get rid of #define max and use stl::max
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 #include "Gcode.h"
17 #include "libs/StreamOutputPool.h"
18 #include "Stepper.h"
19
20 #include "mri.h"
21
22 using std::string;
23 #include <vector>
24
25 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
26 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
27 // Most of the accel math is also done in this class
28 // And GCode objects for use in on_gcode_execute are also help in here
29
30 Block::Block()
31 {
32 clear();
33 }
34
35 void Block::clear()
36 {
37 //commands.clear();
38 //travel_distances.clear();
39 gcodes.clear();
40 std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
41
42 clear_vector(this->steps);
43
44 steps_event_count = 0;
45 nominal_rate = 0;
46 nominal_speed = 0.0F;
47 millimeters = 0.0F;
48 entry_speed = 0.0F;
49 exit_speed = 0.0F;
50 rate_delta = 0.0F;
51 acceleration = 100.0F; // we don't want to get devide by zeroes if this is not set
52 initial_rate = -1;
53 final_rate = -1;
54 accelerate_until = 0;
55 decelerate_after = 0;
56 direction_bits = 0;
57 recalculate_flag = false;
58 nominal_length_flag = false;
59 max_entry_speed = 0.0F;
60 is_ready = false;
61 times_taken = 0;
62 }
63
64 void Block::debug()
65 {
66 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
67 this,
68 this->steps[0],
69 this->steps[1],
70 this->steps[2],
71 this->steps_event_count,
72 this->nominal_rate,
73 this->nominal_speed,
74 this->millimeters,
75 this->rate_delta,
76 this->accelerate_until,
77 this->decelerate_after,
78 this->initial_rate,
79 this->final_rate,
80 this->entry_speed,
81 this->max_entry_speed,
82 this->times_taken,
83 this->is_ready,
84 recalculate_flag?1:0,
85 nominal_length_flag?1:0
86 );
87 }
88
89
90 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
91 // The factors represent a factor of braking and must be in the range 0.0-1.0.
92 // +--------+ <- nominal_rate
93 // / \
94 // nominal_rate*entry_factor -> + \
95 // | + <- nominal_rate*exit_factor
96 // +-------------+
97 // time -->
98 */
99 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
100 {
101 // if block is currently executing, don't touch anything!
102 if (times_taken)
103 return;
104
105 // The planner passes us factors, we need to transform them in rates
106 this->initial_rate = ceilf(this->nominal_rate * entryspeed / this->nominal_speed); // (step/s)
107 this->final_rate = ceilf(this->nominal_rate * exitspeed / this->nominal_speed); // (step/s)
108
109 // How many steps to accelerate and decelerate
110 float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->get_acceleration_ticks_per_second(); // ( step/s^2)
111 int accelerate_steps = ceilf( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
112 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_second ) );
113
114 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
115 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
116
117 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
118 // have to use intersection_distance() to calculate when to abort acceleration and start braking
119 // in order to reach the final_rate exactly at the end of this block.
120 if (plateau_steps < 0) {
121 accelerate_steps = ceilf(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
122 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
123 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
124 plateau_steps = 0;
125 }
126 this->accelerate_until = accelerate_steps;
127 this->decelerate_after = accelerate_steps + plateau_steps;
128
129 this->exit_speed = exitspeed;
130 }
131
132 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
133 // given acceleration:
134 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
135 {
136 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
137 }
138
139 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
140 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
141 // a total travel of distance. This can be used to compute the intersection point between acceleration and
142 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
143 //
144 /* + <- some maximum rate we don't care about
145 /|\
146 / | \
147 / | + <- final_rate
148 / | |
149 initial_rate -> +----+--+
150 ^ ^
151 | |
152 intersection_distance distance */
153 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
154 {
155 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
156 }
157
158 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
159 // acceleration within the allotted distance.
160 float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
161 {
162 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
163 }
164
165
166 // Called by Planner::recalculate() when scanning the plan from last to first entry.
167 float Block::reverse_pass(float exit_speed)
168 {
169 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
170 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
171 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
172 if (this->entry_speed != this->max_entry_speed)
173 {
174 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
175 // for max allowable speed if block is decelerating and nominal length is false.
176 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
177 {
178 float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
179
180 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
181
182 return this->entry_speed;
183 }
184 else
185 this->entry_speed = this->max_entry_speed;
186 }
187
188 return this->entry_speed;
189 }
190
191
192 // Called by Planner::recalculate() when scanning the plan from first to last entry.
193 // returns maximum exit speed of this block
194 float Block::forward_pass(float prev_max_exit_speed)
195 {
196 // If the previous block is an acceleration block, but it is not long enough to complete the
197 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
198 // speeds have already been reset, maximized, and reverse planned by reverse planner.
199 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
200
201 // TODO: find out if both of these checks are necessary
202 if (prev_max_exit_speed > nominal_speed)
203 prev_max_exit_speed = nominal_speed;
204 if (prev_max_exit_speed > max_entry_speed)
205 prev_max_exit_speed = max_entry_speed;
206
207 if (prev_max_exit_speed <= entry_speed)
208 {
209 // accel limited
210 entry_speed = prev_max_exit_speed;
211 // since we're now acceleration or cruise limited
212 // we don't need to recalculate our entry speed anymore
213 recalculate_flag = false;
214 }
215 // else
216 // // decel limited, do nothing
217
218 return max_exit_speed();
219 }
220
221 float Block::max_exit_speed()
222 {
223 // if block is currently executing, return cached exit speed from calculate_trapezoid
224 // this ensures that a block following a currently executing block will have correct entry speed
225 if (times_taken)
226 return exit_speed;
227
228 // if nominal_length_flag is asserted
229 // we are guaranteed to reach nominal speed regardless of entry speed
230 // thus, max exit will always be nominal
231 if (nominal_length_flag)
232 return nominal_speed;
233
234 // otherwise, we have to work out max exit speed based on entry and acceleration
235 float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
236
237 return min(max, nominal_speed);
238 }
239
240 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
241 void Block::append_gcode(Gcode* gcode)
242 {
243 Gcode new_gcode = *gcode;
244 new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJK parameters from the saved command
245 gcodes.push_back(new_gcode);
246 }
247
248 void Block::begin()
249 {
250 recalculate_flag = false;
251
252 if (!is_ready)
253 __debugbreak();
254
255 times_taken = -1;
256
257 // execute all the gcodes related to this block
258 for(unsigned int index = 0; index < gcodes.size(); index++)
259 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
260
261 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
262
263 if (times_taken < 0)
264 release();
265 }
266
267 // Signal the conveyor that this block is ready to be injected into the system
268 void Block::ready()
269 {
270 this->is_ready = true;
271 }
272
273 // Mark the block as taken by one more module
274 void Block::take()
275 {
276 if (times_taken < 0)
277 times_taken = 0;
278 times_taken++;
279 }
280
281 // Mark the block as no longer taken by one module, go to next block if this free's it
282 void Block::release()
283 {
284 if (--this->times_taken <= 0)
285 {
286 times_taken = 0;
287 if (is_ready)
288 {
289 is_ready = false;
290 THEKERNEL->call_event(ON_BLOCK_END, this);
291
292 // ensure conveyor gets called last
293 THEKERNEL->conveyor->on_block_end(this);
294 }
295 }
296 }