Merge remote-tracking branch 'upstream/edge' into add/SPI-driver-setup
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17 #include "Robot.h"
18 #include "Stepper.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "StepTicker.h"
30 #include "BaseSolution.h"
31
32 #include <ctype.h>
33
34 #define ALPHA_AXIS 0
35 #define BETA_AXIS 1
36 #define GAMMA_AXIS 2
37 #define X_AXIS 0
38 #define Y_AXIS 1
39 #define Z_AXIS 2
40
41 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
42 #define corexy_homing_checksum CHECKSUM("corexy_homing")
43 #define delta_homing_checksum CHECKSUM("delta_homing")
44 #define scara_homing_checksum CHECKSUM("scara_homing")
45
46 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
47 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
48 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
49
50 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
51 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
52 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
53
54 #define alpha_trim_checksum CHECKSUM("alpha_trim")
55 #define beta_trim_checksum CHECKSUM("beta_trim")
56 #define gamma_trim_checksum CHECKSUM("gamma_trim")
57
58 // these values are in steps and should be deprecated
59 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
60 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
61 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
62
63 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
64 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
65 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
66
67 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
68 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
69 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
70
71 // same as above but in user friendly mm/s and mm
72 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
73 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
74 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
75
76 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
77 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
78 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
79
80 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
81 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
82 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
83
84 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
85
86 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
87 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
88 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
89 #define home_to_max_checksum CHECKSUM("home_to_max")
90 #define home_to_min_checksum CHECKSUM("home_to_min")
91 #define alpha_min_checksum CHECKSUM("alpha_min")
92 #define beta_min_checksum CHECKSUM("beta_min")
93 #define gamma_min_checksum CHECKSUM("gamma_min")
94
95 #define alpha_max_checksum CHECKSUM("alpha_max")
96 #define beta_max_checksum CHECKSUM("beta_max")
97 #define gamma_max_checksum CHECKSUM("gamma_max")
98
99 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
100 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
101 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
102
103 #define homing_order_checksum CHECKSUM("homing_order")
104 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
105
106 #define STEPPER THEKERNEL->robot->actuators
107 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
108
109
110 // Homing States
111 enum{
112 MOVING_TO_ENDSTOP_FAST, // homing move
113 MOVING_BACK, // homing move
114 MOVING_TO_ENDSTOP_SLOW, // homing move
115 NOT_HOMING,
116 BACK_OFF_HOME,
117 MOVE_TO_ORIGIN,
118 LIMIT_TRIGGERED
119 };
120
121 Endstops::Endstops()
122 {
123 this->status = NOT_HOMING;
124 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
125 }
126
127 void Endstops::on_module_loaded()
128 {
129 // Do not do anything if not enabled
130 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
131 delete this;
132 return;
133 }
134
135 register_for_event(ON_GCODE_RECEIVED);
136 register_for_event(ON_GET_PUBLIC_DATA);
137 register_for_event(ON_SET_PUBLIC_DATA);
138
139 THEKERNEL->step_ticker->register_acceleration_tick_handler([this](){acceleration_tick(); });
140
141 // Settings
142 this->on_config_reload(this);
143 }
144
145 // Get config
146 void Endstops::on_config_reload(void *argument)
147 {
148 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
149 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
150 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
151 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154
155 // These are the old ones in steps still here for backwards compatibility
156 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
157 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
158 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
159 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
160 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
161 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
162 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
163 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
164 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
165
166 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
167 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
168 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
169 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
170 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
171 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
172 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
173 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
174 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
175 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
176
177 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
178
179 // get homing direction and convert to boolean where true is home to min, and false is home to max
180 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
181 this->home_direction[0] = home_dir != home_to_max_checksum;
182
183 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
184 this->home_direction[1] = home_dir != home_to_max_checksum;
185
186 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
187 this->home_direction[2] = home_dir != home_to_max_checksum;
188
189 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
190 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
191 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
192
193 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
194 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
195 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
196
197 // see if an order has been specified, must be three characters, XYZ or YXZ etc
198 string order= THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
199 this->homing_order= 0;
200 if(order.size() == 3 && !this->is_delta) {
201 int shift= 0;
202 for(auto c : order) {
203 uint8_t i= toupper(c) - 'X';
204 if(i > 2) { // bad value
205 this->homing_order= 0;
206 break;
207 }
208 homing_order |= (i << shift);
209 shift += 2;
210 }
211 }
212
213 // endstop trim used by deltas to do soft adjusting
214 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
215 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
216 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
217 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
218
219 // limits enabled
220 this->limit_enable[X_AXIS]= THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
221 this->limit_enable[Y_AXIS]= THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
222 this->limit_enable[Z_AXIS]= THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
223
224 this->move_to_origin_after_home= THEKERNEL->config->value(move_to_origin_checksum)->by_default(false)->as_bool();
225
226 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]){
227 register_for_event(ON_IDLE);
228 if(this->is_delta) {
229 // we must enable all the limits not just one
230 this->limit_enable[X_AXIS]= true;
231 this->limit_enable[Y_AXIS]= true;
232 this->limit_enable[Z_AXIS]= true;
233 }
234 }
235
236 // NOTE this may also be true of scara. TBD
237 if(this->is_delta) {
238 // some things must be the same or they will die, so force it here to avoid config errors
239 this->fast_rates[1]= this->fast_rates[2]= this->fast_rates[0];
240 this->slow_rates[1]= this->slow_rates[2]= this->slow_rates[0];
241 this->retract_mm[1]= this->retract_mm[2]= this->retract_mm[0];
242 this->home_direction[1]= this->home_direction[2]= this->home_direction[0];
243 this->homing_position[0]= this->homing_position[1]= 0;
244 }
245 }
246
247 bool Endstops::debounced_get(int pin)
248 {
249 uint8_t debounce= 0;
250 while(this->pins[pin].get()) {
251 if ( ++debounce >= this->debounce_count ) {
252 // pin triggered
253 return true;
254 }
255 }
256 return false;
257 }
258
259 static const char *endstop_names[]= {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
260
261 void Endstops::on_idle(void *argument)
262 {
263 if(this->status == LIMIT_TRIGGERED) {
264 // if we were in limit triggered see if it has been cleared
265 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
266 if(this->limit_enable[c]) {
267 std::array<int, 2> minmax{{0, 3}};
268 // check min and max endstops
269 for (int i : minmax) {
270 int n= c+i;
271 if(this->pins[n].get()) {
272 // still triggered, so exit
273 bounce_cnt= 0;
274 return;
275 }
276 }
277 }
278 }
279 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
280 // clear the state
281 this->status= NOT_HOMING;
282 }
283 return;
284
285 }else if(this->status != NOT_HOMING) {
286 // don't check while homing
287 return;
288 }
289
290 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
291 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
292 std::array<int, 2> minmax{{0, 3}};
293 // check min and max endstops
294 for (int i : minmax) {
295 int n= c+i;
296 if(debounced_get(n)) {
297 // endstop triggered
298 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
299 this->status= LIMIT_TRIGGERED;
300 // disables heaters and motors, ignores incoming Gcode and flushes block queue
301 THEKERNEL->call_event(ON_HALT, nullptr);
302 return;
303 }
304 }
305 }
306 }
307 }
308
309 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
310 // checks if triggered and only backs off if triggered
311 void Endstops::back_off_home(char axes_to_move)
312 {
313 std::vector<std::pair<char,float>> params;
314 this->status = BACK_OFF_HOME;
315
316 // these are handled differently
317 if((is_delta || is_scara) && this->limit_enable[X_AXIS]) {
318 // Move off of the endstop using a regular relative move in Z only
319 params.push_back({'Z', this->retract_mm[Z_AXIS]*(this->home_direction[Z_AXIS]?1:-1)});
320
321 }else{
322 // cartesians, concatenate all the moves we need to do into one gcode
323 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
324 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
325
326 // if not triggered no need to move off
327 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
328 params.push_back({c+'X', this->retract_mm[c]*(this->home_direction[c]?1:-1)});
329 }
330 }
331 }
332
333 if(!params.empty()) {
334 // Move off of the endstop using a regular relative move
335 params.insert(params.begin(), {'G', 0});
336 // use X slow rate to move, Z should have a max speed set anyway
337 params.push_back({'F', this->slow_rates[X_AXIS]*60.0F});
338 char gcode_buf[64];
339 append_parameters(gcode_buf, params, sizeof(gcode_buf));
340 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
341 bool oldmode= THEKERNEL->robot->absolute_mode;
342 THEKERNEL->robot->absolute_mode= false; // needs to be relative mode
343 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
344 THEKERNEL->robot->absolute_mode= oldmode; // restore mode
345 // Wait for above to finish
346 THEKERNEL->conveyor->wait_for_empty_queue();
347 }
348
349 this->status = NOT_HOMING;
350 }
351
352 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
353 void Endstops::move_to_origin(char axes_to_move)
354 {
355 if( (axes_to_move&0x03) != 3 ) return; // ignore if X and Y not homing
356
357 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
358 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
359
360 this->status = MOVE_TO_ORIGIN;
361 // Move to center using a regular move, use slower of X and Y fast rate
362 float rate= std::min(this->fast_rates[0], this->fast_rates[1])*60.0F;
363 char buf[32];
364 snprintf(buf, sizeof(buf), "G0 X0 Y0 F%1.4f", rate);
365 Gcode gc(buf, &(StreamOutput::NullStream));
366 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
367
368 // Wait for above to finish
369 THEKERNEL->conveyor->wait_for_empty_queue();
370 this->status = NOT_HOMING;
371 }
372
373 bool Endstops::wait_for_homed(char axes_to_move)
374 {
375 bool running = true;
376 unsigned int debounce[3] = {0, 0, 0};
377 while (running) {
378 running = false;
379 THEKERNEL->call_event(ON_IDLE);
380
381 // check if on_halt (eg kill)
382 if(THEKERNEL->is_halted()) return false;
383
384 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
385 if ( ( axes_to_move >> c ) & 1 ) {
386 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
387 if ( debounce[c] < debounce_count ) {
388 debounce[c]++;
389 running = true;
390 } else if ( STEPPER[c]->is_moving() ) {
391 STEPPER[c]->move(0, 0);
392 axes_to_move &= ~(1<<c); // no need to check it again
393 }
394 } else {
395 // The endstop was not hit yet
396 running = true;
397 debounce[c] = 0;
398 }
399 }
400 }
401 }
402 return true;
403 }
404
405 void Endstops::do_homing_cartesian(char axes_to_move)
406 {
407 // check if on_halt (eg kill)
408 if(THEKERNEL->is_halted()) return;
409
410 // this homing works for cartesian and delta printers
411 // Start moving the axes to the origin
412 this->status = MOVING_TO_ENDSTOP_FAST;
413 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
414 if ( ( axes_to_move >> c) & 1 ) {
415 this->feed_rate[c]= this->fast_rates[c];
416 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
417 }
418 }
419
420 // Wait for all axes to have homed
421 if(!this->wait_for_homed(axes_to_move)) return;
422
423 // Move back a small distance
424 this->status = MOVING_BACK;
425 bool inverted_dir;
426 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
427 if ( ( axes_to_move >> c ) & 1 ) {
428 inverted_dir = !this->home_direction[c];
429 this->feed_rate[c]= this->slow_rates[c];
430 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
431 }
432 }
433
434 // Wait for moves to be done
435 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
436 if ( ( axes_to_move >> c ) & 1 ) {
437 while ( STEPPER[c]->is_moving() ) {
438 THEKERNEL->call_event(ON_IDLE);
439 }
440 }
441 }
442
443 // Start moving the axes to the origin slowly
444 this->status = MOVING_TO_ENDSTOP_SLOW;
445 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
446 if ( ( axes_to_move >> c ) & 1 ) {
447 this->feed_rate[c]= this->slow_rates[c];
448 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
449 }
450 }
451
452 // Wait for all axes to have homed
453 if(!this->wait_for_homed(axes_to_move)) return;
454
455 // Homing is done
456 this->status = NOT_HOMING;
457 }
458
459 bool Endstops::wait_for_homed_corexy(int axis)
460 {
461 bool running = true;
462 unsigned int debounce[3] = {0, 0, 0};
463 while (running) {
464 running = false;
465 THEKERNEL->call_event(ON_IDLE);
466
467 // check if on_halt (eg kill)
468 if(THEKERNEL->is_halted()) return false;
469
470 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
471 if ( debounce[axis] < debounce_count ) {
472 debounce[axis] ++;
473 running = true;
474 } else {
475 // turn both off if running
476 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
477 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
478 }
479 } else {
480 // The endstop was not hit yet
481 running = true;
482 debounce[axis] = 0;
483 }
484 }
485 return true;
486 }
487
488 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
489 {
490 // check if on_halt (eg kill)
491 if(THEKERNEL->is_halted()) return;
492
493 this->status = MOVING_TO_ENDSTOP_FAST;
494 this->feed_rate[X_AXIS]= fast_rate;
495 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
496 this->feed_rate[Y_AXIS]= fast_rate;
497 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
498
499 // wait for primary axis
500 if(!this->wait_for_homed_corexy(home_axis)) return;
501
502 // Move back a small distance
503 this->status = MOVING_BACK;
504 this->feed_rate[X_AXIS]= slow_rate;
505 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
506 this->feed_rate[Y_AXIS]= slow_rate;
507 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
508
509 // wait until done
510 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
511 THEKERNEL->call_event(ON_IDLE);
512 }
513
514 // Start moving the axes to the origin slowly
515 this->status = MOVING_TO_ENDSTOP_SLOW;
516 this->feed_rate[X_AXIS]= slow_rate;
517 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
518 this->feed_rate[Y_AXIS]= slow_rate;
519 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
520
521 // wait for primary axis
522 if(!this->wait_for_homed_corexy(home_axis)) return;
523 }
524
525 // this homing works for HBots/CoreXY
526 void Endstops::do_homing_corexy(char axes_to_move)
527 {
528 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
529 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
530 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
531 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
532
533 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
534 // determine which motor to turn and which way
535 bool dirx= this->home_direction[X_AXIS];
536 bool diry= this->home_direction[Y_AXIS];
537 int motor;
538 bool dir;
539 if(dirx && diry) { // min/min
540 motor= X_AXIS;
541 dir= true;
542 }else if(dirx && !diry) { // min/max
543 motor= Y_AXIS;
544 dir= true;
545 }else if(!dirx && diry) { // max/min
546 motor= Y_AXIS;
547 dir= false;
548 }else if(!dirx && !diry) { // max/max
549 motor= X_AXIS;
550 dir= false;
551 }
552
553 // then move both X and Y until one hits the endstop
554 this->status = MOVING_TO_ENDSTOP_FAST;
555 // need to allow for more ground covered when moving diagonally
556 this->feed_rate[motor]= this->fast_rates[motor]*1.4142;
557 STEPPER[motor]->move(dir, 10000000, 0);
558 // wait until either X or Y hits the endstop
559 bool running= true;
560 while (running) {
561 THEKERNEL->call_event(ON_IDLE);
562 for(int m=X_AXIS;m<=Y_AXIS;m++) {
563 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
564 // turn off motor
565 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
566 running= false;
567 break;
568 }
569 }
570 }
571 }
572
573 // move individual axis
574 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
575 bool dir= this->home_direction[X_AXIS];
576 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
577 }
578
579 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
580 bool dir= this->home_direction[Y_AXIS];
581 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
582 }
583
584 if (axes_to_move & 0x04) { // move Z
585 do_homing_cartesian(0x04); // just home normally for Z
586 }
587
588 // Homing is done
589 this->status = NOT_HOMING;
590 }
591
592 void Endstops::home(char axes_to_move)
593 {
594 // not a block move so disable the last tick setting
595 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
596 STEPPER[c]->set_moved_last_block(false);
597 }
598
599 if (is_corexy){
600 // corexy/HBot homing
601 do_homing_corexy(axes_to_move);
602 }else{
603 // cartesian/delta homing
604 do_homing_cartesian(axes_to_move);
605 }
606 }
607
608 // Start homing sequences by response to GCode commands
609 void Endstops::on_gcode_received(void *argument)
610 {
611 Gcode *gcode = static_cast<Gcode *>(argument);
612 if ( gcode->has_g) {
613 if ( gcode->g == 28 ) {
614
615 // G28 is received, we have homing to do
616
617 // First wait for the queue to be empty
618 THEKERNEL->conveyor->wait_for_empty_queue();
619
620 // Do we move select axes or all of them
621 char axes_to_move = 0;
622 // only enable homing if the endstop is defined, deltas, scaras always home all axis
623 bool home_all = this->is_delta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
624
625 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
626 if ( (home_all || gcode->has_letter(c+'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
627 axes_to_move += ( 1 << c );
628 }
629 }
630
631 // Enable the motors
632 THEKERNEL->stepper->turn_enable_pins_on();
633
634 // do the actual homing
635 if(homing_order != 0){
636 // if an order has been specified do it in the specified order
637 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
638 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
639 for (uint8_t m = homing_order; m != 0; m >>= 2) {
640 int a= (1 << (m & 0x03)); // axis to move
641 if((a & axes_to_move) != 0){
642 home(a);
643 }
644 // check if on_halt (eg kill)
645 if(THEKERNEL->is_halted()) break;
646 }
647
648 }else {
649 // they all home at the same time
650 home(axes_to_move);
651 }
652
653 // check if on_halt (eg kill)
654 if(THEKERNEL->is_halted()){
655 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
656 return;
657 }
658
659 if(home_all) {
660 // for deltas this may be important rather than setting each individually
661
662 // Here's where we would have been if the endstops were perfectly trimmed
663 float ideal_position[3] = {
664 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
665 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
666 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
667 };
668
669 bool has_endstop_trim = this->is_delta || this->is_scara;
670 if (has_endstop_trim) {
671 float ideal_actuator_position[3];
672 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
673
674 // We are actually not at the ideal position, but a trim away
675 float real_actuator_position[3] = {
676 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
677 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
678 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
679 };
680
681 float real_position[3];
682 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
683 // Reset the actuator positions to correspond our real position
684 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
685 } else {
686 // without endstop trim, real_position == ideal_position
687 // Reset the actuator positions to correspond our real position
688 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
689 }
690 } else {
691 // Zero the ax(i/e)s position, add in the home offset
692 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
693 if ( (axes_to_move >> c) & 1 ) {
694 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
695 }
696 }
697 }
698
699 // on some systems where 0,0 is bed center it is noce to have home goto 0,0 after homing
700 // default is off
701 if(!is_delta && this->move_to_origin_after_home) move_to_origin(axes_to_move);
702
703 // if limit switches are enabled we must back off endstop after setting home
704 back_off_home(axes_to_move);
705
706 // deltas are not left at 0,0 becuase of the trim settings, so move to 0,0 if requested
707 if(is_delta && this->move_to_origin_after_home) move_to_origin(axes_to_move);
708 }
709
710 } else if (gcode->has_m) {
711 switch (gcode->m) {
712 case 119: {
713 for (int i = 0; i < 6; ++i) {
714 if(this->pins[i].connected())
715 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
716 }
717 gcode->add_nl= true;
718
719 }
720 break;
721
722 case 206: // M206 - set homing offset
723 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
724 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
725 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
726 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
727
728 break;
729
730 case 306: // Similar to M206 and G92 but sets Homing offsets based on current position, Would be M207 but that is taken
731 {
732 float cartesian[3];
733 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
734 if (gcode->has_letter('X')){
735 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
736 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
737 }
738 if (gcode->has_letter('Y')) {
739 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
740 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
741 }
742 if (gcode->has_letter('Z')) {
743 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
744 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
745 }
746
747 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
748
749 }
750 break;
751
752 case 500: // save settings
753 case 503: // print settings
754 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
755 if (this->is_delta || this->is_scara) {
756 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
757 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
758 }
759 break;
760
761 case 665: { // M665 - set max gamma/z height
762
763 float gamma_max = this->homing_position[2];
764 if (gcode->has_letter('Z')) {
765 this->homing_position[2] = gamma_max = gcode->get_value('Z');
766 }
767 gcode->stream->printf("Max Z %8.3f ", gamma_max);
768 gcode->add_nl = true;
769 }
770 break;
771
772
773 case 666:
774 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
775 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
776 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
777 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
778
779 // print the current trim values in mm
780 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
781
782 }
783 break;
784
785 // NOTE this is to test accuracy of lead screws etc.
786 case 1910: { // M1910 - move specific number of raw steps
787 // Enable the motors
788 THEKERNEL->stepper->turn_enable_pins_on();
789
790 int x= 0, y=0 , z= 0, f= 200*16;
791 if (gcode->has_letter('F')) f = gcode->get_value('F');
792 if (gcode->has_letter('X')) {
793 x = gcode->get_value('X');
794 STEPPER[X_AXIS]->move(x<0, abs(x), f);
795 }
796 if (gcode->has_letter('Y')) {
797 y = gcode->get_value('Y');
798 STEPPER[Y_AXIS]->move(y<0, abs(y), f);
799 }
800 if (gcode->has_letter('Z')) {
801 z = gcode->get_value('Z');
802 STEPPER[Z_AXIS]->move(z<0, abs(z), f);
803 }
804 gcode->stream->printf("Moved X %d Y %d Z %d F %d steps\n", x, y, z, f);
805 break;
806 }
807 }
808 }
809 }
810
811 // Called periodically to change the speed to match acceleration
812 void Endstops::acceleration_tick(void)
813 {
814 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
815
816 // foreach stepper that is moving
817 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
818 if( !STEPPER[c]->is_moving() ) continue;
819
820 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
821 uint32_t target_rate = floorf(this->feed_rate[c]*STEPS_PER_MM(c));
822 float acc= (c==Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
823 if( current_rate < target_rate ){
824 uint32_t rate_increase = floorf((acc/THEKERNEL->acceleration_ticks_per_second)*STEPS_PER_MM(c));
825 current_rate = min( target_rate, current_rate + rate_increase );
826 }
827 if( current_rate > target_rate ){ current_rate = target_rate; }
828
829 // steps per second
830 STEPPER[c]->set_speed(current_rate);
831 }
832
833 return;
834 }
835
836 void Endstops::on_get_public_data(void* argument){
837 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
838
839 if(!pdr->starts_with(endstops_checksum)) return;
840
841 if(pdr->second_element_is(trim_checksum)) {
842 pdr->set_data_ptr(&this->trim_mm);
843 pdr->set_taken();
844
845 }else if(pdr->second_element_is(home_offset_checksum)) {
846 pdr->set_data_ptr(&this->home_offset);
847 pdr->set_taken();
848 }
849 }
850
851 void Endstops::on_set_public_data(void* argument){
852 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
853
854 if(!pdr->starts_with(endstops_checksum)) return;
855
856 if(pdr->second_element_is(trim_checksum)) {
857 float *t= static_cast<float*>(pdr->get_data_ptr());
858 this->trim_mm[0]= t[0];
859 this->trim_mm[1]= t[1];
860 this->trim_mm[2]= t[2];
861 pdr->set_taken();
862
863 }else if(pdr->second_element_is(home_offset_checksum)) {
864 float *t= static_cast<float*>(pdr->get_data_ptr());
865 if(!isnan(t[0])) this->home_offset[0]= t[0];
866 if(!isnan(t[1])) this->home_offset[1]= t[1];
867 if(!isnan(t[2])) this->home_offset[2]= t[2];
868 }
869 }