Arrange for Fy_or_n_p to put off switch-frame events.
[bpt/emacs.git] / src / search.c
CommitLineData
ca1d1d23
JB
1/* String search routines for GNU Emacs.
2 Copyright (C) 1985, 1986, 1987, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21#include "config.h"
22#include "lisp.h"
23#include "syntax.h"
24#include "buffer.h"
25#include "commands.h"
9ac0d9e0 26#include "blockinput.h"
4746118a 27
ca1d1d23
JB
28#include <sys/types.h>
29#include "regex.h"
30
31#define max(a, b) ((a) > (b) ? (a) : (b))
32#define min(a, b) ((a) < (b) ? (a) : (b))
33
34/* We compile regexps into this buffer and then use it for searching. */
35
36struct re_pattern_buffer searchbuf;
37
38char search_fastmap[0400];
39
40/* Last regexp we compiled */
41
42Lisp_Object last_regexp;
43
4746118a
JB
44/* Every call to re_match, etc., must pass &search_regs as the regs
45 argument unless you can show it is unnecessary (i.e., if re_match
46 is certainly going to be called again before region-around-match
47 can be called).
48
49 Since the registers are now dynamically allocated, we need to make
50 sure not to refer to the Nth register before checking that it has
1113d9db
JB
51 been allocated by checking search_regs.num_regs.
52
53 The regex code keeps track of whether it has allocated the search
54 buffer using bits in searchbuf. This means that whenever you
55 compile a new pattern, it completely forgets whether it has
56 allocated any registers, and will allocate new registers the next
57 time you call a searching or matching function. Therefore, we need
58 to call re_set_registers after compiling a new pattern or after
59 setting the match registers, so that the regex functions will be
60 able to free or re-allocate it properly. */
ca1d1d23
JB
61static struct re_registers search_regs;
62
daa37602
JB
63/* The buffer in which the last search was performed, or
64 Qt if the last search was done in a string;
65 Qnil if no searching has been done yet. */
66static Lisp_Object last_thing_searched;
ca1d1d23
JB
67
68/* error condition signalled when regexp compile_pattern fails */
69
70Lisp_Object Qinvalid_regexp;
71
72static void
73matcher_overflow ()
74{
75 error ("Stack overflow in regexp matcher");
76}
77
78#ifdef __STDC__
79#define CONST const
80#else
81#define CONST
82#endif
83
84/* Compile a regexp and signal a Lisp error if anything goes wrong. */
85
1113d9db 86compile_pattern (pattern, bufp, regp, translate)
ca1d1d23
JB
87 Lisp_Object pattern;
88 struct re_pattern_buffer *bufp;
1113d9db 89 struct re_registers *regp;
ca1d1d23
JB
90 char *translate;
91{
92 CONST char *val;
93 Lisp_Object dummy;
94
95 if (EQ (pattern, last_regexp)
96 && translate == bufp->translate)
97 return;
1113d9db 98
ca1d1d23
JB
99 last_regexp = Qnil;
100 bufp->translate = translate;
9ac0d9e0 101 BLOCK_INPUT;
ca1d1d23
JB
102 val = re_compile_pattern ((char *) XSTRING (pattern)->data,
103 XSTRING (pattern)->size,
104 bufp);
9ac0d9e0 105 UNBLOCK_INPUT;
ca1d1d23
JB
106 if (val)
107 {
108 dummy = build_string (val);
109 while (1)
110 Fsignal (Qinvalid_regexp, Fcons (dummy, Qnil));
111 }
1113d9db 112
ca1d1d23 113 last_regexp = pattern;
1113d9db
JB
114
115 /* Advise the searching functions about the space we have allocated
116 for register data. */
9ac0d9e0 117 BLOCK_INPUT;
ebb9e16f
JB
118 if (regp)
119 re_set_registers (bufp, regp, regp->num_regs, regp->start, regp->end);
9ac0d9e0 120 UNBLOCK_INPUT;
1113d9db 121
ca1d1d23
JB
122 return;
123}
124
125/* Error condition used for failing searches */
126Lisp_Object Qsearch_failed;
127
128Lisp_Object
129signal_failure (arg)
130 Lisp_Object arg;
131{
132 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
133 return Qnil;
134}
135\f
136DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
e065a56e
JB
137 "Return t if text after point matches regular expression PAT.\n\
138This function modifies the match data that `match-beginning',\n\
139`match-end' and `match-data' access; save and restore the match\n\
fe99283d 140data if you want to preserve them.")
ca1d1d23
JB
141 (string)
142 Lisp_Object string;
143{
144 Lisp_Object val;
145 unsigned char *p1, *p2;
146 int s1, s2;
147 register int i;
148
149 CHECK_STRING (string, 0);
1113d9db 150 compile_pattern (string, &searchbuf, &search_regs,
ca1d1d23
JB
151 !NILP (current_buffer->case_fold_search) ? DOWNCASE_TABLE : 0);
152
153 immediate_quit = 1;
154 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
155
156 /* Get pointers and sizes of the two strings
157 that make up the visible portion of the buffer. */
158
159 p1 = BEGV_ADDR;
160 s1 = GPT - BEGV;
161 p2 = GAP_END_ADDR;
162 s2 = ZV - GPT;
163 if (s1 < 0)
164 {
165 p2 = p1;
166 s2 = ZV - BEGV;
167 s1 = 0;
168 }
169 if (s2 < 0)
170 {
171 s1 = ZV - BEGV;
172 s2 = 0;
173 }
174
9ac0d9e0 175 BLOCK_INPUT;
ca1d1d23
JB
176 i = re_match_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
177 point - BEGV, &search_regs,
178 ZV - BEGV);
9ac0d9e0 179 UNBLOCK_INPUT;
ca1d1d23
JB
180 if (i == -2)
181 matcher_overflow ();
182
183 val = (0 <= i ? Qt : Qnil);
4746118a 184 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
185 if (search_regs.start[i] >= 0)
186 {
187 search_regs.start[i] += BEGV;
188 search_regs.end[i] += BEGV;
189 }
daa37602 190 XSET (last_thing_searched, Lisp_Buffer, current_buffer);
ca1d1d23
JB
191 immediate_quit = 0;
192 return val;
193}
194
195DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
196 "Return index of start of first match for REGEXP in STRING, or nil.\n\
197If third arg START is non-nil, start search at that index in STRING.\n\
198For index of first char beyond the match, do (match-end 0).\n\
199`match-end' and `match-beginning' also give indices of substrings\n\
200matched by parenthesis constructs in the pattern.")
201 (regexp, string, start)
202 Lisp_Object regexp, string, start;
203{
204 int val;
205 int s;
206
207 CHECK_STRING (regexp, 0);
208 CHECK_STRING (string, 1);
209
210 if (NILP (start))
211 s = 0;
212 else
213 {
214 int len = XSTRING (string)->size;
215
216 CHECK_NUMBER (start, 2);
217 s = XINT (start);
218 if (s < 0 && -s <= len)
219 s = len - s;
220 else if (0 > s || s > len)
221 args_out_of_range (string, start);
222 }
223
1113d9db 224 compile_pattern (regexp, &searchbuf, &search_regs,
ca1d1d23
JB
225 !NILP (current_buffer->case_fold_search) ? DOWNCASE_TABLE : 0);
226 immediate_quit = 1;
9ac0d9e0 227 BLOCK_INPUT;
ca1d1d23
JB
228 val = re_search (&searchbuf, (char *) XSTRING (string)->data,
229 XSTRING (string)->size, s, XSTRING (string)->size - s,
230 &search_regs);
9ac0d9e0 231 UNBLOCK_INPUT;
ca1d1d23 232 immediate_quit = 0;
daa37602 233 last_thing_searched = Qt;
ca1d1d23
JB
234 if (val == -2)
235 matcher_overflow ();
236 if (val < 0) return Qnil;
237 return make_number (val);
238}
e59a8453
RS
239
240/* Match REGEXP against STRING, searching all of STRING,
241 and return the index of the match, or negative on failure.
242 This does not clobber the match data. */
243
244int
245fast_string_match (regexp, string)
246 Lisp_Object regexp, string;
247{
248 int val;
249
250 compile_pattern (regexp, &searchbuf, 0, 0);
251 immediate_quit = 1;
9ac0d9e0 252 BLOCK_INPUT;
e59a8453
RS
253 val = re_search (&searchbuf, (char *) XSTRING (string)->data,
254 XSTRING (string)->size, 0, XSTRING (string)->size,
255 0);
9ac0d9e0 256 UNBLOCK_INPUT;
e59a8453
RS
257 immediate_quit = 0;
258 return val;
259}
ca1d1d23 260\f
ffd56f97
JB
261/* Search for COUNT instances of the character TARGET, starting at START.
262 If COUNT is negative, search backwards.
263
264 If we find COUNT instances, set *SHORTAGE to zero, and return the
5bfe95c9
RS
265 position after the COUNTth match. Note that for reverse motion
266 this is not the same as the usual convention for Emacs motion commands.
ffd56f97
JB
267
268 If we don't find COUNT instances before reaching the end of the
269 buffer (or the beginning, if scanning backwards), set *SHORTAGE to
270 the number of TARGETs left unfound, and return the end of the
271 buffer we bumped up against. */
272
273scan_buffer (target, start, count, shortage)
274 int *shortage, start;
275 register int count, target;
ca1d1d23 276{
ffd56f97
JB
277 int limit = ((count > 0) ? ZV - 1 : BEGV);
278 int direction = ((count > 0) ? 1 : -1);
279
280 register unsigned char *cursor;
ca1d1d23 281 unsigned char *base;
ffd56f97
JB
282
283 register int ceiling;
284 register unsigned char *ceiling_addr;
ca1d1d23
JB
285
286 if (shortage != 0)
287 *shortage = 0;
288
289 immediate_quit = 1;
290
ffd56f97
JB
291 if (count > 0)
292 while (start != limit + 1)
ca1d1d23 293 {
ffd56f97
JB
294 ceiling = BUFFER_CEILING_OF (start);
295 ceiling = min (limit, ceiling);
296 ceiling_addr = &FETCH_CHAR (ceiling) + 1;
297 base = (cursor = &FETCH_CHAR (start));
ca1d1d23
JB
298 while (1)
299 {
ffd56f97 300 while (*cursor != target && ++cursor != ceiling_addr)
ca1d1d23 301 ;
ffd56f97 302 if (cursor != ceiling_addr)
ca1d1d23 303 {
ffd56f97 304 if (--count == 0)
ca1d1d23
JB
305 {
306 immediate_quit = 0;
ffd56f97 307 return (start + cursor - base + 1);
ca1d1d23
JB
308 }
309 else
ffd56f97 310 if (++cursor == ceiling_addr)
ca1d1d23
JB
311 break;
312 }
313 else
314 break;
315 }
ffd56f97 316 start += cursor - base;
ca1d1d23
JB
317 }
318 else
319 {
ffd56f97
JB
320 start--; /* first character we scan */
321 while (start > limit - 1)
322 { /* we WILL scan under start */
323 ceiling = BUFFER_FLOOR_OF (start);
324 ceiling = max (limit, ceiling);
325 ceiling_addr = &FETCH_CHAR (ceiling) - 1;
326 base = (cursor = &FETCH_CHAR (start));
ca1d1d23
JB
327 cursor++;
328 while (1)
329 {
ffd56f97 330 while (--cursor != ceiling_addr && *cursor != target)
ca1d1d23 331 ;
ffd56f97 332 if (cursor != ceiling_addr)
ca1d1d23 333 {
ffd56f97 334 if (++count == 0)
ca1d1d23
JB
335 {
336 immediate_quit = 0;
ffd56f97 337 return (start + cursor - base + 1);
ca1d1d23
JB
338 }
339 }
340 else
341 break;
342 }
ffd56f97 343 start += cursor - base;
ca1d1d23
JB
344 }
345 }
346 immediate_quit = 0;
347 if (shortage != 0)
ffd56f97
JB
348 *shortage = count * direction;
349 return (start + ((direction == 1 ? 0 : 1)));
ca1d1d23
JB
350}
351
352int
353find_next_newline (from, cnt)
354 register int from, cnt;
355{
356 return (scan_buffer ('\n', from, cnt, (int *) 0));
357}
358\f
c1dc99a1
JB
359Lisp_Object skip_chars ();
360
ca1d1d23
JB
361DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
362 "Move point forward, stopping before a char not in CHARS, or at position LIM.\n\
363CHARS is like the inside of a `[...]' in a regular expression\n\
364except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
365Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
c1dc99a1
JB
366With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
367Returns the distance traveled, either zero or positive.")
ca1d1d23
JB
368 (string, lim)
369 Lisp_Object string, lim;
370{
17431c60 371 return skip_chars (1, 0, string, lim);
ca1d1d23
JB
372}
373
374DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
375 "Move point backward, stopping after a char not in CHARS, or at position LIM.\n\
c1dc99a1
JB
376See `skip-chars-forward' for details.\n\
377Returns the distance traveled, either zero or negative.")
ca1d1d23
JB
378 (string, lim)
379 Lisp_Object string, lim;
380{
17431c60
RS
381 return skip_chars (0, 0, string, lim);
382}
383
384DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
385 "Move point forward across chars in specified syntax classes.\n\
386SYNTAX is a string of syntax code characters.\n\
387Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
388If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
389This function returns the distance traveled, either zero or positive.")
390 (syntax, lim)
391 Lisp_Object syntax, lim;
392{
393 return skip_chars (1, 1, syntax, lim);
394}
395
396DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
397 "Move point backward across chars in specified syntax classes.\n\
398SYNTAX is a string of syntax code characters.\n\
399Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
400If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
401This function returns the distance traveled, either zero or negative.")
402 (syntax, lim)
403 Lisp_Object syntax, lim;
404{
405 return skip_chars (0, 1, syntax, lim);
ca1d1d23
JB
406}
407
c1dc99a1 408Lisp_Object
17431c60
RS
409skip_chars (forwardp, syntaxp, string, lim)
410 int forwardp, syntaxp;
ca1d1d23
JB
411 Lisp_Object string, lim;
412{
413 register unsigned char *p, *pend;
414 register unsigned char c;
415 unsigned char fastmap[0400];
416 int negate = 0;
417 register int i;
418
419 CHECK_STRING (string, 0);
420
421 if (NILP (lim))
422 XSET (lim, Lisp_Int, forwardp ? ZV : BEGV);
423 else
424 CHECK_NUMBER_COERCE_MARKER (lim, 1);
425
426#if 0 /* This breaks some things... jla. */
427 /* In any case, don't allow scan outside bounds of buffer. */
428 if (XFASTINT (lim) > ZV)
429 XFASTINT (lim) = ZV;
430 if (XFASTINT (lim) < BEGV)
431 XFASTINT (lim) = BEGV;
432#endif
433
434 p = XSTRING (string)->data;
435 pend = p + XSTRING (string)->size;
436 bzero (fastmap, sizeof fastmap);
437
438 if (p != pend && *p == '^')
439 {
440 negate = 1; p++;
441 }
442
17431c60
RS
443 /* Find the characters specified and set their elements of fastmap.
444 If syntaxp, each character counts as itself.
445 Otherwise, handle backslashes and ranges specially */
ca1d1d23
JB
446
447 while (p != pend)
448 {
449 c = *p++;
17431c60
RS
450 if (syntaxp)
451 fastmap[c] = 1;
452 else
ca1d1d23 453 {
17431c60 454 if (c == '\\')
ca1d1d23 455 {
17431c60
RS
456 if (p == pend) break;
457 c = *p++;
458 }
459 if (p != pend && *p == '-')
460 {
461 p++;
462 if (p == pend) break;
463 while (c <= *p)
464 {
465 fastmap[c] = 1;
466 c++;
467 }
468 p++;
ca1d1d23 469 }
17431c60
RS
470 else
471 fastmap[c] = 1;
ca1d1d23 472 }
ca1d1d23
JB
473 }
474
475 /* If ^ was the first character, complement the fastmap. */
476
477 if (negate)
478 for (i = 0; i < sizeof fastmap; i++)
479 fastmap[i] ^= 1;
480
c1dc99a1
JB
481 {
482 int start_point = point;
483
484 immediate_quit = 1;
17431c60 485 if (syntaxp)
c1dc99a1 486 {
17431c60
RS
487
488 if (forwardp)
489 {
490 while (point < XINT (lim)
491 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
492 SET_PT (point + 1);
493 }
494 else
495 {
496 while (point > XINT (lim)
497 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
498 SET_PT (point - 1);
499 }
c1dc99a1
JB
500 }
501 else
502 {
17431c60
RS
503 if (forwardp)
504 {
505 while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
506 SET_PT (point + 1);
507 }
508 else
509 {
510 while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
511 SET_PT (point - 1);
512 }
c1dc99a1
JB
513 }
514 immediate_quit = 0;
515
516 return make_number (point - start_point);
517 }
ca1d1d23
JB
518}
519\f
520/* Subroutines of Lisp buffer search functions. */
521
522static Lisp_Object
523search_command (string, bound, noerror, count, direction, RE)
524 Lisp_Object string, bound, noerror, count;
525 int direction;
526 int RE;
527{
528 register int np;
529 int lim;
530 int n = direction;
531
532 if (!NILP (count))
533 {
534 CHECK_NUMBER (count, 3);
535 n *= XINT (count);
536 }
537
538 CHECK_STRING (string, 0);
539 if (NILP (bound))
540 lim = n > 0 ? ZV : BEGV;
541 else
542 {
543 CHECK_NUMBER_COERCE_MARKER (bound, 1);
544 lim = XINT (bound);
545 if (n > 0 ? lim < point : lim > point)
546 error ("Invalid search bound (wrong side of point)");
547 if (lim > ZV)
548 lim = ZV;
549 if (lim < BEGV)
550 lim = BEGV;
551 }
552
553 np = search_buffer (string, point, lim, n, RE,
554 (!NILP (current_buffer->case_fold_search)
555 ? XSTRING (current_buffer->case_canon_table)->data : 0),
556 (!NILP (current_buffer->case_fold_search)
557 ? XSTRING (current_buffer->case_eqv_table)->data : 0));
558 if (np <= 0)
559 {
560 if (NILP (noerror))
561 return signal_failure (string);
562 if (!EQ (noerror, Qt))
563 {
564 if (lim < BEGV || lim > ZV)
565 abort ();
a5f217b8
RS
566 SET_PT (lim);
567 return Qnil;
568#if 0 /* This would be clean, but maybe programs depend on
569 a value of nil here. */
481399bf 570 np = lim;
a5f217b8 571#endif
ca1d1d23 572 }
481399bf
RS
573 else
574 return Qnil;
ca1d1d23
JB
575 }
576
577 if (np < BEGV || np > ZV)
578 abort ();
579
580 SET_PT (np);
581
582 return make_number (np);
583}
584\f
585/* search for the n'th occurrence of STRING in the current buffer,
586 starting at position POS and stopping at position LIM,
587 treating PAT as a literal string if RE is false or as
588 a regular expression if RE is true.
589
590 If N is positive, searching is forward and LIM must be greater than POS.
591 If N is negative, searching is backward and LIM must be less than POS.
592
593 Returns -x if only N-x occurrences found (x > 0),
594 or else the position at the beginning of the Nth occurrence
595 (if searching backward) or the end (if searching forward). */
596
597search_buffer (string, pos, lim, n, RE, trt, inverse_trt)
598 Lisp_Object string;
599 int pos;
600 int lim;
601 int n;
602 int RE;
603 register unsigned char *trt;
604 register unsigned char *inverse_trt;
605{
606 int len = XSTRING (string)->size;
607 unsigned char *base_pat = XSTRING (string)->data;
608 register int *BM_tab;
609 int *BM_tab_base;
610 register int direction = ((n > 0) ? 1 : -1);
611 register int dirlen;
612 int infinity, limit, k, stride_for_teases;
613 register unsigned char *pat, *cursor, *p_limit;
614 register int i, j;
615 unsigned char *p1, *p2;
616 int s1, s2;
617
618 /* Null string is found at starting position. */
619 if (!len)
620 return pos;
621
622 if (RE)
1113d9db 623 compile_pattern (string, &searchbuf, &search_regs, (char *) trt);
ca1d1d23
JB
624
625 if (RE /* Here we detect whether the */
626 /* generality of an RE search is */
627 /* really needed. */
628 /* first item is "exact match" */
4746118a 629 && *(searchbuf.buffer) == (char) RE_EXACTN_VALUE
ca1d1d23
JB
630 && searchbuf.buffer[1] + 2 == searchbuf.used) /*first is ONLY item */
631 {
632 RE = 0; /* can do straight (non RE) search */
633 pat = (base_pat = (unsigned char *) searchbuf.buffer + 2);
634 /* trt already applied */
635 len = searchbuf.used - 2;
636 }
637 else if (!RE)
638 {
639 pat = (unsigned char *) alloca (len);
640
641 for (i = len; i--;) /* Copy the pattern; apply trt */
642 *pat++ = (((int) trt) ? trt [*base_pat++] : *base_pat++);
643 pat -= len; base_pat = pat;
644 }
645
646 if (RE)
647 {
648 immediate_quit = 1; /* Quit immediately if user types ^G,
649 because letting this function finish
650 can take too long. */
651 QUIT; /* Do a pending quit right away,
652 to avoid paradoxical behavior */
653 /* Get pointers and sizes of the two strings
654 that make up the visible portion of the buffer. */
655
656 p1 = BEGV_ADDR;
657 s1 = GPT - BEGV;
658 p2 = GAP_END_ADDR;
659 s2 = ZV - GPT;
660 if (s1 < 0)
661 {
662 p2 = p1;
663 s2 = ZV - BEGV;
664 s1 = 0;
665 }
666 if (s2 < 0)
667 {
668 s1 = ZV - BEGV;
669 s2 = 0;
670 }
671 while (n < 0)
672 {
42db823b 673 int val;
9ac0d9e0 674 BLOCK_INPUT;
42db823b
RS
675 val = re_search_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
676 pos - BEGV, lim - pos, &search_regs,
677 /* Don't allow match past current point */
678 pos - BEGV);
9ac0d9e0 679 UNBLOCK_INPUT;
ca1d1d23
JB
680 if (val == -2)
681 matcher_overflow ();
682 if (val >= 0)
683 {
684 j = BEGV;
4746118a 685 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
686 if (search_regs.start[i] >= 0)
687 {
688 search_regs.start[i] += j;
689 search_regs.end[i] += j;
690 }
daa37602 691 XSET (last_thing_searched, Lisp_Buffer, current_buffer);
ca1d1d23
JB
692 /* Set pos to the new position. */
693 pos = search_regs.start[0];
694 }
695 else
696 {
697 immediate_quit = 0;
698 return (n);
699 }
700 n++;
701 }
702 while (n > 0)
703 {
42db823b 704 int val;
9ac0d9e0 705 BLOCK_INPUT;
42db823b
RS
706 val = re_search_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
707 pos - BEGV, lim - pos, &search_regs,
708 lim - BEGV);
9ac0d9e0 709 UNBLOCK_INPUT;
ca1d1d23
JB
710 if (val == -2)
711 matcher_overflow ();
712 if (val >= 0)
713 {
714 j = BEGV;
4746118a 715 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
716 if (search_regs.start[i] >= 0)
717 {
718 search_regs.start[i] += j;
719 search_regs.end[i] += j;
720 }
daa37602 721 XSET (last_thing_searched, Lisp_Buffer, current_buffer);
ca1d1d23
JB
722 pos = search_regs.end[0];
723 }
724 else
725 {
726 immediate_quit = 0;
727 return (0 - n);
728 }
729 n--;
730 }
731 immediate_quit = 0;
732 return (pos);
733 }
734 else /* non-RE case */
735 {
736#ifdef C_ALLOCA
737 int BM_tab_space[0400];
738 BM_tab = &BM_tab_space[0];
739#else
740 BM_tab = (int *) alloca (0400 * sizeof (int));
741#endif
742 /* The general approach is that we are going to maintain that we know */
743 /* the first (closest to the present position, in whatever direction */
744 /* we're searching) character that could possibly be the last */
745 /* (furthest from present position) character of a valid match. We */
746 /* advance the state of our knowledge by looking at that character */
747 /* and seeing whether it indeed matches the last character of the */
748 /* pattern. If it does, we take a closer look. If it does not, we */
749 /* move our pointer (to putative last characters) as far as is */
750 /* logically possible. This amount of movement, which I call a */
751 /* stride, will be the length of the pattern if the actual character */
752 /* appears nowhere in the pattern, otherwise it will be the distance */
753 /* from the last occurrence of that character to the end of the */
754 /* pattern. */
755 /* As a coding trick, an enormous stride is coded into the table for */
756 /* characters that match the last character. This allows use of only */
757 /* a single test, a test for having gone past the end of the */
758 /* permissible match region, to test for both possible matches (when */
759 /* the stride goes past the end immediately) and failure to */
760 /* match (where you get nudged past the end one stride at a time). */
761
762 /* Here we make a "mickey mouse" BM table. The stride of the search */
763 /* is determined only by the last character of the putative match. */
764 /* If that character does not match, we will stride the proper */
765 /* distance to propose a match that superimposes it on the last */
766 /* instance of a character that matches it (per trt), or misses */
767 /* it entirely if there is none. */
768
769 dirlen = len * direction;
770 infinity = dirlen - (lim + pos + len + len) * direction;
771 if (direction < 0)
772 pat = (base_pat += len - 1);
773 BM_tab_base = BM_tab;
774 BM_tab += 0400;
775 j = dirlen; /* to get it in a register */
776 /* A character that does not appear in the pattern induces a */
777 /* stride equal to the pattern length. */
778 while (BM_tab_base != BM_tab)
779 {
780 *--BM_tab = j;
781 *--BM_tab = j;
782 *--BM_tab = j;
783 *--BM_tab = j;
784 }
785 i = 0;
786 while (i != infinity)
787 {
788 j = pat[i]; i += direction;
789 if (i == dirlen) i = infinity;
790 if ((int) trt)
791 {
792 k = (j = trt[j]);
793 if (i == infinity)
794 stride_for_teases = BM_tab[j];
795 BM_tab[j] = dirlen - i;
796 /* A translation table is accompanied by its inverse -- see */
797 /* comment following downcase_table for details */
798 while ((j = inverse_trt[j]) != k)
799 BM_tab[j] = dirlen - i;
800 }
801 else
802 {
803 if (i == infinity)
804 stride_for_teases = BM_tab[j];
805 BM_tab[j] = dirlen - i;
806 }
807 /* stride_for_teases tells how much to stride if we get a */
808 /* match on the far character but are subsequently */
809 /* disappointed, by recording what the stride would have been */
810 /* for that character if the last character had been */
811 /* different. */
812 }
813 infinity = dirlen - infinity;
814 pos += dirlen - ((direction > 0) ? direction : 0);
815 /* loop invariant - pos points at where last char (first char if reverse)
816 of pattern would align in a possible match. */
817 while (n != 0)
818 {
819 if ((lim - pos - (direction > 0)) * direction < 0)
820 return (n * (0 - direction));
821 /* First we do the part we can by pointers (maybe nothing) */
822 QUIT;
823 pat = base_pat;
824 limit = pos - dirlen + direction;
825 limit = ((direction > 0)
826 ? BUFFER_CEILING_OF (limit)
827 : BUFFER_FLOOR_OF (limit));
828 /* LIMIT is now the last (not beyond-last!) value
829 POS can take on without hitting edge of buffer or the gap. */
830 limit = ((direction > 0)
831 ? min (lim - 1, min (limit, pos + 20000))
832 : max (lim, max (limit, pos - 20000)));
833 if ((limit - pos) * direction > 20)
834 {
835 p_limit = &FETCH_CHAR (limit);
836 p2 = (cursor = &FETCH_CHAR (pos));
837 /* In this loop, pos + cursor - p2 is the surrogate for pos */
838 while (1) /* use one cursor setting as long as i can */
839 {
840 if (direction > 0) /* worth duplicating */
841 {
842 /* Use signed comparison if appropriate
843 to make cursor+infinity sure to be > p_limit.
844 Assuming that the buffer lies in a range of addresses
845 that are all "positive" (as ints) or all "negative",
846 either kind of comparison will work as long
847 as we don't step by infinity. So pick the kind
848 that works when we do step by infinity. */
849 if ((int) (p_limit + infinity) > (int) p_limit)
850 while ((int) cursor <= (int) p_limit)
851 cursor += BM_tab[*cursor];
852 else
853 while ((unsigned int) cursor <= (unsigned int) p_limit)
854 cursor += BM_tab[*cursor];
855 }
856 else
857 {
858 if ((int) (p_limit + infinity) < (int) p_limit)
859 while ((int) cursor >= (int) p_limit)
860 cursor += BM_tab[*cursor];
861 else
862 while ((unsigned int) cursor >= (unsigned int) p_limit)
863 cursor += BM_tab[*cursor];
864 }
865/* If you are here, cursor is beyond the end of the searched region. */
866 /* This can happen if you match on the far character of the pattern, */
867 /* because the "stride" of that character is infinity, a number able */
868 /* to throw you well beyond the end of the search. It can also */
869 /* happen if you fail to match within the permitted region and would */
870 /* otherwise try a character beyond that region */
871 if ((cursor - p_limit) * direction <= len)
872 break; /* a small overrun is genuine */
873 cursor -= infinity; /* large overrun = hit */
874 i = dirlen - direction;
875 if ((int) trt)
876 {
877 while ((i -= direction) + direction != 0)
878 if (pat[i] != trt[*(cursor -= direction)])
879 break;
880 }
881 else
882 {
883 while ((i -= direction) + direction != 0)
884 if (pat[i] != *(cursor -= direction))
885 break;
886 }
887 cursor += dirlen - i - direction; /* fix cursor */
888 if (i + direction == 0)
889 {
890 cursor -= direction;
1113d9db
JB
891
892 /* Make sure we have registers in which to store
893 the match position. */
894 if (search_regs.num_regs == 0)
895 {
896 regoff_t *starts, *ends;
897
898 starts =
899 (regoff_t *) xmalloc (2 * sizeof (regoff_t));
900 ends =
901 (regoff_t *) xmalloc (2 * sizeof (regoff_t));
9ac0d9e0 902 BLOCK_INPUT;
1113d9db
JB
903 re_set_registers (&searchbuf,
904 &search_regs,
905 2, starts, ends);
9ac0d9e0 906 UNBLOCK_INPUT;
1113d9db
JB
907 }
908
ca1d1d23
JB
909 search_regs.start[0]
910 = pos + cursor - p2 + ((direction > 0)
911 ? 1 - len : 0);
912 search_regs.end[0] = len + search_regs.start[0];
daa37602 913 XSET (last_thing_searched, Lisp_Buffer, current_buffer);
ca1d1d23
JB
914 if ((n -= direction) != 0)
915 cursor += dirlen; /* to resume search */
916 else
917 return ((direction > 0)
918 ? search_regs.end[0] : search_regs.start[0]);
919 }
920 else
921 cursor += stride_for_teases; /* <sigh> we lose - */
922 }
923 pos += cursor - p2;
924 }
925 else
926 /* Now we'll pick up a clump that has to be done the hard */
927 /* way because it covers a discontinuity */
928 {
929 limit = ((direction > 0)
930 ? BUFFER_CEILING_OF (pos - dirlen + 1)
931 : BUFFER_FLOOR_OF (pos - dirlen - 1));
932 limit = ((direction > 0)
933 ? min (limit + len, lim - 1)
934 : max (limit - len, lim));
935 /* LIMIT is now the last value POS can have
936 and still be valid for a possible match. */
937 while (1)
938 {
939 /* This loop can be coded for space rather than */
940 /* speed because it will usually run only once. */
941 /* (the reach is at most len + 21, and typically */
942 /* does not exceed len) */
943 while ((limit - pos) * direction >= 0)
944 pos += BM_tab[FETCH_CHAR(pos)];
945 /* now run the same tests to distinguish going off the */
946 /* end, a match or a phoney match. */
947 if ((pos - limit) * direction <= len)
948 break; /* ran off the end */
949 /* Found what might be a match.
950 Set POS back to last (first if reverse) char pos. */
951 pos -= infinity;
952 i = dirlen - direction;
953 while ((i -= direction) + direction != 0)
954 {
955 pos -= direction;
956 if (pat[i] != (((int) trt)
957 ? trt[FETCH_CHAR(pos)]
958 : FETCH_CHAR (pos)))
959 break;
960 }
961 /* Above loop has moved POS part or all the way
962 back to the first char pos (last char pos if reverse).
963 Set it once again at the last (first if reverse) char. */
964 pos += dirlen - i- direction;
965 if (i + direction == 0)
966 {
967 pos -= direction;
1113d9db
JB
968
969 /* Make sure we have registers in which to store
970 the match position. */
971 if (search_regs.num_regs == 0)
972 {
973 regoff_t *starts, *ends;
974
975 starts =
976 (regoff_t *) xmalloc (2 * sizeof (regoff_t));
977 ends =
978 (regoff_t *) xmalloc (2 * sizeof (regoff_t));
9ac0d9e0 979 BLOCK_INPUT;
1113d9db
JB
980 re_set_registers (&searchbuf,
981 &search_regs,
982 2, starts, ends);
9ac0d9e0 983 UNBLOCK_INPUT;
1113d9db
JB
984 }
985
ca1d1d23
JB
986 search_regs.start[0]
987 = pos + ((direction > 0) ? 1 - len : 0);
988 search_regs.end[0] = len + search_regs.start[0];
daa37602 989 XSET (last_thing_searched, Lisp_Buffer, current_buffer);
ca1d1d23
JB
990 if ((n -= direction) != 0)
991 pos += dirlen; /* to resume search */
992 else
993 return ((direction > 0)
994 ? search_regs.end[0] : search_regs.start[0]);
995 }
996 else
997 pos += stride_for_teases;
998 }
999 }
1000 /* We have done one clump. Can we continue? */
1001 if ((lim - pos) * direction < 0)
1002 return ((0 - n) * direction);
1003 }
1004 return pos;
1005 }
1006}
1007\f
1008/* Given a string of words separated by word delimiters,
1009 compute a regexp that matches those exact words
1010 separated by arbitrary punctuation. */
1011
1012static Lisp_Object
1013wordify (string)
1014 Lisp_Object string;
1015{
1016 register unsigned char *p, *o;
1017 register int i, len, punct_count = 0, word_count = 0;
1018 Lisp_Object val;
1019
1020 CHECK_STRING (string, 0);
1021 p = XSTRING (string)->data;
1022 len = XSTRING (string)->size;
1023
1024 for (i = 0; i < len; i++)
1025 if (SYNTAX (p[i]) != Sword)
1026 {
1027 punct_count++;
1028 if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
1029 }
1030 if (SYNTAX (p[len-1]) == Sword) word_count++;
1031 if (!word_count) return build_string ("");
1032
1033 val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
1034
1035 o = XSTRING (val)->data;
1036 *o++ = '\\';
1037 *o++ = 'b';
1038
1039 for (i = 0; i < len; i++)
1040 if (SYNTAX (p[i]) == Sword)
1041 *o++ = p[i];
1042 else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
1043 {
1044 *o++ = '\\';
1045 *o++ = 'W';
1046 *o++ = '\\';
1047 *o++ = 'W';
1048 *o++ = '*';
1049 }
1050
1051 *o++ = '\\';
1052 *o++ = 'b';
1053
1054 return val;
1055}
1056\f
1057DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
1058 "sSearch backward: ",
1059 "Search backward from point for STRING.\n\
1060Set point to the beginning of the occurrence found, and return point.\n\
1061An optional second argument bounds the search; it is a buffer position.\n\
1062The match found must not extend before that position.\n\
1063Optional third argument, if t, means if fail just return nil (no error).\n\
1064 If not nil and not t, position at limit of search and return nil.\n\
1065Optional fourth argument is repeat count--search for successive occurrences.\n\
1066See also the functions `match-beginning', `match-end' and `replace-match'.")
1067 (string, bound, noerror, count)
1068 Lisp_Object string, bound, noerror, count;
1069{
1070 return search_command (string, bound, noerror, count, -1, 0);
1071}
1072
1073DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
1074 "Search forward from point for STRING.\n\
1075Set point to the end of the occurrence found, and return point.\n\
1076An optional second argument bounds the search; it is a buffer position.\n\
1077The match found must not extend after that position. nil is equivalent\n\
1078 to (point-max).\n\
1079Optional third argument, if t, means if fail just return nil (no error).\n\
1080 If not nil and not t, move to limit of search and return nil.\n\
1081Optional fourth argument is repeat count--search for successive occurrences.\n\
1082See also the functions `match-beginning', `match-end' and `replace-match'.")
1083 (string, bound, noerror, count)
1084 Lisp_Object string, bound, noerror, count;
1085{
1086 return search_command (string, bound, noerror, count, 1, 0);
1087}
1088
1089DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
1090 "sWord search backward: ",
1091 "Search backward from point for STRING, ignoring differences in punctuation.\n\
1092Set point to the beginning of the occurrence found, and return point.\n\
1093An optional second argument bounds the search; it is a buffer position.\n\
1094The match found must not extend before that position.\n\
1095Optional third argument, if t, means if fail just return nil (no error).\n\
1096 If not nil and not t, move to limit of search and return nil.\n\
1097Optional fourth argument is repeat count--search for successive occurrences.")
1098 (string, bound, noerror, count)
1099 Lisp_Object string, bound, noerror, count;
1100{
1101 return search_command (wordify (string), bound, noerror, count, -1, 1);
1102}
1103
1104DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
1105 "sWord search: ",
1106 "Search forward from point for STRING, ignoring differences in punctuation.\n\
1107Set point to the end of the occurrence found, and return point.\n\
1108An optional second argument bounds the search; it is a buffer position.\n\
1109The match found must not extend after that position.\n\
1110Optional third argument, if t, means if fail just return nil (no error).\n\
1111 If not nil and not t, move to limit of search and return nil.\n\
1112Optional fourth argument is repeat count--search for successive occurrences.")
1113 (string, bound, noerror, count)
1114 Lisp_Object string, bound, noerror, count;
1115{
1116 return search_command (wordify (string), bound, noerror, count, 1, 1);
1117}
1118
1119DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
1120 "sRE search backward: ",
1121 "Search backward from point for match for regular expression REGEXP.\n\
1122Set point to the beginning of the match, and return point.\n\
1123The match found is the one starting last in the buffer\n\
1124and yet ending before the place the origin of the search.\n\
1125An optional second argument bounds the search; it is a buffer position.\n\
1126The match found must start at or after that position.\n\
1127Optional third argument, if t, means if fail just return nil (no error).\n\
1128 If not nil and not t, move to limit of search and return nil.\n\
1129Optional fourth argument is repeat count--search for successive occurrences.\n\
1130See also the functions `match-beginning', `match-end' and `replace-match'.")
1131 (string, bound, noerror, count)
1132 Lisp_Object string, bound, noerror, count;
1133{
1134 return search_command (string, bound, noerror, count, -1, 1);
1135}
1136
1137DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
1138 "sRE search: ",
1139 "Search forward from point for regular expression REGEXP.\n\
1140Set point to the end of the occurrence found, and return point.\n\
1141An optional second argument bounds the search; it is a buffer position.\n\
1142The match found must not extend after that position.\n\
1143Optional third argument, if t, means if fail just return nil (no error).\n\
1144 If not nil and not t, move to limit of search and return nil.\n\
1145Optional fourth argument is repeat count--search for successive occurrences.\n\
1146See also the functions `match-beginning', `match-end' and `replace-match'.")
1147 (string, bound, noerror, count)
1148 Lisp_Object string, bound, noerror, count;
1149{
1150 return search_command (string, bound, noerror, count, 1, 1);
1151}
1152\f
1153DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 3, 0,
1154 "Replace text matched by last search with NEWTEXT.\n\
1155If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
1156Otherwise convert to all caps or cap initials, like replaced text.\n\
1157If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
1158Otherwise treat `\\' as special:\n\
1159 `\\&' in NEWTEXT means substitute original matched text.\n\
1160 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
1161 If Nth parens didn't match, substitute nothing.\n\
1162 `\\\\' means insert one `\\'.\n\
1113d9db 1163FIXEDCASE and LITERAL are optional arguments.\n\
ca1d1d23
JB
1164Leaves point at end of replacement text.")
1165 (string, fixedcase, literal)
1166 Lisp_Object string, fixedcase, literal;
1167{
1168 enum { nochange, all_caps, cap_initial } case_action;
1169 register int pos, last;
1170 int some_multiletter_word;
97832bd0
RS
1171 int some_lowercase;
1172 int some_uppercase_initial;
ca1d1d23
JB
1173 register int c, prevc;
1174 int inslen;
1175
1176 CHECK_STRING (string, 0);
1177
1178 case_action = nochange; /* We tried an initialization */
1179 /* but some C compilers blew it */
4746118a
JB
1180
1181 if (search_regs.num_regs <= 0)
1182 error ("replace-match called before any match found");
1183
ca1d1d23
JB
1184 if (search_regs.start[0] < BEGV
1185 || search_regs.start[0] > search_regs.end[0]
1186 || search_regs.end[0] > ZV)
97832bd0
RS
1187 args_out_of_range (make_number (search_regs.start[0]),
1188 make_number (search_regs.end[0]));
ca1d1d23
JB
1189
1190 if (NILP (fixedcase))
1191 {
1192 /* Decide how to casify by examining the matched text. */
1193
1194 last = search_regs.end[0];
1195 prevc = '\n';
1196 case_action = all_caps;
1197
1198 /* some_multiletter_word is set nonzero if any original word
1199 is more than one letter long. */
1200 some_multiletter_word = 0;
97832bd0
RS
1201 some_lowercase = 0;
1202 some_uppercase_initial = 0;
ca1d1d23
JB
1203
1204 for (pos = search_regs.start[0]; pos < last; pos++)
1205 {
1206 c = FETCH_CHAR (pos);
1207 if (LOWERCASEP (c))
1208 {
1209 /* Cannot be all caps if any original char is lower case */
1210
97832bd0 1211 some_lowercase = 1;
ca1d1d23 1212 if (SYNTAX (prevc) != Sword)
97832bd0 1213 ;
ca1d1d23
JB
1214 else
1215 some_multiletter_word = 1;
1216 }
1217 else if (!NOCASEP (c))
1218 {
97832bd0
RS
1219 if (SYNTAX (prevc) != Sword)
1220 some_uppercase_initial = 1;
1221 else
ca1d1d23
JB
1222 some_multiletter_word = 1;
1223 }
1224
1225 prevc = c;
1226 }
1227
97832bd0
RS
1228 /* Convert to all caps if the old text is all caps
1229 and has at least one multiletter word. */
1230 if (! some_lowercase && some_multiletter_word)
1231 case_action = all_caps;
1232 /* Capitalize each word, if the old text has a capitalized word. */
1233 else if (some_uppercase_initial)
ca1d1d23 1234 case_action = cap_initial;
97832bd0
RS
1235 else
1236 case_action = nochange;
ca1d1d23
JB
1237 }
1238
1239 SET_PT (search_regs.end[0]);
1240 if (!NILP (literal))
1241 Finsert (1, &string);
1242 else
1243 {
1244 struct gcpro gcpro1;
1245 GCPRO1 (string);
1246
1247 for (pos = 0; pos < XSTRING (string)->size; pos++)
1248 {
1249 c = XSTRING (string)->data[pos];
1250 if (c == '\\')
1251 {
1252 c = XSTRING (string)->data[++pos];
1253 if (c == '&')
1254 Finsert_buffer_substring (Fcurrent_buffer (),
1255 make_number (search_regs.start[0]),
1256 make_number (search_regs.end[0]));
4746118a 1257 else if (c >= '1' && c <= search_regs.num_regs + '0')
ca1d1d23
JB
1258 {
1259 if (search_regs.start[c - '0'] >= 1)
1260 Finsert_buffer_substring (Fcurrent_buffer (),
1261 make_number (search_regs.start[c - '0']),
1262 make_number (search_regs.end[c - '0']));
1263 }
1264 else
1265 insert_char (c);
1266 }
1267 else
1268 insert_char (c);
1269 }
1270 UNGCPRO;
1271 }
1272
1273 inslen = point - (search_regs.end[0]);
1274 del_range (search_regs.start[0], search_regs.end[0]);
1275
1276 if (case_action == all_caps)
1277 Fupcase_region (make_number (point - inslen), make_number (point));
1278 else if (case_action == cap_initial)
1279 upcase_initials_region (make_number (point - inslen), make_number (point));
1280 return Qnil;
1281}
1282\f
1283static Lisp_Object
1284match_limit (num, beginningp)
1285 Lisp_Object num;
1286 int beginningp;
1287{
1288 register int n;
1289
1290 CHECK_NUMBER (num, 0);
1291 n = XINT (num);
4746118a
JB
1292 if (n < 0 || n >= search_regs.num_regs)
1293 args_out_of_range (num, make_number (search_regs.num_regs));
1294 if (search_regs.num_regs <= 0
1295 || search_regs.start[n] < 0)
ca1d1d23
JB
1296 return Qnil;
1297 return (make_number ((beginningp) ? search_regs.start[n]
1298 : search_regs.end[n]));
1299}
1300
1301DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
1302 "Return position of start of text matched by last search.\n\
1303ARG, a number, specifies which parenthesized expression in the last regexp.\n\
1304 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
1305Zero means the entire text matched by the whole regexp or whole string.")
1306 (num)
1307 Lisp_Object num;
1308{
1309 return match_limit (num, 1);
1310}
1311
1312DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
1313 "Return position of end of text matched by last search.\n\
1314ARG, a number, specifies which parenthesized expression in the last regexp.\n\
1315 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
1316Zero means the entire text matched by the whole regexp or whole string.")
1317 (num)
1318 Lisp_Object num;
1319{
1320 return match_limit (num, 0);
1321}
1322
1323DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
1324 "Return a list containing all info on what the last search matched.\n\
1325Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
1326All the elements are markers or nil (nil if the Nth pair didn't match)\n\
1327if the last match was on a buffer; integers or nil if a string was matched.\n\
1328Use `store-match-data' to reinstate the data in this list.")
1329 ()
1330{
4746118a 1331 Lisp_Object *data;
ca1d1d23
JB
1332 int i, len;
1333
daa37602
JB
1334 if (NILP (last_thing_searched))
1335 error ("match-data called before any match found");
1336
4746118a
JB
1337 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
1338 * sizeof (Lisp_Object));
1339
ca1d1d23 1340 len = -1;
4746118a 1341 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1342 {
1343 int start = search_regs.start[i];
1344 if (start >= 0)
1345 {
daa37602 1346 if (EQ (last_thing_searched, Qt))
ca1d1d23
JB
1347 {
1348 XFASTINT (data[2 * i]) = start;
1349 XFASTINT (data[2 * i + 1]) = search_regs.end[i];
1350 }
daa37602 1351 else if (XTYPE (last_thing_searched) == Lisp_Buffer)
ca1d1d23
JB
1352 {
1353 data[2 * i] = Fmake_marker ();
daa37602
JB
1354 Fset_marker (data[2 * i],
1355 make_number (start),
1356 last_thing_searched);
ca1d1d23
JB
1357 data[2 * i + 1] = Fmake_marker ();
1358 Fset_marker (data[2 * i + 1],
daa37602
JB
1359 make_number (search_regs.end[i]),
1360 last_thing_searched);
ca1d1d23 1361 }
daa37602
JB
1362 else
1363 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
1364 abort ();
1365
ca1d1d23
JB
1366 len = i;
1367 }
1368 else
1369 data[2 * i] = data [2 * i + 1] = Qnil;
1370 }
1371 return Flist (2 * len + 2, data);
1372}
1373
1374
1375DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
1376 "Set internal data on last search match from elements of LIST.\n\
1377LIST should have been created by calling `match-data' previously.")
1378 (list)
1379 register Lisp_Object list;
1380{
1381 register int i;
1382 register Lisp_Object marker;
1383
1384 if (!CONSP (list) && !NILP (list))
b37902c8 1385 list = wrong_type_argument (Qconsp, list);
ca1d1d23 1386
daa37602
JB
1387 /* Unless we find a marker with a buffer in LIST, assume that this
1388 match data came from a string. */
1389 last_thing_searched = Qt;
1390
4746118a
JB
1391 /* Allocate registers if they don't already exist. */
1392 {
d084e942 1393 int length = XFASTINT (Flength (list)) / 2;
4746118a
JB
1394
1395 if (length > search_regs.num_regs)
1396 {
1113d9db
JB
1397 if (search_regs.num_regs == 0)
1398 {
1399 search_regs.start
1400 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1401 search_regs.end
1402 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1403 }
4746118a 1404 else
1113d9db
JB
1405 {
1406 search_regs.start
1407 = (regoff_t *) xrealloc (search_regs.start,
1408 length * sizeof (regoff_t));
1409 search_regs.end
1410 = (regoff_t *) xrealloc (search_regs.end,
1411 length * sizeof (regoff_t));
1412 }
4746118a 1413
9ac0d9e0 1414 BLOCK_INPUT;
1113d9db
JB
1415 re_set_registers (&searchbuf, &search_regs, length,
1416 search_regs.start, search_regs.end);
9ac0d9e0 1417 UNBLOCK_INPUT;
4746118a
JB
1418 }
1419 }
1420
1421 for (i = 0; i < search_regs.num_regs; i++)
ca1d1d23
JB
1422 {
1423 marker = Fcar (list);
1424 if (NILP (marker))
1425 {
1426 search_regs.start[i] = -1;
1427 list = Fcdr (list);
1428 }
1429 else
1430 {
daa37602
JB
1431 if (XTYPE (marker) == Lisp_Marker)
1432 {
1433 if (XMARKER (marker)->buffer == 0)
1434 XFASTINT (marker) = 0;
1435 else
1436 XSET (last_thing_searched, Lisp_Buffer,
1437 XMARKER (marker)->buffer);
1438 }
ca1d1d23
JB
1439
1440 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1441 search_regs.start[i] = XINT (marker);
1442 list = Fcdr (list);
1443
1444 marker = Fcar (list);
1445 if (XTYPE (marker) == Lisp_Marker
1446 && XMARKER (marker)->buffer == 0)
1447 XFASTINT (marker) = 0;
1448
1449 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1450 search_regs.end[i] = XINT (marker);
1451 }
1452 list = Fcdr (list);
1453 }
1454
1455 return Qnil;
1456}
1457
1458/* Quote a string to inactivate reg-expr chars */
1459
1460DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
1461 "Return a regexp string which matches exactly STRING and nothing else.")
1462 (str)
1463 Lisp_Object str;
1464{
1465 register unsigned char *in, *out, *end;
1466 register unsigned char *temp;
1467
1468 CHECK_STRING (str, 0);
1469
1470 temp = (unsigned char *) alloca (XSTRING (str)->size * 2);
1471
1472 /* Now copy the data into the new string, inserting escapes. */
1473
1474 in = XSTRING (str)->data;
1475 end = in + XSTRING (str)->size;
1476 out = temp;
1477
1478 for (; in != end; in++)
1479 {
1480 if (*in == '[' || *in == ']'
1481 || *in == '*' || *in == '.' || *in == '\\'
1482 || *in == '?' || *in == '+'
1483 || *in == '^' || *in == '$')
1484 *out++ = '\\';
1485 *out++ = *in;
1486 }
1487
1488 return make_string (temp, out - temp);
1489}
1490\f
1491syms_of_search ()
1492{
1493 register int i;
1494
1495 searchbuf.allocated = 100;
8c0e7b73 1496 searchbuf.buffer = (unsigned char *) malloc (searchbuf.allocated);
ca1d1d23
JB
1497 searchbuf.fastmap = search_fastmap;
1498
1499 Qsearch_failed = intern ("search-failed");
1500 staticpro (&Qsearch_failed);
1501 Qinvalid_regexp = intern ("invalid-regexp");
1502 staticpro (&Qinvalid_regexp);
1503
1504 Fput (Qsearch_failed, Qerror_conditions,
1505 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
1506 Fput (Qsearch_failed, Qerror_message,
1507 build_string ("Search failed"));
1508
1509 Fput (Qinvalid_regexp, Qerror_conditions,
1510 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
1511 Fput (Qinvalid_regexp, Qerror_message,
1512 build_string ("Invalid regexp"));
1513
1514 last_regexp = Qnil;
1515 staticpro (&last_regexp);
1516
daa37602
JB
1517 last_thing_searched = Qnil;
1518 staticpro (&last_thing_searched);
1519
ca1d1d23
JB
1520 defsubr (&Sstring_match);
1521 defsubr (&Slooking_at);
1522 defsubr (&Sskip_chars_forward);
1523 defsubr (&Sskip_chars_backward);
17431c60
RS
1524 defsubr (&Sskip_syntax_forward);
1525 defsubr (&Sskip_syntax_backward);
ca1d1d23
JB
1526 defsubr (&Ssearch_forward);
1527 defsubr (&Ssearch_backward);
1528 defsubr (&Sword_search_forward);
1529 defsubr (&Sword_search_backward);
1530 defsubr (&Sre_search_forward);
1531 defsubr (&Sre_search_backward);
1532 defsubr (&Sreplace_match);
1533 defsubr (&Smatch_beginning);
1534 defsubr (&Smatch_end);
1535 defsubr (&Smatch_data);
1536 defsubr (&Sstore_match_data);
1537 defsubr (&Sregexp_quote);
1538}