Improve ralloc.c interface checking.
[bpt/emacs.git] / src / ralloc.c
CommitLineData
177c0ea7 1/* Block-relocating memory allocator.
acaf905b 2 Copyright (C) 1993, 1995, 2000-2012 Free Software Foundation, Inc.
dcfdbac7
JB
3
4This file is part of GNU Emacs.
5
9ec0b715 6GNU Emacs is free software: you can redistribute it and/or modify
dcfdbac7 7it under the terms of the GNU General Public License as published by
9ec0b715
GM
8the Free Software Foundation, either version 3 of the License, or
9(at your option) any later version.
dcfdbac7
JB
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
9ec0b715 17along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
dcfdbac7
JB
18
19/* NOTES:
20
eb8c3be9 21 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
dcfdbac7 22 rather than all of them. This means allowing for a possible
abe9ff32 23 hole between the first bloc and the end of malloc storage. */
dcfdbac7 24
2c46d29f 25#ifdef emacs
aef4d570 26
18160b98 27#include <config.h>
d7306fe6 28#include <setjmp.h>
956ace37 29#include "lisp.h" /* Needed for VALBITS. */
a4766fd5 30#include "blockinput.h"
0a58f946 31
642a1733 32#include <unistd.h>
a8c0e5ea 33
0a58f946
GM
34typedef POINTER_TYPE *POINTER;
35typedef size_t SIZE;
f275fd9a 36
b0119c68 37#ifdef DOUG_LEA_MALLOC
177c0ea7 38#define M_TOP_PAD -2
971de7fb 39extern int mallopt (int, int);
0a58f946 40#else /* not DOUG_LEA_MALLOC */
a2c23c92 41#ifndef SYSTEM_MALLOC
b1685c5f 42extern size_t __malloc_extra_blocks;
a2c23c92 43#endif /* SYSTEM_MALLOC */
0a58f946 44#endif /* not DOUG_LEA_MALLOC */
49081834 45
d5179acc 46#else /* not emacs */
aef4d570 47
2c46d29f 48#include <stddef.h>
aef4d570 49
2c46d29f
RS
50typedef size_t SIZE;
51typedef void *POINTER;
aef4d570 52
aef4d570
RM
53#include <unistd.h>
54#include <malloc.h>
aef4d570 55
d5179acc 56#endif /* not emacs */
2c46d29f 57
0a58f946 58
d5179acc 59#include "getpagesize.h"
dcfdbac7
JB
60
61#define NIL ((POINTER) 0)
62
2c46d29f
RS
63/* A flag to indicate whether we have initialized ralloc yet. For
64 Emacs's sake, please do not make this local to malloc_init; on some
65 machines, the dumping procedure makes all static variables
66 read-only. On these machines, the word static is #defined to be
67 the empty string, meaning that r_alloc_initialized becomes an
0a58f946
GM
68 automatic variable, and loses its value each time Emacs is started
69 up. */
70
2c46d29f
RS
71static int r_alloc_initialized = 0;
72
971de7fb 73static void r_alloc_init (void);
0a58f946 74
dcfdbac7 75\f
956ace37
JB
76/* Declarations for working with the malloc, ralloc, and system breaks. */
77
abe9ff32 78/* Function to set the real break value. */
361358ea 79POINTER (*real_morecore) (long int);
dcfdbac7 80
abe9ff32 81/* The break value, as seen by malloc. */
dcfdbac7
JB
82static POINTER virtual_break_value;
83
abe9ff32
RS
84/* The address of the end of the last data in use by ralloc,
85 including relocatable blocs as well as malloc data. */
dcfdbac7
JB
86static POINTER break_value;
87
7516b7d5
RS
88/* This is the size of a page. We round memory requests to this boundary. */
89static int page_size;
90
177c0ea7 91/* Whenever we get memory from the system, get this many extra bytes. This
ad3bb3d2 92 must be a multiple of page_size. */
7516b7d5
RS
93static int extra_bytes;
94
dcfdbac7 95/* Macros for rounding. Note that rounding to any value is possible
abe9ff32 96 by changing the definition of PAGE. */
dcfdbac7 97#define PAGE (getpagesize ())
f7a009a5
RM
98#define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
99#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
100 & ~(page_size - 1))
7516b7d5 101#define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
e429caa2 102
5e617bc2 103#define MEM_ALIGN sizeof (double)
e429caa2
KH
104#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
105 & ~(MEM_ALIGN - 1))
0a58f946 106
aeac019e
GM
107/* The hook `malloc' uses for the function which gets more space
108 from the system. */
109
110#ifndef SYSTEM_MALLOC
361358ea 111extern POINTER (*__morecore) (long int);
aeac019e
GM
112#endif
113
114
e429caa2 115\f
0a58f946
GM
116/***********************************************************************
117 Implementation using sbrk
118 ***********************************************************************/
119
abe9ff32
RS
120/* Data structures of heaps and blocs. */
121
122/* The relocatable objects, or blocs, and the malloc data
123 both reside within one or more heaps.
124 Each heap contains malloc data, running from `start' to `bloc_start',
125 and relocatable objects, running from `bloc_start' to `free'.
126
127 Relocatable objects may relocate within the same heap
128 or may move into another heap; the heaps themselves may grow
129 but they never move.
130
131 We try to make just one heap and make it larger as necessary.
8e6208c5 132 But sometimes we can't do that, because we can't get contiguous
abe9ff32 133 space to add onto the heap. When that happens, we start a new heap. */
177c0ea7 134
e429caa2
KH
135typedef struct heap
136{
137 struct heap *next;
138 struct heap *prev;
abe9ff32 139 /* Start of memory range of this heap. */
e429caa2 140 POINTER start;
abe9ff32 141 /* End of memory range of this heap. */
e429caa2 142 POINTER end;
abe9ff32
RS
143 /* Start of relocatable data in this heap. */
144 POINTER bloc_start;
145 /* Start of unused space in this heap. */
146 POINTER free;
47f13333
RS
147 /* First bloc in this heap. */
148 struct bp *first_bloc;
149 /* Last bloc in this heap. */
150 struct bp *last_bloc;
e429caa2
KH
151} *heap_ptr;
152
153#define NIL_HEAP ((heap_ptr) 0)
154#define HEAP_PTR_SIZE (sizeof (struct heap))
155
abe9ff32
RS
156/* This is the first heap object.
157 If we need additional heap objects, each one resides at the beginning of
158 the space it covers. */
159static struct heap heap_base;
160
161/* Head and tail of the list of heaps. */
e429caa2
KH
162static heap_ptr first_heap, last_heap;
163
164/* These structures are allocated in the malloc arena.
165 The linked list is kept in order of increasing '.data' members.
166 The data blocks abut each other; if b->next is non-nil, then
177c0ea7 167 b->data + b->size == b->next->data.
49f82b3d
RS
168
169 An element with variable==NIL denotes a freed block, which has not yet
f96f2c5b
JB
170 been collected. They may only appear while r_alloc_freeze_level > 0,
171 and will be freed when the arena is thawed. Currently, these blocs are
172 not reusable, while the arena is frozen. Very inefficient. */
49f82b3d 173
e429caa2
KH
174typedef struct bp
175{
176 struct bp *next;
177 struct bp *prev;
178 POINTER *variable;
179 POINTER data;
180 SIZE size;
8e6208c5 181 POINTER new_data; /* temporarily used for relocation */
49f82b3d 182 struct heap *heap; /* Heap this bloc is in. */
e429caa2
KH
183} *bloc_ptr;
184
185#define NIL_BLOC ((bloc_ptr) 0)
186#define BLOC_PTR_SIZE (sizeof (struct bp))
187
abe9ff32 188/* Head and tail of the list of relocatable blocs. */
e429caa2
KH
189static bloc_ptr first_bloc, last_bloc;
190
49f82b3d
RS
191static int use_relocatable_buffers;
192
193/* If >0, no relocation whatsoever takes place. */
194static int r_alloc_freeze_level;
195
dcfdbac7 196\f
956ace37
JB
197/* Functions to get and return memory from the system. */
198
abe9ff32
RS
199/* Find the heap that ADDRESS falls within. */
200
201static heap_ptr
971de7fb 202find_heap (POINTER address)
abe9ff32
RS
203{
204 heap_ptr heap;
205
206 for (heap = last_heap; heap; heap = heap->prev)
207 {
208 if (heap->start <= address && address <= heap->end)
209 return heap;
210 }
211
212 return NIL_HEAP;
213}
214
215/* Find SIZE bytes of space in a heap.
216 Try to get them at ADDRESS (which must fall within some heap's range)
217 if we can get that many within one heap.
218
e429caa2 219 If enough space is not presently available in our reserve, this means
8e6208c5
KH
220 getting more page-aligned space from the system. If the returned space
221 is not contiguous to the last heap, allocate a new heap, and append it
0d26e0b6 222 to the heap list.
abe9ff32 223
0d26e0b6
JB
224 obtain does not try to keep track of whether space is in use or not
225 in use. It just returns the address of SIZE bytes that fall within a
226 single heap. If you call obtain twice in a row with the same arguments,
227 you typically get the same value. It's the caller's responsibility to
228 keep track of what space is in use.
dcfdbac7 229
e429caa2
KH
230 Return the address of the space if all went well, or zero if we couldn't
231 allocate the memory. */
abe9ff32 232
e429caa2 233static POINTER
971de7fb 234obtain (POINTER address, SIZE size)
dcfdbac7 235{
e429caa2
KH
236 heap_ptr heap;
237 SIZE already_available;
dcfdbac7 238
abe9ff32 239 /* Find the heap that ADDRESS falls within. */
e429caa2 240 for (heap = last_heap; heap; heap = heap->prev)
dcfdbac7 241 {
e429caa2
KH
242 if (heap->start <= address && address <= heap->end)
243 break;
244 }
dcfdbac7 245
e429caa2 246 if (! heap)
abe9ff32 247 abort ();
dcfdbac7 248
abe9ff32
RS
249 /* If we can't fit SIZE bytes in that heap,
250 try successive later heaps. */
91a211b5 251 while (heap && (char *) address + size > (char *) heap->end)
e429caa2
KH
252 {
253 heap = heap->next;
254 if (heap == NIL_HEAP)
255 break;
256 address = heap->bloc_start;
dcfdbac7
JB
257 }
258
abe9ff32
RS
259 /* If we can't fit them within any existing heap,
260 get more space. */
e429caa2
KH
261 if (heap == NIL_HEAP)
262 {
263 POINTER new = (*real_morecore)(0);
264 SIZE get;
98b7fe02 265
e429caa2 266 already_available = (char *)last_heap->end - (char *)address;
dcfdbac7 267
e429caa2
KH
268 if (new != last_heap->end)
269 {
abe9ff32
RS
270 /* Someone else called sbrk. Make a new heap. */
271
272 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
273 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
e429caa2 274
91a211b5 275 if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
e429caa2
KH
276 return 0;
277
278 new_heap->start = new;
279 new_heap->end = bloc_start;
280 new_heap->bloc_start = bloc_start;
abe9ff32 281 new_heap->free = bloc_start;
e429caa2
KH
282 new_heap->next = NIL_HEAP;
283 new_heap->prev = last_heap;
47f13333
RS
284 new_heap->first_bloc = NIL_BLOC;
285 new_heap->last_bloc = NIL_BLOC;
e429caa2
KH
286 last_heap->next = new_heap;
287 last_heap = new_heap;
288
289 address = bloc_start;
290 already_available = 0;
291 }
dcfdbac7 292
abe9ff32
RS
293 /* Add space to the last heap (which we may have just created).
294 Get some extra, so we can come here less often. */
295
e429caa2 296 get = size + extra_bytes - already_available;
abe9ff32 297 get = (char *) ROUNDUP ((char *)last_heap->end + get)
e429caa2 298 - (char *) last_heap->end;
dcfdbac7 299
e429caa2
KH
300 if ((*real_morecore) (get) != last_heap->end)
301 return 0;
302
91a211b5 303 last_heap->end = (char *) last_heap->end + get;
e429caa2
KH
304 }
305
306 return address;
307}
dcfdbac7 308
abe9ff32
RS
309/* Return unused heap space to the system
310 if there is a lot of unused space now.
311 This can make the last heap smaller;
312 it can also eliminate the last heap entirely. */
313
dcfdbac7 314static void
971de7fb 315relinquish (void)
dcfdbac7 316{
e429caa2 317 register heap_ptr h;
8d31e373 318 long excess = 0;
e429caa2 319
abe9ff32
RS
320 /* Add the amount of space beyond break_value
321 in all heaps which have extend beyond break_value at all. */
322
e429caa2
KH
323 for (h = last_heap; h && break_value < h->end; h = h->prev)
324 {
325 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
326 ? h->bloc_start : break_value);
327 }
328
329 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
dcfdbac7 330 {
7516b7d5
RS
331 /* Keep extra_bytes worth of empty space.
332 And don't free anything unless we can free at least extra_bytes. */
e429caa2 333 excess -= extra_bytes;
dcfdbac7 334
e429caa2
KH
335 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
336 {
47f13333
RS
337 /* This heap should have no blocs in it. */
338 if (last_heap->first_bloc != NIL_BLOC
339 || last_heap->last_bloc != NIL_BLOC)
340 abort ();
341
abe9ff32 342 /* Return the last heap, with its header, to the system. */
e429caa2
KH
343 excess = (char *)last_heap->end - (char *)last_heap->start;
344 last_heap = last_heap->prev;
345 last_heap->next = NIL_HEAP;
346 }
347 else
348 {
349 excess = (char *) last_heap->end
abe9ff32 350 - (char *) ROUNDUP ((char *)last_heap->end - excess);
91a211b5 351 last_heap->end = (char *) last_heap->end - excess;
e429caa2 352 }
dcfdbac7 353
e429caa2 354 if ((*real_morecore) (- excess) == 0)
21532667
KH
355 {
356 /* If the system didn't want that much memory back, adjust
357 the end of the last heap to reflect that. This can occur
358 if break_value is still within the original data segment. */
91a211b5 359 last_heap->end = (char *) last_heap->end + excess;
21532667
KH
360 /* Make sure that the result of the adjustment is accurate.
361 It should be, for the else clause above; the other case,
362 which returns the entire last heap to the system, seems
363 unlikely to trigger this mode of failure. */
364 if (last_heap->end != (*real_morecore) (0))
365 abort ();
366 }
e429caa2 367 }
dcfdbac7 368}
719b242f
RS
369
370/* Return the total size in use by relocating allocator,
371 above where malloc gets space. */
372
373long
971de7fb 374r_alloc_size_in_use (void)
719b242f 375{
91a211b5 376 return (char *) break_value - (char *) virtual_break_value;
719b242f 377}
dcfdbac7 378\f
956ace37
JB
379/* The meat - allocating, freeing, and relocating blocs. */
380
956ace37 381/* Find the bloc referenced by the address in PTR. Returns a pointer
abe9ff32 382 to that block. */
dcfdbac7
JB
383
384static bloc_ptr
971de7fb 385find_bloc (POINTER *ptr)
dcfdbac7
JB
386{
387 register bloc_ptr p = first_bloc;
388
389 while (p != NIL_BLOC)
390 {
747d9d14 391 /* Consistency check. Don't return inconsistent blocs.
0d26e0b6 392 Don't abort here, as callers might be expecting this, but
747d9d14
JR
393 callers that always expect a bloc to be returned should abort
394 if one isn't to avoid a memory corruption bug that is
395 difficult to track down. */
dcfdbac7
JB
396 if (p->variable == ptr && p->data == *ptr)
397 return p;
398
399 p = p->next;
400 }
401
402 return p;
403}
404
405/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
98b7fe02
JB
406 Returns a pointer to the new bloc, or zero if we couldn't allocate
407 memory for the new block. */
dcfdbac7
JB
408
409static bloc_ptr
971de7fb 410get_bloc (SIZE size)
dcfdbac7 411{
98b7fe02 412 register bloc_ptr new_bloc;
abe9ff32 413 register heap_ptr heap;
98b7fe02
JB
414
415 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
e429caa2 416 || ! (new_bloc->data = obtain (break_value, size)))
98b7fe02 417 {
c2cd06e6 418 free (new_bloc);
98b7fe02
JB
419
420 return 0;
421 }
dcfdbac7 422
91a211b5 423 break_value = (char *) new_bloc->data + size;
e429caa2 424
dcfdbac7
JB
425 new_bloc->size = size;
426 new_bloc->next = NIL_BLOC;
8c7f1e35 427 new_bloc->variable = (POINTER *) NIL;
e429caa2 428 new_bloc->new_data = 0;
dcfdbac7 429
abe9ff32
RS
430 /* Record in the heap that this space is in use. */
431 heap = find_heap (new_bloc->data);
432 heap->free = break_value;
433
47f13333
RS
434 /* Maintain the correspondence between heaps and blocs. */
435 new_bloc->heap = heap;
436 heap->last_bloc = new_bloc;
437 if (heap->first_bloc == NIL_BLOC)
438 heap->first_bloc = new_bloc;
439
abe9ff32 440 /* Put this bloc on the doubly-linked list of blocs. */
dcfdbac7
JB
441 if (first_bloc)
442 {
443 new_bloc->prev = last_bloc;
444 last_bloc->next = new_bloc;
445 last_bloc = new_bloc;
446 }
447 else
448 {
449 first_bloc = last_bloc = new_bloc;
450 new_bloc->prev = NIL_BLOC;
451 }
452
453 return new_bloc;
454}
47f13333 455\f
abe9ff32
RS
456/* Calculate new locations of blocs in the list beginning with BLOC,
457 relocating it to start at ADDRESS, in heap HEAP. If enough space is
458 not presently available in our reserve, call obtain for
177c0ea7
JB
459 more space.
460
abe9ff32
RS
461 Store the new location of each bloc in its new_data field.
462 Do not touch the contents of blocs or break_value. */
dcfdbac7 463
e429caa2 464static int
971de7fb 465relocate_blocs (bloc_ptr bloc, heap_ptr heap, POINTER address)
e429caa2
KH
466{
467 register bloc_ptr b = bloc;
ad3bb3d2 468
49f82b3d 469 /* No need to ever call this if arena is frozen, bug somewhere! */
177c0ea7 470 if (r_alloc_freeze_level)
5e617bc2 471 abort ();
49f82b3d 472
e429caa2
KH
473 while (b)
474 {
abe9ff32
RS
475 /* If bloc B won't fit within HEAP,
476 move to the next heap and try again. */
91a211b5 477 while (heap && (char *) address + b->size > (char *) heap->end)
e429caa2
KH
478 {
479 heap = heap->next;
480 if (heap == NIL_HEAP)
481 break;
482 address = heap->bloc_start;
483 }
dcfdbac7 484
abe9ff32
RS
485 /* If BLOC won't fit in any heap,
486 get enough new space to hold BLOC and all following blocs. */
e429caa2
KH
487 if (heap == NIL_HEAP)
488 {
489 register bloc_ptr tb = b;
490 register SIZE s = 0;
491
abe9ff32 492 /* Add up the size of all the following blocs. */
e429caa2
KH
493 while (tb != NIL_BLOC)
494 {
177c0ea7 495 if (tb->variable)
49f82b3d
RS
496 s += tb->size;
497
e429caa2
KH
498 tb = tb->next;
499 }
500
abe9ff32
RS
501 /* Get that space. */
502 address = obtain (address, s);
503 if (address == 0)
e429caa2
KH
504 return 0;
505
506 heap = last_heap;
507 }
508
abe9ff32
RS
509 /* Record the new address of this bloc
510 and update where the next bloc can start. */
e429caa2 511 b->new_data = address;
177c0ea7 512 if (b->variable)
91a211b5 513 address = (char *) address + b->size;
e429caa2
KH
514 b = b->next;
515 }
516
517 return 1;
518}
47f13333
RS
519\f
520/* Update the records of which heaps contain which blocs, starting
521 with heap HEAP and bloc BLOC. */
522
523static void
971de7fb 524update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap)
abe9ff32
RS
525{
526 register bloc_ptr b;
527
47f13333
RS
528 /* Initialize HEAP's status to reflect blocs before BLOC. */
529 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
530 {
531 /* The previous bloc is in HEAP. */
532 heap->last_bloc = bloc->prev;
91a211b5 533 heap->free = (char *) bloc->prev->data + bloc->prev->size;
47f13333
RS
534 }
535 else
536 {
537 /* HEAP contains no blocs before BLOC. */
538 heap->first_bloc = NIL_BLOC;
539 heap->last_bloc = NIL_BLOC;
540 heap->free = heap->bloc_start;
541 }
542
abe9ff32
RS
543 /* Advance through blocs one by one. */
544 for (b = bloc; b != NIL_BLOC; b = b->next)
545 {
47f13333
RS
546 /* Advance through heaps, marking them empty,
547 till we get to the one that B is in. */
abe9ff32
RS
548 while (heap)
549 {
550 if (heap->bloc_start <= b->data && b->data <= heap->end)
551 break;
552 heap = heap->next;
47f13333
RS
553 /* We know HEAP is not null now,
554 because there has to be space for bloc B. */
555 heap->first_bloc = NIL_BLOC;
556 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
557 heap->free = heap->bloc_start;
558 }
47f13333
RS
559
560 /* Update HEAP's status for bloc B. */
91a211b5 561 heap->free = (char *) b->data + b->size;
47f13333
RS
562 heap->last_bloc = b;
563 if (heap->first_bloc == NIL_BLOC)
564 heap->first_bloc = b;
565
566 /* Record that B is in HEAP. */
567 b->heap = heap;
abe9ff32
RS
568 }
569
570 /* If there are any remaining heaps and no blocs left,
47f13333 571 mark those heaps as empty. */
abe9ff32
RS
572 heap = heap->next;
573 while (heap)
574 {
47f13333
RS
575 heap->first_bloc = NIL_BLOC;
576 heap->last_bloc = NIL_BLOC;
abe9ff32
RS
577 heap->free = heap->bloc_start;
578 heap = heap->next;
579 }
580}
47f13333 581\f
abe9ff32
RS
582/* Resize BLOC to SIZE bytes. This relocates the blocs
583 that come after BLOC in memory. */
584
e429caa2 585static int
971de7fb 586resize_bloc (bloc_ptr bloc, SIZE size)
dcfdbac7 587{
e429caa2
KH
588 register bloc_ptr b;
589 heap_ptr heap;
590 POINTER address;
591 SIZE old_size;
592
49f82b3d 593 /* No need to ever call this if arena is frozen, bug somewhere! */
177c0ea7 594 if (r_alloc_freeze_level)
5e617bc2 595 abort ();
49f82b3d 596
e429caa2
KH
597 if (bloc == NIL_BLOC || size == bloc->size)
598 return 1;
599
600 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
601 {
602 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
603 break;
604 }
605
606 if (heap == NIL_HEAP)
abe9ff32 607 abort ();
e429caa2
KH
608
609 old_size = bloc->size;
610 bloc->size = size;
611
abe9ff32 612 /* Note that bloc could be moved into the previous heap. */
91a211b5
GM
613 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
614 : (char *) first_heap->bloc_start);
e429caa2
KH
615 while (heap)
616 {
617 if (heap->bloc_start <= address && address <= heap->end)
618 break;
619 heap = heap->prev;
620 }
621
622 if (! relocate_blocs (bloc, heap, address))
623 {
624 bloc->size = old_size;
625 return 0;
626 }
627
628 if (size > old_size)
629 {
630 for (b = last_bloc; b != bloc; b = b->prev)
631 {
49f82b3d
RS
632 if (!b->variable)
633 {
634 b->size = 0;
635 b->data = b->new_data;
177c0ea7
JB
636 }
637 else
49f82b3d 638 {
78cef877
EZ
639 if (b->new_data != b->data)
640 memmove (b->new_data, b->data, b->size);
49f82b3d
RS
641 *b->variable = b->data = b->new_data;
642 }
643 }
644 if (!bloc->variable)
645 {
646 bloc->size = 0;
647 bloc->data = bloc->new_data;
648 }
649 else
650 {
78cef877
EZ
651 if (bloc->new_data != bloc->data)
652 memmove (bloc->new_data, bloc->data, old_size);
3ce2f8ac 653 memset ((char *) bloc->new_data + old_size, 0, size - old_size);
49f82b3d 654 *bloc->variable = bloc->data = bloc->new_data;
e429caa2 655 }
e429caa2
KH
656 }
657 else
dcfdbac7 658 {
ad3bb3d2
JB
659 for (b = bloc; b != NIL_BLOC; b = b->next)
660 {
49f82b3d
RS
661 if (!b->variable)
662 {
663 b->size = 0;
664 b->data = b->new_data;
177c0ea7
JB
665 }
666 else
49f82b3d 667 {
78cef877
EZ
668 if (b->new_data != b->data)
669 memmove (b->new_data, b->data, b->size);
49f82b3d
RS
670 *b->variable = b->data = b->new_data;
671 }
ad3bb3d2 672 }
ad3bb3d2 673 }
dcfdbac7 674
47f13333 675 update_heap_bloc_correspondence (bloc, heap);
abe9ff32 676
91a211b5
GM
677 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
678 : (char *) first_heap->bloc_start);
e429caa2
KH
679 return 1;
680}
47f13333 681\f
abe9ff32
RS
682/* Free BLOC from the chain of blocs, relocating any blocs above it.
683 This may return space to the system. */
dcfdbac7
JB
684
685static void
971de7fb 686free_bloc (bloc_ptr bloc)
dcfdbac7 687{
47f13333
RS
688 heap_ptr heap = bloc->heap;
689
49f82b3d
RS
690 if (r_alloc_freeze_level)
691 {
692 bloc->variable = (POINTER *) NIL;
693 return;
694 }
177c0ea7 695
e429caa2
KH
696 resize_bloc (bloc, 0);
697
dcfdbac7
JB
698 if (bloc == first_bloc && bloc == last_bloc)
699 {
700 first_bloc = last_bloc = NIL_BLOC;
701 }
702 else if (bloc == last_bloc)
703 {
704 last_bloc = bloc->prev;
705 last_bloc->next = NIL_BLOC;
706 }
707 else if (bloc == first_bloc)
708 {
709 first_bloc = bloc->next;
710 first_bloc->prev = NIL_BLOC;
dcfdbac7
JB
711 }
712 else
713 {
714 bloc->next->prev = bloc->prev;
715 bloc->prev->next = bloc->next;
dcfdbac7
JB
716 }
717
47f13333
RS
718 /* Update the records of which blocs are in HEAP. */
719 if (heap->first_bloc == bloc)
720 {
d5179acc 721 if (bloc->next != 0 && bloc->next->heap == heap)
47f13333
RS
722 heap->first_bloc = bloc->next;
723 else
724 heap->first_bloc = heap->last_bloc = NIL_BLOC;
725 }
726 if (heap->last_bloc == bloc)
727 {
d5179acc 728 if (bloc->prev != 0 && bloc->prev->heap == heap)
47f13333
RS
729 heap->last_bloc = bloc->prev;
730 else
731 heap->first_bloc = heap->last_bloc = NIL_BLOC;
732 }
733
e429caa2 734 relinquish ();
dcfdbac7
JB
735 free (bloc);
736}
737\f
956ace37
JB
738/* Interface routines. */
739
98b7fe02 740/* Obtain SIZE bytes of storage from the free pool, or the system, as
2c46d29f 741 necessary. If relocatable blocs are in use, this means relocating
98b7fe02
JB
742 them. This function gets plugged into the GNU malloc's __morecore
743 hook.
744
7516b7d5
RS
745 We provide hysteresis, never relocating by less than extra_bytes.
746
98b7fe02
JB
747 If we're out of memory, we should return zero, to imitate the other
748 __morecore hook values - in particular, __default_morecore in the
749 GNU malloc package. */
dcfdbac7 750
177c0ea7 751POINTER
971de7fb 752r_alloc_sbrk (long int size)
dcfdbac7 753{
e429caa2
KH
754 register bloc_ptr b;
755 POINTER address;
dcfdbac7 756
44d3dec0
RS
757 if (! r_alloc_initialized)
758 r_alloc_init ();
759
dcfdbac7 760 if (! use_relocatable_buffers)
bbc60227 761 return (*real_morecore) (size);
dcfdbac7 762
e429caa2
KH
763 if (size == 0)
764 return virtual_break_value;
7516b7d5 765
e429caa2 766 if (size > 0)
dcfdbac7 767 {
abe9ff32
RS
768 /* Allocate a page-aligned space. GNU malloc would reclaim an
769 extra space if we passed an unaligned one. But we could
8e6208c5 770 not always find a space which is contiguous to the previous. */
e429caa2
KH
771 POINTER new_bloc_start;
772 heap_ptr h = first_heap;
abe9ff32 773 SIZE get = ROUNDUP (size);
7516b7d5 774
abe9ff32 775 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 776
abe9ff32
RS
777 /* Search the list upward for a heap which is large enough. */
778 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
e429caa2
KH
779 {
780 h = h->next;
781 if (h == NIL_HEAP)
782 break;
abe9ff32 783 address = (POINTER) ROUNDUP (h->start);
e429caa2
KH
784 }
785
abe9ff32 786 /* If not found, obtain more space. */
e429caa2
KH
787 if (h == NIL_HEAP)
788 {
789 get += extra_bytes + page_size;
790
49f82b3d 791 if (! obtain (address, get))
e429caa2 792 return 0;
98b7fe02 793
e429caa2 794 if (first_heap == last_heap)
abe9ff32 795 address = (POINTER) ROUNDUP (virtual_break_value);
e429caa2 796 else
abe9ff32 797 address = (POINTER) ROUNDUP (last_heap->start);
e429caa2
KH
798 h = last_heap;
799 }
800
abe9ff32 801 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
e429caa2
KH
802
803 if (first_heap->bloc_start < new_bloc_start)
804 {
49f82b3d 805 /* This is no clean solution - no idea how to do it better. */
177c0ea7 806 if (r_alloc_freeze_level)
49f82b3d
RS
807 return NIL;
808
809 /* There is a bug here: if the above obtain call succeeded, but the
810 relocate_blocs call below does not succeed, we need to free
811 the memory that we got with obtain. */
812
abe9ff32 813 /* Move all blocs upward. */
49f82b3d 814 if (! relocate_blocs (first_bloc, h, new_bloc_start))
e429caa2
KH
815 return 0;
816
817 /* Note that (POINTER)(h+1) <= new_bloc_start since
818 get >= page_size, so the following does not destroy the heap
abe9ff32 819 header. */
e429caa2
KH
820 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
821 {
78cef877
EZ
822 if (b->new_data != b->data)
823 memmove (b->new_data, b->data, b->size);
e429caa2
KH
824 *b->variable = b->data = b->new_data;
825 }
826
827 h->bloc_start = new_bloc_start;
abe9ff32 828
47f13333 829 update_heap_bloc_correspondence (first_bloc, h);
e429caa2 830 }
e429caa2
KH
831 if (h != first_heap)
832 {
833 /* Give up managing heaps below the one the new
abe9ff32 834 virtual_break_value points to. */
e429caa2
KH
835 first_heap->prev = NIL_HEAP;
836 first_heap->next = h->next;
837 first_heap->start = h->start;
838 first_heap->end = h->end;
abe9ff32 839 first_heap->free = h->free;
47f13333
RS
840 first_heap->first_bloc = h->first_bloc;
841 first_heap->last_bloc = h->last_bloc;
e429caa2
KH
842 first_heap->bloc_start = h->bloc_start;
843
844 if (first_heap->next)
845 first_heap->next->prev = first_heap;
846 else
847 last_heap = first_heap;
848 }
849
72af86bd 850 memset (address, 0, size);
dcfdbac7 851 }
e429caa2 852 else /* size < 0 */
dcfdbac7 853 {
e429caa2
KH
854 SIZE excess = (char *)first_heap->bloc_start
855 - ((char *)virtual_break_value + size);
856
857 address = virtual_break_value;
858
859 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
860 {
861 excess -= extra_bytes;
862 first_heap->bloc_start
47f13333 863 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
e429caa2 864
abe9ff32 865 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
7516b7d5 866
e429caa2
KH
867 for (b = first_bloc; b != NIL_BLOC; b = b->next)
868 {
78cef877
EZ
869 if (b->new_data != b->data)
870 memmove (b->new_data, b->data, b->size);
e429caa2
KH
871 *b->variable = b->data = b->new_data;
872 }
873 }
874
875 if ((char *)virtual_break_value + size < (char *)first_heap->start)
876 {
877 /* We found an additional space below the first heap */
878 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
879 }
dcfdbac7
JB
880 }
881
e429caa2 882 virtual_break_value = (POINTER) ((char *)address + size);
47f13333 883 break_value = (last_bloc
91a211b5
GM
884 ? (char *) last_bloc->data + last_bloc->size
885 : (char *) first_heap->bloc_start);
e429caa2 886 if (size < 0)
abe9ff32 887 relinquish ();
7516b7d5 888
e429caa2 889 return address;
dcfdbac7
JB
890}
891
0a58f946 892
dcfdbac7
JB
893/* Allocate a relocatable bloc of storage of size SIZE. A pointer to
894 the data is returned in *PTR. PTR is thus the address of some variable
98b7fe02
JB
895 which will use the data area.
896
49f82b3d 897 The allocation of 0 bytes is valid.
f96f2c5b
JB
898 In case r_alloc_freeze_level is set, a best fit of unused blocs could be
899 done before allocating a new area. Not yet done.
49f82b3d 900
98b7fe02
JB
901 If we can't allocate the necessary memory, set *PTR to zero, and
902 return zero. */
dcfdbac7
JB
903
904POINTER
971de7fb 905r_alloc (POINTER *ptr, SIZE size)
dcfdbac7
JB
906{
907 register bloc_ptr new_bloc;
908
2c46d29f
RS
909 if (! r_alloc_initialized)
910 r_alloc_init ();
911
abe9ff32 912 new_bloc = get_bloc (MEM_ROUNDUP (size));
98b7fe02
JB
913 if (new_bloc)
914 {
915 new_bloc->variable = ptr;
916 *ptr = new_bloc->data;
917 }
918 else
919 *ptr = 0;
dcfdbac7
JB
920
921 return *ptr;
922}
923
2c46d29f
RS
924/* Free a bloc of relocatable storage whose data is pointed to by PTR.
925 Store 0 in *PTR to show there's no block allocated. */
dcfdbac7
JB
926
927void
971de7fb 928r_alloc_free (register POINTER *ptr)
dcfdbac7
JB
929{
930 register bloc_ptr dead_bloc;
931
44d3dec0
RS
932 if (! r_alloc_initialized)
933 r_alloc_init ();
934
dcfdbac7
JB
935 dead_bloc = find_bloc (ptr);
936 if (dead_bloc == NIL_BLOC)
747d9d14 937 abort (); /* Double free? PTR not originally used to allocate? */
dcfdbac7
JB
938
939 free_bloc (dead_bloc);
2c46d29f 940 *ptr = 0;
719b242f 941
d5179acc 942#ifdef emacs
719b242f 943 refill_memory_reserve ();
d5179acc 944#endif
dcfdbac7
JB
945}
946
16a5c729 947/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
98b7fe02
JB
948 Do this by shifting all blocks above this one up in memory, unless
949 SIZE is less than or equal to the current bloc size, in which case
950 do nothing.
dcfdbac7 951
f96f2c5b 952 In case r_alloc_freeze_level is set, a new bloc is allocated, and the
8e6208c5 953 memory copied to it. Not very efficient. We could traverse the
49f82b3d
RS
954 bloc_list for a best fit of free blocs first.
955
98b7fe02
JB
956 Change *PTR to reflect the new bloc, and return this value.
957
958 If more memory cannot be allocated, then leave *PTR unchanged, and
959 return zero. */
dcfdbac7
JB
960
961POINTER
971de7fb 962r_re_alloc (POINTER *ptr, SIZE size)
dcfdbac7 963{
16a5c729 964 register bloc_ptr bloc;
dcfdbac7 965
44d3dec0
RS
966 if (! r_alloc_initialized)
967 r_alloc_init ();
968
49f82b3d
RS
969 if (!*ptr)
970 return r_alloc (ptr, size);
177c0ea7 971 if (!size)
49f82b3d
RS
972 {
973 r_alloc_free (ptr);
974 return r_alloc (ptr, 0);
975 }
976
16a5c729
JB
977 bloc = find_bloc (ptr);
978 if (bloc == NIL_BLOC)
747d9d14 979 abort (); /* Already freed? PTR not originally used to allocate? */
dcfdbac7 980
177c0ea7 981 if (size < bloc->size)
49f82b3d
RS
982 {
983 /* Wouldn't it be useful to actually resize the bloc here? */
984 /* I think so too, but not if it's too expensive... */
177c0ea7
JB
985 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
986 && r_alloc_freeze_level == 0)
49f82b3d
RS
987 {
988 resize_bloc (bloc, MEM_ROUNDUP (size));
989 /* Never mind if this fails, just do nothing... */
990 /* It *should* be infallible! */
991 }
992 }
993 else if (size > bloc->size)
994 {
995 if (r_alloc_freeze_level)
996 {
997 bloc_ptr new_bloc;
998 new_bloc = get_bloc (MEM_ROUNDUP (size));
999 if (new_bloc)
1000 {
1001 new_bloc->variable = ptr;
1002 *ptr = new_bloc->data;
1003 bloc->variable = (POINTER *) NIL;
1004 }
1005 else
1006 return NIL;
1007 }
177c0ea7 1008 else
49f82b3d
RS
1009 {
1010 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1011 return NIL;
1012 }
1013 }
dcfdbac7
JB
1014 return *ptr;
1015}
81bd58e8
KH
1016
1017/* Disable relocations, after making room for at least SIZE bytes
1018 of non-relocatable heap if possible. The relocatable blocs are
1019 guaranteed to hold still until thawed, even if this means that
1020 malloc must return a null pointer. */
abe9ff32 1021
81bd58e8 1022void
971de7fb 1023r_alloc_freeze (long int size)
81bd58e8 1024{
44d3dec0
RS
1025 if (! r_alloc_initialized)
1026 r_alloc_init ();
1027
81bd58e8
KH
1028 /* If already frozen, we can't make any more room, so don't try. */
1029 if (r_alloc_freeze_level > 0)
1030 size = 0;
1031 /* If we can't get the amount requested, half is better than nothing. */
1032 while (size > 0 && r_alloc_sbrk (size) == 0)
1033 size /= 2;
1034 ++r_alloc_freeze_level;
1035 if (size > 0)
1036 r_alloc_sbrk (-size);
1037}
1038
1039void
971de7fb 1040r_alloc_thaw (void)
81bd58e8 1041{
49f82b3d 1042
177c0ea7 1043 if (! r_alloc_initialized)
49f82b3d
RS
1044 r_alloc_init ();
1045
81bd58e8
KH
1046 if (--r_alloc_freeze_level < 0)
1047 abort ();
49f82b3d 1048
177c0ea7 1049 /* This frees all unused blocs. It is not too inefficient, as the resize
72af86bd 1050 and memcpy is done only once. Afterwards, all unreferenced blocs are
49f82b3d 1051 already shrunk to zero size. */
177c0ea7 1052 if (!r_alloc_freeze_level)
49f82b3d
RS
1053 {
1054 bloc_ptr *b = &first_bloc;
177c0ea7
JB
1055 while (*b)
1056 if (!(*b)->variable)
1057 free_bloc (*b);
1058 else
49f82b3d
RS
1059 b = &(*b)->next;
1060 }
81bd58e8 1061}
49f82b3d 1062
dec41418
RS
1063
1064#if defined (emacs) && defined (DOUG_LEA_MALLOC)
1065
1066/* Reinitialize the morecore hook variables after restarting a dumped
1067 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1068void
971de7fb 1069r_alloc_reinit (void)
dec41418
RS
1070{
1071 /* Only do this if the hook has been reset, so that we don't get an
1072 infinite loop, in case Emacs was linked statically. */
1073 if (__morecore != r_alloc_sbrk)
1074 {
1075 real_morecore = __morecore;
1076 __morecore = r_alloc_sbrk;
1077 }
1078}
0a58f946
GM
1079
1080#endif /* emacs && DOUG_LEA_MALLOC */
dec41418 1081
e429caa2 1082#ifdef DEBUG
0a58f946 1083
e429caa2
KH
1084#include <assert.h>
1085
44d3dec0 1086void
268c2c36 1087r_alloc_check (void)
e429caa2 1088{
6d16dd06
RS
1089 int found = 0;
1090 heap_ptr h, ph = 0;
1091 bloc_ptr b, pb = 0;
1092
1093 if (!r_alloc_initialized)
1094 return;
1095
1096 assert (first_heap);
1097 assert (last_heap->end <= (POINTER) sbrk (0));
1098 assert ((POINTER) first_heap < first_heap->start);
1099 assert (first_heap->start <= virtual_break_value);
1100 assert (virtual_break_value <= first_heap->end);
1101
1102 for (h = first_heap; h; h = h->next)
1103 {
1104 assert (h->prev == ph);
1105 assert ((POINTER) ROUNDUP (h->end) == h->end);
40f3f04b
RS
1106#if 0 /* ??? The code in ralloc.c does not really try to ensure
1107 the heap start has any sort of alignment.
1108 Perhaps it should. */
6d16dd06 1109 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
40f3f04b 1110#endif
6d16dd06
RS
1111 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1112 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1113
1114 if (ph)
1115 {
1116 assert (ph->end < h->start);
1117 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1118 }
1119
1120 if (h->bloc_start <= break_value && break_value <= h->end)
1121 found = 1;
1122
1123 ph = h;
1124 }
1125
1126 assert (found);
1127 assert (last_heap == ph);
1128
1129 for (b = first_bloc; b; b = b->next)
1130 {
1131 assert (b->prev == pb);
1132 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1133 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1134
1135 ph = 0;
1136 for (h = first_heap; h; h = h->next)
1137 {
1138 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1139 break;
1140 ph = h;
1141 }
1142
1143 assert (h);
1144
1145 if (pb && pb->data + pb->size != b->data)
1146 {
1147 assert (ph && b->data == h->bloc_start);
1148 while (ph)
1149 {
1150 if (ph->bloc_start <= pb->data
1151 && pb->data + pb->size <= ph->end)
1152 {
1153 assert (pb->data + pb->size + b->size > ph->end);
1154 break;
1155 }
1156 else
1157 {
1158 assert (ph->bloc_start + b->size > ph->end);
1159 }
1160 ph = ph->prev;
1161 }
1162 }
1163 pb = b;
1164 }
1165
1166 assert (last_bloc == pb);
1167
1168 if (last_bloc)
1169 assert (last_bloc->data + last_bloc->size == break_value);
1170 else
1171 assert (first_heap->bloc_start == break_value);
e429caa2 1172}
0a58f946 1173
e429caa2 1174#endif /* DEBUG */
0a58f946 1175
baae5c2d
JR
1176/* Update the internal record of which variable points to some data to NEW.
1177 Used by buffer-swap-text in Emacs to restore consistency after it
1178 swaps the buffer text between two buffer objects. The OLD pointer
1179 is checked to ensure that memory corruption does not occur due to
1180 misuse. */
1181void
971de7fb 1182r_alloc_reset_variable (POINTER *old, POINTER *new)
baae5c2d
JR
1183{
1184 bloc_ptr bloc = first_bloc;
1185
1186 /* Find the bloc that corresponds to the data pointed to by pointer.
1187 find_bloc cannot be used, as it has internal consistency checks
0d26e0b6 1188 which fail when the variable needs resetting. */
baae5c2d
JR
1189 while (bloc != NIL_BLOC)
1190 {
1191 if (bloc->data == *new)
1192 break;
1193
1194 bloc = bloc->next;
1195 }
1196
1197 if (bloc == NIL_BLOC || bloc->variable != old)
747d9d14 1198 abort (); /* Already freed? OLD not originally used to allocate? */
baae5c2d
JR
1199
1200 /* Update variable to point to the new location. */
1201 bloc->variable = new;
1202}
0a58f946
GM
1203
1204\f
1205/***********************************************************************
1206 Initialization
1207 ***********************************************************************/
1208
0a58f946
GM
1209/* Initialize various things for memory allocation. */
1210
1211static void
971de7fb 1212r_alloc_init (void)
0a58f946
GM
1213{
1214 if (r_alloc_initialized)
1215 return;
0a58f946 1216 r_alloc_initialized = 1;
177c0ea7 1217
a2c23c92
DL
1218 page_size = PAGE;
1219#ifndef SYSTEM_MALLOC
0a58f946
GM
1220 real_morecore = __morecore;
1221 __morecore = r_alloc_sbrk;
1222
1223 first_heap = last_heap = &heap_base;
1224 first_heap->next = first_heap->prev = NIL_HEAP;
1225 first_heap->start = first_heap->bloc_start
1226 = virtual_break_value = break_value = (*real_morecore) (0);
1227 if (break_value == NIL)
1228 abort ();
1229
0a58f946 1230 extra_bytes = ROUNDUP (50000);
a2c23c92 1231#endif
0a58f946
GM
1232
1233#ifdef DOUG_LEA_MALLOC
1673df2e
JD
1234 BLOCK_INPUT;
1235 mallopt (M_TOP_PAD, 64 * 4096);
1236 UNBLOCK_INPUT;
0a58f946 1237#else
a2c23c92 1238#ifndef SYSTEM_MALLOC
0a58f946
GM
1239 /* Give GNU malloc's morecore some hysteresis
1240 so that we move all the relocatable blocks much less often. */
1241 __malloc_extra_blocks = 64;
1242#endif
a2c23c92 1243#endif
0a58f946 1244
5ad25b24 1245#ifndef SYSTEM_MALLOC
0a58f946
GM
1246 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
1247
1248 /* The extra call to real_morecore guarantees that the end of the
1249 address space is a multiple of page_size, even if page_size is
1250 not really the page size of the system running the binary in
1251 which page_size is stored. This allows a binary to be built on a
1252 system with one page size and run on a system with a smaller page
1253 size. */
91a211b5 1254 (*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
0a58f946
GM
1255
1256 /* Clear the rest of the last page; this memory is in our address space
1257 even though it is after the sbrk value. */
1258 /* Doubly true, with the additional call that explicitly adds the
1259 rest of that page to the address space. */
72af86bd
AS
1260 memset (first_heap->start, 0,
1261 (char *) first_heap->end - (char *) first_heap->start);
0a58f946 1262 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
a2c23c92 1263#endif
177c0ea7 1264
0a58f946
GM
1265 use_relocatable_buffers = 1;
1266}