Changes so bookmark list mode works with Info:
[bpt/emacs.git] / lispref / sequences.texi
CommitLineData
4672ee8f
RS
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
f9f59935 3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998 Free Software Foundation, Inc.
4672ee8f
RS
4@c See the file elisp.texi for copying conditions.
5@setfilename ../info/sequences
6@node Sequences Arrays Vectors, Symbols, Lists, Top
7@chapter Sequences, Arrays, and Vectors
8@cindex sequence
9
969fe9b5
RS
10 Recall that the @dfn{sequence} type is the union of two other Lisp
11types: lists and arrays. In other words, any list is a sequence, and
12any array is a sequence. The common property that all sequences have is
13that each is an ordered collection of elements.
4672ee8f 14
79d11238 15 An @dfn{array} is a single primitive object that has a slot for each
969fe9b5
RS
16of its elements. All the elements are accessible in constant time, but
17the length of an existing array cannot be changed. Strings, vectors,
18char-tables and bool-vectors are the four types of arrays.
79d11238
RS
19
20 A list is a sequence of elements, but it is not a single primitive
21object; it is made of cons cells, one cell per element. Finding the
22@var{n}th element requires looking through @var{n} cons cells, so
23elements farther from the beginning of the list take longer to access.
24But it is possible to add elements to the list, or remove elements.
4672ee8f
RS
25
26 The following diagram shows the relationship between these types:
27
28@example
29@group
969fe9b5
RS
30 _____________________________________________
31 | |
32 | Sequence |
33 | ______ ________________________________ |
34 | | | | | |
35 | | List | | Array | |
36 | | | | ________ ________ | |
37 | |______| | | | | | | |
38 | | | Vector | | String | | |
39 | | |________| |________| | |
40 | | ____________ _____________ | |
41 | | | | | | | |
42 | | | Char-table | | Bool-vector | | |
43 | | |____________| |_____________| | |
44 | |________________________________| |
45 |_____________________________________________|
4672ee8f
RS
46@end group
47@end example
48
49 The elements of vectors and lists may be any Lisp objects. The
50elements of strings are all characters.
51
52@menu
53* Sequence Functions:: Functions that accept any kind of sequence.
54* Arrays:: Characteristics of arrays in Emacs Lisp.
55* Array Functions:: Functions specifically for arrays.
79d11238
RS
56* Vectors:: Special characteristics of Emacs Lisp vectors.
57* Vector Functions:: Functions specifically for vectors.
f9f59935
RS
58* Char-Tables:: How to work with char-tables.
59* Bool-Vectors:: How to work with bool-vectors.
4672ee8f
RS
60@end menu
61
62@node Sequence Functions
63@section Sequences
64
969fe9b5
RS
65 In Emacs Lisp, a @dfn{sequence} is either a list or an array. The
66common property of all sequences is that they are ordered collections of
67elements. This section describes functions that accept any kind of
68sequence.
4672ee8f
RS
69
70@defun sequencep object
71Returns @code{t} if @var{object} is a list, vector, or
72string, @code{nil} otherwise.
73@end defun
74
969fe9b5
RS
75@defun length sequence
76@cindex string length
77@cindex list length
78@cindex vector length
79@cindex sequence length
80This function returns the number of elements in @var{sequence}. If
81@var{sequence} is a cons cell that is not a list (because the final
82@sc{cdr} is not @code{nil}), a @code{wrong-type-argument} error is
83signaled.
84
a9f0a989 85@xref{List Elements}, for the related function @code{safe-length}.
969fe9b5
RS
86
87@example
88@group
89(length '(1 2 3))
90 @result{} 3
91@end group
92@group
93(length ())
94 @result{} 0
95@end group
96@group
97(length "foobar")
98 @result{} 6
99@end group
100@group
101(length [1 2 3])
102 @result{} 3
103@end group
104@group
105(length (make-bool-vector 5 nil))
106 @result{} 5
107@end group
108@end example
109@end defun
110
111@defun elt sequence index
112@cindex elements of sequences
113This function returns the element of @var{sequence} indexed by
114@var{index}. Legitimate values of @var{index} are integers ranging from
1150 up to one less than the length of @var{sequence}. If @var{sequence}
116is a list, then out-of-range values of @var{index} return @code{nil};
117otherwise, they trigger an @code{args-out-of-range} error.
118
119@example
120@group
121(elt [1 2 3 4] 2)
122 @result{} 3
123@end group
124@group
125(elt '(1 2 3 4) 2)
126 @result{} 3
127@end group
128@group
129;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
130(string (elt "1234" 2))
131 @result{} "3"
132@end group
133@group
134(elt [1 2 3 4] 4)
a9f0a989 135 @error{} Args out of range: [1 2 3 4], 4
969fe9b5
RS
136@end group
137@group
138(elt [1 2 3 4] -1)
a9f0a989 139 @error{} Args out of range: [1 2 3 4], -1
969fe9b5
RS
140@end group
141@end example
142
143This function generalizes @code{aref} (@pxref{Array Functions}) and
144@code{nth} (@pxref{List Elements}).
145@end defun
146
4672ee8f
RS
147@defun copy-sequence sequence
148@cindex copying sequences
149Returns a copy of @var{sequence}. The copy is the same type of object
150as the original sequence, and it has the same elements in the same order.
151
152Storing a new element into the copy does not affect the original
153@var{sequence}, and vice versa. However, the elements of the new
154sequence are not copies; they are identical (@code{eq}) to the elements
155of the original. Therefore, changes made within these elements, as
156found via the copied sequence, are also visible in the original
157sequence.
158
159If the sequence is a string with text properties, the property list in
160the copy is itself a copy, not shared with the original's property
161list. However, the actual values of the properties are shared.
162@xref{Text Properties}.
163
164See also @code{append} in @ref{Building Lists}, @code{concat} in
165@ref{Creating Strings}, and @code{vconcat} in @ref{Vectors}, for others
166ways to copy sequences.
167
168@example
169@group
170(setq bar '(1 2))
171 @result{} (1 2)
172@end group
173@group
174(setq x (vector 'foo bar))
175 @result{} [foo (1 2)]
176@end group
177@group
178(setq y (copy-sequence x))
179 @result{} [foo (1 2)]
180@end group
181
182@group
183(eq x y)
184 @result{} nil
185@end group
186@group
187(equal x y)
188 @result{} t
189@end group
190@group
191(eq (elt x 1) (elt y 1))
192 @result{} t
193@end group
194
195@group
196;; @r{Replacing an element of one sequence.}
197(aset x 0 'quux)
198x @result{} [quux (1 2)]
199y @result{} [foo (1 2)]
200@end group
201
202@group
203;; @r{Modifying the inside of a shared element.}
204(setcar (aref x 1) 69)
205x @result{} [quux (69 2)]
206y @result{} [foo (69 2)]
207@end group
208@end example
209@end defun
210
4672ee8f
RS
211@node Arrays
212@section Arrays
213@cindex array
214
79d11238 215 An @dfn{array} object has slots that hold a number of other Lisp
4672ee8f
RS
216objects, called the elements of the array. Any element of an array may
217be accessed in constant time. In contrast, an element of a list
218requires access time that is proportional to the position of the element
219in the list.
220
a9f0a989
RS
221 Emacs defines four types of array, all one-dimensional: @dfn{strings},
222@dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}. A vector is a
223general array; its elements can be any Lisp objects. A string is a
224specialized array; its elements must be characters (i.e., integers
225between 0 and 255). Each type of array has its own read syntax.
226@xref{String Type}, and @ref{Vector Type}.
4672ee8f 227
969fe9b5 228 All four kinds of array share these characteristics:
4672ee8f
RS
229
230@itemize @bullet
231@item
232The first element of an array has index zero, the second element has
233index 1, and so on. This is called @dfn{zero-origin} indexing. For
234example, an array of four elements has indices 0, 1, 2, @w{and 3}.
235
969fe9b5
RS
236@item
237The length of the array is fixed once you create it; you cannot
238change the length of an existing array.
239
240@item
241The array is a constant, for evaluation---in other words, it evaluates
242to itself.
243
4672ee8f
RS
244@item
245The elements of an array may be referenced or changed with the functions
246@code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
247@end itemize
248
969fe9b5
RS
249 When you create an array, other than a char-table, you must specify
250its length. You cannot specify the length of a char-table, because that
251is determined by the range of character codes.
252
253 In principle, if you want an array of text characters, you could use
254either a string or a vector. In practice, we always choose strings for
255such applications, for four reasons:
4672ee8f
RS
256
257@itemize @bullet
258@item
259They occupy one-fourth the space of a vector of the same elements.
260
261@item
262Strings are printed in a way that shows the contents more clearly
f9f59935 263as text.
4672ee8f
RS
264
265@item
266Strings can hold text properties. @xref{Text Properties}.
267
268@item
269Many of the specialized editing and I/O facilities of Emacs accept only
270strings. For example, you cannot insert a vector of characters into a
271buffer the way you can insert a string. @xref{Strings and Characters}.
272@end itemize
273
bfe721d1
KH
274 By contrast, for an array of keyboard input characters (such as a key
275sequence), a vector may be necessary, because many keyboard input
276characters are outside the range that will fit in a string. @xref{Key
277Sequence Input}.
278
4672ee8f
RS
279@node Array Functions
280@section Functions that Operate on Arrays
281
f9f59935
RS
282 In this section, we describe the functions that accept all types of
283arrays.
4672ee8f
RS
284
285@defun arrayp object
f9f59935
RS
286This function returns @code{t} if @var{object} is an array (i.e., a
287vector, a string, a bool-vector or a char-table).
4672ee8f
RS
288
289@example
290@group
291(arrayp [a])
969fe9b5 292 @result{} t
4672ee8f 293(arrayp "asdf")
969fe9b5
RS
294 @result{} t
295(arrayp (syntax-table)) ;; @r{A char-table.}
296 @result{} t
4672ee8f
RS
297@end group
298@end example
299@end defun
300
301@defun aref array index
302@cindex array elements
303This function returns the @var{index}th element of @var{array}. The
304first element is at index zero.
305
306@example
307@group
308(setq primes [2 3 5 7 11 13])
309 @result{} [2 3 5 7 11 13]
310(aref primes 4)
311 @result{} 11
4672ee8f 312@end group
4672ee8f
RS
313@group
314(aref "abcdefg" 1)
315 @result{} 98 ; @r{@samp{b} is @sc{ASCII} code 98.}
316@end group
317@end example
318
319See also the function @code{elt}, in @ref{Sequence Functions}.
320@end defun
321
322@defun aset array index object
323This function sets the @var{index}th element of @var{array} to be
324@var{object}. It returns @var{object}.
325
326@example
327@group
328(setq w [foo bar baz])
329 @result{} [foo bar baz]
330(aset w 0 'fu)
331 @result{} fu
332w
333 @result{} [fu bar baz]
334@end group
335
336@group
337(setq x "asdfasfd")
338 @result{} "asdfasfd"
339(aset x 3 ?Z)
340 @result{} 90
341x
342 @result{} "asdZasfd"
343@end group
344@end example
345
346If @var{array} is a string and @var{object} is not a character, a
f9f59935
RS
347@code{wrong-type-argument} error results. If @var{array} is a string
348and @var{object} is character, but @var{object} does not use the same
349number of bytes as the character currently stored in @code{(aref
a9f0a989
RS
350@var{object} @var{index})}, that is also an error. @xref{Splitting
351Characters}.
4672ee8f
RS
352@end defun
353
354@defun fillarray array object
79d11238
RS
355This function fills the array @var{array} with @var{object}, so that
356each element of @var{array} is @var{object}. It returns @var{array}.
4672ee8f
RS
357
358@example
359@group
360(setq a [a b c d e f g])
361 @result{} [a b c d e f g]
362(fillarray a 0)
363 @result{} [0 0 0 0 0 0 0]
364a
365 @result{} [0 0 0 0 0 0 0]
366@end group
367@group
368(setq s "When in the course")
369 @result{} "When in the course"
370(fillarray s ?-)
371 @result{} "------------------"
372@end group
373@end example
374
375If @var{array} is a string and @var{object} is not a character, a
376@code{wrong-type-argument} error results.
377@end defun
378
379The general sequence functions @code{copy-sequence} and @code{length}
380are often useful for objects known to be arrays. @xref{Sequence Functions}.
381
382@node Vectors
383@section Vectors
384@cindex vector
385
386 Arrays in Lisp, like arrays in most languages, are blocks of memory
387whose elements can be accessed in constant time. A @dfn{vector} is a
969fe9b5
RS
388general-purpose array of specified length; its elements can be any Lisp
389objects. (By contrast, a string can hold only characters as elements.)
390Vectors in Emacs are used for obarrays (vectors of symbols), and as part
391of keymaps (vectors of commands). They are also used internally as part
392of the representation of a byte-compiled function; if you print such a
f9f59935 393function, you will see a vector in it.
4672ee8f
RS
394
395 In Emacs Lisp, the indices of the elements of a vector start from zero
396and count up from there.
397
79d11238
RS
398 Vectors are printed with square brackets surrounding the elements.
399Thus, a vector whose elements are the symbols @code{a}, @code{b} and
400@code{a} is printed as @code{[a b a]}. You can write vectors in the
401same way in Lisp input.
4672ee8f
RS
402
403 A vector, like a string or a number, is considered a constant for
404evaluation: the result of evaluating it is the same vector. This does
405not evaluate or even examine the elements of the vector.
406@xref{Self-Evaluating Forms}.
407
f9f59935 408 Here are examples illustrating these principles:
4672ee8f
RS
409
410@example
411@group
412(setq avector [1 two '(three) "four" [five]])
413 @result{} [1 two (quote (three)) "four" [five]]
414(eval avector)
415 @result{} [1 two (quote (three)) "four" [five]]
416(eq avector (eval avector))
417 @result{} t
418@end group
419@end example
420
79d11238 421@node Vector Functions
969fe9b5 422@section Functions for Vectors
79d11238 423
4672ee8f
RS
424 Here are some functions that relate to vectors:
425
426@defun vectorp object
427This function returns @code{t} if @var{object} is a vector.
428
429@example
430@group
431(vectorp [a])
432 @result{} t
433(vectorp "asdf")
434 @result{} nil
435@end group
436@end example
437@end defun
438
439@defun vector &rest objects
440This function creates and returns a vector whose elements are the
441arguments, @var{objects}.
442
443@example
444@group
445(vector 'foo 23 [bar baz] "rats")
446 @result{} [foo 23 [bar baz] "rats"]
447(vector)
448 @result{} []
449@end group
450@end example
451@end defun
452
453@defun make-vector length object
454This function returns a new vector consisting of @var{length} elements,
455each initialized to @var{object}.
456
457@example
458@group
459(setq sleepy (make-vector 9 'Z))
460 @result{} [Z Z Z Z Z Z Z Z Z]
461@end group
462@end example
463@end defun
464
465@defun vconcat &rest sequences
466@cindex copying vectors
467This function returns a new vector containing all the elements of the
f9f59935
RS
468@var{sequences}. The arguments @var{sequences} may be any kind of
469arrays, including lists, vectors, or strings. If no @var{sequences} are
470given, an empty vector is returned.
4672ee8f
RS
471
472The value is a newly constructed vector that is not @code{eq} to any
473existing vector.
474
475@example
476@group
477(setq a (vconcat '(A B C) '(D E F)))
478 @result{} [A B C D E F]
479(eq a (vconcat a))
480 @result{} nil
481@end group
482@group
483(vconcat)
484 @result{} []
485(vconcat [A B C] "aa" '(foo (6 7)))
486 @result{} [A B C 97 97 foo (6 7)]
487@end group
488@end example
489
969fe9b5
RS
490The @code{vconcat} function also allows byte-code function objects as
491arguments. This is a special feature to make it easy to access the entire
492contents of a byte-code function object. @xref{Byte-Code Objects}.
493
22697dac
KH
494The @code{vconcat} function also allows integers as arguments. It
495converts them to strings of digits, making up the decimal print
496representation of the integer, and then uses the strings instead of the
497original integers. @strong{Don't use this feature; we plan to eliminate
498it. If you already use this feature, change your programs now!} The
499proper way to convert an integer to a decimal number in this way is with
4672ee8f
RS
500@code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
501(@pxref{String Conversion}).
502
503For other concatenation functions, see @code{mapconcat} in @ref{Mapping
504Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
505in @ref{Building Lists}.
506@end defun
507
508 The @code{append} function provides a way to convert a vector into a
509list with the same elements (@pxref{Building Lists}):
510
511@example
512@group
513(setq avector [1 two (quote (three)) "four" [five]])
514 @result{} [1 two (quote (three)) "four" [five]]
515(append avector nil)
516 @result{} (1 two (quote (three)) "four" [five])
517@end group
518@end example
f9f59935
RS
519
520@node Char-Tables
521@section Char-Tables
522@cindex char-tables
a9f0a989 523@cindex extra slots of char-table
f9f59935
RS
524
525 A char-table is much like a vector, except that it is indexed by
526character codes. Any valid character code, without modifiers, can be
969fe9b5 527used as an index in a char-table. You can access a char-table's
a9f0a989
RS
528elements with @code{aref} and @code{aset}, as with any array. In
529addition, a char-table can have @dfn{extra slots} to hold additional
530data not associated with particular character codes. Char-tables are
531constants when evaluated.
f9f59935 532
f9f59935 533@cindex subtype of char-table
a9f0a989
RS
534 Each char-table has a @dfn{subtype} which is a symbol. The subtype
535has two purposes: to distinguish char-tables meant for different uses,
536and to control the number of extra slots. For example, display tables
537are char-tables with @code{display-table} as the subtype, and syntax
538tables are char-tables with @code{syntax-table} as the subtype. A valid
539subtype must have a @code{char-table-extra-slots} property which is an
540integer between 0 and 10. This integer specifies the number of
541@dfn{extra slots} in the char-table.
f9f59935
RS
542
543@cindex parent of char-table
544 A char-table can have a @dfn{parent}. which is another char-table. If
545it does, then whenever the char-table specifies @code{nil} for a
546particular character @var{c}, it inherits the value specified in the
547parent. In other words, @code{(aref @var{char-table} @var{c})} returns
548the value from the parent of @var{char-table} if @var{char-table} itself
549specifies @code{nil}.
550
551@cindex default value of char-table
552 A char-table can also have a @dfn{default value}. If so, then
553@code{(aref @var{char-table} @var{c})} returns the default value
554whenever the char-table does not specify any other non-@code{nil} value.
555
f9f59935 556@defun make-char-table subtype &optional init
a9f0a989 557@tindex make-char-table
f9f59935
RS
558Return a newly created char-table, with subtype @var{subtype}. Each
559element is initialized to @var{init}, which defaults to @code{nil}. You
560cannot alter the subtype of a char-table after the char-table is
561created.
969fe9b5
RS
562
563There is no argument to specify the length of the char-table, because
564all char-tables have room for any valid character code as an index.
f9f59935
RS
565@end defun
566
f9f59935 567@defun char-table-p object
a9f0a989 568@tindex char-table-p
969fe9b5 569This function returns @code{t} if @var{object} is a char-table,
f9f59935
RS
570otherwise @code{nil}.
571@end defun
572
f9f59935 573@defun char-table-subtype char-table
a9f0a989 574@tindex char-table-subtype
f9f59935
RS
575This function returns the subtype symbol of @var{char-table}.
576@end defun
577
f9f59935 578@defun set-char-table-default char-table new-default
a9f0a989 579@tindex set-char-table-default
f9f59935
RS
580This function sets the default value of @var{char-table} to
581@var{new-default}.
582
583There is no special function to access the default value of a char-table.
584To do that, use @code{(char-table-range @var{char-table} nil)}.
585@end defun
586
f9f59935 587@defun char-table-parent char-table
a9f0a989 588@tindex char-table-parent
f9f59935
RS
589This function returns the parent of @var{char-table}. The parent is
590always either @code{nil} or another char-table.
591@end defun
592
f9f59935 593@defun set-char-table-parent char-table new-parent
a9f0a989 594@tindex set-char-table-parent
f9f59935
RS
595This function sets the parent of @var{char-table} to @var{new-parent}.
596@end defun
597
f9f59935 598@defun char-table-extra-slot char-table n
a9f0a989 599@tindex char-table-extra-slot
f9f59935
RS
600This function returns the contents of extra slot @var{n} of
601@var{char-table}. The number of extra slots in a char-table is
602determined by its subtype.
603@end defun
604
f9f59935 605@defun set-char-table-extra-slot char-table n value
a9f0a989 606@tindex set-char-table-extra-slot
f9f59935
RS
607This function stores @var{value} in extra slot @var{n} of
608@var{char-table}.
609@end defun
610
611 A char-table can specify an element value for a single character code;
612it can also specify a value for an entire character set.
613
f9f59935 614@defun char-table-range char-table range
a9f0a989 615@tindex char-table-range
f9f59935 616This returns the value specified in @var{char-table} for a range of
a9f0a989 617characters @var{range}. Here are the possibilities for @var{range}:
f9f59935
RS
618
619@table @asis
620@item @code{nil}
621Refers to the default value.
622
623@item @var{char}
a9f0a989
RS
624Refers to the element for character @var{char}
625(supposing @var{char} is a valid character code).
f9f59935
RS
626
627@item @var{charset}
628Refers to the value specified for the whole character set
629@var{charset} (@pxref{Character Sets}).
a9f0a989
RS
630
631@item @var{generic-char}
632A generic character stands for a character set; specifying the generic
633character as argument is equivalent to specifying the character set
634name. @xref{Splitting Characters}, for a description of generic characters.
f9f59935
RS
635@end table
636@end defun
637
f9f59935 638@defun set-char-table-range char-table range value
a9f0a989 639@tindex set-char-table-range
f9f59935 640This function set the value in @var{char-table} for a range of
a9f0a989 641characters @var{range}. Here are the possibilities for @var{range}:
f9f59935
RS
642
643@table @asis
644@item @code{nil}
645Refers to the default value.
646
647@item @code{t}
648Refers to the whole range of character codes.
649
650@item @var{char}
a9f0a989
RS
651Refers to the element for character @var{char}
652(supposing @var{char} is a valid character code).
f9f59935
RS
653
654@item @var{charset}
655Refers to the value specified for the whole character set
656@var{charset} (@pxref{Character Sets}).
a9f0a989
RS
657
658@item @var{generic-char}
659A generic character stands for a character set; specifying the generic
660character as argument is equivalent to specifying the character set
661name. @xref{Splitting Characters}, for a description of generic characters.
f9f59935
RS
662@end table
663@end defun
664
f9f59935 665@defun map-char-table function char-table
a9f0a989 666@tindex map-char-table
f9f59935
RS
667This function calls @var{function} for each element of @var{char-table}.
668@var{function} is called with two arguments, a key and a value. The key
a9f0a989
RS
669is a possible @var{range} argument for @code{char-table-range}---either
670a valid character or a generic character---and the value is
671@code{(char-table-range @var{char-table} @var{key})}.
f9f59935 672
969fe9b5 673Overall, the key-value pairs passed to @var{function} describe all the
f9f59935 674values stored in @var{char-table}.
a9f0a989
RS
675
676The return value is always @code{nil}; to make this function useful,
677@var{function} should have side effects. For example,
678here is how to examine each element of the syntax table:
679
680@example
681(map-char-table
682 #'(lambda (key value)
683 (setq accumulator
684 (cons (list key value) accumulator)))
685 (syntax-table))
686@result{}
687((475008 nil) (474880 nil) (474752 nil) (474624 nil)
688 ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
689@end example
f9f59935
RS
690@end defun
691
692@node Bool-Vectors
693@section Bool-vectors
694@cindex Bool-vectors
695
696 A bool-vector is much like a vector, except that it stores only the
697values @code{t} and @code{nil}. If you try to store any non-@code{nil}
969fe9b5
RS
698value into an element of the bool-vector, the effect is to store
699@code{t} there. As with all arrays, bool-vector indices start from 0,
700and the length cannot be changed once the bool-vector is created.
701Bool-vectors are constants when evaluated.
f9f59935
RS
702
703 There are two special functions for working with bool-vectors; aside
704from that, you manipulate them with same functions used for other kinds
705of arrays.
706
f9f59935 707@defun make-bool-vector length initial
a9f0a989 708@tindex make-bool-vector
f9f59935
RS
709Return a new book-vector of @var{length} elements,
710each one initialized to @var{initial}.
711@end defun
712
713@defun bool-vector-p object
a9f0a989 714@tindex bool-vector-p
f9f59935
RS
715This returns @code{t} if @var{object} is a bool-vector,
716and @code{nil} otherwise.
717@end defun
718