refactor ON_HALT, add THEKERNEL->is_halted() for modules that just need to test it...
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17 #include "Robot.h"
18 #include "Stepper.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "Pauser.h"
30 #include "StepTicker.h"
31 #include "BaseSolution.h"
32
33 #include <ctype.h>
34
35 #define ALPHA_AXIS 0
36 #define BETA_AXIS 1
37 #define GAMMA_AXIS 2
38 #define X_AXIS 0
39 #define Y_AXIS 1
40 #define Z_AXIS 2
41
42 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
43 #define corexy_homing_checksum CHECKSUM("corexy_homing")
44 #define delta_homing_checksum CHECKSUM("delta_homing")
45 #define scara_homing_checksum CHECKSUM("scara_homing")
46
47 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
48 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
49 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
50
51 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
52 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
53 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
54
55 #define alpha_trim_checksum CHECKSUM("alpha_trim")
56 #define beta_trim_checksum CHECKSUM("beta_trim")
57 #define gamma_trim_checksum CHECKSUM("gamma_trim")
58
59 // these values are in steps and should be deprecated
60 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
61 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
62 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
63
64 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
65 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
66 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
67
68 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
69 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
70 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
71
72 // same as above but in user friendly mm/s and mm
73 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
74 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
75 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
76
77 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
78 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
79 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
80
81 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
82 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
83 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
84
85 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
86
87 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
88 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
89 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
90 #define home_to_max_checksum CHECKSUM("home_to_max")
91 #define home_to_min_checksum CHECKSUM("home_to_min")
92 #define alpha_min_checksum CHECKSUM("alpha_min")
93 #define beta_min_checksum CHECKSUM("beta_min")
94 #define gamma_min_checksum CHECKSUM("gamma_min")
95
96 #define alpha_max_checksum CHECKSUM("alpha_max")
97 #define beta_max_checksum CHECKSUM("beta_max")
98 #define gamma_max_checksum CHECKSUM("gamma_max")
99
100 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
101 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
102 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
103
104 #define homing_order_checksum CHECKSUM("homing_order")
105 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
106
107 #define STEPPER THEKERNEL->robot->actuators
108 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
109
110
111 // Homing States
112 enum{
113 MOVING_TO_ENDSTOP_FAST, // homing move
114 MOVING_BACK, // homing move
115 MOVING_TO_ENDSTOP_SLOW, // homing move
116 NOT_HOMING,
117 BACK_OFF_HOME,
118 MOVE_TO_ORIGIN,
119 LIMIT_TRIGGERED
120 };
121
122 Endstops::Endstops()
123 {
124 this->status = NOT_HOMING;
125 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
126 }
127
128 void Endstops::on_module_loaded()
129 {
130 // Do not do anything if not enabled
131 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
132 delete this;
133 return;
134 }
135
136 register_for_event(ON_GCODE_RECEIVED);
137 register_for_event(ON_GET_PUBLIC_DATA);
138 register_for_event(ON_SET_PUBLIC_DATA);
139
140 THEKERNEL->step_ticker->register_acceleration_tick_handler([this](){acceleration_tick(); });
141
142 // Settings
143 this->on_config_reload(this);
144 }
145
146 // Get config
147 void Endstops::on_config_reload(void *argument)
148 {
149 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
150 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
151 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155
156 // These are the old ones in steps still here for backwards compatibility
157 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
158 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
159 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
160 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
161 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
162 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
163 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
164 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
165 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
166
167 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
168 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
169 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
170 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
171 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
172 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
173 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
174 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
175 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
176 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
177
178 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
179
180 // get homing direction and convert to boolean where true is home to min, and false is home to max
181 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
182 this->home_direction[0] = home_dir != home_to_max_checksum;
183
184 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
185 this->home_direction[1] = home_dir != home_to_max_checksum;
186
187 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
188 this->home_direction[2] = home_dir != home_to_max_checksum;
189
190 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
191 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
192 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
193
194 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
195 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
196 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
197
198 // see if an order has been specified, must be three characters, XYZ or YXZ etc
199 string order= THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
200 this->homing_order= 0;
201 if(order.size() == 3 && !this->is_delta) {
202 int shift= 0;
203 for(auto c : order) {
204 uint8_t i= toupper(c) - 'X';
205 if(i > 2) { // bad value
206 this->homing_order= 0;
207 break;
208 }
209 homing_order |= (i << shift);
210 shift += 2;
211 }
212 }
213
214 // endstop trim used by deltas to do soft adjusting
215 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
216 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
217 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
218 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
219
220 // limits enabled
221 this->limit_enable[X_AXIS]= THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
222 this->limit_enable[Y_AXIS]= THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
223 this->limit_enable[Z_AXIS]= THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
224
225 this->move_to_origin_after_home= THEKERNEL->config->value(move_to_origin_checksum)->by_default(false)->as_bool();
226
227 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]){
228 register_for_event(ON_IDLE);
229 if(this->is_delta) {
230 // we must enable all the limits not just one
231 this->limit_enable[X_AXIS]= true;
232 this->limit_enable[Y_AXIS]= true;
233 this->limit_enable[Z_AXIS]= true;
234 }
235 }
236
237 // NOTE this may also be true of scara. TBD
238 if(this->is_delta) {
239 // some things must be the same or they will die, so force it here to avoid config errors
240 this->fast_rates[1]= this->fast_rates[2]= this->fast_rates[0];
241 this->slow_rates[1]= this->slow_rates[2]= this->slow_rates[0];
242 this->retract_mm[1]= this->retract_mm[2]= this->retract_mm[0];
243 this->home_direction[1]= this->home_direction[2]= this->home_direction[0];
244 this->homing_position[0]= this->homing_position[1]= 0;
245 }
246 }
247
248 bool Endstops::debounced_get(int pin)
249 {
250 uint8_t debounce= 0;
251 while(this->pins[pin].get()) {
252 if ( ++debounce >= this->debounce_count ) {
253 // pin triggered
254 return true;
255 }
256 }
257 return false;
258 }
259
260 static const char *endstop_names[]= {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
261
262 void Endstops::on_idle(void *argument)
263 {
264 if(this->status == LIMIT_TRIGGERED) {
265 // if we were in limit triggered see if it has been cleared
266 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
267 if(this->limit_enable[c]) {
268 std::array<int, 2> minmax{{0, 3}};
269 // check min and max endstops
270 for (int i : minmax) {
271 int n= c+i;
272 if(this->pins[n].get()) {
273 // still triggered, so exit
274 bounce_cnt= 0;
275 return;
276 }
277 }
278 }
279 }
280 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
281 // clear the state
282 this->status= NOT_HOMING;
283 }
284 return;
285
286 }else if(this->status != NOT_HOMING) {
287 // don't check while homing
288 return;
289 }
290
291 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
292 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
293 std::array<int, 2> minmax{{0, 3}};
294 // check min and max endstops
295 for (int i : minmax) {
296 int n= c+i;
297 if(debounced_get(n)) {
298 // endstop triggered
299 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
300 this->status= LIMIT_TRIGGERED;
301 // disables heaters and motors, ignores incoming Gcode and flushes block queue
302 THEKERNEL->call_event(ON_HALT, nullptr);
303 return;
304 }
305 }
306 }
307 }
308 }
309
310 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
311 // checks if triggered and only backs off if triggered
312 void Endstops::back_off_home(char axes_to_move)
313 {
314 std::vector<std::pair<char,float>> params;
315 this->status = BACK_OFF_HOME;
316
317 // these are handled differently
318 if((is_delta || is_scara) && this->limit_enable[X_AXIS]) {
319 // Move off of the endstop using a regular relative move in Z only
320 params.push_back({'Z', this->retract_mm[Z_AXIS]*(this->home_direction[Z_AXIS]?1:-1)});
321
322 }else{
323 // cartesians, concatenate all the moves we need to do into one gcode
324 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
325 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
326
327 // if not triggered no need to move off
328 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
329 params.push_back({c+'X', this->retract_mm[c]*(this->home_direction[c]?1:-1)});
330 }
331 }
332 }
333
334 if(!params.empty()) {
335 // Move off of the endstop using a regular relative move
336 params.insert(params.begin(), {'G', 0});
337 // use X slow rate to move, Z should have a max speed set anyway
338 params.push_back({'F', this->slow_rates[X_AXIS]*60.0F});
339 char gcode_buf[64];
340 append_parameters(gcode_buf, params, sizeof(gcode_buf));
341 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
342 bool oldmode= THEKERNEL->robot->absolute_mode;
343 THEKERNEL->robot->absolute_mode= false; // needs to be relative mode
344 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
345 THEKERNEL->robot->absolute_mode= oldmode; // restore mode
346 // Wait for above to finish
347 THEKERNEL->conveyor->wait_for_empty_queue();
348 }
349
350 this->status = NOT_HOMING;
351 }
352
353 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
354 void Endstops::move_to_origin(char axes_to_move)
355 {
356 if( (axes_to_move&0x03) != 3 ) return; // ignore if X and Y not homing
357
358 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
359 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
360
361 this->status = MOVE_TO_ORIGIN;
362 // Move to center using a regular move, use slower of X and Y fast rate
363 float rate= std::min(this->fast_rates[0], this->fast_rates[1])*60.0F;
364 char buf[32];
365 snprintf(buf, sizeof(buf), "G0 X0 Y0 F%1.4f", rate);
366 Gcode gc(buf, &(StreamOutput::NullStream));
367 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
368
369 // Wait for above to finish
370 THEKERNEL->conveyor->wait_for_empty_queue();
371 this->status = NOT_HOMING;
372 }
373
374 bool Endstops::wait_for_homed(char axes_to_move)
375 {
376 bool running = true;
377 unsigned int debounce[3] = {0, 0, 0};
378 while (running) {
379 running = false;
380 THEKERNEL->call_event(ON_IDLE);
381
382 // check if on_halt (eg kill)
383 if(THEKERNEL->is_halted()) return false;
384
385 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
386 if ( ( axes_to_move >> c ) & 1 ) {
387 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
388 if ( debounce[c] < debounce_count ) {
389 debounce[c]++;
390 running = true;
391 } else if ( STEPPER[c]->is_moving() ) {
392 STEPPER[c]->move(0, 0);
393 axes_to_move &= ~(1<<c); // no need to check it again
394 }
395 } else {
396 // The endstop was not hit yet
397 running = true;
398 debounce[c] = 0;
399 }
400 }
401 }
402 }
403 return true;
404 }
405
406 void Endstops::do_homing_cartesian(char axes_to_move)
407 {
408 // check if on_halt (eg kill)
409 if(THEKERNEL->is_halted()) return;
410
411 // this homing works for cartesian and delta printers
412 // Start moving the axes to the origin
413 this->status = MOVING_TO_ENDSTOP_FAST;
414 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
415 if ( ( axes_to_move >> c) & 1 ) {
416 this->feed_rate[c]= this->fast_rates[c];
417 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
418 }
419 }
420
421 // Wait for all axes to have homed
422 if(!this->wait_for_homed(axes_to_move)) return;
423
424 // Move back a small distance
425 this->status = MOVING_BACK;
426 bool inverted_dir;
427 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
428 if ( ( axes_to_move >> c ) & 1 ) {
429 inverted_dir = !this->home_direction[c];
430 this->feed_rate[c]= this->slow_rates[c];
431 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
432 }
433 }
434
435 // Wait for moves to be done
436 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
437 if ( ( axes_to_move >> c ) & 1 ) {
438 while ( STEPPER[c]->is_moving() ) {
439 THEKERNEL->call_event(ON_IDLE);
440 }
441 }
442 }
443
444 // Start moving the axes to the origin slowly
445 this->status = MOVING_TO_ENDSTOP_SLOW;
446 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
447 if ( ( axes_to_move >> c ) & 1 ) {
448 this->feed_rate[c]= this->slow_rates[c];
449 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
450 }
451 }
452
453 // Wait for all axes to have homed
454 if(!this->wait_for_homed(axes_to_move)) return;
455
456 // Homing is done
457 this->status = NOT_HOMING;
458 }
459
460 bool Endstops::wait_for_homed_corexy(int axis)
461 {
462 bool running = true;
463 unsigned int debounce[3] = {0, 0, 0};
464 while (running) {
465 running = false;
466 THEKERNEL->call_event(ON_IDLE);
467
468 // check if on_halt (eg kill)
469 if(THEKERNEL->is_halted()) return false;
470
471 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
472 if ( debounce[axis] < debounce_count ) {
473 debounce[axis] ++;
474 running = true;
475 } else {
476 // turn both off if running
477 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
478 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
479 }
480 } else {
481 // The endstop was not hit yet
482 running = true;
483 debounce[axis] = 0;
484 }
485 }
486 return true;
487 }
488
489 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
490 {
491 // check if on_halt (eg kill)
492 if(THEKERNEL->is_halted()) return;
493
494 this->status = MOVING_TO_ENDSTOP_FAST;
495 this->feed_rate[X_AXIS]= fast_rate;
496 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
497 this->feed_rate[Y_AXIS]= fast_rate;
498 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
499
500 // wait for primary axis
501 if(!this->wait_for_homed_corexy(home_axis)) return;
502
503 // Move back a small distance
504 this->status = MOVING_BACK;
505 this->feed_rate[X_AXIS]= slow_rate;
506 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
507 this->feed_rate[Y_AXIS]= slow_rate;
508 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
509
510 // wait until done
511 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
512 THEKERNEL->call_event(ON_IDLE);
513 }
514
515 // Start moving the axes to the origin slowly
516 this->status = MOVING_TO_ENDSTOP_SLOW;
517 this->feed_rate[X_AXIS]= slow_rate;
518 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
519 this->feed_rate[Y_AXIS]= slow_rate;
520 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
521
522 // wait for primary axis
523 if(!this->wait_for_homed_corexy(home_axis)) return;
524 }
525
526 // this homing works for HBots/CoreXY
527 void Endstops::do_homing_corexy(char axes_to_move)
528 {
529 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
530 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
531 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
532 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
533
534 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
535 // determine which motor to turn and which way
536 bool dirx= this->home_direction[X_AXIS];
537 bool diry= this->home_direction[Y_AXIS];
538 int motor;
539 bool dir;
540 if(dirx && diry) { // min/min
541 motor= X_AXIS;
542 dir= true;
543 }else if(dirx && !diry) { // min/max
544 motor= Y_AXIS;
545 dir= true;
546 }else if(!dirx && diry) { // max/min
547 motor= Y_AXIS;
548 dir= false;
549 }else if(!dirx && !diry) { // max/max
550 motor= X_AXIS;
551 dir= false;
552 }
553
554 // then move both X and Y until one hits the endstop
555 this->status = MOVING_TO_ENDSTOP_FAST;
556 // need to allow for more ground covered when moving diagonally
557 this->feed_rate[motor]= this->fast_rates[motor]*1.4142;
558 STEPPER[motor]->move(dir, 10000000, 0);
559 // wait until either X or Y hits the endstop
560 bool running= true;
561 while (running) {
562 THEKERNEL->call_event(ON_IDLE);
563 for(int m=X_AXIS;m<=Y_AXIS;m++) {
564 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
565 // turn off motor
566 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
567 running= false;
568 break;
569 }
570 }
571 }
572 }
573
574 // move individual axis
575 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
576 bool dir= this->home_direction[X_AXIS];
577 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
578 }
579
580 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
581 bool dir= this->home_direction[Y_AXIS];
582 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
583 }
584
585 if (axes_to_move & 0x04) { // move Z
586 do_homing_cartesian(0x04); // just home normally for Z
587 }
588
589 // Homing is done
590 this->status = NOT_HOMING;
591 }
592
593 void Endstops::home(char axes_to_move)
594 {
595 // not a block move so disable the last tick setting
596 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
597 STEPPER[c]->set_moved_last_block(false);
598 }
599
600 if (is_corexy){
601 // corexy/HBot homing
602 do_homing_corexy(axes_to_move);
603 }else{
604 // cartesian/delta homing
605 do_homing_cartesian(axes_to_move);
606 }
607 }
608
609 // Start homing sequences by response to GCode commands
610 void Endstops::on_gcode_received(void *argument)
611 {
612 Gcode *gcode = static_cast<Gcode *>(argument);
613 if ( gcode->has_g) {
614 if ( gcode->g == 28 ) {
615
616 // G28 is received, we have homing to do
617
618 // First wait for the queue to be empty
619 THEKERNEL->conveyor->wait_for_empty_queue();
620
621 // Do we move select axes or all of them
622 char axes_to_move = 0;
623 // only enable homing if the endstop is defined, deltas, scaras always home all axis
624 bool home_all = this->is_delta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
625
626 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
627 if ( (home_all || gcode->has_letter(c+'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
628 axes_to_move += ( 1 << c );
629 }
630 }
631
632 // Enable the motors
633 THEKERNEL->stepper->turn_enable_pins_on();
634
635 // do the actual homing
636 if(homing_order != 0){
637 // if an order has been specified do it in the specified order
638 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
639 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
640 for (uint8_t m = homing_order; m != 0; m >>= 2) {
641 int a= (1 << (m & 0x03)); // axis to move
642 if((a & axes_to_move) != 0){
643 home(a);
644 }
645 // check if on_halt (eg kill)
646 if(THEKERNEL->is_halted()) return;
647 }
648
649 }else {
650 // they all home at the same time
651 home(axes_to_move);
652 }
653
654 // check if on_halt (eg kill)
655 if(THEKERNEL->is_halted()) return;
656
657 if(home_all) {
658 // for deltas this may be important rather than setting each individually
659
660 // Here's where we would have been if the endstops were perfectly trimmed
661 float ideal_position[3] = {
662 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
663 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
664 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
665 };
666
667 bool has_endstop_trim = this->is_delta || this->is_scara;
668 if (has_endstop_trim) {
669 float ideal_actuator_position[3];
670 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
671
672 // We are actually not at the ideal position, but a trim away
673 float real_actuator_position[3] = {
674 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
675 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
676 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
677 };
678
679 float real_position[3];
680 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
681 // Reset the actuator positions to correspond our real position
682 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
683 } else {
684 // without endstop trim, real_position == ideal_position
685 // Reset the actuator positions to correspond our real position
686 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
687 }
688 } else {
689 // Zero the ax(i/e)s position, add in the home offset
690 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
691 if ( (axes_to_move >> c) & 1 ) {
692 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
693 }
694 }
695 }
696
697 // on some systems where 0,0 is bed center it is noce to have home goto 0,0 after homing
698 // default is off
699 if(this->move_to_origin_after_home)
700 move_to_origin(axes_to_move);
701
702 // if limit switches are enabled we must back off endstop after setting home
703 back_off_home(axes_to_move);
704 }
705
706 } else if (gcode->has_m) {
707 switch (gcode->m) {
708 case 119: {
709 for (int i = 0; i < 6; ++i) {
710 if(this->pins[i].connected())
711 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
712 }
713 gcode->add_nl= true;
714
715 }
716 break;
717
718 case 206: // M206 - set homing offset
719 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
720 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
721 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
722 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
723
724 break;
725
726 case 306: // Similar to M206 and G92 but sets Homing offsets based on current position, Would be M207 but that is taken
727 {
728 float cartesian[3];
729 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
730 if (gcode->has_letter('X')){
731 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
732 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
733 }
734 if (gcode->has_letter('Y')) {
735 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
736 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
737 }
738 if (gcode->has_letter('Z')) {
739 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
740 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
741 }
742
743 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
744
745 }
746 break;
747
748 case 500: // save settings
749 case 503: // print settings
750 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
751 if (this->is_delta || this->is_scara) {
752 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
753 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
754 }
755 break;
756
757 case 665: { // M665 - set max gamma/z height
758
759 float gamma_max = this->homing_position[2];
760 if (gcode->has_letter('Z')) {
761 this->homing_position[2] = gamma_max = gcode->get_value('Z');
762 }
763 gcode->stream->printf("Max Z %8.3f ", gamma_max);
764 gcode->add_nl = true;
765 }
766 break;
767
768
769 case 666:
770 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
771 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
772 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
773 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
774
775 // print the current trim values in mm
776 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
777
778 }
779 break;
780
781 // NOTE this is to test accuracy of lead screws etc.
782 case 910: { // M910 - move specific number of raw steps
783 // Enable the motors
784 THEKERNEL->stepper->turn_enable_pins_on();
785
786 int x= 0, y=0 , z= 0, f= 200*16;
787 if (gcode->has_letter('F')) f = gcode->get_value('F');
788 if (gcode->has_letter('X')) {
789 x = gcode->get_value('X');
790 STEPPER[X_AXIS]->move(x<0, abs(x), f);
791 }
792 if (gcode->has_letter('Y')) {
793 y = gcode->get_value('Y');
794 STEPPER[Y_AXIS]->move(y<0, abs(y), f);
795 }
796 if (gcode->has_letter('Z')) {
797 z = gcode->get_value('Z');
798 STEPPER[Z_AXIS]->move(z<0, abs(z), f);
799 }
800 gcode->stream->printf("Moved X %d Y %d Z %d F %d steps\n", x, y, z, f);
801 break;
802 }
803 }
804 }
805 }
806
807 // Called periodically to change the speed to match acceleration
808 void Endstops::acceleration_tick(void)
809 {
810 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
811
812 // foreach stepper that is moving
813 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
814 if( !STEPPER[c]->is_moving() ) continue;
815
816 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
817 uint32_t target_rate = floorf(this->feed_rate[c]*STEPS_PER_MM(c));
818 float acc= (c==Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
819 if( current_rate < target_rate ){
820 uint32_t rate_increase = floorf((acc/THEKERNEL->acceleration_ticks_per_second)*STEPS_PER_MM(c));
821 current_rate = min( target_rate, current_rate + rate_increase );
822 }
823 if( current_rate > target_rate ){ current_rate = target_rate; }
824
825 // steps per second
826 STEPPER[c]->set_speed(current_rate);
827 }
828
829 return;
830 }
831
832 void Endstops::on_get_public_data(void* argument){
833 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
834
835 if(!pdr->starts_with(endstops_checksum)) return;
836
837 if(pdr->second_element_is(trim_checksum)) {
838 pdr->set_data_ptr(&this->trim_mm);
839 pdr->set_taken();
840
841 }else if(pdr->second_element_is(home_offset_checksum)) {
842 pdr->set_data_ptr(&this->home_offset);
843 pdr->set_taken();
844 }
845 }
846
847 void Endstops::on_set_public_data(void* argument){
848 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
849
850 if(!pdr->starts_with(endstops_checksum)) return;
851
852 if(pdr->second_element_is(trim_checksum)) {
853 float *t= static_cast<float*>(pdr->get_data_ptr());
854 this->trim_mm[0]= t[0];
855 this->trim_mm[1]= t[1];
856 this->trim_mm[2]= t[2];
857 pdr->set_taken();
858
859 }else if(pdr->second_element_is(home_offset_checksum)) {
860 float *t= static_cast<float*>(pdr->get_data_ptr());
861 if(!isnan(t[0])) this->home_offset[0]= t[0];
862 if(!isnan(t[1])) this->home_offset[1]= t[1];
863 if(!isnan(t[2])) this->home_offset[2]= t[2];
864 }
865 }