Merge pull request #294 from wolfmanjm/upstreamedge
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17
18 #define ALPHA_AXIS 0
19 #define BETA_AXIS 1
20 #define GAMMA_AXIS 2
21 #define X_AXIS 0
22 #define Y_AXIS 1
23 #define Z_AXIS 2
24
25 #define NOT_HOMING 0
26 #define MOVING_TO_ORIGIN_FAST 1
27 #define MOVING_BACK 2
28 #define MOVING_TO_ORIGIN_SLOW 3
29
30 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
31 #define corexy_homing_checksum CHECKSUM("corexy_homing")
32 #define delta_homing_checksum CHECKSUM("delta_homing")
33
34 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
35 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
36 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
37
38 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
39 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
40 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
41
42 #define alpha_trim_checksum CHECKSUM("alpha_trim")
43 #define beta_trim_checksum CHECKSUM("beta_trim")
44 #define gamma_trim_checksum CHECKSUM("gamma_trim")
45
46 // these values are in steps and should be deprecated
47 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
48 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
49 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
50
51 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
52 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
53 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
54
55 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
56 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
57 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
58 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
59
60 // same as above but in user friendly mm/s and mm
61 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
62 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
63 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
64
65 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
66 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
67 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
68
69 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
70 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
71 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
72
73 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
74
75 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
76 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
77 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
78 #define home_to_max_checksum CHECKSUM("home_to_max")
79 #define home_to_min_checksum CHECKSUM("home_to_min")
80 #define alpha_min_checksum CHECKSUM("alpha_min")
81 #define beta_min_checksum CHECKSUM("beta_min")
82 #define gamma_min_checksum CHECKSUM("gamma_min")
83
84 #define alpha_max_checksum CHECKSUM("alpha_max")
85 #define beta_max_checksum CHECKSUM("beta_max")
86 #define gamma_max_checksum CHECKSUM("gamma_max")
87
88 #define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
89 #define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
90 #define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
91
92 Endstops::Endstops()
93 {
94 this->status = NOT_HOMING;
95 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
96 }
97
98 void Endstops::on_module_loaded()
99 {
100 // Do not do anything if not enabled
101 if ( this->kernel->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
102 return;
103 }
104
105 register_for_event(ON_CONFIG_RELOAD);
106 this->register_for_event(ON_GCODE_RECEIVED);
107
108 // Take StepperMotor objects from Robot and keep them here
109 this->steppers[0] = this->kernel->robot->alpha_stepper_motor;
110 this->steppers[1] = this->kernel->robot->beta_stepper_motor;
111 this->steppers[2] = this->kernel->robot->gamma_stepper_motor;
112
113 // Settings
114 this->on_config_reload(this);
115
116 }
117
118 // Get config
119 void Endstops::on_config_reload(void *argument)
120 {
121 this->pins[0].from_string( this->kernel->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
122 this->pins[1].from_string( this->kernel->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
123 this->pins[2].from_string( this->kernel->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
124 this->pins[3].from_string( this->kernel->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
125 this->pins[4].from_string( this->kernel->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
126 this->pins[5].from_string( this->kernel->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
127
128 // we need to know steps per mm for M206, also use them for all settings
129 this->steps_per_mm[0] = this->kernel->config->value(alpha_steps_per_mm_checksum )->as_number();
130 this->steps_per_mm[1] = this->kernel->config->value(beta_steps_per_mm_checksum )->as_number();
131 this->steps_per_mm[2] = this->kernel->config->value(gamma_steps_per_mm_checksum )->as_number();
132
133 this->fast_rates[0] = this->kernel->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number();
134 this->fast_rates[1] = this->kernel->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number();
135 this->fast_rates[2] = this->kernel->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number();
136 this->slow_rates[0] = this->kernel->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number();
137 this->slow_rates[1] = this->kernel->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number();
138 this->slow_rates[2] = this->kernel->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number();
139 this->retract_steps[0] = this->kernel->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number();
140 this->retract_steps[1] = this->kernel->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number();
141 this->retract_steps[2] = this->kernel->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number();
142
143 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
144 this->fast_rates[0] = this->kernel->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
145 this->fast_rates[1] = this->kernel->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
146 this->fast_rates[2] = this->kernel->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
147 this->slow_rates[0] = this->kernel->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
148 this->slow_rates[1] = this->kernel->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
149 this->slow_rates[2] = this->kernel->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
150 this->retract_steps[0] = this->kernel->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_steps[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
151 this->retract_steps[1] = this->kernel->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_steps[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
152 this->retract_steps[2] = this->kernel->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_steps[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
153
154 this->debounce_count = this->kernel->config->value(endstop_debounce_count_checksum )->by_default(0)->as_number();
155
156
157 // get homing direction and convert to boolean where true is home to min, and false is home to max
158 int home_dir = get_checksum(this->kernel->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
159 this->home_direction[0] = home_dir != home_to_max_checksum;
160
161 home_dir = get_checksum(this->kernel->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
162 this->home_direction[1] = home_dir != home_to_max_checksum;
163
164 home_dir = get_checksum(this->kernel->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
165 this->home_direction[2] = home_dir != home_to_max_checksum;
166
167 this->homing_position[0] = this->home_direction[0] ? this->kernel->config->value(alpha_min_checksum)->by_default(0)->as_number() : this->kernel->config->value(alpha_max_checksum)->by_default(200)->as_number();
168 this->homing_position[1] = this->home_direction[1] ? this->kernel->config->value(beta_min_checksum )->by_default(0)->as_number() : this->kernel->config->value(beta_max_checksum )->by_default(200)->as_number();;
169 this->homing_position[2] = this->home_direction[2] ? this->kernel->config->value(gamma_min_checksum)->by_default(0)->as_number() : this->kernel->config->value(gamma_max_checksum)->by_default(200)->as_number();;
170
171 this->is_corexy = this->kernel->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
172 this->is_delta = this->kernel->config->value(delta_homing_checksum)->by_default(false)->as_bool();
173
174 // endstop trim used by deltas to do soft adjusting, in mm, convert to steps, and negate depending on homing direction
175 // eg on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
176 int dirx = (this->home_direction[0] ? 1 : -1);
177 int diry = (this->home_direction[1] ? 1 : -1);
178 int dirz = (this->home_direction[2] ? 1 : -1);
179 this->trim[0] = this->kernel->config->value(alpha_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[0] * dirx;
180 this->trim[1] = this->kernel->config->value(beta_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[1] * diry;
181 this->trim[2] = this->kernel->config->value(gamma_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[2] * dirz;
182 }
183
184 void Endstops::wait_for_homed(char axes_to_move)
185 {
186 bool running = true;
187 unsigned int debounce[3] = {0, 0, 0};
188 while (running) {
189 running = false;
190 this->kernel->call_event(ON_IDLE);
191 for ( char c = 'X'; c <= 'Z'; c++ ) {
192 if ( ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
193 if ( this->pins[c - 'X' + (this->home_direction[c - 'X'] ? 0 : 3)].get() ) {
194 if ( debounce[c - 'X'] < debounce_count ) {
195 debounce[c - 'X'] ++;
196 running = true;
197 } else if ( this->steppers[c - 'X']->moving ) {
198 this->steppers[c - 'X']->move(0, 0);
199 }
200 } else {
201 // The endstop was not hit yet
202 running = true;
203 debounce[c - 'X'] = 0;
204 }
205 }
206 }
207 }
208 }
209
210 // this homing works for cartesian and delta printers, not for HBots/CoreXY
211 void Endstops::do_homing(char axes_to_move)
212 {
213 // Start moving the axes to the origin
214 this->status = MOVING_TO_ORIGIN_FAST;
215 for ( char c = 'X'; c <= 'Z'; c++ ) {
216 if ( ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
217 this->steppers[c - 'X']->set_speed(this->fast_rates[c - 'X']);
218 this->steppers[c - 'X']->move(this->home_direction[c - 'X'], 10000000);
219 }
220 }
221
222 // Wait for all axes to have homed
223 this->wait_for_homed(axes_to_move);
224
225 // Move back a small distance
226 this->status = MOVING_BACK;
227 bool inverted_dir;
228 for ( char c = 'X'; c <= 'Z'; c++ ) {
229 if ( ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
230 inverted_dir = !this->home_direction[c - 'X'];
231 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
232 this->steppers[c - 'X']->move(inverted_dir, this->retract_steps[c - 'X']);
233 }
234 }
235
236 // Wait for moves to be done
237 for ( char c = 'X'; c <= 'Z'; c++ ) {
238 if ( ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
239 while ( this->steppers[c - 'X']->moving ) {
240 this->kernel->call_event(ON_IDLE);
241 }
242 }
243 }
244
245 // Start moving the axes to the origin slowly
246 this->status = MOVING_TO_ORIGIN_SLOW;
247 for ( char c = 'X'; c <= 'Z'; c++ ) {
248 if ( ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
249 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
250 this->steppers[c - 'X']->move(this->home_direction[c - 'X'], 10000000);
251 }
252 }
253
254 // Wait for all axes to have homed
255 this->wait_for_homed(axes_to_move);
256
257 if (this->is_delta) {
258 // move for soft trim
259 this->status = MOVING_BACK;
260 for ( char c = 'X'; c <= 'Z'; c++ ) {
261 if ( this->trim[c - 'X'] != 0 && ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
262 inverted_dir = !this->home_direction[c - 'X'];
263 // move up or down depending on sign of trim
264 if (this->trim[c - 'X'] < 0) inverted_dir = !inverted_dir;
265 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
266 this->steppers[c - 'X']->move(inverted_dir, this->trim[c - 'X']);
267 }
268 }
269
270 // Wait for moves to be done
271 for ( char c = 'X'; c <= 'Z'; c++ ) {
272 if ( ( axes_to_move >> ( c - 'X' ) ) & 1 ) {
273 //this->kernel->streams->printf("axis %c \r\n", c );
274 while ( this->steppers[c - 'X']->moving ) {
275 this->kernel->call_event(ON_IDLE);
276 }
277 }
278 }
279 }
280
281 // Homing is done
282 this->status = NOT_HOMING;
283 }
284
285 void Endstops::wait_for_homed_corexy(int axis)
286 {
287 bool running = true;
288 unsigned int debounce[3] = {0, 0, 0};
289 while (running) {
290 running = false;
291 this->kernel->call_event(ON_IDLE);
292 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
293 if ( debounce[axis] < debounce_count ) {
294 debounce[axis] ++;
295 running = true;
296 } else {
297 // turn both off if running
298 if (this->steppers[X_AXIS]->moving) this->steppers[X_AXIS]->move(0, 0);
299 if (this->steppers[Y_AXIS]->moving) this->steppers[Y_AXIS]->move(0, 0);
300 }
301 } else {
302 // The endstop was not hit yet
303 running = true;
304 debounce[axis] = 0;
305 }
306 }
307 }
308
309 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, double fast_rate, double slow_rate, unsigned int retract_steps)
310 {
311 this->status = MOVING_TO_ORIGIN_FAST;
312 this->steppers[X_AXIS]->set_speed(fast_rate);
313 this->steppers[X_AXIS]->move(dirx, 10000000);
314 this->steppers[Y_AXIS]->set_speed(fast_rate);
315 this->steppers[Y_AXIS]->move(diry, 10000000);
316
317 // wait for primary axis
318 this->wait_for_homed_corexy(home_axis);
319
320 // Move back a small distance
321 this->status = MOVING_BACK;
322 this->steppers[X_AXIS]->set_speed(slow_rate);
323 this->steppers[X_AXIS]->move(!dirx, retract_steps);
324 this->steppers[Y_AXIS]->set_speed(slow_rate);
325 this->steppers[Y_AXIS]->move(!diry, retract_steps);
326
327 // wait until done
328 while ( this->steppers[X_AXIS]->moving || this->steppers[Y_AXIS]->moving) {
329 this->kernel->call_event(ON_IDLE);
330 }
331
332 // Start moving the axes to the origin slowly
333 this->status = MOVING_TO_ORIGIN_SLOW;
334 this->steppers[X_AXIS]->set_speed(slow_rate);
335 this->steppers[X_AXIS]->move(dirx, 10000000);
336 this->steppers[Y_AXIS]->set_speed(slow_rate);
337 this->steppers[Y_AXIS]->move(diry, 10000000);
338
339 // wait for primary axis
340 this->wait_for_homed_corexy(home_axis);
341 }
342
343 // this homing works for HBots/CoreXY
344 void Endstops::do_homing_corexy(char axes_to_move)
345 {
346 // TODO should really make order configurable, and selectr whether to allow XY to home at the same time, diagonally
347 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
348 // allow to move until an endstop triggers, then stop that motor.
349 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
350
351 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
352 // determine which motor to turn and which way
353 bool dirx= this->home_direction[X_AXIS];
354 bool diry= this->home_direction[Y_AXIS];
355 int motor;
356 bool dir;
357 if(dirx && diry) { // min/min
358 motor= X_AXIS;
359 dir= true;
360 }else if(dirx && !diry) { // min/max
361 motor= Y_AXIS;
362 dir= true;
363 }else if(!dirx && diry) { // max/min
364 motor= Y_AXIS;
365 dir= false;
366 }else if(!dirx && !diry) { // max/max
367 motor= X_AXIS;
368 dir= false;
369 }
370
371 // then move both X and Y until one hits the endstop
372 this->status = MOVING_TO_ORIGIN_FAST;
373 this->steppers[motor]->set_speed(this->fast_rates[motor]);
374 this->steppers[motor]->move(dir, 10000000);
375 // wait until either X or Y hits the endstop
376 bool running= true;
377 while (running) {
378 this->kernel->call_event(ON_IDLE);
379 for(int m=X_AXIS;m<=Y_AXIS;m++) {
380 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
381 // turn off motor
382 if(this->steppers[motor]->moving) this->steppers[motor]->move(0, 0);
383 running= false;
384 break;
385 }
386 }
387 }
388 }
389
390 // move individual axis
391 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
392 bool dir= this->home_direction[X_AXIS];
393 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_steps[X_AXIS]);
394 }
395
396 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
397 bool dir= this->home_direction[Y_AXIS];
398 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_steps[Y_AXIS]);
399 }
400
401 if (axes_to_move & 0x04) { // move Z
402 do_homing(0x04); // just home normally for Z
403 }
404
405 // Homing is done
406 this->status = NOT_HOMING;
407 }
408
409 // Start homing sequences by response to GCode commands
410 void Endstops::on_gcode_received(void *argument)
411 {
412 Gcode *gcode = static_cast<Gcode *>(argument);
413 if ( gcode->has_g) {
414 if ( gcode->g == 28 ) {
415 gcode->mark_as_taken();
416 // G28 is received, we have homing to do
417
418 // First wait for the queue to be empty
419 this->kernel->conveyor->wait_for_empty_queue();
420
421 // Do we move select axes or all of them
422 char axes_to_move = 0;
423 // only enable homing if the endstop is defined, deltas always home all axis
424 bool home_all = this->is_delta || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
425
426 for ( char c = 'X'; c <= 'Z'; c++ ) {
427 if ( (home_all || gcode->has_letter(c)) && this->pins[c - 'X' + (this->home_direction[c - 'X'] ? 0 : 3)].connected() ) {
428 axes_to_move += ( 1 << (c - 'X' ) );
429 }
430 }
431
432 // Enable the motors
433 this->kernel->stepper->turn_enable_pins_on();
434
435 // do the actual homing
436 if (is_corexy)
437 do_homing_corexy(axes_to_move);
438 else
439 do_homing(axes_to_move);
440
441 // Zero the ax(i/e)s position, add in the home offset
442 for ( int c = 0; c <= 2; c++ ) {
443 if ( (axes_to_move >> c) & 1 ) {
444 this->kernel->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
445 }
446 }
447 }
448 } else if (gcode->has_m) {
449 switch (gcode->m) {
450 case 119: {
451
452 int px = this->home_direction[0] ? 0 : 3;
453 int py = this->home_direction[1] ? 1 : 4;
454 int pz = this->home_direction[2] ? 2 : 5;
455 const char *mx = this->home_direction[0] ? "min" : "max";
456 const char *my = this->home_direction[1] ? "min" : "max";
457 const char *mz = this->home_direction[2] ? "min" : "max";
458
459 gcode->stream->printf("X %s:%d Y %s:%d Z %s:%d\n", mx, this->pins[px].get(), my, this->pins[py].get(), mz, this->pins[pz].get());
460 gcode->mark_as_taken();
461 }
462 break;
463
464 case 206: // M206 - set homing offset
465 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
466 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
467 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
468 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
469 gcode->mark_as_taken();
470 break;
471
472 case 500: // save settings
473 case 503: // print settings
474 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
475 if (is_delta) {
476 double mm[3];
477 trim2mm(mm);
478 gcode->stream->printf(";Trim (mm):\nM666 X%1.2f Y%1.2f Z%1.2f\n", mm[0], mm[1], mm[2]);
479 gcode->stream->printf(";Max Z\nM665 Z%1.2f\n", this->homing_position[2]);
480 }
481 gcode->mark_as_taken();
482 break;
483
484 case 665: { // M665 - set max gamma/z height
485 gcode->mark_as_taken();
486 double gamma_max = this->homing_position[2];
487 if (gcode->has_letter('Z')) {
488 this->homing_position[2] = gamma_max = gcode->get_value('Z');
489 }
490 gcode->stream->printf("Max Z %8.3f ", gamma_max);
491 gcode->add_nl = true;
492 }
493 break;
494
495
496 case 666: { // M666 - set trim for each axis in mm
497 double mm[3];
498 trim2mm(mm);
499
500 if (gcode->has_letter('X')) mm[0] = gcode->get_value('X');
501 if (gcode->has_letter('Y')) mm[1] = gcode->get_value('Y');
502 if (gcode->has_letter('Z')) mm[2] = gcode->get_value('Z');
503
504 int dirx = (this->home_direction[0] ? 1 : -1);
505 int diry = (this->home_direction[1] ? 1 : -1);
506 int dirz = (this->home_direction[2] ? 1 : -1);
507 trim[0] = lround(mm[0] * steps_per_mm[0]) * dirx; // convert back to steps
508 trim[1] = lround(mm[1] * steps_per_mm[1]) * diry;
509 trim[2] = lround(mm[2] * steps_per_mm[2]) * dirz;
510
511 // print the current trim values in mm and steps
512 gcode->stream->printf("X %5.3f (%d) Y %5.3f (%d) Z %5.3f (%d)\n", mm[0], trim[0], mm[1], trim[1], mm[2], trim[2]);
513 gcode->mark_as_taken();
514 }
515 break;
516
517 }
518 }
519 }
520
521 void Endstops::trim2mm(double *mm)
522 {
523 int dirx = (this->home_direction[0] ? 1 : -1);
524 int diry = (this->home_direction[1] ? 1 : -1);
525 int dirz = (this->home_direction[2] ? 1 : -1);
526
527 mm[0] = this->trim[0] / this->steps_per_mm[0] * dirx; // convert to mm
528 mm[1] = this->trim[1] / this->steps_per_mm[1] * diry;
529 mm[2] = this->trim[2] / this->steps_per_mm[2] * dirz;
530 }
531