Merge remote-tracking branch 'origin/fix/USBSerial-breaks-if-host-doesnt-assert-DTR...
[clinton/Smoothieware.git] / src / libs / StepTicker.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8
9
10 using namespace std;
11 #include <vector>
12 #include "libs/nuts_bolts.h"
13 #include "libs/Module.h"
14 #include "libs/Kernel.h"
15 #include "StepTicker.h"
16 #include "system_LPC17xx.h" // mbed.h lib
17
18 #include <mri.h>
19
20 // StepTicker handles the base frequency ticking for the Stepper Motors / Actuators
21 // It has a list of those, and calls their tick() functions at regular intervals
22 // They then do Bresenham stuff themselves
23
24 StepTicker* global_step_ticker;
25
26 StepTicker::StepTicker(){
27 global_step_ticker = this;
28 LPC_TIM0->MR0 = 10000000; // Initial dummy value for Match Register
29 LPC_TIM0->MCR = 3; // Match on MR0, reset on MR0, match on MR1
30 LPC_TIM0->TCR = 1; // Enable interrupt
31
32 LPC_SC->PCONP |= (1 << 2); // Power Ticker ON
33 LPC_TIM1->MR0 = 1000000;
34 LPC_TIM1->MCR = 1;
35 LPC_TIM1->TCR = 1; // Enable interrupt
36
37 // Default start values
38 this->moves_finished = false;
39 this->reset_step_pins = false;
40 this->debug = 0;
41 this->has_axes = 0;
42 this->set_frequency(0.001);
43 this->set_reset_delay(100);
44 this->last_duration = 0;
45 for (int i = 0; i < 12; i++)
46 this->active_motors[i] = NULL;
47 this->active_motor_bm = 0;
48
49 NVIC_EnableIRQ(TIMER0_IRQn); // Enable interrupt handler
50 NVIC_EnableIRQ(TIMER1_IRQn); // Enable interrupt handler
51 }
52
53 // Set the base stepping frequency
54 void StepTicker::set_frequency( double frequency ){
55 this->frequency = frequency;
56 this->period = int(floor((SystemCoreClock/4)/frequency)); // SystemCoreClock/4 = Timer increments in a second
57 LPC_TIM0->MR0 = this->period;
58 if( LPC_TIM0->TC > LPC_TIM0->MR0 ){
59 LPC_TIM0->TCR = 3; // Reset
60 LPC_TIM0->TCR = 1; // Reset
61 }
62 }
63
64 // Set the reset delay
65 void StepTicker::set_reset_delay( double seconds ){
66 this->delay = int(floor(double(SystemCoreClock/4)*( seconds ))); // SystemCoreClock/4 = Timer increments in a second
67 LPC_TIM1->MR0 = this->delay;
68 }
69
70 // Add a stepper motor object to our list of steppers we must take care of
71 StepperMotor* StepTicker::add_stepper_motor(StepperMotor* stepper_motor){
72 this->stepper_motors.push_back(stepper_motor);
73 stepper_motor->step_ticker = this;
74 this->has_axes = true;
75 return stepper_motor;
76 }
77
78 // Call tick() on each active motor
79 inline void StepTicker::tick(){
80 }
81
82 // Call signal_mode_finished() on each active motor that asked to be signaled. We do this instead of inside of tick() so that
83 // all tick()s are called before we do the move finishing
84 void StepTicker::signal_moves_finished(){
85 _isr_context = true;
86
87 uint16_t bitmask = 1;
88 for ( uint8_t motor = 0; motor < 12; motor++, bitmask <<= 1){
89 if (this->active_motor_bm & bitmask){
90 if(this->active_motors[motor]->is_move_finished){
91 this->active_motors[motor]->signal_move_finished();
92 if(this->active_motors[motor]->moving == false){
93 if (motor > 0){
94 motor--;
95 bitmask >>= 1;
96 }
97 }
98 }
99 }
100 }
101 this->moves_finished = false;
102
103 _isr_context = false;
104 }
105
106 // Reset step pins on all active motors
107 inline void StepTicker::reset_tick(){
108 _isr_context = true;
109
110 int i;
111 uint32_t bm;
112 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
113 {
114 if (this->active_motor_bm & bm)
115 this->active_motors[i]->step_pin->set(0);
116 }
117
118 _isr_context = false;
119 }
120
121 extern "C" void TIMER1_IRQHandler (void){
122 LPC_TIM1->IR |= 1 << 0;
123 global_step_ticker->reset_tick();
124 }
125
126
127 //#pragma GCC push_options
128 //#pragma GCC optimize ("O0")
129
130
131 // The actual interrupt handler where we do all the work
132 extern "C" void TIMER0_IRQHandler (void){
133
134 LPC_TIM0->IR |= 1 << 0;
135
136 // If no axes enabled, just ignore for now
137 if( global_step_ticker->active_motor_bm == 0 ){
138 return;
139 }
140
141 // Do not get out of here before everything is nice and tidy
142 LPC_TIM0->MR0 = 2000000;
143
144 // Step pins
145 //global_step_ticker->tick();
146 _isr_context = true;
147 uint16_t bitmask = 1;
148 for (uint8_t motor = 0; motor < 12; motor++, bitmask <<= 1){
149 if (global_step_ticker->active_motor_bm & bitmask){
150 global_step_ticker->active_motors[motor]->tick();
151 }
152 }
153 _isr_context = false;
154
155 // We may have set a pin on in this tick, now we start the timer to set it off
156 if( global_step_ticker->reset_step_pins ){
157 LPC_TIM1->TCR = 3;
158 LPC_TIM1->TCR = 1;
159 global_step_ticker->reset_step_pins = false;
160 }
161
162 // If a move finished in this tick, we have to tell the actuator to act accordingly
163 if( global_step_ticker->moves_finished ){ global_step_ticker->signal_moves_finished(); }
164
165 // uint32_t after_signal = LPC_TIM0->TC;
166
167 // If we went over the duration an interrupt is supposed to last, we have a problem
168 // That can happen tipically when we change blocks, where more than usual computation is done
169 // This can be OK, if we take notice of it, which we do now
170 if( LPC_TIM0->TC > global_step_ticker->period ){ // TODO: remove the size condition
171
172 uint32_t start_tc = LPC_TIM0->TC;
173
174 // How many ticks we want to skip ( this does not include the current tick, but we add the time we spent doing this computation last time )
175 uint32_t ticks_to_skip = ( ( LPC_TIM0->TC + global_step_ticker->last_duration ) / global_step_ticker->period );
176
177 // Next step is now to reduce this to how many steps we can *actually* skip
178 uint32_t ticks_we_actually_can_skip = ticks_to_skip;
179
180 int i;
181 uint32_t bm;
182 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
183 {
184 if (global_step_ticker->active_motor_bm & bm)
185 ticks_we_actually_can_skip =
186 min(ticks_we_actually_can_skip,
187 (uint32_t)((uint64_t)( (uint64_t)global_step_ticker->active_motors[i]->fx_ticks_per_step - (uint64_t)global_step_ticker->active_motors[i]->fx_counter ) >> 32)
188 );
189 }
190
191 // Adding to MR0 for this time is not enough, we must also increment the counters ourself artificially
192 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
193 {
194 if (global_step_ticker->active_motor_bm & bm)
195 global_step_ticker->active_motors[i]->fx_counter += (uint64_t)((uint64_t)(ticks_we_actually_can_skip)<<32);
196 }
197
198 // When must we have our next MR0 ? ( +1 is here to account that we are actually doing a legit MR0 match here too, not only overtime )
199 // LPC_TIM0->MR0 = ( ticks_we_actually_can_skip + 1 ) * global_step_ticker->period;
200 LPC_TIM0->MR0 = ( ticks_to_skip + 1 ) * global_step_ticker->period;
201
202 // This is so that we know how long this computation takes, and we can take it into account next time
203 int difference = (int)(LPC_TIM0->TC) - (int)(start_tc);
204 if( difference > 0 ){ global_step_ticker->last_duration = (uint32_t)difference; }
205
206 //if( global_step_ticker->last_duration > 2000 || LPC_TIM0->MR0 > 2000 || LPC_TIM0->TC > 2000 || initial_tc > 2000 ){ __debugbreak(); }
207
208 }else{
209 LPC_TIM0->MR0 = global_step_ticker->period;
210 }
211
212 while( LPC_TIM0->TC > LPC_TIM0->MR0 ){
213 LPC_TIM0->MR0 += global_step_ticker->period;
214 }
215
216 }
217
218
219 //#pragma GCC pop_options
220
221 // We make a list of steppers that want to be called so that we don't call them for nothing
222 void StepTicker::add_motor_to_active_list(StepperMotor* motor)
223 {
224 uint32_t bm;
225 int i;
226 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
227 {
228 if (this->active_motors[i] == motor)
229 {
230 this->active_motor_bm |= bm;
231 return;
232 }
233 if (this->active_motors[i] == NULL)
234 {
235 this->active_motors[i] = motor;
236 this->active_motor_bm |= bm;
237 return;
238 }
239 }
240 return;
241 }
242
243 // Remove a stepper from the list of active motors
244 void StepTicker::remove_motor_from_active_list(StepperMotor* motor)
245 {
246 uint32_t bm; int i;
247 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
248 {
249 if (this->active_motors[i] == motor)
250 {
251 this->active_motor_bm &= ~bm;
252 return;
253 }
254 }
255 }