f5768f824df92be4ed80af6eb2908b7fc63af8a5
[bpt/coccinelle.git] / parsing_cocci / unitary_ast0.ml
1 (*
2 * Copyright 2010, INRIA, University of Copenhagen
3 * Julia Lawall, Rene Rydhof Hansen, Gilles Muller, Nicolas Palix
4 * Copyright 2005-2009, Ecole des Mines de Nantes, University of Copenhagen
5 * Yoann Padioleau, Julia Lawall, Rene Rydhof Hansen, Henrik Stuart, Gilles Muller, Nicolas Palix
6 * This file is part of Coccinelle.
7 *
8 * Coccinelle is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, according to version 2 of the License.
11 *
12 * Coccinelle is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with Coccinelle. If not, see <http://www.gnu.org/licenses/>.
19 *
20 * The authors reserve the right to distribute this or future versions of
21 * Coccinelle under other licenses.
22 *)
23
24
25 (* find unitary metavariables *)
26 module Ast0 = Ast0_cocci
27 module Ast = Ast_cocci
28 module V0 = Visitor_ast0
29 module VT0 = Visitor_ast0_types
30
31 let set_minus s minus = List.filter (function n -> not (List.mem n minus)) s
32
33 let rec nub = function
34 [] -> []
35 | (x::xs) when (List.mem x xs) -> nub xs
36 | (x::xs) -> x::(nub xs)
37
38 (* ----------------------------------------------------------------------- *)
39 (* Find the variables that occur free and occur free in a unitary way *)
40
41 (* take everything *)
42 let minus_checker name = let id = Ast0.unwrap_mcode name in [id]
43
44 (* take only what is in the plus code *)
45 let plus_checker (nm,_,_,mc,_,_) =
46 match mc with Ast0.PLUS _ -> [nm] | _ -> []
47
48 let get_free checker t =
49 let bind x y = x @ y in
50 let option_default = [] in
51
52 (* considers a single list *)
53 let collect_unitary_nonunitary free_usage =
54 let free_usage = List.sort compare free_usage in
55 let rec loop1 todrop = function
56 [] -> []
57 | (x::xs) as all -> if x = todrop then loop1 todrop xs else all in
58 let rec loop2 = function
59 [] -> ([],[])
60 | [x] -> ([x],[])
61 | x::y::xs ->
62 if x = y
63 then
64 let (unitary,non_unitary) = loop2(loop1 x xs) in
65 (unitary,x::non_unitary)
66 else
67 let (unitary,non_unitary) = loop2 (y::xs) in
68 (x::unitary,non_unitary) in
69 loop2 free_usage in
70
71 (* considers a list of lists *)
72 let detect_unitary_frees l =
73 let (unitary,nonunitary) =
74 List.split (List.map collect_unitary_nonunitary l) in
75 let unitary = nub (List.concat unitary) in
76 let nonunitary = nub (List.concat nonunitary) in
77 let unitary =
78 List.filter (function x -> not (List.mem x nonunitary)) unitary in
79 unitary@nonunitary@nonunitary in
80
81 let whencode afn bfn expression = function
82 Ast0.WhenNot(a) -> afn a
83 | Ast0.WhenAlways(b) -> bfn b
84 | Ast0.WhenModifier(_) -> option_default
85 | Ast0.WhenNotTrue(a) -> expression a
86 | Ast0.WhenNotFalse(a) -> expression a in
87
88 let ident r k i =
89 match Ast0.unwrap i with
90 Ast0.MetaId(name,_,_) | Ast0.MetaFunc(name,_,_)
91 | Ast0.MetaLocalFunc(name,_,_) -> checker name
92 | _ -> k i in
93
94 let expression r k e =
95 match Ast0.unwrap e with
96 Ast0.MetaErr(name,_,_) | Ast0.MetaExpr(name,_,_,_,_)
97 | Ast0.MetaExprList(name,_,_) -> checker name
98 | Ast0.DisjExpr(starter,expr_list,mids,ender) ->
99 detect_unitary_frees(List.map r.VT0.combiner_rec_expression expr_list)
100 | _ -> k e in
101
102 let typeC r k t =
103 match Ast0.unwrap t with
104 Ast0.MetaType(name,_) -> checker name
105 | Ast0.DisjType(starter,types,mids,ender) ->
106 detect_unitary_frees(List.map r.VT0.combiner_rec_typeC types)
107 | _ -> k t in
108
109 let parameter r k p =
110 match Ast0.unwrap p with
111 Ast0.MetaParam(name,_) | Ast0.MetaParamList(name,_,_) -> checker name
112 | _ -> k p in
113
114 let declaration r k d =
115 match Ast0.unwrap d with
116 Ast0.MetaDecl(name,_) | Ast0.MetaField(name,_) -> checker name
117 | Ast0.DisjDecl(starter,decls,mids,ender) ->
118 detect_unitary_frees(List.map r.VT0.combiner_rec_declaration decls)
119 | _ -> k d in
120
121 let case_line r k c =
122 match Ast0.unwrap c with
123 Ast0.DisjCase(starter,case_lines,mids,ender) ->
124 detect_unitary_frees(List.map r.VT0.combiner_rec_case_line case_lines)
125 | _ -> k c in
126
127 let statement r k s =
128 match Ast0.unwrap s with
129 Ast0.MetaStmt(name,_) | Ast0.MetaStmtList(name,_) -> checker name
130 | Ast0.Disj(starter,stmt_list,mids,ender) ->
131 detect_unitary_frees
132 (List.map r.VT0.combiner_rec_statement_dots stmt_list)
133 | Ast0.Nest(starter,stmt_dots,ender,whn,multi) ->
134 bind (r.VT0.combiner_rec_statement_dots stmt_dots)
135 (detect_unitary_frees
136 (List.map
137 (whencode
138 r.VT0.combiner_rec_statement_dots
139 r.VT0.combiner_rec_statement
140 r.VT0.combiner_rec_expression)
141 whn))
142 | Ast0.Dots(d,whn) | Ast0.Circles(d,whn) | Ast0.Stars(d,whn) ->
143 detect_unitary_frees
144 (List.map
145 (whencode
146 r.VT0.combiner_rec_statement_dots r.VT0.combiner_rec_statement
147 r.VT0.combiner_rec_expression)
148 whn)
149 | _ -> k s in
150
151 let res = V0.combiner bind option_default
152 {V0.combiner_functions with
153 VT0.combiner_identfn = ident;
154 VT0.combiner_exprfn = expression;
155 VT0.combiner_tyfn = typeC;
156 VT0.combiner_paramfn = parameter;
157 VT0.combiner_declfn = declaration;
158 VT0.combiner_stmtfn = statement;
159 VT0.combiner_casefn = case_line} in
160
161 collect_unitary_nonunitary
162 (List.concat (List.map res.VT0.combiner_rec_top_level t))
163
164 (* ----------------------------------------------------------------------- *)
165 (* update the variables that are unitary *)
166
167 let update_unitary unitary =
168 let is_unitary name =
169 match (List.mem (Ast0.unwrap_mcode name) unitary,
170 !Flag.sgrep_mode2, Ast0.get_mcode_mcodekind name) with
171 (true,true,_) | (true,_,Ast0.CONTEXT(_)) -> Ast0.PureContext
172 | (true,_,_) -> Ast0.Pure
173 | (false,true,_) | (false,_,Ast0.CONTEXT(_)) -> Ast0.Context
174 | (false,_,_) -> Ast0.Impure in
175
176 let ident r k i =
177 match Ast0.unwrap i with
178 Ast0.MetaId(name,constraints,_) ->
179 Ast0.rewrap i (Ast0.MetaId(name,constraints,is_unitary name))
180 | Ast0.MetaFunc(name,constraints,_) ->
181 Ast0.rewrap i (Ast0.MetaFunc(name,constraints,is_unitary name))
182 | Ast0.MetaLocalFunc(name,constraints,_) ->
183 Ast0.rewrap i (Ast0.MetaLocalFunc(name,constraints,is_unitary name))
184 | _ -> k i in
185
186 let expression r k e =
187 match Ast0.unwrap e with
188 Ast0.MetaErr(name,constraints,_) ->
189 Ast0.rewrap e (Ast0.MetaErr(name,constraints,is_unitary name))
190 | Ast0.MetaExpr(name,constraints,ty,form,_) ->
191 Ast0.rewrap e (Ast0.MetaExpr(name,constraints,ty,form,is_unitary name))
192 | Ast0.MetaExprList(name,lenname,_) ->
193 Ast0.rewrap e (Ast0.MetaExprList(name,lenname,is_unitary name))
194 | _ -> k e in
195
196 let typeC r k t =
197 match Ast0.unwrap t with
198 Ast0.MetaType(name,_) ->
199 Ast0.rewrap t (Ast0.MetaType(name,is_unitary name))
200 | _ -> k t in
201
202 let parameter r k p =
203 match Ast0.unwrap p with
204 Ast0.MetaParam(name,_) ->
205 Ast0.rewrap p (Ast0.MetaParam(name,is_unitary name))
206 | Ast0.MetaParamList(name,lenname,_) ->
207 Ast0.rewrap p (Ast0.MetaParamList(name,lenname,is_unitary name))
208 | _ -> k p in
209
210 let statement r k s =
211 match Ast0.unwrap s with
212 Ast0.MetaStmt(name,_) ->
213 Ast0.rewrap s (Ast0.MetaStmt(name,is_unitary name))
214 | Ast0.MetaStmtList(name,_) ->
215 Ast0.rewrap s (Ast0.MetaStmtList(name,is_unitary name))
216 | _ -> k s in
217
218 let res = V0.rebuilder
219 {V0.rebuilder_functions with
220 VT0.rebuilder_identfn = ident;
221 VT0.rebuilder_exprfn = expression;
222 VT0.rebuilder_tyfn = typeC;
223 VT0.rebuilder_paramfn = parameter;
224 VT0.rebuilder_stmtfn = statement} in
225
226 List.map res.VT0.rebuilder_rec_top_level
227
228 (* ----------------------------------------------------------------------- *)
229
230 let rec split3 = function
231 [] -> ([],[],[])
232 | (a,b,c)::xs -> let (l1,l2,l3) = split3 xs in (a::l1,b::l2,c::l3)
233
234 let rec combine3 = function
235 ([],[],[]) -> []
236 | (a::l1,b::l2,c::l3) -> (a,b,c) :: combine3 (l1,l2,l3)
237 | _ -> failwith "not possible"
238
239 (* ----------------------------------------------------------------------- *)
240 (* process all rules *)
241
242 let do_unitary rules =
243 let rec loop = function
244 [] -> ([],[])
245 | (r::rules) ->
246 match r with
247 Ast0.ScriptRule (_,_,_,_,_,_)
248 | Ast0.InitialScriptRule (_,_,_,_) | Ast0.FinalScriptRule (_,_,_,_) ->
249 let (x,rules) = loop rules in
250 (x, r::rules)
251 | Ast0.CocciRule ((minus,metavars,chosen_isos),((plus,_) as plusz),rt) ->
252 let mm1 = List.map Ast.get_meta_name metavars in
253 let (used_after, rest) = loop rules in
254 let (m_unitary, m_nonunitary) = get_free minus_checker minus in
255 let (p_unitary, p_nonunitary) = get_free plus_checker plus in
256 let p_free =
257 if !Flag.sgrep_mode2 then []
258 else p_unitary @ p_nonunitary in
259 let (in_p, m_unitary) =
260 List.partition (function x -> List.mem x p_free) m_unitary in
261 let m_nonunitary = in_p @ m_nonunitary in
262 let (m_unitary, not_local) =
263 List.partition (function x -> List.mem x mm1) m_unitary in
264 let m_unitary =
265 List.filter (function x -> not (List.mem x used_after))
266 m_unitary in
267 let rebuilt = update_unitary m_unitary minus in
268 (set_minus (m_nonunitary @ used_after) mm1,
269 (Ast0.CocciRule
270 ((rebuilt, metavars, chosen_isos),plusz,rt))::rest) in
271 let (_,rules) = loop rules in
272 rules
273
274 (*
275 let do_unitary minus plus =
276 let (minus,metavars,chosen_isos) = split3 minus in
277 let (plus,_) = List.split plus in
278 let rec loop = function
279 ([],[],[]) -> ([],[])
280 | (mm1::metavars,m1::minus,p1::plus) ->
281 let mm1 = List.map Ast.get_meta_name mm1 in
282 let (used_after,rest) = loop (metavars,minus,plus) in
283 let (m_unitary,m_nonunitary) = get_free minus_checker m1 in
284 let (p_unitary,p_nonunitary) = get_free plus_checker p1 in
285 let p_free =
286 if !Flag.sgrep_mode2
287 then []
288 else p_unitary @ p_nonunitary in
289 let (in_p,m_unitary) =
290 List.partition (function x -> List.mem x p_free) m_unitary in
291 let m_nonunitary = in_p@m_nonunitary in
292 let (m_unitary,not_local) =
293 List.partition (function x -> List.mem x mm1) m_unitary in
294 let m_unitary =
295 List.filter (function x -> not(List.mem x used_after)) m_unitary in
296 let rebuilt = update_unitary m_unitary m1 in
297 (set_minus (m_nonunitary @ used_after) mm1,
298 rebuilt::rest)
299 | _ -> failwith "not possible" in
300 let (_,rules) = loop (metavars,minus,plus) in
301 combine3 (rules,metavars,chosen_isos)
302 *)