Assume C89 or later.
[bpt/emacs.git] / src / ralloc.c
CommitLineData
177c0ea7 1/* Block-relocating memory allocator.
acaf905b 2 Copyright (C) 1993, 1995, 2000-2012 Free Software Foundation, Inc.
dcfdbac7
JB
3
4This file is part of GNU Emacs.
5
9ec0b715 6GNU Emacs is free software: you can redistribute it and/or modify
dcfdbac7 7it under the terms of the GNU General Public License as published by
9ec0b715
GM
8the Free Software Foundation, either version 3 of the License, or
9(at your option) any later version.
dcfdbac7
JB
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
9ec0b715 17along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
dcfdbac7
JB
18
19/* NOTES:
20
eb8c3be9 21 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
dcfdbac7 22 rather than all of them. This means allowing for a possible
abe9ff32 23 hole between the first bloc and the end of malloc storage. */
dcfdbac7 24
2c46d29f 25#ifdef emacs
aef4d570 26
18160b98 27#include <config.h>
d7306fe6 28#include <setjmp.h>
956ace37 29#include "lisp.h" /* Needed for VALBITS. */
a4766fd5 30#include "blockinput.h"
0a58f946 31
642a1733 32#include <unistd.h>
a8c0e5ea 33
b0119c68 34#ifdef DOUG_LEA_MALLOC
177c0ea7 35#define M_TOP_PAD -2
971de7fb 36extern int mallopt (int, int);
0a58f946 37#else /* not DOUG_LEA_MALLOC */
a2c23c92 38#ifndef SYSTEM_MALLOC
b1685c5f 39extern size_t __malloc_extra_blocks;
a2c23c92 40#endif /* SYSTEM_MALLOC */
0a58f946 41#endif /* not DOUG_LEA_MALLOC */
49081834 42
d5179acc 43#else /* not emacs */
aef4d570 44
2c46d29f 45#include <stddef.h>
aef4d570 46
aef4d570
RM
47#include <unistd.h>
48#include <malloc.h>
aef4d570 49
d5179acc 50#endif /* not emacs */
2c46d29f 51
0a58f946 52
d5179acc 53#include "getpagesize.h"
dcfdbac7 54
261cb4bb
PE
55typedef size_t SIZE;
56typedef void *POINTER;
dcfdbac7
JB
57#define NIL ((POINTER) 0)
58
2c46d29f
RS
59/* A flag to indicate whether we have initialized ralloc yet. For
60 Emacs's sake, please do not make this local to malloc_init; on some
61 machines, the dumping procedure makes all static variables
62 read-only. On these machines, the word static is #defined to be
63 the empty string, meaning that r_alloc_initialized becomes an
0a58f946
GM
64 automatic variable, and loses its value each time Emacs is started
65 up. */
66
2c46d29f
RS
67static int r_alloc_initialized = 0;
68
971de7fb 69static void r_alloc_init (void);
0a58f946 70
dcfdbac7 71\f
956ace37
JB
72/* Declarations for working with the malloc, ralloc, and system breaks. */
73
abe9ff32 74/* Function to set the real break value. */
361358ea 75POINTER (*real_morecore) (long int);
dcfdbac7 76
abe9ff32 77/* The break value, as seen by malloc. */
dcfdbac7
JB
78static POINTER virtual_break_value;
79
abe9ff32
RS
80/* The address of the end of the last data in use by ralloc,
81 including relocatable blocs as well as malloc data. */
dcfdbac7
JB
82static POINTER break_value;
83
7516b7d5
RS
84/* This is the size of a page. We round memory requests to this boundary. */
85static int page_size;
86
177c0ea7 87/* Whenever we get memory from the system, get this many extra bytes. This
ad3bb3d2 88 must be a multiple of page_size. */
7516b7d5
RS
89static int extra_bytes;
90
dcfdbac7 91/* Macros for rounding. Note that rounding to any value is possible
abe9ff32 92 by changing the definition of PAGE. */
dcfdbac7 93#define PAGE (getpagesize ())
f7a009a5
RM
94#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
95 & ~(page_size - 1))
e429caa2 96
5e617bc2 97#define MEM_ALIGN sizeof (double)
e429caa2
KH
98#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
99 & ~(MEM_ALIGN - 1))
0a58f946 100
aeac019e
GM
101/* The hook `malloc' uses for the function which gets more space
102 from the system. */
103
104#ifndef SYSTEM_MALLOC
361358ea 105extern POINTER (*__morecore) (long int);
aeac019e
GM
106#endif
107
108
e429caa2 109\f
0a58f946
GM
110/***********************************************************************
111 Implementation using sbrk
112 ***********************************************************************/
113
abe9ff32
RS
114/* Data structures of heaps and blocs. */
115
116/* The relocatable objects, or blocs, and the malloc data
117 both reside within one or more heaps.
118 Each heap contains malloc data, running from `start' to `bloc_start',
119 and relocatable objects, running from `bloc_start' to `free'.
120
121 Relocatable objects may relocate within the same heap
122 or may move into another heap; the heaps themselves may grow
123 but they never move.
124
125 We try to make just one heap and make it larger as necessary.
8e6208c5 126 But sometimes we can't do that, because we can't get contiguous
abe9ff32 127 space to add onto the heap. When that happens, we start a new heap. */
177c0ea7 128
e429caa2
KH
129typedef struct heap
130{
131 struct heap *next;
132 struct heap *prev;
abe9ff32 133 /* Start of memory range of this heap. */
e429caa2 134 POINTER start;
abe9ff32 135 /* End of memory range of this heap. */
e429caa2 136 POINTER end;
abe9ff32
RS
137 /* Start of relocatable data in this heap. */
138 POINTER bloc_start;
139 /* Start of unused space in this heap. */
140 POINTER free;
47f13333
RS
141 /* First bloc in this heap. */
142 struct bp *first_bloc;
143 /* Last bloc in this heap. */
144 struct bp *last_bloc;
e429caa2
KH
145} *heap_ptr;
146
147#define NIL_HEAP ((heap_ptr) 0)
e429caa2 148
abe9ff32
RS
149/* This is the first heap object.
150 If we need additional heap objects, each one resides at the beginning of
151 the space it covers. */
152static struct heap heap_base;
153
154/* Head and tail of the list of heaps. */
e429caa2
KH
155static heap_ptr first_heap, last_heap;
156
157/* These structures are allocated in the malloc arena.
158 The linked list is kept in order of increasing '.data' members.
159 The data blocks abut each other; if b->next is non-nil, then
177c0ea7 160 b->data + b->size == b->next->data.
49f82b3d
RS
161
162 An element with variable==NIL denotes a freed block, which has not yet
f96f2c5b
JB
163 been collected. They may only appear while r_alloc_freeze_level > 0,
164 and will be freed when the arena is thawed. Currently, these blocs are
165 not reusable, while the arena is frozen. Very inefficient. */
49f82b3d 166
e429caa2
KH
167typedef struct bp
168{
169 struct bp *next;
170 struct bp *prev;
171 POINTER *variable;
172 POINTER data;
173 SIZE size;
8e6208c5 174 POINTER new_data; /* temporarily used for relocation */
49f82b3d 175 struct heap *heap; /* Heap this bloc is in. */
e429caa2
KH
176} *bloc_ptr;
177
178#define NIL_BLOC ((bloc_ptr) 0)
179#define BLOC_PTR_SIZE (sizeof (struct bp))
180
abe9ff32 181/* Head and tail of the list of relocatable blocs. */
e429caa2
KH
182static bloc_ptr first_bloc, last_bloc;
183
49f82b3d
RS
184static int use_relocatable_buffers;
185
186/* If >0, no relocation whatsoever takes place. */
187static int r_alloc_freeze_level;
188
dcfdbac7 189\f
956ace37
JB
190/* Functions to get and return memory from the system. */
191
abe9ff32
RS
192/* Find the heap that ADDRESS falls within. */
193
194static heap_ptr
971de7fb 195find_heap (POINTER address)
abe9ff32
RS
196{
197 heap_ptr heap;
198
199 for (heap = last_heap; heap; heap = heap->prev)
200 {
201 if (heap->start <= address && address <= heap->end)
202 return heap;
203 }
204
205 return NIL_HEAP;
206}
207
208/* Find SIZE bytes of space in a heap.
209 Try to get them at ADDRESS (which must fall within some heap's range)
210 if we can get that many within one heap.
211
e429caa2 212 If enough space is not presently available in our reserve, this means
8e6208c5
KH
213 getting more page-aligned space from the system. If the returned space
214 is not contiguous to the last heap, allocate a new heap, and append it
0d26e0b6 215 to the heap list.
abe9ff32 216
0d26e0b6
JB
217 obtain does not try to keep track of whether space is in use or not
218 in use. It just returns the address of SIZE bytes that fall within a
219 single heap. If you call obtain twice in a row with the same arguments,
220 you typically get the same value. It's the caller's responsibility to
221 keep track of what space is in use.
dcfdbac7 222
e429caa2
KH
223 Return the address of the space if all went well, or zero if we couldn't
224 allocate the memory. */
abe9ff32 225
e429caa2 226static POINTER
971de7fb 227obtain (POINTER address, SIZE size)
dcfdbac7 228{
e429caa2
KH
229 heap_ptr heap;
230 SIZE already_available;
dcfdbac7 231
abe9ff32 232 /* Find the heap that ADDRESS falls within. */
e429caa2 233 for (heap = last_heap; heap; heap = heap->prev)
dcfdbac7 234 {
e429caa2
KH
235 if (heap->start <= address && address <= heap->end)
236 break;
237 }
dcfdbac7 238
e429caa2 239 if (! heap)
abe9ff32 240 abort ();
dcfdbac7 241
abe9ff32
RS
242 /* If we can't fit SIZE bytes in that heap,
243 try successive later heaps. */
91a211b5 244 while (heap && (char *) address + size > (char *) heap->end)
e429caa2
KH
245 {
246 heap = heap->next;
247 if (heap == NIL_HEAP)
248 break;
249 address = heap->bloc_start;
dcfdbac7
JB
250 }
251
abe9ff32
RS
252 /* If we can't fit them within any existing heap,
253 get more space. */
e429caa2
KH
254 if (heap == NIL_HEAP)
255 {
256 POINTER new = (*real_morecore)(0);
257 SIZE get;
98b7fe02 258
e429caa2 259 already_available = (char *)last_heap->end - (char *)address;
dcfdbac7 260
e429caa2
KH
261 if (new != last_heap->end)
262 {
abe9ff32
RS
263 /* Someone else called sbrk. Make a new heap. */
264
265 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
266 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
e429caa2 267
91a211b5 268 if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
e429caa2
KH
269 return 0;
270
271 new_heap->start = new;
272 new_heap->end = bloc_start;
273 new_heap->bloc_start = bloc_start;
abe9ff32 274 new_heap->free = bloc_start;
e429caa2
KH
275 new_heap->next = NIL_HEAP;
276 new_heap->prev = last_heap;
47f13333
RS
277 new_heap->first_bloc = NIL_BLOC;
278 new_heap->last_bloc = NIL_BLOC;
e429caa2
KH
279 last_heap->next = new_heap;
280 last_heap = new_heap;
281
282 address = bloc_start;
283 already_available = 0;
284 }
dcfdbac7 285
abe9ff32
RS
286 /* Add space to the last heap (which we may have just created).
287 Get some extra, so we can come here less often. */
288
e429caa2 289 get = size + extra_bytes - already_available;
abe9ff32 290 get = (char *) ROUNDUP ((char *)last_heap->end + get)
e429caa2 291 - (char *) last_heap->end;
dcfdbac7 292
e429caa2
KH
293 if ((*real_morecore) (get) != last_heap->end)
294 return 0;
295
91a211b5 296 last_heap->end = (char *) last_heap->end + get;
e429caa2
KH
297 }
298
299 return address;
300}
dcfdbac7 301
abe9ff32
RS
302/* Return unused heap space to the system
303 if there is a lot of unused space now.
304 This can make the last heap smaller;
305 it can also eliminate the last heap entirely. */
306
dcfdbac7 307static void
971de7fb 308relinquish (void)
dcfdbac7 309{
e429caa2 310 register heap_ptr h;
8d31e373 311 long excess = 0;
e429caa2 312
abe9ff32
RS
313 /* Add the amount of space beyond break_value
314 in all heaps which have extend beyond break_value at all. */
315
e429caa2
KH
316 for (h = last_heap; h && break_value < h->end; h = h->prev)
317 {
318 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
319 ? h->bloc_start : break_value);
320 }
321
322 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
dcfdbac7 323 {
7516b7d5
RS
324 /* Keep extra_bytes worth of empty space.
325 And don't free anything unless we can free at least extra_bytes. */
e429caa2 326 excess -= extra_bytes;
dcfdbac7 327
e429caa2
KH
328 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
329 {
47f13333
RS
330 /* This heap should have no blocs in it. */
331 if (last_heap->first_bloc != NIL_BLOC
332 || last_heap->last_bloc != NIL_BLOC)
333 abort ();
334
abe9ff32 335 /* Return the last heap, with its header, to the system. */
e429caa2
KH
336 excess = (char *)last_heap->end - (char *)last_heap->start;
337 last_heap = last_heap->prev;
338 last_heap->next = NIL_HEAP;
339 }
340 else
341 {
342 excess = (char *) last_heap->end
abe9ff32 343 - (char *) ROUNDUP ((char *)last_heap->end - excess);
91a211b5 344 last_heap->end = (char *) last_heap->end - excess;
e429caa2 345 }
dcfdbac7 346
e429caa2 347 if ((*real_morecore) (- excess) == 0)
21532667
KH
348 {
349 /* If the system didn't want that much memory back, adjust
350 the end of the last heap to reflect that. This can occur
351 if break_value is still within the original data segment. */
91a211b5 352 last_heap->end = (char *) last_heap->end + excess;
21532667
KH
353 /* Make sure that the result of the adjustment is accurate.
354 It should be, for the else clause above; the other case,
355 which returns the entire last heap to the system, seems
356 unlikely to trigger this mode of failure. */
357 if (last_heap->end != (*real_morecore) (0))
358 abort ();
359 }
e429caa2 360 }
dcfdbac7
JB
361}
362\f
956ace37
JB
363/* The meat - allocating, freeing, and relocating blocs. */
364
956ace37 365/* Find the bloc referenced by the address in PTR. Returns a pointer
abe9ff32 366 to that block. */
dcfdbac7
JB
367
368static bloc_ptr
971de7fb 369find_bloc (POINTER *ptr)
dcfdbac7
JB
370{
371 register bloc_ptr p = first_bloc;
372
373 while (p != NIL_BLOC)
374 {
747d9d14 375 /* Consistency check. Don't return inconsistent blocs.
0d26e0b6 376 Don't abort here, as callers might be expecting this, but
747d9d14
JR
377 callers that always expect a bloc to be returned should abort
378 if one isn't to avoid a memory corruption bug that is
379 difficult to track down. */
dcfdbac7
JB
380 if (p->variable == ptr && p->data == *ptr)
381 return p;
382
383 p = p->next;
384 }
385
386 return p;
387}
388
389/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
98b7fe02
JB
390 Returns a pointer to the new bloc, or zero if we couldn't allocate
391 memory for the new block. */
dcfdbac7
JB
392
393static bloc_ptr
971de7fb 394get_bloc (SIZE size)
dcfdbac7 395{
98b7fe02 396 register bloc_ptr new_bloc;
abe9ff32 397 register heap_ptr heap;
98b7fe02
JB
398
399 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
e429caa2 400 || ! (new_bloc->data = obtain (break_value, size)))
98b7fe02 401 {
c2cd06e6 402 free (new_bloc);
98b7fe02
JB
403
404 return 0;
405 }
dcfdbac7 406
91a211b5 407 break_value = (char *) new_bloc->data + size;
e429caa2 408
dcfdbac7
JB
409 new_bloc->size = size;
410 new_bloc->next = NIL_BLOC;
8c7f1e35 411 new_bloc->variable = (POINTER *) NIL;
e429caa2 412 new_bloc->new_data = 0;
dcfdbac7 413
abe9ff32
RS
414 /* Record in the heap that this space is in use. */
415 heap = find_heap (new_bloc->data);
416 heap->free = break_value;
417
47f13333
RS
418 /* Maintain the correspondence between heaps and blocs. */
419 new_bloc->heap = heap;
420 heap->last_bloc = new_bloc;
421 if (heap->first_bloc == NIL_BLOC)
422 heap->first_bloc = new_bloc;
423
abe9ff32 424 /* Put this bloc on the doubly-linked list of blocs. */
dcfdbac7
JB
425 if (first_bloc)
426 {
427 new_bloc->prev = last_bloc;
428 last_bloc->next = new_bloc;
429 last_bloc = new_bloc;
430 }
431 else
432 {
433 first_bloc = last_bloc = new_bloc;
434 new_bloc->prev = NIL_BLOC;
435 }
436
437 return new_bloc;
438}
47f13333 439\f
abe9ff32
RS
440/* Calculate new locations of blocs in the list beginning with BLOC,
441 relocating it to start at ADDRESS, in heap HEAP. If enough space is
442 not presently available in our reserve, call obtain for
177c0ea7
JB
443 more space.
444
abe9ff32
RS
445 Store the new location of each bloc in its new_data field.
446 Do not touch the contents of blocs or break_value. */
dcfdbac7 447
e429caa2 448static int
971de7fb 449relocate_blocs (bloc_ptr bloc, heap_ptr heap, POINTER address)
e429caa2
KH
450{
451 register bloc_ptr b = bloc;
ad3bb3d2 452
49f82b3d 453 /* No need to ever call this if arena is frozen, bug somewhere! */
177c0ea7 454 if (r_alloc_freeze_level)
5e617bc2 455 abort ();
49f82b3d 456
e429caa2
KH
457 while (b)
458 {
abe9ff32
RS
459 /* If bloc B won't fit within HEAP,
460 move to the next heap and try again. */
91a211b5 461 while (heap && (char *) address + b->size > (char *) heap->end)
e429caa2
KH
462 {
463 heap = heap->next;
464 if (heap == NIL_HEAP)
465 break;
466 address = heap->bloc_start;
467 }
dcfdbac7 468
abe9ff32
RS
469 /* If BLOC won't fit in any heap,
470 get enough new space to hold BLOC and all following blocs. */
e429caa2
KH
471 if (heap == NIL_HEAP)
472 {
473 register bloc_ptr tb = b;
474 register SIZE s = 0;
475
abe9ff32 476 /* Add up the size of all the following blocs. */
e429caa2
KH
477 while (tb != NIL_BLOC)
478 {
177c0ea7 479 if (tb->variable)
49f82b3d
RS
480 s += tb->size;
481
e429caa2
KH
482 tb = tb->next;
483 }
484
abe9ff32
RS
485 /* Get that space. */
486 address = obtain (address, s);
487 if (address == 0)
e429caa2
KH
488 return 0;
489
490 heap = last_heap;
491 }
492
abe9ff32
RS
493 /* Record the new address of this bloc
494 and update where the next bloc can start. */
e429caa2 495 b->new_data = address;
177c0ea7 496 if (b->variable)
91a211b5 497 address = (char *) address + b->size;
e429caa2
KH
498 b = b->next;
499 }
500
501 return 1;
502}
47f13333
RS
503\f
504/* Update the records of which heaps contain which blocs, starting
505 with heap HEAP and bloc BLOC. */
506
507static void
971de7fb 508update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap)
abe9ff32
RS
509{
510 register bloc_ptr b;
511
47f13333
RS
512 /* Initialize HEAP's status to reflect blocs before BLOC. */
513 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
514 {
515 /* The previous bloc is in HEAP. */
516 heap->last_bloc = bloc->prev;
91a211b5 517 heap->free = (char *) bloc->prev->data + bloc->prev->size;
47f13333
RS
518 }
519 else
520 {
521 /* HEAP contains no blocs before BLOC. */
522 heap->first_bloc = NIL_BLOC;
523 heap->last_bloc = NIL_BLOC;
524 heap->free = heap->bloc_start;
525 }
526
abe9ff32
RS
527 /* Advance through blocs one by one. */
528 for (b = bloc; b != NIL_BLOC; b = b->next)
529 {
47f13333
RS
530 /* Advance through heaps, marking them empty,
531 till we get to the one that B is in. */
abe9ff32
RS
532 while (heap)
533 {
534 if (heap->bloc_start <= b->data && b->data <= heap->end)
535 break;
536 heap = heap->next;
47f13333
RS
537 /* We know HEAP is not null now,
538 because there has to be space for bloc B. */
539 heap->first_bloc = NIL_BLOC;
540 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
541 heap->free = heap->bloc_start;
542 }
47f13333
RS
543
544 /* Update HEAP's status for bloc B. */
91a211b5 545 heap->free = (char *) b->data + b->size;
47f13333
RS
546 heap->last_bloc = b;
547 if (heap->first_bloc == NIL_BLOC)
548 heap->first_bloc = b;
549
550 /* Record that B is in HEAP. */
551 b->heap = heap;
abe9ff32
RS
552 }
553
554 /* If there are any remaining heaps and no blocs left,
47f13333 555 mark those heaps as empty. */
abe9ff32
RS
556 heap = heap->next;
557 while (heap)
558 {
47f13333
RS
559 heap->first_bloc = NIL_BLOC;
560 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
561 heap->free = heap->bloc_start;
562 heap = heap->next;
563 }
564}
47f13333 565\f
abe9ff32
RS
566/* Resize BLOC to SIZE bytes. This relocates the blocs
567 that come after BLOC in memory. */
568
e429caa2 569static int
971de7fb 570resize_bloc (bloc_ptr bloc, SIZE size)
dcfdbac7 571{
e429caa2
KH
572 register bloc_ptr b;
573 heap_ptr heap;
574 POINTER address;
575 SIZE old_size;
576
49f82b3d 577 /* No need to ever call this if arena is frozen, bug somewhere! */
177c0ea7 578 if (r_alloc_freeze_level)
5e617bc2 579 abort ();
49f82b3d 580
e429caa2
KH
581 if (bloc == NIL_BLOC || size == bloc->size)
582 return 1;
583
584 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
585 {
586 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
587 break;
588 }
589
590 if (heap == NIL_HEAP)
abe9ff32 591 abort ();
e429caa2
KH
592
593 old_size = bloc->size;
594 bloc->size = size;
595
abe9ff32 596 /* Note that bloc could be moved into the previous heap. */
91a211b5
GM
597 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
598 : (char *) first_heap->bloc_start);
e429caa2
KH
599 while (heap)
600 {
601 if (heap->bloc_start <= address && address <= heap->end)
602 break;
603 heap = heap->prev;
604 }
605
606 if (! relocate_blocs (bloc, heap, address))
607 {
608 bloc->size = old_size;
609 return 0;
610 }
611
612 if (size > old_size)
613 {
614 for (b = last_bloc; b != bloc; b = b->prev)
615 {
49f82b3d
RS
616 if (!b->variable)
617 {
618 b->size = 0;
619 b->data = b->new_data;
177c0ea7
JB
620 }
621 else
49f82b3d 622 {
78cef877
EZ
623 if (b->new_data != b->data)
624 memmove (b->new_data, b->data, b->size);
49f82b3d
RS
625 *b->variable = b->data = b->new_data;
626 }
627 }
628 if (!bloc->variable)
629 {
630 bloc->size = 0;
631 bloc->data = bloc->new_data;
632 }
633 else
634 {
78cef877
EZ
635 if (bloc->new_data != bloc->data)
636 memmove (bloc->new_data, bloc->data, old_size);
3ce2f8ac 637 memset ((char *) bloc->new_data + old_size, 0, size - old_size);
49f82b3d 638 *bloc->variable = bloc->data = bloc->new_data;
e429caa2 639 }
e429caa2
KH
640 }
641 else
dcfdbac7 642 {
ad3bb3d2
JB
643 for (b = bloc; b != NIL_BLOC; b = b->next)
644 {
49f82b3d
RS
645 if (!b->variable)
646 {
647 b->size = 0;
648 b->data = b->new_data;
177c0ea7
JB
649 }
650 else
49f82b3d 651 {
78cef877
EZ
652 if (b->new_data != b->data)
653 memmove (b->new_data, b->data, b->size);
49f82b3d
RS
654 *b->variable = b->data = b->new_data;
655 }
ad3bb3d2 656 }
ad3bb3d2 657 }
dcfdbac7 658
47f13333 659 update_heap_bloc_correspondence (bloc, heap);
abe9ff32 660
91a211b5
GM
661 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
662 : (char *) first_heap->bloc_start);
e429caa2
KH
663 return 1;
664}
47f13333 665\f
abe9ff32
RS
666/* Free BLOC from the chain of blocs, relocating any blocs above it.
667 This may return space to the system. */
dcfdbac7
JB
668
669static void
971de7fb 670free_bloc (bloc_ptr bloc)
dcfdbac7 671{
47f13333
RS
672 heap_ptr heap = bloc->heap;
673
49f82b3d
RS
674 if (r_alloc_freeze_level)
675 {
676 bloc->variable = (POINTER *) NIL;
677 return;
678 }
177c0ea7 679
e429caa2
KH
680 resize_bloc (bloc, 0);
681
dcfdbac7
JB
682 if (bloc == first_bloc && bloc == last_bloc)
683 {
684 first_bloc = last_bloc = NIL_BLOC;
685 }
686 else if (bloc == last_bloc)
687 {
688 last_bloc = bloc->prev;
689 last_bloc->next = NIL_BLOC;
690 }
691 else if (bloc == first_bloc)
692 {
693 first_bloc = bloc->next;
694 first_bloc->prev = NIL_BLOC;
dcfdbac7
JB
695 }
696 else
697 {
698 bloc->next->prev = bloc->prev;
699 bloc->prev->next = bloc->next;
dcfdbac7
JB
700 }
701
47f13333
RS
702 /* Update the records of which blocs are in HEAP. */
703 if (heap->first_bloc == bloc)
704 {
d5179acc 705 if (bloc->next != 0 && bloc->next->heap == heap)
47f13333
RS
706 heap->first_bloc = bloc->next;
707 else
708 heap->first_bloc = heap->last_bloc = NIL_BLOC;
709 }
710 if (heap->last_bloc == bloc)
711 {
d5179acc 712 if (bloc->prev != 0 && bloc->prev->heap == heap)
47f13333
RS
713 heap->last_bloc = bloc->prev;
714 else
715 heap->first_bloc = heap->last_bloc = NIL_BLOC;
716 }
717
e429caa2 718 relinquish ();
dcfdbac7
JB
719 free (bloc);
720}
721\f
956ace37
JB
722/* Interface routines. */
723
98b7fe02 724/* Obtain SIZE bytes of storage from the free pool, or the system, as
2c46d29f 725 necessary. If relocatable blocs are in use, this means relocating
98b7fe02
JB
726 them. This function gets plugged into the GNU malloc's __morecore
727 hook.
728
7516b7d5
RS
729 We provide hysteresis, never relocating by less than extra_bytes.
730
98b7fe02
JB
731 If we're out of memory, we should return zero, to imitate the other
732 __morecore hook values - in particular, __default_morecore in the
733 GNU malloc package. */
dcfdbac7 734
3539f31f 735static POINTER
971de7fb 736r_alloc_sbrk (long int size)
dcfdbac7 737{
e429caa2
KH
738 register bloc_ptr b;
739 POINTER address;
dcfdbac7 740
44d3dec0
RS
741 if (! r_alloc_initialized)
742 r_alloc_init ();
743
dcfdbac7 744 if (! use_relocatable_buffers)
bbc60227 745 return (*real_morecore) (size);
dcfdbac7 746
e429caa2
KH
747 if (size == 0)
748 return virtual_break_value;
7516b7d5 749
e429caa2 750 if (size > 0)
dcfdbac7 751 {
abe9ff32
RS
752 /* Allocate a page-aligned space. GNU malloc would reclaim an
753 extra space if we passed an unaligned one. But we could
8e6208c5 754 not always find a space which is contiguous to the previous. */
e429caa2
KH
755 POINTER new_bloc_start;
756 heap_ptr h = first_heap;
abe9ff32 757 SIZE get = ROUNDUP (size);
7516b7d5 758
abe9ff32 759 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 760
abe9ff32
RS
761 /* Search the list upward for a heap which is large enough. */
762 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
e429caa2
KH
763 {
764 h = h->next;
765 if (h == NIL_HEAP)
766 break;
abe9ff32 767 address = (POINTER) ROUNDUP (h->start);
e429caa2
KH
768 }
769
abe9ff32 770 /* If not found, obtain more space. */
e429caa2
KH
771 if (h == NIL_HEAP)
772 {
773 get += extra_bytes + page_size;
774
49f82b3d 775 if (! obtain (address, get))
e429caa2 776 return 0;
98b7fe02 777
e429caa2 778 if (first_heap == last_heap)
abe9ff32 779 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 780 else
abe9ff32 781 address = (POINTER) ROUNDUP (last_heap->start);
e429caa2
KH
782 h = last_heap;
783 }
784
abe9ff32 785 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
e429caa2
KH
786
787 if (first_heap->bloc_start < new_bloc_start)
788 {
49f82b3d 789 /* This is no clean solution - no idea how to do it better. */
177c0ea7 790 if (r_alloc_freeze_level)
49f82b3d
RS
791 return NIL;
792
793 /* There is a bug here: if the above obtain call succeeded, but the
794 relocate_blocs call below does not succeed, we need to free
795 the memory that we got with obtain. */
796
abe9ff32 797 /* Move all blocs upward. */
49f82b3d 798 if (! relocate_blocs (first_bloc, h, new_bloc_start))
e429caa2
KH
799 return 0;
800
801 /* Note that (POINTER)(h+1) <= new_bloc_start since
802 get >= page_size, so the following does not destroy the heap
abe9ff32 803 header. */
e429caa2
KH
804 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
805 {
78cef877
EZ
806 if (b->new_data != b->data)
807 memmove (b->new_data, b->data, b->size);
e429caa2
KH
808 *b->variable = b->data = b->new_data;
809 }
810
811 h->bloc_start = new_bloc_start;
abe9ff32 812
47f13333 813 update_heap_bloc_correspondence (first_bloc, h);
e429caa2 814 }
e429caa2
KH
815 if (h != first_heap)
816 {
817 /* Give up managing heaps below the one the new
abe9ff32 818 virtual_break_value points to. */
e429caa2
KH
819 first_heap->prev = NIL_HEAP;
820 first_heap->next = h->next;
821 first_heap->start = h->start;
822 first_heap->end = h->end;
abe9ff32 823 first_heap->free = h->free;
47f13333
RS
824 first_heap->first_bloc = h->first_bloc;
825 first_heap->last_bloc = h->last_bloc;
e429caa2
KH
826 first_heap->bloc_start = h->bloc_start;
827
828 if (first_heap->next)
829 first_heap->next->prev = first_heap;
830 else
831 last_heap = first_heap;
832 }
833
72af86bd 834 memset (address, 0, size);
dcfdbac7 835 }
e429caa2 836 else /* size < 0 */
dcfdbac7 837 {
e429caa2
KH
838 SIZE excess = (char *)first_heap->bloc_start
839 - ((char *)virtual_break_value + size);
840
841 address = virtual_break_value;
842
843 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
844 {
845 excess -= extra_bytes;
846 first_heap->bloc_start
47f13333 847 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
e429caa2 848
abe9ff32 849 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
7516b7d5 850
e429caa2
KH
851 for (b = first_bloc; b != NIL_BLOC; b = b->next)
852 {
78cef877
EZ
853 if (b->new_data != b->data)
854 memmove (b->new_data, b->data, b->size);
e429caa2
KH
855 *b->variable = b->data = b->new_data;
856 }
857 }
858
859 if ((char *)virtual_break_value + size < (char *)first_heap->start)
860 {
861 /* We found an additional space below the first heap */
862 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
863 }
dcfdbac7
JB
864 }
865
e429caa2 866 virtual_break_value = (POINTER) ((char *)address + size);
47f13333 867 break_value = (last_bloc
91a211b5
GM
868 ? (char *) last_bloc->data + last_bloc->size
869 : (char *) first_heap->bloc_start);
e429caa2 870 if (size < 0)
abe9ff32 871 relinquish ();
7516b7d5 872
e429caa2 873 return address;
dcfdbac7
JB
874}
875
0a58f946 876
dcfdbac7
JB
877/* Allocate a relocatable bloc of storage of size SIZE. A pointer to
878 the data is returned in *PTR. PTR is thus the address of some variable
98b7fe02
JB
879 which will use the data area.
880
49f82b3d 881 The allocation of 0 bytes is valid.
f96f2c5b
JB
882 In case r_alloc_freeze_level is set, a best fit of unused blocs could be
883 done before allocating a new area. Not yet done.
49f82b3d 884
98b7fe02
JB
885 If we can't allocate the necessary memory, set *PTR to zero, and
886 return zero. */
dcfdbac7
JB
887
888POINTER
971de7fb 889r_alloc (POINTER *ptr, SIZE size)
dcfdbac7
JB
890{
891 register bloc_ptr new_bloc;
892
2c46d29f
RS
893 if (! r_alloc_initialized)
894 r_alloc_init ();
895
abe9ff32 896 new_bloc = get_bloc (MEM_ROUNDUP (size));
98b7fe02
JB
897 if (new_bloc)
898 {
899 new_bloc->variable = ptr;
900 *ptr = new_bloc->data;
901 }
902 else
903 *ptr = 0;
dcfdbac7
JB
904
905 return *ptr;
906}
907
2c46d29f
RS
908/* Free a bloc of relocatable storage whose data is pointed to by PTR.
909 Store 0 in *PTR to show there's no block allocated. */
dcfdbac7
JB
910
911void
971de7fb 912r_alloc_free (register POINTER *ptr)
dcfdbac7
JB
913{
914 register bloc_ptr dead_bloc;
915
44d3dec0
RS
916 if (! r_alloc_initialized)
917 r_alloc_init ();
918
dcfdbac7
JB
919 dead_bloc = find_bloc (ptr);
920 if (dead_bloc == NIL_BLOC)
747d9d14 921 abort (); /* Double free? PTR not originally used to allocate? */
dcfdbac7
JB
922
923 free_bloc (dead_bloc);
2c46d29f 924 *ptr = 0;
719b242f 925
d5179acc 926#ifdef emacs
719b242f 927 refill_memory_reserve ();
d5179acc 928#endif
dcfdbac7
JB
929}
930
16a5c729 931/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
98b7fe02
JB
932 Do this by shifting all blocks above this one up in memory, unless
933 SIZE is less than or equal to the current bloc size, in which case
934 do nothing.
dcfdbac7 935
f96f2c5b 936 In case r_alloc_freeze_level is set, a new bloc is allocated, and the
8e6208c5 937 memory copied to it. Not very efficient. We could traverse the
49f82b3d
RS
938 bloc_list for a best fit of free blocs first.
939
98b7fe02
JB
940 Change *PTR to reflect the new bloc, and return this value.
941
942 If more memory cannot be allocated, then leave *PTR unchanged, and
943 return zero. */
dcfdbac7
JB
944
945POINTER
971de7fb 946r_re_alloc (POINTER *ptr, SIZE size)
dcfdbac7 947{
16a5c729 948 register bloc_ptr bloc;
dcfdbac7 949
44d3dec0
RS
950 if (! r_alloc_initialized)
951 r_alloc_init ();
952
49f82b3d
RS
953 if (!*ptr)
954 return r_alloc (ptr, size);
177c0ea7 955 if (!size)
49f82b3d
RS
956 {
957 r_alloc_free (ptr);
958 return r_alloc (ptr, 0);
959 }
960
16a5c729
JB
961 bloc = find_bloc (ptr);
962 if (bloc == NIL_BLOC)
747d9d14 963 abort (); /* Already freed? PTR not originally used to allocate? */
dcfdbac7 964
177c0ea7 965 if (size < bloc->size)
49f82b3d
RS
966 {
967 /* Wouldn't it be useful to actually resize the bloc here? */
968 /* I think so too, but not if it's too expensive... */
177c0ea7
JB
969 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
970 && r_alloc_freeze_level == 0)
49f82b3d
RS
971 {
972 resize_bloc (bloc, MEM_ROUNDUP (size));
973 /* Never mind if this fails, just do nothing... */
974 /* It *should* be infallible! */
975 }
976 }
977 else if (size > bloc->size)
978 {
979 if (r_alloc_freeze_level)
980 {
981 bloc_ptr new_bloc;
982 new_bloc = get_bloc (MEM_ROUNDUP (size));
983 if (new_bloc)
984 {
985 new_bloc->variable = ptr;
986 *ptr = new_bloc->data;
987 bloc->variable = (POINTER *) NIL;
988 }
989 else
990 return NIL;
991 }
177c0ea7 992 else
49f82b3d
RS
993 {
994 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
995 return NIL;
996 }
997 }
dcfdbac7
JB
998 return *ptr;
999}
81bd58e8 1000
dec41418
RS
1001
1002#if defined (emacs) && defined (DOUG_LEA_MALLOC)
1003
1004/* Reinitialize the morecore hook variables after restarting a dumped
1005 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1006void
971de7fb 1007r_alloc_reinit (void)
dec41418
RS
1008{
1009 /* Only do this if the hook has been reset, so that we don't get an
1010 infinite loop, in case Emacs was linked statically. */
1011 if (__morecore != r_alloc_sbrk)
1012 {
1013 real_morecore = __morecore;
1014 __morecore = r_alloc_sbrk;
1015 }
1016}
0a58f946
GM
1017
1018#endif /* emacs && DOUG_LEA_MALLOC */
dec41418 1019
e429caa2 1020#ifdef DEBUG
0a58f946 1021
e429caa2
KH
1022#include <assert.h>
1023
44d3dec0 1024void
268c2c36 1025r_alloc_check (void)
e429caa2 1026{
6d16dd06
RS
1027 int found = 0;
1028 heap_ptr h, ph = 0;
1029 bloc_ptr b, pb = 0;
1030
1031 if (!r_alloc_initialized)
1032 return;
1033
1034 assert (first_heap);
1035 assert (last_heap->end <= (POINTER) sbrk (0));
1036 assert ((POINTER) first_heap < first_heap->start);
1037 assert (first_heap->start <= virtual_break_value);
1038 assert (virtual_break_value <= first_heap->end);
1039
1040 for (h = first_heap; h; h = h->next)
1041 {
1042 assert (h->prev == ph);
1043 assert ((POINTER) ROUNDUP (h->end) == h->end);
40f3f04b
RS
1044#if 0 /* ??? The code in ralloc.c does not really try to ensure
1045 the heap start has any sort of alignment.
1046 Perhaps it should. */
6d16dd06 1047 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
40f3f04b 1048#endif
6d16dd06
RS
1049 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1050 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1051
1052 if (ph)
1053 {
1054 assert (ph->end < h->start);
1055 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1056 }
1057
1058 if (h->bloc_start <= break_value && break_value <= h->end)
1059 found = 1;
1060
1061 ph = h;
1062 }
1063
1064 assert (found);
1065 assert (last_heap == ph);
1066
1067 for (b = first_bloc; b; b = b->next)
1068 {
1069 assert (b->prev == pb);
1070 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1071 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1072
1073 ph = 0;
1074 for (h = first_heap; h; h = h->next)
1075 {
1076 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1077 break;
1078 ph = h;
1079 }
1080
1081 assert (h);
1082
1083 if (pb && pb->data + pb->size != b->data)
1084 {
1085 assert (ph && b->data == h->bloc_start);
1086 while (ph)
1087 {
1088 if (ph->bloc_start <= pb->data
1089 && pb->data + pb->size <= ph->end)
1090 {
1091 assert (pb->data + pb->size + b->size > ph->end);
1092 break;
1093 }
1094 else
1095 {
1096 assert (ph->bloc_start + b->size > ph->end);
1097 }
1098 ph = ph->prev;
1099 }
1100 }
1101 pb = b;
1102 }
1103
1104 assert (last_bloc == pb);
1105
1106 if (last_bloc)
1107 assert (last_bloc->data + last_bloc->size == break_value);
1108 else
1109 assert (first_heap->bloc_start == break_value);
e429caa2 1110}
0a58f946 1111
e429caa2 1112#endif /* DEBUG */
0a58f946 1113
baae5c2d
JR
1114/* Update the internal record of which variable points to some data to NEW.
1115 Used by buffer-swap-text in Emacs to restore consistency after it
1116 swaps the buffer text between two buffer objects. The OLD pointer
1117 is checked to ensure that memory corruption does not occur due to
1118 misuse. */
1119void
971de7fb 1120r_alloc_reset_variable (POINTER *old, POINTER *new)
baae5c2d
JR
1121{
1122 bloc_ptr bloc = first_bloc;
1123
1124 /* Find the bloc that corresponds to the data pointed to by pointer.
1125 find_bloc cannot be used, as it has internal consistency checks
0d26e0b6 1126 which fail when the variable needs resetting. */
baae5c2d
JR
1127 while (bloc != NIL_BLOC)
1128 {
1129 if (bloc->data == *new)
1130 break;
1131
1132 bloc = bloc->next;
1133 }
1134
1135 if (bloc == NIL_BLOC || bloc->variable != old)
747d9d14 1136 abort (); /* Already freed? OLD not originally used to allocate? */
baae5c2d
JR
1137
1138 /* Update variable to point to the new location. */
1139 bloc->variable = new;
1140}
0a58f946
GM
1141
1142\f
1143/***********************************************************************
1144 Initialization
1145 ***********************************************************************/
1146
0a58f946
GM
1147/* Initialize various things for memory allocation. */
1148
1149static void
971de7fb 1150r_alloc_init (void)
0a58f946
GM
1151{
1152 if (r_alloc_initialized)
1153 return;
0a58f946 1154 r_alloc_initialized = 1;
177c0ea7 1155
a2c23c92
DL
1156 page_size = PAGE;
1157#ifndef SYSTEM_MALLOC
0a58f946
GM
1158 real_morecore = __morecore;
1159 __morecore = r_alloc_sbrk;
1160
1161 first_heap = last_heap = &heap_base;
1162 first_heap->next = first_heap->prev = NIL_HEAP;
1163 first_heap->start = first_heap->bloc_start
1164 = virtual_break_value = break_value = (*real_morecore) (0);
1165 if (break_value == NIL)
1166 abort ();
1167
0a58f946 1168 extra_bytes = ROUNDUP (50000);
a2c23c92 1169#endif
0a58f946
GM
1170
1171#ifdef DOUG_LEA_MALLOC
1673df2e
JD
1172 BLOCK_INPUT;
1173 mallopt (M_TOP_PAD, 64 * 4096);
1174 UNBLOCK_INPUT;
0a58f946 1175#else
a2c23c92 1176#ifndef SYSTEM_MALLOC
0a58f946
GM
1177 /* Give GNU malloc's morecore some hysteresis
1178 so that we move all the relocatable blocks much less often. */
1179 __malloc_extra_blocks = 64;
1180#endif
a2c23c92 1181#endif
0a58f946 1182
5ad25b24 1183#ifndef SYSTEM_MALLOC
0a58f946
GM
1184 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
1185
1186 /* The extra call to real_morecore guarantees that the end of the
1187 address space is a multiple of page_size, even if page_size is
1188 not really the page size of the system running the binary in
1189 which page_size is stored. This allows a binary to be built on a
1190 system with one page size and run on a system with a smaller page
1191 size. */
91a211b5 1192 (*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
0a58f946
GM
1193
1194 /* Clear the rest of the last page; this memory is in our address space
1195 even though it is after the sbrk value. */
1196 /* Doubly true, with the additional call that explicitly adds the
1197 rest of that page to the address space. */
72af86bd
AS
1198 memset (first_heap->start, 0,
1199 (char *) first_heap->end - (char *) first_heap->start);
0a58f946 1200 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
a2c23c92 1201#endif
177c0ea7 1202
0a58f946
GM
1203 use_relocatable_buffers = 1;
1204}