Release coccinelle-0.1.8
[bpt/coccinelle.git] / engine / c_vs_c.ml
1 (*
2 * Copyright 2005-2009, Ecole des Mines de Nantes, University of Copenhagen
3 * Yoann Padioleau, Julia Lawall, Rene Rydhof Hansen, Henrik Stuart, Gilles Muller
4 * This file is part of Coccinelle.
5 *
6 * Coccinelle is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, according to version 2 of the License.
9 *
10 * Coccinelle is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with Coccinelle. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The authors reserve the right to distribute this or future versions of
19 * Coccinelle under other licenses.
20 *)
21
22
23 open Common
24
25 open Ast_c
26
27 (* For the moment I do only eq_type and not eq_expr, etc. The reason
28 * for eq_type is related to the typedef and struct isomorphism. Sometimes
29 * one use the typedef and sometimes the structname.
30 *
31 * TODO: should use the isomorphisms engine of julia.
32 * Maybe I can transform my ast_c in ast_cocci, and use julia's code ?
33 * Maybe I can add some Disj in my ast_c ?
34 *)
35
36
37 module type PARAM =
38 sig
39 type tin
40 type 'x tout
41
42 type 'a matcher = 'a -> 'a -> tin -> 'a tout
43
44 val (>>=):
45 (tin -> 'a tout) ->
46 ('a -> (tin -> 'b tout)) ->
47 (tin -> 'b tout)
48
49 val (>&&>) : bool -> (tin -> 'x tout) -> (tin -> 'x tout)
50
51 val return : 'a -> tin -> 'a tout
52 val fail : tin -> 'a tout
53 end
54
55
56 module C_VS_C =
57 functor (X : PARAM) ->
58 struct
59
60 type 'a matcher = 'a -> 'a -> X.tin -> 'a X.tout
61
62 let (>>=) = X.(>>=)
63 let (>&&>) = X.(>&&>)
64 let return = X.return
65 let fail = X.fail
66
67 let (option: 'a matcher -> ('a option matcher)) = fun f t1 t2 ->
68 match (t1,t2) with
69 | (Some t1, Some t2) ->
70 f t1 t2 >>= (fun t ->
71 return (Some t)
72 )
73 | (None, None) -> return None
74 | _ -> fail
75
76
77 let same_s saopt sbopt =
78 match saopt, sbopt with
79 | None, None -> true
80 | Some namea, Some nameb ->
81 let sa = Ast_c.str_of_name namea in
82 let sb = Ast_c.str_of_name nameb in
83 sa =$= sb
84 | _ -> false
85
86
87 let rec fullType a b =
88 let ((qua,iiqa), tya) = a in
89 let ((qub,iiqb), tyb) = b in
90 (qua.const =:= qub.const && qua.volatile =:= qub.volatile) >&&>
91
92 let (qu,iiq) = (qua, iiqa) in
93 typeC tya tyb >>= (fun ty ->
94 return ((qu,iiq), ty)
95 )
96
97 and typeC tya tyb =
98 let (a, iia) = tya in
99 let (b, iib) = tyb in
100
101 let iix = iia in
102
103 match a, b with
104 | BaseType a, BaseType b ->
105 a =*= b >&&> return (BaseType a, iix)
106 | Pointer a, Pointer b ->
107 fullType a b >>= (fun x -> return (Pointer x, iix))
108
109 | StructUnionName (sua, sa), StructUnionName (sub, sb) ->
110 (sua =*= sub && sa =$= sb) >&&>
111 return (StructUnionName (sua, sa), iix)
112
113 | TypeName (namea, opta), TypeName (nameb, optb) ->
114 let sa = Ast_c.str_of_name namea in
115 let sb = Ast_c.str_of_name nameb in
116
117 (* assert compatible opta optb ? *)
118 (*option fullType opta optb*)
119 sa =$= sb >&&>
120 let opt =
121 (match opta, optb with
122 | None, None -> None
123
124 | Some x, _
125 | _, Some x
126
127 -> Some x
128 )
129 in
130 return (TypeName (namea, opt), iix)
131
132
133 | Array (ea, a), Array (eb,b) ->
134 let get_option f = function Some x -> Some (f x) | None -> None in
135 let ea = get_option Lib_parsing_c.al_expr ea in
136 let eb = get_option Lib_parsing_c.al_expr eb in
137 ea =*= eb >&&> fullType a b >>= (fun x -> return (Array (ea, x), iix))
138
139 | FunctionType (returna, paramsa), FunctionType (returnb, paramsb) ->
140 let (tsa, (ba,iihas3dotsa)) = paramsa in
141 let (tsb, (bb,iihas3dotsb)) = paramsb in
142
143 let bx = ba in
144 let iihas3dotsx = iihas3dotsa in
145
146 (ba =:= bb && List.length tsa =|= List.length tsb) >&&>
147 fullType returna returnb >>= (fun returnx ->
148
149 Common.zip tsa tsb +> List.fold_left
150 (fun acc ((parama,iia),(paramb,iib))->
151 let iix = iia in
152 acc >>= (fun xs ->
153
154 let {p_register = (ba,iiba); p_namei = saopt; p_type = ta} =
155 parama in
156 let {p_register = (bb,iibb); p_namei = sbopt; p_type = tb} =
157 paramb in
158
159 let bx = ba in
160 let iibx = iiba in
161
162 let sxopt = saopt in
163
164
165 (* todo? iso on name or argument ? *)
166 (ba =:= bb && same_s saopt sbopt) >&&>
167 fullType ta tb >>= (fun tx ->
168 let paramx = { p_register = (bx, iibx);
169 p_namei = sxopt;
170 p_type = tx; } in
171 return ((paramx,iix)::xs)
172 )
173 )
174 ) (return [])
175 >>= (fun tsx ->
176 let paramsx = (List.rev tsx, (bx, iihas3dotsx)) in
177 return (FunctionType (returnx, paramsx), iix)
178 ))
179
180 | Enum (saopt, enuma), Enum (sbopt, enumb) ->
181 (saopt =*= sbopt &&
182 List.length enuma =|= List.length enumb &&
183 Common.zip enuma enumb +> List.for_all (fun
184 (((namesa,eopta), iicommaa), ((namesb,eoptb),iicommab))
185 ->
186 let sa = str_of_name namesa in
187 let sb = str_of_name namesb in
188 sa =$= sb &&
189 (* todo ? eopta and b can have some info so ok to use =*= ? *)
190 eopta =*= eoptb
191 )
192 ) >&&>
193 return (Enum (saopt, enuma), iix)
194
195 | EnumName sa, EnumName sb -> sa =$= sb >&&> return (EnumName sa, iix)
196
197 | ParenType a, ParenType b ->
198 (* iso here ? *)
199 fullType a b >>= (fun x ->
200 return (ParenType x, iix)
201 )
202
203 | TypeOfExpr ea, TypeOfExpr eb ->
204 let ea = Lib_parsing_c.al_expr ea in
205 let eb = Lib_parsing_c.al_expr eb in
206 ea =*= eb >&&> return (TypeOfExpr ea, iix)
207
208 | TypeOfType a, TypeOfType b ->
209 fullType a b >>= (fun x -> return (TypeOfType x, iix))
210
211 (* | TypeOfType a, b ->
212 | a, TypeOfType b ->
213 *)
214
215
216 | StructUnion (sua, saopt, sta), StructUnion (sub, sbopt, stb) ->
217 (sua =*= sub && saopt =*= sbopt && List.length sta =|= List.length stb)
218 >&&>
219 Common.zip sta stb +> List.fold_left
220 (fun acc ((fielda), (fieldb)) ->
221 acc >>= (fun xs ->
222 match fielda, fieldb with
223 | EmptyField iia, EmptyField iib ->
224 let iix = iia in
225 return ((EmptyField iix)::xs)
226
227 | DeclarationField (FieldDeclList (fa, iipta)),
228 DeclarationField (FieldDeclList (fb, iiptb)) ->
229 let iipt = iipta in (* TODO ?*)
230 (List.length fa =|= List.length fb) >&&>
231
232 Common.zip fa fb +> List.fold_left
233 (fun acc2 ((fielda,iia),(fieldb,iib))->
234 let iix = iia in
235 acc2 >>= (fun xs ->
236 match fielda, fieldb with
237 | Simple (nameaopt, ta), Simple (namebopt, tb) ->
238
239
240 same_s nameaopt namebopt >&&>
241 fullType ta tb >>= (fun tx ->
242 return (((Simple (nameaopt, tx)), iix)::xs)
243 )
244
245 | BitField (nameopta, ta, infoa, ea),
246 BitField (nameoptb, tb, infob, eb) ->
247 let infox = infoa in
248 (same_s nameopta nameoptb && ea =*= eb) >&&>
249 fullType ta tb >>= (fun tx ->
250 return (((BitField (nameopta,tx,infox,ea)), iix)::xs)
251 )
252 | _,_ -> fail
253 )
254 ) (return [])
255 >>= (fun fx ->
256 return (((DeclarationField
257 (FieldDeclList (List.rev fx,iipt))))::xs)
258 )
259 | _ -> fail
260 )
261
262
263 ) (return [])
264 >>= (fun stx ->
265 return (StructUnion (sua, saopt, List.rev stx), iix)
266 )
267
268
269
270 (* choose the lub.
271 * subtil: in the return must put iia, not iix, and in following case
272 * must put iib and not iix, because we want the token corresponding
273 * to the typedef.
274 *)
275 | TypeName (name, Some a), _ ->
276 fullType a (Ast_c.nQ, tyb) >>= (fun x ->
277 return (TypeName (name, Some x), iia)
278 )
279
280 | _, TypeName (name, Some b) ->
281 fullType b (Ast_c.nQ, tya) >>= (fun x ->
282 return (TypeName (name, Some x), iib) (* subtil: *)
283 )
284
285 | _, _ -> fail
286
287
288
289 end
290
291 module XEQ = struct
292 type tin = unit
293 type 'a tout = 'a option
294
295 type 'a matcher = 'a -> 'a -> tin -> 'a tout
296
297 let return x = fun tin -> Some x
298 let fail = fun tin -> None
299
300 let (>>=) m f = fun tin ->
301 match m tin with
302 | None -> None
303 | Some x -> f x tin
304
305 let (>&&>) b m = fun tin ->
306 if b then m tin
307 else fail tin
308
309 end
310
311 module EQ = C_VS_C (XEQ)
312
313
314 let eq_type2 a b = EQ.fullType a b () <> None
315 let merge_type2 a b = Common.some (EQ.fullType a b ())
316
317 let eq_type a b =
318 Common.profile_code "C_vs_c" (fun () -> eq_type2 a b)
319
320 let merge_type a b =
321 Common.profile_code "C_vs_c" (fun () -> merge_type2 a b)