += cursor - p2;
1238 }
1239 else
1240 /* Now we'll pick up a clump that has to be done the hard */
1241 /* way because it covers a discontinuity */
1242 {
1243 limit = ((direction > 0)
1244 ? BUFFER_CEILING_OF (pos - dirlen + 1)
1245 : BUFFER_FLOOR_OF (pos - dirlen - 1));
1246 limit = ((direction > 0)
1247 ? min (limit + len, lim - 1)
1248 : max (limit - len, lim));
1249 /* LIMIT is now the last value POS can have
1250 and still be valid for a possible match. */
1251 while (1)
1252 {
1253 /* This loop can be coded for space rather than */
1254 /* speed because it will usually run only once. */
1255 /* (the reach is at most len + 21, and typically */
1256 /* does not exceed len) */
1257 while ((limit - pos) * direction >= 0)
1258 pos += BM_tab[FETCH_CHAR(pos)];
1259 /* now run the same tests to distinguish going off the */
eb8c3be9 1260 /* end, a match or a phony match. */
ca1d1d23
JB
1261 if ((pos - limit) * direction <= len)
1262 break; /* ran off the end */
1263 /* Found what might be a match.
1264 Set POS back to last (first if reverse) char pos. */
1265 pos -= infinity;
1266 i = dirlen - direction;
1267 while ((i -= direction) + direction != 0)
1268 {
1269 pos -= direction;
8d505039 1270 if (pat[i] != (trt != 0
ca1d1d23
JB
1271 ? trt[FETCH_CHAR(pos)]
1272 : FETCH_CHAR (pos)))
1273 break;
1274 }
1275 /* Above loop has moved POS part or all the way
1276 back to the first char pos (last char pos if reverse).
1277 Set it once again at the last (first if reverse) char. */
1278 pos += dirlen - i- direction;
1279 if (i + direction == 0)
1280 {
1281 pos -= direction;
1113d9db 1282
ca325161
RS
1283 set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
1284 len);
1285
ca1d1d23
JB
1286 if ((n -= direction) != 0)
1287 pos += dirlen; /* to resume search */
1288 else
1289 return ((direction > 0)
1290 ? search_regs.end[0] : search_regs.start[0]);
1291 }
1292 else
1293 pos += stride_for_teases;
1294 }
1295 }
1296 /* We have done one clump. Can we continue? */
1297 if ((lim - pos) * direction < 0)
1298 return ((0 - n) * direction);
1299 }
1300 return pos;
1301 }
1302}
ca325161
RS
1303
1304/* Record beginning BEG and end BEG + LEN
1305 for a match just found in the current buffer. */
1306
1307static void
1308set_search_regs (beg, len)
1309 int beg, len;
1310{
1311 /* Make sure we have registers in which to store
1312 the match position. */
1313 if (search_regs.num_regs == 0)
1314 {
2d4a771a
RS
1315 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1316 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
487282dc 1317 search_regs.num_regs = 2;
ca325161
RS
1318 }
1319
1320 search_regs.start[0] = beg;
1321 search_regs.end[0] = beg + len;
a3668d92 1322 XSETBUFFER (last_thing_searched, current_buffer);
ca325161 1323}
ca1d1d23
JB
1324\f
1325/* Given a string of words separated by word delimiters,
1326 compute a regexp that matches those exact words
1327 separated by arbitrary punctuation. */
1328
1329static Lisp_Object
1330wordify (string)
1331 Lisp_Object string;
1332{
1333 register unsigned char *p, *o;
1334 register int i, len, punct_count = 0, word_count = 0;
1335 Lisp_Object val;
1336
1337 CHECK_STRING (string, 0);
1338 p = XSTRING (string)->data;
1339 len = XSTRING (string)->size;
1340
1341 for (i = 0; i < len; i++)
1342 if (SYNTAX (p[i]) != Sword)
1343 {
1344 punct_count++;
1345 if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
1346 }
1347 if (SYNTAX (p[len-1]) == Sword) word_count++;
1348 if (!word_count) return build_string ("");
1349
1350 val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
1351
1352 o = XSTRING (val)->data;
1353 *o++ = '\\';
1354 *o++ = 'b';
1355
1356 for (i = 0; i < len; i++)
1357 if (SYNTAX (p[i]) == Sword)
1358 *o++ = p[i];
1359 else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
1360 {
1361 *o++ = '\\';
1362 *o++ = 'W';
1363 *o++ = '\\';
1364 *o++ = 'W';
1365 *o++ = '*';
1366 }
1367
1368 *o++ = '\\';
1369 *o++ = 'b';
1370
1371 return val;
1372}
1373\f
1374DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
1375 "sSearch backward: ",
1376 "Search backward from point for STRING.\n\
1377Set point to the beginning of the occurrence found, and return point.\n\
1378An optional second argument bounds the search; it is a buffer position.\n\
1379The match found must not extend before that position.\n\
1380Optional third argument, if t, means if fail just return nil (no error).\n\
1381 If not nil and not t, position at limit of search and return nil.\n\
1382Optional fourth argument is repeat count--search for successive occurrences.\n\
1383See also the functions `match-beginning', `match-end' and `replace-match'.")
1384 (string, bound, noerror, count)
1385 Lisp_Object string, bound, noerror, count;
1386{
b819a390 1387 return search_command (string, bound, noerror, count, -1, 0, 0);
ca1d1d23
JB
1388}
1389
1390DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
1391 "Search forward from point for STRING.\n\
1392Set point to the end of the occurrence found, and return point.\n\
1393An optional second argument bounds the search; it is a buffer position.\n\
1394The match found must not extend after that position. nil is equivalent\n\
1395 to (point-max).\n\
1396Optional third argument, if t, means if fail just return nil (no error).\n\
1397 If not nil and not t, move to limit of search and return nil.\n\
1398Optional fourth argument is repeat count--search for successive occurrences.\n\
1399See also the functions `match-beginning', `match-end' and `replace-match'.")
1400 (string, bound, noerror, count)
1401 Lisp_Object string, bound, noerror, count;
1402{
b819a390 1403 return search_command (string, bound, noerror, count, 1, 0, 0);
ca1d1d23
JB
1404}
1405
1406DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
1407 "sWord search backward: ",
1408 "Search backward from point for STRING, ignoring differences in punctuation.\n\
1409Set point to the beginning of the occurrence found, and return point.\n\
1410An optional second argument bounds the search; it is a buffer position.\n\
1411The match found must not extend before that position.\n\
1412Optional third argument, if t, means if fail just return nil (no error).\n\
1413 If not nil and not t, move to limit of search and return nil.\n\
1414Optional fourth argument is repeat count--search for successive occurrences.")
1415 (string, bound, noerror, count)
1416 Lisp_Object string, bound, noerror, count;
1417{
b819a390 1418 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
ca1d1d23
JB
1419}
1420
1421DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
1422 "sWord search: ",
1423 "Search forward from point for STRING, ignoring differences in punctuation.\n\
1424Set point to the end of the occurrence found, and return point.\n\
1425An optional second argument bounds the search; it is a buffer position.\n\
1426The match found must not extend after that position.\n\
1427Optional third argument, if t, means if fail just return nil (no error).\n\
1428 If not nil and not t, move to limit of search and return nil.\n\
1429Optional fourth argument is repeat count--search for successive occurrences.")
1430 (string, bound, noerror, count)
1431 Lisp_Object string, bound, noerror, count;
1432{
b819a390 1433 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
ca1d1d23
JB
1434}
1435
1436DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
1437 "sRE search backward: ",
1438 "Search backward from point for match for regular expression REGEXP.\n\
1439Set point to the beginning of the match, and return point.\n\
1440The match found is the one starting last in the buffer\n\
19c0a730 1441and yet ending before the origin of the search.\n\
ca1d1d23
JB
1442An optional second argument bounds the search; it is a buffer position.\n\
1443The match found must start at or after that position.\n\
1444Optional third argument, if t, means if fail just return nil (no error).\n\
1445 If not nil and not t, move to limit of search and return nil.\n\
1446Optional fourth argument is repeat count--search for successive occurrences.\n\
1447See also the functions `match-beginning', `match-end' and `replace-match'.")
19c0a730
KH
1448 (regexp, bound, noerror, count)
1449 Lisp_Object regexp, bound, noerror, count;
ca1d1d23 1450{
b819a390 1451 return search_command (regexp, bound, noerror, count, -1, 1, 0);
ca1d1d23
JB
1452}
1453
1454DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
1455 "sRE search: ",
1456 "Search forward from point for regular expression REGEXP.\n\
1457Set point to the end of the occurrence found, and return point.\n\
1458An optional second argument bounds the search; it is a buffer position.\n\
1459The match found must not extend after that position.\n\
1460Optional third argument, if t, means if fail just return nil (no error).\n\
1461 If not nil and not t, move to limit of search and return nil.\n\
1462Optional fourth argument is repeat count--search for successive occurrences.\n\
1463See also the functions `match-beginning', `match-end' and `replace-match'.")
19c0a730
KH
1464 (regexp, bound, noerror, count)
1465 Lisp_Object regexp, bound, noerror, count;
ca1d1d23 1466{
b819a390
RS
1467 return search_command (regexp, bound, noerror, count, 1, 1, 0);
1468}
1469
1470DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
1471 "sPosix search backward: ",
1472 "Search backward from point for match for regular expression REGEXP.\n\
1473Find the longest match in accord with Posix regular expression rules.\n\
1474Set point to the beginning of the match, and return point.\n\
1475The match found is the one starting last in the buffer\n\
1476and yet ending before the origin of the search.\n\
1477An optional second argument bounds the search; it is a buffer position.\n\
1478The match found must start at or after that position.\n\
1479Optional third argument, if t, means if fail just return nil (no error).\n\
1480 If not nil and not t, move to limit of search and return nil.\n\
1481Optional fourth argument is repeat count--search for successive occurrences.\n\
1482See also the functions `match-beginning', `match-end' and `replace-match'.")
1483 (regexp, bound, noerror, count)
1484 Lisp_Object regexp, bound, noerror, count;
1485{
1486 return search_command (regexp, bound, noerror, count, -1, 1, 1);
1487}
1488
1489DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
1490 "sPosix search: ",
1491 "Search forward from point for regular expression REGEXP.\n\
1492Find the longest match in accord with Posix regular expression rules.\n\
1493Set point to the end of the occurrence found, and return point.\n\
1494An optional second argument bounds the search; it is a buffer position.\n\
1495The match found must not extend after that position.\n\
1496Optional third argument, if t, means if fail just return nil (no error).\n\
1497 If not nil and not t, move to limit of search and return nil.\n\
1498Optional fourth argument is repeat count--search for successive occurrences.\n\
1499See also the functions `match-beginning', `match-end' and `replace-match'.")
1500 (regexp, bound, noerror, count)
1501 Lisp_Object regexp, bound, noerror, count;
1502{
1503 return search_command (regexp, bound, noerror, count, 1, 1, 1);
ca1d1d23
JB
1504}
1505\f
d7a5ad5f 1506DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
ca1d1d23
JB
1507 "Replace text matched by last search with NEWTEXT.\n\
1508If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
5b9cf4b2
RS
1509Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
1510based on the replaced text.\n\
1511If the replaced text has only capital letters\n\
1512and has at least one multiletter word, convert NEWTEXT to all caps.\n\
1513If the replaced text has at least one word starting with a capital letter,\n\
1514then capitalize each word in NEWTEXT.\n\n\
ca1d1d23
JB
1515If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
1516Otherwise treat `\\' as special:\n\
1517 `\\&' in NEWTEXT means substitute original matched text.\n\
1518 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
1519 If Nth parens didn't match, substitute nothing.\n\
1520 `\\\\' means insert one `\\'.\n\
1113d9db 1521FIXEDCASE and LITERAL are optional arguments.\n\
080c45fd
RS
1522Leaves point at end of replacement text.\n\
1523\n\
1524The optional fourth argument STRING can be a string to modify.\n\
1525In that case, this function creates and returns a new string\n\
d7a5ad5f
RS
1526which is made by replacing the part of STRING that was matched.\n\
1527\n\
1528The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
1529It says to replace just that subexpression instead of the whole match.\n\
1530This is useful only after a regular expression search or match\n\
1531since only regular expressions have distinguished subexpressions.")
1532 (newtext, fixedcase, literal, string, subexp)
1533 Lisp_Object newtext, fixedcase, literal, string, subexp;
ca1d1d23
JB
1534{
1535 enum { nochange, all_caps, cap_initial } case_action;
1536 register int pos, last;
1537 int some_multiletter_word;
97832bd0 1538 int some_lowercase;
73dc8771 1539 int some_uppercase;
208767c3 1540 int some_nonuppercase_initial;
ca1d1d23
JB
1541 register int c, prevc;
1542 int inslen;
d7a5ad5f 1543 int sub;
ca1d1d23 1544
16fdc568 1545 CHECK_STRING (newtext, 0);
ca1d1d23 1546
080c45fd
RS
1547 if (! NILP (string))
1548 CHECK_STRING (string, 4);
1549
ca1d1d23
JB
1550 case_action = nochange; /* We tried an initialization */
1551 /* but some C compilers blew it */
4746118a
JB
1552
1553 if (search_regs.num_regs <= 0)
1554 error ("replace-match called before any match found");
1555
d7a5ad5f
RS
1556 if (NILP (subexp))
1557 sub = 0;
1558 else
1559 {
1560 CHECK_NUMBER (subexp, 3);
1561 sub = XINT (subexp);
1562 if (sub < 0 || sub >= search_regs.num_regs)
1563 args_out_of_range (subexp, make_number (search_regs.num_regs));
1564 }
1565
080c45fd
RS
1566 if (NILP (string))
1567 {
d7a5ad5f
RS
1568 if (search_regs.start[sub] < BEGV
1569 || search_regs.start[sub] > search_regs.end[sub]
1570 || search_regs.end[sub] > ZV)
1571 args_out_of_range (make_number (search_regs.start[sub]),
1572 make_number (search_regs.end[sub]));
080c45fd
RS
1573 }
1574 else
1575 {
d7a5ad5f
RS
1576 if (search_regs.start[sub] < 0
1577 || search_regs.start[sub] > search_regs.end[sub]
1578 || search_regs.end[sub] > XSTRING (string)->size)
1579 args_out_of_range (make_number (search_regs.start[sub]),
1580 make_number (search_regs.end[sub]));
080c45fd 1581 }
ca1d1d23
JB
1582
1583 if (NILP (fixedcase))
1584 {
1585 /* Decide how to casify by examining the matched text. */
1586
d7a5ad5f 1587 last = search_regs.end[sub];
ca1d1d23
JB
1588 prevc = '\n';
1589 case_action = all_caps;
1590
1591 /* some_multiletter_word is set nonzero if any original word
1592 is more than one letter long. */
1593 some_multiletter_word = 0;
97832bd0 1594 some_lowercase = 0;
208767c3 1595 some_nonuppercase_initial = 0;
73dc8771 1596 some_uppercase = 0;
ca1d1d23 1597
d7a5ad5f 1598 for (pos = search_regs.start[sub]; pos < last; pos++)
ca1d1d23 1599 {
080c45fd
RS
1600 if (NILP (string))
1601 c = FETCH_CHAR (pos);
1602 else
1603 c = XSTRING (string)->data[pos];
1604
ca1d1d23
JB
1605 if (LOWERCASEP (c))
1606 {
1607 /* Cannot be all caps if any original char is lower case */
1608
97832bd0 1609 some_lowercase = 1;
ca1d1d23 1610 if (SYNTAX (prevc) != Sword)
208767c3 1611 some_nonuppercase_initial = 1;
ca1d1d23
JB
1612 else
1613 some_multiletter_word = 1;
1614 }
1615 else if (!NOCASEP (c))
1616 {
73dc8771 1617 some_uppercase = 1;
97832bd0 1618 if (SYNTAX (prevc) != Sword)
c4d460ce 1619 ;
97832bd0 1620 else
ca1d1d23
JB
1621 some_multiletter_word = 1;
1622 }
208767c3
RS
1623 else
1624 {
1625 /* If the initial is a caseless word constituent,
1626 treat that like a lowercase initial. */
1627 if (SYNTAX (prevc) != Sword)
1628 some_nonuppercase_initial = 1;
1629 }
ca1d1d23
JB
1630
1631 prevc = c;
1632 }
1633
97832bd0
RS
1634 /* Convert to all caps if the old text is all caps
1635 and has at least one multiletter word. */
1636 if (! some_lowercase && some_multiletter_word)
1637 case_action = all_caps;
c4d460ce 1638 /* Capitalize each word, if the old text has all capitalized words. */
208767c3 1639 else if (!some_nonuppercase_initial && some_multiletter_word)
ca1d1d23 1640 case_action = cap_initial;
208767c3 1641 else if (!some_nonuppercase_initial && some_uppercase)
73dc8771
KH
1642 /* Should x -> yz, operating on X, give Yz or YZ?
1643 We'll assume the latter. */
1644 case_action = all_caps;
97832bd0
RS
1645 else
1646 case_action = nochange;
ca1d1d23
JB
1647 }
1648
080c45fd
RS
1649 /* Do replacement in a string. */
1650 if (!NILP (string))
1651 {
1652 Lisp_Object before, after;
1653
1654 before = Fsubstring (string, make_number (0),
d7a5ad5f
RS
1655 make_number (search_regs.start[sub]));
1656 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
080c45fd
RS
1657
1658 /* Do case substitution into NEWTEXT if desired. */
1659 if (NILP (literal))
1660 {
1661 int lastpos = -1;
1662 /* We build up the substituted string in ACCUM. */
1663 Lisp_Object accum;
1664 Lisp_Object middle;
1665
1666 accum = Qnil;
1667
1668 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
1669 {
1670 int substart = -1;
1671 int subend;
1e79ec24 1672 int delbackslash = 0;
080c45fd
RS
1673
1674 c = XSTRING (newtext)->data[pos];
1675 if (c == '\\')
1676 {
1677 c = XSTRING (newtext)->data[++pos];
1678 if (c == '&')
1679 {
d7a5ad5f
RS
1680 substart = search_regs.start[sub];
1681 subend = search_regs.end[sub];
080c45fd
RS
1682 }
1683 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
1684 {
ad10348f 1685 if (search_regs.start[c - '0'] >= 0)
080c45fd
RS
1686 {
1687 substart = search_regs.start[c - '0'];
1688 subend = search_regs.end[c - '0'];
1689 }
1690 }
1e79ec24
KH
1691 else if (c == '\\')
1692 delbackslash = 1;
080c45fd
RS
1693 }
1694 if (substart >= 0)
1695 {
1696 if (pos - 1 != lastpos + 1)
1e79ec24
KH
1697 middle = Fsubstring (newtext,
1698 make_number (lastpos + 1),
1699 make_number (pos - 1));
080c45fd
RS
1700 else
1701 middle = Qnil;
1702 accum = concat3 (accum, middle,
1703 Fsubstring (string, make_number (substart),
1704 make_number (subend)));
1705 lastpos = pos;
1706 }
1e79ec24
KH
1707 else if (delbackslash)
1708 {
1709 middle = Fsubstring (newtext, make_number (lastpos + 1),
1710 make_number (pos));
1711 accum = concat2 (accum, middle);
1712 lastpos = pos;
1713 }
080c45fd
RS
1714 }
1715
1716 if (pos != lastpos + 1)
1e79ec24
KH
1717 middle = Fsubstring (newtext, make_number (lastpos + 1),
1718 make_number (pos));
080c45fd
RS
1719 else
1720 middle = Qnil;
1721
1722 newtext = concat2 (accum, middle);
1723 }
1724
1725 if (case_action == all_caps)
1726 newtext = Fupcase (newtext);
1727 else if (case_action == cap_initial)
2b2eead9 1728 newtext = Fupcase_initials (newtext);
080c45fd
RS
1729
1730 return concat3 (before, newtext, after);
1731 }
1732
9a76659d
JB
1733 /* We insert the replacement text before the old text, and then
1734 delete the original text. This means that markers at the
1735 beginning or end of the original will float to the corresponding
1736 position in the replacement. */
d7a5ad5f 1737 SET_PT (search_regs.start[sub]);
ca1d1d23 1738 if (!NILP (literal))
16fdc568 1739 Finsert_and_inherit (1, &newtext);
ca1d1d23
JB
1740 else
1741 {
1742 struct gcpro gcpro1;
16fdc568 1743 GCPRO1 (newtext);
ca1d1d23 1744
16fdc568 1745 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
ca1d1d23 1746 {
d7a5ad5f 1747 int offset = point - search_regs.start[sub];
9a76659d 1748
16fdc568 1749 c = XSTRING (newtext)->data[pos];
ca1d1d23
JB
1750 if (c == '\\')
1751 {
16fdc568 1752 c = XSTRING (newtext)->data[++pos];
ca1d1d23 1753 if (c == '&')
9a76659d
JB
1754 Finsert_buffer_substring
1755 (Fcurrent_buffer (),
d7a5ad5f
RS
1756 make_number (search_regs.start[sub] + offset),
1757 make_number (search_regs.end[sub] + offset));
78445046 1758 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
ca1d1d23
JB
1759 {
1760 if (search_regs.start[c - '0'] >= 1)
9a76659d
JB
1761 Finsert_buffer_substring
1762 (Fcurrent_buffer (),
1763 make_number (search_regs.start[c - '0'] + offset),
1764 make_number (search_regs.end[c - '0'] + offset));
ca1d1d23
JB
1765 }
1766 else
1767 insert_char (c);
1768 }
1769 else
1770 insert_char (c);
1771 }
1772 UNGCPRO;
1773 }
1774
d7a5ad5f
RS
1775 inslen = point - (search_regs.start[sub]);
1776 del_range (search_regs.start[sub] + inslen, search_regs.end[sub] + inslen);
ca1d1d23
JB
1777
1778 if (case_action == all_caps)
1779 Fupcase_region (make_number (point - inslen), make_number (point));
1780 else if (case_action == cap_initial)
2b2eead9 1781 Fupcase_initials_region (make_number (point - inslen), make_number (point));
ca1d1d23
JB
1782 return Qnil;
1783}
1784\f
1785static Lisp_Object
1786match_limit (num, beginningp)
1787 Lisp_Object num;
1788 int beginningp;
1789{
1790 register int n;
1791
1792 CHECK_NUMBER (num, 0);
1793 n = XINT (num);
4746118a
JB
1794 if (n < 0 || n >= search_regs.num_regs)
1795 args_out_of_range (num, make_number (search_regs.num_regs));
1796 if (search_regs.num_regs <= 0
1797 || search_regs.start[n] < 0)
ca1d1d23
JB
1798 return Qnil;
1799 return (make_number ((beginningp) ? search_regs.start[n]
1800 : search_regs.end[n]));
1801}
1802
1803DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
1804 "Return position of start of text matched by last search.\n\
16fdc568
BF
1805NUM specifies which parenthesized expression in the last regexp.\n\
1806 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
ca1d1d23
JB
1807Zero means the entire text matched by the whole regexp or whole string.")
1808 (num)
1809 Lisp_Object num;
1810{
1811 return match_limit (num, 1);
1812}
1813
1814DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
1815 "Return position of end of text matched by last search.\n\
1816ARG, a number, specifies which parenthesized expression in the last regexp.\n\
1817 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
1818Zero means the entire text matched by the whole regexp or whole string.")
1819 (num)
1820 Lisp_Object num;
1821{
1822 return match_limit (num, 0);
1823}
1824
1825DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
1826 "Return a list containing all info on what the last search matched.\n\
1827Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
1828All the elements are markers or nil (nil if the Nth pair didn't match)\n\
1829if the last match was on a buffer; integers or nil if a string was matched.\n\
1830Use `store-match-data' to reinstate the data in this list.")
1831 ()
1832{
4746118a 1833 Lisp_Object *data;
ca1d1d23
JB
1834 int i, len;
1835
daa37602
JB
1836 if (NILP (last_thing_searched))
1837 error ("match-data called before any match found");
1838
4746118a
JB
1839 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
1840 * sizeof (Lisp_Object));
1841
ca1d1d23 1842 len = -1;
4746118a 1843 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1844 {
1845 int start = search_regs.start[i];
1846 if (start >= 0)
1847 {
daa37602 1848 if (EQ (last_thing_searched, Qt))
ca1d1d23 1849 {
c235cce7
KH
1850 XSETFASTINT (data[2 * i], start);
1851 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
ca1d1d23 1852 }
0ed62dc7 1853 else if (BUFFERP (last_thing_searched))
ca1d1d23
JB
1854 {
1855 data[2 * i] = Fmake_marker ();
daa37602
JB
1856 Fset_marker (data[2 * i],
1857 make_number (start),
1858 last_thing_searched);
ca1d1d23
JB
1859 data[2 * i + 1] = Fmake_marker ();
1860 Fset_marker (data[2 * i + 1],
daa37602
JB
1861 make_number (search_regs.end[i]),
1862 last_thing_searched);
ca1d1d23 1863 }
daa37602
JB
1864 else
1865 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
1866 abort ();
1867
ca1d1d23
JB
1868 len = i;
1869 }
1870 else
1871 data[2 * i] = data [2 * i + 1] = Qnil;
1872 }
1873 return Flist (2 * len + 2, data);
1874}
1875
1876
1877DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
1878 "Set internal data on last search match from elements of LIST.\n\
1879LIST should have been created by calling `match-data' previously.")
1880 (list)
1881 register Lisp_Object list;
1882{
1883 register int i;
1884 register Lisp_Object marker;
1885
7074fde6
FP
1886 if (running_asynch_code)
1887 save_search_regs ();
1888
ca1d1d23 1889 if (!CONSP (list) && !NILP (list))
b37902c8 1890 list = wrong_type_argument (Qconsp, list);
ca1d1d23 1891
daa37602
JB
1892 /* Unless we find a marker with a buffer in LIST, assume that this
1893 match data came from a string. */
1894 last_thing_searched = Qt;
1895
4746118a
JB
1896 /* Allocate registers if they don't already exist. */
1897 {
d084e942 1898 int length = XFASTINT (Flength (list)) / 2;
4746118a
JB
1899
1900 if (length > search_regs.num_regs)
1901 {
1113d9db
JB
1902 if (search_regs.num_regs == 0)
1903 {
1904 search_regs.start
1905 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1906 search_regs.end
1907 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1908 }
4746118a 1909 else
1113d9db
JB
1910 {
1911 search_regs.start
1912 = (regoff_t *) xrealloc (search_regs.start,
1913 length * sizeof (regoff_t));
1914 search_regs.end
1915 = (regoff_t *) xrealloc (search_regs.end,
1916 length * sizeof (regoff_t));
1917 }
4746118a 1918
487282dc 1919 search_regs.num_regs = length;
4746118a
JB
1920 }
1921 }
1922
1923 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1924 {
1925 marker = Fcar (list);
1926 if (NILP (marker))
1927 {
1928 search_regs.start[i] = -1;
1929 list = Fcdr (list);
1930 }
1931 else
1932 {
0ed62dc7 1933 if (MARKERP (marker))
daa37602
JB
1934 {
1935 if (XMARKER (marker)->buffer == 0)
c235cce7 1936 XSETFASTINT (marker, 0);
daa37602 1937 else
a3668d92 1938 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
daa37602 1939 }
ca1d1d23
JB
1940
1941 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1942 search_regs.start[i] = XINT (marker);
1943 list = Fcdr (list);
1944
1945 marker = Fcar (list);
0ed62dc7 1946 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
c235cce7 1947 XSETFASTINT (marker, 0);
ca1d1d23
JB
1948
1949 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1950 search_regs.end[i] = XINT (marker);
1951 }
1952 list = Fcdr (list);
1953 }
1954
1955 return Qnil;
1956}
1957
7074fde6
FP
1958/* If non-zero the match data have been saved in saved_search_regs
1959 during the execution of a sentinel or filter. */
75ebf74b 1960static int search_regs_saved;
7074fde6
FP
1961static struct re_registers saved_search_regs;
1962
1963/* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
1964 if asynchronous code (filter or sentinel) is running. */
1965static void
1966save_search_regs ()
1967{
1968 if (!search_regs_saved)
1969 {
1970 saved_search_regs.num_regs = search_regs.num_regs;
1971 saved_search_regs.start = search_regs.start;
1972 saved_search_regs.end = search_regs.end;
1973 search_regs.num_regs = 0;
2d4a771a
RS
1974 search_regs.start = 0;
1975 search_regs.end = 0;
7074fde6
FP
1976
1977 search_regs_saved = 1;
1978 }
1979}
1980
1981/* Called upon exit from filters and sentinels. */
1982void
1983restore_match_data ()
1984{
1985 if (search_regs_saved)
1986 {
1987 if (search_regs.num_regs > 0)
1988 {
1989 xfree (search_regs.start);
1990 xfree (search_regs.end);
1991 }
1992 search_regs.num_regs = saved_search_regs.num_regs;
1993 search_regs.start = saved_search_regs.start;
1994 search_regs.end = saved_search_regs.end;
1995
1996 search_regs_saved = 0;
1997 }
1998}
1999
ca1d1d23
JB
2000/* Quote a string to inactivate reg-expr chars */
2001
2002DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2003 "Return a regexp string which matches exactly STRING and nothing else.")
2004 (str)
2005 Lisp_Object str;
2006{
2007 register unsigned char *in, *out, *end;
2008 register unsigned char *temp;
2009
2010 CHECK_STRING (str, 0);
2011
2012 temp = (unsigned char *) alloca (XSTRING (str)->size * 2);
2013
2014 /* Now copy the data into the new string, inserting escapes. */
2015
2016 in = XSTRING (str)->data;
2017 end = in + XSTRING (str)->size;
2018 out = temp;
2019
2020 for (; in != end; in++)
2021 {
2022 if (*in == '[' || *in == ']'
2023 || *in == '*' || *in == '.' || *in == '\\'
2024 || *in == '?' || *in == '+'
2025 || *in == '^' || *in == '$')
2026 *out++ = '\\';
2027 *out++ = *in;
2028 }
2029
2030 return make_string (temp, out - temp);
2031}
2032\f
2033syms_of_search ()
2034{
2035 register int i;
2036
487282dc
KH
2037 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2038 {
2039 searchbufs[i].buf.allocated = 100;
2040 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2041 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2042 searchbufs[i].regexp = Qnil;
2043 staticpro (&searchbufs[i].regexp);
2044 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2045 }
2046 searchbuf_head = &searchbufs[0];
ca1d1d23
JB
2047
2048 Qsearch_failed = intern ("search-failed");
2049 staticpro (&Qsearch_failed);
2050 Qinvalid_regexp = intern ("invalid-regexp");
2051 staticpro (&Qinvalid_regexp);
2052
2053 Fput (Qsearch_failed, Qerror_conditions,
2054 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2055 Fput (Qsearch_failed, Qerror_message,
2056 build_string ("Search failed"));
2057
2058 Fput (Qinvalid_regexp, Qerror_conditions,
2059 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2060 Fput (Qinvalid_regexp, Qerror_message,
2061 build_string ("Invalid regexp"));
2062
daa37602
JB
2063 last_thing_searched = Qnil;
2064 staticpro (&last_thing_searched);
2065
ca1d1d23 2066 defsubr (&Slooking_at);
b819a390
RS
2067 defsubr (&Sposix_looking_at);
2068 defsubr (&Sstring_match);
2069 defsubr (&Sposix_string_match);
ca1d1d23
JB
2070 defsubr (&Sskip_chars_forward);
2071 defsubr (&Sskip_chars_backward);
17431c60
RS
2072 defsubr (&Sskip_syntax_forward);
2073 defsubr (&Sskip_syntax_backward);
ca1d1d23
JB
2074 defsubr (&Ssearch_forward);
2075 defsubr (&Ssearch_backward);
2076 defsubr (&Sword_search_forward);
2077 defsubr (&Sword_search_backward);
2078 defsubr (&Sre_search_forward);
2079 defsubr (&Sre_search_backward);
b819a390
RS
2080 defsubr (&Sposix_search_forward);
2081 defsubr (&Sposix_search_backward);
ca1d1d23
JB
2082 defsubr (&Sreplace_match);
2083 defsubr (&Smatch_beginning);
2084 defsubr (&Smatch_end);
2085 defsubr (&Smatch_data);
2086 defsubr (&Sstore_match_data);
2087 defsubr (&Sregexp_quote);
2088}