Merge pull request #491 from soldierkam/edge
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 #include "Gcode.h"
17 #include "libs/StreamOutputPool.h"
18 #include "Stepper.h"
19
20 #include "mri.h"
21
22 using std::string;
23 #include <vector>
24
25 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
26 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
27 // Most of the accel math is also done in this class
28 // And GCode objects for use in on_gcode_execute are also help in here
29
30 Block::Block()
31 {
32 clear();
33 }
34
35 void Block::clear()
36 {
37 //commands.clear();
38 //travel_distances.clear();
39 gcodes.clear();
40 std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
41
42 clear_vector(this->steps);
43
44 steps_event_count = 0;
45 nominal_rate = 0;
46 nominal_speed = 0.0F;
47 millimeters = 0.0F;
48 entry_speed = 0.0F;
49 exit_speed = 0.0F;
50 rate_delta = 0.0F;
51 initial_rate = -1;
52 final_rate = -1;
53 accelerate_until = 0;
54 decelerate_after = 0;
55 direction_bits = 0;
56 recalculate_flag = false;
57 nominal_length_flag = false;
58 max_entry_speed = 0.0F;
59 is_ready = false;
60 times_taken = 0;
61 }
62
63 void Block::debug()
64 {
65 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
66 this,
67 this->steps[0],
68 this->steps[1],
69 this->steps[2],
70 this->steps_event_count,
71 this->nominal_rate,
72 this->nominal_speed,
73 this->millimeters,
74 this->rate_delta,
75 this->accelerate_until,
76 this->decelerate_after,
77 this->initial_rate,
78 this->final_rate,
79 this->entry_speed,
80 this->max_entry_speed,
81 this->times_taken,
82 this->is_ready,
83 recalculate_flag?1:0,
84 nominal_length_flag?1:0
85 );
86 }
87
88
89 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
90 // The factors represent a factor of braking and must be in the range 0.0-1.0.
91 // +--------+ <- nominal_rate
92 // / \
93 // nominal_rate*entry_factor -> + \
94 // | + <- nominal_rate*exit_factor
95 // +-------------+
96 // time -->
97 */
98 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
99 {
100 // if block is currently executing, don't touch anything!
101 if (times_taken)
102 return;
103
104 // The planner passes us factors, we need to transform them in rates
105 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/s)
106 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/s)
107
108 // How many steps to accelerate and decelerate
109 float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->get_acceleration_ticks_per_second(); // ( step/s^2)
110 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
111 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_second ) );
112
113 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
114 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
115
116 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
117 // have to use intersection_distance() to calculate when to abort acceleration and start braking
118 // in order to reach the final_rate exactly at the end of this block.
119 if (plateau_steps < 0) {
120 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
121 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
122 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
123 plateau_steps = 0;
124 }
125 this->accelerate_until = accelerate_steps;
126 this->decelerate_after = accelerate_steps + plateau_steps;
127
128 this->exit_speed = exitspeed;
129 }
130
131 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
132 // given acceleration:
133 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
134 {
135 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
136 }
137
138 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
139 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
140 // a total travel of distance. This can be used to compute the intersection point between acceleration and
141 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
142 //
143 /* + <- some maximum rate we don't care about
144 /|\
145 / | \
146 / | + <- final_rate
147 / | |
148 initial_rate -> +----+--+
149 ^ ^
150 | |
151 intersection_distance distance */
152 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
153 {
154 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
155 }
156
157 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
158 // acceleration within the allotted distance.
159 float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
160 {
161 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
162 }
163
164
165 // Called by Planner::recalculate() when scanning the plan from last to first entry.
166 float Block::reverse_pass(float exit_speed)
167 {
168 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
169 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
170 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
171 if (this->entry_speed != this->max_entry_speed)
172 {
173 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
174 // for max allowable speed if block is decelerating and nominal length is false.
175 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
176 {
177 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), exit_speed, this->millimeters);
178
179 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
180
181 return this->entry_speed;
182 }
183 else
184 this->entry_speed = this->max_entry_speed;
185 }
186
187 return this->entry_speed;
188 }
189
190
191 // Called by Planner::recalculate() when scanning the plan from first to last entry.
192 // returns maximum exit speed of this block
193 float Block::forward_pass(float prev_max_exit_speed)
194 {
195 // If the previous block is an acceleration block, but it is not long enough to complete the
196 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
197 // speeds have already been reset, maximized, and reverse planned by reverse planner.
198 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
199
200 // TODO: find out if both of these checks are necessary
201 if (prev_max_exit_speed > nominal_speed)
202 prev_max_exit_speed = nominal_speed;
203 if (prev_max_exit_speed > max_entry_speed)
204 prev_max_exit_speed = max_entry_speed;
205
206 if (prev_max_exit_speed <= entry_speed)
207 {
208 // accel limited
209 entry_speed = prev_max_exit_speed;
210 // since we're now acceleration or cruise limited
211 // we don't need to recalculate our entry speed anymore
212 recalculate_flag = false;
213 }
214 // else
215 // // decel limited, do nothing
216
217 return max_exit_speed();
218 }
219
220 float Block::max_exit_speed()
221 {
222 // if block is currently executing, return cached exit speed from calculate_trapezoid
223 // this ensures that a block following a currently executing block will have correct entry speed
224 if (times_taken)
225 return exit_speed;
226
227 // if nominal_length_flag is asserted
228 // we are guaranteed to reach nominal speed regardless of entry speed
229 // thus, max exit will always be nominal
230 if (nominal_length_flag)
231 return nominal_speed;
232
233 // otherwise, we have to work out max exit speed based on entry and acceleration
234 float max = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), this->entry_speed, this->millimeters);
235
236 return min(max, nominal_speed);
237 }
238
239 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
240 void Block::append_gcode(Gcode* gcode)
241 {
242 Gcode new_gcode = *gcode;
243 new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJK parameters from the saved command
244 gcodes.push_back(new_gcode);
245 }
246
247 void Block::begin()
248 {
249 recalculate_flag = false;
250
251 if (!is_ready)
252 __debugbreak();
253
254 times_taken = -1;
255
256 // execute all the gcodes related to this block
257 for(unsigned int index = 0; index < gcodes.size(); index++)
258 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
259
260 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
261
262 if (times_taken < 0)
263 release();
264 }
265
266 // Signal the conveyor that this block is ready to be injected into the system
267 void Block::ready()
268 {
269 this->is_ready = true;
270 }
271
272 // Mark the block as taken by one more module
273 void Block::take()
274 {
275 if (times_taken < 0)
276 times_taken = 0;
277 times_taken++;
278 }
279
280 // Mark the block as no longer taken by one module, go to next block if this free's it
281 void Block::release()
282 {
283 if (--this->times_taken <= 0)
284 {
285 times_taken = 0;
286 if (is_ready)
287 {
288 is_ready = false;
289 THEKERNEL->call_event(ON_BLOCK_END, this);
290
291 // ensure conveyor gets called last
292 THEKERNEL->conveyor->on_block_end(this);
293 }
294 }
295 }