added missing files
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include "mbed.h"
13 #include <string>
14 #include "Block.h"
15 #include "Planner.h"
16 #include "Player.h"
17 using std::string;
18 #include <vector>
19 #include "../communication/utils/Gcode.h"
20
21 Block::Block(){
22 clear_vector(this->steps);
23 this->times_taken = 0; // A block can be "taken" by any number of modules, and the next block is not moved to until all the modules have "released" it. This value serves as a tracker.
24 this->is_ready = false;
25 this->initial_rate = -1;
26 this->final_rate = -1;
27 }
28
29 void Block::debug(Kernel* kernel){
30 kernel->serial->printf("%p: steps:%4d|%4d|%4d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8d acc:%5d dec:%5d rates:%10d>%10d taken:%d ready:%d \r\n", this, this->steps[0], this->steps[1], this->steps[2], this->steps_event_count, this->nominal_rate, this->nominal_speed, this->millimeters, this->rate_delta, this->accelerate_until, this->decelerate_after, this->initial_rate, this->final_rate, this->times_taken, this->is_ready );
31 }
32
33
34 // Calculate a braking factor to reach baseline speed which is max_jerk/2, e.g. the
35 // speed under which you cannot exceed max_jerk no matter what you do.
36 double Block::compute_factor_for_safe_speed(){
37 return( this->planner->max_jerk / this->nominal_speed );
38 }
39
40
41 // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
42 // The factors represent a factor of braking and must be in the range 0.0-1.0.
43 // +--------+ <- nominal_rate
44 // / \
45 // nominal_rate*entry_factor -> + \
46 // | + <- nominal_rate*exit_factor
47 // +-------------+
48 // time -->
49 void Block::calculate_trapezoid( double entryfactor, double exitfactor ){
50
51 this->initial_rate = ceil(this->nominal_rate * entryfactor); // (step/min)
52 this->final_rate = ceil(this->nominal_rate * exitfactor); // (step/min)
53 //this->player->kernel->serial->printf("%p: r:%d \r\n", this, this->initial_rate);
54 double acceleration_per_minute = this->rate_delta * this->planner->kernel->stepper->acceleration_ticks_per_second * 60.0;
55 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
56 int decelerate_steps = ceil( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
57
58 // Calculate the size of Plateau of Nominal Rate.
59 int plateau_steps = this->steps_event_count-accelerate_steps-decelerate_steps;
60
61 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
62 // have to use intersection_distance() to calculate when to abort acceleration and start braking
63 // in order to reach the final_rate exactly at the end of this block.
64 if (plateau_steps < 0) {
65 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
66 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
67 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
68 plateau_steps = 0;
69 }
70
71 this->accelerate_until = accelerate_steps;
72 this->decelerate_after = accelerate_steps+plateau_steps;
73
74 // DIRTY HACK so that we don't end too early for blocks with 0 as final_rate. Doing the math right would be better. Probably fixed in latest grbl
75 if( this->final_rate < 0.01 ){
76 this->decelerate_after += floor( this->nominal_rate / 60 / this->planner->kernel->stepper->acceleration_ticks_per_second ) * 3;
77 }
78
79 }
80
81 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
82 // given acceleration:
83 double Block::estimate_acceleration_distance(double initialrate, double targetrate, double acceleration) {
84 return( (targetrate*targetrate-initialrate*initialrate)/(2L*acceleration));
85 }
86
87 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
88 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
89 // a total travel of distance. This can be used to compute the intersection point between acceleration and
90 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
91 //
92 /* + <- some maximum rate we don't care about
93 /|\
94 / | \
95 / | + <- final_rate
96 / | |
97 initial_rate -> +----+--+
98 ^ ^
99 | |
100 intersection_distance distance */
101 double Block::intersection_distance(double initialrate, double finalrate, double acceleration, double distance) {
102 return((2*acceleration*distance-initialrate*initialrate+finalrate*finalrate)/(4*acceleration));
103 }
104
105 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
106 // acceleration within the allotted distance.
107 inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
108 return(
109 sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
110 );
111 }
112
113
114 // Called by Planner::recalculate() when scanning the plan from last to first entry.
115 void Block::reverse_pass(Block* next, Block* previous){
116
117 if (next) {
118 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
119 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
120 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
121 if (this->entry_speed != this->max_entry_speed) {
122
123 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
124 // for max allowable speed if block is decelerating and nominal length is false.
125 if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
126 this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-this->planner->acceleration,next->entry_speed,this->millimeters));
127 } else {
128 this->entry_speed = this->max_entry_speed;
129 }
130 this->recalculate_flag = true;
131
132 }
133 } // Skip last block. Already initialized and set for recalculation.
134
135 }
136
137
138 // Called by Planner::recalculate() when scanning the plan from first to last entry.
139 void Block::forward_pass(Block* previous, Block* next){
140
141 if(!previous) { return; } // Begin planning after buffer_tail
142
143 // If the previous block is an acceleration block, but it is not long enough to complete the
144 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
145 // speeds have already been reset, maximized, and reverse planned by reverse planner.
146 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
147 if (!previous->nominal_length_flag) {
148 if (previous->entry_speed < this->entry_speed) {
149 double entry_speed = min( this->entry_speed,
150 max_allowable_speed(-this->planner->acceleration,previous->entry_speed,previous->millimeters) );
151
152 // Check for junction speed change
153 if (this->entry_speed != entry_speed) {
154 this->entry_speed = entry_speed;
155 this->recalculate_flag = true;
156 }
157 }
158 }
159
160 }
161
162
163 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
164 void Block::append_gcode(Gcode* gcode){
165 //this->commands.push_back(gcode->command);
166 //this->travel_distances.push_back(gcode->millimeters_of_travel);
167 __disable_irq();
168 this->gcodes.push_back(*gcode);
169 __enable_irq();
170 }
171
172 // The attached gcodes are then poped and the on_gcode_execute event is called with them as a parameter
173 void Block::pop_and_execute_gcode(Kernel* &kernel){
174 Block* block = const_cast<Block*>(this);
175 //for(unsigned short index=0; index<block->commands.size(); index++){
176 // Gcode gcode = Gcode();
177 // gcode.command = block->commands.at(index);
178 // gcode.millimeters_of_travel = block->travel_distances.at(index);
179 // kernel->call_event(ON_GCODE_EXECUTE, &gcode );
180 //}
181 for(unsigned short index=0; index<block->gcodes.size(); index++){
182 //this->player->kernel->serial->printf("exec: block:%p gcode:%p command:%p \r\n", block, &(block->gcodes[index]), &(block->gcodes[index].command) );
183 //this->player->kernel->serial->printf(" str:%s \r\n", block->gcodes[index].command.c_str() );
184 //wait(0.1);
185 kernel->call_event(ON_GCODE_EXECUTE, &(block->gcodes[index]));
186 }
187 }
188
189 // Signal the player that this block is ready to be injected into the system
190 void Block::ready(){
191 this->is_ready = true;
192 this->player->new_block_added();
193 }
194
195 // Mark the block as taken by one more module
196 void Block::take(){
197 this->times_taken++;
198 }
199
200 // Mark the block as no longer taken by one module, go to next block if this free's it
201 void Block::release(){
202 this->times_taken--;
203 if( this->times_taken < 1 ){
204 this->player->kernel->call_event(ON_BLOCK_END, this);
205 this->pop_and_execute_gcode(this->player->kernel);
206 Player* player = this->player;
207
208 //this->player->kernel->serial->printf("a %d\r\n", this->player->queue.size() );
209 if( player->queue.size() > 0 ){
210 player->queue.delete_first();
211 }
212
213 //this->player->kernel->serial->printf("b %d %d\r\n", this->player->queue.size(), player->looking_for_new_block );
214
215 if( player->looking_for_new_block == false ){
216 //player->pop_and_process_new_block(123);
217 if( player->queue.size() > 0 ){
218 Block* candidate = player->queue.get_ref(0);
219 if( candidate->is_ready ){
220 //candidate->debug(player->kernel);
221 //this->player->kernel->serial->printf("c %d %d\r\n", this->player->queue.size(), player->looking_for_new_block );
222 player->current_block = candidate;
223 player->kernel->call_event(ON_BLOCK_BEGIN, player->current_block);
224 if( player->current_block->times_taken < 1 ){
225 player->current_block->release();
226 }
227 }else{
228
229 player->current_block = NULL;
230
231 }
232 }else{
233 //player->current_block->debug(player->kernel);
234 //this->player->kernel->serial->printf("d %d %d\r\n", this->player->queue.size(), player->looking_for_new_block );
235 //wait(0.1);
236 player->current_block = NULL;
237 }
238 }
239 }
240 }
241
242
243