Merge branch 'edge' into feature/ActionQueue_redux
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 using std::string;
17 #include <vector>
18 #include "../communication/utils/Gcode.h"
19
20 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
21 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
22 // Most of the accel math is also done in this class
23 // And GCode objects for use in on_gcode_execute are also help in here
24
25 Block::Block()
26 {
27 clear();
28 }
29
30 void Block::clear()
31 {
32 //commands.clear();
33 //travel_distances.clear();
34 gcodes.clear();
35 clear_vector(this->steps);
36
37 steps_event_count= 0;
38 nominal_rate= 0;
39 nominal_speed= 0.0F;
40 millimeters= 0.0F;
41 entry_speed= 0.0F;
42 rate_delta= 0.0F;
43 initial_rate= -1;
44 final_rate= -1;
45 accelerate_until= 0;
46 decelerate_after= 0;
47 direction_bits= 0;
48 recalculate_flag= false;
49 nominal_length_flag= false;
50 max_entry_speed= 0.0F;
51 is_ready= false;
52 times_taken= 0;
53 }
54
55 void Block::debug()
56 {
57 THEKERNEL->serial->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
58 this,
59 this->steps[0],
60 this->steps[1],
61 this->steps[2],
62 this->steps_event_count,
63 this->nominal_rate,
64 this->nominal_speed,
65 this->millimeters,
66 this->rate_delta,
67 this->accelerate_until,
68 this->decelerate_after,
69 this->initial_rate,
70 this->final_rate,
71 this->entry_speed,
72 this->max_entry_speed,
73 this->times_taken,
74 this->is_ready,
75 recalculate_flag?1:0,
76 nominal_length_flag?1:0
77 );
78 }
79
80
81 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
82 // The factors represent a factor of braking and must be in the range 0.0-1.0.
83 // +--------+ <- nominal_rate
84 // / \
85 // nominal_rate*entry_factor -> + \
86 // | + <- nominal_rate*exit_factor
87 // +-------------+
88 // time -->
89 */
90 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
91 {
92
93 // The planner passes us factors, we need to transform them in rates
94 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/min)
95 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/min)
96
97 // How many steps to accelerate and decelerate
98 float acceleration_per_minute = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
99 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
100 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
101
102 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
103 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
104
105 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
106 // have to use intersection_distance() to calculate when to abort acceleration and start braking
107 // in order to reach the final_rate exactly at the end of this block.
108 if (plateau_steps < 0) {
109 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
110 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
111 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
112 plateau_steps = 0;
113 }
114 this->accelerate_until = accelerate_steps;
115 this->decelerate_after = accelerate_steps + plateau_steps;
116
117 }
118
119 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
120 // given acceleration:
121 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
122 {
123 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
124 }
125
126 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
127 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
128 // a total travel of distance. This can be used to compute the intersection point between acceleration and
129 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
130 //
131 /* + <- some maximum rate we don't care about
132 /|\
133 / | \
134 / | + <- final_rate
135 / | |
136 initial_rate -> +----+--+
137 ^ ^
138 | |
139 intersection_distance distance */
140 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
141 {
142 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
143 }
144
145 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
146 // acceleration within the allotted distance.
147 inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
148 {
149 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
150 }
151
152
153 // Called by Planner::recalculate() when scanning the plan from last to first entry.
154 float Block::reverse_pass(float exit_speed)
155 {
156 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
157 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
158 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
159 if (this->entry_speed != this->max_entry_speed)
160 {
161 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
162 // for max allowable speed if block is decelerating and nominal length is false.
163 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
164 {
165 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->acceleration, exit_speed, this->millimeters);
166
167 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
168
169 return this->entry_speed;
170 }
171 else
172 this->entry_speed = this->max_entry_speed;
173 }
174
175 return this->entry_speed;
176 }
177
178
179 // Called by Planner::recalculate() when scanning the plan from first to last entry.
180 // returns maximum exit speed of this block
181 float Block::forward_pass(float prev_max_exit_speed)
182 {
183 // If the previous block is an acceleration block, but it is not long enough to complete the
184 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
185 // speeds have already been reset, maximized, and reverse planned by reverse planner.
186 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
187
188 // TODO: find out if both of these checks are necessary
189 if (prev_max_exit_speed > nominal_speed)
190 prev_max_exit_speed = nominal_speed;
191 if (prev_max_exit_speed > max_entry_speed)
192 prev_max_exit_speed = max_entry_speed;
193
194 if (prev_max_exit_speed <= entry_speed)
195 {
196 // accel limited
197 entry_speed = prev_max_exit_speed;
198 // since we're now acceleration or cruise limited
199 // we don't need to recalculate our entry speed anymore
200 recalculate_flag = false;
201 }
202 // else
203 // // decel limited, do nothing
204
205 return max_exit_speed();
206 }
207
208 float Block::max_exit_speed()
209 {
210 // if nominal_length_flag is asserted
211 // we are guaranteed to reach nominal speed regardless of entry speed
212 // thus, max exit will always be nominal
213 if (nominal_length_flag)
214 return nominal_speed;
215
216 // otherwise, we have to work out max exit speed based on entry and acceleration
217 float max = max_allowable_speed(-THEKERNEL->planner->acceleration, this->entry_speed, this->millimeters);
218
219 return min(max, nominal_speed);
220 }
221
222 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
223 void Block::append_gcode(Gcode* gcode)
224 {
225 Gcode new_gcode = *gcode;
226 gcodes.push_back(new_gcode);
227 }
228
229 void Block::begin()
230 {
231 recalculate_flag = false;
232
233 // execute all the gcodes related to this block
234 for(unsigned int index = 0; index < gcodes.size(); index++)
235 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
236
237 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
238 }
239
240 // Signal the conveyor that this block is ready to be injected into the system
241 void Block::ready()
242 {
243 this->is_ready = true;
244 }
245
246 // Mark the block as taken by one more module
247 void Block::take()
248 {
249 this->times_taken++;
250 }
251
252 // Mark the block as no longer taken by one module, go to next block if this free's it
253 void Block::release()
254 {
255 if (--this->times_taken <= 0)
256 THEKERNEL->call_event(ON_BLOCK_END, this);
257
258 // ensure conveyor gets called last
259 THEKERNEL->conveyor->on_block_end(this);
260 }