Block,Conveyor: ensure on_block_end is only called once. co-opt is_ready flag for...
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 #include "Gcode.h"
17
18 #include "mri.h"
19
20 using std::string;
21 #include <vector>
22
23 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
24 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
25 // Most of the accel math is also done in this class
26 // And GCode objects for use in on_gcode_execute are also help in here
27
28 Block::Block()
29 {
30 clear();
31 }
32
33 void Block::clear()
34 {
35 //commands.clear();
36 //travel_distances.clear();
37 gcodes.clear();
38 clear_vector(this->steps);
39
40 steps_event_count = 0;
41 nominal_rate = 0;
42 nominal_speed = 0.0F;
43 millimeters = 0.0F;
44 entry_speed = 0.0F;
45 exit_speed = 0.0F;
46 rate_delta = 0.0F;
47 initial_rate = -1;
48 final_rate = -1;
49 accelerate_until = 0;
50 decelerate_after = 0;
51 direction_bits = 0;
52 recalculate_flag = false;
53 nominal_length_flag = false;
54 max_entry_speed = 0.0F;
55 is_ready = false;
56 times_taken = 0;
57 }
58
59 void Block::debug()
60 {
61 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
62 this,
63 this->steps[0],
64 this->steps[1],
65 this->steps[2],
66 this->steps_event_count,
67 this->nominal_rate,
68 this->nominal_speed,
69 this->millimeters,
70 this->rate_delta,
71 this->accelerate_until,
72 this->decelerate_after,
73 this->initial_rate,
74 this->final_rate,
75 this->entry_speed,
76 this->max_entry_speed,
77 this->times_taken,
78 this->is_ready,
79 recalculate_flag?1:0,
80 nominal_length_flag?1:0
81 );
82 }
83
84
85 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
86 // The factors represent a factor of braking and must be in the range 0.0-1.0.
87 // +--------+ <- nominal_rate
88 // / \
89 // nominal_rate*entry_factor -> + \
90 // | + <- nominal_rate*exit_factor
91 // +-------------+
92 // time -->
93 */
94 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
95 {
96 // if block is currently executing, don't touch anything!
97 if (times_taken)
98 return;
99
100 // The planner passes us factors, we need to transform them in rates
101 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/min)
102 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/min)
103
104 // How many steps to accelerate and decelerate
105 float acceleration_per_minute = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
106 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
107 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
108
109 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
110 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
111
112 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
113 // have to use intersection_distance() to calculate when to abort acceleration and start braking
114 // in order to reach the final_rate exactly at the end of this block.
115 if (plateau_steps < 0) {
116 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
117 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
118 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
119 plateau_steps = 0;
120 }
121 this->accelerate_until = accelerate_steps;
122 this->decelerate_after = accelerate_steps + plateau_steps;
123
124 this->exit_speed = exitspeed;
125 }
126
127 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
128 // given acceleration:
129 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
130 {
131 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
132 }
133
134 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
135 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
136 // a total travel of distance. This can be used to compute the intersection point between acceleration and
137 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
138 //
139 /* + <- some maximum rate we don't care about
140 /|\
141 / | \
142 / | + <- final_rate
143 / | |
144 initial_rate -> +----+--+
145 ^ ^
146 | |
147 intersection_distance distance */
148 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
149 {
150 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
151 }
152
153 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
154 // acceleration within the allotted distance.
155 inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
156 {
157 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
158 }
159
160
161 // Called by Planner::recalculate() when scanning the plan from last to first entry.
162 float Block::reverse_pass(float exit_speed)
163 {
164 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
165 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
166 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
167 if (this->entry_speed != this->max_entry_speed)
168 {
169 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
170 // for max allowable speed if block is decelerating and nominal length is false.
171 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
172 {
173 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->acceleration, exit_speed, this->millimeters);
174
175 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
176
177 return this->entry_speed;
178 }
179 else
180 this->entry_speed = this->max_entry_speed;
181 }
182
183 return this->entry_speed;
184 }
185
186
187 // Called by Planner::recalculate() when scanning the plan from first to last entry.
188 // returns maximum exit speed of this block
189 float Block::forward_pass(float prev_max_exit_speed)
190 {
191 // If the previous block is an acceleration block, but it is not long enough to complete the
192 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
193 // speeds have already been reset, maximized, and reverse planned by reverse planner.
194 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
195
196 // TODO: find out if both of these checks are necessary
197 if (prev_max_exit_speed > nominal_speed)
198 prev_max_exit_speed = nominal_speed;
199 if (prev_max_exit_speed > max_entry_speed)
200 prev_max_exit_speed = max_entry_speed;
201
202 if (prev_max_exit_speed <= entry_speed)
203 {
204 // accel limited
205 entry_speed = prev_max_exit_speed;
206 // since we're now acceleration or cruise limited
207 // we don't need to recalculate our entry speed anymore
208 recalculate_flag = false;
209 }
210 // else
211 // // decel limited, do nothing
212
213 return max_exit_speed();
214 }
215
216 float Block::max_exit_speed()
217 {
218 // if block is currently executing, return cached exit speed from calculate_trapezoid
219 // this ensures that a block following a currently executing block will have correct entry speed
220 if (times_taken)
221 return exit_speed;
222
223 // if nominal_length_flag is asserted
224 // we are guaranteed to reach nominal speed regardless of entry speed
225 // thus, max exit will always be nominal
226 if (nominal_length_flag)
227 return nominal_speed;
228
229 // otherwise, we have to work out max exit speed based on entry and acceleration
230 float max = max_allowable_speed(-THEKERNEL->planner->acceleration, this->entry_speed, this->millimeters);
231
232 return min(max, nominal_speed);
233 }
234
235 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
236 void Block::append_gcode(Gcode* gcode)
237 {
238 Gcode new_gcode = *gcode;
239 gcodes.push_back(new_gcode);
240 }
241
242 void Block::begin()
243 {
244 recalculate_flag = false;
245
246 if (!is_ready)
247 __debugbreak();
248
249 times_taken = -1;
250
251 // execute all the gcodes related to this block
252 for(unsigned int index = 0; index < gcodes.size(); index++)
253 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
254
255 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
256
257 if (times_taken < 0)
258 release();
259 }
260
261 // Signal the conveyor that this block is ready to be injected into the system
262 void Block::ready()
263 {
264 this->is_ready = true;
265 }
266
267 // Mark the block as taken by one more module
268 void Block::take()
269 {
270 if (times_taken < 0)
271 times_taken = 0;
272 times_taken++;
273 }
274
275 // Mark the block as no longer taken by one module, go to next block if this free's it
276 void Block::release()
277 {
278 if (--this->times_taken <= 0)
279 {
280 times_taken = 0;
281 if (is_ready)
282 {
283 is_ready = false;
284 THEKERNEL->call_event(ON_BLOCK_END, this);
285
286 // ensure conveyor gets called last
287 THEKERNEL->conveyor->on_block_end(this);
288 }
289 }
290 }