f5640c02b0bcf1ad85557eea7c5e4349f471edb3
[bpt/coccinelle.git] / commons / common.ml
1 (* Yoann Padioleau
2 *
3 * Copyright (C) 2010 INRIA, University of Copenhagen DIKU
4 * Copyright (C) 1998-2009 Yoann Padioleau
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public License
8 * version 2.1 as published by the Free Software Foundation, with the
9 * special exception on linking described in file license.txt.
10 *
11 * This library is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the file
14 * license.txt for more details.
15 *)
16
17 (*****************************************************************************)
18 (* Notes *)
19 (*****************************************************************************)
20
21
22
23 (* ---------------------------------------------------------------------- *)
24 (* Maybe could split common.ml and use include tricks as in ofullcommon.ml or
25 * Jane Street core lib. But then harder to bundle simple scripts like my
26 * make_full_linux_kernel.ml because would then need to pass all the files
27 * either to ocamlc or either to some #load. Also as the code of many
28 * functions depends on other functions from this common, it would
29 * be tedious to add those dependencies. Here simpler (have just the
30 * pb of the Prelude, but it's a small problem).
31 *
32 * pixel means code from Pascal Rigaux
33 * julia means code from Julia Lawall
34 *)
35 (* ---------------------------------------------------------------------- *)
36
37 (*****************************************************************************)
38 (* We use *)
39 (*****************************************************************************)
40 (*
41 * modules:
42 * - Pervasives, of course
43 * - List
44 * - Str
45 * - Hashtbl
46 * - Format
47 * - Buffer
48 * - Unix and Sys
49 * - Arg
50 *
51 * functions:
52 * - =, <=, max min, abs, ...
53 * - List.rev, List.mem, List.partition,
54 * - List.fold*, List.concat, ...
55 * - Str.global_replace
56 * - Filename.is_relative
57 * - String.uppercase, String.lowercase
58 *
59 *
60 * The Format library allows to hide passing an indent_level variable.
61 * You use as usual the print_string function except that there is
62 * this automatic indent_level variable handled for you (and maybe
63 * more services). src: julia in coccinelle unparse_cocci.
64 *
65 * Extra packages
66 * - ocamlbdb
67 * - ocamlgtk, and gtksourceview
68 * - ocamlgl
69 * - ocamlpython
70 * - ocamlagrep
71 * - ocamlfuse
72 * - ocamlmpi
73 * - ocamlcalendar
74 *
75 * - pcre
76 * - sdl
77 *
78 * Many functions in this file were inspired by Haskell or Lisp librairies.
79 *)
80
81 (*****************************************************************************)
82 (* Prelude *)
83 (*****************************************************************************)
84
85 (* The following functions should be in their respective sections but
86 * because some functions in some sections use functions in other
87 * sections, and because I don't want to take care of the order of
88 * those sections, of those dependencies, I put the functions causing
89 * dependency problem here. C is better than caml on this with the
90 * ability to declare prototype, enabling some form of forward
91 * reference. *)
92
93 let (+>) o f = f o
94 let (++) = (@)
95
96 exception Timeout
97 exception UnixExit of int
98
99 let rec (do_n: int -> (unit -> unit) -> unit) = fun i f ->
100 if i = 0 then () else (f(); do_n (i-1) f)
101 let rec (foldn: ('a -> int -> 'a) -> 'a -> int -> 'a) = fun f acc i ->
102 if i = 0 then acc else foldn f (f acc i) (i-1)
103
104 let sum_int = List.fold_left (+) 0
105
106 (* could really call it 'for' :) *)
107 let fold_left_with_index f acc =
108 let rec fold_lwi_aux acc n = function
109 | [] -> acc
110 | x::xs -> fold_lwi_aux (f acc x n) (n+1) xs
111 in fold_lwi_aux acc 0
112
113
114 let rec drop n xs =
115 match (n,xs) with
116 | (0,_) -> xs
117 | (_,[]) -> failwith "drop: not enough"
118 | (n,x::xs) -> drop (n-1) xs
119
120 let rec enum_orig x n = if x = n then [n] else x::enum_orig (x+1) n
121
122 let enum x n =
123 if not(x <= n)
124 then failwith (Printf.sprintf "bad values in enum, expect %d <= %d" x n);
125 let rec enum_aux acc x n =
126 if x = n then n::acc else enum_aux (x::acc) (x+1) n
127 in
128 List.rev (enum_aux [] x n)
129
130 let rec take n xs =
131 match (n,xs) with
132 | (0,_) -> []
133 | (_,[]) -> failwith "take: not enough"
134 | (n,x::xs) -> x::take (n-1) xs
135
136
137 let last_n n l = List.rev (take n (List.rev l))
138 let last l = List.hd (last_n 1 l)
139
140
141 let (list_of_string: string -> char list) = function
142 "" -> []
143 | s -> (enum 0 ((String.length s) - 1) +> List.map (String.get s))
144
145 let (lines: string -> string list) = fun s ->
146 let rec lines_aux = function
147 | [] -> []
148 | [x] -> if x = "" then [] else [x]
149 | x::xs ->
150 x::lines_aux xs
151 in
152 Str.split_delim (Str.regexp "\n") s +> lines_aux
153
154
155 let push2 v l =
156 l := v :: !l
157
158 let null xs = match xs with [] -> true | _ -> false
159
160
161
162
163 let debugger = ref false
164
165 let unwind_protect f cleanup =
166 if !debugger then f() else
167 try f ()
168 with e -> begin cleanup e; raise e end
169
170 let finalize f cleanup =
171 if !debugger then f() else
172 try
173 let res = f () in
174 cleanup ();
175 res
176 with e ->
177 cleanup ();
178 raise e
179
180 let command2 s = ignore(Sys.command s)
181
182
183 let (matched: int -> string -> string) = fun i s ->
184 Str.matched_group i s
185
186 let matched1 = fun s -> matched 1 s
187 let matched2 = fun s -> (matched 1 s, matched 2 s)
188 let matched3 = fun s -> (matched 1 s, matched 2 s, matched 3 s)
189 let matched4 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s)
190 let matched5 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s, matched 5 s)
191 let matched6 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s, matched 5 s, matched 6 s)
192 let matched7 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s, matched 5 s, matched 6 s, matched 7 s)
193
194 let (with_open_stringbuf: (((string -> unit) * Buffer.t) -> unit) -> string) =
195 fun f ->
196 let buf = Buffer.create 1000 in
197 let pr s = Buffer.add_string buf (s ^ "\n") in
198 f (pr, buf);
199 Buffer.contents buf
200
201
202 let foldl1 p = function x::xs -> List.fold_left p x xs | _ -> failwith "foldl1"
203
204 (*****************************************************************************)
205 (* Debugging/logging *)
206 (*****************************************************************************)
207
208 (* I used this in coccinelle where the huge logging of stuff ask for
209 * a more organized solution that use more visual indentation hints.
210 *
211 * todo? could maybe use log4j instead ? or use Format module more
212 * consistently ?
213 *)
214
215 let _tab_level_print = ref 0
216 let _tab_indent = 5
217
218
219 let _prefix_pr = ref ""
220
221 let indent_do f =
222 _tab_level_print := !_tab_level_print + _tab_indent;
223 finalize f
224 (fun () -> _tab_level_print := !_tab_level_print - _tab_indent;)
225
226
227 let pr s =
228 print_string !_prefix_pr;
229 do_n !_tab_level_print (fun () -> print_string " ");
230 print_string s;
231 print_string "\n";
232 flush stdout
233
234 let pr_no_nl s =
235 print_string !_prefix_pr;
236 do_n !_tab_level_print (fun () -> print_string " ");
237 print_string s;
238 flush stdout
239
240
241
242
243
244
245 let _chan_pr2 = ref (None: out_channel option)
246
247 let out_chan_pr2 ?(newline=true) s =
248 match !_chan_pr2 with
249 | None -> ()
250 | Some chan ->
251 output_string chan (s ^ (if newline then "\n" else ""));
252 flush chan
253
254 let print_to_stderr = ref true
255
256 let pr2 s =
257 if !print_to_stderr
258 then
259 begin
260 prerr_string !_prefix_pr;
261 do_n !_tab_level_print (fun () -> prerr_string " ");
262 prerr_string s;
263 prerr_string "\n";
264 flush stderr;
265 out_chan_pr2 s;
266 ()
267 end
268
269 let pr2_no_nl s =
270 if !print_to_stderr
271 then
272 begin
273 prerr_string !_prefix_pr;
274 do_n !_tab_level_print (fun () -> prerr_string " ");
275 prerr_string s;
276 flush stderr;
277 out_chan_pr2 ~newline:false s;
278 ()
279 end
280
281
282 let pr_xxxxxxxxxxxxxxxxx () =
283 pr "-----------------------------------------------------------------------"
284
285 let pr2_xxxxxxxxxxxxxxxxx () =
286 pr2 "-----------------------------------------------------------------------"
287
288
289 let reset_pr_indent () =
290 _tab_level_print := 0
291
292 (* old:
293 * let pr s = (print_string s; print_string "\n"; flush stdout)
294 * let pr2 s = (prerr_string s; prerr_string "\n"; flush stderr)
295 *)
296
297 (* ---------------------------------------------------------------------- *)
298
299 (* I can not use the _xxx ref tech that I use for common_extra.ml here because
300 * ocaml don't like the polymorphism of Dumper mixed with refs.
301 *
302 * let (_dump_func : ('a -> string) ref) = ref
303 * (fun x -> failwith "no dump yet, have you included common_extra.cmo?")
304 * let (dump : 'a -> string) = fun x ->
305 * !_dump_func x
306 *
307 * So I have included directly dumper.ml in common.ml. It's more practical
308 * when want to give script that use my common.ml, I just have to give
309 * this file.
310 *)
311
312 (* start of dumper.ml *)
313
314 (* Dump an OCaml value into a printable string.
315 * By Richard W.M. Jones (rich@annexia.org).
316 * dumper.ml 1.2 2005/02/06 12:38:21 rich Exp
317 *)
318 open Printf
319 open Obj
320
321 let rec dump r =
322 if is_int r then
323 string_of_int (magic r : int)
324 else ( (* Block. *)
325 let rec get_fields acc = function
326 | 0 -> acc
327 | n -> let n = n-1 in get_fields (field r n :: acc) n
328 in
329 let rec is_list r =
330 if is_int r then (
331 if (magic r : int) = 0 then true (* [] *)
332 else false
333 ) else (
334 let s = size r and t = tag r in
335 if t = 0 && s = 2 then is_list (field r 1) (* h :: t *)
336 else false
337 )
338 in
339 let rec get_list r =
340 if is_int r then []
341 else let h = field r 0 and t = get_list (field r 1) in h :: t
342 in
343 let opaque name =
344 (* XXX In future, print the address of value 'r'. Not possible in
345 * pure OCaml at the moment.
346 *)
347 "<" ^ name ^ ">"
348 in
349
350 let s = size r and t = tag r in
351
352 (* From the tag, determine the type of block. *)
353 if is_list r then ( (* List. *)
354 let fields = get_list r in
355 "[" ^ String.concat "; " (List.map dump fields) ^ "]"
356 )
357 else if t = 0 then ( (* Tuple, array, record. *)
358 let fields = get_fields [] s in
359 "(" ^ String.concat ", " (List.map dump fields) ^ ")"
360 )
361
362 (* Note that [lazy_tag .. forward_tag] are < no_scan_tag. Not
363 * clear if very large constructed values could have the same
364 * tag. XXX *)
365 else if t = lazy_tag then opaque "lazy"
366 else if t = closure_tag then opaque "closure"
367 else if t = object_tag then ( (* Object. *)
368 let fields = get_fields [] s in
369 let clasz, id, slots =
370 match fields with h::h'::t -> h, h', t | _ -> assert false in
371 (* No information on decoding the class (first field). So just print
372 * out the ID and the slots.
373 *)
374 "Object #" ^ dump id ^
375 " (" ^ String.concat ", " (List.map dump slots) ^ ")"
376 )
377 else if t = infix_tag then opaque "infix"
378 else if t = forward_tag then opaque "forward"
379
380 else if t < no_scan_tag then ( (* Constructed value. *)
381 let fields = get_fields [] s in
382 "Tag" ^ string_of_int t ^
383 " (" ^ String.concat ", " (List.map dump fields) ^ ")"
384 )
385 else if t = string_tag then (
386 "\"" ^ String.escaped (magic r : string) ^ "\""
387 )
388 else if t = double_tag then (
389 string_of_float (magic r : float)
390 )
391 else if t = abstract_tag then opaque "abstract"
392 else if t = custom_tag then opaque "custom"
393 else if t = final_tag then opaque "final"
394 else failwith ("dump: impossible tag (" ^ string_of_int t ^ ")")
395 )
396
397 let dump v = dump (repr v)
398
399 (* end of dumper.ml *)
400
401 (*
402 let (dump : 'a -> string) = fun x ->
403 Dumper.dump x
404 *)
405
406
407 (* ---------------------------------------------------------------------- *)
408 let pr2_gen x = pr2 (dump x)
409
410
411
412 (* ---------------------------------------------------------------------- *)
413
414
415 let _already_printed = Hashtbl.create 101
416 let disable_pr2_once = ref false
417
418 let xxx_once f s =
419 if !disable_pr2_once then pr2 s
420 else
421 if not (Hashtbl.mem _already_printed s)
422 then begin
423 Hashtbl.add _already_printed s true;
424 f ("(ONCE) " ^ s);
425 end
426
427 let pr2_once s = xxx_once pr2 s
428
429 (* ---------------------------------------------------------------------- *)
430 let mk_pr2_wrappers aref =
431 let fpr2 s =
432 if !aref
433 then pr2 s
434 else
435 (* just to the log file *)
436 out_chan_pr2 s
437 in
438 let fpr2_once s =
439 if !aref
440 then pr2_once s
441 else
442 xxx_once out_chan_pr2 s
443 in
444 fpr2, fpr2_once
445
446 (* ---------------------------------------------------------------------- *)
447 (* could also be in File section *)
448
449 let redirect_stdout file f =
450 begin
451 let chan = open_out file in
452 let descr = Unix.descr_of_out_channel chan in
453
454 let saveout = Unix.dup Unix.stdout in
455 Unix.dup2 descr Unix.stdout;
456 flush stdout;
457 let res = f() in
458 flush stdout;
459 Unix.dup2 saveout Unix.stdout;
460 close_out chan;
461 res
462 end
463
464 let redirect_stdout_opt optfile f =
465 match optfile with
466 | None -> f()
467 | Some outfile -> redirect_stdout outfile f
468
469 let redirect_stdout_stderr file f =
470 begin
471 let chan = open_out file in
472 let descr = Unix.descr_of_out_channel chan in
473
474 let saveout = Unix.dup Unix.stdout in
475 let saveerr = Unix.dup Unix.stderr in
476 Unix.dup2 descr Unix.stdout;
477 Unix.dup2 descr Unix.stderr;
478 flush stdout; flush stderr;
479 f();
480 flush stdout; flush stderr;
481 Unix.dup2 saveout Unix.stdout;
482 Unix.dup2 saveerr Unix.stderr;
483 close_out chan;
484 end
485
486 let redirect_stdin file f =
487 begin
488 let chan = open_in file in
489 let descr = Unix.descr_of_in_channel chan in
490
491 let savein = Unix.dup Unix.stdin in
492 Unix.dup2 descr Unix.stdin;
493 f();
494 Unix.dup2 savein Unix.stdin;
495 close_in chan;
496 end
497
498 let redirect_stdin_opt optfile f =
499 match optfile with
500 | None -> f()
501 | Some infile -> redirect_stdin infile f
502
503
504 (* cf end
505 let with_pr2_to_string f =
506 *)
507
508
509 (* ---------------------------------------------------------------------- *)
510
511 include Printf
512
513 (* cf common.mli, fprintf, printf, eprintf, sprintf.
514 * also what is this ?
515 * val bprintf : Buffer.t -> ('a, Buffer.t, unit) format -> 'a
516 * val kprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b
517 *)
518
519 (* ex of printf:
520 * printf "%02d" i
521 * for padding
522 *)
523
524 let spf = sprintf
525
526 (* ---------------------------------------------------------------------- *)
527
528 let _chan = ref stderr
529 let start_log_file () =
530 let filename = (spf "/tmp/debugml%d:%d" (Unix.getuid()) (Unix.getpid())) in
531 pr2 (spf "now using %s for logging" filename);
532 _chan := open_out filename
533
534
535 let dolog s = output_string !_chan (s ^ "\n"); flush !_chan
536
537 let verbose_level = ref 1
538 let log s = if !verbose_level >= 1 then dolog s
539 let log2 s = if !verbose_level >= 2 then dolog s
540 let log3 s = if !verbose_level >= 3 then dolog s
541 let log4 s = if !verbose_level >= 4 then dolog s
542
543 let if_log f = if !verbose_level >= 1 then f()
544 let if_log2 f = if !verbose_level >= 2 then f()
545 let if_log3 f = if !verbose_level >= 3 then f()
546 let if_log4 f = if !verbose_level >= 4 then f()
547
548 (* ---------------------------------------------------------------------- *)
549
550 let pause () = (pr2 "pause: type return"; ignore(read_line ()))
551
552 (* src: from getopt from frish *)
553 let bip () = Printf.printf "\007"; flush stdout
554 let wait () = Unix.sleep 1
555
556 (* was used by fix_caml *)
557 let _trace_var = ref 0
558 let add_var() = incr _trace_var
559 let dec_var() = decr _trace_var
560 let get_var() = !_trace_var
561
562 let (print_n: int -> string -> unit) = fun i s ->
563 do_n i (fun () -> print_string s)
564 let (printerr_n: int -> string -> unit) = fun i s ->
565 do_n i (fun () -> prerr_string s)
566
567 let _debug = ref true
568 let debugon () = _debug := true
569 let debugoff () = _debug := false
570 let debug f = if !_debug then f () else ()
571
572
573
574 (* now in prelude:
575 * let debugger = ref false
576 *)
577
578
579 (*****************************************************************************)
580 (* Profiling *)
581 (*****************************************************************************)
582
583 let get_mem() =
584 command2("grep VmData /proc/" ^ string_of_int (Unix.getpid()) ^ "/status")
585
586 let memory_stat () =
587 let stat = Gc.stat() in
588 let conv_mo x = x * 4 / 1000000 in
589 Printf.sprintf "maximal = %d Mo\n" (conv_mo stat.Gc.top_heap_words) ^
590 Printf.sprintf "current = %d Mo\n" (conv_mo stat.Gc.heap_words) ^
591 Printf.sprintf "lives = %d Mo\n" (conv_mo stat.Gc.live_words)
592 (* Printf.printf "fragments = %d Mo\n" (conv_mo stat.Gc.fragments); *)
593
594 let timenow () =
595 "sys:" ^ (string_of_float (Sys.time ())) ^ " seconds" ^
596 ":real:" ^
597 (let tm = Unix.time () +> Unix.gmtime in
598 tm.Unix.tm_min +> string_of_int ^ " min:" ^
599 tm.Unix.tm_sec +> string_of_int ^ ".00 seconds")
600
601 let _count1 = ref 0
602 let _count2 = ref 0
603 let _count3 = ref 0
604 let _count4 = ref 0
605 let _count5 = ref 0
606
607 let count1 () = incr _count1
608 let count2 () = incr _count2
609 let count3 () = incr _count3
610 let count4 () = incr _count4
611 let count5 () = incr _count5
612
613 let profile_diagnostic_basic () =
614 Printf.sprintf
615 "count1 = %d\ncount2 = %d\ncount3 = %d\ncount4 = %d\ncount5 = %d\n"
616 !_count1 !_count2 !_count3 !_count4 !_count5
617
618
619
620 let time_func f =
621 (* let _ = Timing () in *)
622 let x = f () in
623 (* let _ = Timing () in *)
624 x
625
626 (* ---------------------------------------------------------------------- *)
627
628 type prof = PALL | PNONE | PSOME of string list
629 let profile = ref PNONE
630 let show_trace_profile = ref false
631
632 let check_profile category =
633 match !profile with
634 PALL -> true
635 | PNONE -> false
636 | PSOME l -> List.mem category l
637
638 let _profile_table = ref (Hashtbl.create 100)
639
640 let adjust_profile_entry category difftime =
641 let (xtime, xcount) =
642 (try Hashtbl.find !_profile_table category
643 with Not_found ->
644 let xtime = ref 0.0 in
645 let xcount = ref 0 in
646 Hashtbl.add !_profile_table category (xtime, xcount);
647 (xtime, xcount)
648 ) in
649 xtime := !xtime +. difftime;
650 xcount := !xcount + 1;
651 ()
652
653 let profile_start category = failwith "todo"
654 let profile_end category = failwith "todo"
655
656
657 (* subtil: don't forget to give all argumens to f, otherwise partial app
658 * and will profile nothing.
659 *
660 * todo: try also detect when complexity augment each time, so can
661 * detect the situation for a function gets worse and worse ?
662 *)
663 let profile_code category f =
664 if not (check_profile category)
665 then f()
666 else begin
667 if !show_trace_profile then pr2 (spf "p: %s" category);
668 let t = Unix.gettimeofday () in
669 let res, prefix =
670 try Some (f ()), ""
671 with Timeout -> None, "*"
672 in
673 let category = prefix ^ category in (* add a '*' to indicate timeout func *)
674 let t' = Unix.gettimeofday () in
675
676 adjust_profile_entry category (t' -. t);
677 (match res with
678 | Some res -> res
679 | None -> raise Timeout
680 );
681 end
682
683
684 let _is_in_exclusif = ref (None: string option)
685
686 let profile_code_exclusif category f =
687 if not (check_profile category)
688 then f()
689 else begin
690
691 match !_is_in_exclusif with
692 | Some s ->
693 failwith (spf "profile_code_exclusif: %s but already in %s " category s);
694 | None ->
695 _is_in_exclusif := (Some category);
696 finalize
697 (fun () ->
698 profile_code category f
699 )
700 (fun () ->
701 _is_in_exclusif := None
702 )
703
704 end
705
706 let profile_code_inside_exclusif_ok category f =
707 failwith "Todo"
708
709
710 (* todo: also put % ? also add % to see if coherent numbers *)
711 let profile_diagnostic () =
712 if !profile = PNONE then "" else
713 let xs =
714 Hashtbl.fold (fun k v acc -> (k,v)::acc) !_profile_table []
715 +> List.sort (fun (k1, (t1,n1)) (k2, (t2,n2)) -> compare t2 t1)
716 in
717 with_open_stringbuf (fun (pr,_) ->
718 pr "---------------------";
719 pr "profiling result";
720 pr "---------------------";
721 xs +> List.iter (fun (k, (t,n)) ->
722 pr (sprintf "%-40s : %10.3f sec %10d count" k !t !n)
723 )
724 )
725
726
727
728 let report_if_take_time timethreshold s f =
729 let t = Unix.gettimeofday () in
730 let res = f () in
731 let t' = Unix.gettimeofday () in
732 if (t' -. t > float_of_int timethreshold)
733 then pr2 (sprintf "Note: processing took %7.1fs: %s" (t' -. t) s);
734 res
735
736 let profile_code2 category f =
737 profile_code category (fun () ->
738 if !profile = PALL
739 then pr2 ("starting: " ^ category);
740 let t = Unix.gettimeofday () in
741 let res = f () in
742 let t' = Unix.gettimeofday () in
743 if !profile = PALL
744 then pr2 (spf "ending: %s, %fs" category (t' -. t));
745 res
746 )
747
748
749 (*****************************************************************************)
750 (* Test *)
751 (*****************************************************************************)
752 let example b = assert b
753
754 let _ex1 = example (enum 1 4 = [1;2;3;4])
755
756 let assert_equal a b =
757 if not (a = b)
758 then failwith ("assert_equal: those 2 values are not equal:\n\t" ^
759 (dump a) ^ "\n\t" ^ (dump b) ^ "\n")
760
761 let (example2: string -> bool -> unit) = fun s b ->
762 try assert b with x -> failwith s
763
764 (*-------------------------------------------------------------------*)
765 let _list_bool = ref []
766
767 let (example3: string -> bool -> unit) = fun s b ->
768 _list_bool := (s,b)::(!_list_bool)
769
770 (* could introduce a fun () otherwise the calculus is made at compile time
771 * and this can be long. This would require to redefine test_all.
772 * let (example3: string -> (unit -> bool) -> unit) = fun s func ->
773 * _list_bool := (s,func):: (!_list_bool)
774 *
775 * I would like to do as a func that take 2 terms, and make an = over it
776 * avoid to add this ugly fun (), but pb of type, cant do that :(
777 *)
778
779
780 let (test_all: unit -> unit) = fun () ->
781 List.iter (fun (s, b) ->
782 Printf.printf "%s: %s\n" s (if b then "passed" else "failed")
783 ) !_list_bool
784
785 let (test: string -> unit) = fun s ->
786 Printf.printf "%s: %s\n" s
787 (if (List.assoc s (!_list_bool)) then "passed" else "failed")
788
789 let _ex = example3 "++" ([1;2]++[3;4;5] = [1;2;3;4;5])
790
791 (*-------------------------------------------------------------------*)
792 (* Regression testing *)
793 (*-------------------------------------------------------------------*)
794
795 (* cf end of file. It uses too many other common functions so I
796 * have put the code at the end of this file.
797 *)
798
799
800
801 (* todo? take code from julien signoles in calendar-2.0.2/tests *)
802 (*
803
804 (* Generic functions used in the tests. *)
805
806 val reset : unit -> unit
807 val nb_ok : unit -> int
808 val nb_bug : unit -> int
809 val test : bool -> string -> unit
810 val test_exn : 'a Lazy.t -> string -> unit
811
812
813 let ok_ref = ref 0
814 let ok () = incr ok_ref
815 let nb_ok () = !ok_ref
816
817 let bug_ref = ref 0
818 let bug () = incr bug_ref
819 let nb_bug () = !bug_ref
820
821 let reset () =
822 ok_ref := 0;
823 bug_ref := 0
824
825 let test x s =
826 if x then ok () else begin Printf.printf "%s\n" s; bug () end;;
827
828 let test_exn x s =
829 try
830 ignore (Lazy.force x);
831 Printf.printf "%s\n" s;
832 bug ()
833 with _ ->
834 ok ();;
835 *)
836
837
838 (*****************************************************************************)
839 (* Quickcheck like (sfl) *)
840 (*****************************************************************************)
841
842 (* Better than quickcheck, cos cant do a test_all_prop in haskell cos
843 * prop were functions, whereas here we have not prop_Unix x = ... but
844 * laws "unit" ...
845 *
846 * How to do without overloading ? objet ? can pass a generator as a
847 * parameter, mais lourd, prefer automatic inferring of the
848 * generator? But at the same time quickcheck does not do better cos
849 * we must explictly type the property. So between a
850 * prop_unit:: [Int] -> [Int] -> bool ...
851 * prop_unit x = reverse [x] == [x]
852 * and
853 * let _ = laws "unit" (fun x -> reverse [x] = [x]) (listg intg)
854 * there is no real differences.
855 *
856 * Yes I define typeg generator but quickcheck too, he must define
857 * class instance. I emulate the context Gen a => Gen [a] by making
858 * listg take as a param a type generator. Moreover I have not the pb of
859 * monad. I can do random independently, so my code is more simple
860 * I think than the haskell code of quickcheck.
861 *
862 * update: apparently Jane Street have copied some of my code for their
863 * Ounit_util.ml and quichcheck.ml in their Core library :)
864 *)
865
866 (*---------------------------------------------------------------------------*)
867 (* generators *)
868 (*---------------------------------------------------------------------------*)
869 type 'a gen = unit -> 'a
870
871 let (ig: int gen) = fun () ->
872 Random.int 10
873 let (lg: ('a gen) -> ('a list) gen) = fun gen () ->
874 foldn (fun acc i -> (gen ())::acc) [] (Random.int 10)
875 let (pg: ('a gen) -> ('b gen) -> ('a * 'b) gen) = fun gen1 gen2 () ->
876 (gen1 (), gen2 ())
877 let polyg = ig
878 let (ng: (string gen)) = fun () ->
879 "a" ^ (string_of_int (ig ()))
880
881 let (oneofl: ('a list) -> 'a gen) = fun xs () ->
882 List.nth xs (Random.int (List.length xs))
883 (* let oneofl l = oneof (List.map always l) *)
884
885 let (oneof: (('a gen) list) -> 'a gen) = fun xs ->
886 List.nth xs (Random.int (List.length xs))
887
888 let (always: 'a -> 'a gen) = fun e () -> e
889
890 let (frequency: ((int * ('a gen)) list) -> 'a gen) = fun xs ->
891 let sums = sum_int (List.map fst xs) in
892 let i = Random.int sums in
893 let rec freq_aux acc = function
894 | (x,g)::xs -> if i < acc+x then g else freq_aux (acc+x) xs
895 | _ -> failwith "frequency"
896 in
897 freq_aux 0 xs
898 let frequencyl l = frequency (List.map (fun (i,e) -> (i,always e)) l)
899
900 (*
901 let b = oneof [always true; always false] ()
902 let b = frequency [3, always true; 2, always false] ()
903 *)
904
905 (* cant do this:
906 * let rec (lg: ('a gen) -> ('a list) gen) = fun gen -> oneofl [[]; lg gen ()]
907 * nor
908 * let rec (lg: ('a gen) -> ('a list) gen) = fun gen -> oneof [always []; lg gen]
909 *
910 * because caml is not as lazy as haskell :( fix the pb by introducing a size
911 * limit. take the bounds/size as parameter. morover this is needed for
912 * more complex type.
913 *
914 * how make a bintreeg ?? we need recursion
915 *
916 * let rec (bintreeg: ('a gen) -> ('a bintree) gen) = fun gen () ->
917 * let rec aux n =
918 * if n = 0 then (Leaf (gen ()))
919 * else frequencyl [1, Leaf (gen ()); 4, Branch ((aux (n / 2)), aux (n / 2))]
920 * ()
921 * in aux 20
922 *
923 *)
924
925
926 (*---------------------------------------------------------------------------*)
927 (* property *)
928 (*---------------------------------------------------------------------------*)
929
930 (* todo: a test_all_laws, better syntax (done already a little with ig in
931 * place of intg. En cas d'erreur, print the arg that not respect
932 *
933 * todo: with monitoring, as in haskell, laws = laws2, no need for 2 func,
934 * but hard i found
935 *
936 * todo classify, collect, forall
937 *)
938
939
940 (* return None when good, and Just the_problematic_case when bad *)
941 let (laws: string -> ('a -> bool) -> ('a gen) -> 'a option) = fun s func gen ->
942 let res = foldn (fun acc i -> let n = gen() in (n, func n)::acc) [] 1000 in
943 let res = List.filter (fun (x,b) -> not b) res in
944 if res = [] then None else Some (fst (List.hd res))
945
946 let rec (statistic_number: ('a list) -> (int * 'a) list) = function
947 | [] -> []
948 | x::xs -> let (splitg, splitd) = List.partition (fun y -> y = x) xs in
949 (1+(List.length splitg), x)::(statistic_number splitd)
950
951 (* in pourcentage *)
952 let (statistic: ('a list) -> (int * 'a) list) = fun xs ->
953 let stat_num = statistic_number xs in
954 let totals = sum_int (List.map fst stat_num) in
955 List.map (fun (i, v) -> ((i * 100) / totals), v) stat_num
956
957 let (laws2:
958 string -> ('a -> (bool * 'b)) -> ('a gen) ->
959 ('a option * ((int * 'b) list ))) =
960 fun s func gen ->
961 let res = foldn (fun acc i -> let n = gen() in (n, func n)::acc) [] 1000 in
962 let stat = statistic (List.map (fun (x,(b,v)) -> v) res) in
963 let res = List.filter (fun (x,(b,v)) -> not b) res in
964 if res = [] then (None, stat) else (Some (fst (List.hd res)), stat)
965
966
967 (*
968 let b = laws "unit" (fun x -> reverse [x] = [x] )ig
969 let b = laws "app " (fun (xs,ys) -> reverse (xs++ys) = reverse ys++reverse xs)(pg (lg ig)(lg ig))
970 let b = laws "rev " (fun xs -> reverse (reverse xs) = xs )(lg ig)
971 let b = laws "appb" (fun (xs,ys) -> reverse (xs++ys) = reverse xs++reverse ys)(pg (lg ig)(lg ig))
972 let b = laws "max" (fun (x,y) -> x <= y ==> (max x y = y) )(pg ig ig)
973
974 let b = laws2 "max" (fun (x,y) -> ((x <= y ==> (max x y = y)), x <= y))(pg ig ig)
975 *)
976
977
978 (* todo, do with coarbitrary ?? idea is that given a 'a, generate a 'b
979 * depending of 'a and gen 'b, that is modify gen 'b, what is important is
980 * that each time given the same 'a, we must get the same 'b !!!
981 *)
982
983 (*
984 let (fg: ('a gen) -> ('b gen) -> ('a -> 'b) gen) = fun gen1 gen2 () ->
985 let b = laws "funs" (fun (f,g,h) -> x <= y ==> (max x y = y) )(pg ig ig)
986 *)
987
988 (*
989 let one_of xs = List.nth xs (Random.int (List.length xs))
990 let take_one xs =
991 if empty xs then failwith "Take_one: empty list"
992 else
993 let i = Random.int (List.length xs) in
994 List.nth xs i, filter_index (fun j _ -> i <> j) xs
995 *)
996
997 (*****************************************************************************)
998 (* Persistence *)
999 (*****************************************************************************)
1000
1001 let get_value filename =
1002 let chan = open_in filename in
1003 let x = input_value chan in (* <=> Marshal.from_channel *)
1004 (close_in chan; x)
1005
1006 let write_value valu filename =
1007 let chan = open_out filename in
1008 (output_value chan valu; (* <=> Marshal.to_channel *)
1009 (* Marshal.to_channel chan valu [Marshal.Closures]; *)
1010 close_out chan)
1011
1012 let write_back func filename =
1013 write_value (func (get_value filename)) filename
1014
1015
1016 let read_value f = get_value f
1017
1018
1019 let marshal__to_string2 v flags =
1020 Marshal.to_string v flags
1021 let marshal__to_string a b =
1022 profile_code "Marshalling" (fun () -> marshal__to_string2 a b)
1023
1024 let marshal__from_string2 v flags =
1025 Marshal.from_string v flags
1026 let marshal__from_string a b =
1027 profile_code "Marshalling" (fun () -> marshal__from_string2 a b)
1028
1029
1030
1031 (*****************************************************************************)
1032 (* Counter *)
1033 (*****************************************************************************)
1034 let _counter = ref 0
1035 let counter () = (_counter := !_counter +1; !_counter)
1036
1037 let _counter2 = ref 0
1038 let counter2 () = (_counter2 := !_counter2 +1; !_counter2)
1039
1040 let _counter3 = ref 0
1041 let counter3 () = (_counter3 := !_counter3 +1; !_counter3)
1042
1043 type timestamp = int
1044
1045 (*****************************************************************************)
1046 (* String_of *)
1047 (*****************************************************************************)
1048 (* To work with the macro system autogenerated string_of and print_ function
1049 (kind of deriving a la haskell) *)
1050
1051 (* int, bool, char, float, ref ?, string *)
1052
1053 let string_of_string s = "\"" ^ s "\""
1054
1055 let string_of_list f xs =
1056 "[" ^ (xs +> List.map f +> String.concat ";" ) ^ "]"
1057
1058 let string_of_unit () = "()"
1059
1060 let string_of_array f xs =
1061 "[|" ^ (xs +> Array.to_list +> List.map f +> String.concat ";") ^ "|]"
1062
1063 let string_of_option f = function
1064 | None -> "None "
1065 | Some x -> "Some " ^ (f x)
1066
1067
1068
1069
1070 let print_bool x = print_string (if x then "True" else "False")
1071
1072 let print_option pr = function
1073 | None -> print_string "None"
1074 | Some x -> print_string "Some ("; pr x; print_string ")"
1075
1076 let print_list pr xs =
1077 begin
1078 print_string "[";
1079 List.iter (fun x -> pr x; print_string ",") xs;
1080 print_string "]";
1081 end
1082
1083 (* specialised
1084 let (string_of_list: char list -> string) =
1085 List.fold_left (fun acc x -> acc^(Char.escaped x)) ""
1086 *)
1087
1088
1089 let rec print_between between fn = function
1090 | [] -> ()
1091 | [x] -> fn x
1092 | x::xs -> fn x; between(); print_between between fn xs
1093
1094
1095
1096
1097 let adjust_pp_with_indent f =
1098 Format.open_box !_tab_level_print;
1099 (*Format.force_newline();*)
1100 f();
1101 Format.close_box ();
1102 Format.print_newline()
1103
1104 let adjust_pp_with_indent_and_header s f =
1105 Format.open_box (!_tab_level_print + String.length s);
1106 do_n !_tab_level_print (fun () -> Format.print_string " ");
1107 Format.print_string s;
1108 f();
1109 Format.close_box ();
1110 Format.print_newline()
1111
1112
1113
1114 let pp_do_in_box f = Format.open_box 1; f(); Format.close_box ()
1115 let pp_do_in_zero_box f = Format.open_box 0; f(); Format.close_box ()
1116
1117 let pp_f_in_box f =
1118 Format.open_box 1;
1119 let res = f() in
1120 Format.close_box ();
1121 res
1122
1123 let pp s = Format.print_string s
1124
1125 let mk_str_func_of_assoc_conv xs =
1126 let swap (x,y) = (y,x) in
1127
1128 (fun s ->
1129 let xs' = List.map swap xs in
1130 List.assoc s xs'
1131 ),
1132 (fun a ->
1133 List.assoc a xs
1134 )
1135
1136
1137
1138 (* julia: convert something printed using format to print into a string *)
1139 (* now at bottom of file
1140 let format_to_string f =
1141 ...
1142 *)
1143
1144
1145
1146 (*****************************************************************************)
1147 (* Macro *)
1148 (*****************************************************************************)
1149
1150 (* put your macro in macro.ml4, and you can test it interactivly as in lisp *)
1151 let macro_expand s =
1152 let c = open_out "/tmp/ttttt.ml" in
1153 begin
1154 output_string c s; close_out c;
1155 command2 ("ocamlc -c -pp 'camlp4o pa_extend.cmo q_MLast.cmo -impl' " ^
1156 "-I +camlp4 -impl macro.ml4");
1157 command2 "camlp4o ./macro.cmo pr_o.cmo /tmp/ttttt.ml";
1158 command2 "rm -f /tmp/ttttt.ml";
1159 end
1160
1161 (*
1162 let t = macro_expand "{ x + y | (x,y) <- [(1,1);(2,2);(3,3)] and x>2 and y<3}"
1163 let x = { x + y | (x,y) <- [(1,1);(2,2);(3,3)] and x > 2 and y < 3}
1164 let t = macro_expand "{1 .. 10}"
1165 let x = {1 .. 10} +> List.map (fun i -> i)
1166 let t = macro_expand "[1;2] to append to [2;4]"
1167 let t = macro_expand "{x = 2; x = 3}"
1168
1169 let t = macro_expand "type 'a bintree = Leaf of 'a | Branch of ('a bintree * 'a bintree)"
1170 *)
1171
1172
1173
1174 (*****************************************************************************)
1175 (* Composition/Control *)
1176 (*****************************************************************************)
1177
1178 (* I like the obj.func object notation. In OCaml cant use '.' so I use +>
1179 *
1180 * update: it seems that F# agrees with me :) but they use |>
1181 *)
1182
1183 (* now in prelude:
1184 * let (+>) o f = f o
1185 *)
1186 let (+!>) refo f = refo := f !refo
1187 (* alternatives:
1188 * let ((@): 'a -> ('a -> 'b) -> 'b) = fun a b -> b a
1189 * let o f g x = f (g x)
1190 *)
1191
1192 let ($) f g x = g (f x)
1193 let compose f g x = f (g x)
1194 (* dont work :( let ( ° ) f g x = f(g(x)) *)
1195
1196 (* trick to have something similar to the 1 `max` 4 haskell infix notation.
1197 by Keisuke Nakano on the caml mailing list.
1198 > let ( /* ) x y = y x
1199 > and ( */ ) x y = x y
1200 or
1201 let ( <| ) x y = y x
1202 and ( |> ) x y = x y
1203
1204 > Then we can make an infix operator <| f |> for a binary function f.
1205 *)
1206
1207 let flip f = fun a b -> f b a
1208
1209 let curry f x y = f (x,y)
1210 let uncurry f (a,b) = f a b
1211
1212 let id = fun x -> x
1213
1214 let do_nothing () = ()
1215
1216 let rec applyn n f o = if n = 0 then o else applyn (n-1) f (f o)
1217
1218 let forever f =
1219 while true do
1220 f();
1221 done
1222
1223
1224 class ['a] shared_variable_hook (x:'a) =
1225 object(self)
1226 val mutable data = x
1227 val mutable registered = []
1228 method set x =
1229 begin
1230 data <- x;
1231 pr "refresh registered";
1232 registered +> List.iter (fun f -> f());
1233 end
1234 method get = data
1235 method modify f = self#set (f self#get)
1236 method register f =
1237 registered <- f :: registered
1238 end
1239
1240 (* src: from aop project. was called ptFix *)
1241 let rec fixpoint trans elem =
1242 let image = trans elem in
1243 if (image = elem)
1244 then elem (* point fixe *)
1245 else fixpoint trans image
1246
1247 (* le point fixe pour les objets. was called ptFixForObjetct *)
1248 let rec fixpoint_for_object trans elem =
1249 let image = trans elem in
1250 if (image#equal elem) then elem (* point fixe *)
1251 else fixpoint_for_object trans image
1252
1253 let (add_hook: ('a -> ('a -> 'b) -> 'b) ref -> ('a -> ('a -> 'b) -> 'b) -> unit) =
1254 fun var f ->
1255 let oldvar = !var in
1256 var := fun arg k -> f arg (fun x -> oldvar x k)
1257
1258 let (add_hook_action: ('a -> unit) -> ('a -> unit) list ref -> unit) =
1259 fun f hooks ->
1260 push2 f hooks
1261
1262 let (run_hooks_action: 'a -> ('a -> unit) list ref -> unit) =
1263 fun obj hooks ->
1264 !hooks +> List.iter (fun f -> try f obj with _ -> ())
1265
1266
1267 type 'a mylazy = (unit -> 'a)
1268
1269 (* a la emacs *)
1270 let save_excursion reference f =
1271 let old = !reference in
1272 let res = try f() with e -> reference := old; raise e in
1273 reference := old;
1274 res
1275
1276 let save_excursion_and_disable reference f =
1277 save_excursion reference (fun () ->
1278 reference := false;
1279 f ()
1280 )
1281
1282 let save_excursion_and_enable reference f =
1283 save_excursion reference (fun () ->
1284 reference := true;
1285 f ()
1286 )
1287
1288
1289 let memoized h k f =
1290 try Hashtbl.find h k
1291 with Not_found ->
1292 let v = f () in
1293 begin
1294 Hashtbl.add h k v;
1295 v
1296 end
1297
1298 let cache_in_ref myref f =
1299 match !myref with
1300 | Some e -> e
1301 | None ->
1302 let e = f () in
1303 myref := Some e;
1304 e
1305
1306 let once f =
1307 let already = ref false in
1308 (fun x ->
1309 if not !already
1310 then begin already := true; f x end
1311 )
1312
1313 (* cache_file, cf below *)
1314
1315 let before_leaving f x =
1316 f x;
1317 x
1318
1319 (* finalize, cf prelude *)
1320
1321
1322 (* cheat *)
1323 let rec y f = fun x -> f (y f) x
1324
1325 (*****************************************************************************)
1326 (* Concurrency *)
1327 (*****************************************************************************)
1328
1329 (* from http://en.wikipedia.org/wiki/File_locking
1330 *
1331 * "When using file locks, care must be taken to ensure that operations
1332 * are atomic. When creating the lock, the process must verify that it
1333 * does not exist and then create it, but without allowing another
1334 * process the opportunity to create it in the meantime. Various
1335 * schemes are used to implement this, such as taking advantage of
1336 * system calls designed for this purpose (but such system calls are
1337 * not usually available to shell scripts) or by creating the lock file
1338 * under a temporary name and then attempting to move it into place."
1339 *
1340 * => can't use 'if(not (file_exist xxx)) then create_file xxx' because
1341 * file_exist/create_file are not in atomic section (classic problem).
1342 *
1343 * from man open:
1344 *
1345 * "O_EXCL When used with O_CREAT, if the file already exists it
1346 * is an error and the open() will fail. In this context, a
1347 * symbolic link exists, regardless of where it points to.
1348 * O_EXCL is broken on NFS file systems; programs which
1349 * rely on it for performing locking tasks will contain a
1350 * race condition. The solution for performing atomic file
1351 * locking using a lockfile is to create a unique file on
1352 * the same file system (e.g., incorporating host- name and
1353 * pid), use link(2) to make a link to the lockfile. If
1354 * link(2) returns 0, the lock is successful. Otherwise,
1355 * use stat(2) on the unique file to check if its link
1356 * count has increased to 2, in which case the lock is also
1357 * successful."
1358
1359 *)
1360
1361 exception FileAlreadyLocked
1362
1363 (* Racy if lock file on NFS!!! But still racy with recent Linux ? *)
1364 let acquire_file_lock filename =
1365 pr2 ("Locking file: " ^ filename);
1366 try
1367 let _fd = Unix.openfile filename [Unix.O_CREAT;Unix.O_EXCL] 0o777 in
1368 ()
1369 with Unix.Unix_error (e, fm, argm) ->
1370 pr2 (spf "exn Unix_error: %s %s %s\n" (Unix.error_message e) fm argm);
1371 raise FileAlreadyLocked
1372
1373
1374 let release_file_lock filename =
1375 pr2 ("Releasing file: " ^ filename);
1376 Unix.unlink filename;
1377 ()
1378
1379
1380
1381 (*****************************************************************************)
1382 (* Error managment *)
1383 (*****************************************************************************)
1384
1385 exception Todo
1386 exception Impossible
1387 exception Here
1388 exception ReturnExn
1389
1390 exception Multi_found (* to be consistent with Not_found *)
1391
1392 exception WrongFormat of string
1393
1394 (* old: let _TODO () = failwith "TODO", now via fix_caml with raise Todo *)
1395
1396 let internal_error s = failwith ("internal error: "^s)
1397 let error_cant_have x = internal_error ("cant have this case: " ^(dump x))
1398 let myassert cond = if cond then () else failwith "assert error"
1399
1400
1401
1402 (* before warning I was forced to do stuff like this:
1403 *
1404 * let (fixed_int_to_posmap: fixed_int -> posmap) = fun fixed ->
1405 * let v = ((fix_to_i fixed) / (power 2 16)) in
1406 * let _ = Printf.printf "coord xy = %d\n" v in
1407 * v
1408 *
1409 * The need for printf make me force to name stuff :(
1410 * How avoid ? use 'it' special keyword ?
1411 * In fact dont have to name it, use +> (fun v -> ...) so when want
1412 * erase debug just have to erase one line.
1413 *)
1414 let warning s v = (pr2 ("Warning: " ^ s ^ "; value = " ^ (dump v)); v)
1415
1416
1417
1418
1419 let exn_to_s exn =
1420 Printexc.to_string exn
1421
1422 (* alias *)
1423 let string_of_exn exn = exn_to_s exn
1424
1425
1426 (* want or of merd, but cant cos cant put die ... in b (strict call) *)
1427 let (|||) a b = try a with _ -> b
1428
1429 (* emacs/lisp inspiration, (vouillon does that too in unison I think) *)
1430
1431 (* now in Prelude:
1432 * let unwind_protect f cleanup = ...
1433 * let finalize f cleanup = ...
1434 *)
1435
1436 type error = Error of string
1437
1438 (* sometimes to get help from ocaml compiler to tell me places where
1439 * I should update, we sometimes need to change some type from pair
1440 * to triple, hence this kind of fake type.
1441 *)
1442 type evotype = unit
1443 let evoval = ()
1444
1445 (*****************************************************************************)
1446 (* Environment *)
1447 (*****************************************************************************)
1448
1449 let check_stack = ref true
1450 let check_stack_size limit =
1451 if !check_stack then begin
1452 pr2 "checking stack size (do ulimit -s 50000 if problem)";
1453 let rec aux i =
1454 if i = limit
1455 then 0
1456 else 1 + aux (i + 1)
1457 in
1458 assert(aux 0 = limit);
1459 ()
1460 end
1461
1462 let test_check_stack_size limit =
1463 (* bytecode: 100000000 *)
1464 (* native: 10000000 *)
1465 check_stack_size (int_of_string limit)
1466
1467
1468 (* only relevant in bytecode, in native the stacklimit is the os stacklimit
1469 * (adjustable by ulimit -s)
1470 *)
1471 let _init_gc_stack =
1472 Gc.set {(Gc.get ()) with Gc.stack_limit = 100 * 1024 * 1024}
1473
1474
1475
1476
1477 (* if process a big set of files then dont want get overflow in the middle
1478 * so for this we are ready to spend some extra time at the beginning that
1479 * could save far more later.
1480 *)
1481 let check_stack_nbfiles nbfiles =
1482 if nbfiles > 200
1483 then check_stack_size 10000000
1484
1485 (*****************************************************************************)
1486 (* Arguments/options and command line (cocci and acomment) *)
1487 (*****************************************************************************)
1488
1489 (*
1490 * Why define wrappers ? Arg not good enough ? Well the Arg.Rest is not that
1491 * good and I need a way sometimes to get a list of argument.
1492 *
1493 * I could define maybe a new Arg.spec such as
1494 * | String_list of (string list -> unit), but the action may require
1495 * some flags to be set, so better to process this after all flags have
1496 * been set by parse_options. So have to split. Otherwise it would impose
1497 * an order of the options such as
1498 * -verbose_parsing -parse_c file1 file2. and I really like to use bash
1499 * history and add just at the end of my command a -profile for instance.
1500 *
1501 *
1502 * Why want a -action arg1 arg2 arg3 ? (which in turn requires this
1503 * convulated scheme ...) Why not use Arg.String action such as
1504 * "-parse_c", Arg.String (fun file -> ...) ?
1505 * I want something that looks like ocaml function but at the UNIX
1506 * command line level. So natural to have this scheme instead of
1507 * -taxo_file arg2 -sample_file arg3 -parse_c arg1.
1508 *
1509 *
1510 * Why not use the toplevel ?
1511 * - because to debug, ocamldebug is far superior to the toplevel
1512 * (can go back, can go directly to a specific point, etc).
1513 * I want a kind of testing at cmdline level.
1514 * - Also I don't have file completion when in the ocaml toplevel.
1515 * I have to type "/path/to/xxx" without help.
1516 *
1517 *
1518 * Why having variable flags ? Why use 'if !verbose_parsing then ...' ?
1519 * why not use strings and do stuff like the following
1520 * 'if (get_config "verbose_parsing") then ...'
1521 * Because I want to make the interface for flags easier for the code
1522 * that use it. The programmer should not be bothered wether this
1523 * flag is set via args cmd line or a config file, so I want to make it
1524 * as simple as possible, just use a global plain caml ref variable.
1525 *
1526 * Same spirit a little for the action. Instead of having function such as
1527 * test_parsing_c, I could do it only via string. But I still prefer
1528 * to have plain caml test functions. Also it makes it easier to call
1529 * those functions from a toplevel for people who prefer the toplevel.
1530 *
1531 *
1532 * So have flag_spec and action_spec. And in flag have debug_xxx flags,
1533 * verbose_xxx flags and other flags.
1534 *
1535 * I would like to not have to separate the -xxx actions spec from the
1536 * corresponding actions, but those actions may need more than one argument
1537 * and so have to wait for parse_options, which in turn need the options
1538 * spec, so circle.
1539 *
1540 * Also I dont want to mix code with data structures, so it's better that the
1541 * options variable contain just a few stuff and have no side effects except
1542 * setting global variables.
1543 *
1544 * Why not have a global variable such as Common.actions that
1545 * other modules modify ? No, I prefer to do less stuff behind programmer's
1546 * back so better to let the user merge the different options at call
1547 * site, but at least make it easier by providing shortcut for set of options.
1548 *
1549 *
1550 *
1551 *
1552 * todo? isn't unison or scott-mcpeak-lib-in-cil handles that kind of
1553 * stuff better ? That is the need to localize command line argument
1554 * while still being able to gathering them. Same for logging.
1555 * Similiar to the type prof = PALL | PNONE | PSOME of string list.
1556 * Same spirit of fine grain config in log4j ?
1557 *
1558 * todo? how mercurial/cvs/git manage command line options ? because they
1559 * all have a kind of DSL around arguments with some common options,
1560 * specific options, conventions, etc.
1561 *
1562 *
1563 * todo? generate the corresponding noxxx options ?
1564 * todo? generate list of options and show their value ?
1565 *
1566 * todo? make it possible to set this value via a config file ?
1567 *
1568 *
1569 *)
1570
1571 type arg_spec_full = Arg.key * Arg.spec * Arg.doc
1572 type cmdline_options = arg_spec_full list
1573
1574 (* the format is a list of triples:
1575 * (title of section * (optional) explanation of sections * options)
1576 *)
1577 type options_with_title = string * string * arg_spec_full list
1578 type cmdline_sections = options_with_title list
1579
1580
1581 (* ---------------------------------------------------------------------- *)
1582
1583 (* now I use argv as I like at the call sites to show that
1584 * this function internally use argv.
1585 *)
1586 let parse_options options usage_msg argv =
1587 let args = ref [] in
1588 (try
1589 Arg.parse_argv argv options (fun file -> args := file::!args) usage_msg;
1590 args := List.rev !args;
1591 !args
1592 with
1593 | Arg.Bad msg -> eprintf "%s" msg; exit 2
1594 | Arg.Help msg -> printf "%s" msg; exit 0
1595 )
1596
1597
1598
1599
1600 let usage usage_msg options =
1601 Arg.usage (Arg.align options) usage_msg
1602
1603
1604 (* for coccinelle *)
1605
1606 (* If you don't want the -help and --help that are appended by Arg.align *)
1607 let arg_align2 xs =
1608 Arg.align xs +> List.rev +> drop 2 +> List.rev
1609
1610
1611 let short_usage usage_msg ~short_opt =
1612 usage usage_msg short_opt
1613
1614 let long_usage usage_msg ~short_opt ~long_opt =
1615 pr usage_msg;
1616 pr "";
1617 let all_options_with_title =
1618 (("main options", "", short_opt)::long_opt) in
1619 all_options_with_title +> List.iter
1620 (fun (title, explanations, xs) ->
1621 pr title;
1622 pr_xxxxxxxxxxxxxxxxx();
1623 if explanations <> ""
1624 then begin pr explanations; pr "" end;
1625 arg_align2 xs +> List.iter (fun (key,action,s) ->
1626 pr (" " ^ key ^ s)
1627 );
1628 pr "";
1629 );
1630 ()
1631
1632
1633 (* copy paste of Arg.parse. Don't want the default -help msg *)
1634 let arg_parse2 l msg short_usage_fun =
1635 let args = ref [] in
1636 let f = (fun file -> args := file::!args) in
1637 let l = Arg.align l in
1638 (try begin
1639 Arg.parse_argv Sys.argv l f msg;
1640 args := List.rev !args;
1641 !args
1642 end
1643 with
1644 | Arg.Bad msg -> (* eprintf "%s" msg; exit 2; *)
1645 let xs = lines msg in
1646 (* take only head, it's where the error msg is *)
1647 pr2 (List.hd xs);
1648 short_usage_fun();
1649 raise (UnixExit (2))
1650 | Arg.Help msg -> (* printf "%s" msg; exit 0; *)
1651 raise Impossible (* -help is specified in speclist *)
1652 )
1653
1654
1655 (* ---------------------------------------------------------------------- *)
1656 (* kind of unit testing framework, or toplevel like functionnality
1657 * at shell command line. I realize than in fact It follows a current trend
1658 * to have a main cmdline program where can then select different actions,
1659 * as in cvs/hg/git where do hg <action> <arguments>, and the shell even
1660 * use a curried syntax :)
1661 *
1662 *
1663 * Not-perfect-but-basic-feels-right: an action
1664 * spec looks like this:
1665 *
1666 * let actions () = [
1667 * "-parse_taxo", " <file>",
1668 * Common.mk_action_1_arg test_parse_taxo;
1669 * ...
1670 * ]
1671 *
1672 * Not-perfect-but-basic-feels-right because for such functionality we
1673 * need a way to transform a string into a caml function and pass arguments
1674 * and the preceding design does exactly that, even if then the
1675 * functions that use this design are not so convenient to use (there
1676 * are 2 places where we need to pass those data, in the options and in the
1677 * main dispatcher).
1678 *
1679 * Also it's not too much intrusive. Still have an
1680 * action ref variable in the main.ml and can still use the previous
1681 * simpler way to do where the match args with in main.ml do the
1682 * dispatch.
1683 *
1684 * Use like this at option place:
1685 * (Common.options_of_actions actionref (Test_parsing_c.actions())) ++
1686 * Use like this at dispatch action place:
1687 * | xs when List.mem !action (Common.action_list all_actions) ->
1688 * Common.do_action !action xs all_actions
1689 *
1690 *)
1691
1692 type flag_spec = Arg.key * Arg.spec * Arg.doc
1693 type action_spec = Arg.key * Arg.doc * action_func
1694 and action_func = (string list -> unit)
1695
1696 type cmdline_actions = action_spec list
1697 exception WrongNumberOfArguments
1698
1699 let options_of_actions action_ref actions =
1700 actions +> List.map (fun (key, doc, _func) ->
1701 (key, (Arg.Unit (fun () -> action_ref := key)), doc)
1702 )
1703
1704 let (action_list: cmdline_actions -> Arg.key list) = fun xs ->
1705 List.map (fun (a,b,c) -> a) xs
1706
1707 let (do_action: Arg.key -> string list (* args *) -> cmdline_actions -> unit) =
1708 fun key args xs ->
1709 let assoc = xs +> List.map (fun (a,b,c) -> (a,c)) in
1710 let action_func = List.assoc key assoc in
1711 action_func args
1712
1713
1714 (* todo? if have a function with default argument ? would like a
1715 * mk_action_0_or_1_arg ?
1716 *)
1717
1718 let mk_action_0_arg f =
1719 (function
1720 | [] -> f ()
1721 | _ -> raise WrongNumberOfArguments
1722 )
1723
1724 let mk_action_1_arg f =
1725 (function
1726 | [file] -> f file
1727 | _ -> raise WrongNumberOfArguments
1728 )
1729
1730 let mk_action_2_arg f =
1731 (function
1732 | [file1;file2] -> f file1 file2
1733 | _ -> raise WrongNumberOfArguments
1734 )
1735
1736 let mk_action_3_arg f =
1737 (function
1738 | [file1;file2;file3] -> f file1 file2 file3
1739 | _ -> raise WrongNumberOfArguments
1740 )
1741
1742 let mk_action_n_arg f = f
1743
1744
1745 (*****************************************************************************)
1746 (* Equality *)
1747 (*****************************************************************************)
1748
1749 (* Using the generic (=) is tempting, but it backfires, so better avoid it *)
1750
1751 (* To infer all the code that use an equal, and that should be
1752 * transformed, is not that easy, because (=) is used by many
1753 * functions, such as List.find, List.mem, and so on. So the strategy
1754 * is to turn what you were previously using into a function, because
1755 * (=) return an exception when applied to a function. Then you simply
1756 * use ocamldebug to infer where the code has to be transformed.
1757 *)
1758
1759 (* src: caml mailing list ? *)
1760 let (=|=) : int -> int -> bool = (=)
1761 let (=<=) : char -> char -> bool = (=)
1762 let (=$=) : string -> string -> bool = (=)
1763 let (=:=) : bool -> bool -> bool = (=)
1764
1765 (* the evil generic (=). I define another symbol to more easily detect
1766 * it, cos the '=' sign is syntaxically overloaded in caml. It is also
1767 * used to define function.
1768 *)
1769 let (=*=) = (=)
1770
1771 (* if really want to forbid to use '='
1772 let (=) = (=|=)
1773 *)
1774 let (=) () () = false
1775
1776
1777
1778
1779
1780
1781
1782
1783 (*###########################################################################*)
1784 (* And now basic types *)
1785 (*###########################################################################*)
1786
1787
1788
1789 (*****************************************************************************)
1790 (* Bool *)
1791 (*****************************************************************************)
1792 let (==>) b1 b2 = if b1 then b2 else true (* could use too => *)
1793
1794 (* superseded by another <=> below
1795 let (<=>) a b = if a =*= b then 0 else if a < b then -1 else 1
1796 *)
1797
1798 let xor a b = not (a =*= b)
1799
1800
1801 (*****************************************************************************)
1802 (* Char *)
1803 (*****************************************************************************)
1804
1805 let string_of_char c = String.make 1 c
1806
1807 let is_single = String.contains ",;()[]{}_`"
1808 let is_symbol = String.contains "!@#$%&*+./<=>?\\^|:-~"
1809 let is_space = String.contains "\n\t "
1810 let cbetween min max c =
1811 (int_of_char c) <= (int_of_char max) &&
1812 (int_of_char c) >= (int_of_char min)
1813 let is_upper = cbetween 'A' 'Z'
1814 let is_lower = cbetween 'a' 'z'
1815 let is_alpha c = is_upper c || is_lower c
1816 let is_digit = cbetween '0' '9'
1817
1818 let string_of_chars cs = cs +> List.map (String.make 1) +> String.concat ""
1819
1820
1821
1822 (*****************************************************************************)
1823 (* Num *)
1824 (*****************************************************************************)
1825
1826 (* since 3.08, div by 0 raise Div_by_rezo, and not anymore a hardware trap :)*)
1827 let (/!) x y = if y =|= 0 then (log "common.ml: div by 0"; 0) else x / y
1828
1829 (* now in prelude
1830 * let rec (do_n: int -> (unit -> unit) -> unit) = fun i f ->
1831 * if i = 0 then () else (f(); do_n (i-1) f)
1832 *)
1833
1834 (* now in prelude
1835 * let rec (foldn: ('a -> int -> 'a) -> 'a -> int -> 'a) = fun f acc i ->
1836 * if i = 0 then acc else foldn f (f acc i) (i-1)
1837 *)
1838
1839 let sum_float = List.fold_left (+.) 0.0
1840 let sum_int = List.fold_left (+) 0
1841
1842 let pi = 3.14159265358979323846
1843 let pi2 = pi /. 2.0
1844 let pi4 = pi /. 4.0
1845
1846 (* 180 = pi *)
1847 let (deg_to_rad: float -> float) = fun deg ->
1848 (deg *. pi) /. 180.0
1849
1850 let clampf = function
1851 | n when n < 0.0 -> 0.0
1852 | n when n > 1.0 -> 1.0
1853 | n -> n
1854
1855 let square x = x *. x
1856
1857 let rec power x n = if n =|= 0 then 1 else x * power x (n-1)
1858
1859 let between i min max = i > min && i < max
1860
1861 let (between_strict: int -> int -> int -> bool) = fun a b c ->
1862 a < b && b < c
1863
1864
1865 let bitrange x p = let v = power 2 p in between x (-v) v
1866
1867 (* descendant *)
1868 let (prime1: int -> int option) = fun x ->
1869 let rec prime1_aux n =
1870 if n =|= 1 then None
1871 else
1872 if (x / n) * n =|= x then Some n else prime1_aux (n-1)
1873 in if x =|= 1 then None else if x < 0 then failwith "negative" else prime1_aux (x-1)
1874
1875 (* montant, better *)
1876 let (prime: int -> int option) = fun x ->
1877 let rec prime_aux n =
1878 if n =|= x then None
1879 else
1880 if (x / n) * n =|= x then Some n else prime_aux (n+1)
1881 in if x =|= 1 then None else if x < 0 then failwith "negative" else prime_aux 2
1882
1883 let sum xs = List.fold_left (+) 0 xs
1884 let product = List.fold_left ( * ) 1
1885
1886
1887 let decompose x =
1888 let rec decompose x =
1889 if x =|= 1 then []
1890 else
1891 (match prime x with
1892 | None -> [x]
1893 | Some n -> n::decompose (x / n)
1894 )
1895 in assert (product (decompose x) =|= x); decompose x
1896
1897 let mysquare x = x * x
1898 let sqr a = a *. a
1899
1900
1901 type compare = Equal | Inf | Sup
1902 let (<=>) a b = if a =*= b then Equal else if a < b then Inf else Sup
1903 let (<==>) a b = if a =*= b then 0 else if a < b then -1 else 1
1904
1905 type uint = int
1906
1907
1908 let int_of_stringchar s =
1909 fold_left_with_index (fun acc e i -> acc + (Char.code e*(power 8 i))) 0 (List.rev (list_of_string s))
1910
1911 let int_of_base s base =
1912 fold_left_with_index (fun acc e i ->
1913 let j = Char.code e - Char.code '0' in
1914 if j >= base then failwith "not in good base"
1915 else acc + (j*(power base i))
1916 )
1917 0 (List.rev (list_of_string s))
1918
1919 let int_of_stringbits s = int_of_base s 2
1920 let _ = example (int_of_stringbits "1011" =|= 1*8 + 1*2 + 1*1)
1921
1922 let int_of_octal s = int_of_base s 8
1923 let _ = example (int_of_octal "017" =|= 15)
1924
1925 (* let int_of_hex s = int_of_base s 16, NONONONO cos 'A' - '0' does not give 10 !! *)
1926
1927 let int_of_all s =
1928 if String.length s >= 2 && (String.get s 0 =<= '0') && is_digit (String.get s 1)
1929 then int_of_octal s else int_of_string s
1930
1931
1932 let (+=) ref v = ref := !ref + v
1933 let (-=) ref v = ref := !ref - v
1934
1935 let pourcent x total =
1936 (x * 100) / total
1937 let pourcent_float x total =
1938 ((float_of_int x) *. 100.0) /. (float_of_int total)
1939
1940 let pourcent_float_of_floats x total =
1941 (x *. 100.0) /. total
1942
1943
1944 let pourcent_good_bad good bad =
1945 (good * 100) / (good + bad)
1946
1947 let pourcent_good_bad_float good bad =
1948 (float_of_int good *. 100.0) /. (float_of_int good +. float_of_int bad)
1949
1950 type 'a max_with_elem = int ref * 'a ref
1951 let update_max_with_elem (aref, aelem) ~is_better (newv, newelem) =
1952 if is_better newv aref
1953 then begin
1954 aref := newv;
1955 aelem := newelem;
1956 end
1957
1958 (*****************************************************************************)
1959 (* Numeric/overloading *)
1960 (*****************************************************************************)
1961
1962 type 'a numdict =
1963 NumDict of (('a-> 'a -> 'a) *
1964 ('a-> 'a -> 'a) *
1965 ('a-> 'a -> 'a) *
1966 ('a -> 'a));;
1967
1968 let add (NumDict(a, m, d, n)) = a;;
1969 let mul (NumDict(a, m, d, n)) = m;;
1970 let div (NumDict(a, m, d, n)) = d;;
1971 let neg (NumDict(a, m, d, n)) = n;;
1972
1973 let numd_int = NumDict(( + ),( * ),( / ),( ~- ));;
1974 let numd_float = NumDict(( +. ),( *. ), ( /. ),( ~-. ));;
1975 let testd dict n =
1976 let ( * ) x y = mul dict x y in
1977 let ( / ) x y = div dict x y in
1978 let ( + ) x y = add dict x y in
1979 (* Now you can define all sorts of things in terms of *, /, + *)
1980 let f num = (num * num) / (num + num) in
1981 f n;;
1982
1983
1984
1985 module ArithFloatInfix = struct
1986 let (+..) = (+)
1987 let (-..) = (-)
1988 let (/..) = (/)
1989 let ( *.. ) = ( * )
1990
1991
1992 let (+) = (+.)
1993 let (-) = (-.)
1994 let (/) = (/.)
1995 let ( * ) = ( *. )
1996
1997 let (+=) ref v = ref := !ref + v
1998 let (-=) ref v = ref := !ref - v
1999
2000 end
2001
2002
2003
2004 (*****************************************************************************)
2005 (* Tuples *)
2006 (*****************************************************************************)
2007
2008 type 'a pair = 'a * 'a
2009 type 'a triple = 'a * 'a * 'a
2010
2011 let fst3 (x,_,_) = x
2012 let snd3 (_,y,_) = y
2013 let thd3 (_,_,z) = z
2014
2015 let sndthd (a,b,c) = (b,c)
2016
2017 let map_fst f (x, y) = f x, y
2018 let map_snd f (x, y) = x, f y
2019
2020 let pair f (x,y) = (f x, f y)
2021
2022 (* for my ocamlbeautify script *)
2023 let snd = snd
2024 let fst = fst
2025
2026 let double a = a,a
2027 let swap (x,y) = (y,x)
2028
2029
2030 let tuple_of_list1 = function [a] -> a | _ -> failwith "tuple_of_list1"
2031 let tuple_of_list2 = function [a;b] -> a,b | _ -> failwith "tuple_of_list2"
2032 let tuple_of_list3 = function [a;b;c] -> a,b,c | _ -> failwith "tuple_of_list3"
2033 let tuple_of_list4 = function [a;b;c;d] -> a,b,c,d | _ -> failwith "tuple_of_list4"
2034 let tuple_of_list5 = function [a;b;c;d;e] -> a,b,c,d,e | _ -> failwith "tuple_of_list5"
2035 let tuple_of_list6 = function [a;b;c;d;e;f] -> a,b,c,d,e,f | _ -> failwith "tuple_of_list6"
2036
2037
2038 (*****************************************************************************)
2039 (* Maybe *)
2040 (*****************************************************************************)
2041
2042 (* type 'a maybe = Just of 'a | None *)
2043
2044 type ('a,'b) either = Left of 'a | Right of 'b
2045 (* with sexp *)
2046 type ('a, 'b, 'c) either3 = Left3 of 'a | Middle3 of 'b | Right3 of 'c
2047 (* with sexp *)
2048
2049 let just = function
2050 | (Some x) -> x
2051 | _ -> failwith "just: pb"
2052
2053 let some = just
2054
2055
2056 let fmap f = function
2057 | None -> None
2058 | Some x -> Some (f x)
2059 let map_option = fmap
2060
2061 let do_option f = function
2062 | None -> ()
2063 | Some x -> f x
2064
2065 let optionise f =
2066 try Some (f ()) with Not_found -> None
2067
2068
2069
2070 (* pixel *)
2071 let some_or = function
2072 | None -> id
2073 | Some e -> fun _ -> e
2074
2075
2076 let partition_either f l =
2077 let rec part_either left right = function
2078 | [] -> (List.rev left, List.rev right)
2079 | x :: l ->
2080 (match f x with
2081 | Left e -> part_either (e :: left) right l
2082 | Right e -> part_either left (e :: right) l) in
2083 part_either [] [] l
2084
2085 let partition_either3 f l =
2086 let rec part_either left middle right = function
2087 | [] -> (List.rev left, List.rev middle, List.rev right)
2088 | x :: l ->
2089 (match f x with
2090 | Left3 e -> part_either (e :: left) middle right l
2091 | Middle3 e -> part_either left (e :: middle) right l
2092 | Right3 e -> part_either left middle (e :: right) l) in
2093 part_either [] [] [] l
2094
2095
2096 (* pixel *)
2097 let rec filter_some = function
2098 | [] -> []
2099 | None :: l -> filter_some l
2100 | Some e :: l -> e :: filter_some l
2101
2102 let map_filter f xs = xs +> List.map f +> filter_some
2103
2104 (* avoid recursion *)
2105 let tail_map_filter f xs =
2106 List.rev
2107 (List.fold_left
2108 (function prev ->
2109 function cur ->
2110 match f cur with
2111 Some x -> x :: prev
2112 | None -> prev)
2113 [] xs)
2114
2115 let rec find_some p = function
2116 | [] -> raise Not_found
2117 | x :: l ->
2118 match p x with
2119 | Some v -> v
2120 | None -> find_some p l
2121
2122 (* same
2123 let map_find f xs =
2124 xs +> List.map f +> List.find (function Some x -> true | None -> false)
2125 +> (function Some x -> x | None -> raise Impossible)
2126 *)
2127
2128
2129 let list_to_single_or_exn xs =
2130 match xs with
2131 | [] -> raise Not_found
2132 | x::y::zs -> raise Multi_found
2133 | [x] -> x
2134
2135 (*****************************************************************************)
2136 (* TriBool *)
2137 (*****************************************************************************)
2138
2139 type bool3 = True3 | False3 | TrueFalsePb3 of string
2140
2141
2142
2143 (*****************************************************************************)
2144 (* Regexp, can also use PCRE *)
2145 (*****************************************************************************)
2146
2147 (* Note: OCaml Str regexps are different from Perl regexp:
2148 * - The OCaml regexp must match the entire way.
2149 * So "testBee" =~ "Bee" is wrong
2150 * but "testBee" =~ ".*Bee" is right
2151 * Can have the perl behavior if use Str.search_forward instead of
2152 * Str.string_match.
2153 * - Must add some additional \ in front of some special char. So use
2154 * \\( \\| and also \\b
2155 * - It does not always handle newlines very well.
2156 * - \\b does consider _ but not numbers in indentifiers.
2157 *
2158 * Note: PCRE regexps are then different from Str regexps ...
2159 * - just use '(' ')' for grouping, not '\\)'
2160 * - still need \\b for word boundary, but this time it works ...
2161 * so can match some word that have some digits in them.
2162 *
2163 *)
2164
2165 (* put before String section because String section use some =~ *)
2166
2167 (* let gsubst = global_replace *)
2168
2169
2170 let (==~) s re = Str.string_match re s 0
2171
2172 let _memo_compiled_regexp = Hashtbl.create 101
2173 let candidate_match_func s re =
2174 (* old: Str.string_match (Str.regexp re) s 0 *)
2175 let compile_re =
2176 memoized _memo_compiled_regexp re (fun () -> Str.regexp re)
2177 in
2178 Str.string_match compile_re s 0
2179
2180 let match_func s re =
2181 profile_code "Common.=~" (fun () -> candidate_match_func s re)
2182
2183 let (=~) s re =
2184 match_func s re
2185
2186
2187
2188
2189
2190 let string_match_substring re s =
2191 try let _i = Str.search_forward re s 0 in true
2192 with Not_found -> false
2193
2194 let _ =
2195 example(string_match_substring (Str.regexp "foo") "a foo b")
2196 let _ =
2197 example(string_match_substring (Str.regexp "\\bfoo\\b") "a foo b")
2198 let _ =
2199 example(string_match_substring (Str.regexp "\\bfoo\\b") "a\n\nfoo b")
2200 let _ =
2201 example(string_match_substring (Str.regexp "\\bfoo_bar\\b") "a\n\nfoo_bar b")
2202 (* does not work :(
2203 let _ =
2204 example(string_match_substring (Str.regexp "\\bfoo_bar2\\b") "a\n\nfoo_bar2 b")
2205 *)
2206
2207
2208
2209 let (regexp_match: string -> string -> string) = fun s re ->
2210 assert(s =~ re);
2211 Str.matched_group 1 s
2212
2213 (* beurk, side effect code, but hey, it is convenient *)
2214 (* now in prelude
2215 * let (matched: int -> string -> string) = fun i s ->
2216 * Str.matched_group i s
2217 *
2218 * let matched1 = fun s -> matched 1 s
2219 * let matched2 = fun s -> (matched 1 s, matched 2 s)
2220 * let matched3 = fun s -> (matched 1 s, matched 2 s, matched 3 s)
2221 * let matched4 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s)
2222 * let matched5 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s, matched 5 s)
2223 * let matched6 = fun s -> (matched 1 s, matched 2 s, matched 3 s, matched 4 s, matched 5 s, matched 6 s)
2224 *)
2225
2226
2227
2228 let split sep s = Str.split (Str.regexp sep) s
2229 let _ = example (split "/" "" =*= [])
2230 let join sep xs = String.concat sep xs
2231 let _ = example (join "/" ["toto"; "titi"; "tata"] =$= "toto/titi/tata")
2232 (*
2233 let rec join str = function
2234 | [] -> ""
2235 | [x] -> x
2236 | x::xs -> x ^ str ^ (join str xs)
2237 *)
2238
2239
2240 let (split_list_regexp: string -> string list -> (string * string list) list) =
2241 fun re xs ->
2242 let rec split_lr_aux (heading, accu) = function
2243 | [] -> [(heading, List.rev accu)]
2244 | x::xs ->
2245 if x =~ re
2246 then (heading, List.rev accu)::split_lr_aux (x, []) xs
2247 else split_lr_aux (heading, x::accu) xs
2248 in
2249 split_lr_aux ("__noheading__", []) xs
2250 +> (fun xs -> if (List.hd xs) =*= ("__noheading__",[]) then List.tl xs else xs)
2251
2252
2253
2254 let regexp_alpha = Str.regexp
2255 "^[a-zA-Z_][A-Za-z_0-9]*$"
2256
2257
2258 let all_match re s =
2259 let regexp = Str.regexp re in
2260 let res = ref [] in
2261 let _ = Str.global_substitute regexp (fun _s ->
2262 let substr = Str.matched_string s in
2263 assert(substr ==~ regexp); (* @Effect: also use it's side effect *)
2264 let paren_matched = matched1 substr in
2265 push2 paren_matched res;
2266 "" (* @Dummy *)
2267 ) s in
2268 List.rev !res
2269
2270 let _ = example (all_match "\\(@[A-Za-z]+\\)" "ca va @Et toi @Comment"
2271 =*= ["@Et";"@Comment"])
2272
2273
2274 let global_replace_regexp re f_on_substr s =
2275 let regexp = Str.regexp re in
2276 Str.global_substitute regexp (fun _wholestr ->
2277
2278 let substr = Str.matched_string s in
2279 f_on_substr substr
2280 ) s
2281
2282
2283 let regexp_word_str =
2284 "\\([a-zA-Z_][A-Za-z_0-9]*\\)"
2285 let regexp_word = Str.regexp regexp_word_str
2286
2287 let regular_words s =
2288 all_match regexp_word_str s
2289
2290 let contain_regular_word s =
2291 let xs = regular_words s in
2292 List.length xs >= 1
2293
2294
2295
2296 (*****************************************************************************)
2297 (* Strings *)
2298 (*****************************************************************************)
2299
2300 let slength = String.length
2301 let concat = String.concat
2302
2303 (* ruby *)
2304 let i_to_s = string_of_int
2305 let s_to_i = int_of_string
2306
2307
2308 (* strings take space in memory. Better when can share the space used by
2309 similar strings *)
2310 let _shareds = Hashtbl.create 100
2311 let (shared_string: string -> string) = fun s ->
2312 try Hashtbl.find _shareds s
2313 with Not_found -> (Hashtbl.add _shareds s s; s)
2314
2315 let chop = function
2316 | "" -> ""
2317 | s -> String.sub s 0 (String.length s - 1)
2318
2319
2320 let chop_dirsymbol = function
2321 | s when s =~ "\\(.*\\)/$" -> matched1 s
2322 | s -> s
2323
2324
2325 let (<!!>) s (i,j) =
2326 String.sub s i (if j < 0 then String.length s - i + j + 1 else j - i)
2327 (* let _ = example ( "tototati"<!!>(3,-2) = "otat" ) *)
2328
2329 let (<!>) s i = String.get s i
2330
2331 (* pixel *)
2332 let rec split_on_char c s =
2333 try
2334 let sp = String.index s c in
2335 String.sub s 0 sp ::
2336 split_on_char c (String.sub s (sp+1) (String.length s - sp - 1))
2337 with Not_found -> [s]
2338
2339
2340 let lowercase = String.lowercase
2341
2342 let quote s = "\"" ^ s ^ "\""
2343
2344 (* easier to have this to be passed as hof, because ocaml dont have
2345 * haskell "section" operators
2346 *)
2347 let null_string s =
2348 s =$= ""
2349
2350 let is_blank_string s =
2351 s =~ "^\\([ \t]\\)*$"
2352
2353 (* src: lablgtk2/examples/entrycompletion.ml *)
2354 let is_string_prefix s1 s2 =
2355 (String.length s1 <= String.length s2) &&
2356 (String.sub s2 0 (String.length s1) =$= s1)
2357
2358 let plural i s =
2359 if i =|= 1
2360 then Printf.sprintf "%d %s" i s
2361 else Printf.sprintf "%d %ss" i s
2362
2363 let showCodeHex xs = List.iter (fun i -> printf "%02x" i) xs
2364
2365 let take_string n s =
2366 String.sub s 0 (n-1)
2367
2368 let take_string_safe n s =
2369 if n > String.length s
2370 then s
2371 else take_string n s
2372
2373
2374
2375 (* used by LFS *)
2376 let size_mo_ko i =
2377 let ko = (i / 1024) mod 1024 in
2378 let mo = (i / 1024) / 1024 in
2379 (if mo > 0
2380 then sprintf "%dMo%dKo" mo ko
2381 else sprintf "%dKo" ko
2382 )
2383
2384 let size_ko i =
2385 let ko = i / 1024 in
2386 sprintf "%dKo" ko
2387
2388
2389
2390
2391
2392
2393 (* done in summer 2007 for julia
2394 * Reference: P216 of gusfeld book
2395 * For two strings S1 and S2, D(i,j) is defined to be the edit distance of S1[1..i] to S2[1..j]
2396 * So edit distance of S1 (of length n) and S2 (of length m) is D(n,m)
2397 *
2398 * Dynamic programming technique
2399 * base:
2400 * D(i,0) = i for all i (cos to go from S1[1..i] to 0 characteres of S2 you have to delete all characters from S1[1..i]
2401 * D(0,j) = j for all j (cos j characters must be inserted)
2402 * recurrence:
2403 * D(i,j) = min([D(i-1, j)+1, D(i, j - 1 + 1), D(i-1, j-1) + t(i,j)])
2404 * where t(i,j) is equal to 1 if S1(i) != S2(j) and 0 if equal
2405 * intuition = there is 4 possible action = deletion, insertion, substitution, or match
2406 * so Lemma =
2407 *
2408 * D(i,j) must be one of the three
2409 * D(i, j-1) + 1
2410 * D(i-1, j)+1
2411 * D(i-1, j-1) +
2412 * t(i,j)
2413 *
2414 *
2415 *)
2416 let matrix_distance s1 s2 =
2417 let n = (String.length s1) in
2418 let m = (String.length s2) in
2419 let mat = Array.make_matrix (n+1) (m+1) 0 in
2420 let t i j =
2421 if String.get s1 (i-1) =<= String.get s2 (j-1)
2422 then 0
2423 else 1
2424 in
2425 let min3 a b c = min (min a b) c in
2426
2427 begin
2428 for i = 0 to n do
2429 mat.(i).(0) <- i
2430 done;
2431 for j = 0 to m do
2432 mat.(0).(j) <- j;
2433 done;
2434 for i = 1 to n do
2435 for j = 1 to m do
2436 mat.(i).(j) <-
2437 min3 (mat.(i).(j-1) + 1) (mat.(i-1).(j) + 1) (mat.(i-1).(j-1) + t i j)
2438 done
2439 done;
2440 mat
2441 end
2442 let edit_distance s1 s2 =
2443 (matrix_distance s1 s2).(String.length s1).(String.length s2)
2444
2445
2446 let test = edit_distance "vintner" "writers"
2447 let _ = assert (edit_distance "winter" "winter" =|= 0)
2448 let _ = assert (edit_distance "vintner" "writers" =|= 5)
2449
2450
2451 (*****************************************************************************)
2452 (* Filenames *)
2453 (*****************************************************************************)
2454
2455 let dirname = Filename.dirname
2456 let basename = Filename.basename
2457
2458 type filename = string (* TODO could check that exist :) type sux *)
2459 (* with sexp *)
2460 type dirname = string (* TODO could check that exist :) type sux *)
2461 (* with sexp *)
2462
2463 module BasicType = struct
2464 type filename = string
2465 end
2466
2467
2468 let (filesuffix: filename -> string) = fun s ->
2469 (try regexp_match s ".+\\.\\([a-zA-Z0-9_]+\\)$" with _ -> "NOEXT")
2470 let (fileprefix: filename -> string) = fun s ->
2471 (try regexp_match s "\\(.+\\)\\.\\([a-zA-Z0-9_]+\\)?$" with _ -> s)
2472
2473 let _ = example (filesuffix "toto.c" =$= "c")
2474 let _ = example (fileprefix "toto.c" =$= "toto")
2475
2476 (*
2477 assert (s = fileprefix s ^ filesuffix s)
2478
2479 let withoutExtension s = global_replace (regexp "\\..*$") "" s
2480 let () = example "without"
2481 (withoutExtension "toto.s.toto" = "toto")
2482 *)
2483
2484 let adjust_ext_if_needed filename ext =
2485 if String.get ext 0 <> '.'
2486 then failwith "I need an extension such as .c not just c";
2487
2488 if not (filename =~ (".*\\" ^ ext))
2489 then filename ^ ext
2490 else filename
2491
2492
2493
2494 let db_of_filename file =
2495 dirname file, basename file
2496
2497 let filename_of_db (basedir, file) =
2498 Filename.concat basedir file
2499
2500
2501
2502 let dbe_of_filename file =
2503 (* raise Invalid_argument if no ext, so safe to use later the unsafe
2504 * fileprefix and filesuffix functions.
2505 *)
2506 ignore(Filename.chop_extension file);
2507 Filename.dirname file,
2508 Filename.basename file +> fileprefix,
2509 Filename.basename file +> filesuffix
2510
2511 let filename_of_dbe (dir, base, ext) =
2512 Filename.concat dir (base ^ "." ^ ext)
2513
2514
2515 let dbe_of_filename_safe file =
2516 try Left (dbe_of_filename file)
2517 with Invalid_argument _ ->
2518 Right (Filename.dirname file, Filename.basename file)
2519
2520
2521 let dbe_of_filename_nodot file =
2522 let (d,b,e) = dbe_of_filename file in
2523 let d = if d =$= "." then "" else d in
2524 d,b,e
2525
2526
2527
2528
2529
2530 let replace_ext file oldext newext =
2531 let (d,b,e) = dbe_of_filename file in
2532 assert(e =$= oldext);
2533 filename_of_dbe (d,b,newext)
2534
2535
2536 let normalize_path file =
2537 let (dir, filename) = Filename.dirname file, Filename.basename file in
2538 let xs = split "/" dir in
2539 let rec aux acc = function
2540 | [] -> List.rev acc
2541 | x::xs ->
2542 (match x with
2543 | "." -> aux acc xs
2544 | ".." -> aux (List.tl acc) xs
2545 | x -> aux (x::acc) xs
2546 )
2547 in
2548 let xs' = aux [] xs in
2549 Filename.concat (join "/" xs') filename
2550
2551
2552
2553 (*
2554 let relative_to_absolute s =
2555 if Filename.is_relative s
2556 then
2557 begin
2558 let old = Sys.getcwd () in
2559 Sys.chdir s;
2560 let current = Sys.getcwd () in
2561 Sys.chdir old;
2562 s
2563 end
2564 else s
2565 *)
2566
2567 let relative_to_absolute s =
2568 if Filename.is_relative s
2569 then Sys.getcwd () ^ "/" ^ s
2570 else s
2571
2572 let is_relative s = Filename.is_relative s
2573 let is_absolute s = not (is_relative s)
2574
2575
2576 (* @Pre: prj_path must not contain regexp symbol *)
2577 let filename_without_leading_path prj_path s =
2578 let prj_path = chop_dirsymbol prj_path in
2579 if s =~ ("^" ^ prj_path ^ "/\\(.*\\)$")
2580 then matched1 s
2581 else
2582 failwith
2583 (spf "cant find filename_without_project_path: %s %s" prj_path s)
2584
2585
2586 (*****************************************************************************)
2587 (* i18n *)
2588 (*****************************************************************************)
2589 type langage =
2590 | English
2591 | Francais
2592 | Deutsch
2593
2594 (* gettext ? *)
2595
2596
2597 (*****************************************************************************)
2598 (* Dates *)
2599 (*****************************************************************************)
2600
2601 (* maybe I should use ocamlcalendar, but I don't like all those functors ... *)
2602
2603 type month =
2604 | Jan | Feb | Mar | Apr | May | Jun
2605 | Jul | Aug | Sep | Oct | Nov | Dec
2606 type year = Year of int
2607 type day = Day of int
2608 type wday = Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
2609
2610 type date_dmy = DMY of day * month * year
2611
2612 type hour = Hour of int
2613 type minute = Min of int
2614 type second = Sec of int
2615
2616 type time_hms = HMS of hour * minute * second
2617
2618 type full_date = date_dmy * time_hms
2619
2620
2621 (* intervalle *)
2622 type days = Days of int
2623
2624 type time_dmy = TimeDMY of day * month * year
2625
2626
2627 type float_time = float
2628
2629
2630
2631 let check_date_dmy (DMY (day, month, year)) =
2632 raise Todo
2633
2634 let check_time_dmy (TimeDMY (day, month, year)) =
2635 raise Todo
2636
2637 let check_time_hms (HMS (x,y,a)) =
2638 raise Todo
2639
2640
2641
2642 (* ---------------------------------------------------------------------- *)
2643
2644 (* older code *)
2645 let int_to_month i =
2646 assert (i <= 12 && i >= 1);
2647 match i with
2648
2649 | 1 -> "Jan"
2650 | 2 -> "Feb"
2651 | 3 -> "Mar"
2652 | 4 -> "Apr"
2653 | 5 -> "May"
2654 | 6 -> "Jun"
2655 | 7 -> "Jul"
2656 | 8 -> "Aug"
2657 | 9 -> "Sep"
2658 | 10 -> "Oct"
2659 | 11 -> "Nov"
2660 | 12 -> "Dec"
2661 (*
2662 | 1 -> "January"
2663 | 2 -> "February"
2664 | 3 -> "March"
2665 | 4 -> "April"
2666 | 5 -> "May"
2667 | 6 -> "June"
2668 | 7 -> "July"
2669 | 8 -> "August"
2670 | 9 -> "September"
2671 | 10 -> "October"
2672 | 11 -> "November"
2673 | 12 -> "December"
2674 *)
2675 | _ -> raise Impossible
2676
2677
2678 let month_info = [
2679 1 , Jan, "Jan", "January", 31;
2680 2 , Feb, "Feb", "February", 28;
2681 3 , Mar, "Mar", "March", 31;
2682 4 , Apr, "Apr", "April", 30;
2683 5 , May, "May", "May", 31;
2684 6 , Jun, "Jun", "June", 30;
2685 7 , Jul, "Jul", "July", 31;
2686 8 , Aug, "Aug", "August", 31;
2687 9 , Sep, "Sep", "September", 30;
2688 10 , Oct, "Oct", "October", 31;
2689 11 , Nov, "Nov", "November", 30;
2690 12 , Dec, "Dec", "December", 31;
2691 ]
2692
2693 let week_day_info = [
2694 0 , Sunday , "Sun" , "Dim" , "Sunday";
2695 1 , Monday , "Mon" , "Lun" , "Monday";
2696 2 , Tuesday , "Tue" , "Mar" , "Tuesday";
2697 3 , Wednesday , "Wed" , "Mer" , "Wednesday";
2698 4 , Thursday , "Thu" ,"Jeu" ,"Thursday";
2699 5 , Friday , "Fri" , "Ven" , "Friday";
2700 6 , Saturday , "Sat" ,"Sam" , "Saturday";
2701 ]
2702
2703 let i_to_month_h =
2704 month_info +> List.map (fun (i,month,monthstr,mlong,days) -> i, month)
2705 let s_to_month_h =
2706 month_info +> List.map (fun (i,month,monthstr,mlong,days) -> monthstr, month)
2707 let slong_to_month_h =
2708 month_info +> List.map (fun (i,month,monthstr,mlong,days) -> mlong, month)
2709 let month_to_s_h =
2710 month_info +> List.map (fun (i,month,monthstr,mlong,days) -> month, monthstr)
2711 let month_to_i_h =
2712 month_info +> List.map (fun (i,month,monthstr,mlong,days) -> month, i)
2713
2714 let i_to_wday_h =
2715 week_day_info +> List.map (fun (i,day,dayen,dayfr,daylong) -> i, day)
2716 let wday_to_en_h =
2717 week_day_info +> List.map (fun (i,day,dayen,dayfr,daylong) -> day, dayen)
2718 let wday_to_fr_h =
2719 week_day_info +> List.map (fun (i,day,dayen,dayfr,daylong) -> day, dayfr)
2720
2721 let month_of_string s =
2722 List.assoc s s_to_month_h
2723
2724 let month_of_string_long s =
2725 List.assoc s slong_to_month_h
2726
2727 let string_of_month s =
2728 List.assoc s month_to_s_h
2729
2730 let month_of_int i =
2731 List.assoc i i_to_month_h
2732
2733 let int_of_month m =
2734 List.assoc m month_to_i_h
2735
2736
2737 let wday_of_int i =
2738 List.assoc i i_to_wday_h
2739
2740 let string_en_of_wday wday =
2741 List.assoc wday wday_to_en_h
2742 let string_fr_of_wday wday =
2743 List.assoc wday wday_to_fr_h
2744
2745 (* ---------------------------------------------------------------------- *)
2746
2747 let wday_str_of_int ~langage i =
2748 let wday = wday_of_int i in
2749 match langage with
2750 | English -> string_en_of_wday wday
2751 | Francais -> string_fr_of_wday wday
2752 | Deutsch -> raise Todo
2753
2754
2755
2756 let string_of_date_dmy (DMY (Day n, month, Year y)) =
2757 (spf "%02d-%s-%d" n (string_of_month month) y)
2758
2759
2760 let string_of_unix_time ?(langage=English) tm =
2761 let y = tm.Unix.tm_year + 1900 in
2762 let mon = string_of_month (month_of_int (tm.Unix.tm_mon + 1)) in
2763 let d = tm.Unix.tm_mday in
2764 let h = tm.Unix.tm_hour in
2765 let min = tm.Unix.tm_min in
2766 let s = tm.Unix.tm_sec in
2767
2768 let wday = wday_str_of_int ~langage tm.Unix.tm_wday in
2769
2770 spf "%02d/%03s/%04d (%s) %02d:%02d:%02d" d mon y wday h min s
2771
2772 (* ex: 21/Jul/2008 (Lun) 21:25:12 *)
2773 let unix_time_of_string s =
2774 if s =~
2775 ("\\([0-9][0-9]\\)/\\(...\\)/\\([0-9][0-9][0-9][0-9]\\) " ^
2776 "\\(.*\\) \\([0-9][0-9]\\):\\([0-9][0-9]\\):\\([0-9][0-9]\\)")
2777 then
2778 let (sday, smonth, syear, _sday, shour, smin, ssec) = matched7 s in
2779
2780 let y = s_to_i syear - 1900 in
2781 let mon =
2782 smonth +> month_of_string +> int_of_month +> (fun i -> i -1)
2783 in
2784
2785 let tm = Unix.localtime (Unix.time ()) in
2786 { tm with
2787 Unix.tm_year = y;
2788 Unix.tm_mon = mon;
2789 Unix.tm_mday = s_to_i sday;
2790 Unix.tm_hour = s_to_i shour;
2791 Unix.tm_min = s_to_i smin;
2792 Unix.tm_sec = s_to_i ssec;
2793 }
2794 else failwith ("unix_time_of_string: " ^ s)
2795
2796
2797
2798 let short_string_of_unix_time ?(langage=English) tm =
2799 let y = tm.Unix.tm_year + 1900 in
2800 let mon = string_of_month (month_of_int (tm.Unix.tm_mon + 1)) in
2801 let d = tm.Unix.tm_mday in
2802 let _h = tm.Unix.tm_hour in
2803 let _min = tm.Unix.tm_min in
2804 let _s = tm.Unix.tm_sec in
2805
2806 let wday = wday_str_of_int ~langage tm.Unix.tm_wday in
2807
2808 spf "%02d/%03s/%04d (%s)" d mon y wday
2809
2810
2811 let string_of_unix_time_lfs time =
2812 spf "%02d--%s--%d"
2813 time.Unix.tm_mday
2814 (int_to_month (time.Unix.tm_mon + 1))
2815 (time.Unix.tm_year + 1900)
2816
2817
2818 (* ---------------------------------------------------------------------- *)
2819 let string_of_floattime ?langage i =
2820 let tm = Unix.localtime i in
2821 string_of_unix_time ?langage tm
2822
2823 let short_string_of_floattime ?langage i =
2824 let tm = Unix.localtime i in
2825 short_string_of_unix_time ?langage tm
2826
2827 let floattime_of_string s =
2828 let tm = unix_time_of_string s in
2829 let (sec,_tm) = Unix.mktime tm in
2830 sec
2831
2832
2833 (* ---------------------------------------------------------------------- *)
2834 let days_in_week_of_day day =
2835 let tm = Unix.localtime day in
2836
2837 let wday = tm.Unix.tm_wday in
2838 let wday = if wday =|= 0 then 6 else wday -1 in
2839
2840 let mday = tm.Unix.tm_mday in
2841
2842 let start_d = mday - wday in
2843 let end_d = mday + (6 - wday) in
2844
2845 enum start_d end_d +> List.map (fun mday ->
2846 Unix.mktime {tm with Unix.tm_mday = mday} +> fst
2847 )
2848
2849 let first_day_in_week_of_day day =
2850 List.hd (days_in_week_of_day day)
2851
2852 let last_day_in_week_of_day day =
2853 last (days_in_week_of_day day)
2854
2855
2856 (* ---------------------------------------------------------------------- *)
2857
2858 (* (modified) copy paste from ocamlcalendar/src/date.ml *)
2859 let days_month =
2860 [| 0; 31; 59; 90; 120; 151; 181; 212; 243; 273; 304; 334(*; 365*) |]
2861
2862
2863 let rough_days_since_jesus (DMY (Day nday, month, Year year)) =
2864 let n =
2865 nday +
2866 (days_month.(int_of_month month -1)) +
2867 year * 365
2868 in
2869 Days n
2870
2871
2872
2873 let is_more_recent d1 d2 =
2874 let (Days n1) = rough_days_since_jesus d1 in
2875 let (Days n2) = rough_days_since_jesus d2 in
2876 (n1 > n2)
2877
2878
2879 let max_dmy d1 d2 =
2880 if is_more_recent d1 d2
2881 then d1
2882 else d2
2883
2884 let min_dmy d1 d2 =
2885 if is_more_recent d1 d2
2886 then d2
2887 else d1
2888
2889
2890 let maximum_dmy ds =
2891 foldl1 max_dmy ds
2892
2893 let minimum_dmy ds =
2894 foldl1 min_dmy ds
2895
2896
2897
2898 let rough_days_between_dates d1 d2 =
2899 let (Days n1) = rough_days_since_jesus d1 in
2900 let (Days n2) = rough_days_since_jesus d2 in
2901 Days (n2 - n1)
2902
2903 let _ = example
2904 (rough_days_between_dates
2905 (DMY (Day 7, Jan, Year 1977))
2906 (DMY (Day 13, Jan, Year 1977)) =*= Days 6)
2907
2908 (* because of rough days, it is a bit buggy, here it should return 1 *)
2909 (*
2910 let _ = assert_equal
2911 (rough_days_between_dates
2912 (DMY (Day 29, Feb, Year 1977))
2913 (DMY (Day 1, Mar , Year 1977)))
2914 (Days 1)
2915 *)
2916
2917
2918 (* from julia, in gitsort.ml *)
2919
2920 (*
2921 let antimonths =
2922 [(1,31);(2,28);(3,31);(4,30);(5,31); (6,6);(7,7);(8,31);(9,30);(10,31);
2923 (11,30);(12,31);(0,31)]
2924
2925 let normalize (year,month,day,hour,minute,second) =
2926 if hour < 0
2927 then
2928 let (day,hour) = (day - 1,hour + 24) in
2929 if day = 0
2930 then
2931 let month = month - 1 in
2932 let day = List.assoc month antimonths in
2933 let day =
2934 if month = 2 && year / 4 * 4 = year && not (year / 100 * 100 = year)
2935 then 29
2936 else day in
2937 if month = 0
2938 then (year-1,12,day,hour,minute,second)
2939 else (year,month,day,hour,minute,second)
2940 else (year,month,day,hour,minute,second)
2941 else (year,month,day,hour,minute,second)
2942
2943 *)
2944
2945
2946 let mk_date_dmy day month year =
2947 let date = DMY (Day day, month_of_int month, Year year) in
2948 (* check_date_dmy date *)
2949 date
2950
2951
2952 (* ---------------------------------------------------------------------- *)
2953 (* conversion to unix.tm *)
2954
2955 let dmy_to_unixtime (DMY (Day n, month, Year year)) =
2956 let tm = {
2957 Unix.tm_sec = 0; (** Seconds 0..60 *)
2958 tm_min = 0; (** Minutes 0..59 *)
2959 tm_hour = 12; (** Hours 0..23 *)
2960 tm_mday = n; (** Day of month 1..31 *)
2961 tm_mon = (int_of_month month -1); (** Month of year 0..11 *)
2962 tm_year = year - 1900; (** Year - 1900 *)
2963 tm_wday = 0; (** Day of week (Sunday is 0) *)
2964 tm_yday = 0; (** Day of year 0..365 *)
2965 tm_isdst = false; (** Daylight time savings in effect *)
2966 } in
2967 Unix.mktime tm
2968
2969 let unixtime_to_dmy tm =
2970 let n = tm.Unix.tm_mday in
2971 let month = month_of_int (tm.Unix.tm_mon + 1) in
2972 let year = tm.Unix.tm_year + 1900 in
2973
2974 DMY (Day n, month, Year year)
2975
2976
2977 let unixtime_to_floattime tm =
2978 Unix.mktime tm +> fst
2979
2980 let floattime_to_unixtime sec =
2981 Unix.localtime sec
2982
2983
2984 let sec_to_days sec =
2985 let minfactor = 60 in
2986 let hourfactor = 60 * 60 in
2987 let dayfactor = 60 * 60 * 24 in
2988
2989 let days = sec / dayfactor in
2990 let hours = (sec mod dayfactor) / hourfactor in
2991 let mins = (sec mod hourfactor) / minfactor in
2992 let sec = (sec mod 60) in
2993 (* old: Printf.sprintf "%d days, %d hours, %d minutes" days hours mins *)
2994 (if days > 0 then plural days "day" ^ " " else "") ^
2995 (if hours > 0 then plural hours "hour" ^ " " else "") ^
2996 (if mins > 0 then plural mins "min" ^ " " else "") ^
2997 (spf "%dsec" sec)
2998
2999 let sec_to_hours sec =
3000 let minfactor = 60 in
3001 let hourfactor = 60 * 60 in
3002
3003 let hours = sec / hourfactor in
3004 let mins = (sec mod hourfactor) / minfactor in
3005 let sec = (sec mod 60) in
3006 (* old: Printf.sprintf "%d days, %d hours, %d minutes" days hours mins *)
3007 (if hours > 0 then plural hours "hour" ^ " " else "") ^
3008 (if mins > 0 then plural mins "min" ^ " " else "") ^
3009 (spf "%dsec" sec)
3010
3011
3012
3013 let test_date_1 () =
3014 let date = DMY (Day 17, Sep, Year 1991) in
3015 let float, tm = dmy_to_unixtime date in
3016 pr2 (spf "date: %.0f" float);
3017 ()
3018
3019
3020 (* src: ferre in logfun/.../date.ml *)
3021
3022 let day_secs : float = 86400.
3023
3024 let today : unit -> float = fun () -> (Unix.time () )
3025 let yesterday : unit -> float = fun () -> (Unix.time () -. day_secs)
3026 let tomorrow : unit -> float = fun () -> (Unix.time () +. day_secs)
3027
3028 let lastweek : unit -> float = fun () -> (Unix.time () -. (7.0 *. day_secs))
3029 let lastmonth : unit -> float = fun () -> (Unix.time () -. (30.0 *. day_secs))
3030
3031
3032 let week_before : float_time -> float_time = fun d ->
3033 (d -. (7.0 *. day_secs))
3034 let month_before : float_time -> float_time = fun d ->
3035 (d -. (30.0 *. day_secs))
3036
3037 let week_after : float_time -> float_time = fun d ->
3038 (d +. (7.0 *. day_secs))
3039
3040
3041
3042 (*****************************************************************************)
3043 (* Lines/words/strings *)
3044 (*****************************************************************************)
3045
3046 (* now in prelude:
3047 * let (list_of_string: string -> char list) = fun s ->
3048 * (enum 0 ((String.length s) - 1) +> List.map (String.get s))
3049 *)
3050
3051 let _ = example (list_of_string "abcd" =*= ['a';'b';'c';'d'])
3052
3053 (*
3054 let rec (list_of_stream: ('a Stream.t) -> 'a list) =
3055 parser
3056 | [< 'c ; stream >] -> c :: list_of_stream stream
3057 | [<>] -> []
3058
3059 let (list_of_string: string -> char list) =
3060 Stream.of_string $ list_of_stream
3061 *)
3062
3063 (* now in prelude:
3064 * let (lines: string -> string list) = fun s -> ...
3065 *)
3066
3067 let (lines_with_nl: string -> string list) = fun s ->
3068 let rec lines_aux = function
3069 | [] -> []
3070 | [x] -> if x =$= "" then [] else [x ^ "\n"] (* old: [x] *)
3071 | x::xs ->
3072 let e = x ^ "\n" in
3073 e::lines_aux xs
3074 in
3075 (time_func (fun () -> Str.split_delim (Str.regexp "\n") s)) +> lines_aux
3076
3077 (* in fact better make it return always complete lines, simplify *)
3078 (* Str.split, but lines "\n1\n2\n" dont return the \n and forget the first \n => split_delim better than split *)
3079 (* +> List.map (fun s -> s ^ "\n") but add an \n even at the end => lines_aux *)
3080 (* old: slow
3081 let chars = list_of_string s in
3082 chars +> List.fold_left (fun (acc, lines) char ->
3083 let newacc = acc ^ (String.make 1 char) in
3084 if char = '\n'
3085 then ("", newacc::lines)
3086 else (newacc, lines)
3087 ) ("", [])
3088 +> (fun (s, lines) -> List.rev (s::lines))
3089 *)
3090
3091 (* CHECK: unlines (lines x) = x *)
3092 let (unlines: string list -> string) = fun s ->
3093 (String.concat "\n" s) ^ "\n"
3094 let (words: string -> string list) = fun s ->
3095 Str.split (Str.regexp "[ \t()\";]+") s
3096 let (unwords: string list -> string) = fun s ->
3097 String.concat "" s
3098
3099 let (split_space: string -> string list) = fun s ->
3100 Str.split (Str.regexp "[ \t\n]+") s
3101
3102
3103 (* todo opti ? *)
3104 let nblines s =
3105 lines s +> List.length
3106 let _ = example (nblines "" =|= 0)
3107 let _ = example (nblines "toto" =|= 1)
3108 let _ = example (nblines "toto\n" =|= 1)
3109 let _ = example (nblines "toto\ntata" =|= 2)
3110 let _ = example (nblines "toto\ntata\n" =|= 2)
3111
3112 (*****************************************************************************)
3113 (* Process/Files *)
3114 (*****************************************************************************)
3115 let cat_orig file =
3116 let chan = open_in file in
3117 let rec cat_orig_aux () =
3118 try
3119 (* cant do input_line chan::aux() cos ocaml eval from right to left ! *)
3120 let l = input_line chan in
3121 l :: cat_orig_aux ()
3122 with End_of_file -> [] in
3123 cat_orig_aux()
3124
3125 (* tail recursive efficient version *)
3126 let cat file =
3127 let chan = open_in file in
3128 let rec cat_aux acc () =
3129 (* cant do input_line chan::aux() cos ocaml eval from right to left ! *)
3130 let (b, l) = try (true, input_line chan) with End_of_file -> (false, "") in
3131 if b
3132 then cat_aux (l::acc) ()
3133 else acc
3134 in
3135 cat_aux [] () +> List.rev +> (fun x -> close_in chan; x)
3136
3137 let cat_array file =
3138 (""::cat file) +> Array.of_list
3139
3140
3141 let interpolate str =
3142 begin
3143 command2 ("printf \"%s\\n\" " ^ str ^ ">/tmp/caml");
3144 cat "/tmp/caml"
3145 end
3146
3147 (* could do a print_string but printf dont like print_string *)
3148 let echo s = printf "%s" s; flush stdout; s
3149
3150 let usleep s = for i = 1 to s do () done
3151
3152 let sleep_little () =
3153 (*old: *)
3154 Unix.sleep 1
3155 (*ignore(Sys.command ("usleep " ^ !_sleep_time))*)
3156
3157
3158 (* now in prelude:
3159 * let command2 s = ignore(Sys.command s)
3160 *)
3161
3162 let do_in_fork f =
3163 let pid = Unix.fork () in
3164 if pid =|= 0
3165 then
3166 begin
3167 (* Unix.setsid(); *)
3168 Sys.set_signal Sys.sigint (Sys.Signal_handle (fun _ ->
3169 pr2 "being killed";
3170 Unix.kill 0 Sys.sigkill;
3171 ));
3172 f();
3173 exit 0;
3174 end
3175 else pid
3176
3177
3178 let process_output_to_list2 = fun command ->
3179 let chan = Unix.open_process_in command in
3180 let res = ref ([] : string list) in
3181 let rec process_otl_aux () =
3182 let e = input_line chan in
3183 res := e::!res;
3184 process_otl_aux() in
3185 try process_otl_aux ()
3186 with End_of_file ->
3187 let stat = Unix.close_process_in chan in (List.rev !res,stat)
3188 let cmd_to_list command =
3189 let (l,_) = process_output_to_list2 command in l
3190 let process_output_to_list = cmd_to_list
3191 let cmd_to_list_and_status = process_output_to_list2
3192
3193 (* now in prelude:
3194 * let command2 s = ignore(Sys.command s)
3195 *)
3196
3197
3198 let _batch_mode = ref false
3199 let command2_y_or_no cmd =
3200 if !_batch_mode then begin command2 cmd; true end
3201 else begin
3202
3203 pr2 (cmd ^ " [y/n] ?");
3204 match read_line () with
3205 | "y" | "yes" | "Y" -> command2 cmd; true
3206 | "n" | "no" | "N" -> false
3207 | _ -> failwith "answer by yes or no"
3208 end
3209
3210 let command2_y_or_no_exit_if_no cmd =
3211 let res = command2_y_or_no cmd in
3212 if res
3213 then ()
3214 else raise (UnixExit (1))
3215
3216
3217
3218
3219 let mkdir ?(mode=0o770) file =
3220 Unix.mkdir file mode
3221
3222 let read_file_orig file = cat file +> unlines
3223 let read_file file =
3224 let ic = open_in file in
3225 let size = in_channel_length ic in
3226 let buf = String.create size in
3227 really_input ic buf 0 size;
3228 close_in ic;
3229 buf
3230
3231
3232 let write_file ~file s =
3233 let chan = open_out file in
3234 (output_string chan s; close_out chan)
3235
3236 let filesize file =
3237 (Unix.stat file).Unix.st_size
3238
3239 let filemtime file =
3240 (Unix.stat file).Unix.st_mtime
3241
3242 (* opti? use wc -l ? *)
3243 let nblines_file file =
3244 cat file +> List.length
3245
3246 let lfile_exists filename =
3247 try
3248 (match (Unix.lstat filename).Unix.st_kind with
3249 | (Unix.S_REG | Unix.S_LNK) -> true
3250 | _ -> false
3251 )
3252 with
3253 Unix.Unix_error (Unix.ENOENT, _, _) -> false
3254 | Unix.Unix_error (Unix.ENOTDIR, _, _) -> false
3255 | Unix.Unix_error (error, _, fl) ->
3256 failwith
3257 (Printf.sprintf "unexpected error %s for file %s"
3258 (Unix.error_message error) fl)
3259
3260 let is_directory file =
3261 (Unix.stat file).Unix.st_kind =*= Unix.S_DIR
3262
3263
3264 (* src: from chailloux et al book *)
3265 let capsule_unix f args =
3266 try (f args)
3267 with Unix.Unix_error (e, fm, argm) ->
3268 log (Printf.sprintf "exn Unix_error: %s %s %s\n" (Unix.error_message e) fm argm)
3269
3270
3271 let (readdir_to_kind_list: string -> Unix.file_kind -> string list) =
3272 fun path kind ->
3273 Sys.readdir path
3274 +> Array.to_list
3275 +> List.filter (fun s ->
3276 try
3277 let stat = Unix.lstat (path ^ "/" ^ s) in
3278 stat.Unix.st_kind =*= kind
3279 with e ->
3280 pr2 ("EXN pb stating file: " ^ s);
3281 false
3282 )
3283
3284 let (readdir_to_dir_list: string -> string list) = fun path ->
3285 readdir_to_kind_list path Unix.S_DIR
3286
3287 let (readdir_to_file_list: string -> string list) = fun path ->
3288 readdir_to_kind_list path Unix.S_REG
3289
3290 let (readdir_to_link_list: string -> string list) = fun path ->
3291 readdir_to_kind_list path Unix.S_LNK
3292
3293
3294 let (readdir_to_dir_size_list: string -> (string * int) list) = fun path ->
3295 Sys.readdir path
3296 +> Array.to_list
3297 +> map_filter (fun s ->
3298 let stat = Unix.lstat (path ^ "/" ^ s) in
3299 if stat.Unix.st_kind =*= Unix.S_DIR
3300 then Some (s, stat.Unix.st_size)
3301 else None
3302 )
3303
3304 (* could be in control section too *)
3305
3306 (* Why a use_cache argument ? because sometimes want disable it but dont
3307 * want put the cache_computation funcall in comment, so just easier to
3308 * pass this extra option.
3309 *)
3310 let cache_computation2 ?(verbose=false) ?(use_cache=true) file ext_cache f =
3311 if not use_cache
3312 then f ()
3313 else begin
3314 if not (Sys.file_exists file)
3315 then failwith ("can't find: " ^ file);
3316 let file_cache = (file ^ ext_cache) in
3317 if Sys.file_exists file_cache &&
3318 filemtime file_cache >= filemtime file
3319 then begin
3320 if verbose then pr2 ("using cache: " ^ file_cache);
3321 get_value file_cache
3322 end
3323 else begin
3324 let res = f () in
3325 write_value res file_cache;
3326 res
3327 end
3328 end
3329 let cache_computation ?verbose ?use_cache a b c =
3330 profile_code "Common.cache_computation" (fun () ->
3331 cache_computation2 ?verbose ?use_cache a b c)
3332
3333
3334 let cache_computation_robust2
3335 file ext_cache
3336 (need_no_changed_files, need_no_changed_variables) ext_depend
3337 f =
3338 if not (Sys.file_exists file)
3339 then failwith ("can't find: " ^ file);
3340
3341 let file_cache = (file ^ ext_cache) in
3342 let dependencies_cache = (file ^ ext_depend) in
3343
3344 let dependencies =
3345 (* could do md5sum too *)
3346 ((file::need_no_changed_files) +> List.map (fun f -> f, filemtime f),
3347 need_no_changed_variables)
3348 in
3349
3350 if Sys.file_exists dependencies_cache &&
3351 get_value dependencies_cache =*= dependencies
3352 then get_value file_cache
3353 else begin
3354 pr2 ("cache computation recompute " ^ file);
3355 let res = f () in
3356 write_value dependencies dependencies_cache;
3357 write_value res file_cache;
3358 res
3359 end
3360
3361 let cache_computation_robust a b c d e =
3362 profile_code "Common.cache_computation_robust" (fun () ->
3363 cache_computation_robust2 a b c d e)
3364
3365
3366
3367
3368 (* dont forget that cmd_to_list call bash and so pattern may contain
3369 * '*' symbols that will be expanded, so can do glob "*.c"
3370 *)
3371 let glob pattern =
3372 cmd_to_list ("ls -1 " ^ pattern)
3373
3374
3375 (* update: have added the -type f, so normally need less the sanity_check_xxx
3376 * function below *)
3377 let files_of_dir_or_files ext xs =
3378 xs +> List.map (fun x ->
3379 if is_directory x
3380 then cmd_to_list ("find " ^ x ^" -noleaf -type f -name \"*." ^ext^"\"")
3381 else [x]
3382 ) +> List.concat
3383
3384
3385 let files_of_dir_or_files_no_vcs ext xs =
3386 xs +> List.map (fun x ->
3387 if is_directory x
3388 then
3389 cmd_to_list
3390 ("find " ^ x ^" -noleaf -type f -name \"*." ^ext^"\"" ^
3391 "| grep -v /.hg/ |grep -v /CVS/ | grep -v /.git/ |grep -v /_darcs/"
3392 )
3393 else [x]
3394 ) +> List.concat
3395
3396
3397 let files_of_dir_or_files_no_vcs_post_filter regex xs =
3398 xs +> List.map (fun x ->
3399 if is_directory x
3400 then
3401 cmd_to_list
3402 ("find " ^ x ^
3403 " -noleaf -type f | grep -v /.hg/ |grep -v /CVS/ | grep -v /.git/ |grep -v /_darcs/"
3404 )
3405 +> List.filter (fun s -> s =~ regex)
3406 else [x]
3407 ) +> List.concat
3408
3409
3410 let sanity_check_files_and_adjust ext files =
3411 let files = files +> List.filter (fun file ->
3412 if not (file =~ (".*\\."^ext))
3413 then begin
3414 pr2 ("warning: seems not a ."^ext^" file");
3415 false
3416 end
3417 else
3418 if is_directory file
3419 then begin
3420 pr2 (spf "warning: %s is a directory" file);
3421 false
3422 end
3423 else true
3424 ) in
3425 files
3426
3427
3428
3429
3430 (* taken from mlfuse, the predecessor of ocamlfuse *)
3431 type rwx = [`R|`W|`X] list
3432 let file_perm_of : u:rwx -> g:rwx -> o:rwx -> Unix.file_perm =
3433 fun ~u ~g ~o ->
3434 let to_oct l =
3435 List.fold_left (fun acc p -> acc lor ((function `R -> 4 | `W -> 2 | `X -> 1) p)) 0 l in
3436 let perm =
3437 ((to_oct u) lsl 6) lor
3438 ((to_oct g) lsl 3) lor
3439 (to_oct o)
3440 in
3441 perm
3442
3443
3444 (* pixel *)
3445 let has_env var =
3446 try
3447 let _ = Sys.getenv var in true
3448 with Not_found -> false
3449
3450 (* emacs/lisp inspiration (eric cooper and yaron minsky use that too) *)
3451 let (with_open_outfile: filename -> (((string -> unit) * out_channel) -> 'a) -> 'a) =
3452 fun file f ->
3453 let chan = open_out file in
3454 let pr s = output_string chan s in
3455 unwind_protect (fun () ->
3456 let res = f (pr, chan) in
3457 close_out chan;
3458 res)
3459 (fun e -> close_out chan)
3460
3461 let (with_open_infile: filename -> ((in_channel) -> 'a) -> 'a) = fun file f ->
3462 let chan = open_in file in
3463 unwind_protect (fun () ->
3464 let res = f chan in
3465 close_in chan;
3466 res)
3467 (fun e -> close_in chan)
3468
3469
3470 let (with_open_outfile_append: filename -> (((string -> unit) * out_channel) -> 'a) -> 'a) =
3471 fun file f ->
3472 let chan = open_out_gen [Open_creat;Open_append] 0o666 file in
3473 let pr s = output_string chan s in
3474 unwind_protect (fun () ->
3475 let res = f (pr, chan) in
3476 close_out chan;
3477 res)
3478 (fun e -> close_out chan)
3479
3480
3481 (* now in prelude:
3482 * exception Timeout
3483 *)
3484
3485 (* it seems that the toplevel block such signals, even with this explicit
3486 * command :(
3487 * let _ = Unix.sigprocmask Unix.SIG_UNBLOCK [Sys.sigalrm]
3488 *)
3489
3490 (* could be in Control section *)
3491
3492 (* subtil: have to make sure that timeout is not intercepted before here, so
3493 * avoid exn handle such as try (...) with _ -> cos timeout will not bubble up
3494 * enough. In such case, add a case before such as
3495 * with Timeout -> raise Timeout | _ -> ...
3496 *
3497 * question: can we have a signal and so exn when in a exn handler ?
3498 *)
3499
3500 let interval_timer = ref true
3501
3502 let timeout_function timeoutval = fun f ->
3503 try
3504 if !interval_timer
3505 then
3506 begin
3507 Sys.set_signal Sys.sigvtalrm
3508 (Sys.Signal_handle (fun _ -> raise Timeout));
3509 ignore
3510 (Unix.setitimer Unix.ITIMER_VIRTUAL
3511 {Unix.it_interval=float_of_int timeoutval;
3512 Unix.it_value =float_of_int timeoutval});
3513 let x = f() in
3514 ignore(Unix.alarm 0);
3515 x
3516 end
3517 else
3518 begin
3519 Sys.set_signal Sys.sigalrm
3520 (Sys.Signal_handle (fun _ -> raise Timeout ));
3521 ignore(Unix.alarm timeoutval);
3522 let x = f() in
3523 ignore(Unix.alarm 0);
3524 x
3525 end
3526 with Timeout ->
3527 begin
3528 log "timeout (we abort)";
3529 raise Timeout;
3530 end
3531 | e ->
3532 (* subtil: important to disable the alarm before relaunching the exn,
3533 * otherwise the alarm is still running.
3534 *
3535 * robust?: and if alarm launched after the log (...) ?
3536 * Maybe signals are disabled when process an exception handler ?
3537 *)
3538 begin
3539 ignore(Unix.alarm 0);
3540 (* log ("exn while in transaction (we abort too, even if ...) = " ^
3541 Printexc.to_string e);
3542 *)
3543 log "exn while in timeout_function";
3544 raise e
3545 end
3546
3547 let timeout_function_opt timeoutvalopt f =
3548 match timeoutvalopt with
3549 | None -> f()
3550 | Some x -> timeout_function x f
3551
3552
3553
3554 (* creation of tmp files, a la gcc *)
3555
3556 let _temp_files_created = ref ([] : filename list)
3557
3558 (* ex: new_temp_file "cocci" ".c" will give "/tmp/cocci-3252-434465.c" *)
3559 let new_temp_file prefix suffix =
3560 let processid = i_to_s (Unix.getpid ()) in
3561 let tmp_file = Filename.temp_file (prefix ^ "-" ^ processid ^ "-") suffix in
3562 push2 tmp_file _temp_files_created;
3563 tmp_file
3564
3565
3566 let save_tmp_files = ref false
3567 let erase_temp_files () =
3568 if not !save_tmp_files then begin
3569 !_temp_files_created +> List.iter (fun s ->
3570 (* pr2 ("erasing: " ^ s); *)
3571 command2 ("rm -f " ^ s)
3572 );
3573 _temp_files_created := []
3574 end
3575
3576 let erase_this_temp_file f =
3577 if not !save_tmp_files then begin
3578 _temp_files_created :=
3579 List.filter (function x -> not (x =$= f)) !_temp_files_created;
3580 command2 ("rm -f " ^ f)
3581 end
3582
3583
3584 (* now in prelude: exception UnixExit of int *)
3585 let exn_to_real_unixexit f =
3586 try f()
3587 with UnixExit x -> exit x
3588
3589
3590
3591
3592 let uncat xs file =
3593 with_open_outfile file (fun (pr,_chan) ->
3594 xs +> List.iter (fun s -> pr s; pr "\n");
3595
3596 )
3597
3598
3599
3600
3601
3602
3603 (*****************************************************************************)
3604 (* List *)
3605 (*****************************************************************************)
3606
3607 (* pixel *)
3608 let uncons l = (List.hd l, List.tl l)
3609
3610 (* pixel *)
3611 let safe_tl l = try List.tl l with _ -> []
3612
3613 let push l v =
3614 l := v :: !l
3615
3616 let rec zip xs ys =
3617 match (xs,ys) with
3618 | ([],[]) -> []
3619 | ([],_) -> failwith "zip: not same length"
3620 | (_,[]) -> failwith "zip: not same length"
3621 | (x::xs,y::ys) -> (x,y)::zip xs ys
3622
3623 let rec zip_safe xs ys =
3624 match (xs,ys) with
3625 | ([],_) -> []
3626 | (_,[]) -> []
3627 | (x::xs,y::ys) -> (x,y)::zip_safe xs ys
3628
3629 let rec unzip zs =
3630 List.fold_right (fun e (xs, ys) ->
3631 (fst e::xs), (snd e::ys)) zs ([],[])
3632
3633
3634 let map_withkeep f xs =
3635 xs +> List.map (fun x -> f x, x)
3636
3637 (* now in prelude
3638 * let rec take n xs =
3639 * match (n,xs) with
3640 * | (0,_) -> []
3641 * | (_,[]) -> failwith "take: not enough"
3642 * | (n,x::xs) -> x::take (n-1) xs
3643 *)
3644
3645 let rec take_safe n xs =
3646 match (n,xs) with
3647 | (0,_) -> []
3648 | (_,[]) -> []
3649 | (n,x::xs) -> x::take_safe (n-1) xs
3650
3651 let rec take_until p = function
3652 | [] -> []
3653 | x::xs -> if p x then [] else x::(take_until p xs)
3654
3655 let take_while p = take_until (p $ not)
3656
3657
3658 (* now in prelude: let rec drop n xs = ... *)
3659 let _ = example (drop 3 [1;2;3;4] =*= [4])
3660
3661 let rec drop_while p = function
3662 | [] -> []
3663 | x::xs -> if p x then drop_while p xs else x::xs
3664
3665
3666 let rec drop_until p xs =
3667 drop_while (fun x -> not (p x)) xs
3668 let _ = example (drop_until (fun x -> x =|= 3) [1;2;3;4;5] =*= [3;4;5])
3669
3670
3671 let span p xs = (take_while p xs, drop_while p xs)
3672
3673
3674 let rec (span: ('a -> bool) -> 'a list -> 'a list * 'a list) =
3675 fun p -> function
3676 | [] -> ([], [])
3677 | x::xs ->
3678 if p x then
3679 let (l1, l2) = span p xs in
3680 (x::l1, l2)
3681 else ([], x::xs)
3682 let _ = example ((span (fun x -> x <= 3) [1;2;3;4;1;2] =*= ([1;2;3],[4;1;2])))
3683
3684 let rec groupBy eq l =
3685 match l with
3686 | [] -> []
3687 | x::xs ->
3688 let (xs1,xs2) = List.partition (fun x' -> eq x x') xs in
3689 (x::xs1)::(groupBy eq xs2)
3690
3691 let rec group_by_mapped_key fkey l =
3692 match l with
3693 | [] -> []
3694 | x::xs ->
3695 let k = fkey x in
3696 let (xs1,xs2) = List.partition (fun x' -> let k2 = fkey x' in k=*=k2) xs
3697 in
3698 (k, (x::xs1))::(group_by_mapped_key fkey xs2)
3699
3700
3701
3702
3703 let (exclude_but_keep_attached: ('a -> bool) -> 'a list -> ('a * 'a list) list)=
3704 fun f xs ->
3705 let rec aux_filter acc ans = function
3706 | [] -> (* drop what was accumulated because nothing to attach to *)
3707 List.rev ans
3708 | x::xs ->
3709 if f x
3710 then aux_filter (x::acc) ans xs
3711 else aux_filter [] ((x, List.rev acc)::ans) xs
3712 in
3713 aux_filter [] [] xs
3714 let _ = example
3715 (exclude_but_keep_attached (fun x -> x =|= 3) [3;3;1;3;2;3;3;3] =*=
3716 [(1,[3;3]);(2,[3])])
3717
3718 let (group_by_post: ('a -> bool) -> 'a list -> ('a list * 'a) list * 'a list)=
3719 fun f xs ->
3720 let rec aux_filter grouped_acc acc = function
3721 | [] ->
3722 List.rev grouped_acc, List.rev acc
3723 | x::xs ->
3724 if f x
3725 then
3726 aux_filter ((List.rev acc,x)::grouped_acc) [] xs
3727 else
3728 aux_filter grouped_acc (x::acc) xs
3729 in
3730 aux_filter [] [] xs
3731
3732 let _ = example
3733 (group_by_post (fun x -> x =|= 3) [1;1;3;2;3;4;5;3;6;6;6] =*=
3734 ([([1;1],3);([2],3);[4;5],3], [6;6;6]))
3735
3736 let (group_by_pre: ('a -> bool) -> 'a list -> 'a list * ('a * 'a list) list)=
3737 fun f xs ->
3738 let xs' = List.rev xs in
3739 let (ys, unclassified) = group_by_post f xs' in
3740 List.rev unclassified,
3741 ys +> List.rev +> List.map (fun (xs, x) -> x, List.rev xs )
3742
3743 let _ = example
3744 (group_by_pre (fun x -> x =|= 3) [1;1;3;2;3;4;5;3;6;6;6] =*=
3745 ([1;1], [(3,[2]); (3,[4;5]); (3,[6;6;6])]))
3746
3747
3748 let rec (split_when: ('a -> bool) -> 'a list -> 'a list * 'a * 'a list) =
3749 fun p -> function
3750 | [] -> raise Not_found
3751 | x::xs ->
3752 if p x then
3753 [], x, xs
3754 else
3755 let (l1, a, l2) = split_when p xs in
3756 (x::l1, a, l2)
3757 let _ = example (split_when (fun x -> x =|= 3)
3758 [1;2;3;4;1;2] =*= ([1;2],3,[4;1;2]))
3759
3760
3761 (* not so easy to come up with ... used in aComment for split_paragraph *)
3762 let rec split_gen_when_aux f acc xs =
3763 match xs with
3764 | [] ->
3765 if null acc
3766 then []
3767 else [List.rev acc]
3768 | (x::xs) ->
3769 (match f (x::xs) with
3770 | None ->
3771 split_gen_when_aux f (x::acc) xs
3772 | Some (rest) ->
3773 let before = List.rev acc in
3774 if null before
3775 then split_gen_when_aux f [] rest
3776 else before::split_gen_when_aux f [] rest
3777 )
3778 (* could avoid introduce extra aux function by using ?(acc = []) *)
3779 let split_gen_when f xs =
3780 split_gen_when_aux f [] xs
3781
3782
3783
3784 (* generate exception (Failure "tl") if there is no element satisfying p *)
3785 let rec (skip_until: ('a list -> bool) -> 'a list -> 'a list) = fun p xs ->
3786 if p xs then xs else skip_until p (List.tl xs)
3787 let _ = example
3788 (skip_until (function 1::2::xs -> true | _ -> false)
3789 [1;3;4;1;2;4;5] =*= [1;2;4;5])
3790
3791 let rec skipfirst e = function
3792 | [] -> []
3793 | e'::l when e =*= e' -> skipfirst e l
3794 | l -> l
3795
3796
3797 (* now in prelude:
3798 * let rec enum x n = ...
3799 *)
3800
3801
3802 let index_list xs =
3803 if null xs then [] (* enum 0 (-1) generate an exception *)
3804 else zip xs (enum 0 ((List.length xs) -1))
3805
3806 let index_list_and_total xs =
3807 let total = List.length xs in
3808 if null xs then [] (* enum 0 (-1) generate an exception *)
3809 else zip xs (enum 0 ((List.length xs) -1))
3810 +> List.map (fun (a,b) -> (a,b,total))
3811
3812 let index_list_1 xs =
3813 xs +> index_list +> List.map (fun (x,i) -> x, i+1)
3814
3815 let or_list = List.fold_left (||) false
3816 let and_list = List.fold_left (&&) true
3817
3818 let avg_list xs =
3819 let sum = sum_int xs in
3820 (float_of_int sum) /. (float_of_int (List.length xs))
3821
3822 let snoc x xs = xs @ [x]
3823 let cons x xs = x::xs
3824
3825 let head_middle_tail xs =
3826 match xs with
3827 | x::y::xs ->
3828 let head = x in
3829 let reversed = List.rev (y::xs) in
3830 let tail = List.hd reversed in
3831 let middle = List.rev (List.tl reversed) in
3832 head, middle, tail
3833 | _ -> failwith "head_middle_tail, too small list"
3834
3835 let _ = assert_equal (head_middle_tail [1;2;3]) (1, [2], 3)
3836 let _ = assert_equal (head_middle_tail [1;3]) (1, [], 3)
3837
3838 (* now in prelude
3839 * let (++) = (@)
3840 *)
3841
3842 (* let (++) = (@), could do that, but if load many times the common, then pb *)
3843 (* let (++) l1 l2 = List.fold_right (fun x acc -> x::acc) l1 l2 *)
3844
3845 let remove x xs =
3846 let newxs = List.filter (fun y -> y <> x) xs in
3847 assert (List.length newxs =|= List.length xs - 1);
3848 newxs
3849
3850
3851 let exclude p xs =
3852 List.filter (fun x -> not (p x)) xs
3853
3854 (* now in prelude
3855 *)
3856
3857 let fold_k f lastk acc xs =
3858 let rec fold_k_aux acc = function
3859 | [] -> lastk acc
3860 | x::xs ->
3861 f acc x (fun acc -> fold_k_aux acc xs)
3862 in
3863 fold_k_aux acc xs
3864
3865
3866 let rec list_init = function
3867 | [] -> raise Not_found
3868 | [x] -> []
3869 | x::y::xs -> x::(list_init (y::xs))
3870
3871 let rec list_last = function
3872 | [] -> raise Not_found
3873 | [x] -> x
3874 | x::y::xs -> list_last (y::xs)
3875
3876 (* pixel *)
3877 (* now in prelude
3878 * let last_n n l = List.rev (take n (List.rev l))
3879 * let last l = List.hd (last_n 1 l)
3880 *)
3881
3882 let rec join_gen a = function
3883 | [] -> []
3884 | [x] -> [x]
3885 | x::xs -> x::a::(join_gen a xs)
3886
3887
3888 (* todo: foldl, foldr (a more consistent foldr) *)
3889
3890 (* start pixel *)
3891 let iter_index f l =
3892 let rec iter_ n = function
3893 | [] -> ()
3894 | e::l -> f e n ; iter_ (n+1) l
3895 in iter_ 0 l
3896
3897 let map_index f l =
3898 let rec map_ n = function
3899 | [] -> []
3900 | e::l -> f e n :: map_ (n+1) l
3901 in map_ 0 l
3902
3903
3904 (* pixel *)
3905 let filter_index f l =
3906 let rec filt i = function
3907 | [] -> []
3908 | e::l -> if f i e then e :: filt (i+1) l else filt (i+1) l
3909 in
3910 filt 0 l
3911
3912 (* pixel *)
3913 let do_withenv doit f env l =
3914 let r_env = ref env in
3915 let l' = doit (fun e ->
3916 let e', env' = f !r_env e in
3917 r_env := env' ; e'
3918 ) l in
3919 l', !r_env
3920
3921 (* now in prelude:
3922 * let fold_left_with_index f acc = ...
3923 *)
3924
3925 let map_withenv f env e = do_withenv List.map f env e
3926
3927 let rec collect_accu f accu = function
3928 | [] -> accu
3929 | e::l -> collect_accu f (List.rev_append (f e) accu) l
3930
3931 let collect f l = List.rev (collect_accu f [] l)
3932
3933 (* cf also List.partition *)
3934
3935 let rec fpartition p l =
3936 let rec part yes no = function
3937 | [] -> (List.rev yes, List.rev no)
3938 | x :: l ->
3939 (match p x with
3940 | None -> part yes (x :: no) l
3941 | Some v -> part (v :: yes) no l) in
3942 part [] [] l
3943
3944 (* end pixel *)
3945
3946 let rec removelast = function
3947 | [] -> failwith "removelast"
3948 | [_] -> []
3949 | e::l -> e :: removelast l
3950
3951 let remove x = List.filter (fun y -> y != x)
3952 let empty list = null list
3953
3954
3955 let rec inits = function
3956 | [] -> [[]]
3957 | e::l -> [] :: List.map (fun l -> e::l) (inits l)
3958
3959 let rec tails = function
3960 | [] -> [[]]
3961 | (_::xs) as xxs -> xxs :: tails xs
3962
3963
3964 let reverse = List.rev
3965 let rev = List.rev
3966
3967 let nth = List.nth
3968 let fold_left = List.fold_left
3969 let rev_map = List.rev_map
3970
3971 (* pixel *)
3972 let rec fold_right1 f = function
3973 | [] -> failwith "fold_right1"
3974 | [e] -> e
3975 | e::l -> f e (fold_right1 f l)
3976
3977 let maximum l = foldl1 max l
3978 let minimum l = foldl1 min l
3979
3980 (* do a map tail recursive, and result is reversed, it is a tail recursive map => efficient *)
3981 let map_eff_rev = fun f l ->
3982 let rec map_eff_aux acc =
3983 function
3984 | [] -> acc
3985 | x::xs -> map_eff_aux ((f x)::acc) xs
3986 in
3987 map_eff_aux [] l
3988
3989 let acc_map f l =
3990 let rec loop acc = function
3991 [] -> List.rev acc
3992 | x::xs -> loop ((f x)::acc) xs in
3993 loop [] l
3994
3995
3996 let rec (generate: int -> 'a -> 'a list) = fun i el ->
3997 if i =|= 0 then []
3998 else el::(generate (i-1) el)
3999
4000 let rec uniq = function
4001 | [] -> []
4002 | e::l -> if List.mem e l then uniq l else e :: uniq l
4003
4004 let has_no_duplicate xs =
4005 List.length xs =|= List.length (uniq xs)
4006 let is_set_as_list = has_no_duplicate
4007
4008
4009 let rec get_duplicates xs =
4010 match xs with
4011 | [] -> []
4012 | x::xs ->
4013 if List.mem x xs
4014 then x::get_duplicates xs (* todo? could x from xs to avoid double dups?*)
4015 else get_duplicates xs
4016
4017 let rec all_assoc e = function
4018 | [] -> []
4019 | (e',v) :: l when e=*=e' -> v :: all_assoc e l
4020 | _ :: l -> all_assoc e l
4021
4022 let prepare_want_all_assoc l =
4023 List.map (fun n -> n, uniq (all_assoc n l)) (uniq (List.map fst l))
4024
4025 let rotate list = List.tl list ++ [(List.hd list)]
4026
4027 let or_list = List.fold_left (||) false
4028 let and_list = List.fold_left (&&) true
4029
4030 let rec (return_when: ('a -> 'b option) -> 'a list -> 'b) = fun p -> function
4031 | [] -> raise Not_found
4032 | x::xs -> (match p x with None -> return_when p xs | Some b -> b)
4033
4034 let rec splitAt n xs =
4035 if n =|= 0 then ([],xs)
4036 else
4037 (match xs with
4038 | [] -> ([],[])
4039 | (x::xs) -> let (a,b) = splitAt (n-1) xs in (x::a, b)
4040 )
4041
4042 let pack n xs =
4043 let rec pack_aux l i = function
4044 | [] -> failwith "not on a boundary"
4045 | [x] -> if i =|= n then [l++[x]] else failwith "not on a boundary"
4046 | x::xs ->
4047 if i =|= n
4048 then (l++[x])::(pack_aux [] 1 xs)
4049 else pack_aux (l++[x]) (i+1) xs
4050 in
4051 pack_aux [] 1 xs
4052
4053 let min_with f = function
4054 | [] -> raise Not_found
4055 | e :: l ->
4056 let rec min_with_ min_val min_elt = function
4057 | [] -> min_elt
4058 | e::l ->
4059 let val_ = f e in
4060 if val_ < min_val
4061 then min_with_ val_ e l
4062 else min_with_ min_val min_elt l
4063 in min_with_ (f e) e l
4064
4065 let two_mins_with f = function
4066 | e1 :: e2 :: l ->
4067 let rec min_with_ min_val min_elt min_val2 min_elt2 = function
4068 | [] -> min_elt, min_elt2
4069 | e::l ->
4070 let val_ = f e in
4071 if val_ < min_val2
4072 then
4073 if val_ < min_val
4074 then min_with_ val_ e min_val min_elt l
4075 else min_with_ min_val min_elt val_ e l
4076 else min_with_ min_val min_elt min_val2 min_elt2 l
4077 in
4078 let v1 = f e1 in
4079 let v2 = f e2 in
4080 if v1 < v2 then min_with_ v1 e1 v2 e2 l else min_with_ v2 e2 v1 e1 l
4081 | _ -> raise Not_found
4082
4083 let grep_with_previous f = function
4084 | [] -> []
4085 | e::l ->
4086 let rec grep_with_previous_ previous = function
4087 | [] -> []
4088 | e::l -> if f previous e then e :: grep_with_previous_ e l else grep_with_previous_ previous l
4089 in e :: grep_with_previous_ e l
4090
4091 let iter_with_previous f = function
4092 | [] -> ()
4093 | e::l ->
4094 let rec iter_with_previous_ previous = function
4095 | [] -> ()
4096 | e::l -> f previous e ; iter_with_previous_ e l
4097 in iter_with_previous_ e l
4098
4099
4100 let iter_with_before_after f xs =
4101 let rec aux before_rev after =
4102 match after with
4103 | [] -> ()
4104 | x::xs ->
4105 f before_rev x xs;
4106 aux (x::before_rev) xs
4107 in
4108 aux [] xs
4109
4110
4111
4112 (* kind of cartesian product of x*x *)
4113 let rec (get_pair: ('a list) -> (('a * 'a) list)) = function
4114 | [] -> []
4115 | x::xs -> (List.map (fun y -> (x,y)) xs) ++ (get_pair xs)
4116
4117
4118 (* retourne le rang dans une liste d'un element *)
4119 let rang elem liste =
4120 let rec rang_rec elem accu = function
4121 | [] -> raise Not_found
4122 | a::l -> if a =*= elem then accu
4123 else rang_rec elem (accu+1) l in
4124 rang_rec elem 1 liste
4125
4126 (* retourne vrai si une liste contient des doubles *)
4127 let rec doublon = function
4128 | [] -> false
4129 | a::l -> if List.mem a l then true
4130 else doublon l
4131
4132 let rec (insert_in: 'a -> 'a list -> 'a list list) = fun x -> function
4133 | [] -> [[x]]
4134 | y::ys -> (x::y::ys) :: (List.map (fun xs -> y::xs) (insert_in x ys))
4135 (* insert_in 3 [1;2] = [[3; 1; 2]; [1; 3; 2]; [1; 2; 3]] *)
4136
4137 let rec (permutation: 'a list -> 'a list list) = function
4138 | [] -> []
4139 | [x] -> [[x]]
4140 | x::xs -> List.flatten (List.map (insert_in x) (permutation xs))
4141 (* permutation [1;2;3] =
4142 * [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]
4143 *)
4144
4145
4146 let rec remove_elem_pos pos xs =
4147 match (pos, xs) with
4148 | _, [] -> failwith "remove_elem_pos"
4149 | 0, x::xs -> xs
4150 | n, x::xs -> x::(remove_elem_pos (n-1) xs)
4151
4152 let rec insert_elem_pos (e, pos) xs =
4153 match (pos, xs) with
4154 | 0, xs -> e::xs
4155 | n, x::xs -> x::(insert_elem_pos (e, (n-1)) xs)
4156 | n, [] -> failwith "insert_elem_pos"
4157
4158 let rec uncons_permut xs =
4159 let indexed = index_list xs in
4160 indexed +> List.map (fun (x, pos) -> (x, pos), remove_elem_pos pos xs)
4161 let _ =
4162 example
4163 (uncons_permut ['a';'b';'c'] =*=
4164 [('a', 0), ['b';'c'];
4165 ('b', 1), ['a';'c'];
4166 ('c', 2), ['a';'b']
4167 ])
4168
4169 let rec uncons_permut_lazy xs =
4170 let indexed = index_list xs in
4171 indexed +> List.map (fun (x, pos) ->
4172 (x, pos),
4173 lazy (remove_elem_pos pos xs)
4174 )
4175
4176
4177
4178
4179 (* pixel *)
4180 let rec map_flatten f l =
4181 let rec map_flatten_aux accu = function
4182 | [] -> accu
4183 | e :: l -> map_flatten_aux (List.rev (f e) ++ accu) l
4184 in List.rev (map_flatten_aux [] l)
4185
4186
4187 let rec repeat e n =
4188 let rec repeat_aux acc = function
4189 | 0 -> acc
4190 | n when n < 0 -> failwith "repeat"
4191 | n -> repeat_aux (e::acc) (n-1) in
4192 repeat_aux [] n
4193
4194 let rec map2 f = function
4195 | [] -> []
4196 | x::xs -> let r = f x in r::map2 f xs
4197
4198 let rec map3 f l =
4199 let rec map3_aux acc = function
4200 | [] -> acc
4201 | x::xs -> map3_aux (f x::acc) xs in
4202 map3_aux [] l
4203
4204 (*
4205 let tails2 xs = map rev (inits (rev xs))
4206 let res = tails2 [1;2;3;4]
4207 let res = tails [1;2;3;4]
4208 let id x = x
4209 *)
4210
4211 let pack_sorted same xs =
4212 let rec pack_s_aux acc xs =
4213 match (acc,xs) with
4214 | ((cur,rest),[]) -> cur::rest
4215 | ((cur,rest), y::ys) ->
4216 if same (List.hd cur) y then pack_s_aux (y::cur, rest) ys
4217 else pack_s_aux ([y], cur::rest) ys
4218 in pack_s_aux ([List.hd xs],[]) (List.tl xs) +> List.rev
4219 let test = pack_sorted (=*=) [1;1;1;2;2;3;4]
4220
4221
4222 let rec keep_best f =
4223 let rec partition e = function
4224 | [] -> e, []
4225 | e' :: l ->
4226 match f(e,e') with
4227 | None -> let (e'', l') = partition e l in e'', e' :: l'
4228 | Some e'' -> partition e'' l
4229 in function
4230 | [] -> []
4231 | e::l ->
4232 let (e', l') = partition e l in
4233 e' :: keep_best f l'
4234
4235 let rec sorted_keep_best f = function
4236 | [] -> []
4237 | [a] -> [a]
4238 | a :: b :: l ->
4239 match f a b with
4240 | None -> a :: sorted_keep_best f (b :: l)
4241 | Some e -> sorted_keep_best f (e :: l)
4242
4243
4244
4245 let (cartesian_product: 'a list -> 'b list -> ('a * 'b) list) = fun xs ys ->
4246 xs +> List.map (fun x -> ys +> List.map (fun y -> (x,y)))
4247 +> List.flatten
4248
4249 let _ = assert_equal
4250 (cartesian_product [1;2] ["3";"4";"5"])
4251 [1,"3";1,"4";1,"5"; 2,"3";2,"4";2,"5"]
4252
4253 let sort_prof a b =
4254 profile_code "Common.sort_by_xxx" (fun () -> List.sort a b)
4255
4256 let sort_by_val_highfirst xs =
4257 sort_prof (fun (k1,v1) (k2,v2) -> compare v2 v1) xs
4258 let sort_by_val_lowfirst xs =
4259 sort_prof (fun (k1,v1) (k2,v2) -> compare v1 v2) xs
4260
4261 let sort_by_key_highfirst xs =
4262 sort_prof (fun (k1,v1) (k2,v2) -> compare k2 k1) xs
4263 let sort_by_key_lowfirst xs =
4264 sort_prof (fun (k1,v1) (k2,v2) -> compare k1 k2) xs
4265
4266 let _ = example (sort_by_key_lowfirst [4, (); 7,()] =*= [4,(); 7,()])
4267 let _ = example (sort_by_key_highfirst [4,(); 7,()] =*= [7,(); 4,()])
4268
4269
4270 let sortgen_by_key_highfirst xs =
4271 sort_prof (fun (k1,v1) (k2,v2) -> compare k2 k1) xs
4272 let sortgen_by_key_lowfirst xs =
4273 sort_prof (fun (k1,v1) (k2,v2) -> compare k1 k2) xs
4274
4275 (*----------------------------------*)
4276
4277 (* sur surEnsemble [p1;p2] [[p1;p2;p3] [p1;p2] ....] -> [[p1;p2;p3] ... *)
4278 (* mais pas p2;p3 *)
4279 (* (aop) *)
4280 let surEnsemble liste_el liste_liste_el =
4281 List.filter
4282 (function liste_elbis ->
4283 List.for_all (function el -> List.mem el liste_elbis) liste_el
4284 ) liste_liste_el;;
4285
4286
4287
4288 (*----------------------------------*)
4289 (* combinaison/product/.... (aop) *)
4290 (* 123 -> 123 12 13 23 1 2 3 *)
4291 let rec realCombinaison = function
4292 | [] -> []
4293 | [a] -> [[a]]
4294 | a::l ->
4295 let res = realCombinaison l in
4296 let res2 = List.map (function x -> a::x) res in
4297 res2 ++ res ++ [[a]]
4298
4299 (* genere toutes les combinaisons possible de paire *)
4300 (* par exemple combinaison [1;2;4] -> [1, 2; 1, 4; 2, 4] *)
4301 let rec combinaison = function
4302 | [] -> []
4303 | [a] -> []
4304 | [a;b] -> [(a, b)]
4305 | a::b::l -> (List.map (function elem -> (a, elem)) (b::l)) ++
4306 (combinaison (b::l))
4307
4308 (*----------------------------------*)
4309
4310 (* list of list(aop) *)
4311 (* insere elem dans la liste de liste (si elem est deja present dans une de *)
4312 (* ces listes, on ne fait rien *)
4313 let rec insere elem = function
4314 | [] -> [[elem]]
4315 | a::l ->
4316 if (List.mem elem a) then a::l
4317 else a::(insere elem l)
4318
4319 let rec insereListeContenant lis el = function
4320 | [] -> [el::lis]
4321 | a::l ->
4322 if List.mem el a then
4323 (List.append lis a)::l
4324 else a::(insereListeContenant lis el l)
4325
4326 (* fusionne les listes contenant et1 et et2 dans la liste de liste*)
4327 let rec fusionneListeContenant (et1, et2) = function
4328 | [] -> [[et1; et2]]
4329 | a::l ->
4330 (* si les deux sont deja dedans alors rien faire *)
4331 if List.mem et1 a then
4332 if List.mem et2 a then a::l
4333 else
4334 insereListeContenant a et2 l
4335 else if List.mem et2 a then
4336 insereListeContenant a et1 l
4337 else a::(fusionneListeContenant (et1, et2) l)
4338
4339 (*****************************************************************************)
4340 (* Arrays *)
4341 (*****************************************************************************)
4342
4343 (* do bound checking ? *)
4344 let array_find_index f a =
4345 let rec array_find_index_ i =
4346 if f i then i else array_find_index_ (i+1)
4347 in
4348 try array_find_index_ 0 with _ -> raise Not_found
4349
4350 let array_find_index_via_elem f a =
4351 let rec array_find_index_ i =
4352 if f a.(i) then i else array_find_index_ (i+1)
4353 in
4354 try array_find_index_ 0 with _ -> raise Not_found
4355
4356
4357
4358 type idx = Idx of int
4359 let next_idx (Idx i) = (Idx (i+1))
4360 let int_of_idx (Idx i) = i
4361
4362 let array_find_index_typed f a =
4363 let rec array_find_index_ i =
4364 if f i then i else array_find_index_ (next_idx i)
4365 in
4366 try array_find_index_ (Idx 0) with _ -> raise Not_found
4367
4368
4369
4370 (*****************************************************************************)
4371 (* Matrix *)
4372 (*****************************************************************************)
4373
4374 type 'a matrix = 'a array array
4375
4376 let map_matrix f mat =
4377 mat +> Array.map (fun arr -> arr +> Array.map f)
4378
4379 let (make_matrix_init:
4380 nrow:int -> ncolumn:int -> (int -> int -> 'a) -> 'a matrix) =
4381 fun ~nrow ~ncolumn f ->
4382 Array.init nrow (fun i ->
4383 Array.init ncolumn (fun j ->
4384 f i j
4385 )
4386 )
4387
4388 let iter_matrix f m =
4389 Array.iteri (fun i e ->
4390 Array.iteri (fun j x ->
4391 f i j x
4392 ) e
4393 ) m
4394
4395 let nb_rows_matrix m =
4396 Array.length m
4397
4398 let nb_columns_matrix m =
4399 assert(Array.length m > 0);
4400 Array.length m.(0)
4401
4402 (* check all nested arrays have the same size *)
4403 let invariant_matrix m =
4404 raise Todo
4405
4406 let (rows_of_matrix: 'a matrix -> 'a list list) = fun m ->
4407 Array.to_list m +> List.map Array.to_list
4408
4409 let (columns_of_matrix: 'a matrix -> 'a list list) = fun m ->
4410 let nbcols = nb_columns_matrix m in
4411 let nbrows = nb_rows_matrix m in
4412 (enum 0 (nbcols -1)) +> List.map (fun j ->
4413 (enum 0 (nbrows -1)) +> List.map (fun i ->
4414 m.(i).(j)
4415 ))
4416
4417
4418 let all_elems_matrix_by_row m =
4419 rows_of_matrix m +> List.flatten
4420
4421
4422 let ex_matrix1 =
4423 [|
4424 [|0;1;2|];
4425 [|3;4;5|];
4426 [|6;7;8|];
4427 |]
4428 let ex_rows1 =
4429 [
4430 [0;1;2];
4431 [3;4;5];
4432 [6;7;8];
4433 ]
4434 let ex_columns1 =
4435 [
4436 [0;3;6];
4437 [1;4;7];
4438 [2;5;8];
4439 ]
4440 let _ = example (rows_of_matrix ex_matrix1 =*= ex_rows1)
4441 let _ = example (columns_of_matrix ex_matrix1 =*= ex_columns1)
4442
4443
4444 (*****************************************************************************)
4445 (* Fast array *)
4446 (*****************************************************************************)
4447 (*
4448 module B_Array = Bigarray.Array2
4449 *)
4450
4451 (*
4452 open B_Array
4453 open Bigarray
4454 *)
4455
4456
4457 (* for the string_of auto generation of camlp4
4458 val b_array_string_of_t : 'a -> 'b -> string
4459 val bigarray_string_of_int16_unsigned_elt : 'a -> string
4460 val bigarray_string_of_c_layout : 'a -> string
4461 let b_array_string_of_t f a = "<>"
4462 let bigarray_string_of_int16_unsigned_elt a = "<>"
4463 let bigarray_string_of_c_layout a = "<>"
4464
4465 *)
4466
4467
4468 (*****************************************************************************)
4469 (* Set. Have a look too at set*.mli *)
4470 (*****************************************************************************)
4471 type 'a set = 'a list
4472 (* with sexp *)
4473
4474 let (empty_set: 'a set) = []
4475 let (insert_set: 'a -> 'a set -> 'a set) = fun x xs ->
4476 if List.mem x xs
4477 then (* let _ = print_string "warning insert: already exist" in *)
4478 xs
4479 else x::xs
4480
4481 let is_set xs =
4482 has_no_duplicate xs
4483
4484 let (single_set: 'a -> 'a set) = fun x -> insert_set x empty_set
4485 let (set: 'a list -> 'a set) = fun xs ->
4486 xs +> List.fold_left (flip insert_set) empty_set
4487
4488 let (exists_set: ('a -> bool) -> 'a set -> bool) = List.exists
4489 let (forall_set: ('a -> bool) -> 'a set -> bool) = List.for_all
4490 let (filter_set: ('a -> bool) -> 'a set -> 'a set) = List.filter
4491 let (fold_set: ('a -> 'b -> 'a) -> 'a -> 'b set -> 'a) = List.fold_left
4492 let (map_set: ('a -> 'b) -> 'a set -> 'b set) = List.map
4493 let (member_set: 'a -> 'a set -> bool) = List.mem
4494
4495 let find_set = List.find
4496 let sort_set = List.sort
4497 let iter_set = List.iter
4498
4499 let (top_set: 'a set -> 'a) = List.hd
4500
4501 let (inter_set: 'a set -> 'a set -> 'a set) = fun s1 s2 ->
4502 s1 +> fold_set (fun acc x -> if member_set x s2 then insert_set x acc else acc) empty_set
4503 let (union_set: 'a set -> 'a set -> 'a set) = fun s1 s2 ->
4504 s2 +> fold_set (fun acc x -> if member_set x s1 then acc else insert_set x acc) s1
4505 let (minus_set: 'a set -> 'a set -> 'a set) = fun s1 s2 ->
4506 s1 +> filter_set (fun x -> not (member_set x s2))
4507
4508
4509 let union_all l = List.fold_left union_set [] l
4510
4511 let big_union_set f xs = xs +> map_set f +> fold_set union_set empty_set
4512
4513 let (card_set: 'a set -> int) = List.length
4514
4515 let (include_set: 'a set -> 'a set -> bool) = fun s1 s2 ->
4516 (s1 +> forall_set (fun p -> member_set p s2))
4517
4518 let equal_set s1 s2 = include_set s1 s2 && include_set s2 s1
4519
4520 let (include_set_strict: 'a set -> 'a set -> bool) = fun s1 s2 ->
4521 (card_set s1 < card_set s2) && (include_set s1 s2)
4522
4523 let ($*$) = inter_set
4524 let ($+$) = union_set
4525 let ($-$) = minus_set
4526 let ($?$) a b = profile_code "$?$" (fun () -> member_set a b)
4527 let ($<$) = include_set_strict
4528 let ($<=$) = include_set
4529 let ($=$) = equal_set
4530
4531 (* as $+$ but do not check for memberness, allow to have set of func *)
4532 let ($@$) = fun a b -> a @ b
4533
4534 let rec nub = function
4535 [] -> []
4536 | x::xs -> if List.mem x xs then nub xs else x::(nub xs)
4537
4538 (*****************************************************************************)
4539 (* Set as normal list *)
4540 (*****************************************************************************)
4541 (*
4542 let (union: 'a list -> 'a list -> 'a list) = fun l1 l2 ->
4543 List.fold_left (fun acc x -> if List.mem x l1 then acc else x::acc) l1 l2
4544
4545 let insert_normal x xs = union xs [x]
4546
4547 (* retourne lis1 - lis2 *)
4548 let minus l1 l2 = List.filter (fun x -> not (List.mem x l2)) l1
4549
4550 let inter l1 l2 = List.fold_left (fun acc x -> if List.mem x l2 then x::acc else acc) [] l1
4551
4552 let union_list = List.fold_left union []
4553
4554 let uniq lis =
4555 List.fold_left (function acc -> function el -> union [el] acc) [] lis
4556
4557 (* pixel *)
4558 let rec non_uniq = function
4559 | [] -> []
4560 | e::l -> if mem e l then e :: non_uniq l else non_uniq l
4561
4562 let rec inclu lis1 lis2 =
4563 List.for_all (function el -> List.mem el lis2) lis1
4564
4565 let equivalent lis1 lis2 =
4566 (inclu lis1 lis2) && (inclu lis2 lis1)
4567
4568 *)
4569
4570
4571 (*****************************************************************************)
4572 (* Set as sorted list *)
4573 (*****************************************************************************)
4574 (* liste trie, cos we need to do intersection, and insertion (it is a set
4575 cos when introduce has, if we create a new has => must do a recurse_rep
4576 and another categ can have to this has => must do an union
4577 *)
4578 (*
4579 let rec insert x = function
4580 | [] -> [x]
4581 | y::ys ->
4582 if x = y then y::ys
4583 else (if x < y then x::y::ys else y::(insert x ys))
4584
4585 (* same, suppose sorted list *)
4586 let rec intersect x y =
4587 match(x,y) with
4588 | [], y -> []
4589 | x, [] -> []
4590 | x::xs, y::ys ->
4591 if x = y then x::(intersect xs ys)
4592 else
4593 (if x < y then intersect xs (y::ys)
4594 else intersect (x::xs) ys
4595 )
4596 (* intersect [1;3;7] [2;3;4;7;8];; *)
4597 *)
4598
4599 (*****************************************************************************)
4600 (* Assoc *)
4601 (*****************************************************************************)
4602 type ('a,'b) assoc = ('a * 'b) list
4603 (* with sexp *)
4604
4605
4606 let (assoc_to_function: ('a, 'b) assoc -> ('a -> 'b)) = fun xs ->
4607 xs +> List.fold_left (fun acc (k, v) ->
4608 (fun k' ->
4609 if k =*= k' then v else acc k'
4610 )) (fun k -> failwith "no key in this assoc")
4611 (* simpler:
4612 let (assoc_to_function: ('a, 'b) assoc -> ('a -> 'b)) = fun xs ->
4613 fun k -> List.assoc k xs
4614 *)
4615
4616 let (empty_assoc: ('a, 'b) assoc) = []
4617 let fold_assoc = List.fold_left
4618 let insert_assoc = fun x xs -> x::xs
4619 let map_assoc = List.map
4620 let filter_assoc = List.filter
4621
4622 let assoc = List.assoc
4623 let keys xs = List.map fst xs
4624
4625 let lookup = assoc
4626
4627 (* assert unique key ?*)
4628 let del_assoc key xs = xs +> List.filter (fun (k,v) -> k <> key)
4629 let replace_assoc (key, v) xs = insert_assoc (key, v) (del_assoc key xs)
4630
4631 let apply_assoc key f xs =
4632 let old = assoc key xs in
4633 replace_assoc (key, f old) xs
4634
4635 let big_union_assoc f xs = xs +> map_assoc f +> fold_assoc union_set empty_set
4636
4637 (* todo: pb normally can suppr fun l -> .... l but if do that, then strange type _a
4638 => assoc_map is strange too => equal dont work
4639 *)
4640 let (assoc_reverse: (('a * 'b) list) -> (('b * 'a) list)) = fun l ->
4641 List.map (fun(x,y) -> (y,x)) l
4642
4643 let (assoc_map: (('a * 'b) list) -> (('a * 'b) list) -> (('a * 'a) list)) =
4644 fun l1 l2 ->
4645 let (l1bis, l2bis) = (assoc_reverse l1, assoc_reverse l2) in
4646 List.map (fun (x,y) -> (y, List.assoc x l2bis )) l1bis
4647
4648 let rec (lookup_list: 'a -> ('a , 'b) assoc list -> 'b) = fun el -> function
4649 | [] -> raise Not_found
4650 | (xs::xxs) -> try List.assoc el xs with Not_found -> lookup_list el xxs
4651
4652 let (lookup_list2: 'a -> ('a , 'b) assoc list -> ('b * int)) = fun el xxs ->
4653 let rec lookup_l_aux i = function
4654 | [] -> raise Not_found
4655 | (xs::xxs) ->
4656 try let res = List.assoc el xs in (res,i)
4657 with Not_found -> lookup_l_aux (i+1) xxs
4658 in lookup_l_aux 0 xxs
4659
4660 let _ = example
4661 (lookup_list2 "c" [["a",1;"b",2];["a",1;"b",3];["a",1;"c",7]] =*= (7,2))
4662
4663
4664 let assoc_option k l =
4665 optionise (fun () -> List.assoc k l)
4666
4667 let assoc_with_err_msg k l =
4668 try List.assoc k l
4669 with Not_found ->
4670 pr2 (spf "pb assoc_with_err_msg: %s" (dump k));
4671 raise Not_found
4672
4673 (*****************************************************************************)
4674 (* Assoc int -> xxx with binary tree. Have a look too at Mapb.mli *)
4675 (*****************************************************************************)
4676
4677 (* ex: type robot_list = robot_info IntMap.t *)
4678 module IntMap = Map.Make
4679 (struct
4680 type t = int
4681 let compare = compare
4682 end)
4683 let intmap_to_list m = IntMap.fold (fun id v acc -> (id, v) :: acc) m []
4684 let intmap_string_of_t f a = "<Not Yet>"
4685
4686 module IntIntMap = Map.Make
4687 (struct
4688 type t = int * int
4689 let compare = compare
4690 end)
4691
4692 let intintmap_to_list m = IntIntMap.fold (fun id v acc -> (id, v) :: acc) m []
4693 let intintmap_string_of_t f a = "<Not Yet>"
4694
4695
4696 (*****************************************************************************)
4697 (* Hash *)
4698 (*****************************************************************************)
4699
4700 (* il parait que better when choose a prime *)
4701 let hcreate () = Hashtbl.create 401
4702 let hadd (k,v) h = Hashtbl.add h k v
4703 let hmem k h = Hashtbl.mem h k
4704 let hfind k h = Hashtbl.find h k
4705 let hreplace (k,v) h = Hashtbl.replace h k v
4706 let hiter = Hashtbl.iter
4707 let hfold = Hashtbl.fold
4708 let hremove k h = Hashtbl.remove h k
4709
4710
4711 let hash_to_list h =
4712 Hashtbl.fold (fun k v acc -> (k,v)::acc) h []
4713 +> List.sort compare
4714
4715 let hash_to_list_unsorted h =
4716 Hashtbl.fold (fun k v acc -> (k,v)::acc) h []
4717
4718 let hash_of_list xs =
4719 let h = Hashtbl.create 101 in
4720 begin
4721 xs +> List.iter (fun (k, v) -> Hashtbl.add h k v);
4722 h
4723 end
4724
4725 let _ =
4726 let h = Hashtbl.create 101 in
4727 Hashtbl.add h "toto" 1;
4728 Hashtbl.add h "toto" 1;
4729 assert(hash_to_list h =*= ["toto",1; "toto",1])
4730
4731
4732 let hfind_default key value_if_not_found h =
4733 try Hashtbl.find h key
4734 with Not_found ->
4735 (Hashtbl.add h key (value_if_not_found ()); Hashtbl.find h key)
4736
4737 (* not as easy as Perl $h->{key}++; but still possible *)
4738 let hupdate_default key op value_if_not_found h =
4739 let old = hfind_default key value_if_not_found h in
4740 Hashtbl.replace h key (op old)
4741
4742
4743 let hfind_option key h =
4744 optionise (fun () -> Hashtbl.find h key)
4745
4746
4747 (* see below: let hkeys h = ... *)
4748
4749
4750 (*****************************************************************************)
4751 (* Hash sets *)
4752 (*****************************************************************************)
4753
4754 type 'a hashset = ('a, bool) Hashtbl.t
4755 (* with sexp *)
4756
4757
4758 let hash_hashset_add k e h =
4759 match optionise (fun () -> Hashtbl.find h k) with
4760 | Some hset -> Hashtbl.replace hset e true
4761 | None ->
4762 let hset = Hashtbl.create 11 in
4763 begin
4764 Hashtbl.add h k hset;
4765 Hashtbl.replace hset e true;
4766 end
4767
4768 let hashset_to_set baseset h =
4769 h +> hash_to_list +> List.map fst +> (fun xs -> baseset#fromlist xs)
4770
4771 let hashset_to_list h = hash_to_list h +> List.map fst
4772
4773 let hashset_of_list xs =
4774 xs +> List.map (fun x -> x, true) +> hash_of_list
4775
4776
4777
4778 let hkeys h =
4779 let hkey = Hashtbl.create 101 in
4780 h +> Hashtbl.iter (fun k v -> Hashtbl.replace hkey k true);
4781 hashset_to_list hkey
4782
4783
4784
4785 let group_assoc_bykey_eff2 xs =
4786 let h = Hashtbl.create 101 in
4787 xs +> List.iter (fun (k, v) -> Hashtbl.add h k v);
4788 let keys = hkeys h in
4789 keys +> List.map (fun k -> k, Hashtbl.find_all h k)
4790
4791 let group_assoc_bykey_eff xs =
4792 profile_code2 "Common.group_assoc_bykey_eff" (fun () ->
4793 group_assoc_bykey_eff2 xs)
4794
4795
4796 let test_group_assoc () =
4797 let xs = enum 0 10000 +> List.map (fun i -> i_to_s i, i) in
4798 let xs = ("0", 2)::xs in
4799 (* let _ys = xs +> Common.groupBy (fun (a,resa) (b,resb) -> a =$= b) *)
4800 let ys = xs +> group_assoc_bykey_eff
4801 in
4802 pr2_gen ys
4803
4804
4805 let uniq_eff xs =
4806 let h = Hashtbl.create 101 in
4807 xs +> List.iter (fun k ->
4808 Hashtbl.add h k true
4809 );
4810 hkeys h
4811
4812
4813
4814 let diff_two_say_set_eff xs1 xs2 =
4815 let h1 = hashset_of_list xs1 in
4816 let h2 = hashset_of_list xs2 in
4817
4818 let hcommon = Hashtbl.create 101 in
4819 let honly_in_h1 = Hashtbl.create 101 in
4820 let honly_in_h2 = Hashtbl.create 101 in
4821
4822 h1 +> Hashtbl.iter (fun k _ ->
4823 if Hashtbl.mem h2 k
4824 then Hashtbl.replace hcommon k true
4825 else Hashtbl.add honly_in_h1 k true
4826 );
4827 h2 +> Hashtbl.iter (fun k _ ->
4828 if Hashtbl.mem h1 k
4829 then Hashtbl.replace hcommon k true
4830 else Hashtbl.add honly_in_h2 k true
4831 );
4832 hashset_to_list hcommon,
4833 hashset_to_list honly_in_h1,
4834 hashset_to_list honly_in_h2
4835
4836
4837 (*****************************************************************************)
4838 (* Stack *)
4839 (*****************************************************************************)
4840 type 'a stack = 'a list
4841 (* with sexp *)
4842
4843 let (empty_stack: 'a stack) = []
4844 let (push: 'a -> 'a stack -> 'a stack) = fun x xs -> x::xs
4845 let (top: 'a stack -> 'a) = List.hd
4846 let (pop: 'a stack -> 'a stack) = List.tl
4847
4848 let top_option = function
4849 | [] -> None
4850 | x::xs -> Some x
4851
4852
4853
4854
4855 (* now in prelude:
4856 * let push2 v l = l := v :: !l
4857 *)
4858
4859 let pop2 l =
4860 let v = List.hd !l in
4861 begin
4862 l := List.tl !l;
4863 v
4864 end
4865
4866
4867 (*****************************************************************************)
4868 (* Undoable Stack *)
4869 (*****************************************************************************)
4870
4871 (* Okasaki use such structure also for having efficient data structure
4872 * supporting fast append.
4873 *)
4874
4875 type 'a undo_stack = 'a list * 'a list (* redo *)
4876
4877 let (empty_undo_stack: 'a undo_stack) =
4878 [], []
4879
4880 (* push erase the possible redo *)
4881 let (push_undo: 'a -> 'a undo_stack -> 'a undo_stack) = fun x (undo,redo) ->
4882 x::undo, []
4883
4884 let (top_undo: 'a undo_stack -> 'a) = fun (undo, redo) ->
4885 List.hd undo
4886
4887 let (pop_undo: 'a undo_stack -> 'a undo_stack) = fun (undo, redo) ->
4888 match undo with
4889 | [] -> failwith "empty undo stack"
4890 | x::xs ->
4891 xs, x::redo
4892
4893 let (undo_pop: 'a undo_stack -> 'a undo_stack) = fun (undo, redo) ->
4894 match redo with
4895 | [] -> failwith "empty redo, nothing to redo"
4896 | x::xs ->
4897 x::undo, xs
4898
4899 let redo_undo x = undo_pop x
4900
4901
4902 let top_undo_option = fun (undo, redo) ->
4903 match undo with
4904 | [] -> None
4905 | x::xs -> Some x
4906
4907 (*****************************************************************************)
4908 (* Binary tree *)
4909 (*****************************************************************************)
4910 type 'a bintree = Leaf of 'a | Branch of ('a bintree * 'a bintree)
4911
4912
4913 (*****************************************************************************)
4914 (* N-ary tree *)
4915 (*****************************************************************************)
4916
4917 (* no empty tree, must have one root at list *)
4918 type 'a tree = Tree of 'a * ('a tree) list
4919
4920 let rec (tree_iter: ('a -> unit) -> 'a tree -> unit) = fun f tree ->
4921 match tree with
4922 | Tree (node, xs) ->
4923 f node;
4924 xs +> List.iter (tree_iter f)
4925
4926
4927 (*****************************************************************************)
4928 (* N-ary tree with updatable childrens *)
4929 (*****************************************************************************)
4930
4931 (* no empty tree, must have one root at list *)
4932
4933 type 'a treeref =
4934 | NodeRef of 'a * 'a treeref list ref
4935
4936 let treeref_children_ref tree =
4937 match tree with
4938 | NodeRef (n, x) -> x
4939
4940
4941
4942 let rec (treeref_node_iter:
4943 (* (('a * ('a, 'b) treeref list ref) -> unit) ->
4944 ('a, 'b) treeref -> unit
4945 *) 'a)
4946 =
4947 fun f tree ->
4948 match tree with
4949 (* | LeafRef _ -> ()*)
4950 | NodeRef (n, xs) ->
4951 f (n, xs);
4952 !xs +> List.iter (treeref_node_iter f)
4953
4954
4955 let find_treeref f tree =
4956 let res = ref [] in
4957
4958 tree +> treeref_node_iter (fun (n, xs) ->
4959 if f (n,xs)
4960 then push2 (n, xs) res;
4961 );
4962 match !res with
4963 | [n,xs] -> NodeRef (n, xs)
4964 | [] -> raise Not_found
4965 | x::y::zs -> raise Multi_found
4966
4967 let rec (treeref_node_iter_with_parents:
4968 (* (('a * ('a, 'b) treeref list ref) -> ('a list) -> unit) ->
4969 ('a, 'b) treeref -> unit)
4970 *) 'a)
4971 =
4972 fun f tree ->
4973 let rec aux acc tree =
4974 match tree with
4975 (* | LeafRef _ -> ()*)
4976 | NodeRef (n, xs) ->
4977 f (n, xs) acc ;
4978 !xs +> List.iter (aux (n::acc))
4979 in
4980 aux [] tree
4981
4982
4983 (* ---------------------------------------------------------------------- *)
4984 (* Leaf can seem redundant, but sometimes want to directly see if
4985 * a children is a leaf without looking if the list is empty.
4986 *)
4987 type ('a, 'b) treeref2 =
4988 | NodeRef2 of 'a * ('a, 'b) treeref2 list ref
4989 | LeafRef2 of 'b
4990
4991
4992 let treeref2_children_ref tree =
4993 match tree with
4994 | LeafRef2 _ -> failwith "treeref_tail: leaf"
4995 | NodeRef2 (n, x) -> x
4996
4997
4998
4999 let rec (treeref_node_iter2:
5000 (('a * ('a, 'b) treeref2 list ref) -> unit) ->
5001 ('a, 'b) treeref2 -> unit) =
5002 fun f tree ->
5003 match tree with
5004 | LeafRef2 _ -> ()
5005 | NodeRef2 (n, xs) ->
5006 f (n, xs);
5007 !xs +> List.iter (treeref_node_iter2 f)
5008
5009
5010 let find_treeref2 f tree =
5011 let res = ref [] in
5012
5013 tree +> treeref_node_iter2 (fun (n, xs) ->
5014 if f (n,xs)
5015 then push2 (n, xs) res;
5016 );
5017 match !res with
5018 | [n,xs] -> NodeRef2 (n, xs)
5019 | [] -> raise Not_found
5020 | x::y::zs -> raise Multi_found
5021
5022
5023
5024
5025 let rec (treeref_node_iter_with_parents2:
5026 (('a * ('a, 'b) treeref2 list ref) -> ('a list) -> unit) ->
5027 ('a, 'b) treeref2 -> unit) =
5028 fun f tree ->
5029 let rec aux acc tree =
5030 match tree with
5031 | LeafRef2 _ -> ()
5032 | NodeRef2 (n, xs) ->
5033 f (n, xs) acc ;
5034 !xs +> List.iter (aux (n::acc))
5035 in
5036 aux [] tree
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050 let find_treeref_with_parents_some f tree =
5051 let res = ref [] in
5052
5053 tree +> treeref_node_iter_with_parents (fun (n, xs) parents ->
5054 match f (n,xs) parents with
5055 | Some v -> push2 v res;
5056 | None -> ()
5057 );
5058 match !res with
5059 | [v] -> v
5060 | [] -> raise Not_found
5061 | x::y::zs -> raise Multi_found
5062
5063 let find_multi_treeref_with_parents_some f tree =
5064 let res = ref [] in
5065
5066 tree +> treeref_node_iter_with_parents (fun (n, xs) parents ->
5067 match f (n,xs) parents with
5068 | Some v -> push2 v res;
5069 | None -> ()
5070 );
5071 match !res with
5072 | [v] -> !res
5073 | [] -> raise Not_found
5074 | x::y::zs -> !res
5075
5076
5077 (*****************************************************************************)
5078 (* Graph. Have a look too at Ograph_*.mli *)
5079 (*****************************************************************************)
5080 (* todo: generalise to put in common (need 'edge (and 'c ?),
5081 * and take in param a display func, cos caml sux, no overloading of show :(
5082 * Simple impelemntation. Can do also matrix, or adjacent list, or pointer(ref)
5083 * todo: do some check (dont exist already, ...)
5084 *)
5085
5086 type 'node graph = ('node set) * (('node * 'node) set)
5087
5088 let (add_node: 'a -> 'a graph -> 'a graph) = fun node (nodes, arcs) ->
5089 (node::nodes, arcs)
5090
5091 let (del_node: 'a -> 'a graph -> 'a graph) = fun node (nodes, arcs) ->
5092 (nodes $-$ set [node], arcs)
5093 (* could do more job:
5094 let _ = assert (successors node (nodes, arcs) = empty) in
5095 +> List.filter (fun (src, dst) -> dst != node))
5096 *)
5097 let (add_arc: ('a * 'a) -> 'a graph -> 'a graph) = fun arc (nodes, arcs) ->
5098 (nodes, set [arc] $+$ arcs)
5099
5100 let (del_arc: ('a * 'a) -> 'a graph -> 'a graph) = fun arc (nodes, arcs) ->
5101 (nodes, arcs +> List.filter (fun a -> not (arc =*= a)))
5102
5103 let (successors: 'a -> 'a graph -> 'a set) = fun x (nodes, arcs) ->
5104 arcs +> List.filter (fun (src, dst) -> src =*= x) +> List.map snd
5105
5106 let (predecessors: 'a -> 'a graph -> 'a set) = fun x (nodes, arcs) ->
5107 arcs +> List.filter (fun (src, dst) -> dst =*= x) +> List.map fst
5108
5109 let (nodes: 'a graph -> 'a set) = fun (nodes, arcs) -> nodes
5110
5111 (* pre: no cycle *)
5112 let rec (fold_upward: ('b -> 'a -> 'b) -> 'a set -> 'b -> 'a graph -> 'b) =
5113 fun f xs acc graph ->
5114 match xs with
5115 | [] -> acc
5116 | x::xs -> (f acc x)
5117 +> (fun newacc -> fold_upward f (graph +> predecessors x) newacc graph)
5118 +> (fun newacc -> fold_upward f xs newacc graph)
5119 (* TODO avoid already visited *)
5120
5121 let empty_graph = ([], [])
5122
5123
5124
5125 (*
5126 let (add_arcs_toward: int -> (int list) -> 'a graph -> 'a graph) = fun i xs ->
5127 function
5128 (nodes, arcs) -> (nodes, (List.map (fun j -> (j,i) ) xs)++arcs)
5129 let (del_arcs_toward: int -> (int list) -> 'a graph -> 'a graph)= fun i xs g ->
5130 List.fold_left (fun acc el -> del_arc (el, i) acc) g xs
5131 let (add_arcs_from: int -> (int list) -> 'a graph -> 'a graph) = fun i xs ->
5132 function
5133 (nodes, arcs) -> (nodes, (List.map (fun j -> (i,j) ) xs)++arcs)
5134
5135
5136 let (del_node: (int * 'node) -> 'node graph -> 'node graph) = fun node ->
5137 function (nodes, arcs) ->
5138 let newnodes = List.filter (fun a -> not (node = a)) nodes in
5139 if newnodes = nodes then (raise Not_found) else (newnodes, arcs)
5140 let (replace_node: int -> 'node -> 'node graph -> 'node graph) = fun i n ->
5141 function (nodes, arcs) ->
5142 let newnodes = List.filter (fun (j,_) -> not (i = j)) nodes in
5143 ((i,n)::newnodes, arcs)
5144 let (get_node: int -> 'node graph -> 'node) = fun i -> function
5145 (nodes, arcs) -> List.assoc i nodes
5146
5147 let (get_free: 'a graph -> int) = function
5148 (nodes, arcs) -> (maximum (List.map fst nodes))+1
5149 (* require no cycle !!
5150 TODO if cycle check that we have already visited a node *)
5151 let rec (succ_all: int -> 'a graph -> (int list)) = fun i -> function
5152 (nodes, arcs) as g ->
5153 let direct = succ i g in
5154 union direct (union_list (List.map (fun i -> succ_all i g) direct))
5155 let rec (pred_all: int -> 'a graph -> (int list)) = fun i -> function
5156 (nodes, arcs) as g ->
5157 let direct = pred i g in
5158 union direct (union_list (List.map (fun i -> pred_all i g) direct))
5159 (* require that the nodes are different !! *)
5160 let rec (equal: 'a graph -> 'a graph -> bool) = fun g1 g2 ->
5161 let ((nodes1, arcs1),(nodes2, arcs2)) = (g1,g2) in
5162 try
5163 (* do 2 things, check same length and to assoc *)
5164 let conv = assoc_map nodes1 nodes2 in
5165 List.for_all (fun (i1,i2) ->
5166 List.mem (List.assoc i1 conv, List.assoc i2 conv) arcs2)
5167 arcs1
5168 && (List.length arcs1 = List.length arcs2)
5169 (* could think that only forall is needed, but need check same lenth too*)
5170 with _ -> false
5171
5172 let (display: 'a graph -> ('a -> unit) -> unit) = fun g display_func ->
5173 let rec aux depth i =
5174 print_n depth " ";
5175 print_int i; print_string "->"; display_func (get_node i g);
5176 print_string "\n";
5177 List.iter (aux (depth+2)) (succ i g)
5178 in aux 0 1
5179
5180 let (display_dot: 'a graph -> ('a -> string) -> unit)= fun (nodes,arcs) func ->
5181 let file = open_out "test.dot" in
5182 output_string file "digraph misc {\n" ;
5183 List.iter (fun (n, node) ->
5184 output_int file n; output_string file " [label=\"";
5185 output_string file (func node); output_string file " \"];\n"; ) nodes;
5186 List.iter (fun (i1,i2) -> output_int file i1 ; output_string file " -> " ;
5187 output_int file i2 ; output_string file " ;\n"; ) arcs;
5188 output_string file "}\n" ;
5189 close_out file;
5190 let status = Unix.system "viewdot test.dot" in
5191 ()
5192 (* todo: faire = graphe (int can change !!! => cant make simply =)
5193 reassign number first !!
5194 *)
5195
5196 (* todo: mettre diff(modulo = !!) en rouge *)
5197 let (display_dot2: 'a graph -> 'a graph -> ('a -> string) -> unit) =
5198 fun (nodes1, arcs1) (nodes2, arcs2) func ->
5199 let file = open_out "test.dot" in
5200 output_string file "digraph misc {\n" ;
5201 output_string file "rotate = 90;\n";
5202 List.iter (fun (n, node) ->
5203 output_string file "100"; output_int file n;
5204 output_string file " [label=\"";
5205 output_string file (func node); output_string file " \"];\n"; ) nodes1;
5206 List.iter (fun (n, node) ->
5207 output_string file "200"; output_int file n;
5208 output_string file " [label=\"";
5209 output_string file (func node); output_string file " \"];\n"; ) nodes2;
5210 List.iter (fun (i1,i2) ->
5211 output_string file "100"; output_int file i1 ; output_string file " -> " ;
5212 output_string file "100"; output_int file i2 ; output_string file " ;\n";
5213 )
5214 arcs1;
5215 List.iter (fun (i1,i2) ->
5216 output_string file "200"; output_int file i1 ; output_string file " -> " ;
5217 output_string file "200"; output_int file i2 ; output_string file " ;\n"; )
5218 arcs2;
5219 (* output_string file "500 -> 1001; 500 -> 2001}\n" ; *)
5220 output_string file "}\n" ;
5221 close_out file;
5222 let status = Unix.system "viewdot test.dot" in
5223 ()
5224
5225
5226 *)
5227 (*****************************************************************************)
5228 (* Generic op *)
5229 (*****************************************************************************)
5230 (* overloading *)
5231
5232 let map = List.map (* note: really really slow, use rev_map if possible *)
5233 let filter = List.filter
5234 let fold = List.fold_left
5235 let member = List.mem
5236 let iter = List.iter
5237 let find = List.find
5238 let exists = List.exists
5239 let forall = List.for_all
5240 let big_union f xs = xs +> map f +> fold union_set empty_set
5241 (* let empty = [] *)
5242 let empty_list = []
5243 let sort = List.sort
5244 let length = List.length
5245 (* in prelude now: let null xs = match xs with [] -> true | _ -> false *)
5246 let head = List.hd
5247 let tail = List.tl
5248 let is_singleton = fun xs -> List.length xs =|= 1
5249
5250 let tail_map f l = (* tail recursive map, using rev *)
5251 let rec loop acc = function
5252 [] -> acc
5253 | x::xs -> loop ((f x) :: acc) xs in
5254 List.rev(loop [] l)
5255
5256 (*****************************************************************************)
5257 (* Geometry (raytracer) *)
5258 (*****************************************************************************)
5259
5260 type vector = (float * float * float)
5261 type point = vector
5262 type color = vector (* color(0-1) *)
5263
5264 (* todo: factorise *)
5265 let (dotproduct: vector * vector -> float) =
5266 fun ((x1,y1,z1),(x2,y2,z2)) -> (x1*.x2 +. y1*.y2 +. z1*.z2)
5267 let (vector_length: vector -> float) =
5268 fun (x,y,z) -> sqrt (square x +. square y +. square z)
5269 let (minus_point: point * point -> vector) =
5270 fun ((x1,y1,z1),(x2,y2,z2)) -> ((x1 -. x2),(y1 -. y2),(z1 -. z2))
5271 let (distance: point * point -> float) =
5272 fun (x1, x2) -> vector_length (minus_point (x2,x1))
5273 let (normalise: vector -> vector) =
5274 fun (x,y,z) ->
5275 let len = vector_length (x,y,z) in (x /. len, y /. len, z /. len)
5276 let (mult_coeff: vector -> float -> vector) =
5277 fun (x,y,z) c -> (x *. c, y *. c, z *. c)
5278 let (add_vector: vector -> vector -> vector) =
5279 fun v1 v2 -> let ((x1,y1,z1),(x2,y2,z2)) = (v1,v2) in
5280 (x1+.x2, y1+.y2, z1+.z2)
5281 let (mult_vector: vector -> vector -> vector) =
5282 fun v1 v2 -> let ((x1,y1,z1),(x2,y2,z2)) = (v1,v2) in
5283 (x1*.x2, y1*.y2, z1*.z2)
5284 let sum_vector = List.fold_left add_vector (0.0,0.0,0.0)
5285
5286 (*****************************************************************************)
5287 (* Pics (raytracer) *)
5288 (*****************************************************************************)
5289
5290 type pixel = (int * int * int) (* RGB *)
5291
5292 (* required pixel list in row major order, line after line *)
5293 let (write_ppm: int -> int -> (pixel list) -> string -> unit) = fun
5294 width height xs filename ->
5295 let chan = open_out filename in
5296 begin
5297 output_string chan "P6\n";
5298 output_string chan ((string_of_int width) ^ "\n");
5299 output_string chan ((string_of_int height) ^ "\n");
5300 output_string chan "255\n";
5301 List.iter (fun (r,g,b) ->
5302 List.iter (fun byt -> output_byte chan byt) [r;g;b]
5303 ) xs;
5304 close_out chan
5305 end
5306
5307 let test_ppm1 () = write_ppm 100 100
5308 ((generate (50*100) (1,45,100)) ++ (generate (50*100) (1,1,100)))
5309 "img.ppm"
5310
5311 (*****************************************************************************)
5312 (* Diff (lfs) *)
5313 (*****************************************************************************)
5314 type diff = Match | BnotinA | AnotinB
5315
5316 let (diff: (int -> int -> diff -> unit)-> (string list * string list) -> unit)=
5317 fun f (xs,ys) ->
5318 let file1 = "/tmp/diff1-" ^ (string_of_int (Unix.getuid ())) in
5319 let file2 = "/tmp/diff2-" ^ (string_of_int (Unix.getuid ())) in
5320 let fileresult = "/tmp/diffresult-" ^ (string_of_int (Unix.getuid ())) in
5321 write_file file1 (unwords xs);
5322 write_file file2 (unwords ys);
5323 command2
5324 ("diff --side-by-side -W 1 " ^ file1 ^ " " ^ file2 ^ " > " ^ fileresult);
5325 let res = cat fileresult in
5326 let a = ref 0 in
5327 let b = ref 0 in
5328 res +> List.iter (fun s ->
5329 match s with
5330 | ("" | " ") -> f !a !b Match; incr a; incr b;
5331 | ">" -> f !a !b BnotinA; incr b;
5332 | ("|" | "/" | "\\" ) ->
5333 f !a !b BnotinA; f !a !b AnotinB; incr a; incr b;
5334 | "<" -> f !a !b AnotinB; incr a;
5335 | _ -> raise Impossible
5336 )
5337 (*
5338 let _ =
5339 diff
5340 ["0";"a";"b";"c";"d"; "f";"g";"h";"j";"q"; "z"]
5341 [ "a";"b";"c";"d";"e";"f";"g";"i";"j";"k";"r";"x";"y";"z"]
5342 (fun x y -> pr "match")
5343 (fun x y -> pr "a_not_in_b")
5344 (fun x y -> pr "b_not_in_a")
5345 *)
5346
5347 let (diff2: (int -> int -> diff -> unit) -> (string * string) -> unit) =
5348 fun f (xstr,ystr) ->
5349 write_file "/tmp/diff1" xstr;
5350 write_file "/tmp/diff2" ystr;
5351 command2
5352 ("diff --side-by-side --left-column -W 1 " ^
5353 "/tmp/diff1 /tmp/diff2 > /tmp/diffresult");
5354 let res = cat "/tmp/diffresult" in
5355 let a = ref 0 in
5356 let b = ref 0 in
5357 res +> List.iter (fun s ->
5358 match s with
5359 | "(" -> f !a !b Match; incr a; incr b;
5360 | ">" -> f !a !b BnotinA; incr b;
5361 | "|" -> f !a !b BnotinA; f !a !b AnotinB; incr a; incr b;
5362 | "<" -> f !a !b AnotinB; incr a;
5363 | _ -> raise Impossible
5364 )
5365
5366
5367 (*****************************************************************************)
5368 (* Parsers (aop-colcombet) *)
5369 (*****************************************************************************)
5370
5371 let parserCommon lexbuf parserer lexer =
5372 try
5373 let result = parserer lexer lexbuf in
5374 result
5375 with Parsing.Parse_error ->
5376 print_string "buf: "; print_string lexbuf.Lexing.lex_buffer;
5377 print_string "\n";
5378 print_string "current: "; print_int lexbuf.Lexing.lex_curr_pos;
5379 print_string "\n";
5380 raise Parsing.Parse_error
5381
5382
5383 (* marche pas ca neuneu *)
5384 (*
5385 let getDoubleParser parserer lexer string =
5386 let lexbuf1 = Lexing.from_string string in
5387 let chan = open_in string in
5388 let lexbuf2 = Lexing.from_channel chan in
5389 (parserCommon lexbuf1 parserer lexer , parserCommon lexbuf2 parserer lexer )
5390 *)
5391
5392 let getDoubleParser parserer lexer =
5393 (
5394 (function string ->
5395 let lexbuf1 = Lexing.from_string string in
5396 parserCommon lexbuf1 parserer lexer
5397 ),
5398 (function string ->
5399 let chan = open_in string in
5400 let lexbuf2 = Lexing.from_channel chan in
5401 parserCommon lexbuf2 parserer lexer
5402 ))
5403
5404
5405 (*****************************************************************************)
5406 (* parser combinators *)
5407 (*****************************************************************************)
5408
5409 (* cf parser_combinators.ml
5410 *
5411 * Could also use ocaml stream. but not backtrack and forced to do LL,
5412 * so combinators are better.
5413 *
5414 *)
5415
5416
5417 (*****************************************************************************)
5418 (* Parser related (cocci) *)
5419 (*****************************************************************************)
5420
5421 type parse_info = {
5422 str: string;
5423 charpos: int;
5424
5425 line: int;
5426 column: int;
5427 file: filename;
5428 }
5429 (* with sexp *)
5430
5431 let fake_parse_info = {
5432 charpos = -1; str = "";
5433 line = -1; column = -1; file = "";
5434 }
5435
5436 let string_of_parse_info x =
5437 spf "%s at %s:%d:%d" x.str x.file x.line x.column
5438 let string_of_parse_info_bis x =
5439 spf "%s:%d:%d" x.file x.line x.column
5440
5441 let (info_from_charpos2: int -> filename -> (int * int * string)) =
5442 fun charpos filename ->
5443
5444 (* Currently lexing.ml does not handle the line number position.
5445 * Even if there is some fields in the lexing structure, they are not
5446 * maintained by the lexing engine :( So the following code does not work:
5447 * let pos = Lexing.lexeme_end_p lexbuf in
5448 * sprintf "at file %s, line %d, char %d" pos.pos_fname pos.pos_lnum
5449 * (pos.pos_cnum - pos.pos_bol) in
5450 * Hence this function to overcome the previous limitation.
5451 *)
5452 let chan = open_in filename in
5453 let linen = ref 0 in
5454 let posl = ref 0 in
5455 let rec charpos_to_pos_aux last_valid =
5456 let s =
5457 try Some (input_line chan)
5458 with End_of_file when charpos =|= last_valid -> None in
5459 incr linen;
5460 match s with
5461 Some s ->
5462 let s = s ^ "\n" in
5463 if (!posl + slength s > charpos)
5464 then begin
5465 close_in chan;
5466 (!linen, charpos - !posl, s)
5467 end
5468 else begin
5469 posl := !posl + slength s;
5470 charpos_to_pos_aux !posl;
5471 end
5472 | None -> (!linen, charpos - !posl, "\n")
5473 in
5474 let res = charpos_to_pos_aux 0 in
5475 close_in chan;
5476 res
5477
5478 let info_from_charpos a b =
5479 profile_code "Common.info_from_charpos" (fun () -> info_from_charpos2 a b)
5480
5481
5482
5483 let full_charpos_to_pos2 = fun filename ->
5484
5485 let size = (filesize filename + 2) in
5486
5487 let arr = Array.create size (0,0) in
5488
5489 let chan = open_in filename in
5490
5491 let charpos = ref 0 in
5492 let line = ref 0 in
5493
5494 let rec full_charpos_to_pos_aux () =
5495 try
5496 let s = (input_line chan) in
5497 incr line;
5498
5499 (* '... +1 do' cos input_line dont return the trailing \n *)
5500 for i = 0 to (slength s - 1) + 1 do
5501 arr.(!charpos + i) <- (!line, i);
5502 done;
5503 charpos := !charpos + slength s + 1;
5504 full_charpos_to_pos_aux();
5505
5506 with End_of_file ->
5507 for i = !charpos to Array.length arr - 1 do
5508 arr.(i) <- (!line, 0);
5509 done;
5510 ();
5511 in
5512 begin
5513 full_charpos_to_pos_aux ();
5514 close_in chan;
5515 arr
5516 end
5517 let full_charpos_to_pos a =
5518 profile_code "Common.full_charpos_to_pos" (fun () -> full_charpos_to_pos2 a)
5519
5520 let test_charpos file =
5521 full_charpos_to_pos file +> dump +> pr2
5522
5523
5524
5525 let complete_parse_info filename table x =
5526 { x with
5527 file = filename;
5528 line = fst (table.(x.charpos));
5529 column = snd (table.(x.charpos));
5530 }
5531
5532
5533
5534 let full_charpos_to_pos_large2 = fun filename ->
5535
5536 let size = (filesize filename + 2) in
5537
5538 (* old: let arr = Array.create size (0,0) in *)
5539 let arr1 = Bigarray.Array1.create
5540 Bigarray.int Bigarray.c_layout size in
5541 let arr2 = Bigarray.Array1.create
5542 Bigarray.int Bigarray.c_layout size in
5543 Bigarray.Array1.fill arr1 0;
5544 Bigarray.Array1.fill arr2 0;
5545
5546 let chan = open_in filename in
5547
5548 let charpos = ref 0 in
5549 let line = ref 0 in
5550
5551 let rec full_charpos_to_pos_aux () =
5552 let s = (input_line chan) in
5553 incr line;
5554
5555 (* '... +1 do' cos input_line dont return the trailing \n *)
5556 for i = 0 to (slength s - 1) + 1 do
5557 (* old: arr.(!charpos + i) <- (!line, i); *)
5558 arr1.{!charpos + i} <- (!line);
5559 arr2.{!charpos + i} <- i;
5560 done;
5561 charpos := !charpos + slength s + 1;
5562 full_charpos_to_pos_aux() in
5563 begin
5564 (try
5565 full_charpos_to_pos_aux ();
5566 with End_of_file ->
5567 for i = !charpos to (* old: Array.length arr *)
5568 Bigarray.Array1.dim arr1 - 1 do
5569 (* old: arr.(i) <- (!line, 0); *)
5570 arr1.{i} <- !line;
5571 arr2.{i} <- 0;
5572 done;
5573 ());
5574 close_in chan;
5575 (fun i -> arr1.{i}, arr2.{i})
5576 end
5577 let full_charpos_to_pos_large a =
5578 profile_code "Common.full_charpos_to_pos_large"
5579 (fun () -> full_charpos_to_pos_large2 a)
5580
5581
5582 let complete_parse_info_large filename table x =
5583 { x with
5584 file = filename;
5585 line = fst (table (x.charpos));
5586 column = snd (table (x.charpos));
5587 }
5588
5589 (*---------------------------------------------------------------------------*)
5590 (* Decalage is here to handle stuff such as cpp which include file and who
5591 * can make shift.
5592 *)
5593 let (error_messagebis: filename -> (string * int) -> int -> string)=
5594 fun filename (lexeme, lexstart) decalage ->
5595
5596 let charpos = lexstart + decalage in
5597 let tok = lexeme in
5598 let (line, pos, linecontent) = info_from_charpos charpos filename in
5599 sprintf "File \"%s\", line %d, column %d, charpos = %d
5600 around = '%s', whole content = %s"
5601 filename line pos charpos tok (chop linecontent)
5602
5603 let error_message = fun filename (lexeme, lexstart) ->
5604 try error_messagebis filename (lexeme, lexstart) 0
5605 with
5606 End_of_file ->
5607 ("PB in Common.error_message, position " ^ i_to_s lexstart ^
5608 " given out of file:" ^ filename)
5609
5610
5611
5612 let error_message_short = fun filename (lexeme, lexstart) ->
5613 try
5614 let charpos = lexstart in
5615 let (line, pos, linecontent) = info_from_charpos charpos filename in
5616 sprintf "File \"%s\", line %d" filename line
5617
5618 with End_of_file ->
5619 begin
5620 ("PB in Common.error_message, position " ^ i_to_s lexstart ^
5621 " given out of file:" ^ filename);
5622 end
5623
5624
5625
5626 (*****************************************************************************)
5627 (* Regression testing bis (cocci) *)
5628 (*****************************************************************************)
5629
5630 (* todo: keep also size of file, compute md5sum ? cos maybe the file
5631 * has changed!.
5632 *
5633 * todo: could also compute the date, or some version info of the program,
5634 * can record the first date when was found a OK, the last date where
5635 * was ok, and then first date when found fail. So the
5636 * Common.Ok would have more information that would be passed
5637 * to the Common.Pb of date * date * date * string peut etre.
5638 *
5639 * todo? maybe use plain text file instead of marshalling.
5640 *)
5641
5642 type score_result = Ok | Pb of string
5643 (* with sexp *)
5644 type score = (string (* usually a filename *), score_result) Hashtbl.t
5645 (* with sexp *)
5646 type score_list = (string (* usually a filename *) * score_result) list
5647 (* with sexp *)
5648
5649 let empty_score () = (Hashtbl.create 101 : score)
5650
5651
5652
5653 let regression_testing_vs newscore bestscore =
5654
5655 let newbestscore = empty_score () in
5656
5657 let allres =
5658 (hash_to_list newscore +> List.map fst)
5659 $+$
5660 (hash_to_list bestscore +> List.map fst)
5661 in
5662 begin
5663 allres +> List.iter (fun res ->
5664 match
5665 optionise (fun () -> Hashtbl.find newscore res),
5666 optionise (fun () -> Hashtbl.find bestscore res)
5667 with
5668 | None, None -> raise Impossible
5669 | Some x, None ->
5670 Printf.printf "new test file appeared: %s\n" res;
5671 Hashtbl.add newbestscore res x;
5672 | None, Some x ->
5673 Printf.printf "old test file disappeared: %s\n" res;
5674 | Some newone, Some bestone ->
5675 (match newone, bestone with
5676 | Ok, Ok ->
5677 Hashtbl.add newbestscore res Ok
5678 | Pb x, Ok ->
5679 Printf.printf
5680 "PBBBBBBBB: a test file does not work anymore!!! : %s\n" res;
5681 Printf.printf "Error : %s\n" x;
5682 Hashtbl.add newbestscore res Ok
5683 | Ok, Pb x ->
5684 Printf.printf "Great: a test file now works: %s\n" res;
5685 Hashtbl.add newbestscore res Ok
5686 | Pb x, Pb y ->
5687 Hashtbl.add newbestscore res (Pb x);
5688 if not (x =$= y)
5689 then begin
5690 Printf.printf
5691 "Semipb: still error but not same error : %s\n" res;
5692 Printf.printf "%s\n" (chop ("Old error: " ^ y));
5693 Printf.printf "New error: %s\n" x;
5694 end
5695 )
5696 );
5697 flush stdout; flush stderr;
5698 newbestscore
5699 end
5700
5701 let regression_testing newscore best_score_file =
5702
5703 pr2 ("regression file: "^ best_score_file);
5704 let (bestscore : score) =
5705 if not (Sys.file_exists best_score_file)
5706 then write_value (empty_score()) best_score_file;
5707 get_value best_score_file
5708 in
5709 let newbestscore = regression_testing_vs newscore bestscore in
5710 write_value newbestscore (best_score_file ^ ".old");
5711 write_value newbestscore best_score_file;
5712 ()
5713
5714
5715
5716
5717 let string_of_score_result v =
5718 match v with
5719 | Ok -> "Ok"
5720 | Pb s -> "Pb: " ^ s
5721
5722 let total_scores score =
5723 let total = hash_to_list score +> List.length in
5724 let good = hash_to_list score +> List.filter
5725 (fun (s, v) -> v =*= Ok) +> List.length in
5726 good, total
5727
5728
5729 let print_total_score score =
5730 pr2 "--------------------------------";
5731 pr2 "total score";
5732 pr2 "--------------------------------";
5733 let (good, total) = total_scores score in
5734 pr2 (sprintf "good = %d/%d" good total)
5735
5736 let print_score score =
5737 score +> hash_to_list +> List.iter (fun (k, v) ->
5738 pr2 (sprintf "% s --> %s" k (string_of_score_result v))
5739 );
5740 print_total_score score;
5741 ()
5742
5743
5744 (*****************************************************************************)
5745 (* Scope managment (cocci) *)
5746 (*****************************************************************************)
5747
5748 (* could also make a function Common.make_scope_functions that return
5749 * the new_scope, del_scope, do_in_scope, add_env. Kind of functor :)
5750 *)
5751
5752 type ('a, 'b) scoped_env = ('a, 'b) assoc list
5753
5754 (*
5755 let rec lookup_env f env =
5756 match env with
5757 | [] -> raise Not_found
5758 | []::zs -> lookup_env f zs
5759 | (x::xs)::zs ->
5760 match f x with
5761 | None -> lookup_env f (xs::zs)
5762 | Some y -> y
5763
5764 let member_env_key k env =
5765 try
5766 let _ = lookup_env (fun (k',v) -> if k = k' then Some v else None) env in
5767 true
5768 with Not_found -> false
5769
5770 *)
5771
5772 let rec lookup_env k env =
5773 match env with
5774 | [] -> raise Not_found
5775 | []::zs -> lookup_env k zs
5776 | ((k',v)::xs)::zs ->
5777 if k =*= k'
5778 then v
5779 else lookup_env k (xs::zs)
5780
5781 let member_env_key k env =
5782 match optionise (fun () -> lookup_env k env) with
5783 | None -> false
5784 | Some _ -> true
5785
5786
5787 let new_scope scoped_env = scoped_env := []::!scoped_env
5788 let del_scope scoped_env = scoped_env := List.tl !scoped_env
5789
5790 let do_in_new_scope scoped_env f =
5791 begin
5792 new_scope scoped_env;
5793 let res = f() in
5794 del_scope scoped_env;
5795 res
5796 end
5797
5798 let add_in_scope scoped_env def =
5799 let (current, older) = uncons !scoped_env in
5800 scoped_env := (def::current)::older
5801
5802
5803
5804
5805
5806 (* note that ocaml hashtbl store also old value of a binding when add
5807 * add a newbinding; that's why del_scope works
5808 *)
5809
5810 type ('a, 'b) scoped_h_env = {
5811 scoped_h : ('a, 'b) Hashtbl.t;
5812 scoped_list : ('a, 'b) assoc list;
5813 }
5814
5815 let empty_scoped_h_env () = {
5816 scoped_h = Hashtbl.create 101;
5817 scoped_list = [[]];
5818 }
5819 let clone_scoped_h_env x =
5820 { scoped_h = Hashtbl.copy x.scoped_h;
5821 scoped_list = x.scoped_list;
5822 }
5823
5824 let rec lookup_h_env k env =
5825 Hashtbl.find env.scoped_h k
5826
5827 let member_h_env_key k env =
5828 match optionise (fun () -> lookup_h_env k env) with
5829 | None -> false
5830 | Some _ -> true
5831
5832
5833 let new_scope_h scoped_env =
5834 scoped_env := {!scoped_env with scoped_list = []::!scoped_env.scoped_list}
5835 let del_scope_h scoped_env =
5836 begin
5837 List.hd !scoped_env.scoped_list +> List.iter (fun (k, v) ->
5838 Hashtbl.remove !scoped_env.scoped_h k
5839 );
5840 scoped_env := {!scoped_env with scoped_list =
5841 List.tl !scoped_env.scoped_list
5842 }
5843 end
5844
5845 let do_in_new_scope_h scoped_env f =
5846 begin
5847 new_scope_h scoped_env;
5848 let res = f() in
5849 del_scope_h scoped_env;
5850 res
5851 end
5852
5853 (*
5854 let add_in_scope scoped_env def =
5855 let (current, older) = uncons !scoped_env in
5856 scoped_env := (def::current)::older
5857 *)
5858
5859 let add_in_scope_h x (k,v) =
5860 begin
5861 Hashtbl.add !x.scoped_h k v;
5862 x := { !x with scoped_list =
5863 ((k,v)::(List.hd !x.scoped_list))::(List.tl !x.scoped_list);
5864 };
5865 end
5866
5867 (*****************************************************************************)
5868 (* Terminal *)
5869 (*****************************************************************************)
5870
5871 (* let ansi_terminal = ref true *)
5872
5873 let (_execute_and_show_progress_func: (int (* length *) -> ((unit -> unit) -> unit) -> unit) ref)
5874 = ref
5875 (fun a b ->
5876 failwith "no execute yet, have you included common_extra.cmo?"
5877 )
5878
5879
5880
5881 let execute_and_show_progress len f =
5882 !_execute_and_show_progress_func len f
5883
5884
5885 (* now in common_extra.ml:
5886 * let execute_and_show_progress len f = ...
5887 *)
5888
5889 (*****************************************************************************)
5890 (* Random *)
5891 (*****************************************************************************)
5892
5893 let _init_random = Random.self_init ()
5894 (*
5895 let random_insert i l =
5896 let p = Random.int (length l +1)
5897 in let rec insert i p l =
5898 if (p = 0) then i::l else (hd l)::insert i (p-1) (tl l)
5899 in insert i p l
5900
5901 let rec randomize_list = function
5902 [] -> []
5903 | a::l -> random_insert a (randomize_list l)
5904 *)
5905 let random_list xs =
5906 List.nth xs (Random.int (length xs))
5907
5908 (* todo_opti: use fisher/yates algorithm.
5909 * ref: http://en.wikipedia.org/wiki/Knuth_shuffle
5910 *
5911 * public static void shuffle (int[] array)
5912 * {
5913 * Random rng = new Random ();
5914 * int n = array.length;
5915 * while (--n > 0)
5916 * {
5917 * int k = rng.nextInt(n + 1); // 0 <= k <= n (!)
5918 * int temp = array[n];
5919 * array[n] = array[k];
5920 * array[k] = temp;
5921 * }
5922 * }
5923
5924 *)
5925 let randomize_list xs =
5926 let permut = permutation xs in
5927 random_list permut
5928
5929
5930
5931 let random_subset_of_list num xs =
5932 let array = Array.of_list xs in
5933 let len = Array.length array in
5934
5935 let h = Hashtbl.create 101 in
5936 let cnt = ref num in
5937 while !cnt > 0 do
5938 let x = Random.int len in
5939 if not (Hashtbl.mem h (array.(x))) (* bugfix2: not just x :) *)
5940 then begin
5941 Hashtbl.add h (array.(x)) true; (* bugfix1: not just x :) *)
5942 decr cnt;
5943 end
5944 done;
5945 let objs = hash_to_list h +> List.map fst in
5946 objs
5947
5948
5949
5950 (*****************************************************************************)
5951 (* Flags and actions *)
5952 (*****************************************************************************)
5953
5954 (* I put it inside a func as it can help to give a chance to
5955 * change the globals before getting the options as some
5956 * options sometimes may want to show the default value.
5957 *)
5958 let cmdline_flags_devel () =
5959 [
5960 "-debugger", Arg.Set debugger ,
5961 " option to set if launched inside ocamldebug";
5962 "-profile", Arg.Unit (fun () -> profile := PALL),
5963 " gather timing information about important functions";
5964 ]
5965 let cmdline_flags_verbose () =
5966 [
5967 "-verbose_level", Arg.Set_int verbose_level,
5968 " <int> guess what";
5969 "-disable_pr2_once", Arg.Set disable_pr2_once,
5970 " to print more messages";
5971 "-show_trace_profile", Arg.Set show_trace_profile,
5972 " show trace";
5973 ]
5974
5975 let cmdline_flags_other () =
5976 [
5977 "-nocheck_stack", Arg.Clear check_stack,
5978 " ";
5979 "-batch_mode", Arg.Set _batch_mode,
5980 " no interactivity"
5981 ]
5982
5983 (* potentially other common options but not yet integrated:
5984
5985 "-timeout", Arg.Set_int timeout,
5986 " <sec> interrupt LFS or buggy external plugins";
5987
5988 (* can't be factorized because of the $ cvs stuff, we want the date
5989 * of the main.ml file, not common.ml
5990 *)
5991 "-version", Arg.Unit (fun () ->
5992 pr2 "version: _dollar_Date: 2008/06/14 00:54:22 _dollar_";
5993 raise (Common.UnixExit 0)
5994 ),
5995 " guess what";
5996
5997 "-shorthelp", Arg.Unit (fun () ->
5998 !short_usage_func();
5999 raise (Common.UnixExit 0)
6000 ),
6001 " see short list of options";
6002 "-longhelp", Arg.Unit (fun () ->
6003 !long_usage_func();
6004 raise (Common.UnixExit 0)
6005 ),
6006 "-help", Arg.Unit (fun () ->
6007 !long_usage_func();
6008 raise (Common.UnixExit 0)
6009 ),
6010 " ";
6011 "--help", Arg.Unit (fun () ->
6012 !long_usage_func();
6013 raise (Common.UnixExit 0)
6014 ),
6015 " ";
6016
6017 *)
6018
6019 let cmdline_actions () =
6020 [
6021 "-test_check_stack", " <limit>",
6022 mk_action_1_arg test_check_stack_size;
6023 ]
6024
6025
6026 (*****************************************************************************)
6027 (* Postlude *)
6028 (*****************************************************************************)
6029 (* stuff put here cos of of forward definition limitation of ocaml *)
6030
6031
6032 (* Infix trick, seen in jane street lib and harrop's code, and maybe in GMP *)
6033 module Infix = struct
6034 let (+>) = (+>)
6035 let (==~) = (==~)
6036 let (=~) = (=~)
6037 end
6038
6039
6040 let main_boilerplate f =
6041 if not (!Sys.interactive) then
6042 exn_to_real_unixexit (fun () ->
6043
6044 Sys.set_signal Sys.sigint (Sys.Signal_handle (fun _ ->
6045 pr2 "C-c intercepted, will do some cleaning before exiting";
6046 (* But if do some try ... with e -> and if do not reraise the exn,
6047 * the bubble never goes at top and so I cant really C-c.
6048 *
6049 * A solution would be to not raise, but do the erase_temp_file in the
6050 * syshandler, here, and then exit.
6051 * The current solution is to not do some wild try ... with e
6052 * by having in the exn handler a case: UnixExit x -> raise ... | e ->
6053 *)
6054 Sys.set_signal Sys.sigint Sys.Signal_default;
6055 raise (UnixExit (-1))
6056 ));
6057
6058 (* The finalize below makes it tedious to go back to exn when use
6059 * 'back' in the debugger. Hence this special case. But the
6060 * Common.debugger will be set in main(), so too late, so
6061 * have to be quicker
6062 *)
6063 if Sys.argv +> Array.to_list +> List.exists (fun x -> x =$= "-debugger")
6064 then debugger := true;
6065
6066 finalize (fun ()->
6067 pp_do_in_zero_box (fun () ->
6068 f(); (* <---- here it is *)
6069 ))
6070 (fun()->
6071 if !profile <> PNONE
6072 then pr2 (profile_diagnostic ());
6073 erase_temp_files ();
6074 )
6075 )
6076 (* let _ = if not !Sys.interactive then (main ()) *)
6077
6078
6079 (* based on code found in cameleon from maxence guesdon *)
6080 let md5sum_of_string s =
6081 let com = spf "echo %s | md5sum | cut -d\" \" -f 1"
6082 (Filename.quote s)
6083 in
6084 match cmd_to_list com with
6085 | [s] ->
6086 (*pr2 s;*)
6087 s
6088 | _ -> failwith "md5sum_of_string wrong output"
6089
6090
6091
6092 let with_pr2_to_string f =
6093 let file = new_temp_file "pr2" "out" in
6094 redirect_stdout_stderr file f;
6095 cat file
6096
6097 (* julia: convert something printed using format to print into a string *)
6098 let format_to_string f =
6099 let (nm,o) = Filename.open_temp_file "format_to_s" ".out" in
6100 Format.set_formatter_out_channel o;
6101 let _ = f() in
6102 Format.print_newline();
6103 Format.print_flush();
6104 Format.set_formatter_out_channel stdout;
6105 close_out o;
6106 let i = open_in nm in
6107 let lines = ref [] in
6108 let rec loop _ =
6109 let cur = input_line i in
6110 lines := cur :: !lines;
6111 loop() in
6112 (try loop() with End_of_file -> ());
6113 close_in i;
6114 command2 ("rm -f " ^ nm);
6115 String.concat "\n" (List.rev !lines)
6116
6117
6118
6119 (*****************************************************************************)
6120 (* Misc/test *)
6121 (*****************************************************************************)
6122
6123 let (generic_print: 'a -> string -> string) = fun v typ ->
6124 write_value v "/tmp/generic_print";
6125 command2
6126 ("printf 'let (v:" ^ typ ^ ")= Common.get_value \"/tmp/generic_print\" " ^
6127 " in v;;' " ^
6128 " | calc.top > /tmp/result_generic_print");
6129 cat "/tmp/result_generic_print"
6130 +> drop_while (fun e -> not (e =~ "^#.*")) +> tail
6131 +> unlines
6132 +> (fun s ->
6133 if (s =~ ".*= \\(.+\\)")
6134 then matched1 s
6135 else "error in generic_print, not good format:" ^ s)
6136
6137 (* let main () = pr (generic_print [1;2;3;4] "int list") *)
6138
6139 class ['a] olist (ys: 'a list) =
6140 object(o)
6141 val xs = ys
6142 method view = xs
6143 (* method fold f a = List.fold_left f a xs *)
6144 method fold : 'b. ('b -> 'a -> 'b) -> 'b -> 'b =
6145 fun f accu -> List.fold_left f accu xs
6146 end
6147
6148
6149 (* let _ = write_value ((new setb[])#add 1) "/tmp/test" *)
6150 let typing_sux_test () =
6151 let x = Obj.magic [1;2;3] in
6152 let f1 xs = List.iter print_int xs in
6153 let f2 xs = List.iter print_string xs in
6154 (f1 x; f2 x)
6155
6156 (* let (test: 'a osetb -> 'a ocollection) = fun o -> (o :> 'a ocollection) *)
6157 (* let _ = test (new osetb (Setb.empty)) *)