Merge pull request #294 from wolfmanjm/upstreamedge
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include <string>
11 using std::string;
12 #include <math.h>
13 #include "Planner.h"
14 #include "Conveyor.h"
15 #include "Robot.h"
16 #include "libs/nuts_bolts.h"
17 #include "libs/Pin.h"
18 #include "libs/StepperMotor.h"
19 #include "../communication/utils/Gcode.h"
20 #include "PublicDataRequest.h"
21 #include "arm_solutions/BaseSolution.h"
22 #include "arm_solutions/CartesianSolution.h"
23 #include "arm_solutions/RotatableCartesianSolution.h"
24 #include "arm_solutions/RostockSolution.h"
25 #include "arm_solutions/JohannKosselSolution.h"
26 #include "arm_solutions/HBotSolution.h"
27
28 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
29 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
30 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
31 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
32 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
33 #define arc_correction_checksum CHECKSUM("arc_correction")
34 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
35 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
36 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
37
38 // arm solutions
39 #define arm_solution_checksum CHECKSUM("arm_solution")
40 #define cartesian_checksum CHECKSUM("cartesian")
41 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
42 #define rostock_checksum CHECKSUM("rostock")
43 #define delta_checksum CHECKSUM("delta")
44 #define hbot_checksum CHECKSUM("hbot")
45 #define corexy_checksum CHECKSUM("corexy")
46 #define kossel_checksum CHECKSUM("kossel")
47
48 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
49 // It takes care of cutting arcs into segments, same thing for line that are too long
50 #define max(a,b) (((a) > (b)) ? (a) : (b))
51
52 Robot::Robot(){
53 this->inch_mode = false;
54 this->absolute_mode = true;
55 this->motion_mode = MOTION_MODE_SEEK;
56 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
57 clear_vector(this->current_position);
58 clear_vector(this->last_milestone);
59 this->arm_solution = NULL;
60 seconds_per_minute = 60.0;
61 }
62
63 //Called when the module has just been loaded
64 void Robot::on_module_loaded() {
65 register_for_event(ON_CONFIG_RELOAD);
66 this->register_for_event(ON_GCODE_RECEIVED);
67 this->register_for_event(ON_GET_PUBLIC_DATA);
68 this->register_for_event(ON_SET_PUBLIC_DATA);
69
70 // Configuration
71 this->on_config_reload(this);
72
73 // Make our 3 StepperMotors
74 this->alpha_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&alpha_step_pin,&alpha_dir_pin,&alpha_en_pin) );
75 this->beta_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&beta_step_pin, &beta_dir_pin, &beta_en_pin ) );
76 this->gamma_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&gamma_step_pin,&gamma_dir_pin,&gamma_en_pin) );
77
78 }
79
80 void Robot::on_config_reload(void* argument){
81
82 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
83 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
84 // To make adding those solution easier, they have their own, separate object.
85 // Here we read the config to find out which arm solution to use
86 if (this->arm_solution) delete this->arm_solution;
87 int solution_checksum = get_checksum(this->kernel->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
88 // Note checksums are not const expressions when in debug mode, so don't use switch
89 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
90 this->arm_solution = new HBotSolution(this->kernel->config);
91
92 }else if(solution_checksum == rostock_checksum) {
93 this->arm_solution = new RostockSolution(this->kernel->config);
94
95 }else if(solution_checksum == kossel_checksum) {
96 this->arm_solution = new JohannKosselSolution(this->kernel->config);
97
98 }else if(solution_checksum == delta_checksum) {
99 // place holder for now
100 this->arm_solution = new RostockSolution(this->kernel->config);
101
102 }else if(solution_checksum == rotatable_cartesian_checksum) {
103 this->arm_solution = new RotatableCartesianSolution(this->kernel->config);
104
105 }else if(solution_checksum == cartesian_checksum) {
106 this->arm_solution = new CartesianSolution(this->kernel->config);
107
108 }else{
109 this->arm_solution = new CartesianSolution(this->kernel->config);
110 }
111
112
113 this->feed_rate = this->kernel->config->value(default_feed_rate_checksum )->by_default(100 )->as_number() / 60;
114 this->seek_rate = this->kernel->config->value(default_seek_rate_checksum )->by_default(100 )->as_number() / 60;
115 this->mm_per_line_segment = this->kernel->config->value(mm_per_line_segment_checksum )->by_default(0.0 )->as_number();
116 this->delta_segments_per_second = this->kernel->config->value(delta_segments_per_second_checksum )->by_default(0.0 )->as_number();
117 this->mm_per_arc_segment = this->kernel->config->value(mm_per_arc_segment_checksum )->by_default(0.5 )->as_number();
118 this->arc_correction = this->kernel->config->value(arc_correction_checksum )->by_default(5 )->as_number();
119 this->max_speeds[X_AXIS] = this->kernel->config->value(x_axis_max_speed_checksum )->by_default(60000 )->as_number();
120 this->max_speeds[Y_AXIS] = this->kernel->config->value(y_axis_max_speed_checksum )->by_default(60000 )->as_number();
121 this->max_speeds[Z_AXIS] = this->kernel->config->value(z_axis_max_speed_checksum )->by_default(300 )->as_number();
122 this->alpha_step_pin.from_string( this->kernel->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
123 this->alpha_dir_pin.from_string( this->kernel->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
124 this->alpha_en_pin.from_string( this->kernel->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
125 this->beta_step_pin.from_string( this->kernel->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
126 this->gamma_step_pin.from_string( this->kernel->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
127 this->gamma_dir_pin.from_string( this->kernel->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
128 this->gamma_en_pin.from_string( this->kernel->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
129 this->beta_dir_pin.from_string( this->kernel->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
130 this->beta_en_pin.from_string( this->kernel->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
131
132 }
133
134 void Robot::on_get_public_data(void* argument){
135 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
136
137 if(!pdr->starts_with(robot_checksum)) return;
138
139 if(pdr->second_element_is(speed_override_percent_checksum)) {
140 static double return_data;
141 return_data= 100*this->seconds_per_minute/60;
142 pdr->set_data_ptr(&return_data);
143 pdr->set_taken();
144
145 }else if(pdr->second_element_is(current_position_checksum)) {
146 static double return_data[3];
147 return_data[0]= from_millimeters(this->current_position[0]);
148 return_data[1]= from_millimeters(this->current_position[1]);
149 return_data[2]= from_millimeters(this->current_position[2]);
150
151 pdr->set_data_ptr(&return_data);
152 pdr->set_taken();
153 }
154 }
155
156 void Robot::on_set_public_data(void* argument){
157 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
158
159 if(!pdr->starts_with(robot_checksum)) return;
160
161 if(pdr->second_element_is(speed_override_percent_checksum)) {
162 // NOTE do not use this while printing!
163 double t= *static_cast<double*>(pdr->get_data_ptr());
164 // enforce minimum 10% speed
165 if (t < 10.0) t= 10.0;
166
167 this->seconds_per_minute= t * 0.6;
168 pdr->set_taken();
169 }
170 }
171
172 //A GCode has been received
173 //See if the current Gcode line has some orders for us
174 void Robot::on_gcode_received(void * argument){
175 Gcode* gcode = static_cast<Gcode*>(argument);
176
177 //Temp variables, constant properties are stored in the object
178 uint8_t next_action = NEXT_ACTION_DEFAULT;
179 this->motion_mode = -1;
180
181 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
182 if( gcode->has_g){
183 switch( gcode->g ){
184 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
185 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
186 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
187 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
188 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
189 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
190 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
191 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
192 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
193 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
194 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
195 case 92: {
196 if(gcode->get_num_args() == 0){
197 clear_vector(this->last_milestone);
198 }else{
199 for (char letter = 'X'; letter <= 'Z'; letter++){
200 if ( gcode->has_letter(letter) )
201 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
202 }
203 }
204 memcpy(this->current_position, this->last_milestone, sizeof(double)*3); // current_position[] = last_milestone[];
205 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
206 gcode->mark_as_taken();
207 return; // TODO: Wait until queue empty
208 }
209 }
210 }else if( gcode->has_m){
211 double steps[3];
212 switch( gcode->m ){
213 case 92: // M92 - set steps per mm
214 this->arm_solution->get_steps_per_millimeter(steps);
215 if (gcode->has_letter('X'))
216 steps[0] = this->to_millimeters(gcode->get_value('X'));
217 if (gcode->has_letter('Y'))
218 steps[1] = this->to_millimeters(gcode->get_value('Y'));
219 if (gcode->has_letter('Z'))
220 steps[2] = this->to_millimeters(gcode->get_value('Z'));
221 if (gcode->has_letter('F'))
222 seconds_per_minute = gcode->get_value('F');
223 this->arm_solution->set_steps_per_millimeter(steps);
224 // update current position in steps
225 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
226 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", steps[0], steps[1], steps[2], seconds_per_minute);
227 gcode->add_nl = true;
228 gcode->mark_as_taken();
229 return;
230 case 114: gcode->stream->printf("C: X:%1.3f Y:%1.3f Z:%1.3f ",
231 from_millimeters(this->current_position[0]),
232 from_millimeters(this->current_position[1]),
233 from_millimeters(this->current_position[2]));
234 gcode->add_nl = true;
235 gcode->mark_as_taken();
236 return;
237
238 // TODO I'm not sure if the following is safe to do here, or should it go on the block queue?
239 // case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
240 // gcode->mark_as_taken();
241 // if (gcode->has_letter('S'))
242 // {
243 // double acc= gcode->get_value('S') * 60 * 60; // mm/min^2
244 // // enforce minimum
245 // if (acc < 1.0)
246 // acc = 1.0;
247 // this->kernel->planner->acceleration= acc;
248 // }
249 // break;
250
251 case 220: // M220 - speed override percentage
252 gcode->mark_as_taken();
253 if (gcode->has_letter('S'))
254 {
255 double factor = gcode->get_value('S');
256 // enforce minimum 10% speed
257 if (factor < 10.0)
258 factor = 10.0;
259 seconds_per_minute = factor * 0.6;
260 }
261 break;
262
263 case 400: // wait until all moves are done up to this point
264 gcode->mark_as_taken();
265 this->kernel->conveyor->wait_for_empty_queue();
266 break;
267
268 case 500: // M500 saves some volatile settings to config override file
269 case 503: // M503 just prints the settings
270 this->arm_solution->get_steps_per_millimeter(steps);
271 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", steps[0], steps[1], steps[2]);
272 gcode->mark_as_taken();
273 break;
274
275 case 665: // M665 set optional arm solution variables based on arm solution
276 gcode->mark_as_taken();
277 // the parameter args could be any letter so try each one
278 for(char c='A';c<='Z';c++) {
279 double v;
280 bool supported= arm_solution->get_optional(c, &v); // retrieve current value if supported
281
282 if(supported && gcode->has_letter(c)) { // set new value if supported
283 v= gcode->get_value(c);
284 arm_solution->set_optional(c, v);
285 }
286 if(supported) { // print all current values of supported options
287 gcode->stream->printf("%c %8.3f ", c, v);
288 gcode->add_nl = true;
289 }
290 }
291 break;
292
293 }
294 }
295
296 if( this->motion_mode < 0)
297 return;
298
299 //Get parameters
300 double target[3], offset[3];
301 clear_vector(target); clear_vector(offset);
302
303 memcpy(target, this->current_position, sizeof(target)); //default to last target
304
305 for(char letter = 'I'; letter <= 'K'; letter++){ if( gcode->has_letter(letter) ){ offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter)); } }
306 for(char letter = 'X'; letter <= 'Z'; letter++){ if( gcode->has_letter(letter) ){ target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']); } }
307
308 if( gcode->has_letter('F') )
309 {
310 if( this->motion_mode == MOTION_MODE_SEEK )
311 this->seek_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
312 else
313 this->feed_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
314 }
315
316 //Perform any physical actions
317 switch( next_action ){
318 case NEXT_ACTION_DEFAULT:
319 switch(this->motion_mode){
320 case MOTION_MODE_CANCEL: break;
321 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate ); break;
322 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate ); break;
323 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
324 }
325 break;
326 }
327
328 // As far as the parser is concerned, the position is now == target. In reality the
329 // motion control system might still be processing the action and the real tool position
330 // in any intermediate location.
331 memcpy(this->current_position, target, sizeof(double)*3); // this->position[] = target[];
332
333 }
334
335 // We received a new gcode, and one of the functions
336 // determined the distance for that given gcode. So now we can attach this gcode to the right block
337 // and continue
338 void Robot::distance_in_gcode_is_known(Gcode* gcode){
339
340 //If the queue is empty, execute immediatly, otherwise attach to the last added block
341 if( this->kernel->conveyor->queue.size() == 0 ){
342 this->kernel->call_event(ON_GCODE_EXECUTE, gcode );
343 }else{
344 Block* block = this->kernel->conveyor->queue.get_ref( this->kernel->conveyor->queue.size() - 1 );
345 block->append_gcode(gcode);
346 }
347
348 }
349
350 // Reset the position for all axes ( used in homing and G92 stuff )
351 void Robot::reset_axis_position(double position, int axis) {
352 this->last_milestone[axis] = this->current_position[axis] = position;
353 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
354 }
355
356
357 // Convert target from millimeters to steps, and append this to the planner
358 void Robot::append_milestone( double target[], double rate ){
359 int steps[3]; //Holds the result of the conversion
360
361 // We use an arm solution object so exotic arm solutions can be used and neatly abstracted
362 this->arm_solution->millimeters_to_steps( target, steps );
363
364 double deltas[3];
365 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){deltas[axis]=target[axis]-this->last_milestone[axis];}
366
367 // Compute how long this move moves, so we can attach it to the block for later use
368 double millimeters_of_travel = sqrt( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
369
370 // Do not move faster than the configured limits
371 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){
372 if( this->max_speeds[axis] > 0 ){
373 double axis_speed = ( fabs(deltas[axis]) / ( millimeters_of_travel / rate )) * seconds_per_minute;
374 if( axis_speed > this->max_speeds[axis] ){
375 rate = rate * ( this->max_speeds[axis] / axis_speed );
376 }
377 }
378 }
379
380 // Append the block to the planner
381 this->kernel->planner->append_block( steps, rate * seconds_per_minute, millimeters_of_travel, deltas );
382
383 // Update the last_milestone to the current target for the next time we use last_milestone
384 memcpy(this->last_milestone, target, sizeof(double)*3); // this->last_milestone[] = target[];
385
386 }
387
388 // Append a move to the queue ( cutting it into segments if needed )
389 void Robot::append_line(Gcode* gcode, double target[], double rate ){
390
391 // Find out the distance for this gcode
392 gcode->millimeters_of_travel = sqrt( pow( target[X_AXIS]-this->current_position[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->current_position[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->current_position[Z_AXIS], 2 ) );
393
394 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
395 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
396
397 // Mark the gcode as having a known distance
398 this->distance_in_gcode_is_known( gcode );
399
400 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
401 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
402 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
403 uint16_t segments;
404
405 if(this->delta_segments_per_second > 1.0) {
406 // enabled if set to something > 1, it is set to 0.0 by default
407 // segment based on current speed and requested segments per second
408 // the faster the travel speed the fewer segments needed
409 // NOTE rate is mm/sec and we take into account any speed override
410 float seconds = 60.0/seconds_per_minute * gcode->millimeters_of_travel / rate;
411 segments= max(1, ceil(this->delta_segments_per_second * seconds));
412 // TODO if we are only moving in Z on a delta we don't really need to segment at all
413
414 }else{
415 if(this->mm_per_line_segment == 0.0){
416 segments= 1; // don't split it up
417 }else{
418 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
419 }
420 }
421
422 // A vector to keep track of the endpoint of each segment
423 double temp_target[3];
424 //Initialize axes
425 memcpy( temp_target, this->current_position, sizeof(double)*3); // temp_target[] = this->current_position[];
426
427 //For each segment
428 for( int i=0; i<segments-1; i++ ){
429 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ ){ temp_target[axis] += ( target[axis]-this->current_position[axis] )/segments; }
430 // Append the end of this segment to the queue
431 this->append_milestone(temp_target, rate);
432 }
433
434 // Append the end of this full move to the queue
435 this->append_milestone(target, rate);
436 }
437
438
439 // Append an arc to the queue ( cutting it into segments as needed )
440 void Robot::append_arc(Gcode* gcode, double target[], double offset[], double radius, bool is_clockwise ){
441
442 // Scary math
443 double center_axis0 = this->current_position[this->plane_axis_0] + offset[this->plane_axis_0];
444 double center_axis1 = this->current_position[this->plane_axis_1] + offset[this->plane_axis_1];
445 double linear_travel = target[this->plane_axis_2] - this->current_position[this->plane_axis_2];
446 double r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
447 double r_axis1 = -offset[this->plane_axis_1];
448 double rt_axis0 = target[this->plane_axis_0] - center_axis0;
449 double rt_axis1 = target[this->plane_axis_1] - center_axis1;
450
451 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
452 double angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
453 if (angular_travel < 0) { angular_travel += 2*M_PI; }
454 if (is_clockwise) { angular_travel -= 2*M_PI; }
455
456 // Find the distance for this gcode
457 gcode->millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
458
459 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
460 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
461
462 // Mark the gcode as having a known distance
463 this->distance_in_gcode_is_known( gcode );
464
465 // Figure out how many segments for this gcode
466 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
467
468 double theta_per_segment = angular_travel/segments;
469 double linear_per_segment = linear_travel/segments;
470
471 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
472 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
473 r_T = [cos(phi) -sin(phi);
474 sin(phi) cos(phi] * r ;
475 For arc generation, the center of the circle is the axis of rotation and the radius vector is
476 defined from the circle center to the initial position. Each line segment is formed by successive
477 vector rotations. This requires only two cos() and sin() computations to form the rotation
478 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
479 all double numbers are single precision on the Arduino. (True double precision will not have
480 round off issues for CNC applications.) Single precision error can accumulate to be greater than
481 tool precision in some cases. Therefore, arc path correction is implemented.
482
483 Small angle approximation may be used to reduce computation overhead further. This approximation
484 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
485 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
486 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
487 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
488 issue for CNC machines with the single precision Arduino calculations.
489 This approximation also allows mc_arc to immediately insert a line segment into the planner
490 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
491 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
492 This is important when there are successive arc motions.
493 */
494 // Vector rotation matrix values
495 double cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
496 double sin_T = theta_per_segment;
497
498 double arc_target[3];
499 double sin_Ti;
500 double cos_Ti;
501 double r_axisi;
502 uint16_t i;
503 int8_t count = 0;
504
505 // Initialize the linear axis
506 arc_target[this->plane_axis_2] = this->current_position[this->plane_axis_2];
507
508 for (i = 1; i<segments; i++) { // Increment (segments-1)
509
510 if (count < this->arc_correction ) {
511 // Apply vector rotation matrix
512 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
513 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
514 r_axis1 = r_axisi;
515 count++;
516 } else {
517 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
518 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
519 cos_Ti = cos(i*theta_per_segment);
520 sin_Ti = sin(i*theta_per_segment);
521 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
522 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
523 count = 0;
524 }
525
526 // Update arc_target location
527 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
528 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
529 arc_target[this->plane_axis_2] += linear_per_segment;
530
531 // Append this segment to the queue
532 this->append_milestone(arc_target, this->feed_rate);
533
534 }
535
536 // Ensure last segment arrives at target location.
537 this->append_milestone(target, this->feed_rate);
538 }
539
540 // Do the math for an arc and add it to the queue
541 void Robot::compute_arc(Gcode* gcode, double offset[], double target[]){
542
543 // Find the radius
544 double radius = hypot(offset[this->plane_axis_0], offset[this->plane_axis_1]);
545
546 // Set clockwise/counter-clockwise sign for mc_arc computations
547 bool is_clockwise = false;
548 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
549
550 // Append arc
551 this->append_arc(gcode, target, offset, radius, is_clockwise );
552
553 }
554
555
556 double Robot::theta(double x, double y){
557 double t = atan(x/fabs(y));
558 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
559 }
560
561 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
562 this->plane_axis_0 = axis_0;
563 this->plane_axis_1 = axis_1;
564 this->plane_axis_2 = axis_2;
565 }
566
567