Make soft endstops truly soft
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17 #include "Robot.h"
18 #include "Stepper.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "Pauser.h"
30 #include "StepTicker.h"
31 #include "BaseSolution.h"
32
33 #include <ctype.h>
34
35 #define ALPHA_AXIS 0
36 #define BETA_AXIS 1
37 #define GAMMA_AXIS 2
38 #define X_AXIS 0
39 #define Y_AXIS 1
40 #define Z_AXIS 2
41
42 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
43 #define corexy_homing_checksum CHECKSUM("corexy_homing")
44 #define delta_homing_checksum CHECKSUM("delta_homing")
45 #define scara_homing_checksum CHECKSUM("scara_homing")
46
47 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
48 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
49 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
50
51 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
52 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
53 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
54
55 #define alpha_trim_checksum CHECKSUM("alpha_trim")
56 #define beta_trim_checksum CHECKSUM("beta_trim")
57 #define gamma_trim_checksum CHECKSUM("gamma_trim")
58
59 // these values are in steps and should be deprecated
60 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
61 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
62 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
63
64 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
65 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
66 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
67
68 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
69 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
70 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
71
72 // same as above but in user friendly mm/s and mm
73 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
74 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
75 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
76
77 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
78 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
79 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
80
81 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
82 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
83 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
84
85 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
86
87 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
88 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
89 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
90 #define home_to_max_checksum CHECKSUM("home_to_max")
91 #define home_to_min_checksum CHECKSUM("home_to_min")
92 #define alpha_min_checksum CHECKSUM("alpha_min")
93 #define beta_min_checksum CHECKSUM("beta_min")
94 #define gamma_min_checksum CHECKSUM("gamma_min")
95
96 #define alpha_max_checksum CHECKSUM("alpha_max")
97 #define beta_max_checksum CHECKSUM("beta_max")
98 #define gamma_max_checksum CHECKSUM("gamma_max")
99
100 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
101 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
102 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
103
104 #define homing_order_checksum CHECKSUM("homing_order")
105 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
106
107 #define STEPPER THEKERNEL->robot->actuators
108 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
109
110
111 // Homing States
112 enum{
113 MOVING_TO_ENDSTOP_FAST, // homing move
114 MOVING_BACK, // homing move
115 MOVING_TO_ENDSTOP_SLOW, // homing move
116 NOT_HOMING,
117 BACK_OFF_HOME,
118 MOVE_TO_ORIGIN,
119 LIMIT_TRIGGERED
120 };
121
122 Endstops::Endstops()
123 {
124 this->status = NOT_HOMING;
125 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
126 }
127
128 void Endstops::on_module_loaded()
129 {
130 // Do not do anything if not enabled
131 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
132 delete this;
133 return;
134 }
135
136 register_for_event(ON_GCODE_RECEIVED);
137 register_for_event(ON_GET_PUBLIC_DATA);
138 register_for_event(ON_SET_PUBLIC_DATA);
139
140 THEKERNEL->step_ticker->register_acceleration_tick_handler([this](){acceleration_tick(); });
141
142 // Settings
143 this->on_config_reload(this);
144 }
145
146 // Get config
147 void Endstops::on_config_reload(void *argument)
148 {
149 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
150 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
151 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155
156 // These are the old ones in steps still here for backwards compatibility
157 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
158 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
159 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
160 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
161 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
162 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
163 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
164 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
165 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
166
167 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
168 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
169 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
170 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
171 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
172 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
173 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
174 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
175 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
176 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
177
178 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
179
180
181 // get homing direction and convert to boolean where true is home to min, and false is home to max
182 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
183 this->home_direction[0] = home_dir != home_to_max_checksum;
184
185 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
186 this->home_direction[1] = home_dir != home_to_max_checksum;
187
188 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
189 this->home_direction[2] = home_dir != home_to_max_checksum;
190
191 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
192 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
193 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
194
195 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
196 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
197 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
198
199 // see if an order has been specified, must be three characters, XYZ or YXZ etc
200 string order= THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
201 this->homing_order= 0;
202 if(order.size() == 3 && !this->is_delta) {
203 int shift= 0;
204 for(auto c : order) {
205 uint8_t i= toupper(c) - 'X';
206 if(i > 2) { // bad value
207 this->homing_order= 0;
208 break;
209 }
210 homing_order |= (i << shift);
211 shift += 2;
212 }
213 }
214
215 // endstop trim used by deltas to do soft adjusting
216 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
217 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
218 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
219 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
220
221 // limits enabled
222 this->limit_enable[X_AXIS]= THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
223 this->limit_enable[Y_AXIS]= THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
224 this->limit_enable[Z_AXIS]= THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
225
226 this->move_to_origin_after_home= THEKERNEL->config->value(move_to_origin_checksum)->by_default(false)->as_bool();
227
228 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]){
229 register_for_event(ON_IDLE);
230 }
231 }
232
233 static const char *endstop_names[]= {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
234
235 void Endstops::on_idle(void *argument)
236 {
237 if(this->status == LIMIT_TRIGGERED) {
238 // if we were in limit triggered see if it has been cleared
239 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
240 if(this->limit_enable[c]) {
241 std::array<int, 2> minmax{{0, 3}};
242 // check min and max endstops
243 for (int i : minmax) {
244 int n= c+i;
245 if(this->pins[n].get()) {
246 // still triggered, so exit
247 bounce_cnt= 0;
248 return;
249 }
250 }
251 }
252 }
253 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
254 // clear the state
255 this->status= NOT_HOMING;
256 }
257 return;
258
259 }else if(this->status != NOT_HOMING) {
260 // don't check while homing
261 return;
262 }
263
264 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
265 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
266 std::array<int, 2> minmax{{0, 3}};
267 // check min and max endstops
268 for (int i : minmax) {
269 int n= c+i;
270 uint8_t debounce= 0;
271 while(this->pins[n].get()) {
272 if ( ++debounce >= debounce_count ) {
273 // endstop triggered
274 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
275 this->status= LIMIT_TRIGGERED;
276 // disables heaters and motors, ignores incoming Gcode and flushes block queue
277 THEKERNEL->call_event(ON_HALT, nullptr);
278 return;
279 }
280 }
281 }
282 }
283 }
284 }
285
286 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
287 // checks if triggered and only backs off if triggered
288 void Endstops::back_off_home(char axes_to_move)
289 {
290 this->status = BACK_OFF_HOME;
291 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
292 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
293 if(this->limit_enable[c]) {
294 if( !this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) continue; // if not triggered no need to move off
295
296 // Move off of the endstop using a regular relative move
297 char buf[32];
298 snprintf(buf, sizeof(buf), "G0 %c%1.4f F%1.4f", c+'X', this->retract_mm[c]*(this->home_direction[c]?1:-1), this->fast_rates[c]*60.0F);
299 Gcode gc(buf, &(StreamOutput::NullStream));
300 bool oldmode= THEKERNEL->robot->absolute_mode;
301 THEKERNEL->robot->absolute_mode= false; // needs to be relative mode
302 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
303 THEKERNEL->robot->absolute_mode= oldmode; // restore mode
304 }
305 }
306 // Wait for above to finish
307 THEKERNEL->conveyor->wait_for_empty_queue();
308 this->status = NOT_HOMING;
309 }
310
311 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
312 void Endstops::move_to_origin(char axes_to_move)
313 {
314 if( (axes_to_move&0x03) != 3 ) return; // ignore if X and Y not homing
315
316 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
317 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
318
319 this->status = MOVE_TO_ORIGIN;
320 // Move to center using a regular move, use slower of X and Y fast rate
321 float rate= min(this->fast_rates[0], this->fast_rates[1])*60.0F;
322 char buf[32];
323 snprintf(buf, sizeof(buf), "G0 X0 Y0 F%1.4f", rate);
324 Gcode gc(buf, &(StreamOutput::NullStream));
325 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
326
327 // Wait for above to finish
328 THEKERNEL->conveyor->wait_for_empty_queue();
329 this->status = NOT_HOMING;
330 }
331
332 void Endstops::wait_for_homed(char axes_to_move)
333 {
334 bool running = true;
335 unsigned int debounce[3] = {0, 0, 0};
336 while (running) {
337 running = false;
338 THEKERNEL->call_event(ON_IDLE);
339 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
340 if ( ( axes_to_move >> c ) & 1 ) {
341 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
342 if ( debounce[c] < debounce_count ) {
343 debounce[c]++;
344 running = true;
345 } else if ( STEPPER[c]->is_moving() ) {
346 STEPPER[c]->move(0, 0);
347 axes_to_move &= ~(1<<c); // no need to check it again
348 }
349 } else {
350 // The endstop was not hit yet
351 running = true;
352 debounce[c] = 0;
353 }
354 }
355 }
356 }
357 }
358
359 void Endstops::do_homing_cartesian(char axes_to_move)
360 {
361 // this homing works for cartesian and delta printers
362 // Start moving the axes to the origin
363 this->status = MOVING_TO_ENDSTOP_FAST;
364 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
365 if ( ( axes_to_move >> c) & 1 ) {
366 this->feed_rate[c]= this->fast_rates[c];
367 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
368 }
369 }
370
371 // Wait for all axes to have homed
372 this->wait_for_homed(axes_to_move);
373
374 // Move back a small distance
375 this->status = MOVING_BACK;
376 bool inverted_dir;
377 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
378 if ( ( axes_to_move >> c ) & 1 ) {
379 inverted_dir = !this->home_direction[c];
380 this->feed_rate[c]= this->slow_rates[c];
381 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
382 }
383 }
384
385 // Wait for moves to be done
386 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
387 if ( ( axes_to_move >> c ) & 1 ) {
388 while ( STEPPER[c]->is_moving() ) {
389 THEKERNEL->call_event(ON_IDLE);
390 }
391 }
392 }
393
394 // Start moving the axes to the origin slowly
395 this->status = MOVING_TO_ENDSTOP_SLOW;
396 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
397 if ( ( axes_to_move >> c ) & 1 ) {
398 this->feed_rate[c]= this->slow_rates[c];
399 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
400 }
401 }
402
403 // Wait for all axes to have homed
404 this->wait_for_homed(axes_to_move);
405
406 // Homing is done
407 this->status = NOT_HOMING;
408 }
409
410 void Endstops::wait_for_homed_corexy(int axis)
411 {
412 bool running = true;
413 unsigned int debounce[3] = {0, 0, 0};
414 while (running) {
415 running = false;
416 THEKERNEL->call_event(ON_IDLE);
417 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
418 if ( debounce[axis] < debounce_count ) {
419 debounce[axis] ++;
420 running = true;
421 } else {
422 // turn both off if running
423 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
424 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
425 }
426 } else {
427 // The endstop was not hit yet
428 running = true;
429 debounce[axis] = 0;
430 }
431 }
432 }
433
434 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
435 {
436 this->status = MOVING_TO_ENDSTOP_FAST;
437 this->feed_rate[X_AXIS]= fast_rate;
438 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
439 this->feed_rate[Y_AXIS]= fast_rate;
440 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
441
442 // wait for primary axis
443 this->wait_for_homed_corexy(home_axis);
444
445 // Move back a small distance
446 this->status = MOVING_BACK;
447 this->feed_rate[X_AXIS]= slow_rate;
448 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
449 this->feed_rate[Y_AXIS]= slow_rate;
450 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
451
452 // wait until done
453 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
454 THEKERNEL->call_event(ON_IDLE);
455 }
456
457 // Start moving the axes to the origin slowly
458 this->status = MOVING_TO_ENDSTOP_SLOW;
459 this->feed_rate[X_AXIS]= slow_rate;
460 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
461 this->feed_rate[Y_AXIS]= slow_rate;
462 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
463
464 // wait for primary axis
465 this->wait_for_homed_corexy(home_axis);
466 }
467
468 // this homing works for HBots/CoreXY
469 void Endstops::do_homing_corexy(char axes_to_move)
470 {
471 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
472 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
473 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
474 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
475
476 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
477 // determine which motor to turn and which way
478 bool dirx= this->home_direction[X_AXIS];
479 bool diry= this->home_direction[Y_AXIS];
480 int motor;
481 bool dir;
482 if(dirx && diry) { // min/min
483 motor= X_AXIS;
484 dir= true;
485 }else if(dirx && !diry) { // min/max
486 motor= Y_AXIS;
487 dir= true;
488 }else if(!dirx && diry) { // max/min
489 motor= Y_AXIS;
490 dir= false;
491 }else if(!dirx && !diry) { // max/max
492 motor= X_AXIS;
493 dir= false;
494 }
495
496 // then move both X and Y until one hits the endstop
497 this->status = MOVING_TO_ENDSTOP_FAST;
498 // need to allow for more ground covered when moving diagonally
499 this->feed_rate[motor]= this->fast_rates[motor]*1.4142;
500 STEPPER[motor]->move(dir, 10000000, 0);
501 // wait until either X or Y hits the endstop
502 bool running= true;
503 while (running) {
504 THEKERNEL->call_event(ON_IDLE);
505 for(int m=X_AXIS;m<=Y_AXIS;m++) {
506 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
507 // turn off motor
508 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
509 running= false;
510 break;
511 }
512 }
513 }
514 }
515
516 // move individual axis
517 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
518 bool dir= this->home_direction[X_AXIS];
519 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
520 }
521
522 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
523 bool dir= this->home_direction[Y_AXIS];
524 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
525 }
526
527 if (axes_to_move & 0x04) { // move Z
528 do_homing_cartesian(0x04); // just home normally for Z
529 }
530
531 // Homing is done
532 this->status = NOT_HOMING;
533 }
534
535 void Endstops::home(char axes_to_move)
536 {
537 // not a block move so disable the last tick setting
538 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
539 STEPPER[c]->set_moved_last_block(false);
540 }
541
542 if (is_corexy){
543 // corexy/HBot homing
544 do_homing_corexy(axes_to_move);
545 }else{
546 // cartesian/delta homing
547 do_homing_cartesian(axes_to_move);
548 }
549 }
550
551 // Start homing sequences by response to GCode commands
552 void Endstops::on_gcode_received(void *argument)
553 {
554 Gcode *gcode = static_cast<Gcode *>(argument);
555 if ( gcode->has_g) {
556 if ( gcode->g == 28 ) {
557
558 // G28 is received, we have homing to do
559
560 // First wait for the queue to be empty
561 THEKERNEL->conveyor->wait_for_empty_queue();
562
563 // Do we move select axes or all of them
564 char axes_to_move = 0;
565 // only enable homing if the endstop is defined, deltas, scaras always home all axis
566 bool home_all = this->is_delta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
567
568 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
569 if ( (home_all || gcode->has_letter(c+'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
570 axes_to_move += ( 1 << c );
571 }
572 }
573
574 // Enable the motors
575 THEKERNEL->stepper->turn_enable_pins_on();
576
577 // do the actual homing
578 if(homing_order != 0){
579 // if an order has been specified do it in the specified order
580 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
581 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
582 for (uint8_t m = homing_order; m != 0; m >>= 2) {
583 int a= (1 << (m & 0x03)); // axis to move
584 if((a & axes_to_move) != 0)
585 home(a);
586 }
587 }else {
588 // they all home at the same time
589 home(axes_to_move);
590 }
591
592 if(home_all) {
593 // for deltas this may be important rather than setting each individually
594
595 // Here's where we would have been if the endstops were perfectly trimmed
596 float ideal_position[3] = {
597 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
598 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
599 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
600 };
601
602 bool has_endstop_trim = this->is_delta || this->is_scara;
603 if (has_endstop_trim) {
604 float ideal_actuator_position[3];
605 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
606
607 // We are actually not at the ideal position, but a trim away
608 float real_actuator_position[3] = {
609 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
610 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
611 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
612 };
613
614 float real_position[3];
615 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
616 // Reset the actuator positions to correspond our real position
617 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
618 } else {
619 // without endstop trim, real_position == ideal_position
620 // Reset the actuator positions to correspond our real position
621 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
622 }
623 } else {
624 // Zero the ax(i/e)s position, add in the home offset
625 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
626 if ( (axes_to_move >> c) & 1 ) {
627 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
628 }
629 }
630 }
631
632 // on some systems where 0,0 is bed center it is noce to have home goto 0,0 after homing
633 // default is off
634 if(this->move_to_origin_after_home)
635 move_to_origin(axes_to_move);
636
637 // if limit switches are enabled we must back off endstop after setting home
638 back_off_home(axes_to_move);
639 }
640
641 } else if (gcode->has_m) {
642 switch (gcode->m) {
643 case 119: {
644 for (int i = 0; i < 6; ++i) {
645 if(this->pins[i].connected())
646 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
647 }
648 gcode->add_nl= true;
649
650 }
651 break;
652
653 case 206: // M206 - set homing offset
654 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
655 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
656 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
657 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
658
659 break;
660
661 case 306: // Similar to M206 and G92 but sets Homing offsets based on current position, Would be M207 but that is taken
662 {
663 float cartesian[3];
664 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
665 if (gcode->has_letter('X')){
666 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
667 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
668 }
669 if (gcode->has_letter('Y')) {
670 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
671 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
672 }
673 if (gcode->has_letter('Z')) {
674 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
675 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
676 }
677
678 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
679
680 }
681 break;
682
683 case 500: // save settings
684 case 503: // print settings
685 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
686 if (this->is_delta || this->is_scara) {
687 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
688 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
689 }
690 break;
691
692 case 665: { // M665 - set max gamma/z height
693
694 float gamma_max = this->homing_position[2];
695 if (gcode->has_letter('Z')) {
696 this->homing_position[2] = gamma_max = gcode->get_value('Z');
697 }
698 gcode->stream->printf("Max Z %8.3f ", gamma_max);
699 gcode->add_nl = true;
700 }
701 break;
702
703
704 case 666:
705 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
706 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
707 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
708 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
709
710 // print the current trim values in mm
711 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
712
713 }
714 break;
715
716 // NOTE this is to test accuracy of lead screws etc.
717 case 910: { // M910 - move specific number of raw steps
718 // Enable the motors
719 THEKERNEL->stepper->turn_enable_pins_on();
720
721 int x= 0, y=0 , z= 0, f= 200*16;
722 if (gcode->has_letter('F')) f = gcode->get_value('F');
723 if (gcode->has_letter('X')) {
724 x = gcode->get_value('X');
725 STEPPER[X_AXIS]->move(x<0, abs(x), f);
726 }
727 if (gcode->has_letter('Y')) {
728 y = gcode->get_value('Y');
729 STEPPER[Y_AXIS]->move(y<0, abs(y), f);
730 }
731 if (gcode->has_letter('Z')) {
732 z = gcode->get_value('Z');
733 STEPPER[Z_AXIS]->move(z<0, abs(z), f);
734 }
735 gcode->stream->printf("Moved X %d Y %d Z %d F %d steps\n", x, y, z, f);
736 break;
737 }
738 }
739 }
740 }
741
742 // Called periodically to change the speed to match acceleration
743 void Endstops::acceleration_tick(void)
744 {
745 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
746
747 // foreach stepper that is moving
748 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
749 if( !STEPPER[c]->is_moving() ) continue;
750
751 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
752 uint32_t target_rate = floorf(this->feed_rate[c]*STEPS_PER_MM(c));
753 float acc= (c==Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
754 if( current_rate < target_rate ){
755 uint32_t rate_increase = floorf((acc/THEKERNEL->acceleration_ticks_per_second)*STEPS_PER_MM(c));
756 current_rate = min( target_rate, current_rate + rate_increase );
757 }
758 if( current_rate > target_rate ){ current_rate = target_rate; }
759
760 // steps per second
761 STEPPER[c]->set_speed(current_rate);
762 }
763
764 return;
765 }
766
767 void Endstops::on_get_public_data(void* argument){
768 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
769
770 if(!pdr->starts_with(endstops_checksum)) return;
771
772 if(pdr->second_element_is(trim_checksum)) {
773 pdr->set_data_ptr(&this->trim_mm);
774 pdr->set_taken();
775
776 }else if(pdr->second_element_is(home_offset_checksum)) {
777 pdr->set_data_ptr(&this->home_offset);
778 pdr->set_taken();
779 }
780 }
781
782 void Endstops::on_set_public_data(void* argument){
783 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
784
785 if(!pdr->starts_with(endstops_checksum)) return;
786
787 if(pdr->second_element_is(trim_checksum)) {
788 float *t= static_cast<float*>(pdr->get_data_ptr());
789 this->trim_mm[0]= t[0];
790 this->trim_mm[1]= t[1];
791 this->trim_mm[2]= t[2];
792 pdr->set_taken();
793
794 }else if(pdr->second_element_is(home_offset_checksum)) {
795 float *t= static_cast<float*>(pdr->get_data_ptr());
796 if(!isnan(t[0])) this->home_offset[0]= t[0];
797 if(!isnan(t[1])) this->home_offset[1]= t[1];
798 if(!isnan(t[2])) this->home_offset[2]= t[2];
799 }
800 }