Block: whitespace changes in clear()
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 using std::string;
17 #include <vector>
18 #include "../communication/utils/Gcode.h"
19
20 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
21 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
22 // Most of the accel math is also done in this class
23 // And GCode objects for use in on_gcode_execute are also help in here
24
25 Block::Block()
26 {
27 clear();
28 }
29
30 void Block::clear()
31 {
32 //commands.clear();
33 //travel_distances.clear();
34 gcodes.clear();
35 clear_vector(this->steps);
36
37 steps_event_count = 0;
38 nominal_rate = 0;
39 nominal_speed = 0.0F;
40 millimeters = 0.0F;
41 entry_speed = 0.0F;
42 rate_delta = 0.0F;
43 initial_rate = -1;
44 final_rate = -1;
45 accelerate_until = 0;
46 decelerate_after = 0;
47 direction_bits = 0;
48 recalculate_flag = false;
49 nominal_length_flag = false;
50 max_entry_speed = 0.0F;
51 is_ready = false;
52 times_taken = 0;
53 }
54
55 void Block::debug()
56 {
57 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
58 this,
59 this->steps[0],
60 this->steps[1],
61 this->steps[2],
62 this->steps_event_count,
63 this->nominal_rate,
64 this->nominal_speed,
65 this->millimeters,
66 this->rate_delta,
67 this->accelerate_until,
68 this->decelerate_after,
69 this->initial_rate,
70 this->final_rate,
71 this->entry_speed,
72 this->max_entry_speed,
73 this->times_taken,
74 this->is_ready,
75 recalculate_flag?1:0,
76 nominal_length_flag?1:0
77 );
78 }
79
80
81 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
82 // The factors represent a factor of braking and must be in the range 0.0-1.0.
83 // +--------+ <- nominal_rate
84 // / \
85 // nominal_rate*entry_factor -> + \
86 // | + <- nominal_rate*exit_factor
87 // +-------------+
88 // time -->
89 */
90 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
91 {
92 // if block is currently executing, don't touch anything!
93 if (times_taken)
94 return;
95
96 // The planner passes us factors, we need to transform them in rates
97 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/min)
98 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/min)
99
100 // How many steps to accelerate and decelerate
101 float acceleration_per_minute = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
102 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
103 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
104
105 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
106 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
107
108 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
109 // have to use intersection_distance() to calculate when to abort acceleration and start braking
110 // in order to reach the final_rate exactly at the end of this block.
111 if (plateau_steps < 0) {
112 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
113 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
114 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
115 plateau_steps = 0;
116 }
117 this->accelerate_until = accelerate_steps;
118 this->decelerate_after = accelerate_steps + plateau_steps;
119
120 this->exit_speed = exitspeed;
121 }
122
123 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
124 // given acceleration:
125 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
126 {
127 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
128 }
129
130 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
131 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
132 // a total travel of distance. This can be used to compute the intersection point between acceleration and
133 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
134 //
135 /* + <- some maximum rate we don't care about
136 /|\
137 / | \
138 / | + <- final_rate
139 / | |
140 initial_rate -> +----+--+
141 ^ ^
142 | |
143 intersection_distance distance */
144 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
145 {
146 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
147 }
148
149 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
150 // acceleration within the allotted distance.
151 inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
152 {
153 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
154 }
155
156
157 // Called by Planner::recalculate() when scanning the plan from last to first entry.
158 float Block::reverse_pass(float exit_speed)
159 {
160 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
161 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
162 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
163 if (this->entry_speed != this->max_entry_speed)
164 {
165 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
166 // for max allowable speed if block is decelerating and nominal length is false.
167 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
168 {
169 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->acceleration, exit_speed, this->millimeters);
170
171 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
172
173 return this->entry_speed;
174 }
175 else
176 this->entry_speed = this->max_entry_speed;
177 }
178
179 return this->entry_speed;
180 }
181
182
183 // Called by Planner::recalculate() when scanning the plan from first to last entry.
184 // returns maximum exit speed of this block
185 float Block::forward_pass(float prev_max_exit_speed)
186 {
187 // If the previous block is an acceleration block, but it is not long enough to complete the
188 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
189 // speeds have already been reset, maximized, and reverse planned by reverse planner.
190 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
191
192 // TODO: find out if both of these checks are necessary
193 if (prev_max_exit_speed > nominal_speed)
194 prev_max_exit_speed = nominal_speed;
195 if (prev_max_exit_speed > max_entry_speed)
196 prev_max_exit_speed = max_entry_speed;
197
198 if (prev_max_exit_speed <= entry_speed)
199 {
200 // accel limited
201 entry_speed = prev_max_exit_speed;
202 // since we're now acceleration or cruise limited
203 // we don't need to recalculate our entry speed anymore
204 recalculate_flag = false;
205 }
206 // else
207 // // decel limited, do nothing
208
209 return max_exit_speed();
210 }
211
212 float Block::max_exit_speed()
213 {
214 // if block is currently executing, return cached exit speed from calculate_trapezoid
215 // this ensures that a block following a currently executing block will have correct entry speed
216 if (times_taken)
217 return exit_speed;
218
219 // if nominal_length_flag is asserted
220 // we are guaranteed to reach nominal speed regardless of entry speed
221 // thus, max exit will always be nominal
222 if (nominal_length_flag)
223 return nominal_speed;
224
225 // otherwise, we have to work out max exit speed based on entry and acceleration
226 float max = max_allowable_speed(-THEKERNEL->planner->acceleration, this->entry_speed, this->millimeters);
227
228 return min(max, nominal_speed);
229 }
230
231 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
232 void Block::append_gcode(Gcode* gcode)
233 {
234 Gcode new_gcode = *gcode;
235 gcodes.push_back(new_gcode);
236 }
237
238 void Block::begin()
239 {
240 recalculate_flag = false;
241
242 times_taken = -1;
243
244 // execute all the gcodes related to this block
245 for(unsigned int index = 0; index < gcodes.size(); index++)
246 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
247
248 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
249
250 if (times_taken < 0)
251 release();
252 }
253
254 // Signal the conveyor that this block is ready to be injected into the system
255 void Block::ready()
256 {
257 this->is_ready = true;
258 }
259
260 // Mark the block as taken by one more module
261 void Block::take()
262 {
263 if (times_taken < 0)
264 times_taken = 0;
265 times_taken++;
266 }
267
268 // Mark the block as no longer taken by one module, go to next block if this free's it
269 void Block::release()
270 {
271 if (--this->times_taken <= 0)
272 {
273 THEKERNEL->call_event(ON_BLOCK_END, this);
274
275 // ensure conveyor gets called last
276 THEKERNEL->conveyor->on_block_end(this);
277 }
278 }