Merge branch 'edge' into extruderfix
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 using std::string;
17 #include <vector>
18 #include "../communication/utils/Gcode.h"
19
20 Block::Block(){
21 clear_vector(this->steps);
22 this->times_taken = 0; // A block can be "taken" by any number of modules, and the next block is not moved to until all the modules have "released" it. This value serves as a tracker.
23 this->is_ready = false;
24 this->initial_rate = -1;
25 this->final_rate = -1;
26 }
27
28 void Block::debug(Kernel* kernel){
29 kernel->streams->printf("%p: steps:%4d|%4d|%4d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d taken:%d ready:%d \r\n", this, this->steps[0], this->steps[1], this->steps[2], this->steps_event_count, this->nominal_rate, this->nominal_speed, this->millimeters, this->rate_delta, this->accelerate_until, this->decelerate_after, this->initial_rate, this->final_rate, this->times_taken, this->is_ready );
30 }
31
32
33 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
34 // The factors represent a factor of braking and must be in the range 0.0-1.0.
35 // +--------+ <- nominal_rate
36 // / \
37 // nominal_rate*entry_factor -> + \
38 // | + <- nominal_rate*exit_factor
39 // +-------------+
40 // time -->
41 //*/
42 void Block::calculate_trapezoid( double entryfactor, double exitfactor ){
43
44 //this->conveyor->kernel->streams->printf("%p calculating trapezoid\r\n", this);
45
46 this->initial_rate = ceil(this->nominal_rate * entryfactor); // (step/min)
47 this->final_rate = ceil(this->nominal_rate * exitfactor); // (step/min)
48
49 //this->conveyor->kernel->streams->printf("initrate:%f finalrate:%f\r\n", this->initial_rate, this->final_rate);
50
51 double acceleration_per_minute = this->rate_delta * this->planner->kernel->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
52 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
53 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
54
55
56 // Calculate the size of Plateau of Nominal Rate.
57 int plateau_steps = this->steps_event_count-accelerate_steps-decelerate_steps;
58
59 //this->conveyor->kernel->streams->printf("accelperminute:%f accelerate_steps:%d decelerate_steps:%d plateau:%d \r\n", acceleration_per_minute, accelerate_steps, decelerate_steps, plateau_steps );
60
61 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
62 // have to use intersection_distance() to calculate when to abort acceleration and start braking
63 // in order to reach the final_rate exactly at the end of this block.
64 if (plateau_steps < 0) {
65 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
66 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
67 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
68 plateau_steps = 0;
69 }
70
71 this->accelerate_until = accelerate_steps;
72 this->decelerate_after = accelerate_steps+plateau_steps;
73
74 //this->debug(this->conveyor->kernel);
75
76 /*
77 // TODO: FIX THIS: DIRTY HACK so that we don't end too early for blocks with 0 as final_rate. Doing the math right would be better. Probably fixed in latest grbl
78 if( this->final_rate < 0.01 ){
79 this->decelerate_after += floor( this->nominal_rate / 60 / this->planner->kernel->stepper->acceleration_ticks_per_second ) * 3;
80 }
81 */
82 }
83
84 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
85 // given acceleration:
86 double Block::estimate_acceleration_distance(double initialrate, double targetrate, double acceleration) {
87 return( ((targetrate*targetrate)-(initialrate*initialrate))/(2L*acceleration));
88 }
89
90 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
91 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
92 // a total travel of distance. This can be used to compute the intersection point between acceleration and
93 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
94 //
95 /* + <- some maximum rate we don't care about
96 /|\
97 / | \
98 / | + <- final_rate
99 / | |
100 initial_rate -> +----+--+
101 ^ ^
102 | |
103 intersection_distance distance */
104 double Block::intersection_distance(double initialrate, double finalrate, double acceleration, double distance) {
105 return((2*acceleration*distance-initialrate*initialrate+finalrate*finalrate)/(4*acceleration));
106 }
107
108 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
109 // acceleration within the allotted distance.
110 inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
111 return(
112 sqrt(target_velocity*target_velocity-2L*acceleration*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
113 );
114 }
115
116
117 // Called by Planner::recalculate() when scanning the plan from last to first entry.
118 void Block::reverse_pass(Block* next, Block* previous){
119
120 if (next) {
121 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
122 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
123 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
124 if (this->entry_speed != this->max_entry_speed) {
125
126 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
127 // for max allowable speed if block is decelerating and nominal length is false.
128 if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
129 this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-this->planner->acceleration,next->entry_speed,this->millimeters));
130 } else {
131 this->entry_speed = this->max_entry_speed;
132 }
133 this->recalculate_flag = true;
134
135 }
136 } // Skip last block. Already initialized and set for recalculation.
137
138 }
139
140
141 // Called by Planner::recalculate() when scanning the plan from first to last entry.
142 void Block::forward_pass(Block* previous, Block* next){
143
144 if(!previous) { return; } // Begin planning after buffer_tail
145
146 // If the previous block is an acceleration block, but it is not long enough to complete the
147 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
148 // speeds have already been reset, maximized, and reverse planned by reverse planner.
149 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
150 if (!previous->nominal_length_flag) {
151 if (previous->entry_speed < this->entry_speed) {
152 double entry_speed = min( this->entry_speed,
153 max_allowable_speed(-this->planner->acceleration,previous->entry_speed,previous->millimeters) );
154
155 // Check for junction speed change
156 if (this->entry_speed != entry_speed) {
157 this->entry_speed = entry_speed;
158 this->recalculate_flag = true;
159 }
160 }
161 }
162
163 }
164
165
166 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
167 void Block::append_gcode(Gcode* gcode){
168 __disable_irq();
169 Gcode new_gcode = *gcode;
170 this->gcodes.push_back(new_gcode);
171 __enable_irq();
172 }
173
174 // The attached gcodes are then poped and the on_gcode_execute event is called with them as a parameter
175 void Block::pop_and_execute_gcode(Kernel* &kernel){
176 Block* block = const_cast<Block*>(this);
177 for(unsigned short index=0; index<block->gcodes.size(); index++){
178 //printf("GCODE Z: %s \r\n", block->gcodes[index].command.c_str() );
179 kernel->call_event(ON_GCODE_EXECUTE, &(block->gcodes[index]));
180 }
181 }
182
183 // Signal the conveyor that this block is ready to be injected into the system
184 void Block::ready(){
185 this->is_ready = true;
186 this->conveyor->new_block_added();
187 }
188
189 // Mark the block as taken by one more module
190 void Block::take(){
191 this->times_taken++;
192 //printf("taking %p times now:%d\r\n", this, int(this->times_taken) );
193 }
194
195 // Mark the block as no longer taken by one module, go to next block if this free's it
196 void Block::release(){
197 //printf("release %p \r\n", this );
198 this->times_taken--;
199 //printf("releasing %p times now:%d\r\n", this, int(this->times_taken) );
200 if( this->times_taken < 1 ){
201 this->conveyor->kernel->call_event(ON_BLOCK_END, this);
202 this->pop_and_execute_gcode(this->conveyor->kernel);
203 Conveyor* conveyor = this->conveyor;
204
205 if( conveyor->queue.size() > conveyor->flush_blocks ){
206 conveyor->flush_blocks++;
207 }
208
209 if( conveyor->looking_for_new_block == false ){
210 if( conveyor->queue.size() > conveyor->flush_blocks ){
211 Block* candidate = conveyor->queue.get_ref(conveyor->flush_blocks);
212 if( candidate->is_ready ){
213 conveyor->current_block = candidate;
214 conveyor->kernel->call_event(ON_BLOCK_BEGIN, conveyor->current_block);
215 if( conveyor->current_block->times_taken < 1 ){
216 conveyor->current_block->times_taken = 1;
217 conveyor->current_block->release();
218 }
219 }else{
220
221 conveyor->current_block = NULL;
222
223 }
224 }else{
225 conveyor->current_block = NULL;
226 }
227 }
228 }
229 }
230
231
232