in-file config of the TemperatureControl, and simple adjustments to make
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 using namespace std;
9 #include <vector>
10 #include "mbed.h"
11 #include "libs/nuts_bolts.h"
12 #include "libs/RingBuffer.h"
13 #include "../communication/utils/Gcode.h"
14 #include "libs/Module.h"
15 #include "libs/Kernel.h"
16 #include "Block.h"
17 #include "Planner.h"
18 #include "Player.h"
19
20
21 Planner::Planner(){
22 clear_vector(this->position);
23 clear_vector_double(this->previous_unit_vec);
24 this->previous_nominal_speed = 0.0;
25 this->has_deleted_block = false;
26 }
27
28 void Planner::on_module_loaded(){
29 this->on_config_reload(this);
30 }
31
32 void Planner::on_config_reload(void* argument){
33 this->acceleration = this->kernel->config->value(acceleration_checksum )->by_default(100 )->as_number();
34 this->max_jerk = this->kernel->config->value(max_jerk_checksum )->by_default(100 )->as_number();
35 this->junction_deviation = this->kernel->config->value(junction_deviation_checksum )->by_default(0.05)->as_number();
36 }
37
38
39 // Append a block to the queue, compute it's speed factors
40 void Planner::append_block( int target[], double feed_rate, double distance, double deltas[] ){
41
42 // Do not append block with no movement
43 //if( target[ALPHA_STEPPER] == this->position[ALPHA_STEPPER] && target[BETA_STEPPER] == this->position[BETA_STEPPER] && target[GAMMA_STEPPER] == this->position[GAMMA_STEPPER] ){ this->computing = false; return; }
44
45
46
47 // Stall here if the queue is ful
48 //this->kernel->serial->printf("aaa\r\n");
49 while( this->kernel->player->queue.size() >= this->kernel->player->queue.capacity()-2 ){
50 wait_us(500);
51 }
52 //this->kernel->serial->printf("bbb\r\n");
53
54 Block* block = this->kernel->player->new_block();
55 block->planner = this;
56
57 // Direction bits
58 block->direction_bits = 0;
59 char direction_bits[3] = {this->kernel->stepper->alpha_dir_pin, this->kernel->stepper->beta_dir_pin, this->kernel->stepper->gamma_dir_pin};
60 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
61 if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<direction_bits[stepper]); }
62 }
63
64 // Number of steps for each stepper
65 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
66
67 // Max number of steps, for all axes
68 block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
69 //if( block->steps_event_count == 0 ){ this->computing = false; return; }
70
71 block->millimeters = distance;
72 double inverse_millimeters = 0;
73 if( distance > 0 ){ inverse_millimeters = 1.0/distance; }
74
75 // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
76 // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
77 double inverse_minute = feed_rate * inverse_millimeters;
78 if( distance > 0 ){
79 block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
80 block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
81 }else{
82 block->nominal_speed = 0;
83 block->nominal_rate = 0;
84 }
85
86 //this->kernel->serial->printf("nom_speed: %f nom_rate: %u step_event_count: %u block->steps_z: %u \r\n", block->nominal_speed, block->nominal_rate, block->steps_event_count, block->steps[2] );
87
88 // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
89 // average travel per step event changes. For a line along one axis the travel per step event
90 // is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
91 // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
92 // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
93 // specifically for each line to compensate for this phenomenon:
94 // Convert universal acceleration for direction-dependent stepper rate change parameter
95 block->rate_delta = ceil( block->steps_event_count*inverse_millimeters * this->acceleration*60.0 / this->kernel->stepper->acceleration_ticks_per_second ); // (step/min/acceleration_tick)
96
97 // Compute path unit vector
98 double unit_vec[3];
99 unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
100 unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
101 unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
102
103 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
104 // Let a circle be tangent to both previous and current path line segments, where the junction
105 // deviation is defined as the distance from the junction to the closest edge of the circle,
106 // colinear with the circle center. The circular segment joining the two paths represents the
107 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
108 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
109 // path width or max_jerk in the previous grbl version. This approach does not actually deviate
110 // from path, but used as a robust way to compute cornering speeds, as it takes into account the
111 // nonlinearities of both the junction angle and junction velocity.
112 double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
113
114 if (this->kernel->player->queue.size() > 1 && (this->previous_nominal_speed > 0.0)) {
115 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
116 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
117 double cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
118 - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
119 - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
120
121 // Skip and use default max junction speed for 0 degree acute junction.
122 if (cos_theta < 0.95) {
123 vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
124 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
125 if (cos_theta > -0.95) {
126 // Compute maximum junction velocity based on maximum acceleration and junction deviation
127 double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
128 vmax_junction = min(vmax_junction,
129 sqrt(this->acceleration*60*60 * this->junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
130 }
131 }
132 }
133 block->max_entry_speed = vmax_junction;
134
135 // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
136 double v_allowable = this->max_allowable_speed(-this->acceleration,0.0,block->millimeters); //TODO: Get from config
137 block->entry_speed = min(vmax_junction, v_allowable);
138
139 // Initialize planner efficiency flags
140 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
141 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
142 // the current block and next block junction speeds are guaranteed to always be at their maximum
143 // junction speeds in deceleration and acceleration, respectively. This is due to how the current
144 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
145 // the reverse and forward planners, the corresponding block junction speed will always be at the
146 // the maximum junction speed and may always be ignored for any speed reduction checks.
147 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
148 else { block->nominal_length_flag = false; }
149 block->recalculate_flag = true; // Always calculate trapezoid for new block
150
151 // Update previous path unit_vector and nominal speed
152 memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
153 this->previous_nominal_speed = block->nominal_speed;
154
155 // Update current position
156 memcpy(this->position, target, sizeof(int)*3);
157
158 // Math-heavy re-computing of the whole queue to take the new
159 this->recalculate();
160
161 // The block can now be used
162 block->ready();
163
164 }
165
166
167 // Recalculates the motion plan according to the following algorithm:
168 //
169 // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
170 // so that:
171 // a. The junction jerk is within the set limit
172 // b. No speed reduction within one block requires faster deceleration than the one, true constant
173 // acceleration.
174 // 2. Go over every block in chronological order and dial down junction speed reduction values if
175 // a. The speed increase within one block would require faster accelleration than the one, true
176 // constant acceleration.
177 //
178 // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
179 // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
180 // the set limit. Finally it will:
181 //
182 // 3. Recalculate trapezoids for all blocks.
183 //
184 void Planner::recalculate() {
185 //this->kernel->serial->printf("recalculate last: %p, queue size: %d \r\n", this->kernel->player->queue.get_ref( this->kernel->player->queue.size()-1 ), this->kernel->player->queue.size() );
186 this->reverse_pass();
187 this->forward_pass();
188 this->recalculate_trapezoids();
189 }
190
191 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
192 // implements the reverse pass.
193 void Planner::reverse_pass(){
194 // For each block
195 int block_index = this->kernel->player->queue.tail;
196 Block* blocks[3] = {NULL,NULL,NULL};
197
198 while(block_index!=this->kernel->player->queue.head){
199 block_index = this->kernel->player->queue.prev_block_index( block_index );
200 blocks[2] = blocks[1];
201 blocks[1] = blocks[0];
202 blocks[0] = &this->kernel->player->queue.buffer[block_index];
203 if( blocks[1] == NULL ){ continue; }
204 blocks[1]->reverse_pass(blocks[2], blocks[0]);
205 }
206
207
208
209
210 //for( int index = this->kernel->player->queue.size()-1; index > 0; index-- ){ // Skip buffer tail/first block to prevent over-writing the initial entry speed.
211 // this->kernel->player->queue.get_ref(index)->reverse_pass((index==this->kernel->player->queue.size()-1?NULL:this->kernel->player->queue.get_ref(index+1)), (index==0? (this->has_deleted_block?&(this->last_deleted_block):NULL) :this->kernel->player->queue.get_ref(index-1)));
212 //}
213 }
214
215 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
216 // implements the forward pass.
217 void Planner::forward_pass() {
218 // For each block
219 int block_index = this->kernel->player->queue.head;
220 Block* blocks[3] = {NULL,NULL,NULL};
221
222 while(block_index!=this->kernel->player->queue.tail){
223 blocks[0] = blocks[1];
224 blocks[1] = blocks[2];
225 blocks[2] = &this->kernel->player->queue.buffer[block_index];
226 if( blocks[0] == NULL ){ continue; }
227 blocks[1]->forward_pass(blocks[0],blocks[2]);
228 block_index = this->kernel->player->queue.next_block_index( block_index );
229 }
230 blocks[2]->forward_pass(blocks[1],NULL);
231
232 //for( int index = 0; index <= this->kernel->player->queue.size()-1; index++ ){
233 // this->kernel->player->queue.get_ref(index)->forward_pass((index==0?NULL:this->kernel->player->queue.get_ref(index-1)),(index==this->kernel->player->queue.size()-1?NULL:this->kernel->player->queue.get_ref(index+1)));
234 //}
235 }
236
237 // Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
238 // entry_speed for each junction and the entry_speed of the next junction. Must be called by
239 // planner_recalculate() after updating the blocks. Any recalulate flagged junction will
240 // compute the two adjacent trapezoids to the junction, since the junction speed corresponds
241 // to exit speed and entry speed of one another.
242 void Planner::recalculate_trapezoids() {
243 int block_index = this->kernel->player->queue.head;
244 Block* current;
245 Block* next = NULL;
246
247 //this->kernel->serial->printf("tail:%d head:%d size:%d\r\n", this->kernel->player->queue.tail, this->kernel->player->queue.head, this->kernel->player->queue.size());
248
249 while(block_index != this->kernel->player->queue.tail){
250 current = next;
251 next = &this->kernel->player->queue.buffer[block_index];
252 //this->kernel->serial->printf("index:%d current:%p next:%p \r\n", block_index, current, next );
253 if( current ){
254 // Recalculate if current block entry or exit junction speed has changed.
255 if( current->recalculate_flag || next->recalculate_flag ){
256 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed );
257 current->recalculate_flag = false;
258 }
259 }
260 block_index = this->kernel->player->queue.next_block_index( block_index );
261 }
262
263 // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
264 next->calculate_trapezoid( next->entry_speed/next->nominal_speed, MINIMUM_PLANNER_SPEED/next->nominal_speed); //TODO: Make configuration option
265 next->recalculate_flag = false;
266
267 }
268
269 // Debug function
270 void Planner::dump_queue(){
271 for( int index = 0; index <= this->kernel->player->queue.size()-1; index++ ){
272 if( index > 10 && index < this->kernel->player->queue.size()-10 ){ continue; }
273 this->kernel->serial->printf("block %03d > ", index);
274 this->kernel->player->queue.get_ref(index)->debug(this->kernel);
275 }
276 }
277
278 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
279 // acceleration within the allotted distance.
280 double Planner::max_allowable_speed(double acceleration, double target_velocity, double distance) {
281 return(
282 sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
283 );
284 }
285
286