Release coccinelle-0.2.5-rc2
[bpt/coccinelle.git] / parsing_c / visitor_c.ml
1 (* Yoann Padioleau
2 *
3 * Copyright (C) 2010, University of Copenhagen DIKU and INRIA.
4 * Copyright (C) 2006, 2007, 2008, 2009 Ecole des Mines de Nantes
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License (GPL)
8 * version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * file license.txt for more details.
14 *)
15 open Common
16
17
18 open Ast_c
19 module F = Control_flow_c
20
21 (*****************************************************************************)
22 (* Prelude *)
23 (*****************************************************************************)
24
25 (* todo? dont go in Include. Have a visitor flag ? disable_go_include ?
26 * disable_go_type_annotation ?
27 *)
28
29 (*****************************************************************************)
30 (* Wrappers *)
31 (*****************************************************************************)
32 let pr2, pr2_once = Common.mk_pr2_wrappers Flag_parsing_c.verbose_visit
33
34 (*****************************************************************************)
35 (* Functions to visit the Ast, and now also the CFG nodes *)
36 (*****************************************************************************)
37
38 (* Why this module ?
39 *
40 * The problem is that we manipulate the AST of C programs
41 * and some of our analysis need only to specify an action for
42 * specific cases, such as the function call case, and recurse
43 * for the other cases.
44 * Here is a simplification of our AST:
45 *
46 * type ctype =
47 * | Basetype of ...
48 * | Pointer of ctype
49 * | Array of expression option * ctype
50 * | ...
51 * and expression =
52 * | Ident of string
53 * | FunCall of expression * expression list
54 * | Postfix of ...
55 * | RecordAccess of ..
56 * | ...
57 * and statement =
58 * ...
59 * and declaration =
60 * ...
61 * and program =
62 * ...
63 *
64 * What we want is really write code like
65 *
66 * let my_analysis program =
67 * analyze_all_expressions program (fun expr ->
68 * match expr with
69 * | FunCall (e, es) -> do_something()
70 * | _ -> <find_a_way_to_recurse_for_all_the_other_cases>
71 * )
72 *
73 * The problem is how to write analyze_all_expressions
74 * and find_a_way_to_recurse_for_all_the_other_cases.
75 *
76 * Our solution is to mix the ideas of visitor, pattern matching,
77 * and continuation. Here is how it looks like
78 * using our hybrid-visitor API:
79 *
80 * let my_analysis program =
81 * Visitor.visit_iter program {
82 * Visitor.kexpr = (fun k e ->
83 * match e with
84 * | FunCall (e, es) -> do_something()
85 * | _ -> k e
86 * );
87 * }
88 *
89 * You can of course also give action "hooks" for
90 * kstatement, ktype, or kdeclaration. But we don't overuse
91 * visitors and so it would be stupid to provide
92 * kfunction_call, kident, kpostfix hooks as one can just
93 * use pattern matching with kexpr to achieve the same effect.
94 *
95 * Note: when want to apply recursively, always apply the continuator
96 * on the toplevel expression, otherwise may miss some intermediate steps.
97 * Do
98 * match expr with
99 * | FunCall (e, es) -> ...
100 * k expr
101 * Or
102 * match expr with
103 * | FunCall (e, es) -> ...
104 * Visitor_c.vk_expr bigf e
105 * Not
106 * match expr with
107 * | FunCall (e, es) -> ...
108 * k e
109 *
110 *
111 *
112 *
113 *
114 * Alternatives: from the caml mailing list:
115 * "You should have a look at the Camlp4 metaprogramming facilities :
116 * http://brion.inria.fr/gallium/index.php/Camlp4MapGenerator
117 * You would write something like" :
118 * let my_analysis program =
119 * let analysis = object (self)
120 * inherit fold as super
121 * method expr = function
122 * | FunCall (e, es) -> do_something (); self
123 * | other -> super#expr other
124 * end in analysis#expr
125 *
126 * The problem is that you don't have control about what is generated
127 * and in our case we sometimes dont want to visit too much. For instance
128 * our visitor don't recurse on the type annotation of expressions
129 * Ok, this could be worked around, but the pb remains, you
130 * don't have control and at some point you may want. In the same
131 * way we want to enforce a certain order in the visit (ok this is not good,
132 * but it's convenient) of ast elements. For instance first
133 * processing the left part 'e' of a Funcall(e,es), then the arguments 'es'.
134 *
135 *)
136
137 (* Visitor based on continuation. Cleaner than the one based on mutable
138 * pointer functions that I had before.
139 * src: based on a (vague) idea from Remy Douence.
140 *
141 *
142 *
143 * Diff with Julia's visitor ? She does:
144 *
145 * let ident r k i =
146 * ...
147 * let expression r k e =
148 * ...
149 * ... (List.map r.V0.combiner_expression expr_list) ...
150 * ...
151 * let res = V0.combiner bind option_default
152 * mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
153 * donothing donothing donothing donothing
154 * ident expression typeC donothing parameter declaration statement
155 * donothing in
156 * ...
157 * collect_unitary_nonunitary
158 * (List.concat (List.map res.V0.combiner_top_level t))
159 *
160 *
161 *
162 * So she has to remember at which position you must put the 'expression'
163 * function. I use record which is easier.
164 *
165 * When she calls recursively, her res.V0.combiner_xxx does not take bigf
166 * in param whereas I do
167 * | F.Decl decl -> Visitor_c.vk_decl bigf decl
168 * And with the record she gets, she does not have to do my
169 * multiple defs of function such as 'let al_type = V0.vk_type_s bigf'
170 *
171 * The code of visitor.ml is cleaner with julia because mutual recursive calls
172 * are clean such as ... 'expression e' ... and not 'f (k, bigf) e'
173 * or 'vk_expr bigf e'.
174 *
175 * So it is very dual:
176 * - I give a record but then I must handle bigf.
177 * - She gets a record, and gives a list of function
178 *
179 *)
180
181
182 (* old: first version (only visiting expr)
183
184 let (iter_expr:((expression -> unit) -> expression -> unit) -> expression -> unit)
185 = fun f expr ->
186 let rec k e =
187 match e with
188 | Constant c -> ()
189 | FunCall (e, es) -> f k e; List.iter (f k) es
190 | CondExpr (e1, e2, e3) -> f k e1; f k e2; f k e3
191 | Sequence (e1, e2) -> f k e1; f k e2;
192 | Assignment (e1, op, e2) -> f k e1; f k e2;
193
194 | Postfix (e, op) -> f k e
195 | Infix (e, op) -> f k e
196 | Unary (e, op) -> f k e
197 | Binary (e1, op, e2) -> f k e1; f k e2;
198
199 | ArrayAccess (e1, e2) -> f k e1; f k e2;
200 | RecordAccess (e, s) -> f k e
201 | RecordPtAccess (e, s) -> f k e
202
203 | SizeOfExpr e -> f k e
204 | SizeOfType t -> ()
205 | _ -> failwith "to complete"
206
207 in f k expr
208
209 let ex1 = Sequence (Sequence (Constant (Ident "1"), Constant (Ident "2")),
210 Constant (Ident "4"))
211 let test =
212 iter_expr (fun k e -> match e with
213 | Constant (Ident x) -> Common.pr2 x
214 | rest -> k rest
215 ) ex1
216 ==>
217 1
218 2
219 4
220
221 *)
222
223 (*****************************************************************************)
224 (* Side effect style visitor *)
225 (*****************************************************************************)
226
227 (* Visitors for all langage concept, not just for expression.
228 *
229 * Note that I don't visit necesserally in the order of the token
230 * found in the original file. So don't assume such hypothesis!
231 *
232 * todo? parameter ?
233 *)
234 type visitor_c =
235 {
236 kexpr: (expression -> unit) * visitor_c -> expression -> unit;
237 kstatement: (statement -> unit) * visitor_c -> statement -> unit;
238 ktype: (fullType -> unit) * visitor_c -> fullType -> unit;
239
240 kdecl: (declaration -> unit) * visitor_c -> declaration -> unit;
241 konedecl: (onedecl -> unit) * visitor_c -> onedecl -> unit;
242 kparam: (parameterType -> unit) * visitor_c -> parameterType -> unit;
243 kdef: (definition -> unit) * visitor_c -> definition -> unit;
244 kname : (name -> unit) * visitor_c -> name -> unit;
245
246 kini: (initialiser -> unit) * visitor_c -> initialiser -> unit;
247 kfield: (field -> unit) * visitor_c -> field -> unit;
248
249 kcppdirective: (cpp_directive -> unit) * visitor_c -> cpp_directive -> unit;
250 kdefineval : (define_val -> unit) * visitor_c -> define_val -> unit;
251 kstatementseq: (statement_sequencable -> unit) * visitor_c -> statement_sequencable -> unit;
252
253
254 (* CFG *)
255 knode: (F.node -> unit) * visitor_c -> F.node -> unit;
256 (* AST *)
257 ktoplevel: (toplevel -> unit) * visitor_c -> toplevel -> unit;
258
259 kinfo: (info -> unit) * visitor_c -> info -> unit;
260 }
261
262 let default_visitor_c =
263 { kexpr = (fun (k,_) e -> k e);
264 kstatement = (fun (k,_) st -> k st);
265 ktype = (fun (k,_) t -> k t);
266 kdecl = (fun (k,_) d -> k d);
267 konedecl = (fun (k,_) d -> k d);
268 kparam = (fun (k,_) d -> k d);
269 kdef = (fun (k,_) d -> k d);
270 kini = (fun (k,_) ie -> k ie);
271 kname = (fun (k,_) x -> k x);
272 kinfo = (fun (k,_) ii -> k ii);
273 knode = (fun (k,_) n -> k n);
274 ktoplevel = (fun (k,_) p -> k p);
275 kcppdirective = (fun (k,_) p -> k p);
276 kdefineval = (fun (k,_) p -> k p);
277 kstatementseq = (fun (k,_) p -> k p);
278 kfield = (fun (k,_) p -> k p);
279 }
280
281
282 (* ------------------------------------------------------------------------ *)
283
284
285 let rec vk_expr = fun bigf expr ->
286 let iif ii = vk_ii bigf ii in
287
288 let rec exprf e = bigf.kexpr (k,bigf) e
289 (* !!! dont go in _typ !!! *)
290 and k ((e,_typ), ii) =
291 iif ii;
292 match e with
293 | Ident (name) -> vk_name bigf name
294 | Constant (c) -> ()
295 | FunCall (e, es) ->
296 exprf e;
297 vk_argument_list bigf es;
298 | CondExpr (e1, e2, e3) ->
299 exprf e1; do_option (exprf) e2; exprf e3
300 | Sequence (e1, e2) -> exprf e1; exprf e2;
301 | Assignment (e1, op, e2) -> exprf e1; exprf e2;
302
303 | Postfix (e, op) -> exprf e
304 | Infix (e, op) -> exprf e
305 | Unary (e, op) -> exprf e
306 | Binary (e1, op, e2) -> exprf e1; exprf e2;
307
308 | ArrayAccess (e1, e2) -> exprf e1; exprf e2;
309 | RecordAccess (e, name) -> exprf e; vk_name bigf name
310 | RecordPtAccess (e, name) -> exprf e; vk_name bigf name
311
312 | SizeOfExpr (e) -> exprf e
313 | SizeOfType (t) -> vk_type bigf t
314 | Cast (t, e) -> vk_type bigf t; exprf e
315
316 (* old: | StatementExpr (((declxs, statxs), is)), is2 ->
317 * List.iter (vk_decl bigf) declxs;
318 * List.iter (vk_statement bigf) statxs
319 *)
320 | StatementExpr ((statxs, is)) ->
321 iif is;
322 statxs +> List.iter (vk_statement_sequencable bigf);
323
324 | Constructor (t, initxs) ->
325 vk_type bigf t;
326 initxs +> List.iter (fun (ini, ii) ->
327 vk_ini bigf ini;
328 vk_ii bigf ii;
329 )
330
331 | ParenExpr (e) -> exprf e
332
333
334 in exprf expr
335
336
337 (* ------------------------------------------------------------------------ *)
338 and vk_name = fun bigf ident ->
339 let iif ii = vk_ii bigf ii in
340
341 let rec namef x = bigf.kname (k,bigf) x
342 and k id =
343 match id with
344 | RegularName (s, ii) -> iif ii
345 | CppConcatenatedName xs ->
346 xs +> List.iter (fun ((x,ii1), ii2) ->
347 iif ii2;
348 iif ii1;
349 );
350 | CppVariadicName (s, ii) -> iif ii
351 | CppIdentBuilder ((s,iis), xs) ->
352 iif iis;
353 xs +> List.iter (fun ((x,iix), iicomma) ->
354 iif iicomma;
355 iif iix;
356 )
357 in
358 namef ident
359
360 (* ------------------------------------------------------------------------ *)
361
362
363 and vk_statement = fun bigf (st: Ast_c.statement) ->
364 let iif ii = vk_ii bigf ii in
365
366 let rec statf x = bigf.kstatement (k,bigf) x
367 and k st =
368 let (unwrap_st, ii) = st in
369 iif ii;
370 match unwrap_st with
371 | Labeled (Label (name, st)) ->
372 vk_name bigf name;
373 statf st;
374 | Labeled (Case (e, st)) -> vk_expr bigf e; statf st;
375 | Labeled (CaseRange (e, e2, st)) ->
376 vk_expr bigf e; vk_expr bigf e2; statf st;
377 | Labeled (Default st) -> statf st;
378
379 | Compound statxs ->
380 statxs +> List.iter (vk_statement_sequencable bigf)
381 | ExprStatement (eopt) -> do_option (vk_expr bigf) eopt;
382
383 | Selection (If (e, st1, st2)) ->
384 vk_expr bigf e; statf st1; statf st2;
385 | Selection (Switch (e, st)) ->
386 vk_expr bigf e; statf st;
387 | Iteration (While (e, st)) ->
388 vk_expr bigf e; statf st;
389 | Iteration (DoWhile (st, e)) -> statf st; vk_expr bigf e;
390 | Iteration (For ((e1opt,i1), (e2opt,i2), (e3opt,i3), st)) ->
391 statf (mk_st (ExprStatement (e1opt)) i1);
392 statf (mk_st (ExprStatement (e2opt)) i2);
393 statf (mk_st (ExprStatement (e3opt)) i3);
394 statf st;
395
396 | Iteration (MacroIteration (s, es, st)) ->
397 vk_argument_list bigf es;
398 statf st;
399
400 | Jump (Goto name) -> vk_name bigf name
401 | Jump ((Continue|Break|Return)) -> ()
402 | Jump (ReturnExpr e) -> vk_expr bigf e;
403 | Jump (GotoComputed e) -> vk_expr bigf e;
404
405 | Decl decl -> vk_decl bigf decl
406 | Asm asmbody -> vk_asmbody bigf asmbody
407 | NestedFunc def -> vk_def bigf def
408 | MacroStmt -> ()
409
410 in statf st
411
412 and vk_statement_sequencable = fun bigf stseq ->
413 let f = bigf.kstatementseq in
414
415 let rec k stseq =
416 match stseq with
417 | StmtElem st -> vk_statement bigf st
418 | CppDirectiveStmt directive ->
419 vk_cpp_directive bigf directive
420 | IfdefStmt ifdef ->
421 vk_ifdef_directive bigf ifdef
422 | IfdefStmt2 (ifdef, xxs) ->
423 ifdef +> List.iter (vk_ifdef_directive bigf);
424 xxs +> List.iter (fun xs ->
425 xs +> List.iter (vk_statement_sequencable bigf)
426 )
427
428 in f (k, bigf) stseq
429
430
431
432 and vk_type = fun bigf t ->
433 let iif ii = vk_ii bigf ii in
434
435 let rec typef x = bigf.ktype (k, bigf) x
436 and k t =
437 let (q, t) = t in
438 let (unwrap_q, iiq) = q in
439 let (unwrap_t, iit) = t in
440 iif iiq;
441 iif iit;
442 match unwrap_t with
443 | BaseType _ -> ()
444 | Pointer t -> typef t
445 | Array (eopt, t) ->
446 do_option (vk_expr bigf) eopt;
447 typef t
448 | FunctionType (returnt, paramst) ->
449 typef returnt;
450 (match paramst with
451 | (ts, (b,iihas3dots)) ->
452 iif iihas3dots;
453 vk_param_list bigf ts
454 )
455
456 | Enum (sopt, enumt) ->
457 vk_enum_fields bigf enumt
458
459 | StructUnion (sopt, _su, fields) ->
460 vk_struct_fields bigf fields
461
462 | StructUnionName (s, structunion) -> ()
463 | EnumName s -> ()
464
465 (* dont go in _typ *)
466 | TypeName (name,_typ) ->
467 vk_name bigf name
468
469 | ParenType t -> typef t
470 | TypeOfExpr e -> vk_expr bigf e
471 | TypeOfType t -> typef t
472
473 in typef t
474
475
476 and vk_attribute = fun bigf attr ->
477 let iif ii = vk_ii bigf ii in
478 match attr with
479 | Attribute s, ii ->
480 iif ii
481
482
483 (* ------------------------------------------------------------------------ *)
484
485 and vk_decl = fun bigf d ->
486 let iif ii = vk_ii bigf ii in
487
488 let f = bigf.kdecl in
489 let rec k decl =
490 match decl with
491 | DeclList (xs,ii) ->
492 iif ii;
493 xs +> List.iter (fun (x,ii) ->
494 iif ii;
495 vk_onedecl bigf x;
496 );
497 | MacroDecl ((s, args),ii) ->
498 iif ii;
499 vk_argument_list bigf args;
500 in f (k, bigf) d
501
502
503 and vk_onedecl = fun bigf onedecl ->
504 let iif ii = vk_ii bigf ii in
505 let f = bigf.konedecl in
506 let rec k onedecl =
507 match onedecl with
508 | ({v_namei = var;
509 v_type = t;
510 v_type_bis = tbis;
511 v_storage = _sto;
512 v_attr = attrs}) ->
513
514 vk_type bigf t;
515 (* dont go in tbis *)
516 attrs +> List.iter (vk_attribute bigf);
517 var +> Common.do_option (fun (name, iniopt) ->
518 vk_name bigf name;
519 iniopt +> Common.do_option (fun (info, ini) ->
520 iif [info];
521 vk_ini bigf ini;
522 );
523 )
524 in f (k, bigf) onedecl
525
526 and vk_ini = fun bigf ini ->
527 let iif ii = vk_ii bigf ii in
528
529 let rec inif x = bigf.kini (k, bigf) x
530 and k (ini, iini) =
531 iif iini;
532 match ini with
533 | InitExpr e -> vk_expr bigf e
534 | InitList initxs ->
535 initxs +> List.iter (fun (ini, ii) ->
536 inif ini;
537 iif ii;
538 )
539 | InitDesignators (xs, e) ->
540 xs +> List.iter (vk_designator bigf);
541 inif e
542
543 | InitFieldOld (s, e) -> inif e
544 | InitIndexOld (e1, e) ->
545 vk_expr bigf e1; inif e
546
547
548 in inif ini
549
550
551 and vk_designator = fun bigf design ->
552 let iif ii = vk_ii bigf ii in
553 let (designator, ii) = design in
554 iif ii;
555 match designator with
556 | DesignatorField s -> ()
557 | DesignatorIndex e -> vk_expr bigf e
558 | DesignatorRange (e1, e2) -> vk_expr bigf e1; vk_expr bigf e2
559
560
561 (* ------------------------------------------------------------------------ *)
562
563 and vk_struct_fields = fun bigf fields ->
564 fields +> List.iter (vk_struct_field bigf);
565
566 and vk_struct_field = fun bigf field ->
567 let iif ii = vk_ii bigf ii in
568
569 let f = bigf.kfield in
570 let rec k field =
571
572 match field with
573 | DeclarationField
574 (FieldDeclList (onefield_multivars, iiptvirg)) ->
575 vk_struct_fieldkinds bigf onefield_multivars;
576 iif iiptvirg;
577 | EmptyField info -> iif [info]
578 | MacroDeclField ((s, args),ii) ->
579 iif ii;
580 vk_argument_list bigf args;
581
582 | CppDirectiveStruct directive ->
583 vk_cpp_directive bigf directive
584 | IfdefStruct ifdef ->
585 vk_ifdef_directive bigf ifdef
586 in
587 f (k, bigf) field
588
589
590
591
592 and vk_struct_fieldkinds = fun bigf onefield_multivars ->
593 let iif ii = vk_ii bigf ii in
594 onefield_multivars +> List.iter (fun (field, iicomma) ->
595 iif iicomma;
596 match field with
597 | Simple (nameopt, t) ->
598 Common.do_option (vk_name bigf) nameopt;
599 vk_type bigf t;
600 | BitField (nameopt, t, info, expr) ->
601 Common.do_option (vk_name bigf) nameopt;
602 vk_info bigf info;
603 vk_expr bigf expr;
604 vk_type bigf t
605 )
606
607
608 and vk_enum_fields = fun bigf enumt ->
609 let iif ii = vk_ii bigf ii in
610 enumt +> List.iter (fun ((name, eopt), iicomma) ->
611 vk_oneEnum bigf (name, eopt);
612 iif iicomma)
613
614 and vk_oneEnum = fun bigf (name, eopt) ->
615 let iif ii = vk_ii bigf ii in
616 vk_name bigf name;
617 eopt +> Common.do_option (fun (info, e) ->
618 iif [info];
619 vk_expr bigf e
620 )
621
622 (* ------------------------------------------------------------------------ *)
623
624
625 and vk_def = fun bigf d ->
626 let iif ii = vk_ii bigf ii in
627
628 let f = bigf.kdef in
629 let rec k d =
630 match d with
631 | {f_name = name;
632 f_type = (returnt, (paramst, (b, iib)));
633 f_storage = sto;
634 f_body = statxs;
635 f_attr = attrs;
636 f_old_c_style = oldstyle;
637 }, ii
638 ->
639 iif ii;
640 iif iib;
641 attrs +> List.iter (vk_attribute bigf);
642 vk_type bigf returnt;
643 vk_name bigf name;
644 paramst +> List.iter (fun (param,iicomma) ->
645 vk_param bigf param;
646 iif iicomma;
647 );
648 oldstyle +> Common.do_option (fun decls ->
649 decls +> List.iter (vk_decl bigf);
650 );
651
652 statxs +> List.iter (vk_statement_sequencable bigf)
653 in f (k, bigf) d
654
655
656
657
658 and vk_toplevel = fun bigf p ->
659 let f = bigf.ktoplevel in
660 let iif ii = vk_ii bigf ii in
661 let rec k p =
662 match p with
663 | Declaration decl -> (vk_decl bigf decl)
664 | Definition def -> (vk_def bigf def)
665 | EmptyDef ii -> iif ii
666 | MacroTop (s, xs, ii) ->
667 vk_argument_list bigf xs;
668 iif ii
669
670 | CppTop top -> vk_cpp_directive bigf top
671 | IfdefTop ifdefdir -> vk_ifdef_directive bigf ifdefdir
672
673 | NotParsedCorrectly ii -> iif ii
674 | FinalDef info -> vk_info bigf info
675 in f (k, bigf) p
676
677 and vk_program = fun bigf xs ->
678 xs +> List.iter (vk_toplevel bigf)
679
680 and vk_ifdef_directive bigf directive =
681 let iif ii = vk_ii bigf ii in
682 match directive with
683 | IfdefDirective (ifkind, ii) -> iif ii
684
685
686 and vk_cpp_directive bigf directive =
687 let iif ii = vk_ii bigf ii in
688 let f = bigf.kcppdirective in
689 let rec k directive =
690 match directive with
691 | Include {i_include = (s, ii);
692 i_content = copt;
693 }
694 ->
695 (* go inside ? yes, can be useful, for instance for type_annotater.
696 * The only pb may be that when we want to unparse the code we
697 * don't want to unparse the included file but the unparser
698 * and pretty_print do not use visitor_c so no problem.
699 *)
700 iif ii;
701 copt +> Common.do_option (fun (file, asts) ->
702 vk_program bigf asts
703 );
704 | Define ((s,ii), (defkind, defval)) ->
705 iif ii;
706 vk_define_kind bigf defkind;
707 vk_define_val bigf defval
708 | PragmaAndCo (ii) ->
709 iif ii
710 in f (k, bigf) directive
711
712
713 and vk_define_kind bigf defkind =
714 match defkind with
715 | DefineVar -> ()
716 | DefineFunc (params, ii) ->
717 vk_ii bigf ii;
718 params +> List.iter (fun ((s,iis), iicomma) ->
719 vk_ii bigf iis;
720 vk_ii bigf iicomma;
721 )
722 | Undef -> ()
723
724 and vk_define_val bigf defval =
725 let f = bigf.kdefineval in
726
727 let rec k defval =
728 match defval with
729 | DefineExpr e ->
730 vk_expr bigf e
731 | DefineStmt stmt -> vk_statement bigf stmt
732 | DefineDoWhileZero ((stmt, e), ii) ->
733 vk_statement bigf stmt;
734 vk_expr bigf e;
735 vk_ii bigf ii
736 | DefineFunction def -> vk_def bigf def
737 | DefineType ty -> vk_type bigf ty
738 | DefineText (s, ii) -> vk_ii bigf ii
739 | DefineEmpty -> ()
740 | DefineInit ini -> vk_ini bigf ini
741
742 | DefineTodo ->
743 pr2_once "DefineTodo";
744 ()
745 in f (k, bigf) defval
746
747
748
749
750 (* ------------------------------------------------------------------------ *)
751 (* Now keep fullstatement inside the control flow node,
752 * so that can then get in a MetaStmtVar the fullstatement to later
753 * pp back when the S is in a +. But that means that
754 * Exp will match an Ifnode even if there is no such exp
755 * inside the condition of the Ifnode (because the exp may
756 * be deeper, in the then branch). So have to not visit
757 * all inside a node anymore.
758 *
759 * update: j'ai choisi d'accrocher au noeud du CFG a la
760 * fois le fullstatement et le partialstatement et appeler le
761 * visiteur que sur le partialstatement.
762 *)
763
764 and vk_node = fun bigf node ->
765 let iif ii = vk_ii bigf ii in
766 let infof info = vk_info bigf info in
767
768 let f = bigf.knode in
769 let rec k n =
770 match F.unwrap n with
771
772 | F.FunHeader (def) ->
773 assert(null (fst def).f_body);
774 vk_def bigf def;
775
776 | F.Decl decl -> vk_decl bigf decl
777 | F.ExprStatement (st, (eopt, ii)) ->
778 iif ii;
779 eopt +> do_option (vk_expr bigf)
780
781 | F.IfHeader (_, (e,ii))
782 | F.SwitchHeader (_, (e,ii))
783 | F.WhileHeader (_, (e,ii))
784 | F.DoWhileTail (e,ii) ->
785 iif ii;
786 vk_expr bigf e
787
788 | F.ForHeader (_st, (((e1opt,i1), (e2opt,i2), (e3opt,i3)), ii)) ->
789 iif i1; iif i2; iif i3;
790 iif ii;
791 e1opt +> do_option (vk_expr bigf);
792 e2opt +> do_option (vk_expr bigf);
793 e3opt +> do_option (vk_expr bigf);
794 | F.MacroIterHeader (_s, ((s,es), ii)) ->
795 iif ii;
796 vk_argument_list bigf es;
797
798 | F.ReturnExpr (_st, (e,ii)) -> iif ii; vk_expr bigf e
799
800 | F.Case (_st, (e,ii)) -> iif ii; vk_expr bigf e
801 | F.CaseRange (_st, ((e1, e2),ii)) ->
802 iif ii; vk_expr bigf e1; vk_expr bigf e2
803
804
805 | F.CaseNode i -> ()
806
807 | F.DefineExpr e -> vk_expr bigf e
808 | F.DefineType ft -> vk_type bigf ft
809 | F.DefineHeader ((s,ii), (defkind)) ->
810 iif ii;
811 vk_define_kind bigf defkind;
812
813 | F.DefineDoWhileZeroHeader (((),ii)) -> iif ii
814 | F.DefineTodo ->
815 pr2_once "DefineTodo";
816 ()
817
818 | F.Include {i_include = (s, ii);} -> iif ii;
819
820 | F.MacroTop (s, args, ii) ->
821 iif ii;
822 vk_argument_list bigf args
823
824 | F.IfdefHeader (info) -> vk_ifdef_directive bigf info
825 | F.IfdefElse (info) -> vk_ifdef_directive bigf info
826 | F.IfdefEndif (info) -> vk_ifdef_directive bigf info
827
828 | F.Break (st,((),ii)) -> iif ii
829 | F.Continue (st,((),ii)) -> iif ii
830 | F.Default (st,((),ii)) -> iif ii
831 | F.Return (st,((),ii)) -> iif ii
832 | F.Goto (st, name, ((),ii)) -> vk_name bigf name; iif ii
833 | F.Label (st, name, ((),ii)) -> vk_name bigf name; iif ii
834
835 | F.DoHeader (st, info) -> infof info
836
837 | F.Else info -> infof info
838 | F.EndStatement iopt -> do_option infof iopt
839
840 | F.SeqEnd (i, info) -> infof info
841 | F.SeqStart (st, i, info) -> infof info
842
843 | F.MacroStmt (st, ((),ii)) -> iif ii
844 | F.Asm (st, (asmbody,ii)) ->
845 iif ii;
846 vk_asmbody bigf asmbody
847
848 | (
849 F.TopNode|F.EndNode|
850 F.ErrorExit|F.Exit|F.Enter|F.LoopFallThroughNode|F.FallThroughNode|
851 F.AfterNode|F.FalseNode|F.TrueNode|F.InLoopNode|
852 F.Fake
853 ) -> ()
854
855
856
857 in
858 f (k, bigf) node
859
860 (* ------------------------------------------------------------------------ *)
861 and vk_info = fun bigf info ->
862 let rec infof ii = bigf.kinfo (k, bigf) ii
863 and k i = ()
864 in
865 infof info
866
867 and vk_ii = fun bigf ii ->
868 List.iter (vk_info bigf) ii
869
870
871 (* ------------------------------------------------------------------------ *)
872 and vk_argument = fun bigf arg ->
873 let rec do_action = function
874 | (ActMisc ii) -> vk_ii bigf ii
875 in
876 match arg with
877 | Left e -> (vk_expr bigf) e
878 | Right (ArgType param) -> vk_param bigf param
879 | Right (ArgAction action) -> do_action action
880
881 and vk_argument_list = fun bigf es ->
882 let iif ii = vk_ii bigf ii in
883 es +> List.iter (fun (e, ii) ->
884 iif ii;
885 vk_argument bigf e
886 )
887
888
889
890 and vk_param = fun bigf param ->
891 let iif ii = vk_ii bigf ii in
892 let f = bigf.kparam in
893 let rec k param =
894 let {p_namei = swrapopt; p_register = (b, iib); p_type=ft} = param in
895 swrapopt +> Common.do_option (vk_name bigf);
896 iif iib;
897 vk_type bigf ft
898 in f (k, bigf) param
899
900 and vk_param_list = fun bigf ts ->
901 let iif ii = vk_ii bigf ii in
902 ts +> List.iter (fun (param,iicomma) ->
903 vk_param bigf param;
904 iif iicomma;
905 )
906
907
908
909 (* ------------------------------------------------------------------------ *)
910 and vk_asmbody = fun bigf (string_list, colon_list) ->
911 let iif ii = vk_ii bigf ii in
912
913 iif string_list;
914 colon_list +> List.iter (fun (Colon xs, ii) ->
915 iif ii;
916 xs +> List.iter (fun (x,iicomma) ->
917 iif iicomma;
918 (match x with
919 | ColonMisc, ii -> iif ii
920 | ColonExpr e, ii ->
921 vk_expr bigf e;
922 iif ii
923 )
924 ))
925
926
927 (* ------------------------------------------------------------------------ *)
928 let vk_splitted element = fun bigf args_splitted ->
929 let iif ii = vk_ii bigf ii in
930 args_splitted +> List.iter (function
931 | Left arg -> element bigf arg
932 | Right ii -> iif ii
933 )
934
935 let vk_args_splitted = vk_splitted vk_argument
936 let vk_define_params_splitted = vk_splitted (fun bigf (_,ii) -> vk_ii bigf ii)
937 let vk_params_splitted = vk_splitted vk_param
938 let vk_enum_fields_splitted = vk_splitted vk_oneEnum
939 let vk_inis_splitted = vk_splitted vk_ini
940
941 (* ------------------------------------------------------------------------ *)
942 let vk_cst = fun bigf (cst, ii) ->
943 let iif ii = vk_ii bigf ii in
944 iif ii;
945 (match cst with
946 | Left cst -> ()
947 | Right s -> ()
948 )
949
950
951
952
953 (*****************************************************************************)
954 (* "syntetisized attributes" style *)
955 (*****************************************************************************)
956
957 (* TODO port the xxs_s to new cpp construct too *)
958
959 type 'a inout = 'a -> 'a
960
961 (* _s for synthetizized attributes
962 *
963 * Note that I don't visit necesserally in the order of the token
964 * found in the original file. So don't assume such hypothesis!
965 *)
966 type visitor_c_s = {
967 kexpr_s: (expression inout * visitor_c_s) -> expression inout;
968 kstatement_s: (statement inout * visitor_c_s) -> statement inout;
969 ktype_s: (fullType inout * visitor_c_s) -> fullType inout;
970
971 kdecl_s: (declaration inout * visitor_c_s) -> declaration inout;
972 kdef_s: (definition inout * visitor_c_s) -> definition inout;
973 kname_s: (name inout * visitor_c_s) -> name inout;
974
975 kini_s: (initialiser inout * visitor_c_s) -> initialiser inout;
976
977 kcppdirective_s: (cpp_directive inout * visitor_c_s) -> cpp_directive inout;
978 kdefineval_s: (define_val inout * visitor_c_s) -> define_val inout;
979 kstatementseq_s: (statement_sequencable inout * visitor_c_s) -> statement_sequencable inout;
980 kstatementseq_list_s: (statement_sequencable list inout * visitor_c_s) -> statement_sequencable list inout;
981
982 knode_s: (F.node inout * visitor_c_s) -> F.node inout;
983
984
985 ktoplevel_s: (toplevel inout * visitor_c_s) -> toplevel inout;
986 kinfo_s: (info inout * visitor_c_s) -> info inout;
987 }
988
989 let default_visitor_c_s =
990 { kexpr_s = (fun (k,_) e -> k e);
991 kstatement_s = (fun (k,_) st -> k st);
992 ktype_s = (fun (k,_) t -> k t);
993 kdecl_s = (fun (k,_) d -> k d);
994 kdef_s = (fun (k,_) d -> k d);
995 kname_s = (fun (k,_) x -> k x);
996 kini_s = (fun (k,_) d -> k d);
997 ktoplevel_s = (fun (k,_) p -> k p);
998 knode_s = (fun (k,_) n -> k n);
999 kinfo_s = (fun (k,_) i -> k i);
1000 kdefineval_s = (fun (k,_) x -> k x);
1001 kstatementseq_s = (fun (k,_) x -> k x);
1002 kstatementseq_list_s = (fun (k,_) x -> k x);
1003 kcppdirective_s = (fun (k,_) x -> k x);
1004 }
1005
1006 let rec vk_expr_s = fun bigf expr ->
1007 let iif ii = vk_ii_s bigf ii in
1008 let rec exprf e = bigf.kexpr_s (k, bigf) e
1009 and k e =
1010 let ((unwrap_e, typ), ii) = e in
1011 (* !!! don't analyse optional type !!!
1012 * old: typ +> map_option (vk_type_s bigf) in
1013 *)
1014 let typ' = typ in
1015 let e' =
1016 match unwrap_e with
1017 | Ident (name) -> Ident (vk_name_s bigf name)
1018 | Constant (c) -> Constant (c)
1019 | FunCall (e, es) ->
1020 FunCall (exprf e,
1021 es +> List.map (fun (e,ii) ->
1022 vk_argument_s bigf e, iif ii
1023 ))
1024
1025 | CondExpr (e1, e2, e3) -> CondExpr (exprf e1, fmap exprf e2, exprf e3)
1026 | Sequence (e1, e2) -> Sequence (exprf e1, exprf e2)
1027 | Assignment (e1, op, e2) -> Assignment (exprf e1, op, exprf e2)
1028
1029 | Postfix (e, op) -> Postfix (exprf e, op)
1030 | Infix (e, op) -> Infix (exprf e, op)
1031 | Unary (e, op) -> Unary (exprf e, op)
1032 | Binary (e1, op, e2) -> Binary (exprf e1, op, exprf e2)
1033
1034 | ArrayAccess (e1, e2) -> ArrayAccess (exprf e1, exprf e2)
1035 | RecordAccess (e, name) ->
1036 RecordAccess (exprf e, vk_name_s bigf name)
1037 | RecordPtAccess (e, name) ->
1038 RecordPtAccess (exprf e, vk_name_s bigf name)
1039
1040 | SizeOfExpr (e) -> SizeOfExpr (exprf e)
1041 | SizeOfType (t) -> SizeOfType (vk_type_s bigf t)
1042 | Cast (t, e) -> Cast (vk_type_s bigf t, exprf e)
1043
1044 | StatementExpr (statxs, is) ->
1045 StatementExpr (
1046 vk_statement_sequencable_list_s bigf statxs,
1047 iif is)
1048 | Constructor (t, initxs) ->
1049 Constructor
1050 (vk_type_s bigf t,
1051 (initxs +> List.map (fun (ini, ii) ->
1052 vk_ini_s bigf ini, vk_ii_s bigf ii)
1053 ))
1054
1055 | ParenExpr (e) -> ParenExpr (exprf e)
1056
1057 in
1058 (e', typ'), (iif ii)
1059 in exprf expr
1060
1061
1062 and vk_argument_s bigf argument =
1063 let iif ii = vk_ii_s bigf ii in
1064 let rec do_action = function
1065 | (ActMisc ii) -> ActMisc (iif ii)
1066 in
1067 (match argument with
1068 | Left e -> Left (vk_expr_s bigf e)
1069 | Right (ArgType param) -> Right (ArgType (vk_param_s bigf param))
1070 | Right (ArgAction action) -> Right (ArgAction (do_action action))
1071 )
1072
1073 (* ------------------------------------------------------------------------ *)
1074
1075
1076 and vk_name_s = fun bigf ident ->
1077 let iif ii = vk_ii_s bigf ii in
1078 let rec namef x = bigf.kname_s (k,bigf) x
1079 and k id =
1080 (match id with
1081 | RegularName (s,ii) -> RegularName (s, iif ii)
1082 | CppConcatenatedName xs ->
1083 CppConcatenatedName (xs +> List.map (fun ((x,ii1), ii2) ->
1084 (x, iif ii1), iif ii2
1085 ))
1086 | CppVariadicName (s, ii) -> CppVariadicName (s, iif ii)
1087 | CppIdentBuilder ((s,iis), xs) ->
1088 CppIdentBuilder ((s, iif iis),
1089 xs +> List.map (fun ((x,iix), iicomma) ->
1090 ((x, iif iix), iif iicomma)))
1091 )
1092 in
1093 namef ident
1094
1095 (* ------------------------------------------------------------------------ *)
1096
1097
1098
1099 and vk_statement_s = fun bigf st ->
1100 let rec statf st = bigf.kstatement_s (k, bigf) st
1101 and k st =
1102 let (unwrap_st, ii) = st in
1103 let st' =
1104 match unwrap_st with
1105 | Labeled (Label (name, st)) ->
1106 Labeled (Label (vk_name_s bigf name, statf st))
1107 | Labeled (Case (e, st)) ->
1108 Labeled (Case ((vk_expr_s bigf) e , statf st))
1109 | Labeled (CaseRange (e, e2, st)) ->
1110 Labeled (CaseRange ((vk_expr_s bigf) e,
1111 (vk_expr_s bigf) e2,
1112 statf st))
1113 | Labeled (Default st) -> Labeled (Default (statf st))
1114 | Compound statxs ->
1115 Compound (vk_statement_sequencable_list_s bigf statxs)
1116 | ExprStatement (None) -> ExprStatement (None)
1117 | ExprStatement (Some e) -> ExprStatement (Some ((vk_expr_s bigf) e))
1118 | Selection (If (e, st1, st2)) ->
1119 Selection (If ((vk_expr_s bigf) e, statf st1, statf st2))
1120 | Selection (Switch (e, st)) ->
1121 Selection (Switch ((vk_expr_s bigf) e, statf st))
1122 | Iteration (While (e, st)) ->
1123 Iteration (While ((vk_expr_s bigf) e, statf st))
1124 | Iteration (DoWhile (st, e)) ->
1125 Iteration (DoWhile (statf st, (vk_expr_s bigf) e))
1126 | Iteration (For ((e1opt,i1), (e2opt,i2), (e3opt,i3), st)) ->
1127 let e1opt' = statf (mk_st (ExprStatement (e1opt)) i1) in
1128 let e2opt' = statf (mk_st (ExprStatement (e2opt)) i2) in
1129 let e3opt' = statf (mk_st (ExprStatement (e3opt)) i3) in
1130
1131 let e1' = Ast_c.unwrap_st e1opt' in
1132 let e2' = Ast_c.unwrap_st e2opt' in
1133 let e3' = Ast_c.unwrap_st e3opt' in
1134 let i1' = Ast_c.get_ii_st_take_care e1opt' in
1135 let i2' = Ast_c.get_ii_st_take_care e2opt' in
1136 let i3' = Ast_c.get_ii_st_take_care e3opt' in
1137
1138 (match (e1', e2', e3') with
1139 | ((ExprStatement x1), (ExprStatement x2), ((ExprStatement x3))) ->
1140 Iteration (For ((x1,i1'), (x2,i2'), (x3,i3'), statf st))
1141
1142 | x -> failwith "cant be here if iterator keep ExprStatement as is"
1143 )
1144
1145 | Iteration (MacroIteration (s, es, st)) ->
1146 Iteration
1147 (MacroIteration
1148 (s,
1149 es +> List.map (fun (e, ii) ->
1150 vk_argument_s bigf e, vk_ii_s bigf ii
1151 ),
1152 statf st
1153 ))
1154
1155
1156 | Jump (Goto name) -> Jump (Goto (vk_name_s bigf name))
1157 | Jump (((Continue|Break|Return) as x)) -> Jump (x)
1158 | Jump (ReturnExpr e) -> Jump (ReturnExpr ((vk_expr_s bigf) e))
1159 | Jump (GotoComputed e) -> Jump (GotoComputed (vk_expr_s bigf e));
1160
1161 | Decl decl -> Decl (vk_decl_s bigf decl)
1162 | Asm asmbody -> Asm (vk_asmbody_s bigf asmbody)
1163 | NestedFunc def -> NestedFunc (vk_def_s bigf def)
1164 | MacroStmt -> MacroStmt
1165 in
1166 st', vk_ii_s bigf ii
1167 in statf st
1168
1169
1170 and vk_statement_sequencable_s = fun bigf stseq ->
1171 let f = bigf.kstatementseq_s in
1172 let k stseq =
1173
1174 match stseq with
1175 | StmtElem st ->
1176 StmtElem (vk_statement_s bigf st)
1177 | CppDirectiveStmt directive ->
1178 CppDirectiveStmt (vk_cpp_directive_s bigf directive)
1179 | IfdefStmt ifdef ->
1180 IfdefStmt (vk_ifdef_directive_s bigf ifdef)
1181 | IfdefStmt2 (ifdef, xxs) ->
1182 let ifdef' = List.map (vk_ifdef_directive_s bigf) ifdef in
1183 let xxs' = xxs +> List.map (fun xs ->
1184 xs +> vk_statement_sequencable_list_s bigf
1185 )
1186 in
1187 IfdefStmt2(ifdef', xxs')
1188 in f (k, bigf) stseq
1189
1190 and vk_statement_sequencable_list_s = fun bigf statxs ->
1191 let f = bigf.kstatementseq_list_s in
1192 let k xs =
1193 xs +> List.map (vk_statement_sequencable_s bigf)
1194 in
1195 f (k, bigf) statxs
1196
1197
1198
1199 and vk_asmbody_s = fun bigf (string_list, colon_list) ->
1200 let iif ii = vk_ii_s bigf ii in
1201
1202 iif string_list,
1203 colon_list +> List.map (fun (Colon xs, ii) ->
1204 Colon
1205 (xs +> List.map (fun (x, iicomma) ->
1206 (match x with
1207 | ColonMisc, ii -> ColonMisc, iif ii
1208 | ColonExpr e, ii -> ColonExpr (vk_expr_s bigf e), iif ii
1209 ), iif iicomma
1210 )),
1211 iif ii
1212 )
1213
1214
1215
1216
1217 (* todo? a visitor for qualifier *)
1218 and vk_type_s = fun bigf t ->
1219 let rec typef t = bigf.ktype_s (k,bigf) t
1220 and iif ii = vk_ii_s bigf ii
1221 and k t =
1222 let (q, t) = t in
1223 let (unwrap_q, iiq) = q in
1224 (* strip_info_visitor needs iiq to be processed before iit *)
1225 let iif_iiq = iif iiq in
1226 let q' = unwrap_q in
1227 let (unwrap_t, iit) = t in
1228 let t' =
1229 match unwrap_t with
1230 | BaseType x -> BaseType x
1231 | Pointer t -> Pointer (typef t)
1232 | Array (eopt, t) -> Array (fmap (vk_expr_s bigf) eopt, typef t)
1233 | FunctionType (returnt, paramst) ->
1234 FunctionType
1235 (typef returnt,
1236 (match paramst with
1237 | (ts, (b, iihas3dots)) ->
1238 (ts +> List.map (fun (param,iicomma) ->
1239 (vk_param_s bigf param, iif iicomma)),
1240 (b, iif iihas3dots))
1241 ))
1242
1243 | Enum (sopt, enumt) ->
1244 Enum (sopt, vk_enum_fields_s bigf enumt)
1245 | StructUnion (sopt, su, fields) ->
1246 StructUnion (sopt, su, vk_struct_fields_s bigf fields)
1247
1248
1249 | StructUnionName (s, structunion) -> StructUnionName (s, structunion)
1250 | EnumName s -> EnumName s
1251 | TypeName (name, typ) -> TypeName (vk_name_s bigf name, typ)
1252
1253 | ParenType t -> ParenType (typef t)
1254 | TypeOfExpr e -> TypeOfExpr (vk_expr_s bigf e)
1255 | TypeOfType t -> TypeOfType (typef t)
1256 in
1257 (q', iif_iiq),
1258 (t', iif iit)
1259
1260
1261 in typef t
1262
1263 and vk_attribute_s = fun bigf attr ->
1264 let iif ii = vk_ii_s bigf ii in
1265 match attr with
1266 | Attribute s, ii ->
1267 Attribute s, iif ii
1268
1269
1270
1271 and vk_decl_s = fun bigf d ->
1272 let f = bigf.kdecl_s in
1273 let iif ii = vk_ii_s bigf ii in
1274 let rec k decl =
1275 match decl with
1276 | DeclList (xs, ii) ->
1277 DeclList (List.map aux xs, iif ii)
1278 | MacroDecl ((s, args),ii) ->
1279 MacroDecl
1280 ((s,
1281 args +> List.map (fun (e,ii) -> vk_argument_s bigf e, iif ii)
1282 ),
1283 iif ii)
1284
1285
1286 and aux ({v_namei = var;
1287 v_type = t;
1288 v_type_bis = tbis;
1289 v_storage = sto;
1290 v_local= local;
1291 v_attr = attrs}, iicomma) =
1292 {v_namei =
1293 (var +> map_option (fun (name, iniopt) ->
1294 vk_name_s bigf name,
1295 iniopt +> map_option (fun (info, init) ->
1296 vk_info_s bigf info,
1297 vk_ini_s bigf init
1298 )));
1299 v_type = vk_type_s bigf t;
1300 (* !!! dont go in semantic related stuff !!! *)
1301 v_type_bis = tbis;
1302 v_storage = sto;
1303 v_local = local;
1304 v_attr = attrs +> List.map (vk_attribute_s bigf);
1305 },
1306 iif iicomma
1307
1308 in f (k, bigf) d
1309
1310 and vk_ini_s = fun bigf ini ->
1311 let rec inif ini = bigf.kini_s (k,bigf) ini
1312 and k ini =
1313 let (unwrap_ini, ii) = ini in
1314 let ini' =
1315 match unwrap_ini with
1316 | InitExpr e -> InitExpr (vk_expr_s bigf e)
1317 | InitList initxs ->
1318 InitList (initxs +> List.map (fun (ini, ii) ->
1319 inif ini, vk_ii_s bigf ii)
1320 )
1321
1322
1323 | InitDesignators (xs, e) ->
1324 InitDesignators
1325 (xs +> List.map (vk_designator_s bigf),
1326 inif e
1327 )
1328
1329 | InitFieldOld (s, e) -> InitFieldOld (s, inif e)
1330 | InitIndexOld (e1, e) -> InitIndexOld (vk_expr_s bigf e1, inif e)
1331
1332
1333 in ini', vk_ii_s bigf ii
1334 in inif ini
1335
1336
1337 and vk_designator_s = fun bigf design ->
1338 let iif ii = vk_ii_s bigf ii in
1339 let (designator, ii) = design in
1340 (match designator with
1341 | DesignatorField s -> DesignatorField s
1342 | DesignatorIndex e -> DesignatorIndex (vk_expr_s bigf e)
1343 | DesignatorRange (e1, e2) ->
1344 DesignatorRange (vk_expr_s bigf e1, vk_expr_s bigf e2)
1345 ), iif ii
1346
1347
1348
1349
1350 and vk_struct_fieldkinds_s = fun bigf onefield_multivars ->
1351 let iif ii = vk_ii_s bigf ii in
1352
1353 onefield_multivars +> List.map (fun (field, iicomma) ->
1354 (match field with
1355 | Simple (nameopt, t) ->
1356 Simple (Common.map_option (vk_name_s bigf) nameopt,
1357 vk_type_s bigf t)
1358 | BitField (nameopt, t, info, expr) ->
1359 BitField (Common.map_option (vk_name_s bigf) nameopt,
1360 vk_type_s bigf t,
1361 vk_info_s bigf info,
1362 vk_expr_s bigf expr)
1363 ), iif iicomma
1364 )
1365
1366 and vk_struct_field_s = fun bigf field ->
1367 let iif ii = vk_ii_s bigf ii in
1368
1369 match field with
1370 (DeclarationField (FieldDeclList (onefield_multivars, iiptvirg))) ->
1371 DeclarationField
1372 (FieldDeclList
1373 (vk_struct_fieldkinds_s bigf onefield_multivars, iif iiptvirg))
1374 | EmptyField info -> EmptyField (vk_info_s bigf info)
1375 | MacroDeclField ((s, args),ii) ->
1376 MacroDeclField
1377 ((s,
1378 args +> List.map (fun (e,ii) -> vk_argument_s bigf e, iif ii)
1379 ),
1380 iif ii)
1381
1382 | CppDirectiveStruct directive ->
1383 CppDirectiveStruct (vk_cpp_directive_s bigf directive)
1384 | IfdefStruct ifdef ->
1385 IfdefStruct (vk_ifdef_directive_s bigf ifdef)
1386
1387 and vk_struct_fields_s = fun bigf fields ->
1388 fields +> List.map (vk_struct_field_s bigf)
1389
1390 and vk_enum_fields_s = fun bigf enumt ->
1391 let iif ii = vk_ii_s bigf ii in
1392 enumt +> List.map (fun ((name, eopt), iicomma) ->
1393 vk_oneEnum_s bigf (name, eopt), iif iicomma)
1394
1395 and vk_oneEnum_s = fun bigf oneEnum ->
1396 let (name,eopt) = oneEnum in
1397 (vk_name_s bigf name,
1398 eopt +> Common.fmap (fun (info, e) ->
1399 vk_info_s bigf info,
1400 vk_expr_s bigf e
1401 ))
1402
1403 and vk_def_s = fun bigf d ->
1404 let f = bigf.kdef_s in
1405 let iif ii = vk_ii_s bigf ii in
1406 let rec k d =
1407 match d with
1408 | {f_name = name;
1409 f_type = (returnt, (paramst, (b, iib)));
1410 f_storage = sto;
1411 f_body = statxs;
1412 f_attr = attrs;
1413 f_old_c_style = oldstyle;
1414 }, ii
1415 ->
1416 {f_name = vk_name_s bigf name;
1417 f_type =
1418 (vk_type_s bigf returnt,
1419 (paramst +> List.map (fun (param, iicomma) ->
1420 (vk_param_s bigf param, iif iicomma)
1421 ), (b, iif iib)));
1422 f_storage = sto;
1423 f_body =
1424 vk_statement_sequencable_list_s bigf statxs;
1425 f_attr =
1426 attrs +> List.map (vk_attribute_s bigf);
1427 f_old_c_style =
1428 oldstyle +> Common.map_option (fun decls ->
1429 decls +> List.map (vk_decl_s bigf)
1430 );
1431 },
1432 iif ii
1433
1434 in f (k, bigf) d
1435
1436 and vk_toplevel_s = fun bigf p ->
1437 let f = bigf.ktoplevel_s in
1438 let iif ii = vk_ii_s bigf ii in
1439 let rec k p =
1440 match p with
1441 | Declaration decl -> Declaration (vk_decl_s bigf decl)
1442 | Definition def -> Definition (vk_def_s bigf def)
1443 | EmptyDef ii -> EmptyDef (iif ii)
1444 | MacroTop (s, xs, ii) ->
1445 MacroTop
1446 (s,
1447 xs +> List.map (fun (elem, iicomma) ->
1448 vk_argument_s bigf elem, iif iicomma
1449 ),
1450 iif ii
1451 )
1452 | CppTop top -> CppTop (vk_cpp_directive_s bigf top)
1453 | IfdefTop ifdefdir -> IfdefTop (vk_ifdef_directive_s bigf ifdefdir)
1454
1455 | NotParsedCorrectly ii -> NotParsedCorrectly (iif ii)
1456 | FinalDef info -> FinalDef (vk_info_s bigf info)
1457 in f (k, bigf) p
1458
1459 and vk_program_s = fun bigf xs ->
1460 xs +> List.map (vk_toplevel_s bigf)
1461
1462
1463 and vk_cpp_directive_s = fun bigf top ->
1464 let iif ii = vk_ii_s bigf ii in
1465 let f = bigf.kcppdirective_s in
1466 let rec k top =
1467 match top with
1468 (* go inside ? *)
1469 | Include {i_include = (s, ii);
1470 i_rel_pos = h_rel_pos;
1471 i_is_in_ifdef = b;
1472 i_content = copt;
1473 }
1474 -> Include {i_include = (s, iif ii);
1475 i_rel_pos = h_rel_pos;
1476 i_is_in_ifdef = b;
1477 i_content = copt +> Common.map_option (fun (file, asts) ->
1478 file, vk_program_s bigf asts
1479 );
1480 }
1481 | Define ((s,ii), (defkind, defval)) ->
1482 Define ((s, iif ii),
1483 (vk_define_kind_s bigf defkind, vk_define_val_s bigf defval))
1484 | PragmaAndCo (ii) -> PragmaAndCo (iif ii)
1485
1486 in f (k, bigf) top
1487
1488 and vk_ifdef_directive_s = fun bigf ifdef ->
1489 let iif ii = vk_ii_s bigf ii in
1490 match ifdef with
1491 | IfdefDirective (ifkind, ii) -> IfdefDirective (ifkind, iif ii)
1492
1493
1494
1495 and vk_define_kind_s = fun bigf defkind ->
1496 match defkind with
1497 | DefineVar -> DefineVar
1498 | DefineFunc (params, ii) ->
1499 DefineFunc
1500 (params +> List.map (fun ((s,iis),iicomma) ->
1501 ((s, vk_ii_s bigf iis), vk_ii_s bigf iicomma)
1502 ),
1503 vk_ii_s bigf ii
1504 )
1505 | Undef -> Undef
1506
1507
1508 and vk_define_val_s = fun bigf x ->
1509 let f = bigf.kdefineval_s in
1510 let iif ii = vk_ii_s bigf ii in
1511 let rec k x =
1512 match x with
1513 | DefineExpr e -> DefineExpr (vk_expr_s bigf e)
1514 | DefineStmt st -> DefineStmt (vk_statement_s bigf st)
1515 | DefineDoWhileZero ((st,e),ii) ->
1516 let st' = vk_statement_s bigf st in
1517 let e' = vk_expr_s bigf e in
1518 DefineDoWhileZero ((st',e'), iif ii)
1519 | DefineFunction def -> DefineFunction (vk_def_s bigf def)
1520 | DefineType ty -> DefineType (vk_type_s bigf ty)
1521 | DefineText (s, ii) -> DefineText (s, iif ii)
1522 | DefineEmpty -> DefineEmpty
1523 | DefineInit ini -> DefineInit (vk_ini_s bigf ini)
1524
1525 | DefineTodo ->
1526 pr2_once "DefineTodo";
1527 DefineTodo
1528 in
1529 f (k, bigf) x
1530
1531
1532 and vk_info_s = fun bigf info ->
1533 let rec infof ii = bigf.kinfo_s (k, bigf) ii
1534 and k i = i
1535 in
1536 infof info
1537
1538 and vk_ii_s = fun bigf ii ->
1539 List.map (vk_info_s bigf) ii
1540
1541 (* ------------------------------------------------------------------------ *)
1542 and vk_node_s = fun bigf node ->
1543 let iif ii = vk_ii_s bigf ii in
1544 let infof info = vk_info_s bigf info in
1545
1546 let rec nodef n = bigf.knode_s (k, bigf) n
1547 and k node =
1548 F.rewrap node (
1549 match F.unwrap node with
1550 | F.FunHeader (def) ->
1551 assert (null (fst def).f_body);
1552 F.FunHeader (vk_def_s bigf def)
1553
1554 | F.Decl declb -> F.Decl (vk_decl_s bigf declb)
1555 | F.ExprStatement (st, (eopt, ii)) ->
1556 F.ExprStatement (st, (eopt +> map_option (vk_expr_s bigf), iif ii))
1557
1558 | F.IfHeader (st, (e,ii)) ->
1559 F.IfHeader (st, (vk_expr_s bigf e, iif ii))
1560 | F.SwitchHeader (st, (e,ii)) ->
1561 F.SwitchHeader(st, (vk_expr_s bigf e, iif ii))
1562 | F.WhileHeader (st, (e,ii)) ->
1563 F.WhileHeader (st, (vk_expr_s bigf e, iif ii))
1564 | F.DoWhileTail (e,ii) ->
1565 F.DoWhileTail (vk_expr_s bigf e, iif ii)
1566
1567 | F.ForHeader (st, (((e1opt,i1), (e2opt,i2), (e3opt,i3)), ii)) ->
1568 F.ForHeader (st,
1569 (((e1opt +> Common.map_option (vk_expr_s bigf), iif i1),
1570 (e2opt +> Common.map_option (vk_expr_s bigf), iif i2),
1571 (e3opt +> Common.map_option (vk_expr_s bigf), iif i3)),
1572 iif ii))
1573
1574 | F.MacroIterHeader (st, ((s,es), ii)) ->
1575 F.MacroIterHeader
1576 (st,
1577 ((s, es +> List.map (fun (e, ii) -> vk_argument_s bigf e, iif ii)),
1578 iif ii))
1579
1580
1581 | F.ReturnExpr (st, (e,ii)) ->
1582 F.ReturnExpr (st, (vk_expr_s bigf e, iif ii))
1583
1584 | F.Case (st, (e,ii)) -> F.Case (st, (vk_expr_s bigf e, iif ii))
1585 | F.CaseRange (st, ((e1, e2),ii)) ->
1586 F.CaseRange (st, ((vk_expr_s bigf e1, vk_expr_s bigf e2), iif ii))
1587
1588 | F.CaseNode i -> F.CaseNode i
1589
1590 | F.DefineHeader((s,ii), (defkind)) ->
1591 F.DefineHeader ((s, iif ii), (vk_define_kind_s bigf defkind))
1592
1593 | F.DefineExpr e -> F.DefineExpr (vk_expr_s bigf e)
1594 | F.DefineType ft -> F.DefineType (vk_type_s bigf ft)
1595 | F.DefineDoWhileZeroHeader ((),ii) ->
1596 F.DefineDoWhileZeroHeader ((),iif ii)
1597 | F.DefineTodo -> F.DefineTodo
1598
1599 | F.Include {i_include = (s, ii);
1600 i_rel_pos = h_rel_pos;
1601 i_is_in_ifdef = b;
1602 i_content = copt;
1603 }
1604 ->
1605 assert (copt =*= None);
1606 F.Include {i_include = (s, iif ii);
1607 i_rel_pos = h_rel_pos;
1608 i_is_in_ifdef = b;
1609 i_content = copt;
1610 }
1611
1612 | F.MacroTop (s, args, ii) ->
1613 F.MacroTop
1614 (s,
1615 args +> List.map (fun (e, ii) -> vk_argument_s bigf e, iif ii),
1616 iif ii)
1617
1618
1619 | F.MacroStmt (st, ((),ii)) -> F.MacroStmt (st, ((),iif ii))
1620 | F.Asm (st, (body,ii)) -> F.Asm (st, (vk_asmbody_s bigf body,iif ii))
1621
1622 | F.Break (st,((),ii)) -> F.Break (st,((),iif ii))
1623 | F.Continue (st,((),ii)) -> F.Continue (st,((),iif ii))
1624 | F.Default (st,((),ii)) -> F.Default (st,((),iif ii))
1625 | F.Return (st,((),ii)) -> F.Return (st,((),iif ii))
1626 | F.Goto (st, name, ((),ii)) ->
1627 F.Goto (st, vk_name_s bigf name, ((),iif ii))
1628 | F.Label (st, name, ((),ii)) ->
1629 F.Label (st, vk_name_s bigf name, ((),iif ii))
1630 | F.EndStatement iopt -> F.EndStatement (map_option infof iopt)
1631 | F.DoHeader (st, info) -> F.DoHeader (st, infof info)
1632 | F.Else info -> F.Else (infof info)
1633 | F.SeqEnd (i, info) -> F.SeqEnd (i, infof info)
1634 | F.SeqStart (st, i, info) -> F.SeqStart (st, i, infof info)
1635
1636 | F.IfdefHeader (info) -> F.IfdefHeader (vk_ifdef_directive_s bigf info)
1637 | F.IfdefElse (info) -> F.IfdefElse (vk_ifdef_directive_s bigf info)
1638 | F.IfdefEndif (info) -> F.IfdefEndif (vk_ifdef_directive_s bigf info)
1639
1640 | (
1641 (
1642 F.TopNode|F.EndNode|
1643 F.ErrorExit|F.Exit|F.Enter|F.LoopFallThroughNode|F.FallThroughNode|
1644 F.AfterNode|F.FalseNode|F.TrueNode|F.InLoopNode|
1645 F.Fake
1646 ) as x) -> x
1647
1648
1649 )
1650 in
1651 nodef node
1652
1653 (* ------------------------------------------------------------------------ *)
1654 and vk_param_s = fun bigf param ->
1655 let iif ii = vk_ii_s bigf ii in
1656 let {p_namei = swrapopt; p_register = (b, iib); p_type=ft} = param in
1657 { p_namei = swrapopt +> Common.map_option (vk_name_s bigf);
1658 p_register = (b, iif iib);
1659 p_type = vk_type_s bigf ft;
1660 }
1661
1662 let vk_arguments_s = fun bigf args ->
1663 let iif ii = vk_ii_s bigf ii in
1664 args +> List.map (fun (e, ii) -> vk_argument_s bigf e, iif ii)
1665
1666 let vk_params_s = fun bigf args ->
1667 let iif ii = vk_ii_s bigf ii in
1668 args +> List.map (fun (p,ii) -> vk_param_s bigf p, iif ii)
1669
1670 let vk_cst_s = fun bigf (cst, ii) ->
1671 let iif ii = vk_ii_s bigf ii in
1672 (match cst with
1673 | Left cst -> Left cst
1674 | Right s -> Right s
1675 ), iif ii
1676
1677 (* ------------------------------------------------------------------------ *)
1678
1679 let vk_splitted_s element = fun bigf args_splitted ->
1680 let iif ii = vk_ii_s bigf ii in
1681 args_splitted +> List.map (function
1682 | Left arg -> Left (element bigf arg)
1683 | Right ii -> Right (iif ii)
1684 )
1685
1686 let vk_args_splitted_s = vk_splitted_s vk_argument_s
1687 let vk_params_splitted_s = vk_splitted_s vk_param_s
1688 let vk_define_params_splitted_s =
1689 vk_splitted_s (fun bigf (s,ii) -> (s,vk_ii_s bigf ii))
1690 let vk_enum_fields_splitted_s = vk_splitted_s vk_oneEnum_s
1691 let vk_inis_splitted_s = vk_splitted_s vk_ini_s