Trailing whitespace deleted.
[bpt/emacs.git] / lispref / sequences.texi
CommitLineData
4672ee8f
RS
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
fd897522 3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
177c0ea7 4@c Free Software Foundation, Inc.
4672ee8f
RS
5@c See the file elisp.texi for copying conditions.
6@setfilename ../info/sequences
8241495d 7@node Sequences Arrays Vectors, Hash Tables, Lists, Top
4672ee8f
RS
8@chapter Sequences, Arrays, and Vectors
9@cindex sequence
10
969fe9b5
RS
11 Recall that the @dfn{sequence} type is the union of two other Lisp
12types: lists and arrays. In other words, any list is a sequence, and
13any array is a sequence. The common property that all sequences have is
14that each is an ordered collection of elements.
4672ee8f 15
79d11238 16 An @dfn{array} is a single primitive object that has a slot for each
969fe9b5
RS
17of its elements. All the elements are accessible in constant time, but
18the length of an existing array cannot be changed. Strings, vectors,
19char-tables and bool-vectors are the four types of arrays.
79d11238
RS
20
21 A list is a sequence of elements, but it is not a single primitive
22object; it is made of cons cells, one cell per element. Finding the
23@var{n}th element requires looking through @var{n} cons cells, so
24elements farther from the beginning of the list take longer to access.
25But it is possible to add elements to the list, or remove elements.
4672ee8f
RS
26
27 The following diagram shows the relationship between these types:
28
29@example
30@group
969fe9b5
RS
31 _____________________________________________
32 | |
33 | Sequence |
34 | ______ ________________________________ |
35 | | | | | |
36 | | List | | Array | |
37 | | | | ________ ________ | |
38 | |______| | | | | | | |
39 | | | Vector | | String | | |
40 | | |________| |________| | |
41 | | ____________ _____________ | |
42 | | | | | | | |
43 | | | Char-table | | Bool-vector | | |
44 | | |____________| |_____________| | |
45 | |________________________________| |
46 |_____________________________________________|
4672ee8f
RS
47@end group
48@end example
49
50 The elements of vectors and lists may be any Lisp objects. The
51elements of strings are all characters.
52
53@menu
54* Sequence Functions:: Functions that accept any kind of sequence.
55* Arrays:: Characteristics of arrays in Emacs Lisp.
56* Array Functions:: Functions specifically for arrays.
79d11238
RS
57* Vectors:: Special characteristics of Emacs Lisp vectors.
58* Vector Functions:: Functions specifically for vectors.
f9f59935
RS
59* Char-Tables:: How to work with char-tables.
60* Bool-Vectors:: How to work with bool-vectors.
4672ee8f
RS
61@end menu
62
63@node Sequence Functions
64@section Sequences
65
969fe9b5
RS
66 In Emacs Lisp, a @dfn{sequence} is either a list or an array. The
67common property of all sequences is that they are ordered collections of
68elements. This section describes functions that accept any kind of
69sequence.
4672ee8f
RS
70
71@defun sequencep object
72Returns @code{t} if @var{object} is a list, vector, or
73string, @code{nil} otherwise.
74@end defun
75
969fe9b5
RS
76@defun length sequence
77@cindex string length
78@cindex list length
79@cindex vector length
80@cindex sequence length
81This function returns the number of elements in @var{sequence}. If
82@var{sequence} is a cons cell that is not a list (because the final
83@sc{cdr} is not @code{nil}), a @code{wrong-type-argument} error is
84signaled.
85
a9f0a989 86@xref{List Elements}, for the related function @code{safe-length}.
969fe9b5
RS
87
88@example
89@group
90(length '(1 2 3))
91 @result{} 3
92@end group
93@group
94(length ())
95 @result{} 0
96@end group
97@group
98(length "foobar")
99 @result{} 6
100@end group
101@group
102(length [1 2 3])
103 @result{} 3
104@end group
105@group
106(length (make-bool-vector 5 nil))
107 @result{} 5
108@end group
109@end example
110@end defun
111
112@defun elt sequence index
113@cindex elements of sequences
114This function returns the element of @var{sequence} indexed by
115@var{index}. Legitimate values of @var{index} are integers ranging from
1160 up to one less than the length of @var{sequence}. If @var{sequence}
117is a list, then out-of-range values of @var{index} return @code{nil};
118otherwise, they trigger an @code{args-out-of-range} error.
119
120@example
121@group
122(elt [1 2 3 4] 2)
123 @result{} 3
124@end group
125@group
126(elt '(1 2 3 4) 2)
127 @result{} 3
128@end group
129@group
130;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
131(string (elt "1234" 2))
132 @result{} "3"
133@end group
134@group
135(elt [1 2 3 4] 4)
a9f0a989 136 @error{} Args out of range: [1 2 3 4], 4
969fe9b5
RS
137@end group
138@group
139(elt [1 2 3 4] -1)
a9f0a989 140 @error{} Args out of range: [1 2 3 4], -1
969fe9b5
RS
141@end group
142@end example
143
144This function generalizes @code{aref} (@pxref{Array Functions}) and
145@code{nth} (@pxref{List Elements}).
146@end defun
147
4672ee8f
RS
148@defun copy-sequence sequence
149@cindex copying sequences
150Returns a copy of @var{sequence}. The copy is the same type of object
151as the original sequence, and it has the same elements in the same order.
152
153Storing a new element into the copy does not affect the original
154@var{sequence}, and vice versa. However, the elements of the new
155sequence are not copies; they are identical (@code{eq}) to the elements
156of the original. Therefore, changes made within these elements, as
157found via the copied sequence, are also visible in the original
158sequence.
159
160If the sequence is a string with text properties, the property list in
161the copy is itself a copy, not shared with the original's property
162list. However, the actual values of the properties are shared.
163@xref{Text Properties}.
164
165See also @code{append} in @ref{Building Lists}, @code{concat} in
d699a7ad 166@ref{Creating Strings}, and @code{vconcat} in @ref{Vectors}, for other
4672ee8f
RS
167ways to copy sequences.
168
169@example
170@group
171(setq bar '(1 2))
172 @result{} (1 2)
173@end group
174@group
175(setq x (vector 'foo bar))
176 @result{} [foo (1 2)]
177@end group
178@group
179(setq y (copy-sequence x))
180 @result{} [foo (1 2)]
181@end group
182
183@group
184(eq x y)
185 @result{} nil
186@end group
187@group
188(equal x y)
189 @result{} t
190@end group
191@group
192(eq (elt x 1) (elt y 1))
193 @result{} t
194@end group
195
196@group
197;; @r{Replacing an element of one sequence.}
198(aset x 0 'quux)
199x @result{} [quux (1 2)]
200y @result{} [foo (1 2)]
201@end group
202
203@group
204;; @r{Modifying the inside of a shared element.}
205(setcar (aref x 1) 69)
206x @result{} [quux (69 2)]
207y @result{} [foo (69 2)]
208@end group
209@end example
210@end defun
211
4672ee8f
RS
212@node Arrays
213@section Arrays
214@cindex array
215
79d11238 216 An @dfn{array} object has slots that hold a number of other Lisp
4672ee8f
RS
217objects, called the elements of the array. Any element of an array may
218be accessed in constant time. In contrast, an element of a list
219requires access time that is proportional to the position of the element
220in the list.
221
a9f0a989
RS
222 Emacs defines four types of array, all one-dimensional: @dfn{strings},
223@dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}. A vector is a
224general array; its elements can be any Lisp objects. A string is a
177c0ea7 225specialized array; its elements must be characters. Each type of array
2bdedac1 226has its own read syntax.
a9f0a989 227@xref{String Type}, and @ref{Vector Type}.
4672ee8f 228
969fe9b5 229 All four kinds of array share these characteristics:
4672ee8f
RS
230
231@itemize @bullet
232@item
233The first element of an array has index zero, the second element has
234index 1, and so on. This is called @dfn{zero-origin} indexing. For
235example, an array of four elements has indices 0, 1, 2, @w{and 3}.
236
969fe9b5
RS
237@item
238The length of the array is fixed once you create it; you cannot
239change the length of an existing array.
240
241@item
242The array is a constant, for evaluation---in other words, it evaluates
243to itself.
244
4672ee8f
RS
245@item
246The elements of an array may be referenced or changed with the functions
247@code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
248@end itemize
249
969fe9b5
RS
250 When you create an array, other than a char-table, you must specify
251its length. You cannot specify the length of a char-table, because that
252is determined by the range of character codes.
253
254 In principle, if you want an array of text characters, you could use
255either a string or a vector. In practice, we always choose strings for
256such applications, for four reasons:
4672ee8f
RS
257
258@itemize @bullet
259@item
260They occupy one-fourth the space of a vector of the same elements.
261
262@item
263Strings are printed in a way that shows the contents more clearly
f9f59935 264as text.
4672ee8f
RS
265
266@item
267Strings can hold text properties. @xref{Text Properties}.
268
269@item
270Many of the specialized editing and I/O facilities of Emacs accept only
271strings. For example, you cannot insert a vector of characters into a
272buffer the way you can insert a string. @xref{Strings and Characters}.
273@end itemize
274
bfe721d1
KH
275 By contrast, for an array of keyboard input characters (such as a key
276sequence), a vector may be necessary, because many keyboard input
277characters are outside the range that will fit in a string. @xref{Key
278Sequence Input}.
279
4672ee8f
RS
280@node Array Functions
281@section Functions that Operate on Arrays
282
f9f59935
RS
283 In this section, we describe the functions that accept all types of
284arrays.
4672ee8f
RS
285
286@defun arrayp object
f9f59935
RS
287This function returns @code{t} if @var{object} is an array (i.e., a
288vector, a string, a bool-vector or a char-table).
4672ee8f
RS
289
290@example
291@group
292(arrayp [a])
969fe9b5 293 @result{} t
4672ee8f 294(arrayp "asdf")
969fe9b5
RS
295 @result{} t
296(arrayp (syntax-table)) ;; @r{A char-table.}
297 @result{} t
4672ee8f
RS
298@end group
299@end example
300@end defun
301
302@defun aref array index
303@cindex array elements
304This function returns the @var{index}th element of @var{array}. The
305first element is at index zero.
306
307@example
308@group
309(setq primes [2 3 5 7 11 13])
310 @result{} [2 3 5 7 11 13]
311(aref primes 4)
312 @result{} 11
4672ee8f 313@end group
4672ee8f
RS
314@group
315(aref "abcdefg" 1)
8241495d 316 @result{} 98 ; @r{@samp{b} is @sc{ascii} code 98.}
4672ee8f
RS
317@end group
318@end example
319
320See also the function @code{elt}, in @ref{Sequence Functions}.
321@end defun
322
323@defun aset array index object
324This function sets the @var{index}th element of @var{array} to be
325@var{object}. It returns @var{object}.
326
327@example
328@group
329(setq w [foo bar baz])
330 @result{} [foo bar baz]
331(aset w 0 'fu)
332 @result{} fu
333w
334 @result{} [fu bar baz]
335@end group
336
337@group
338(setq x "asdfasfd")
339 @result{} "asdfasfd"
340(aset x 3 ?Z)
341 @result{} 90
342x
343 @result{} "asdZasfd"
344@end group
345@end example
346
347If @var{array} is a string and @var{object} is not a character, a
e8efaf39
DL
348@code{wrong-type-argument} error results. The function converts a
349unibyte string to multibyte if necessary to insert a character.
4672ee8f
RS
350@end defun
351
352@defun fillarray array object
79d11238
RS
353This function fills the array @var{array} with @var{object}, so that
354each element of @var{array} is @var{object}. It returns @var{array}.
4672ee8f
RS
355
356@example
357@group
358(setq a [a b c d e f g])
359 @result{} [a b c d e f g]
360(fillarray a 0)
361 @result{} [0 0 0 0 0 0 0]
362a
363 @result{} [0 0 0 0 0 0 0]
364@end group
365@group
366(setq s "When in the course")
367 @result{} "When in the course"
368(fillarray s ?-)
369 @result{} "------------------"
370@end group
371@end example
372
373If @var{array} is a string and @var{object} is not a character, a
374@code{wrong-type-argument} error results.
375@end defun
376
377The general sequence functions @code{copy-sequence} and @code{length}
378are often useful for objects known to be arrays. @xref{Sequence Functions}.
379
380@node Vectors
381@section Vectors
382@cindex vector
383
384 Arrays in Lisp, like arrays in most languages, are blocks of memory
385whose elements can be accessed in constant time. A @dfn{vector} is a
969fe9b5
RS
386general-purpose array of specified length; its elements can be any Lisp
387objects. (By contrast, a string can hold only characters as elements.)
388Vectors in Emacs are used for obarrays (vectors of symbols), and as part
389of keymaps (vectors of commands). They are also used internally as part
390of the representation of a byte-compiled function; if you print such a
f9f59935 391function, you will see a vector in it.
4672ee8f
RS
392
393 In Emacs Lisp, the indices of the elements of a vector start from zero
394and count up from there.
395
79d11238
RS
396 Vectors are printed with square brackets surrounding the elements.
397Thus, a vector whose elements are the symbols @code{a}, @code{b} and
398@code{a} is printed as @code{[a b a]}. You can write vectors in the
399same way in Lisp input.
4672ee8f
RS
400
401 A vector, like a string or a number, is considered a constant for
402evaluation: the result of evaluating it is the same vector. This does
403not evaluate or even examine the elements of the vector.
404@xref{Self-Evaluating Forms}.
405
f9f59935 406 Here are examples illustrating these principles:
4672ee8f
RS
407
408@example
409@group
410(setq avector [1 two '(three) "four" [five]])
411 @result{} [1 two (quote (three)) "four" [five]]
412(eval avector)
413 @result{} [1 two (quote (three)) "four" [five]]
414(eq avector (eval avector))
415 @result{} t
416@end group
417@end example
418
79d11238 419@node Vector Functions
969fe9b5 420@section Functions for Vectors
79d11238 421
4672ee8f
RS
422 Here are some functions that relate to vectors:
423
424@defun vectorp object
425This function returns @code{t} if @var{object} is a vector.
426
427@example
428@group
429(vectorp [a])
430 @result{} t
431(vectorp "asdf")
432 @result{} nil
433@end group
434@end example
435@end defun
436
437@defun vector &rest objects
438This function creates and returns a vector whose elements are the
439arguments, @var{objects}.
440
441@example
442@group
443(vector 'foo 23 [bar baz] "rats")
444 @result{} [foo 23 [bar baz] "rats"]
445(vector)
446 @result{} []
447@end group
448@end example
449@end defun
450
451@defun make-vector length object
452This function returns a new vector consisting of @var{length} elements,
453each initialized to @var{object}.
454
455@example
456@group
457(setq sleepy (make-vector 9 'Z))
458 @result{} [Z Z Z Z Z Z Z Z Z]
459@end group
460@end example
461@end defun
462
463@defun vconcat &rest sequences
464@cindex copying vectors
465This function returns a new vector containing all the elements of the
f9f59935
RS
466@var{sequences}. The arguments @var{sequences} may be any kind of
467arrays, including lists, vectors, or strings. If no @var{sequences} are
468given, an empty vector is returned.
4672ee8f
RS
469
470The value is a newly constructed vector that is not @code{eq} to any
471existing vector.
472
473@example
474@group
475(setq a (vconcat '(A B C) '(D E F)))
476 @result{} [A B C D E F]
477(eq a (vconcat a))
478 @result{} nil
479@end group
480@group
481(vconcat)
482 @result{} []
483(vconcat [A B C] "aa" '(foo (6 7)))
484 @result{} [A B C 97 97 foo (6 7)]
485@end group
486@end example
487
969fe9b5
RS
488The @code{vconcat} function also allows byte-code function objects as
489arguments. This is a special feature to make it easy to access the entire
490contents of a byte-code function object. @xref{Byte-Code Objects}.
491
22697dac
KH
492The @code{vconcat} function also allows integers as arguments. It
493converts them to strings of digits, making up the decimal print
494representation of the integer, and then uses the strings instead of the
495original integers. @strong{Don't use this feature; we plan to eliminate
496it. If you already use this feature, change your programs now!} The
497proper way to convert an integer to a decimal number in this way is with
4672ee8f
RS
498@code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
499(@pxref{String Conversion}).
500
501For other concatenation functions, see @code{mapconcat} in @ref{Mapping
502Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
503in @ref{Building Lists}.
504@end defun
505
506 The @code{append} function provides a way to convert a vector into a
507list with the same elements (@pxref{Building Lists}):
508
509@example
510@group
511(setq avector [1 two (quote (three)) "four" [five]])
512 @result{} [1 two (quote (three)) "four" [five]]
513(append avector nil)
514 @result{} (1 two (quote (three)) "four" [five])
515@end group
516@end example
f9f59935
RS
517
518@node Char-Tables
519@section Char-Tables
520@cindex char-tables
a9f0a989 521@cindex extra slots of char-table
f9f59935
RS
522
523 A char-table is much like a vector, except that it is indexed by
524character codes. Any valid character code, without modifiers, can be
969fe9b5 525used as an index in a char-table. You can access a char-table's
a9f0a989
RS
526elements with @code{aref} and @code{aset}, as with any array. In
527addition, a char-table can have @dfn{extra slots} to hold additional
528data not associated with particular character codes. Char-tables are
529constants when evaluated.
f9f59935 530
f9f59935 531@cindex subtype of char-table
a9f0a989
RS
532 Each char-table has a @dfn{subtype} which is a symbol. The subtype
533has two purposes: to distinguish char-tables meant for different uses,
534and to control the number of extra slots. For example, display tables
535are char-tables with @code{display-table} as the subtype, and syntax
536tables are char-tables with @code{syntax-table} as the subtype. A valid
537subtype must have a @code{char-table-extra-slots} property which is an
538integer between 0 and 10. This integer specifies the number of
539@dfn{extra slots} in the char-table.
f9f59935
RS
540
541@cindex parent of char-table
4f790472 542 A char-table can have a @dfn{parent}, which is another char-table. If
f9f59935
RS
543it does, then whenever the char-table specifies @code{nil} for a
544particular character @var{c}, it inherits the value specified in the
545parent. In other words, @code{(aref @var{char-table} @var{c})} returns
546the value from the parent of @var{char-table} if @var{char-table} itself
547specifies @code{nil}.
548
549@cindex default value of char-table
550 A char-table can also have a @dfn{default value}. If so, then
551@code{(aref @var{char-table} @var{c})} returns the default value
552whenever the char-table does not specify any other non-@code{nil} value.
553
f9f59935
RS
554@defun make-char-table subtype &optional init
555Return a newly created char-table, with subtype @var{subtype}. Each
556element is initialized to @var{init}, which defaults to @code{nil}. You
557cannot alter the subtype of a char-table after the char-table is
558created.
969fe9b5
RS
559
560There is no argument to specify the length of the char-table, because
561all char-tables have room for any valid character code as an index.
f9f59935
RS
562@end defun
563
f9f59935 564@defun char-table-p object
969fe9b5 565This function returns @code{t} if @var{object} is a char-table,
f9f59935
RS
566otherwise @code{nil}.
567@end defun
568
f9f59935
RS
569@defun char-table-subtype char-table
570This function returns the subtype symbol of @var{char-table}.
571@end defun
572
f9f59935
RS
573@defun set-char-table-default char-table new-default
574This function sets the default value of @var{char-table} to
575@var{new-default}.
576
577There is no special function to access the default value of a char-table.
578To do that, use @code{(char-table-range @var{char-table} nil)}.
579@end defun
580
f9f59935
RS
581@defun char-table-parent char-table
582This function returns the parent of @var{char-table}. The parent is
583always either @code{nil} or another char-table.
584@end defun
585
f9f59935
RS
586@defun set-char-table-parent char-table new-parent
587This function sets the parent of @var{char-table} to @var{new-parent}.
588@end defun
589
f9f59935
RS
590@defun char-table-extra-slot char-table n
591This function returns the contents of extra slot @var{n} of
592@var{char-table}. The number of extra slots in a char-table is
593determined by its subtype.
594@end defun
595
f9f59935
RS
596@defun set-char-table-extra-slot char-table n value
597This function stores @var{value} in extra slot @var{n} of
598@var{char-table}.
599@end defun
600
601 A char-table can specify an element value for a single character code;
602it can also specify a value for an entire character set.
603
f9f59935
RS
604@defun char-table-range char-table range
605This returns the value specified in @var{char-table} for a range of
a9f0a989 606characters @var{range}. Here are the possibilities for @var{range}:
f9f59935
RS
607
608@table @asis
609@item @code{nil}
610Refers to the default value.
611
612@item @var{char}
a9f0a989
RS
613Refers to the element for character @var{char}
614(supposing @var{char} is a valid character code).
f9f59935
RS
615
616@item @var{charset}
617Refers to the value specified for the whole character set
618@var{charset} (@pxref{Character Sets}).
a9f0a989
RS
619
620@item @var{generic-char}
621A generic character stands for a character set; specifying the generic
622character as argument is equivalent to specifying the character set
623name. @xref{Splitting Characters}, for a description of generic characters.
f9f59935
RS
624@end table
625@end defun
626
f9f59935 627@defun set-char-table-range char-table range value
1911e6e5 628This function sets the value in @var{char-table} for a range of
a9f0a989 629characters @var{range}. Here are the possibilities for @var{range}:
f9f59935
RS
630
631@table @asis
632@item @code{nil}
633Refers to the default value.
634
635@item @code{t}
636Refers to the whole range of character codes.
637
638@item @var{char}
a9f0a989
RS
639Refers to the element for character @var{char}
640(supposing @var{char} is a valid character code).
f9f59935
RS
641
642@item @var{charset}
643Refers to the value specified for the whole character set
644@var{charset} (@pxref{Character Sets}).
a9f0a989
RS
645
646@item @var{generic-char}
647A generic character stands for a character set; specifying the generic
648character as argument is equivalent to specifying the character set
649name. @xref{Splitting Characters}, for a description of generic characters.
f9f59935
RS
650@end table
651@end defun
652
f9f59935
RS
653@defun map-char-table function char-table
654This function calls @var{function} for each element of @var{char-table}.
655@var{function} is called with two arguments, a key and a value. The key
a9f0a989
RS
656is a possible @var{range} argument for @code{char-table-range}---either
657a valid character or a generic character---and the value is
658@code{(char-table-range @var{char-table} @var{key})}.
f9f59935 659
969fe9b5 660Overall, the key-value pairs passed to @var{function} describe all the
f9f59935 661values stored in @var{char-table}.
a9f0a989
RS
662
663The return value is always @code{nil}; to make this function useful,
664@var{function} should have side effects. For example,
665here is how to examine each element of the syntax table:
666
667@example
1911e6e5
RS
668(let (accumulator)
669 (map-char-table
670 #'(lambda (key value)
671 (setq accumulator
672 (cons (list key value) accumulator)))
673 (syntax-table))
674 accumulator)
a9f0a989
RS
675@result{}
676((475008 nil) (474880 nil) (474752 nil) (474624 nil)
677 ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
678@end example
f9f59935
RS
679@end defun
680
681@node Bool-Vectors
682@section Bool-vectors
683@cindex Bool-vectors
684
685 A bool-vector is much like a vector, except that it stores only the
686values @code{t} and @code{nil}. If you try to store any non-@code{nil}
969fe9b5
RS
687value into an element of the bool-vector, the effect is to store
688@code{t} there. As with all arrays, bool-vector indices start from 0,
689and the length cannot be changed once the bool-vector is created.
690Bool-vectors are constants when evaluated.
f9f59935
RS
691
692 There are two special functions for working with bool-vectors; aside
693from that, you manipulate them with same functions used for other kinds
694of arrays.
695
f9f59935 696@defun make-bool-vector length initial
db4413be 697Return a new bool-vector of @var{length} elements,
f9f59935
RS
698each one initialized to @var{initial}.
699@end defun
700
701@defun bool-vector-p object
702This returns @code{t} if @var{object} is a bool-vector,
703and @code{nil} otherwise.
704@end defun
705
5785f550
RS
706 Here is an example of creating, examining, and updating a
707bool-vector. Note that the printed form represents up to 8 boolean
708values as a single character.
709
710@example
711(setq bv (make-bool-vector 5 t))
712 @result{} #&5"^_"
713(aref bv 1)
714 @result{} t
715(aset bv 3 nil)
716 @result{} nil
717bv
718 @result{} #&5"^W"
719@end example
720
721@noindent
722These results make sense because the binary codes for control-_ and
723control-W are 11111 and 10111, respectively.
724