Merge pull request #67 from triffid/feature/cleaner_make_output
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Player.h"
16 using std::string;
17 #include <vector>
18 #include "../communication/utils/Gcode.h"
19
20 Block::Block(){
21 clear_vector(this->steps);
22 this->times_taken = 0; // A block can be "taken" by any number of modules, and the next block is not moved to until all the modules have "released" it. This value serves as a tracker.
23 this->is_ready = false;
24 this->initial_rate = -1;
25 this->final_rate = -1;
26 }
27
28 void Block::debug(Kernel* kernel){
29 kernel->streams->printf("%p: steps:%4d|%4d|%4d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d taken:%d ready:%d \r\n", this, this->steps[0], this->steps[1], this->steps[2], this->steps_event_count, this->nominal_rate, this->nominal_speed, this->millimeters, this->rate_delta, this->accelerate_until, this->decelerate_after, this->initial_rate, this->final_rate, this->times_taken, this->is_ready );
30 }
31
32
33 // Calculate a braking factor to reach baseline speed which is max_jerk/2, e.g. the
34 // speed under which you cannot exceed max_jerk no matter what you do.
35 double Block::compute_factor_for_safe_speed(){
36 return( this->planner->max_jerk / this->nominal_speed );
37 }
38
39
40 // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
41 // The factors represent a factor of braking and must be in the range 0.0-1.0.
42 // +--------+ <- nominal_rate
43 // / \
44 // nominal_rate*entry_factor -> + \
45 // | + <- nominal_rate*exit_factor
46 // +-------------+
47 // time -->
48 void Block::calculate_trapezoid( double entryfactor, double exitfactor ){
49
50 //this->player->kernel->streams->printf("%p calculating trapezoid\r\n", this);
51
52 this->initial_rate = ceil(this->nominal_rate * entryfactor); // (step/min)
53 this->final_rate = ceil(this->nominal_rate * exitfactor); // (step/min)
54
55 //this->player->kernel->streams->printf("initrate:%f finalrate:%f\r\n", this->initial_rate, this->final_rate);
56
57 double acceleration_per_minute = this->rate_delta * this->planner->kernel->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
58 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
59 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
60
61
62 // Calculate the size of Plateau of Nominal Rate.
63 int plateau_steps = this->steps_event_count-accelerate_steps-decelerate_steps;
64
65 //this->player->kernel->streams->printf("accelperminute:%f accelerate_steps:%d decelerate_steps:%d plateau:%d \r\n", acceleration_per_minute, accelerate_steps, decelerate_steps, plateau_steps );
66
67 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
68 // have to use intersection_distance() to calculate when to abort acceleration and start braking
69 // in order to reach the final_rate exactly at the end of this block.
70 if (plateau_steps < 0) {
71 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
72 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
73 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
74 plateau_steps = 0;
75 }
76
77 this->accelerate_until = accelerate_steps;
78 this->decelerate_after = accelerate_steps+plateau_steps;
79
80 //this->debug(this->player->kernel);
81
82 /*
83 // TODO: FIX THIS: DIRTY HACK so that we don't end too early for blocks with 0 as final_rate. Doing the math right would be better. Probably fixed in latest grbl
84 if( this->final_rate < 0.01 ){
85 this->decelerate_after += floor( this->nominal_rate / 60 / this->planner->kernel->stepper->acceleration_ticks_per_second ) * 3;
86 }
87 */
88 }
89
90 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
91 // given acceleration:
92 double Block::estimate_acceleration_distance(double initialrate, double targetrate, double acceleration) {
93 return( ((targetrate*targetrate)-(initialrate*initialrate))/(2L*acceleration));
94 }
95
96 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
97 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
98 // a total travel of distance. This can be used to compute the intersection point between acceleration and
99 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
100 //
101 /* + <- some maximum rate we don't care about
102 /|\
103 / | \
104 / | + <- final_rate
105 / | |
106 initial_rate -> +----+--+
107 ^ ^
108 | |
109 intersection_distance distance */
110 double Block::intersection_distance(double initialrate, double finalrate, double acceleration, double distance) {
111 return((2*acceleration*distance-initialrate*initialrate+finalrate*finalrate)/(4*acceleration));
112 }
113
114 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
115 // acceleration within the allotted distance.
116 inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
117 return(
118 sqrt(target_velocity*target_velocity-2L*acceleration*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
119 );
120 }
121
122
123 // Called by Planner::recalculate() when scanning the plan from last to first entry.
124 void Block::reverse_pass(Block* next, Block* previous){
125
126 if (next) {
127 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
128 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
129 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
130 if (this->entry_speed != this->max_entry_speed) {
131
132 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
133 // for max allowable speed if block is decelerating and nominal length is false.
134 if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
135 this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-this->planner->acceleration,next->entry_speed,this->millimeters));
136 } else {
137 this->entry_speed = this->max_entry_speed;
138 }
139 this->recalculate_flag = true;
140
141 }
142 } // Skip last block. Already initialized and set for recalculation.
143
144 }
145
146
147 // Called by Planner::recalculate() when scanning the plan from first to last entry.
148 void Block::forward_pass(Block* previous, Block* next){
149
150 if(!previous) { return; } // Begin planning after buffer_tail
151
152 // If the previous block is an acceleration block, but it is not long enough to complete the
153 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
154 // speeds have already been reset, maximized, and reverse planned by reverse planner.
155 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
156 if (!previous->nominal_length_flag) {
157 if (previous->entry_speed < this->entry_speed) {
158 double entry_speed = min( this->entry_speed,
159 max_allowable_speed(-this->planner->acceleration,previous->entry_speed,previous->millimeters) );
160
161 // Check for junction speed change
162 if (this->entry_speed != entry_speed) {
163 this->entry_speed = entry_speed;
164 this->recalculate_flag = true;
165 }
166 }
167 }
168
169 }
170
171
172 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
173 void Block::append_gcode(Gcode* gcode){
174 __disable_irq();
175 this->gcodes.push_back(*gcode);
176 __enable_irq();
177 }
178
179 // The attached gcodes are then poped and the on_gcode_execute event is called with them as a parameter
180 void Block::pop_and_execute_gcode(Kernel* &kernel){
181 Block* block = const_cast<Block*>(this);
182 for(unsigned short index=0; index<block->gcodes.size(); index++){
183 //printf("GCODE Z: %s \r\n", block->gcodes[index].command.c_str() );
184 kernel->call_event(ON_GCODE_EXECUTE, &(block->gcodes[index]));
185 }
186 }
187
188 // Signal the player that this block is ready to be injected into the system
189 void Block::ready(){
190 this->is_ready = true;
191 this->player->new_block_added();
192 }
193
194 // Mark the block as taken by one more module
195 void Block::take(){
196 this->times_taken++;
197 //printf("taking %p times now:%d\r\n", this, int(this->times_taken) );
198 }
199
200 // Mark the block as no longer taken by one module, go to next block if this free's it
201 void Block::release(){
202 //printf("release %p \r\n", this );
203 this->times_taken--;
204 //printf("releasing %p times now:%d\r\n", this, int(this->times_taken) );
205 if( this->times_taken < 1 ){
206 this->player->kernel->call_event(ON_BLOCK_END, this);
207 this->pop_and_execute_gcode(this->player->kernel);
208 Player* player = this->player;
209
210 if( player->queue.size() > 0 ){
211 player->queue.delete_first();
212 }
213
214 if( player->looking_for_new_block == false ){
215 if( player->queue.size() > 0 ){
216 Block* candidate = player->queue.get_ref(0);
217 if( candidate->is_ready ){
218 player->current_block = candidate;
219 player->kernel->call_event(ON_BLOCK_BEGIN, player->current_block);
220 if( player->current_block->times_taken < 1 ){
221 player->current_block->times_taken = 1;
222 player->current_block->release();
223 }
224 }else{
225
226 player->current_block = NULL;
227
228 }
229 }else{
230 player->current_block = NULL;
231 }
232 }
233 }
234 }
235
236
237